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Protein identification and identification of post-translational 
modifications are major tasks in proteomics, mainly by 
employing mass spectrometry (MS). Commonly, the unknown 
protein is digested with a protease and the resulting peptides 
are analyzed in an MS instrument. In matrix-assisted laser 
desorption/ionization time-of-flight (MALDI-ToF) instruments, 
the m/z values of (mainly) singly charged and intact peptides 
are measured, resulting in a peptide mass fingerprint (PMF). 
The PMF can be used for searching databases and obtaining 
lists of candidate proteins.1–3 Trypsin is by far the most common 
protease, but other proteases are also used.

The masses of the atoms occurring in amino acids and their 
post-translational modifications are all close to an integer 
(monoisotopic masses: H, 1.00783; C, 12.0000; N, 14.0031; O, 
15.9949; P, 30.9738; S, 31.9721). Therefore, the masses of the 

amino acids are also close to an integer. As noted by Mann,4 this 
implies that peptide masses distribute in clusters with a mass 
difference of slightly more than 1 Da. Thus, if the peptide masses 
are plotted against the fractional masses (i.e. the numbers after 
the decimal sign), a slope of approximately 0.000455–0.000495 is 
obtained.4–6 By definition, the fractional mass is between 0 and 
1. Its distribution is discontinuous at a mass of approximately 
2000 where the sum of the fractional masses of the individual 
amino acids in the peptide exceeds 1. To avoid the discontinuity, 
the term deltamass, the sum of the fractional masses, has 
been used.7 We will use fractional mass as a generic term and 
deltamass as a specific term when the sum of the amino acids’ 
fractional masses can exceed 1.

The mass clustering effect has some practical implications. 
It makes it possible to remove peaks that are unlikely to be 
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peptides, for example, matrix–alkali ions and thereby improve 
protein identification,8–10 or these ions can be distinguished 
and used in calibration.11 The average fractional mass can be 
used in a pre-calibration of MS spectra, significantly reducing 
mass errors,6 or as an extra control of proper calibration.12 
The fractional mass may help to predict whether an unknown 
peak is due to glycosylation.7 It is theoretically possible to 
calculate the elemental composition of a peptide from its 
mass, but due to the mass clustering effect this can only be 
done for small peptides using the most accurate instruments 
available.13,14 However, accurate mass determination may 
significantly improve MS/MS de novo sequencing.14–16

Most of the studies mentioned above have used trypsin 
for the proteolytic cleavage. Tryptic peptides contain one (or 
more) of the amino acids with the highest fractional masses, 
arginine and lysine. It has been noted that there is a correla-
tion between high-performance liquid chromatography (HPLC) 
retention in reverse phase chromatography and peptide frac-
tional mass when a narrow mass range (1 Da) is considered.7 
We have therefore asked how properties often used to sepa-
rate peptides are correlated to the fractional mass of the 
peptide. We have further investigated whether the use of other 
proteases with different cleavage specificities would change 
these correlations. For this purpose, we have compared the 
theoretical peptides created by digesting all human proteins in 
the Swiss-Prot17 database by trypsin, chymotrypsin and gluC.

Proteins and protelytic 
digestion
All human proteins were extracted from the Swiss-Prot data-
base (Release 49) using Swissknife,18 resulting in 13,358 
sequences. Sequences fulfilling the two following criteria were 
excluded: (i) the presence of non-standard amino acids, and 
(ii) the lack of peptides in the m/z range 490–3510. The protein 
sequences were digested in silico by trypsin, chymotrypsin and 
gluC, using the digestion tool of MassSorter.19 The following 
cleavage rules were used: trypsin cleaved C-terminal to 
arginine and lysine, but not if followed by proline; chymotrypsin 
cleaved C-terminal to phenylalanine, tyrosine, tryptophan 
and leucine, but not if followed by proline; and gluC cleaved 
C-terminal to aspartic acid and glutamic acid, but not if 
followed by proline. Only unmodified peptides with no missed 
cleavages were considered. Cysteine was treated as unmodi-
fied. The final number of proteins and peptides were 13,260 
and 455,835 for trypsin, 13,249 and 588,360 for chymotrypsin 
and 13,228 and 463,030 for gluC.

For the calculations of the individual fractional mass 
regression lines of proteins, only proteins yielding 15 or more 
peptides were used. For this analysis, 9624, 11,219 and 9378 
proteins were cleaved by trypsin, chymotrypsin and gluC, 
respectively. Theoretical pI of the peptides were calculated 
by pI_tool.20 The hydrophobicities were based on the GRAVY 
scale and were calculated as the average of all amino acids in 

the peptide.21 Similar results and conclusions were obtained 
when other scales of hydrophobicity were used (results not 
shown).

Results
The distributions of fractional masses of proteolytic peptides 
are shown in Figures 1(a)–(c). At lower peptide masses, the 
distribution of fractional masses is relatively narrow, but it is 
wider at higher masses. The average regression line for the 
tryptic fractional mass (here considered as deltamass to avoid 
the discontinuity) was

	 DMtryp = 0.0036937 + 0.0004886Mi	

where DMtryp is the deltamass obtained for the integer mass 
Mi. The factor 0.0004886 is close to previous results.4–6 The 
average regression lines for deltamasses generated by the 
three proteases trypsin, chymotrypsin and gluC are plotted in 
Figure 1(d). The chymotryptic regression line was close to that 
of trypsin,

	 DMchymo = -0.0003614 + 0.0004900Mi.	

On the other hand, gluC had a steeper regression line,

	 DMgluC = -0.0069709 + 0.0005108Mi.	

Thus, different enzymes have different regression lines. The 
regression lines intercept the ordinate at positive values when 
the C-terminal amino acid has high fractional mass, and at 
negative values when the C-terminal amino acid has low frac-
tional mass, similar to the recent results obtained by Wolski 
et al.22

The regression line for the fractional mass may be used to 
improve calibration of MS data.6 We therefore investigated 
how the regression lines for the individual proteins distrib-
uted. A relatively wide distribution was obtained for the three 
proteases (Figure 2). For example, for tryptic peptides at 
masses of 1500 and 2000, there were 162 ppm and 185 ppm, 
respectively, between the lower and the upper regression lines, 
indicating that, in extreme cases, the use of the average frac-
tional mass regression line may be a disadvantage. However, 
most proteins showed a relatively narrow distribution around 
the average regression line and 96.7%, 94.2% and 96.5% of the 
individual regression lines for trypsin, chymotrypsin and gluC, 
respectively, were within ±0.05 Da of the average regression 
line at an integer mass of 1500 (corresponding to ±33.3 ppm).

It has previously been shown that tryptic peptides in the 
mass range 1968.70–1969.25 (deltamass 0.7–1.25) showed a 
good correlation with an HPLC retention index with the lower 
deltamass having lower retention and the higher deltamass 
having higher retention.7 The relationships between fractional 
mass, hydrophobicity and pI were therefore also studied for 
chymotrypsin and gluC. As expected,7 tryptic peptides showed 
a positive correlation between hydrophobicity and increasing 
fractional mass for all mass ranges studied (499–501, 999–1001, 
1499–1501, 1999–2001, 2499–2501, 2999–3001, 3499–3501), 
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with correlation coefficient r = 0.63 to 0.78. This is exemplified 
by the mass range 1499–1501 [Figure 3(a)]. On the other hand, 

peptides generated by chymotrypsin or gluC [Figures 3(b) and 
(c)] showed weak correlation between hydrophobicity and frac-
tional mass (r = –0.38 to 0.38 for chymotrypsin, except for the 
mass range 499–501 where r = 0.61; gluC had r = 0.02 to 0.28), 
and the slopes of the regression lines in several cases were 
not significantly different from zero. In other words, consid-
ering peptides within a narrow mass range, tryptic peptides 
with low fractional mass tended to be more hydrophilic and 
peptides with high fractional mass tended to be more hydro-
phobic. In contrast, peptides generated by chymotrypsin or 
gluC had relatively similar hydrophobicities at low and high 
fractional masses, still within a narrow mass range.

The positioning of certain amino acids within the peptide 
may affect pI,23 but most peptides have their experimental 
pI close to the theoretical pI.23 As observed before for tryptic 
peptides,23,24 the pI tended to distribute into clusters (Figure 
3). The pI clustering effect was somewhat more pronounced 
for trypsin and gluC than for chymotrypsin [Figures 3(a)–(c)]. 
The strongest positive correlation between fractional mass 
and pI was found for chymotrypsin (r = 0.59 to 0.68) and 
gluC (r = 0.36 to 0.59). Although the regression lines for 
fractional mass and pI of tryptic peptides in general had 
weaker correlation coefficients (r = 0.29 to 0.51), the slopes 
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Figure 2. Distribution of individual regression lines for integer 
mass vs deltamass. The proteins were cleaved in silico by 
trypsin. Individual regression lines in black with the average 
regression line in white. Similar results were also found for 
chymotrypsin and gluC (not shown).

Figure 1. Distribution of fractional masses of proteolytic peptides. Human proteins were extracted from SwissProt and theoretically 
digested with (a) trypsin, (b) chymotrypsin or (c) gluC, assuming no missed cleavages. The fractional mass was plotted against the inte-
ger mass for each of the peptides and the average regression lines were calculated. (d) Plot of the average regression lines. Note that 
peptides generated by gluC give a steeper regression line than peptides generated by the two other proteases. Note also that trypsin 
and chymotrypsin have nearly identical regression lines.
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were still significantly different from zero (p < 0.0001, except 
for the mass range 3499–3501). The stronger correlation 
between pI and fractional mass for chymotrypsin and gluC 

than for trypsin is a direct consequence of the lower correla-
tion between hydrophobicity and fractional mass as will be 
explained in the Discussion.
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Figure 3. Properties of peptides generated by (a) trypsin, (b) chymotrypsin and (c) gluC. The relationships between fractional mass vs. 
GRAVY (open circles and dotted line) and fractional mass vs pI (filled circles and unbroken line) in the mass range 1499–1501 for peptides 
generated by (a) trypsin (319 peptides; r = 0.64 for GRAVY and 0.34 for pI; both slopes are significantly different from zero, p < 0.0001), (b) 
chymotrypsin (317 peptides; r = 0.17 for GRAVY and 0.64 for pI; both slopes are significantly different from zero, p ≤ 0.002) and (c) gluC 
(334 peptides; r = 0.07 for GRAVY and 0.51 for pI; the slope for pI is significantly different from zero, p < 0.0001). [(d), (e), (f)] Regression 
lines for the relationship of hydrophobicity vs pI for the three proteases in the mass ranges (d) 999–1001 (trypsin, 541 peptides, r = 0.24; 
chymotrypsin, 1024 peptides, r = 0.14; gluC, 608 peptides, r = –0.59), (e) 1499–1501 (trypsin, r = 0.21; chymotrypsin, r = 0.20; gluC, r = –0.60) 
and (f) 1999–2001 (trypsin, 195 peptides, r = 0.24; chymotrypsin, 145 peptides, r = 0.20; gluC, 194 peptides, r = –0.52).
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When hydrophobicity was plotted against pI, there was a rela-
tively low, but positive, correlation (r = 0.17 to 0.51; with slopes 
significantly different from zero, p < 0.001) for tryptic peptides 
in all mass ranges, exemplified by 999–1001, 1499–1501 and 
1999–2001 [Figures 3(d)–(f)]. Thus, tryptic peptides with low 
hydrophobicity tended to have low pI and tryptic peptides 
with high hydrophobicity tended to have high pI. In contrast, 
gluC showed a negative correlation (r = –0.30 to –0.60) for the 
relationship between hydrophobicity and pI. Thus, the more 
hydrophobic peptides tended to have low pI, and the more 
hydrophilic peptides tended to have higher pI. Chymotrypsin 
was intermediate between trypsin and gluC with weak corre-
lation (r = 0.21 to –0.28) between pI and hydrophobicity and with 
the slopes of the regression lines closer to zero. In the mass 
range 1000 to 2000, the trend was weakly negative, i.e. the 
chymotryptic peptides with the lowest pI were slightly more 
hydrophobic.

Discussion
The fractional mass is an inherent property of peptides, and 
the elements included in peptides have a different impact 
on the peptide’s fractional mass. Hydrogen has the largest 
impact to push the fractional mass upwards. Sulfur, together 
with oxygen, pushes the fractional mass down. For the use 
of fractional mass to support interpretations of experimental 
data, relatively high accuracy (±10 ppm to 15 ppm, or better) is 
needed, but this can now be obtained with several types of MS 
instrument.

We found that the three proteases, trypsin, chymotrypsin and 
gluC, give similar, but not identical, regression lines for frac-
tional mass vs integer mass of the peptides generated from 
13,359 human protein sequences. The regression line for gluC 
peptides is slightly steeper than for trypsin or chymotrypsin. 
The differences in slope are related to the fact that the distri-
butions of amino acid in the peptides are not random due to 
the cleavage specificities of the proteases, fully supporting 
the recent results of Wolski et al.22 This is also the explanation 
for the intercept of the regression lines to vary from posi-
tive (trypsin) to negative (gluC). In fact, the C-terminal amino 
acid will have more influence the shorter the peptides are, 
and thereby tend to increase the deviation from the origin 
when compared to longer peptides. Certain types of missed 
cleavages, for example, such as two subsequent arginines 
or lysines, or the combination of arginine and lysine, which 
are sometimes encountered in a tryptic digest, would affect 
the fractional mass of the individual peptide. However, in our 
experience most tryptic peptides identified in an experimental 
setting are completely digested and we have therefore chosen 
to concentrate on peptides with no missed cleavages, although 
we acknowledge that missed cleavages and unexpected 
cleavages are more common for several other proteases, for 
example, chymotrypsin.

There is a high correlation between fractional mass and 
hydrophobicity for tryptic peptides when a narrow mass 

range is considered,9 but as far as we know, this has not been 
investigated for other proteases. GluC-generated peptides 
have properties that are quite different from tryptic peptides. 
Since there is no restriction on the number of arginines or 
lysines present in a peptide, there is a stronger tendency for 
peptides with high fractional mass to have a high pI. These 
peptides would also have many charges, making them less 
hydrophobic. Thus, the regression lines for hydrophobicity 
and fractional mass tend to have a slope close to zero. On the 
other hand, peptides with high fractional mass could also be 
constituted by mainly hydrophobic amino acids, but this popu-
lation of high fractional mass peptides is small compared to 
the population of high fractional mass/high pI peptides [see 
Figure 3(c)]. Overall, this would make peptides with low pI 
more hydrophobic than peptides with high pI. As chymotrypsin 
mainly cleaves C-terminal to the hydrophobic amino acids, 
chymotryptic peptides will not become very hydrophobic and 
the regression lines for hydrophobicity and fractional mass 
have a slope close to zero. On the other hand, there is no 
restriction on the number of acidic or basic amino acids in the 
peptides, resulting in a strong positive correlation between 
fractional mass and pI, while this correlation is weaker for 
hydrophobicity vs fractional mass.

The large differential fractional mass of certain elements 
has been utilized by the introduction of a mass defect tag 
to enhance the identification of peptides and proteins by 
tandem mass spectrometry (MS/MS). With the newer, and 
more accurate, MS/MS instruments it could become possible 
to ascribe fragments into N-terminal (a, b, c) or C-terminal (x, 
y, z) type by taking fractional mass into consideration without 
the incorporation of a mass defect tag. The speed of de novo 
sequencing algorithms (for example, References 15 and 26) 
may be enhanced, as they can allocate computing power to 
the more likely possibilities by using fractional mass as an 
additional filter.

The location of the fractional mass of an unidentified peak 
relative to the average fractional mass may give valuable hints 
on the amino acid composition of the peptide, which can then 
be compared with the amino acid sequence of the protein. For 
example, cysteine-containing peptides (also when alkylated 
by iodoacetamide or iodoacetic acid) have a strong tendency 
to locate themselves to the lower half of the fractional mass 
distribution. The interpretation of the peptide’s amino acid 
content can be combined with searches for unexpected cleav-
ages.19,27 Many proteins are post-translationally modified, and 
one of the major tasks of proteomic studies is to identify these 
modifications and their positions. As has been noted before,7,28 
certain modifications give distinct contributions to the peptide’s 
fractional mass. This may be employed in more aim-directed 
searches for phosphopeptides, which would have a tendency 
to locate themselves in the lower half of the fractional mass 
distribution.28 Other modifications may also significantly influ-
ence the fractional mass of the peptide. For example, lipid 
modifications will increase the fractional mass.

In summary, some properties of the peptides can be directly 
explained by the cleavage specificity of the protease used. The 
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increasing accuracy of the MS instruments can, therefore, be 
used to exploit the information embedded in the fractional 
mass and give valuable hints on the amino acid composition of 
unidentified peptide peaks in a PMF.
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