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Abstract

Deep saline aquifers o�er the greatest storage capacity for geological stor-
age. However, the formations might be extensive and because of the oil
and gas legacy the aquifers are frequently perforated by abandoned wells.
These wells becomes potential leakage pathways for the injected CO2.
There might be as many as hundreds of thousands abandoned wells in a
saline aquifer, which make obtaining accurate and robust estimates for
the �ow in these systems a major challenge.

In this thesis a multiscale approach have been used to couple a FEM
well leakage model and a ELSA well leakage model, in order to achieve
a multiscale model that would estimate the large scale �ow and leakage
from geological storage on extensive domains. In the search after a radius
for the �ne scale solver it was discovered that a well is hardly a�ected by
the coarse scale solution, due to the radius of in�uence of a well. Hence,
the derived model is not a multiscale model and is not able to estimate
the �ow in the system.
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Introduction

Geological storage is one strategy for reducing CO2 emissions to the at-
mosphere. Suitable geological formations for CO2 storage are oil and gas
reservoirs, deep saline aquifers, coal seams and salt caverns. To each of
the potential storage sites, there are advantages and disadvantages. Deep
saline aquifers o�er the greatest storage capacity, estimated between 300
and 10,000 GtCO2 [1], and one can take advantage of the existing in-
frastructure and experience associated with the enhanced oil recovery.
Saline aquifers are saturated with water that has a high salt concentra-
tion. This water is referred to as brine. While seawater has a salinity
about 35,000 parts per million, the deep formations may have a salt con-
centration of several hundreds of thousands parts per million [2]. Because
of the oil and gas legacy, aquifers are frequently perforated by abandoned
wells. These abandoned wells become potential leakage pathways for the
brine and the injected CO2. As leakage of CO2 may pollute oil and gas
resources or leak to the atmosphere, brine may pollute drinking waters
because of its high salt concentration. Therefore, in order to do large
scale deployment of CO2, tools for estimating the �ow of CO2 and brine
are essential.

An aquifer may be perforated by hundreds of thousands of abandoned
wells, and between the surface and the injection aquifer there are often
�ve to ten aquifers. Large scale deployment of CCS may also necessitate
multiple injection sites within the same aquifer. Obtaining accurate and
robust estimates for this system is a major challenge. Well leakage mod-
els have been developed in order to estimate �ow and leakage. However,
for extensive domains with the possibility of hundreds of thousands of
abandoned wells, the system would be too complicated to solve. There-
fore, an idea is to use a well leakage model on a coarse scale and one
on a �ne scale. By combining these in a multiscale system, one may be
able to estimate large scale �ow and leakage on extensive domains. The
�rst step in developing such a model is to consider a simpli�ed system
with a single-phase �ow of water. In chapter 1, an introduction is given
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2 Contents

to groundwater �ow, where an equation for the groundwater �ow is de-
rived followed by a presentation of a real groundwater system. Chapter
2 introduces two solution approaches to the groundwater equation, and
chapter 3 uses these approaches in deriving a multiscale model to esti-
mate large scale �ow and leakage. However, in the determination of the
length of the �ne scale domains, it becomes clear that the derived model
do not have a multiscale structure. In chapter 4, the behavior of the
well leakage models derived in chapter 2 and 3 are illustrated for basic
examples. Finally, conclusions are made in chapter 5.



Chapter 1

Groundwater Flow

In this chapter, a foundation for analyzing groundwater �ow will be pre-
sented. Important de�nitions regarding �ow in aquifers are given, fol-
lowed by a derivation of a groundwater �ow equation. This equation
takes into account the possibility of injection, pumping and abandoned
wells located in an aquifer. The chapter ends by presenting a real ground-
water �ow problem.

1.1 Geological formations

Groundwater is a term used for water positioned beneath the ground
surface. The ground can be considered as more or less vertically layered.
These layers have di�erent properties, where a region consisting of essen-
tially the same properties is called a formation. The vertical layers are
porous media, and they are often divided into three categories; aquifers,
aquitards and aquicludes. Figure 1.1 illustrates an example of a common
composition of these layers.

An aquifer contains water and has a relatively low resistance to �ow.
This implies that a signi�cant amount of water can be moved through
the material. The horizontal dimension of an aquifer may be extensive
and is usually between 3 to 50 kilometers. The thickness of an aquifer is
signi�cantly less, generally in the range of 5 to 200 meters.

The water table is a surface in the formation indicating where the
pressure equals the atmospheric pressure. Depending on the position of
the water table, aquifers can be classi�ed as uncon�ned or con�ned, see
[3] for more details.

An uncon�ned aquifer is capable of receiving water through the upper
boundary, and is therefore referred to as a "water-table aquifer" because
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4 Chapter 1. Groundwater Flow

Figure 1.1: A common structure of a geological formation, where aquifers are
separated by aquitards.

of the location of the water table in the aquifer. The upper boundary is
then a transition zone, and the remaining zone in the layer is �lled with
�uids.

A con�ned aquifer is an aquifer that is con�ned between two forma-
tions with signi�cantly less ability to �ow.

An aquiclude is a formation that may contain �uids, but transmits
them in a signi�cant smaller quantity then an aquifer. In the study of
groundwater �ow an aquiclude is considered impervious.

Aquitards are formations that are capable of transmitting �uids at a
very slow rate. However, if an aquitard is situated between two aquifers,
it may transmit a large amount of �uids essentially vertically between
the aquifers. The aquifer that the aquitard extracts �uids from, is then
called a leaky aquifer. For more details see [3].

1.2 Flow in a Porous Medium

A porous medium is a medium consisting of pores. About all materials in
the nature can be considered as porous media [4], i.e. they are composed
by solids and pores. Hence, in order to estimate groundwater �ow, an
understanding of the �ow through porous media is crucial.

The pores may be isolated or connected. In connected pores, �uids
can �ow in various rates depending on the properties of the medium and
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the �uid. The solid medium is called the solid matrix, and the space
within a medium that is not a part of the solid medium is called the void
space, also known by the term pore space. The volume of connected pores
may be denoted as the e�ective pore volume, where the unconnected
pores can be considered part of the solid matrix. Figure 1.2 illustrates
an example of a porous medium.

The microscopic information about the structure of a porous medium
is often unknown. The irregularities in a pore structure can be consid-
ered as random variations with a well de�ned average, and quantities
such as velocity and pressure may be de�ned as an average over a refer-
ence volume. In literature the reference volume is called a representative
elementary volume (REV) [3]. When introducing a reference volume,
the properties of a porous medium is characterized by its porosity and
permeability. Hence, it is possible to derive a macroscopic model of the
�ow through a medium.

Figure 1.2: An illustration of the structure of a porous medium consisting of
the solid matrix and the isolated and connected pores.

1.2.1 Porosity

Porosity is a quantity indicating the amount of e�ective pore space avail-
able to be �lled with �uids. The ratio of the e�ective pore space and the
total volume de�nes the porosity
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φ
def
=

Vpores
Vtot

, (1.1)

where Vpores is the volume of e�ective pore space and Vtot is the total
volume of the medium. The volume of the solid medium Vsolids and the
void space Vvoids forms the total volume, Vtot = Vsolids + Vvoids.

1.2.2 Conservation of Mass

A formulation of mass conservation can be found by considering an ar-
bitrary �xed geometrical volume Ω, see �gure 1.3. The change of mass
inside Ω is balanced by mass �ow into the volume through its boundaries,
and by sources and sinks within the volume.

Figure 1.3: An arbitrary �xed geometrical volume Ω, with surface ∂Ω and
outer normal unit vector n.

Fluid density ρ is de�ned as mass of �uid per unit volume. Hence, the
mass of a �uid can be expressed as

∫
Ω
φρdV . In�ow and out�ow through

the boundaries may be formulated as the �uid density multiplied by the
�ux vector, u, multiplied with a unit vector, n. The unit vector is directed
outward and normal to the surface ∂Ω. The volumetric source or sink
term is denoted by Q, and sources or sinks of mass within the volume is
expressed as ρQ. A mass conservation equation can be formulated as

∂

∂t

∫
Ω

φρdτ +

∫
∂Ω

(ρu) · ndσ =

∫
Ω

ρQdτ. (1.2)

Gauss's theorem states the following relationship for su�ciently smooth
functions

∫
∂Ω
ρu· ndσ =

∫
Ω
∇·(ρu)dτ . The theorem applied to equation

(1.2) gives
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∂

∂t

∫
Ω

φρdτ +

∫
Ω

∇ · (ρu)dτ =

∫
Ω

ρQdτ. (1.3)

Since the volume Ω is a geometrically �xed volume, Ω is not a function
of time. The derivative with respect to time in equation (1.3) may then
be placed inside the integral, which gives∫

Ω

[
∂

∂t
(φρ) +∇ · (ρu)− ρQ

]
dτ = 0. (1.4)

Because the integral in equation (1.4) must hold for any arbitrary closed
volume and by assuming continuity of the solution, the mass balance
equation can be given on a di�erential form

∂(φρ)

∂t
+∇ · (ρu) = ρQ. (1.5)

The conservation of mass equation (1.5), will be further used in the
derivation of a governing groundwater �ow equation in section 1.4.

1.2.3 Hydraulic Head

An important quantity in groundwater hydrology is the hydraulic head.
This property is a direct measure of energy or potential of a �uid ex-
pressed in length units. For more information see [2]. The hydraulic
head is de�ned as

h
def
=

p

ρg
+ z, (1.6)

where p is the pressure, g is the gravitational constant and z is the vertical
position from the de�ned origin.

1.2.4 Darcy's Law and Hydraulic Conductivity

Darcy's law is a fundamental law in �uid dynamics. The law presents an
expression for the volumetric �ux, u; volume of �uid passing through a
porous medium per cross sectional area. The law may be stated as

u = −K · ∇h, (1.7)

where K is the hydraulic conductivity and h is the hydraulic head. The
hydraulic conductivity expresses the ability of an aquifer to transport
�uids through its material under hydraulic gradients, and is de�ned as
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K
def
=

kρg

µ
, (1.8)

where k is the permeability and µ is the viscosity. The permeability
is a measure of the ability of a matrix to transmit �uids through its
material. Even though the permeability only depends on the medium,
the hydraulic conductivity depends on both the medium and the �uid.

In accordance with Darcy's Law (1.7), a �uid in a porous medium will
�ow from regions with higher values of hydraulic head to regions with
lower values.

1.3 Groundwater Flow Properties

To derive a groundwater �ow equation, parameters regarding the medium
and the water must be de�ned. In this section de�nitions of the compress-
ibility of water and the medium is introduced, followed by an expression
for the storativity. These expressions are needed in the derivation of
the groundwater �ow equation from the mass conservation equation in
section 1.4.

1.3.1 Compressibility and E�ective Stress

Compressibility is a material property describing change in volume, or
strain, due to an applied stress on a material.

Compressibility of Water

The stress of a �uid depends on the �uid pressure. Since the �uid in
this context is water, the �uid compressibility equals the ratio between
the change in the water volume and the change in pressure [5]. This
de�nition can be formulated as

β
def
= − 1

Vw

dVw
dp

, (1.9)

where the compressibility of water is denoted by β and the water volume
by Vw. From [3], the compressibility of water can also be formulated as

β =
1

ρ

dρ

dp
, (1.10)

because the density and the volume are related as ρ = m
V
.
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E�ective Stress

The pressure of the water in the pores and the solid matrix forms the
total stress σtot, and is de�ned as

σtot
def
= σeff + p. (1.11)

The e�ective stress σeff is the portion of the total stress that is not
caused by the �uid. The weight of rock and water overlying each point
in the system, can be considered constant through time. This implies
∂σtot

∂t
= 0, and the change in e�ective stress with respect to time equals

the negative change of pressure,

∂σeff
∂t

= −∂p
∂t
. (1.12)

From the de�nition of hydraulic head in equation (1.6), the pressure can
be expressed as p = ρg(h−z). The change in pressure is then ∂p

∂t
= ρg ∂h

∂t
.

Inserted in equation (1.12), the expression for the change in e�ective
stress can be rewritten as

∂σeff
∂t

= −ρg∂h
∂t
. (1.13)

Compressibility of a Porous Medium

The compressibility of a porous medium, α, equals the ratio between the
change in volume of a porous medium and the change in the e�ective
stress,

α
def
= − 1

Vtot

dVtot
dσeff

. (1.14)

The total volume of a porous medium is de�ned in section 1.2.1 as Vtot =
Vsolids + Vvoids. Since the soil grains usually do not deform but may
reorient themselves, the change in the total volume is approximate the
change in pore volume, ∂Vtot

∂t
≈ ∂Vvoids

∂t
. By equation (1.1) and equation

(1.12) the compressibility of the porous medium becomes

α ≈ dφ

dp
. (1.15)



10 Chapter 1. Groundwater Flow

1.3.2 Storativity

Speci�c Storativity

The speci�c storativity Ss of a saturated aquifer is de�ned as the volume
of water a unit volume of an aquifer releases from storage under a unit
decline in hydraulic head [5]. Water is released from storage by the
compaction of an aquifer and by water expansion. Due to compaction,
∂Vtot

∂t
will be negative. However, the expelled water ∂VWc

∂t
will be positive.

Hence, ∂VWc

∂t
= −∂Vtot

∂t
. From equation (1.14), the produced water can

then be expressed as

∂VWc

∂t
= αVtot

∂σeff
∂t

. (1.16)

For a unit total volume, Vtot = 1. Equation (1.13) inserted in equation
(1.16) with the unit decline in hydraulic head, ∂h

∂t
= −1, gives that the

water produced by the compaction of the aquifer can be stated as

∂VWc

∂t
= αρg. (1.17)

The volume of water produced by an expansion of water, ∂VWe

∂t
, can

be obtained from equation (1.9), where in the total unit volume there is a
water volume of VW = φVtot, and the change in pressure can be expressed
as ∂p

∂t
= −ρg. The volume of water produced by water expansion is then

∂VWe

∂t
= βφρg. (1.18)

A summation of the water produced by a compaction of the aquifer
and an expansion of the water de�nes the speci�c storage,

Ss =
∂VWc

∂t
+
∂VWe

∂t
= ρg(α + φβ). (1.19)

Storativity

The storativity is a measure of the water volume released from a vertical
column of aquifer per unit decline in hydraulic head. For a con�ned
aquifer of thickness D, the storativity is de�ned as the speci�c storage
times the thickness,

S = SsD = ρgD(α + φβ). (1.20)



1.4. The Groundwater Flow Equation 11

1.4 The Groundwater Flow Equation

In this section a groundwater �ow equation in terms of the hydraulic head
will be derived. The derivation begins by recalling the mass conservation
equation (1.5),

∂(φρ)

∂t
+∇ · (ρu) = ρQ. (1.21)

The partial derivative of the porosity and the density in equation (1.21)
can be expressed in terms of the derivative of the pressure,

∂(φρ)

∂t
= φ

∂ρ

∂t
+ ρ

∂φ

∂t
= φ

dρ

dp

∂p

∂t
+ ρ

dφ

dp

∂p

∂t
. (1.22)

The de�nition of the compressibility of water, equation (1.10), implies
dρ
dp

= βρ. Equation (1.15), and the assumption that the change in total

volume only depends on the change in the volume of voids, implies dφ
dp

=

α. When substituting the derivative terms, equation (1.22) becomes

∂(φρ)

∂t
= ρ(φβ + α)

∂p

∂t
. (1.23)

The derivative of the pressure with respect to time is related to change in
the hydraulic head, ∂p

∂t
= ρg ∂h

∂t
. By substituting the pressure derivative,

equation (1.23) turns into

∂(φρ)

∂t
= ρ2g(φβ + α)

∂h

∂t
, (1.24)

where the term ρg(φβ+α) is the speci�c storativity from equation (1.19).
Equation (1.24) then becomes

∂(φρ)

∂t
= ρSs

∂h

∂t
. (1.25)

The mass conservation equation (1.21) inserted (1.25) returns

ρSs
∂h

∂t
+∇ · (ρu) = ρQ. (1.26)

1.4.1 Reduction in Dimensionality

When the density is assumed to be constant in space, the conservation
equation (1.26) may be expressed as
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Ss
∂h

∂t
+∇ · u = Q. (1.27)

Equation (1.27) is a three-dimensional equation. Due to the aquifers
extensive horizontal length compared to the vertical length, its of inter-
est to model the problem without taking into account variations in the
vertical. The equation will then be a two-dimensional equation, only de-
pending on the horizontal position within the aquifer. In that procedure,
equation (1.27) is integrated in the vertical direction. Figure 1.4 is an
example of the integral direction. The top and the bottom boundary of
the aquifer in the vertical are denoted by ζT (x1, x2) and ζB(x1, x2), and
the integral of equation (1.27) becomes∫ ζT

ζB

Ss
∂h

∂t
dz +

∫ ζT

ζB

∇ · udz =

∫ ζT

ζB

Qdz. (1.28)

Figure 1.4: An illustration of the vertical boundaries for an aquifer where ζT
is the upper boundary, ζB is the bottom boundary and D is the
thickness of the aquifer. Adapted from [2].

The speci�c storativity is assumed to be constant with respect to
variations in the vertical direction. Further, the top and the bottom
boundary of the aquifer is assumed to be independent of time, thus∫ ζT

ζB

Ss
∂h

∂t
dz = Ss

∂

∂t

∫ ζT

ζB

hdz = SsD
∂h

∂t
. (1.29)

In equation (1.29), D is denoted as the length between the top and bot-
tom boundary and de�nes the aquifers thickness. The vertical averaged
hydraulic head h is de�ned as
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h(x1, x2, t) =
1

D

∫ ζT

ζB

h(x1, x2, z, t)dz. (1.30)

The divergence of the �ux in the second term in equation (1.28), may
be written in terms of the three spatial components∫ ζT

ζB

∇ · udz =

∫ ζT

ζB

(
∇|| · u|| +

∂

∂z
uz

)
dz, (1.31)

where ∇|| = ∂
∂x1
e1 + ∂

∂x2
e2. Leibniz's rule applied on the �rst term in the

integral in equation (1.31) gives

∫ ζT

ζB

∇|| · u||dz = ∇|| ·
∫ ζT

ζB

u||dz − uT · ∇ζT + uB · ∇ζB, (1.32)

where uT and uB denotes the �ow vector at the top and bottom of the
aquifer and∇ζT and∇ζB are the normal directions to the top and bottom
boundary. From the Fundamental Theorem of calculus, the second term
in equation (1.31) becomes∫ ζT

ζB

∂

∂z
uzdz = uT · ez − uB · eZ . (1.33)

Equation (1.32) and (1.33) inserted in equation (1.31) returns

∫ ζT

ζB

∇·udz = ∇|| ·
∫ ζT

ζB

u||dz+uT · (ez−∇ζT )−uB · (eZ−∇ζB). (1.34)

The evaluation at the top and bottom of the formation are for simplicity
denoted by ψT = uT · (ez − ∇ζT ) and ψB = uB · (eZ − ∇ζB). When
denoting the �ow vector u in the x1 and x2 direction as

U(x1, x2, t) =

∫ ζT

ζB

u||dz, (1.35)

equation (1.28) can be written as

SsD
∂h

∂t
+∇|| ·U+ ψT − ψB =

∫ ζT

ζB

Qdz = Q, (1.36)

where Q represents the vertically integrated source or sink term.
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Recall the speci�c discharge in equation (1.27). From Darcy's Law,
equation (1.7), the speci�c discharge can be formulated as ∇ · u = −∇ ·
(K · ∇h) and

U(x1, x2, t) = −
∫ ζT

ζB

K · ∇h dz. (1.37)

Because the layered structure in most porous media is roughly horizontal,
the direction of the hydraulic conductivity aligns with the vertical and
the horizontal directions [2]. The hydraulic conductivity can then be
formulated as a block-diagonal matrix,

K =

[
K1,1 K1,2 0
K2,1 K2,2 0

0 0 Kz

]
=
[
K|| 0

0 Kz

]
.

An assumption that the horizontal �ow directions dominates the system,
vertical �ows will be insigni�cant within the formation and the hydraulic
head will be essentially constant along the vertical direction. For vertical
variations in the head represented by h̃ = h− h, equation (1.37) can be
approximated [2],

U = −
∫ ζT

ζB

(
K||∇||h+Kz

∂h

∂z

)
dz

= −DK||∇||h+

∫ ζT

ζB

(
K||∇||h̃+Kz

∂h̃

∂z

)
dz

≈ −DK||∇||h.

(1.38)

In equation (1.38), the vertical averaged hydraulic conductivity is de-
noted K. The �ow in the aquifer is assumed essentially horizontal, which
implies thatDK|| expresses the aquifers ability to transmit water through
its entire thickness. This description of the aquifer is called the trans-
missivity T, and is de�ned as

T(x1, x2) =

∫ ζT

ζB

K(x1, x2, z)dz = K(x1, x2)D(x1, x2). (1.39)

Equation (1.39) and the de�nition of storativity, equation (1.20), inserted
in equation (1.36) returns

S
∂h

∂t
−∇|| · (T · ∇||h) + ψT − ψB = Q. (1.40)

Equation (1.40) is a two dimensional single phase �ow equation in terms
of the hydraulic head.
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1.4.2 Simplifying Assumptions

Simpli�cations to equation (1.40) can be made. In this context the for-
mation is assumed to be isotropic, which implies that the transmissivity
matrix is a diagonal matrix where both entries are the same. A scalar can
then replace the transmissivity matrix. The formation is also assumed
to be homogeneous, resulting in the transmissivity to be independent of
space. These simpli�cations applied on equation (1.40) gives the govern-
ing groundwater �ow equation,

S
∂h

∂t
− T∇2h+ ψT − ψB = Q. (1.41)

In the following chapters the vertical averaged terms in equation (1.41)
will not be denoted by an overline.

1.5 A Real Groundwater System

An example of a real groundwater system is the Alberta Basin located in
western Canada, see �gure 1.5. Because of its large oil and gas �elds, it
is a major North American energy producer. The oil and gas exploration
began in the late 19th century, and a major oil discovery in 1947 resulted
in a rapid growth that even continues today. New wells are being drilled
at a rate of approximately 12 000/yr and in 2003 more than 320 000 wells
had been drilled [1]. These wells are distributed over most of the basin
area, which covers more than 900 000 km2. The formation is deepest
along its western boundary, where it is more than 3000 m deep, and
slopes upward toward the northeast.

The Viking Formation, which has an areal extent that covers much
of the basin, contains approximately 5% of the oil reserves and 8% of the
gas reserves in the Alberta Basin. The cross section of the Alberta Basin
in �gure 1.5 illustrates the location of the Viking aquifer. Several studies
on the suitability and capacity for CO2 sequestration have focused on the
Viking aquifer. The Viking Formation consists mostly of sandstone that
are saturated with saline water, forming an aquifer. The aquifer covers
an area of 468 000 km2 and the thickness of the aquifer varies from a
few meters to more than 120 m. Bachu and Adams have shown that
signi�cant parts of the Viking aquifer are suitable for CO2 sequestration
based on depth and capacity considerations and the presence of a thick
caprock overlying the entire formation [1]. The ultimate capacity of the
Viking aquifer based on the amount of CO2, was estimated to be in the
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Figure 1.5: The Alberta Basin and the Viking aquifer in Canada. Adapted
from [1].

order of 100 GtCO2. However, more than 200 000 wells have been drilled
through the Viking Formation. The wells are distributed over most of
the 468 000 km2 area and over half of all wells that penetrate the Viking
aquifer are classi�ed as abandoned wells. Some of the wells that penetrate
it produces from the Viking formation while others pass through on their
way to deeper producing formations. In �gure 1.6 the extensiveness of
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the �ow problem is illustrated by the location of all the wells in Alberta.

Figure 1.6: The locations of the active and abandoned oil, gas and water
wells in the Alberta Basin based on coordinates by the Alberta
Geological Survey [6].





Chapter 2

Solution Approaches

In this chapter, solution approaches will be given to the groundwater
�ow equation derived in chapter 1. Prior to the solution approaches, the
motivation behind solving the problem is explained.

2.1 Motivation

In order to do large scale deployment of CO2, the ability to estimate
the large scale �ow and leakage of the CO2 is crucial. Because suitable
aquifers for geological storage are often locations for oil and gas reser-
voirs, there are potentially hundreds of thousands of wells perforating
the overlying aquitard. This result in potential pathways for the CO2

and the brine to leak.
North America has the highest number of oil and gas wells and the

highest spatial density in the world, illustrated in �gure 2.1. The Alberta
Basin presented in section 1.5 is a potential site for large scale deployment
of CO2. However, tools need to be made to be able to estimate the �ow
and leakage due to the existence of abandoned wells in extensive domains.
The �rst step in order to develop a model that can solve the problem, is
by looking at single-phase simpli�ed system.

2.2 ELSA

ELSA is an anonym for Estimating Leakage Semi-Analytically, and is
an approach for solving �ow problems consisting of abandoned wells.
The approach is introduced in [8] by Nordbotten et al., and returns a
semi-analytical model for estimating the leakage rates through aban-
doned wells. Instead of using a grid, the wells are coupled together

19
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Figure 2.1: Density of wells drilled across the world from the IPCC report in
2005 on Carbon Dioxide Capture and Storage [7].

by the distance between them, illustrated in �gure 2.2. The model re-
turns an estimate for the hydraulic head in the wells, which is used in
approximating the leakage rates.

Figure 2.2: An illustration of the relation between one well and the other
wells in the ELSA approach.

2.2.1 Well Leakage Model

Recall the governing groundwater �ow equation derived in chapter 1

S
∂h

∂t
− T∇2h+ ψT − ψB = Qδ(x− xw), (2.1)
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where the Dirac delta function has be introduced in the �ux term due
to the existence of multiple wells, and the location of a well is denoted
xw. In order to derive a well leakage model from equation (2.1) by the
ELSA approach, an aquifer of in�nite areal extent is considered. The
�ow is assumed essentially horizontal and radial to or from the wells. For
simplicity, the system consists of two aquifers separated by an aquitard
illustrated in �gure 2.3. The bottom aquifer is considered as leaky and
the hydraulic head in the upper aquifer is assumed constant. Because the
bottom aquifer is leaky, there will be water �owing essentially vertical
through the aquitard. From [2], the �ux of leakage through the aquitard
is de�ned as

Figure 2.3: An illustration of a system consisting of two aquifers separated
by an aquitard, where the hydraulic head in the upper aquifer is
equal to zero and the initial hydraulic head in the bottom aquifer
is equal to one.

ψT = −Kad
htop − h

B
, (2.2)

where Kad is the hydraulic conductivity of the aquitard, htop is the hy-
draulic head in the upper aquifer and B is the thickness of the aquitard.
Since there are no leakage downwards, ψB = 0. In order to estimate the
leakage rate on a time aspect of hundreds to thousands of years later af-
ter the injection, one can assume the problem is in a equilibrium. First,
consider a well problem consisting of one passive well. This implies that
the �ux in the well can be treated as a boundary condition. In that case,
equation (2.1) in radial coordinates on the interval (0,∞) becomes

−T 1

r

d

dr

(
r
dh

dr

)
− Kad

htop − h
B

= 0, (2.3)

where r is denoted as the distance from x to xw. For simplicity, assume
htop = 0 and hinit = 1. Equation (2.3) may then be expressed as
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1

r

d

dr

(
r
dh

dr

)
− Kad

TB
h = 0. (2.4)

By denoting the radius of the domain as R, boundary conditions can be
expressed as

h(R) = hinit = 1,

lim
r→0

2πrT
∂h

∂r
= −Q.

(2.5)

When writing out the brackets in equation (2.4) and multiplying by r2,
the equation can be expressed as

r2d
2h

dr2
+ r

dh

dr
− r2Kad

BT
h = 0. (2.6)

In order to �nd a solution to equation (2.6), a new term for the radius

is introduced as r′ = cr, where c =
√

Kad
BT

. Equation (2.6) may then be

formulated as

r′2
d2h

dr′2
+ r′

dh

dr′
− r′2h = 0. (2.7)

Since equation (2.7) is a second-order di�erential equation, there must
be two linearly independent solutions. From Abramowitch and Stegun in
[9], equation (2.7) can be recognized as a variant of the modi�ed Bessel
equation,

x2 d
2y

dx2
+ x

dy

dx
− (x2 + γ2)y = 0. (2.8)

The problem (2.8) has two linearly independent solutions, Iγ(x) and
Kγ(x), that are exponentially growing and decaying functions, respec-
tively. Iγ(x) is known as a �rst kind modi�ed Bessel function and Kγ(x)
as a second kind. Because γ = 0 in equation (2.7), the solution becomes

h(r′) = αK0(r′) + βI0(r′), (2.9)

where α and β are constants and K0 and I0 are of order zero. K0 goes
to in�nity towards the well and I0 goes to in�nity towards the boundary.
Refer to [9] for more details. The constants α and β are determined
by the boundary conditions in equation (2.5). However, equation (2.9)
is a solution to a one-well problem. In order to use the solution for
problems consisting of more than one well, the problem is divided into
two problems with di�erent boundary conditions.
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Problem 1: A Boundary Problem

The �rst problem is a boundary problem, where there exist no wells. The
solution can then be stated as

hR(r′) = αRK0(r′) + βRI0(r′), (2.10)

with boundary conditions

hR(r′ = cR) = 1,

lim
r→0

2πcrT
∂hR(r′)

∂r′
= 0.

(2.11)

In order to �nd the constants in equation (2.10), one can start by us-
ing the second boundary condition. The derivative of equation (2.10)
becomes

∂hR
∂r

= c
∂hR
∂r′

= c[αRK1(r′) + βRI1(r′)]. (2.12)

where ∂K0

∂r′
= −K1 and

∂I0
∂r′

= I1 from [9]. Since I1(0) = 0, limr→0 I1(r′) =
0. The behavior of the second order modi�ed Bessel function as r reaches
zero is found in [9] and states that

lim
r→0

K1(r′) ∼ 1

cr
. (2.13)

By equation (2.13), the mass conservation condition in equation (2.11),
gives the following relationship

lim
r→0

2πcrTαRK1(r′) = lim
r→0

2πcrTαR
1

cr
= 2πTαR = 0, (2.14)

which results in αR=0. The constant βR is then given by the outer
boundary condition in equation (2.11)

hR(cR) = βRI0(cR) = 1 ⇒ βR =
1

I0(cR)
. (2.15)

The solution to the �rst problem is then expressed as

hR(r) =
I0(cr)

I0(cR)
, (2.16)

where cr has been substituted for r′.
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Problem 2: A Single Well Problem

The second problem is a problem consisting of a well where the hydraulic
head is equaled to zero on the boundary, which gives the solution

hw(r′) = αwK0(r′) + βwI0(r′). (2.17)

The boundary conditions are

hw(r′ = cR) = 0,

lim
r→0

2πcrT
∂hw(r′)

∂r′
= −Q.

(2.18)

By the same procedure as for the �rst problem, the �ux condition in
equation (2.18) gives that

αw =
Q

2πT
. (2.19)

The outer boundary condition in equation (2.18) gives then the last con-
stant

βw = − Q

2πT

K0(cR)

I0(cR)
, (2.20)

and the solution to the second problem can be expressed as

hw(r) =
Q

2πT

[
K0(cr)− K0(cR)

I0(cR)
I0(cr)

]
, (2.21)

where cr has been substituted for r′.

Solution to a Multiple Well Problem

The solution to a problem of one well with h(cR) = 1 can be given by a
summation of the solution to the �rst and the second problem

h(r) = hR + hw =
I0(cro)

I0(cRo)
+Q

1

2πT

[
K0(cr)− K0(cR)

I0(cR)
I0(cr)

]
, (2.22)

where ro is the distance between r and the origin of the domain and Ro

is the radius of the domain. In order to get a solution to a problem that
contains several wells, superposition can be applied to equation (2.22)
due to the linearity in the equation. The solution to a system of Nw

wells, may then be expressed as
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h(r) =
I0(cro)

I0(cRo)
+

Nw∑
i=1

Qi
1

2πT

[
K0(cri)−

K0(cRi)

I0(cRi)
I0(cri)

]
, (2.23)

where ri is the distance between r and well i and Ri is the distance from
r to the boundary. The �ux rate through an abandoned well is de�ned
in [8] as

Q = Kwellπr
2
w

htop − h
B

, (2.24)

where Kwell is the hydraulic conductivity in the well, rw is the radius
of the well and B is the thickness of the aquitard. By inserting the
expression (2.24) for the leakage in an abandoned well in equation (2.23),
an ELSA well leakage model is achieved

h(r) =
I0(cro)

I0(cRo)
+

NIW∑
i=1

Qi
1

2πT

[
K0(cri)−

K0(cRi)

I0(cRi)
I0(cri)

]

+

NPW∑
j=1

Kwell,jπr
2
w,j

htop,j − hj
B

1

2πT

[
K0(crj)−

K0(cRj)

I0(cRj)
I0(crj)

]
,

(2.25)

where NIW and NPW is the number of injection and abandoned wells, re-
spectively. Equation (2.25) may be solved for the hydraulic head in the
passive wells, and from equation (2.24), the estimated hydraulic head
returns an estimate for the leakage rate in the abandoned wells. Even
though equation (2.25) solves a two-aquifer-one-aquitard system, the so-
lution extends directly to a multi layered system of aquifers. Refer to [8]
and [10] for more details.

2.3 The Finite Element Method

The �nite element method (FEM) is a numerical method used to solve
partial di�erential equations. The method discretizes the problems by
introducing a space consisting of �nite elements. By introducing test
functions and de�ning basis functions that span the elements, the bilinear
and linear form of the problem is established. Hence, the solution to the
problem can be estimated.
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2.3.1 Well Leakage Model

Recall the governing equation (1.41)

S
∂h

∂t
− T∇2h+ ψT − ψB = Qδ(x− xw), (2.26)

where the Dirac delta function has be introduced in the �ux term due to
the existence of multiple wells, and the location of a well is denoted xw.
For simplicity, lets assume the same simpli�ed system as in section 2.2.
Equation (2.26) then becomes

S
∂h

∂t
− T∇2h+

Kad

B
h = Qδ(x− xw). (2.27)

In order to seek a �nite element solution to the groundwater �ow equation
(2.27), the bilinear and the linear form of the equation must be derived
[11]. Lets denote the domain by Ω. By choosing triangles as the elements,
the domain Ω is triangulated. A reference triangle is introduced, and is
illustrated in �gure 2.4 together with the triangulation of the domain.

A test function on Ω is denoted by an arbitrary continuous function
g, where g′ is piecewise continuous and bounded on Ω and g(∂Ω) =
0. From equation (2.27), the solution must hold for linear functions.
Therefore, a �nite-dimensional subspace Vl is constructed, where Vl is a
set of test functions that are linear on each element Kl ∈ Ω. Multiplying
the problem (2.27) by a test function and integrating over the domain
results in

∫
Ω

[
S
∂h

∂t
− T∇2h+

Kad

B
h

]
gdx =

∫
Ω

Qδ(x− xw)gdx. (2.28)

The second term on the left side of equation (2.28) may be expressed by
partial integration as

∫
Ω

T∇2h·gdx = −
∫

Ω

T∇h∇gdx + Tg∇h
∣∣∣∣
∂Ω

= −
∫

Ω

T∇h∇gdx, (2.29)

because g(∂Ω) = 0. From equation (2.29), equation (2.28) becomes

∫
Ω

[
S
∂h

∂t
g + T∇h∇g +

Kad

B
hg

]
dx =

∫
Ω

Qδ(x− xw)gdx. (2.30)

The derivative of the hydraulic head with respect to time can be written
as
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∂h

∂t
=
hn

∆t
− hn−1

∆t
, (2.31)

where n denotes which time step, ∆t is the length of the time interval
and h0 is the initial hydraulic head. When equation (2.31) is applied to
equation (2.30), the equation is solved for the time step n. Hence,

∫
Ω

[
S
hn

∆t
g + T∇hn∇g +Kad

hn

B
g

]
dx =

∫
Ω

[
Qδ(x− xw)g + S

hn−1

∆t
g

]
dx.

(2.32)
The integral in equation (2.32) can be partitioned into a summation of
the integral of each triangle in the triangulation of Ω. Equation (2.32)
for one triangle Kl is then

∫
Kl

[
S
hnl
∆t
g + T∇hnl ∇g +Kad

hnl
B
g

]
dx =

∫
Kl

[
Qδ(x− xw)g + S

hn−1
l

∆t
g

]
dx.

(2.33)
The integral of the rate through the wells can be expressed as

∫
Kl

Qδ(x− xw)gdx =

∫
Kl

QIW δ(x− xw)gdx+

∫
Kl

QPW δ(x− xw)gdx

=

NIW∈Kl∑
i=1

Qig(xi) +

NPW∈Kl∑
j=1

Qjg(xj),

(2.34)

where NIW and NPW denotes the number of injection wells and aban-
doned wells, respectively. By the expression for the rate through an
abandoned well (2.24) and the assumption that htop = 0, the equation
(2.33) becomes

∫
Kl

[
S
hnl
∆t
g + T∇hnl ∇g +Kad

hnl
B
g

]
dx+

NPW∈Kl∑
j=1

κjh
n
l g(xj)

=

∫
Kl

S
hn−1
l

∆t
gdx+

NIW∈Kl∑
i=1

Qig(xi),

(2.35)

where κ = Kwellπr
2
w/B. The variational problem is then to �nd a hnl ∈ Vl

such that equation (2.35) holds for ∀g ∈ Vl [11]. From equation (2.35)
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Figure 2.4: An illustration of the triangulation of Ω and the corresponding
reference triangle, where the nodes are indicated in the reference
triangle.

the bilinear and linear form can be de�ned as

a(hnl , g) =

∫
Kl

[
S
hnl
∆t
g + T∇hnl ∇g +Kad

hnl
B
g

]
dx+

NPW∈Kl∑
j=1

κjh
n
l g(xj),

(2.36)

b(g) =

∫
Kl

S
hn−1
l

∆t
gdx+

NIW∈Kl∑
i=1

Qig(xi), (2.37)

for hnl , g ∈ Vl. The weak formulation is then: Find a hnl ∈ Vl such that
∀ g ∈ Vl

a(hnl , g) = b(g). (2.38)

The elements in Ω are chosen to have three nodes, one situated in each
corner, see the reference triangle in �gure 2.4. Basis functions for Vl are
then linear functions that takes the value 1 at the node xj and the value
0 at the other two nodes in the triangle. For the reference triangle, the
three basis functions are chosen as

φ1(x, y) = x

φ2(x, y) = y

φ3(x, y) = 1− x− y.
(2.39)

When the values of the test functions in the nodes xk, k = 1, 2, 3, are
de�ned by the parameter ηk = g(xk), the test functions for the reference
triangle may be formulated as
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g(x) =
3∑

k=1

ηkφk(x) x ∈ Ω. (2.40)

Substituting the test functions by the basis functions in equation (2.38),
the bilinear and linear form can be written as

a(hnl , φk) = b(φk). (2.41)

If equation (2.41) holds, linear combinations of hl satis�es the variational
problem (2.35) [11]. By denoting the estimated hydraulic head in the
nodes by ξk = hl(xk), an expression for the hydraulic head in Kl becomes

hl(x) =
3∑

k=1

ξkφk(x) x ∈ Ω. (2.42)

When using equation (2.40) and (2.42) in the bilinear and linear form
in equation (2.36) and (2.37), the system of equations for one triangle
becomes

3∑
k=1

3∑
m=1

a(φk, φm)ξk =

∫
Kl

[
S
φk
∆t
φm + T∇φk∇φm +Kad

φk
B
φm

]
dx

+

NPW εKl∑
j=1

κjφkφm(xj),

(2.43)

3∑
m=1

b(φm) =

∫
Kl

[
Qδ(x−xw)φm+S

hn−1
l

∆t
φm

]
dx+

NIW εKl∑
i=1

Qiφj(xi). (2.44)

The integrals of the basis functions in equation (2.43) for the reference
triangle becomes ∫ 1

0

∫ 1−x

0

φkφmdx =

{
1/12 k=m
1/24 k 6=m (2.45)

and∫ 1

0

∫ 1−x

0

∇φk∇φmdx =

[
1/2 0 −1/2
0 1/2 −1/2
−1/2 −1/2 1

]
for k,m = 1, 2, 3. (2.46)

In equation (2.44), the integral of the basis functions returns
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∫ 1

0

∫ 1−x

0

φmdx = 1/6. (2.47)

Since the triangles have corresponding nodes to other triangles, illus-
trated in �gure 2.5, a matrix for the nodes can be made and

Aξ = b, (2.48)

where A is the matrix of all the nodes in the triangulation and ξ and b
are vectors. By solving (2.48) for ξ, an estimate for the hydraulic head
in each node is achieved.

Figure 2.5: An illustration of the relationship in the nodes between the trian-
gles, where one node (circle) may be connected to the maximum
of six nodes from di�erent triangles (squares).



Chapter 3

Multiscale Approach

In this chapter, a multiscale approach is derived in order to try to solve
the groundwater �ow problem when there is hundreds of thousand of
abandoned wells. However, in the determination of the size of the �ne
scale domains, it is clear that the well leakage problem is not a multiscale
problem. This is shown in section 3.4, and in section 3.5 implications of
the multiscale model are introduced and discussed.

3.1 Motivation

Extensive domains may contain hundreds of thousand of abandoned wells
where one example is the Alberta basin presented in chapter 1. When
the leakage rates through the aquitard decreases the number of wells a
well will a�ect increases. An attempt to solve problems of this kind is
by introducing a multiscale model for the system. The idea is that the
model would estimate the large scale �ow and leakage and use already
derived well leakage models for the �ne scale and the coarse scale.

3.2 Multiscale Methods

Multiscale methods couples di�erent models with levels of detail in order
to achieve a balance between accuracy and e�ciency [12]. One method is
called the Heterogeneous Multiscale Method where the macroscale pro-
cess and problem is of interest. The macroscale solution can be denoted
by U . Since the macroscale model is not valid everywhere, one can use
the knowledge from the microscopic process. The solution on the micro-
scopic scale can be denoted by u. The two processes are related to each

31
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other by a compression and a reconstruction operator. When a compres-
sion and a reconstruction operator are denoted as O� and R� , respectively,
the scales are related by O� u = U and R�U = u where O� R� = I when I is
the identity operator.

3.3 Multiscale Well Leakage Model

Since the HMFEM framework provides an implicit description of the
coarse �ux expression based on the �ne scale model [2], the approach
taken in this context will be based on the HMFEM way of thinking.

3.3.1 Coarse Scale Solver

For the groundwater �ow problem, the coarse scale is chosen as a trian-
gulation of the domain. The FEM is then an appropriate coarse scale
solver and was derived in chapter 2. However, the derived �nite element
well leakage model solves a problem on a �ne scale. The di�erence on
the coarse scale is that the leakage rate through the abandoned wells
are estimated on the �ne scale. An average of these estimates scales the
leakage rate on the coarse scale, which is the compression for the ground-
water �ow problem. The reconstruction is then to solve the problem on
a smaller domain by the �ne scale solver. To relate the coarse scale equa-
tion to the �ne scale, lets consider the groundwater �ow problem on the
coarse scale

S
∂h

∂t
− T∇2h+

Kad

B
h = Qδ(x− xw). (3.1)

The same approach as in chapter 2 for the FEM gives the problem

∫
Kl

[
S
hnl
∆t
g + T∇hnl ∇g +Kad

hnl
B
g

]
dx

=

NIW εKl∑
i=1

QIW (xi)g +

∫
Kl

[
QPW δ(x− xw) + S

hn−1
l

∆t

]
gdx

(3.2)

The integral of the �ux rate through the abandoned wells can be ex-
pressed by using a Gaussian quadrature rule. A Gaussian quadrature
rule is an approximation to a de�nite integral of a function, where the
integral is expressed as a summation of the function evaluated in the
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quadrature points multiplied by a corresponding weight [13]. The inte-
gral of the abandoned wells in equation (3.2) by the use of a Gaussian
quadrature rule may then be written as

∫
Kl

QPW (x)δ(x−xw)gdx ≈ |Kl|
NGQ∑
p=1

ωpQPW (xp)g(xp)δ(xp−xw), (3.3)

where NGQ is the number of quadrature points and ωp is the weight corre-
sponding to point p. Since the elements are large with many abandoned
wells, the evaluation points may be seen as a ball B with a center in the
point and a radius ε. Equation (3.3) may then be written as

∫
Kl

QPW (x)δ(x− xw)gdx ≈ |Kl|
NGQ∑
p=1

ωp

∫
Bp
QPWgdx

πε2
p

. (3.4)

Figure 3.1 illustrates the quadrature points inside a triangle. Because the
ball is very small compared to the size of the triangle, the variation of the
test function g are not signi�cant and may therefore be placed outside of
the integral. The leakage rate in the quadrature points is an average of
the �ne scale leakage rate in Bp, and scales the di�erence on the coarse
scale between the hydraulic head in the aquifer and the aquifer above.
Equation (3.4) may then be expressed as

∫
Kl

QPW (x)δ(x− xw)gdx ≈ |Kl|
NGQ∑
p=1

ωpG
p(htop − hnl (xp))g(xp), (3.5)

where Gp is the compression of the �ne scale

Gp =
1

πε2

∑Nw∈Bp

j=1 Qj

htop − hinit
. (3.6)

The number of wells in Bp in equation (3.5) is denoted Nw. Equation
(3.5) substituted in equation (3.2) gives the coarse scale bilinear and
linear terms

a(hnl , g) =

∫
Kl

[
S
hnl
∆t
g+T∇hnl ∇g+Kad

hnl
B
g

]
dx+|Kl|

NGQ∑
p=1

ωpG
phnl (xp)g(xp),

(3.7)
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Figure 3.1: An illustration of the quadrature points inside a triangle in the
triangulation of the domain. These points are given a radius, and
there might be several wells inside the circle that is made up by
the quadrature point and the radius.

b(g) =

NIW∈Kl∑
i=1

QIW (xi)g + |Kl|
NGQ∑
p=1

ωpG
phtop(xp)g(xp) +

∫
Kl

S
hn−1
l

∆t
gdx,

(3.8)
for hnl , g ∈ Vl. The coarse scale solution may now be estimated from
equation (3.7) and (3.8) by the same procedure as in section 2.3.

3.3.2 Fine Scale Solver

On the �ne scale, the well leakage model derived by the ELSA approach is
chosen to determine the leakage rate. The problem was assumed steady-
state in section 2.2, which is a good assumption because the domain
reaches equilibrium much faster on a smaller area than on the coarse
scale. From chapter 2, an estimate of the hydraulic head on the �ne
scale is obtained by solving the system of equations

h(r) =
I0(cro)

I0(cRo)
+

NPW∑
i=1

Kwell,iπr
2
w,i

htop,i − hi
2πTB

[
K0(cri)−

K0(cRi)

I0(cRi)
I0(cri)

]
,

(3.9)
where the injection wells are placed outside the quadrature circles and

c =

√
Kad

BT
. (3.10)

The hydraulic heads are then used in determine the leakage rate in the
abandoned wells by

Qi = Kwell,iπr
2
w,i

htop,i − hi
B

. (3.11)
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3.4 Scale Issues

In the previous section a multiscale approach was applied to the well leak-
age models derived in chapter 2 in order to achieve a multiscale model.
Quadrature points was introduced, and a radius for these still needs to
be decided. In this section, an expression for the relative error for the
analytical solution and an approximated solution on a ball for the �ne
scale groundwater problem is derived. The ball can be considered as
a quadrature point with a radius and the relative error is used in the
discussion of a suitable radius for the quadrature points.

Lets start the derivation by considering the �ne scale problem

−T∇2h+
Kad

B
h = Qδ(x− xw), (3.12)

where the domain is assumed to be in�nite. The Greens function to
equation (3.12) is the fundamental solution in the ELSA approach and
is expressed as

GR2

c (x,xw) =
1

2πT
K0(c|x− xw|) (3.13)

since the the domain is in�nite. Refer to [14] for more details. The
solution to equation (3.12) may be written in terms of equation (3.13) as

h(x) = Q ∗GR2

c =

∫
R2

GR2

c (x,xw)Q(xw)dxw. (3.14)

In order to make an approximation to the solution equation (3.14), a ball
of radius δ is considered. By transforming the origin to the center of the
ball xw → x+ xw, the solution on the ball becomes

hδ(x) =

∫
B(x;δ)

GR2

c (x,x+ xw)Q(x+ xw)dxw

=

∫
R2

H(δ − |x− xw|)GR2

c (x,xw)Q(xw)dxw

=

∫
R2

Gδ
c(x,xw)Q(xw)dxw,

(3.15)

whereB(x; δ) is a ball centered in x with a radius δ andH is the Heaviside
step function. The error between the solution on the ball and the solution
on the entire domain can be obtained by considering the integral of the
di�erence between equation (3.14) and equation (3.15), expressed as
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∫
R2

h− hδdx =

∫
R2

∫
R2

[GR2

c −Gδ
c](x,xw)Q(xw)dxwdx

=

∫
R2

∫
R2

[GR2

c −Gδ
c](x,xw)dxQ(xw)dxw.

(3.16)

The absolute value of equation (3.16) becomes

|
∫
R2

h− hδdx| = |
∫
R2

∫
R2

[GR2

c −Gδ
c](x,xw)dxQ(xw)dxw|, (3.17)

Equation (3.17) can be written in terms of the `1 norm. By using Cauchy-
Schwartz inequality the relationship becomes

‖ h− hδ ‖≤‖
∫
R2

[Gc −Gδ
c]dx ‖‖ Q ‖ . (3.18)

When the di�erential operator in equation (3.12) is denoted L, following
relationship is valid

‖ Q ‖=‖ Lh ‖≤‖ L ‖‖ h ‖ . (3.19)

By equation (3.19), equation (3.18) may be written as

‖ h− hδ ‖≤‖
∫
R2

[Gc −Gδ
c]dx ‖‖ L ‖‖ h ‖ . (3.20)

Thus,

‖ h− hδ ‖
‖ h ‖

≤‖
∫
R2

[Gc −Gδ
c]dx ‖‖ L ‖ . (3.21)

The relationship between the Green function and the di�erential operator
‖ L ‖∼ 1/ ‖

∫
R2 Gcdx ‖, may be used to rewrite equation (3.21) as

‖ h− hδ ‖
‖ h ‖

≤
‖
∫
R2 [Gc −Gδ

c]dx ‖
‖
∫
R2 Gcdx ‖

. (3.22)

Equation (3.22) expresses the relative error in the hydraulic head esti-
mated on a ball of radius δ. The ball may be considered as the circle
around a quadrature point. From [2], a leaky well in an aquifer draws
95% of its water from leakage within a radial distance of 4/c, and 99%
of its water in a radius 5/c. This distance is referred to as the radius of
in�uence and is a natural choice as the radius of the circles around the
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quadrature points. By equation (3.22), the hydraulic head on the coarse
scale only a�ects the �ne scale by one percent if δ = 5/c. This indicates
that the multiscale approach in section 3.3 returns a model that is not
a multiscale model. Therefore, the model in section 3.3 is not able to
estimate large scale �ow and leakage.

3.5 Implication for Multiscale Models of Leaky

Aquifers

From section 3.4, the well leakage model composed by the FEM and the
ELSA approach will not be a multiscale system. The model is therefore
not able to return physical realistic estimates for the large scale �ow and
leakage. However, there might be modi�cations that can be made in the
coupling of the methods that might give a multiscale structure. Thus,
three examples for di�erent modi�cation approaches to the coupling of
the models in section 3.3 are introduced.

The �rst approach is to use the well leakage model derived from the
ELSA approach to estimate the behavior on entire elements. This is done
instead of using a Gaussian quadrature rule because the scale problem
occurred in the determination of the size of the circles around the quadra-
ture points. However, more complicated grid conditions are required and
it is computational demanding to solve entire grid blocks by the ELSA
approach due to the high amount of wells located in an element.

A second example is to couple the time scales on the �ne scale and the
coarse scale together in a di�erent way. In the derivation of the model
in section 3.3, the �ne scale is assumed to be in equilibrium. This might
not be a good assumption since both the FEM and the ELSA model is
then on the same time scale. By introducing local time steps on the �ne
scale one could estimate the changes between these steps and upscale the
change to the coarse scale. This might return a multiscale structured
system.

The �ux through an aquitard is de�ned in chapter 1 as the hydraulic
head times the ratio between the hydraulic conductivity of the aquitard
and its thickness. However, the �ux in an aquitard is small compared to
the �ux in an abandoned well. One could imagine that a compression
of the aquitard occurs. As a last example of changes to the derived
well leakage model in section 3.3, one may include more physics on the
�ne scale such as a compression of the aquitard. This might return a
multiscale structure when combined by a coarse scale solver.





Chapter 4

Illustrative Examples

In this chapter, the FEM and the ELSA well leakage model are com-
pared for three examples followed by and example that illustrates the
characteristics of the coupled well leakage model.

4.1 Veri�cation of the Models by the FEM

and the ELSA approach

To verify the well leakage models derived by the FEM and the ELSA
approach in chapter 2, three examples are given. All examples have a
4×4 km2 domain and parameters for the examples are based on [8] and
listed in table 4.1.

Parameter Value Unit
S 5 · 10−7

Kaq 2 · 10−7 m/s
Kad 1 · 10−12 m/s
Kwell 2 · 10−4 m/s
D 20 m
B 15 m
rw 0.15 m
htop 0 m
hinit 1 m
t0 0 s
t1 100 y

Table 4.1: The parameters used in the examples. Based on examples in [8].
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4.1.1 Example 1: No Wells

In the �rst example there are no wells in the domain. Hence, the leakage
only occurs through the aquitard. The solution by the ELSA approach
when there are no wells is given by the boundary problem solution equa-
tion (2.16) in section 2.2.1

h(r) =
I0(cr)

I0(cR)
, (4.1)

where R=2000. In the derivation of the well leakage models, the bound-
ary and the initial condition of the hydraulic head was equaled to one
and the hydraulic head in the upper aquifer was equaled to zero. From
Darcy's law (1.7), �uids �ow in the direction where the hydraulic head
decreases. This implies that water in the aquifer will leak through the
aquitard towards the upper aquifer. Because the boundary condition
equals the initial condition, the hydraulic head is at its lowest in the cen-
ter of the domain and increases towards the boundary. This can be seen
in �gure 4.1, which is the results from the model based on the FEM when
there are no wells in the domain and the length of an element is 125 m.
In �gure 4.2, the FEM solution is compared to the ELSA approach for
the cross section of the domain and one can see that the models return
similar estimates.

Figure 4.1: Example 1: The hydraulic head estimated by the FEM when
there are no wells in the domain and the length of an element is
125 m.
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Figure 4.2: Example 1: The hydraulic head estimated by the FEM and the
ELSA approach for a cross section of the domain without any
wells. The length of an element is 125 m.

4.1.2 Example 2: One Well

In the second example, an abandoned well is situated in the center of the
domain. It is then naturally to expect the estimated hydraulic head to
be lower than for the example in section 4.1.1, because there is leakage
through both the aquitard and the abandoned well. The basis functions
in the FEM was chosen as linear functions in chapter 2. In order for
the basis function to capture the behavior of the hydraulic head near
the well, there has to be enough elements nearby a well. As in example
one the length of an element is set to be 125 m. The method is then
able to capture an exponential behavior as seen in �gure 4.3. For the
ELSA model, the Bessel function K0 is the reason for the exponential
behavior towards the well. This can be seen in the �gure 4.4, which is
the results from the FEM and the ELSA approach for the cross section
of the domain. It can also be noticed in �gure 4.4 that there is not much
di�erence between the estimates from the di�erent models.
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Figure 4.3: Example 2: The hydraulic head estimated by the FEM for the
domain when there is one well located in the center of the domain.

Figure 4.4: Example 2: The hydraulic head estiamted by the FEM and the
ELSA well leakage model for a cross section of the domain when
one well is located in the center of the domain.
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4.1.3 Example 3: Three Wells

In the third example, there are three wells located on the cross section
of the domain in a distance of 1000 m from each other. The boundary
value is chosen as h = 0.992 in the model by the FEM in order to solve
the same problem as the model by the ELSA approach does when there
are three wells. To �nd out if the wells a�ect each others leakage, one
may calculate the radius of in�uence. From section 3.4, a leaky well in an
aquifer draws 99% of its water in a radius 5/c. The radius of in�uence for
each of the three wells is then 5/c = 5/(1.2910· 10−4) m ≈ 40 km. Since
the distance between the wells are 1000 m, they will a�ect each others
leakage. This can be seen in �gure 4.5 and 4.6, where the leakage through
the well in the center of the domain is the largest. That is because the
well has two neighbors in a 1000 m distance, while the others have one
in a 1000 m distance and one in a 2000 m distance. One may also notice
that the leakage in the wells in �gure 4.6 is larger in comparison with the
solution for the problem when there is only one well, �gure 4.4.

Figure 4.5: Example 3: The hydraulic head estimated by the FEM for the
domain when there are three wells located in the domain. These
wells are located on the cross section of the domain in a distance
of 1000 m from each other.
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Figure 4.6: Example 3: The hydraulic head estimated by the FEM and the
ELSA approach for a cross section of the domain when there are
three wells located in the domain. These wells are located on the
cross section of the domain in a distance of 1000 m from each
other.

4.2 Characteristics of the CoupledWell Leak-

age Model

In this section, the coupled well leakage model is applied to a problem
with an extensive domain. The radius of the quadrature circles are cho-
sen as the radius of in�uence and the domain is 1600×1600 km2, which is
as extensive as the Alberta Basin introduced in section 1.5. The physics
of the domain is based on the parameters listed in table 4.1. For the
elements in the FEM, a four point Gaussian quadrature rule is chosen.
This implies that the solution is exactly up to a second order. The coor-
dinates for the quadrature points in the reference triangle are illustrated
in �gure 4.7.

The 99% radius of in�uence for a well is 5/c ≈ 40 km, and the length
of an element in the FEM is then chosen as 400 km, which is ten times
the radius of in�uence. For simplicity, one well is located in each quadra-
ture point. The results when there are more wells located inside the
circle around a quadrature point is about the same. The estimate of the
hydraulic head by the coupled model is seen in �gure 4.8 and in �gure
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Figure 4.7: An illustration of the location of four quadrature points in the
reference triangle when a four point Gaussian quadrature rule is
chosen.

4.9 where the solution for the cross section of the domain is illustrated.
One may notice that the solution turns negative in some nodes. This is
an e�ect caused by the characteristics of the numerical scheme. If the el-
ements becomes to large outside of the main diagonal, oscillations might
occur. For the well leakage problem, it is caused by the discretization of
the leakage terms.
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Figure 4.8: The hydraulic head estimated by the coupling of the FEM and
the ELSA approach. A four point Gaussian quadrature rule is
used and the radius around these points are the radius of in�u-
ence for a well. In each quadrature point there is one well and
the size of an element is 400 km.
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Figure 4.9: The hydraulic head estimated by the coupling of the FEM and
the ELSA approach for the cross section of the domain. A four
point Gaussian quadrature rule is used and the radius around
these points are the radius of in�uence for a well. In each quadra-
ture point there is one well and the size of an element is 400 km.
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Conclusion

Because of the challenge in estimating the �ow and leakage for problems
on extensive domains that may contain hundreds of thousands abandoned
wells, a well leakage model has been derived by a multiscale approach in
order to estimate large scale �ow and leakage. The model consist of a
coarse and a �ne scale solver, which are chosen as a FEM and a ELSA
approach to the governing �ow equation derived in chapter 1. Since it
is the large scale �ow and leakage that is of interest, the coarse and the
�ne scale solver are connected through a compression, section3.3. The
compression is an average of the �ne scale solution for certain domains on
the �ne scale. These domains are chosen by a Gaussian quadrature rule
applied to each of the elements on the coarse scale. Since the elements are
considered as large and therefore contain several wells, the quadrature
points are given a radius. The radius indicates the domain where the
�ne scale solver is used. A natural choice of the radius is the radius
of in�uence for a well [2]. However, as section 3.4 explains the radius of
in�uence implies that a well is hardly a�ected by the coarse scale. Hence,
the coupling of the FEM and the ELSA model do not return a multiscale
system.

It is not obvious that a coupling of a coarse and a �ne scale solver
would not return a multiscale model. However, as the multiscale ap-
proach in chapter 3 fails in giving a multiscale structured model, the
importance of scale separation is emphasized. In order to have a mul-
tiscale system, the coarse and the �ne scale problem must have some
di�erences in the physics in the problem they are solving. In this thesis,
the idea was that an upscaling of the �ne scale averaged leakage rate and
use it as a scalar in the leakage term on the coarse scale would return a
multiscale system. This turned out to be a wrong approach since a well
has a radius of in�uence, and it illustrates the challenge in estimating
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�ow on extensive domains with hundreds of thousands abandoned wells
like the Alberta Basin introduced in chapter 1.

In section 3.5, modi�cations to the coupled model derived in chapter
3 was discussed in order to achieve a possible multiscale structure. One
example would be to use the ELSA model as a solver on the complete
grid block instead of introducing quadrature points while another is to
introduce local time steps on the �ne scale. The changes in the hydraulic
head in the time steps would then be up scaled to the coarse scale. As
the last example, more physics could be included on the �ne scale such
as a compression of the aquitard.
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