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Summary

Analysis of resting-state fMRI data is commonly done by a combination of
the two signal processing methods Principal Component Analysis (PCA)
and Independent Component analysis (ICA). In this thesis, a possible error
caused by the combination of the two methods are pointed out. The error
is described theoretically and by several examples. Furthermore a new, al-
ternative algorithm is introduced. The new algorithm is performing the ICA
by a Lanczos method on a four dimensional tensor without a PCA prepro-
cessing step and may thereby overcome some of the possible errors. This
Lanczos-based method is suited to deal with large datasets where only a lim-
ited number of components are interesting. The convergence of the method,
and thereby the ordering of the independent components, are heavily depen-
dent of the spectral properties of the data. Without prior knowledge of the
eigenvalues, the Lanczos-based method may give unsatisfactory results. Nev-
ertheless, the framework in which the Lanczos-ICA method is based, proves
to be a powerful base for future ICA methods and fMRI analysis algorithms.
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Introduction

Have you ever wondered how you manage to follow a conversation when you
are in a room with several people talking, music playing and other noisy
disturbances? Some people (often girls) are even able to follow two conver-
sations at the same time. Our brain has a remarkable ability to sort the
information contained in the sound signals. Important and coherent parts
of the information are focused on, while pieces of less important information
and disturbing noise are ignored.

This ability can be compared to analysis of brain fMRI data. In this
case, we are positioned in a brain, listening to the communication between
different neurons and trying to pay attention to what all of them are saying
simultaneously. The main difference is that instead of two ears as observation
points we have thousands of voxels monitoring the signals. Furthermore,
we only have a simple mathematical model and a computer to perform the
analysis, not a brain. The mathematical model and main analysis tool is
called Independent Component Analysis (ICA).

ICA is a method separating mutually independent, non-Gaussian com-
ponents linearly mixed in an unknown manner using fourth order statis-
tics. The method can be compared to Principal Component Analysis (PCA)
which is a method using second order statistics. ICA is used in wide range
of applications and theoretical foundation for ICA is well described. A good
introduction is given in [28].

The derivation of ICA can be done from several different viewpoints lead-
ing to different algorithms. The most known are FastICA by Hyvärinen [16],
Infomax originally by Bell and Sejnowski [1] and JADE by Cardoso et al.
[6]. In this thesis a new ICA method is introduced. The method is based on
an existing framework by Cardoso [5] combined with a classical numerical
method introduced by Lanczos [18]. The method is applied to medical data
from an fMRI scan. Hence, the work of this thesis is tip-toeing the borderline
between numerical linear algebra, statistics and medical imaging.
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From a theoretical point of view, separation of independent sources is
trivial. Thus in an ideal case, all the algorithms mentioned above perform
well. The main problem addressed in this thesis is ICA performed on large,
fMRI datasets with noise and with an unknown number of sources. This
problem is commonly solved by a combination of the two techniques PCA
and ICA. In this thesis a Lanczos-ICA method is introduced as an alternative
solution strategy, attempting to deal with large datasets without the use of
PCA.

Thesis Structure

This thesis is arranged in the following manner:
Chapter 1 gives an introduction to the mathematical framework needed to
read the rest of the thesis. In Chapter 2, we define the ICA-model and get a
short introduction to the theory behind general ICA. Several ICA methods
are briefly introduced with focus on the common statistical properties that
form the foundation of all ICA methods. ICA based on eigenvalue decompo-
sition is the main algoritmic framework in this thesis. Chapter 3 is devoted
to this subject. Here, we also find the derivation of the new Lanczos-based
ICA method. Chapter 4 puts the mathematical models into a broader setting
by introducing application to fMRI data analysis. A brief introduction to
fMRI as data source is given and practical considerations about the analysis
are discussed. In particular, the concept of PCA as a preprocessing stage for
ICA is discussed. In Chapter 5, results of ICA applied to fMRI data are pre-
sented. Methods and theoretical aspects from all the previous chapters are
included in the analysis. The results from the different methods are discussed
and compared. An apparent paradox in the use of PCA combined with ICA
is pin-pointed, and several examples thereof are given. Chapter 6 concludes
the thesis and contains an outline to further work in the field of signal and
image processing. In the Appendices we find a description of the visualiza-
tion methods used in this thesis as well as some algebraic simplifications and
proofs.
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Chapter 1

Mathematical Framework and
Related Theory

In this Chapter, the mathematical tools used in the thesis will be introduced.
These tools are necessary to understand the ICA-model and derivation of
ICA-methods discussed in later chapters. Some signal processing methods
with close relation to ICA are introduced briefly. For general statistical and
linear algebra tools; see e.g. [30, 19]. The experienced reader is advised to
proceed to the definition of the ICA model in Chapter 2.

1.1 Projection Pursuit

Projection Pursuit (PP) is a framework of signal processing methods coping
with higher dimensional data. In general, higher dimensional data are diffi-
cult to interpret and will be more easily understood in a lower dimensional
subspace. The idea behind PP methods is to project higher dimensional data
onto a lower dimensional space. The projection is done in a way suitable for
human interpretation. Among all the possible projections, the most inter-
esting are selected first. Hence PP methods requires an objective measure of
interest. The statistical theory described later in this Chapter offers a range
of different measures. The general idea behind projection pursuit can be
recognized in principal component analysis as well as ICA. For more aspects
around Projection Pursuit see [10].

3



4 Mathematical Framework and Related Theory

1.2 Principal Component Analysis

Principal Component Analysis (PCA) describes the interesting projections in
Projection Pursuit using correlation and variance. From a zero mean dataset

x =

 x1(t)
x2(t)

...

 (1.1)

with n observations of the time or space dependent variable x, PCA search
for a representation y = Ux with maximum variance. The orthogonal base
of this representation can be obtained from the Eigenvalue Decomposition
(EVD) of the covariance matrix C ∈ Rn×n:

C = E{x · xT} = UTDU, (1.2)

where the D is a diagonal matrix containing eigenvalues with corresponding
eigenvectors in the columns of U .

A small example is given in Figure 1.1 where a set of random 2D variables
are plotted (in blue). The data is slightly positive correlated. The principal
components y1 and y2 (in red) spannes a space where the data is uncorrelated.
The data has maximum variance along the direction of the first principal
component y1.

y2 y1

Figure 1.1: Principal Components of a random dataset of 500 observations.

In many applications of PCA the goal is to form a subspace containing
most of the variance of x. In other words, we search for a y ∈ Rk, k < n
representing most of the variance of the data in x. The dimensional reduction
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is then performed by representing the covariance matrix by a lower rank
approximation. The new covariance matrix Ĉ is constructed from the k
largest eigenvalues of C. Similarly, a new Û is generated from the eigenvectors
corresponding to the eigenvalues in Ĉ. The omitted eigenvalues of small size
represents dimensions of the data spanning low variance. Hence, in terms
of projection pursuit, an interesting lower dimensional estimation y = Ûx
represents most of the variation in x. In the example in Figure 1.1 the best
one-dimensional representation of the data would have been a projection onto
a line in y1-direction.

1.3 Independence

The term independence in independent component analysis can be described
briefly as the property of having completely separate origin. Statistically,
two random variables y1 and y2 are independent if the common probability
density function can be factorized;

p(y1, y2) = p(y1)p(y2).

This is a stronger claim than zero correlation, corr(y1, y2) = 0. While zero
correlation is obtained if E{y1y2} = E{y1}E{y2}, independence also need

E{g(y1)h(y2)} = E{g(y1)}E{h(y2)}

where g and h are any non-linear functions. Zero correlation is a special
case of independence where g and h are linear. Notice that for Gaussian
variables zero correlation and independence are equivalent. For sampled
data, independence can be difficult to measure, but estimates can be made
using higher order statistics. This is described in Section 1.5.

1.4 Central Limit Theorem

The essence of the central limit theorem can be summarized as:

• A linear combination of k random, equally distributed, independent
variables tend to Gaussian distribution as k →∞.

Even the sum of two random independent variables a+ b are more Gaussian
then any of the variables a and b. As a simple illustration, let us consider
the sum after rolling respectively one, two and three dice. Figure 1.2 shows
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the histogram of the eye sums after rolling 1000 times. As only one die has
a uniform histogram, it is apparent that the histogram of the sums tend to
a more bell shaped form.

The assumption that the variables are equally distributed can to some
extent be relaxed without loss of precision. For the most of this thesis,
the central limit theorem is assumed to be valid for non-equal distributed
variables as well. For further details and more formality on the central limit
theorem see [30].

Figure 1.2: Histograms of dice sums after rolling one, two and three dice

1.5 Higher order statistics

Moments are used to describe properties of a variables distribution. From
general statistical theory, we are familiar with a variables moments expressed
using the probability density function (pdf) px and the mean µ of the variable:

mn = E{(x− µ)n} =

∞∫
−∞

(x− µ)n px(x)dx

recognized as the Fourier coefficients of the pdf. For observed data samplings
the pdf is in general unknown and estimators is used. Thus the expectation
value operator E{·} is commonly evaluated as a sample mean, not based on
the pdf. The moments are often expressed as central moments with x̂ = x−µ.

Cumulants are close related to the moments. They are built of sums
of products of moments, and share thereby some properties with moments.
The similarities of the two concepts is apparent in their original derivation.
While moments are defined as the Fourier coefficients of the pdf, Cumulants
are derived as the Fourier coefficients of the natural logarithm of the pdf,
rather then the pdf itself. This difference gives cumulants an extra set of
nice algebraic properties not shared with the moments. These properties
will be discussed later.
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In ICA theory it is common to assume that the mean µ = 0 and for mo-
ments of higher order than two the variance σ2 = 1. Under this assumption,
moments, central moments and cumulants are equivalent up to the third or-
der. The first two cumulants, mean and variance, are intuitive and frequently
used in statistical analysis. The third order cumulant is called skewness and
is a measure of asymmetry in a distribution. Theory around the third cu-
mulant will not be discussed further. The forth order cumulant is of special
interest when studying ICA, thus further details follows:

In the scalar case, the fourth cumulant is known as kurtosis,

kurt(y) = E
{
y4
}
− 3(E

{
y2
}

)2. (1.3)

Kurtosis can be interpreted as a measure of a tail thickness in a variables
pdf. When z is Gaussian |kurt(z)| = 0 and kurtosis can thereby serve as a
Gaussianity-estimator. The evaluation of kurtosis can be sensitive to outliers
and in some applications other estimators are preferred.

In the multivariate case, all cumulants are arranged in a way suitable for
tensor analysis. Still assuming µ = 0, the second cross-cumulant is recognized
as the covariance matrix, while the forth cross-cumulant:

cum(xi, xj, xk, xl) = E{xixjxkxl} − E{xixj}E{xkxl} − (1.4)

E{xixk}E{xjxl} − E{xixl}E{xjxk},

is a tensor in Rn×n×n×n containing all fourth order statistical information
of x. As mentioned earlier, the cumulant tensors are constructed to ensure
three essential properties:

1. Linearity, such that if a = b+ c, cum(a) = cum(b) + cum(c).

2. Gaussian minimum, such that the cumulant of a Gaussian distributed
variable is zero.

3. Diagonality with independent data, such that the cross-cumulant of
independent variables is diagonal.

Further details about cumulants and a more detailed list of properties can
be found in [2]

In many applications one assume that the data is Gaussian and the first
two moments, or cumulants, are sufficient. Since a Gaussian distribution can
be described uniquely by the mean and variance, higher order moments will
be irrelevant. When dealing with non-Gaussian data some of the information
about the data may lie in the higher order moments. This particular concept
will be paid further attention later in this thesis.
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1.5.1 Negentropy

The properties of random variables and pdfs can be described by its moments,
but a more general description can be made using information theoretical
concepts. When dealing with ICA negentropy is one of the most essential
information theoretic terms. Before defining negentropy it is first necessary
to define entropy.

Entropy is a measure of how structured a random variable is. This is: to
what extent is the variable random? If a variable has a tendency to take a
certain value, the variable is less random then an other variable without this
tendency and will thereby have a lower entropy value. Mathematically the
entropy H of the random variable x is defined as:

H(x) = −
∫
px (η) log px (η) dη. (1.5)

In the continuous case H is sometimes named differential entropy. Using
this definition it can be shown that given a fixed variance the Gaussian
distribution has maximum entropy. This fact forms the basis for the term
negentropy.

The negentropy J of a variable x is expressed using the entropy in function
(1.5) as

J(x) = H(xg)−H(x) (1.6)

where xg is a random Gaussian variable with same variance as x. Hence
negentropy is a measure of how far a variable is from Gaussian distribution.
As the Gaussian distribution in terms of entropy is the least structured,
negentropy also serves as a measure of how structured or random a variable
is and as a perfect theoretical measure of non-Gaussianity.

Due to the pdf dependence in function (1.5), direct measurement of en-
tropy or negentropy is impossible for general data samplings. Using estima-
tors based on higher order cumulants, an approximate negentropy value is
obtainable, but negentropy will for the rest of this thesis mostly serve as a
theoretical tool.

1.6 Operations on Tensors

The generalisation of the correlation matrix into higher order cumulant ten-
sors must be accompanied with a framework of suitable tensor tools. In the
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second order (matrix) case, familiar linear algebra concepts as eigenvalues
and eigenvectors can be used in analysis of data variation. In order to gener-
alize these concepts we need products and norms in tensor spaces as well as a
notion of symmetry in a tensor. The arrangement of tensors opens a number
of possible products and operators in tensor spaces. For deeper mathemat-
ical insight in tensor operators in the framework of blind source separation
see [23].

For the purpose of this thesis, a linear cumulant operator on a matrix
space F : Rn×n 7→ Rn×n, is given by

F · Y = F (Y ), Fij(Y ) =
∑
kl

yk,lTi,j,k,l, (1.7)

with T ∈ Rn×n×n×n like in Equation (1.4) and Y ∈ Rn×n. The operator (1.7)
can be seen as the tensor analogy to a standard linear matrix operator from
one vector space to another, Ax = b, A : Rn 7→ Rn.

We equip our matrix space with the Frobenius inner product

〈A,B〉 =
√
trace (ATB) (1.8)

and state that the operator F is hermitian:

〈F (M), X〉 = 〈M,F (X)〉. (1.9)

Hence, by the spectral theorem, F has an eigenvalue decomposition [11].
This is not necessary true if the hermitian condition 1.9 fails. For general
tensor decompressions more relaxed decomposition criteria applies [23].
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Chapter 2

The ICA Model

In this Chapter, a formal definition of Independent Component Analysis is
stated. An illustrative example is presented and general ICA methods are
briefly derived at the end of the Chapter.

2.1 Blind Source Separation Problem

Consider x(t) ∈ Rn as an observed set of signals generated by a mix of
the original source signals s(t) ∈ Rn. The mixture of s is described by the
unknown mixing matrix A ∈ Rn×n. This gives the basic blind source mixing
equation.

x(t) = As(t)

, where both A and s are unknown. For simplicity and since the model also
can be used on other data then time series, we will from now on omit the t
dependence in the notation:

x = As (2.1)

and name this the Blind Source Equation.

The goal of the blind source separation is to estimate the unknown s
without any knowledge of A or A’s structure. The under-determination in
the Blind Source Equation (2.1) may force certain weak conditions upon s
in order to make the problem solvable.

2.2 Definition of ICA

Independent Component Analysis (ICA) is a special case of the more general
Blind Source Separation Problem. ICA determines the components of the

11



12 The ICA Model

source signal s up to a scalar factor using only the observation x and the two
assumptions:

• The elements in s must be mutually independent.

• The elements in s must be non-Gaussian.

We will return to the motivation behind these assumptions later in this Chap-
ter. In practical situations the estimation is done by first estimating the other
unknown parameter A, or rather W T = A−1, and then calculate s from

s = W Tx. (2.2)

A is often named mixing matrix and W unmixing matrix.

2.3 Example with uniformly distributed vari-

ables

The features of ICA are easily illustrated with a simple example. Assume
s1 and s2 are two uniformly distributed independent vectors. Due to the
independence, prior information about s1 will not give away anything about
s2 and vice versa; see Figure 2.1(a). The mixes x1 and x2 are represented by
a linear transformation A: [

x1

x2

]
= A

[
s1

s2

]
.

If A is orthogonal, the transformation is a rotation. We will in later sections
see that such an orthogonality-assumption is reasonable. The transformation
cancels the independence of the variables as seen in Figure 2.1(b). If we for
instance set x2 to its maximum value, we also know the value of x1. This is not
the case for the source signals s. ICA tries to reconstruct s by transforming,
or in the orthogonal case, rotating x back to independence. This simple
example is also valid in higher dimensional spaces and with more general
distributions.

2.3.1 Limitations of ICA

The example above also illustrates ICA’s ambiguities. As the mixed vari-
ables x are rotated until independence, an extra 90◦ rotation will still fulfil
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(a) Uniformly distributed source sig-
nals

(b) Mixed, observed signals

Figure 2.1: Independent variables (a) are made dependent (b) under a linear
transformation

the independence criteria and thereby give a different solution. The two so-
lutions are equivalent when it comes to independence but the ordering of
the components is changed. Also notice that the scaling of the data is not
related to the independence criteria. Hence si can be scaled by a scalar with-
out changing the degree of independence. ICA can thereby only estimate the
independent components up to a scalar factor (positive or negative) and can
not say anything about the original ordering of the components.

2.3.2 ICA and Gaussian Data

The example with the two uniformly distributed variables can also be used
to illustrate why ICA on Gaussian data is impossible. The rotation to inde-
pendence done in Figure 2.1 is possible because of the higher order moment
properties of the uniform distribution. Most distributions have similar prop-
erties. However, the Gaussian distribution is the only distribution uniquely
determined by the two first moments. In the normalized case this gives a
rotation invariant distribution. This can be seen in Figure 2.2. By normal-
ization we mean fixing the standard deviation to one. Further argumentation
on normalization of data and why Gaussian variables can not be used will
be pointed out in later sections. For a general argument see [15].
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Figure 2.2: Normalized Gaussian variables are rotation invariant.

2.4 ICA Machinery

- Maximization of Non-Gaussianity

The example in Section 2.3 points out the following strategy for ICA estima-
tion:

• Given a suitable measure of independence, use a simple optimization
routine to maximize this measure.

Hence ICA-methods can be derived from different viewpoints motivated by
different independence measures and different optimisation routines. How-
ever, the statistical structures that make the methods possible are mostly
the same.

The Central Limit Theorem from Section 1.4 states that a mixture of two
components is more Gaussian then any of the two components themselves.
An independent component is thereby most likely as far from Gaussian as
possible. Under this assumption ICA becomes non-Gaussianity maximiza-
tion. Using the Blind Source Equation (2.1) this is: Find a wi satiafying

max
w

[non-Gaussianity(wTx)] (2.3)

An estimation of one independent component is thereby given by Equation
(2.2) as

ŝi = wT
i x.

We remember from Chapter 1, that Gaussianity and non-Gaussianity can be
measured in several ways.

Using negentropy or a kurtosis based negentropy estimator as objective
function in a fixed point optimization is described by Hyvärinen et.al. and
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named FastICA [16]. Alternatively an optimization of the Maximum Like-
lihood (ML) estimation of the Blind Source Equation (2.1) can be done. In
ML framework assumptions about the pdfs of the components must be given.
This is dealt with in a elegant manner in the Bell-Sejnowski algorithm. This
algorithm can be also be motivated from an information theoretic point and
is then known as the Infomax algorithm [1, 6, 22]. Finally, statistical infor-
mation about non-Gaussianity can also be obtained from the fourth order
cross-cumulant, giving the framework of tensor based ICA-methods. This
framework will be further pursued in this thesis and an in-depth definition
is given in the next Chapter.
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Chapter 3

ICA by Eigenvalue
Decomposition

Tensor decomposition is a classical framework for ICA. Several successful al-
gorithms are based on tensor algebra. The best known algorithm is probably
the Joint Approximate Diagonalization of Eigenmatrices (JADE) introduced
by Cardoso and Soloumiac in 1993 [8, 9]. Both JADE and other tensor algo-
rithms are based on the existence of eigenmatrices. Hence these methods has
an analogy to the eigenvector solution of the PCA-problem in Section 1.2.
In this Chapter, different methods for eigenmatrix extraction are discussed
and a Krylov Space approach to ICA is derived.

3.1 The EVD-ICA Strategy

As we saw in Chapter 1, the variance maximization in the Principal Compo-
nent Analysis (PCA) problem can be done by a Eigenvalue Decomposition
(EVD) of the covariance matrix; shown in expression 1.2. A similar strategy
can be applied to the ICA problem, but this time using the forth order cu-
mulant tensor as a subject for decomposition. In Chapter 1, a matrix space
operator (1.7) is introduced. We could compare this operator to the regu-
lar matrix-vector product used in the EVD in the PCA-problem. In other
words: a generalized PCA can be done on the basis of this operator rather
then the regular matrix operator represented by the covariance matrix. Such
a generalized PCA is motivated by the higher order statistics of the fourth
order cumulant.

Introducing the cumulant tensor from Equation (1.4) to the operator from
Equation (1.7), we get an operator F containing all fourth order information

17



18 ICA by Eigenvalue Decomposition

of a variable x ∈ Rn F : Rn×n 7→ Rn×n:

Fij(Y, x) =
∑
kl

yklcum(xi, xj, xk, xl). (3.1)

As stated in Equation (1.9), the operator F is hermitian. Hence an EVD
of F exist and F can be spanned by a set of orthogonal eigenmatrices Mi

satisfying:

F (Mi) = λiMi, (3.2)

for any given data set x. We know that a decomposition of F is related to the
diagonalization of the cumulant tensor and this again relates to independence
among the sources. In the independent case, the kurtosis values of the sources
are on the diagonal of the cumulant tensor [15]. Hence the eigenvalue λn

corresponding to each eigenmatrix Mn is the kurtosis value of one of the
components. The analogy to PCA with decomposition of the covariance
matrix is still valid. In PCA, the variance of the different components are
diagonal elements in the covariance matrix when the sources are uncorrelated.
Furthermore the maximization of variance is obtained by a decomposition
making the covariance matrix diagonal.

In this framework, an independent component can be extracted by a three
step routine due to Cardoso [5]. The routine is given here, and the details of
the steps are further discussed in the following sections.

1. Whitening

First the data is whitened. This makes the mixing matrix orthogonal
and the cumulant tensor symmetric. Whitening is a fundamental step
when dealing with the rest of the theory in this thesis. In other ap-
proaches to ICA, this whitening step can be omitted [1]. Furthermore
Cardoso also introduce other EVD-ICA methods without this step [7].
In such applications whitening is often viewed as a preprocessing step
used to encourage faster convergence. The concept of whitening is de-
rived in detail in Section 3.2.

2. Cumulant eigenmatrix extraction

From the whitened data, an eigenmatrix M , F (M) = λM is ob-
tained. This can be done by e.g. a power method, a Lanczos rou-
tine or a simplified solver only searching for solutions in the space
W = {W ∈ R , W = w · wT}. These methods are discussed further
in Section 3.3.
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3. Mixing pattern extraction from eigenmatrix

The eigenmatrix number i is assumed to be on the form Mi = wi · wT
i ,

[5, 15]. A proof of this property is outlined in Appendix B. The vector
wi represents the unmixing pattern of a single independent component
and is therefore the indirect goal of our routine. A full set of unmixing
vectors makes out the columns of the unmixing matrix in Equation
2.2. The unmixing pattern wi is the eigenvector corresponding to the
dominant eigenvalue of Mi and can be extracted from Mi by a regular
EVD. Thereby, the independent component estimate ŝ can be expressed
ŝi = wT

i x. Hence a full set of independent components can be obtained
from a full set of eigenmatrices Mi.

3.2 Whitening and Centering

The estimation of cumulant values involves a various of terms dependent of
the data mean and standard deviation. A preprocessing stage which normal-
izes all data to mean zero and standard deviation one will therefore simplify
cumulant estimation a great deal. In most ICA theory, the mean is assumed
to be zero. If this not is the case a simple centering operation can be per-
formed:

x← x− E{x}.

This assumption is used in e.g the fourth order cumulant in Equation (1.4).
Without a zero mean assumption, Equation (1.4) would have been extended
drastically with terms involving the mean.

Assuming centred data, the standard deviation normalization is called
whitening and can be done by a linear operator.

z = V x,

giving σzi
= 1 and cov(z, z) = E{zzT} = I.

The linear operator V can be derived in several ways. One example using
an eigenvalue decomposition is:

V = D−
1
2ET (3.3)

where the diagonal matrix D and the eigenvector matrix E is the same as in
the EVD of the covariance matrix in Equation (1.2). The matrix exponent in
Equation (3.3) is a component-vice exponent. Normalization of the variables
will not interfere with the independence of the components. In the blind
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source model, only the mixing matrix is changed. This is shown in the next
section.

The cumulant based operator F from Equation (3.1) will be significantly
simplified when working with whitened data. The expression reduces to:

F (M, z) = E{(zTMz)zzT} − 2M − trace(M)I. (3.4)

A proof for the simplification is given in Appendix B. Without this simplifica-
tion, tensor based methods suffer from very high computational complexity.
For further theory on different whitening methods see [15].

3.2.1 Whitening Gives Orthogonality

As a result of the whitening we get a new mixing matrix U = V A. This new
mixing matrix will give the whitened ICA equation:

z = V x = V As = Us. (3.5)

We can further see that:

I = E{zzT} = E{Us(Us)T} = UE{ssT}UT = UUT , (3.6)

thus the new mixing matrix is expected to be orthogonal as the independence
among the sources s implies no expected correlation in s. An orthogonal
mixing has limited degrees of freedom and is thereby simpler to estimate
than a general matrix.

3.3 Methods for Eigenvalue Decomposition

Most methods for eigenvalue decomposition are known from their applica-
tions to matrix operators. In this section, we will look at some of the methods
in a setting with a fourth order tensor operator.

3.3.1 Power Iteration

The power method is a classical method used to reveal eigenvectors of ma-
trices. It also applies to our more general case with the linear operator F ,
shown in Algorithm 1. The method finds the eigenmatrix corresponding to
the highest eigenvalue, hence the highest kurtosis value for any source.
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Several components can by found by restarting the method on a subspace
not containing the projection of the first component. This is possible due to
the orthogonality of the whitened mixing matrix. In this manner the power
iteration is a Projection Pursuit method and uses the fourth order statistics
in the cumulant operator as a measure of an interesting projection.

Algorithm 1 Power(F )

Initialize: M0 ← random matrix.
for n← 1, 2, 3, ... do
Mn ← F (Mn−1)

Mn ←
Mn

‖Mn‖
end for
return Mn

Simplified Power Iteration - FastICA

As described by Hyvärinen [15], the power method for finding an eigenmatrix
can be simplified to only search in the space W = {W ∈ R,W = w ·wT} by
using the operator G : Rn 7→ Rn

G(w) = wT · F (w · wT ). (3.7)

Exploiting the algebraic properties of the cumulant tensor, this will reduce
to the well known FastICA iteration:

w ← E{z
∑

i

wizi} − 3w. (3.8)

Hence, cumulant based power iteration and FastICA are essentially the same
when it comes to measuring independence. FastICA has the advantage that
it can operate in a vector space rather then a matrix space and is thereby a
computationally efficient method.

3.3.2 Lanczos Method

Assuming the existence of different eigenmatrices corresponding to F , Lanc-
zos method will, using Krylov subspaces, simultaneously reveal several of
these eigenmatices [18]. The full derivation of the Lanczos method is not
given here, but some ideas are outlined. For further derivation and theory
see e.g. [14, 29].
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The idea behind Krylov subspace methods is to take several steps of the
power method into account at each iteration. Hence a Krylov space is given
as Kn = {F (M), F (F (M))...}. By forming an orthogonal basis for Kn the
Krylov space methods may be used to solve several types of numerical prob-
lems. The general eigenvalue solver using Kn is called an Arnoldi method
and uses recursively all dimensions of Kn at each iteration. The symmetric
edition of Arnoldi is called Lanczos method and exploit the symmetry of the
operator to only use a three term recursion. This makes Lanczos methods
suited to deal with large datasets in a fast manner. Recall that the fourth
order cumulant operators from Equation (3.1) and Equation (3.4) are sym-
metric, hence Lanczos method can be applied.

The further idea behind Lanczos is to reduce the linear operator to tridi-
agonal form. The reduction to tridiagonal form is done in order to use simpler
methods to solve the reduced problem. In the case of the two dimensional
matrix operator, the reduction is done by orthogonal vectors. This is de-
scribed briefly by Trefethen in [29]. When dealing with higher dimensional
operators such as our cumulant function F , the same theory can be applied.
A series of n orthogonal matrices Q1, Q2 . . . Qn reduce F to a tridiagonal
matrix operator Tn,

Tn =


α1 β1 0 0 0
β1 α2 β2 0 0

0 β2 α3
. . . 0

0 0
. . . . . . βn−1

0 0 0 βn−1 αn

 .

According to the theory of Krylov methods, the eigenvalues of T (called Ritz-
values) converge to the eigenvalues of F [14, 29]. However, the eigenmatrices
Ml is a result of a slightly more involved calculation and will be revealed by
a linear combination of the matrices Qi:

Ml =
∑

j

Qjξl(j) (3.9)

where ξl is one of the eigenvectors corresponding to T . This is shown in the
next subsection.

According to Krylov theory, the Lanczos method will, at each iteration,
give a lower dimensional approximation of the eigenspace of F . This prop-
erty can be made useful in an ICA method since an approximation of the
eigenspace of F also can be used as an approximation of the independent
components in the ICA model.
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Algorithm 2 is performing a Lanczos routine on F . The algorithm will in
each iteration obtain the best possible lower dimensional approximation of
the full eigenmatrix set Mi. The approximated eigenmatrices are orthogonal
under the Frobenius inner product in Equation (1.8).

Algorithm 2 Lanczos(F )

Initialize: β0 ← 0, Q0 ← 0, B ← random matrix, Q1 ← B
‖B‖

for n← 1, 2, 3, ... do
V ← F (Qn)
αn ← 〈Qn, V 〉 [Inner product (1.8).]
V ← V − βn−1Qn−1 − αnQn [Three term recursion.]
βn ← ‖V ‖
Qn+1 ←

V

βn
end for
T ← tridiag(α, β)
Ξ, λ← eig(T )
for l← 1 to n do

Ml ←
n∑

j=1

Qjξl(j)

end for
return M

Constructing Eigenmatrices from Q and T

We will now show that the matrix Ml expressed in Equation (3.9) actually
is an eigenmatrix. Hence we will show that a Ml given by Ml =

∑
j

Qjξl(j) is

satisfying

F (Ml) = λlMl. (3.10)

This can be verified by considering an expansion of the eigenmatrix condi-
tion (3.10)

F (Ml) = F (
∑

j

Qjξl(j)) = λlMl = λl

∑
j

Qjξl(j). (3.11)

By first examining the left hand side of (3.11) using the linearity of F we get

F (Ml) = F (
∑

j

Qjξl(j)) =
∑

j

ξl(j)F (Qj).



24 ICA by Eigenvalue Decomposition

Further we need to use the information contained in T from the Lanczos
routine. First of all, T can be expressed using Q: Ti,j = 〈Qi, F (Qj)〉. The
EVD of T will then give:

TΞ = ΞΛ ⇒ Tj,j =
∑

k

ξk(j)Λk,kξj(k), (3.12)

where Ξ is a matrix containing all the eigenvectors of T and Λ is a diagonal
matrix of eigenvalues. Notice that according to Krylov theory, the eigenval-
ues of T converge to the eigenvalues of F .

Still considering the left hand side of (3.11), we introduce Qj and the EVD
of T :

QjF (Ml) =
∑

j

ξl(j)〈Qj, F (Qj)〉 =
∑

j

ξl(j)Tj,j =
∑

j

ξl(j)
∑

k

ξk(j)Λk,kξj(k) =∑
j,k

λkξl(j)ξj(k)ξk(j) =
∑
j,k

λkδl,kξk(j) = λl

∑
j

ξl(j).

(3.13)

While also introducing Qj to the right hand side of Equation (3.11) we get:

λlQj

∑
j

Qjξl(j) = λl

∑
j

〈Qj, Qj〉ξl(j) = λl

∑
j

ξl(j). (3.14)

This verifies Equation (3.10) and thereby the eigenmatrix assumption on Ml

since the left hand side (3.13) equals the right hand side (3.14)

Simplified Lanczos?

It may be tempting to use a simplified formulation of F in the Lanczos
method, such as G in Equation (3.7) in the simplification of the power
method. The Krylov-like space corresponding to G is of lower dimension
than the one corresponding to F , but G is no longer a linear operator, and
further examination of the theory on non-linear operators is needed to de-
velop such a method. However it can be shown that a non-linear method will
not have the same nice properties as the FastICA algorithm. Thus, we can
not change all matrix operations to vector operations as is done in FastICA.



3.4 Practical considerations 25

3.4 Practical considerations

Not all theoretical aspects can fully be reproduced in real life examples. In
this section some practical considerations will be pointed out in order to put
the theory in a different perspective.

3.4.1 Independence of sampled data

One of the basic assumptions in ICA is that the initial sources are inde-
pendent. This condition is used widely in the derivation of the ICA theory.
However, sampled data rarely have this property in practice. This can not
necessarily be interpreted as if all sampled data are dependent, but may be
a result of the insufficient representation of the data due to the sampling,
some unexpected dependence in the data, or the properties of the expectation
operator E{·}.

Due to the mentioned uncertainties, the covariance matrix may differ from
identity even though the original sources are expected to be independent:

ssT 6= E{ssT} = I (3.15)

This may have impact on the theory behind the estimations in several ways.

Loss of orthogonality

From Equation (3.6) in the Section about whitening, we have that

UE{ssT}UT = I, (3.16)

where U was the new mixing matrix after whitening. We see that due to the
inequality of Equation (3.15) one can no longer argue that U is orthogonal.

Loss of Kurtosis-Eigenvalue Relation

In Section 1.5 on higher order statistics, one of the requirements for a diagonal
cumulant tensor is independence among the sources. However, we notice
that a eigen-decomposition of the operator F in Equation (3.1) always is
possible due to the hermitian properties of the operator, but the expected
relation between eigenvalues and kurtosis values of the sources can no-longer
be obtained.
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Full-Rank Eigenmatrices

The expected loss of orthogonality in the mixing matrix is apparent in the
eigenmatrices obtained from the Lanczos routine. These matrices can no
longer be expected to be rank one. Thus they can not be represented as
a outer-product wwT . We also find that they not satisfy the eigenmatrix
criteria from Equation (3.10).

3.5 Lanczos-ICA Routine

Inspired by the practical considerations discussed above and the Cardoso
EVD framework, we will now introduce a extended version of the Lanczos
method (Algorithm 2) suited to deal practical ICA problems. The main
idea behind the method is to neglect the fact that the cumulant tensor is
decomposed in an undesired manner and force the variable to stay as close as
possible to the theoretical model. Letting the Lanczos process run as previous
described, the eigenmatrices generated by Algorithm 2 are not necessary rank
one as expected. The routine should furthermore go on as planned an pick
the dominant eigenvalue of M (if any) to represent the unmixing vector w.
The full set of unmixing vectors form the columns of the unmixing matrix
W . This is the same matrix as defined in the definition of the ICA model in
Equation (2.2). Due to the mentioned exceptions from the theoretical model
W can not be expected to be orthogonal. Thus the method can be further
modified by orthogonalizing the W by e.g. a QR-routine as a post-processing
step. This last step is optional and may not give a better unmixing result.
For implementations of QR-methods see [29].

The full Lanczos-ICA routine is presented as Algorithm 3 and takes a
mixed signal x and an iteration number i as input, and returns estimates
of i independent components. This algorithm serves as a complete ICA
algorithm. Due to the properties of the Lanczos method, it is suited to deal
with large datasets when the number of desired independent components is
less then the number of observations. The method is tested on fMRI data.
Results of the test are given in Chapter 5.

3.6 Convergence of Lanczos Methods

The convergence of the Lanczos method is dependent of the spectre of the
eigenvalues of F . That is: how the eigenvalues are spread on the line of real
numbers. The typical case is when the spectre has some outliers. Then the
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Algorithm 3 Lanczos-ICA(x,i)

[i independent components are extracted from the mixed observations
in x]
z ← V x [ Whitening using Equation (3.3).]

Define: F (M) = F (M, z) [From Equation (3.4).]
M ← Lanczos(F ) [Set of eigenmatrices obtained from Algorithm 2. ]
for n← 1, ...i do
ξ ← eig(Mn) [Truncated eigenvalue decomposition.]
wn ← ξ [ first eigenvector of Mn]

end for
W ← qr(W ) [Optional orthogonalization]
ŝ← W T z
return ŝ

convergence will be rapid towards these values. The convergence of the rest
of the values follows and clustered values converge slowly. Hence Lanczos
method is ideal in situations when only a limited number of eigenvalues are
required and the outliers are interesting.

For further details and convergence theorems, the textbooks by Golub
and Trefethen are recommended reading [14, 29]. As a short summary we
note that the convergence is described using the Chebyshev points; that is
the roots of the Chebyshev polynomials (displayed below). One result is that
the worst case convergence is found when the eigenvalues lie in the Chebyshev
points. This is considered unlikely in most cases, also when dealing with the
fMRI data in this thesis.

Figure 3.1: Chebyshev polynomial of degree 43 with corresponding Chebyshev
points.
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Chapter 4

fMRI Data

In clinical and cognitive neuroscience research it is useful to record and vi-
sualize the neural activity in the human brain. Using different measurement
methods, brain activity patterns can be obtained while the patients are per-
forming specific tasks. In recent studies resting-state activity maps have also
been used [13]. Among the different imaging methods we will in this thesis
only look at fMRI.

Functional Magnetic Resonance Imaging (fMRI) is an indirect measure
of neural activity. The measured quantities are blood-oxygenation-level-
dependent (BOLD) contrast based on the different magnetic properties of
oxygenated and deoxygenated blood. An activation of a neuron population
in the brain causes local oxygination of blood and thereby a measurable
change in magnetic resonance. The recording is repeated over time creating
a time-series of assumed electrical activity in the brain. This time variation
gives rise to the term functional, as a contrast to the snapshot information
given in a single (structural) MR image. A brief introduction to the subject
is given in [26].

The deidentified image data1 used in this thesis is a fMRI dataset from a
resting-state study reported in [21, 32].

4.1 Data Interpretation

Each recorded BOLD time sample is assumed to contain a mixture of signals
from different parts of the brain. The goal of the data interpretation is to
isolate different origins of signals, hence find spatial isolated regions in the

1Courtesy of the ”Cognitive Aging Project / Bergen” (PI: prof. Astri J.Lundervold)

29
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brain associated with different time-courses. These regions accompanied with
their times-courses can again be associated to isolated brain controlled tasks.

The anatomy of the human brain is widely studied. Models for brain
activity can be made and the BOLD signals can be fitted to different models.
This is useful when a particular task-related region is studied. In such studies,
information about the time-course is known as the patient is instructed to do
certain tasks or is inflicted by certain stimuli at given time intervals. When
less is known about the time-courses such a methodology is unsatisfactory.
This is the case in resting-state studies where the patient is instructed to
lie still with closed eyes while scanned [13]. In such settings so called data
driven methods are used. ICA is on of them.

4.2 fMRI Analysis Using ICA

Basically, fMRI allows capturing of a k× l×m 3D-spatial brain activity map
over n time samples resulting in a 4-D array of data. Prior to any analysis,
the 4-D array is reshaped into a large matrix,

X =

 x1

x2
...


where xi ∈ Rk·l·m, i ∈ {1, n}. Hence, in this representation, the spatial data
points are stretched into a single vector for each time sample. This is done
to prepare statistical analysis in the spatial domain. The notation from the
Blind Source Equation (2.1) is still valid yielding:

X = AS. (4.1)

The dataset used in this thesis consists of a 64 × 64 × 25 voxel grid
observed in 256 temporal samplings. The spatial data dimension is thereby
64× 64× 25 = 102400 and the data matrix X has dimensions 256× 102400.

ICA on fMRI data is discussed in [3]. Here, group studies of several
individuals are also introduced. Since the ordering and scaling of the compo-
nents are undefined after ICA it is difficult to compare results from different
analysis processes on different subjects. In [3] this is solved by doing ICA
on the entire group contemporaneously. This is done by including all data
from all the subjects into a large data matrix. Data reduction methods is
required to make the problem practically solvable. Data reduction is paid
further attention to in Section 4.3.
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In general, ICA can be performed in the temporal domain of the fMRI
data, maximizing the temporal independence of the data, or in the spatial
domain, maximizing the spatial independence of the data. In most ICA al-
gorithms computational complexity is strongly dominated by the number of
data observation points and not the number of samplings at each observation
point. The temporal approach to ICA uses each spatial voxel as an observa-
tion (102400 in our case) causing a large number of observations. Therefore
it is common to prefer the spatial approach to ICA on fMRI data where the
number of observations is limited to the number of temporal sampling points
(256 in our case) and thereby more suited for computationally demanding
ICA algorithms.

Notice that for all ICA methods both the sources and the mixing matrix
are obtained. For spatial ICA the columns of the mixing matrix represent
the time-courses of the independent components. However, independence is
achieved in the temporal domain hence the time-courses are not necessary
independent. An illustration of the spatial approach to ICA on fMRI is
shown in Figure 4.1.

4.2.1 Noise

fMRI data have, as all other sampled data, some level of noise. This will
cause problems for data analysis and interpretation. However, ICA may
perform well on some noisy dataset. Thus the performance of ICA in a noisy
environment is dependent of the structure of the noise.

In a general setting it is common to assume that noise is Gaussian and
additive on the observation. This yields the noisy ICA model:

x = As+ n (4.2)

where n is Gaussian noise. Due to the Gaussian properties of the noise,
it will not interfere with the relative nongaussianity measurements in the
ICA algorithms. In other words: The noise will make all components more
Gaussian and thereby flatten the optimization landscape but not move the
minima and maxima. Hence the algorithms obtain the same independent
components but they are as noisy as the observations and the optimization
will be more inaccurate.

From an application point of view, noise in fMRI data can be interpreted
as signal without neural origin. Hence disturbance caused by blood flow
in larger vessels, movement of the brain under scanning etc. is considered
as noise. This kind of noise differs from the Gaussian noise as it will be
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Voxels

ICA

X = A · S

Space

Time
Observed fMRI data Spatial independent sourcesMixing

matrix

Figure 4.1: ICA on fMRI data represented by the Blind Source Equation (4.1).
The matrix X consist of one column for each voxel in the BOLD recording. The
independent sources S and the mixing matrix A can be estimated using ICA. The
columns of the mixing matrix are time-courses for the spatial independent compo-
nents.

included in the ICA model and appear as separate components in processed
data.Thus this kind of noise can manually be removed as a post-processing
routine. Notice that from a mathematical point of view these components
are as real as the components of neural origin. The noise components are of
special interest as they often have other statistical properties than the rest
of the component set.

4.3 Coping with the Data - Preprocessing

We are faced with two problems when doing ICA on fMRI data. First of
all, the data is noisy and even if components can be extracted from a noisy
dataset (as mentioned in the previous section), the result may be hard to
interpret. The second problem is the data size. The large number of sampling
points obtained in a 3D scan of the brain results in high memory usage.
Combined with the complexity of the ICA algorithms the processing time
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for such large datasets will be unsatisfactory.

4.3.1 Time Filtering

A common way to remove noise is by low-pass filtering [2]. This is done
under the assumption that the noise has higher frequency than the signal.
In the case of fMRI studies, this is a plausible assumption in the temporal
domain since the BOLD recordings will have relative low frequency. However
low-pass filtering will smoothen the data and make it more Gaussian. Thus
as a preprocessing to ICA, filtering is not recommendable in the same domain
as nongaussianity is measured.

The data used in this thesis is low-pass filtered in the temporal domain.

4.3.2 Dimensional Reduction

In a 4-D fMRI data set each voxel contains a time course and thereby a
potential component. Only a few of these components are of interest. The
large amount of sources represent a huge practical challenge. It is therefore
common to reduce the number of sources using regular PCA on the original
data. This will result in a lower order data set suited to be analysed by ICA.
A short introduction to data reduction by PCA was given in Section 1.2.

Dimensional reduction is of even greater importance when dealing with
group studies such as in [3] and [32]. The combination of PCA and ICA
will from now on be referred to as PCA-ICA and further discussed in later
chapters.

4.4 Lanczos and Projection Pursuit vs. PCA

reduction

Lanczos method is designed to deal with large systems. The Lanczos-ICA
method described in Section 3.5 can therefore be applied to fMRI-data with a
limited level of preprocessing. Letting the Lanczos routine run for a as many
iterations as the desired number of independent components, the results can
be compared to PCA-ICA. An alternative approach is to use FastICA as a
Projection Pursuit method, and stopping the process after a desired amount
of components are obtained. This will from now on be referred to as PP-ICA.
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4.5 Selecting the Number of Components

Reducing the dimension of the dataset raises an additional question. How
many components should be estimated? This question can be answered both
from a mathematical and a neuroimaging point of view. From a neuroimag-
ing view it turns out that only a handful of components are interesting hence
the number of estimated components should be low. However, it is difficult
to make the ICA algorithm choose the correct components, thus many com-
ponents are often estimated and the selection of components must be done
manually.

From a mathematical point of view the number of components should be
selected in a way including as much information as possible without making
the ICA methods impractical when it comes to computational time. More-
over, practical experiments indicate that over-determined data sets with noise
may cause errors in the analysis. An over-determined data set is obtained
if the real number of sources is less then the number of observations. In
these cases the number of components are normally selected as the assumed
number of original sources. However, in a blind and noisy situation, it may
be difficult to distinguish between noise and sources. A method for auto-
matic selection of data dimension in suggested in [20]. This method refers
to the strategy behind PCA-ICA and takes both second and fourth order
statistical information into account when estimating the number of original
sources. Note that the method only gives a desired number of components,
not the reduced components themselves. When studying a single subject
using GIFT [4] the number of components used is 43. GIFT has a built in
implementation of the method in [20].

Choosing number of components under Lanczos-ICA and PP-ICA in-
volves considerations about the convergence properties of the methods. This
will be discussed in the next chapter.



Chapter 5

Observations and Remarks

In this chapter, we find results after fMRI data analysis. The data used
are from a single subject in the fMRI dataset from Chapter 4. The analysis
is done by the three ICA-methods: PP-ICA, PCA-ICA and Lanczos-ICA
presented and discussed throughout Chapter 3 and 4. The ICA step of the
two first methods is done by FastICA. All algorithms are initialized to find
43 independent components as noted in Chapter 4.3. Information about the
visualization of the obtained components is found in Appendix A.

5.1 General observations

Compared briefly to similar work and other models, the ICA gives reasonable
results for all three methods. They agree on parts of the result. Moreover,
there are some differences and trends among the algorithms and some errors
are expected. These trends are summarized in this section and possible
explanations are given here and later in the chapter.

5.1.1 The PP-ICA algorithm

PP-ICA has a tendency to find temporal small but high intensity regions.
An example is found in Figure 5.7(a). FastICA searches for components
by maximizing kurtosis or kurtosis-based estimators. Thus the result is not
surprising since the observed regions can be considered as spiky regions or
outliers with very high kurtosis values. The result is to some extent also
explained by the concept of over-learning discussed in Section 5.2. Further-
more, the arise of spiky components are not unique for the PP-ICA method
and the other two methods also finds some components with this property.

35
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5.1.2 The PCA-ICA algorithm

Given the mentioned data, PCA-ICA has a tendency to find larger connected
regions and double components. By double components we mean component
containing two ore more unconnected spatial regions of high intensity. An
example is given in Figure 5.7(b). Some of these components might be math-
ematically false. This is discussed further in Section 5.5 about the PCA-ICA
paradox. Signal-to-noise-ratio is high in all obtained components using PCA-
ICA. The outcome of the PCA-ICA analysis is similar to the outcome of a
analysis by GIFT [4]. Such a similarity is expected since algorithms used in
GIFT are the same as used in PCA-ICA in this thesis.

5.1.3 The Lanczos-ICA algorithm

The Lanczos-ICA algorithm (Algorithm 3 in Chapter 3) gives a result with
similarities to both PP-ICA and PCA-ICA. One notable difference is the
duplication of several components. By duplication we mean that two ore
more components have close-to-identical spatial appearance. Hence after
43 iterations, only 10 different components are clearly found. In addition
several more weak components appear. It is not clear whether these weak
components have converged properly. They consist of numerous unconnected
regions and are thereby assumed to be a mix of several components. An
example is given in Figure 5.8(a). The duplication of the components may be
caused by several factors. The most likely explanation is by so-called Ghost
Eigenvalues in the Lanczos eigen-decomposition. This is a result of numerical
errors. The ghost components are further discussed in Section 5.4. An other
plausible explanation of the duplicated eigenvalues is that the dataset has
several components with similar kurtosis values. This is not expected but can
be solved by numerical techniques not discussed here. For further reference;
see [8].

The development at each iteration of the Lanczos-ICA for the fMRI anal-
ysis is displayed in Figure 5.1. The rapid convergence among some of the
components can clearly be spotted. The figure is further discussed in the
next sections.

5.2 Over-learning

If the number of components is large and the number of sampling points is
relatively small, the estimation may suffer from over-learning. The analysis
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Iteration number

Eigenvalue
estimate

Figure 5.1: Eigenvalue estimates (Ritz values) at each iteration of the Lanczos
method. The observations on this plot follows the observations from the visualized
independent BOLD components. Some Ritz values converge fast. These values
correspond to the clear components such as in Figure 5.8(b). Other Ritz values have
convergence difficulties. These values corresponds to the unclear components. The
duplication of components can be recognized as duplication of some fast convergent
Ritz values.

is then heavily dependent of the particular sampled values rather then the
process that generated the data. The concept of over-learning is adapted
from Neural-Networks theory. ICA in i Neural-Network setting is described
in [15], were over-learning is discussed in more detail.

Over-learning may give components with small spiky regions. This is
because the optimization in the ICA-algorithm will not be sufficiently con-
trolled by the data, hence the components can freely be modified to obtain a
maximum. For kurtosis based algorithms a spike gives maximum, and small
high-intensity regions can be expected.

Spatial ICA on fMRI data should apparently not suffer from over-learning
since no more then 256 observations are used and each observation has 102400
spatial samples. (Described in Chapter 4.2). Nevertheless, numerical exper-
iments show that the the risk of over-learning may increase under certain
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Iteration number

Eigenvalue
estimate

(a)

Iteration number

Eigenvalue
estimate

(b)

Figure 5.2: Eigenvalue estimates at each iteration of the Lanczos method. 5.2(a)
shows the full spectrum of Ritz values and 5.2(b) shows the spectrum in the interval
[−2, 4]. The Figure can be compared to Figure 5.1, but in this plot 80 iterations
are done.

conditions [17]. These conditions are: Failure to fulfil the independence cri-
teria, hence a small dependence among the sources, and high amount of
components containing mostly noise. Both these conditions are to some ex-
tent valid for the fMRI data, hence over-learning may be expected. The
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noise condition plays a particular role when the number of observations is
higher then the actual number of sources. In the spatial ICA in this thesis
the number of observations is 256 and the assumed number of sources is 43.

5.3 Component Clustering

An analogy for the over-learning problem can be found in the Lanczos-ICA
procedure. The same conditions that caused a risk for over-learning, depen-
dence and noise, have impact on the Lanczos algorithm. In Section 3.5 we
discussed problems around not fulfilling the eigenvalue criteria. This is typ-
ically a result of not fulfilling the independence criteria. In Figure 5.1 and
Figure 5.2(b) we see a dense cloud of Ritz values in the area close to zero.
These values may correspond to the components containing mostly noise.
We also see that extreme values among the Ritz values converge rapidly.
These values correspond to the spiky components. Figure 5.3 displays the
estimated spectrum with 43 components. According to the convergence the-
ory from Chapter 3.6, the Lanczos-ICA method will be suited to fast find
a smaller number of components with high kurtosis value, but can not be
expected to find components with kurtosis values in the cloud closer to zero.

︸ ︷︷ ︸
Eigenvalue cluster

︷ ︸︸ ︷Outliers

Figure 5.3: Estimated eigenvalue spectrum. The convergence is assumed to be
good for the outlier values while the values in the cluster close to zero is assumed
to have slow convergence.

5.4 Ghost Components

One of the more undesirable properties of the Lanczos method is the effect of
round-off errors. This comes to the surface as false duplication of some eigen-
value estimates. The phenomenon is called Ghost Eigenvalues and is a result
of the tree-term recursion in the orthogonalization part of the algorithm.
Round-off errors in the orthogonalization make the algorithm forget some of
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the early discovered Ritz-values and rediscover them at a later iteration step.
This effect is further described in [25, 29].

The raise of Ghost Components in the Lanczos-ICA routine on fMRI data
may be observed on the convergence plot in Figure 5.2(a). Only strong fast-
converging components are duplicated, hence the ghost components may be
seen as a guarantee that a certain component has converged properly and
represent a genuine result.

5.5 The PCA-ICA Paradox

From a cumulant viewpoint there is an apparent analogy between PCA and
ICA: ICA is the fourth order cumulant generalization of the second order
cumulant factorization in PCA. This close relation is one of the reasons why
PCA is viewed as a good preprocesser for PCA. Hyvärinen gives an example
where over-learning ruins the ICA without a PCA preprocessing step [15].
Nevertheless, we will in this section look at other examples where the PCA
preprocessing stage can be of more harm then use.

5.5.1 Loss of Fourth order Information

As mentioned in Section 4.3, the higher order information exploited in ICA
algorithms introduces large calculations and reduces ICAs ability to operate
on large datasets such as a group fMRI study. It is therefore common to
reduce the data dimension to a lower-dimensional subspace containing the
waste majority of the data variation using PCA. The data reduction is, in
most applications, only based on second order cumulant information. The
fourth order cumulant information considered in ICA is completely ignored.
The result may be that important forth order cumulant properties are lost
in the preprocessing stage.

PCA sorts the data according to standard deviation (variance), while ICA
sorts according to kurtosis. Both methods leave out data corresponding to
the lowest values. Fourth order statistical information can then be lost if
the data is arranged in a different way when sorting according to kurtosis
compared to sorting according to standard deviation. Hence a variable with
low standard deviation, but high kurtosis value is in risk of being left out.
We find this particular property among e.g. t-distributed variables. Looking
to observed samples, this phenomenon is apparent when a close-to-constant
observation has a few outliers. The outliers boost the kurtosis, but not the
standard deviation. In the framework of fMRI images, this may be a small
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temporal, but high intensity component in a image with few other artefacts
and little noise.

5.5.2 1D Example

The most simple example is given by set of close-to-independent sources.
Consider a set of 7 sine wave sources. The separate sources have periods
given by different prime numbers with a small random parameter. A mix of
these sources can be decomposed in a good manner with FastICA.

When only considering the second order cumulant information the data
variation can be described close to perfectly in a reduced 5-dimensional sub-
space. In light of data reduction, it can be tempting to reduce the data
dimension by two, as little information apparently is lost. In Figure 5.4 the
result after both reconstructing the sources with a full and a reduced dataset
is displayed. We also see the dominance of the first 5 eigenvalues of the
second order cumulant, the covariance matrix, which indicates that the 5-
dimensional subspace used in the last ICA calculation represents most of the
data variation. From the figure it is apparent that the dimension reduction
results in a low quality ICA result. The obtained components are still a
mixture of the sources.

Figure 5.4: Original sine wave sources (left) are mixed and reconstructed by Fas-
tICA (centre) and PCA-FastICA (Right). The amount of variance represented by
each of the covariance eigenvalues are displayed in the eigenvalue bar chart.
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5.5.3 2D Example

A 2D example can be generated by making a set of 2D images with a random
sized and placed square or disk. Such a dataset with 12 different sources is
shown in Figure 5.5. When each of the spacial images are assigned to a time-
course sampled with n sampling-points, the data can be mixed, and spatial
ICA can be done based on the n observations of the mixed images. This is
analogous to the spatial ICA done on fMRI data.

Figure 5.5: Sources from synthetic random dataset. Each source image is associ-
ated to a time-course.

This example uses FastICA in order to extract 11 images in two differ-
ent ways. In 5.6(a) the dimension of the data is reduced to 11 by PCA
before FastICA is applied (PCA-ICA). In 5.6(b) FastICA is applied to the
full dataset and stopped after 11 components are obtained (PP-ICA). As
expected, none of the methods can give information of the scaling of the
components. Combined with prior information of the scaling, both methods
give rather good reconstructions of the images up to unit sign. However, this
example also illustrates one major drawback with the PCA-ICA procedure:
As indicated earlier, the preprocessing PCA step disturbs the original ICA
model. This can be observed as one of the originally independent components
are combined to one single. The ringed out component in the bottom line
in Figure 5.6(a) is a false component representing two independent sources
from Figure 5.5. We also observe that both methods experience problems
with spatial overlapping regions as described by Daubechies et.al. in [12].

5.5.4 fMRI Example

The last example is made by using a real fMRI dataset from a single subject.
Figure 5.9 shows an independent component from a PCA-FastICA computa-
tion with a PCA step reducing the data dimension to 43. Figure 5.10(a) and
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(a) PCA-FastICA (b) Projection-Pursuit-FastICA

Figure 5.6: Dimension reduction with PCA prior to FastICA (a) can cause false
components (ringed out). Projection Pursuit approach to same problem never in-
troduce false components (b)

.

5.10(b) shows two components from a Projection Pursuit FastICA (PP-ICA)
computation over the entire dataset. The component in Figure 5.9 can be
expressed as a linear combination of the to components in Figure 5.10(a) and
5.10(b). Since the data is from a real dataset, we do not know the original
sources. A comparison to the example above with synthetic data will indicate
that the PCA-ICA result in Figure 5.9 is a false double component.
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5.6 Components

Visualization of some of the obtained components follows...
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(a) Component extracted using PP-ICA

(b) Component extracted using PCA-ICA

Figure 5.7: Example of component extracted with PP-ICA (a) and PCA-ICA (b).
The PP-ICA component has low temporal extent and high value. The PCA-ICA
component consists of different temporal connected regions.
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(a)

(b)

Figure 5.8: Two example components extract with Lanczos-ICA. Component (a)
has not converged while (b) has converged and appear as well spatially isolated.



5.6 Components 47

Figure 5.9: Double component extracted by PCA-ICA. This component should be
compared to the components in Figure 5.10(a) and Figure 5.10(b).
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(a)

(b)

Figure 5.10: PP-ICA components. These components will together form the com-
ponent in Figure 5.9. Hence PP-ICA may express a single component obtained
with PCA-ICA as two independent components.
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(a)

(b)

Figure 5.11: For comparison; visualization of a time sample before analysis (a)
and a component from a pure PCA decomposition (b).
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Chapter 6

Conclusions and Further Work

The PCA-ICA method described in the previous chapters is the most com-
mon method for ICA analysis of fMRI data. We argue in this thesis that the
PCA-ICA method may cause misleading results in some cases. The method
is compared to a Projection Pursuit ICA method based on existing theory
from FastICA and to a new Lanczos based ICA method.

The use of PCA as a prepossessing step for FastICA and other ICA-
algorithms has been widely studied. Hyvärinen et al. [15] show examples
where over-learning makes the ICA models unsuccessful without a PCA pre-
processing stage. Nadal et al. [24] investigate from a general view if data
may be lost under the PCA-process and concludes that in most applications
PCA-ICA will perform well. However, both Hyvärinen and Nadal point out
that information may be lost in the PCA step. This loss of information may
cause false components and is confirmed in this thesis by several examples.
We have argued that components with small standard deviation but high kur-
tosis value are running a particular risk of being left out. Hence PCA-ICA
must be used with care and alternative methods dealing with large datasets
are needed.

Based on the observations in Chapter 5 and the related theory, we can
not advocate Lanczos-ICA as a full-worthy alternative to the commonly used
PCA-ICA in fMRI analysis. The results in this thesis are based on a single
subject in a resting state study. Further studies using more subjects and
different datasets may verify the quality of the Lanczos-ICA method.

We have also seen that the eigenvalue spectre of the fourth cumulant
tensor yield an undesirable convergence for some of the components. The
spectre is by definition unknown prior to the analysis due to the assumed
blind source separation model where no information about the sources is

51
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given. However, with better knowledge to the spectrum, convergence proper-
ties can be changed by different pre-conditioners. This is a separate research
field within numerical linear algebra where a range of pre-conditioners are
known. In practice pre-conditioners can be recognized as e.g. low-pass or
high-pass filters. The attempt to make ICA a semi-blind method by intro-
ducing prior knowledge is not new. It is also discussed in the framework of
the PCA-ICA model [3]. On the other hand, too much guidance by prior
information remove us from the advantages of a blind model, namely that
we may encounter unexpected but interesting results. By fitting the data to
a model constructed only to give certain output, we may only confirm results
we already have some knowledge about.

Furthermore, the Lanczos-ICA method is opening several new possibili-
ties by giving the fMRI analysis a different mathematical perspective. Using
more advanced mathematical theory within linear algebra and eigenvalue ex-
traction, the next generation Lanczos-ICA methods may offer an interesting
alternative to PCA-ICA. There has been done work in this direction by e.g.
Lim and Morton [23]. They introduce a more general solution strategy to the
blind source problem with no assumption on independence called Principal
Cumulant Component Analysis (PCCA). Both the PCCA method and the
method and examples given in this thesis point out promising alternative
views on the solution of the blind source problem in fMRI analysis.



Appendix A

Visualization Methods

Visualization of 3D brain data is not trivial. Effective visualization tools
are implemented in commonly used toolboxes such as GIFT [4] and FSL
[27, 31]. An example of a fMRI component visualization in GIFT is given in
Figure A.1.

In general, visualizations of fMRI components are done by thresholding
the spatial signal data and superimposing it to a structural map. In this
way the components are possible to localize spatially in the brain. The
thresholding is often done manually as different components have different
signal to noise ratio. It is also common to show the time-course of the
component. The time-course will simplify the identification of the different
spacial components.

For the purpose of this thesis, a simple fMRI visualization method for
Matlab1 is developed. All 3D volumes in this thesis are represented as a
mosaic of 2D slices using this method. An examle of a slice obtained from a
volume is shown in Figure A.3. In each slice, fMRI data are superimposed
on a structural image from the same scan. Since the fMRI and the structural
data are from the same subject, no registration is done other then a interpola-
tion of the fMRI data to fit the smaller voxel size of the structural data. The
interpolation is cubic and makes the final image appear smoother. No time-
course is displayed as the neurobiological identification of the components is
outside the scope of this thesis. An example of a visualized component is
given in Figure A.2. This component can be compared to the one in Fig-
ure A.1. Notice that in Figure A.2 the head is oriented with nose downwards
and with the lower slice in the upper left corner.

1The MathWorks, Matlab R©, http://www.mathworks.com/products/matlab/
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Figure A.1: Example component decomposed and displayed with GIFT [4].

Figure A.2: Example component decomposed with Lanczos-ICA and displayed with
the standard method for this thesis.
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Figure A.3: Slice obtained from a 3D volume of structural data. All 3D volumes
in this theis are displayed as sets of slices.
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Appendix B

Properties of the Cumulant
Operator F

B.1 Simplification of Cumulant Operator

A simplification of the cumulant operator (3.1) from Chapter 3 is given be-
low. The simplification is valid for the normalized variable z ∈ Rn with
σzi

= 1 ∀ i

Fij(Y, z) =
∑
kl

yklcum(zi, zj, zk, zl)

=
∑
kl

ykl

(
E{zizjzkzl} − E{zizj}E{zkzl} − E{zizk}E{zjzl} − E{zizl}E{zjzk}

)
=

∑
kl

yklE{zizjzkzl} −
∑
kl

yklE{zizj}E{zkzl}

−
∑
kl

yklE{zizk}E{zjzl} −
∑
kl

yklE{zizl}E{zjzk}

We further use the normality of z giving E{zzT} = I =⇒ E{zizj} = δij;

Fij(Y, z) =
∑
kl

yklE{zizjzkzl} −
∑
kl

yklδijδkl −
∑
kl

yklδikδjl −
∑
kl

yklδilδjk

= E{(
∑
kl

zkyklzl)zizj} − yi,j − yi,j − δij
∑
kl

yklδkl

= E{(zTY z)zizj} − 2yi,j − δijtrace(Y ).

Hence the operator on full form is given by:

57



58 Properties of the Cumulant Operator F

F (Y, z) = E{(zTY z)zzT} − 2Y − trace(Y )I.

B.2 Rank-one Eigenmatrix

The rank-one matrices wm · wT
m is assumed to be eigenmatrices for the cu-

mulant operator F in Expression (3.1) when wm is a column in the whitened
mixing matrix (2.2). A proof is given in [15] and outlined here. Recall that
the whitened ICA model is given by z = W T s =⇒ zi = wT

i s.

Fij(wm · wT
m, z) =

∑
kl

wmkwmlcum(zi, zj, zk, zl)

=
∑
kl

wmkwmlcum(
∑

q

wqisq,
∑
q′

wq′jsq′ ,
∑

r

wrksr,
∑
r′

wr′lsr′)

=
∑

klqq′rr′

wmkwmlwqiwq′jwrkwr′lcum(sq, sq′ , sr, sr′)

We also recall that the forth order cumulant is diagonal for independent data,
giving cum(sq, sq′ , sr, sr′) 6= 0 for q = q′ = r = r′. And cum(a, a, a, a) =
kurtosis(a). Hence several summation indices cancel:

Fij(wm · wT
m, z) =

∑
klq

wmkwmlwqiwqjwqkwqlcum(sq, sq, sq, sq)

=
∑
klq

wmkwmlwqiwqjwqkwqlkurtosis(sq)

The vectors wi are orthogonal leading to
∑
n

wmnwqn = δmq which will simplify

the summation even more:

Fij(wm · wT
m, z) =

∑
q

δmqδmqwqiwqjkurtosis(sq)

= wmiwmjkurtosis(sq).

Which gives the matrix expression

F (wm · wT
m, z) = kurtosis(s)wm · wT

m,

proving the eigenmatrix property, but also pointing out the relation between
the eigenvalues and the kurtosis values of the sources.



Bibliography

[1] A. J. Bell and T. J. Sejnowski. An information-maximization ap-
proach to blind separation and blind deconvolution. Neural computation,
7(6):1129–1159, 1995.

[2] D. R. Brillinger. Time Series Data Analysis and Theory. International
Series in Decision Processes. Holt, Rinehart and Wilston, 1975.

[3] V. D. Calhoun and T. Adali. Unmixing fmri with independent compo-
nent analysis. Engineering in Medicine and Biology Magazine, IEEE,
25(2):79–90, March-April 2006.

[4] V. D. Calhoun et al. Group ICA of fMRI toolbox (GIFT). Online at
http://icatb. sourceforge. net, 2004.

[5] J. F. Cardoso. Eigen-structure of the fourth-order cumulant tensor with
application to the blind source separation problem. In Acoustics, Speech,
and Signal Processing, 1990. ICASSP-90., 1990 International Confer-
ence on, pages 2655–2658 vol.5, Apr 1990.

[6] J. F. Cardoso. Infomax and maximum likelihood for blind source sepa-
ration. IEEE Signal processing letters, 4(4):112–114, 1997.

[7] J. F. Cardoso and P. Comon. Independent component analysis, a sur-
vey of some algebraic methods. In IEEE International Symposium on
Circuits and Systems. IEEE, 1996.

[8] J .F. Cardoso and A. Souloumiac. Blind beamforming for non Gaussian
signals. IEE proceedings-f, 1993.

[9] J. F. Cardoso and A. Souloumiac. Jacobi angles for simultaneous diag-
onalization. SIAM J. Mat. Anal. Appl., 17(1):161–164, January 1996.

[10] C. Chen, W. Hardle, and A. Unwin. Handbook of data visualization.
Springer Verlag, 2008.

59



60 BIBLIOGRAPHY

[11] W. Cheney. Analysis for Applied Mathematics. Springer, 2001.

[12] I. Daubechies, E. Roussos, S. Takerkart, M. Benharrosh, C. Golden,
K. D’Ardenne, W. Richter, J. D. Cohen, and J. Haxby. Independent
component analysis for brain fMRI does not select for independence.
Proceedings of the National Academy of Sciences, 106(26):10415–10422,
2009.

[13] M. E. Fox, M. D.and Raichle. Spontaneous fluctuations in brain activity
observed with functional magnetic resonance imaging. Nat Rev Neurosci,
8(9):700–711, Sep 2007.

[14] G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins
Univ Pr, 1996.

[15] A. Hyvärinen, J. Karhunen, and E. Oja. Independent Component Anal-
ysis. Wiley, 2001.

[16] A. Hyvärinen and E. Oja. A fast fixed-point algorithm for independent
component analysis. Neural computation, 9(7):1483–1492, 1997.

[17] A. Hyvärinen, J. Sarela, and R. Vigário. Spikes and bumps: Artefacts
generated by independent component analysis with insufficient sample
size. In First International Workshop on Independent Component Anal-
ysis and Signal Separation, 1999.

[18] C. Lanczos. An iteration method for the solution of the eigenvalue
problem of linear differential and integral operators. J. Res. Nat. Bur.
Standards, 45(4):255–282, 1950.

[19] David C. Lay. Linear algebra and it’s applications. Pearson/Addison-
Wesley, Boston, MA, USA, third edition, 2006.

[20] Y. O. Li, T. Adali, and V. D. Calhoun. Sample dependence correction for
order selection in fMRI analysis. In 3rd IEEE International Symposium
on Biomedical Imaging: Nano to Macro, 2006, pages 1072–1075, 2006.

[21] A. Lundervold. On consciousness, resting state fmri, and neurodynam-
ics. Nonlinear Biomedical Physics, 2010. 4(Suppl 1):S9.

[22] D. J. C. MacKay. Maximum likelihood and covariant algorithms for inde-
pendent component analysis. In Available electronically at http://www.
inference. phy. cam. ac. uk/mackay/abstracts/ica. html. Citeseer, 1996.



BIBLIOGRAPHY 61

[23] J. Morton and L.-H. Lim. Principal cumulant component analysis,.
Technical report, Stanford University, 2009.

[24] J. P. Nadal, E. Korutcheva, and F. Aires. Blind source separation in the
presence of weak sources. Neural Networks, 13(6):589–596, 2000.

[25] B. N. Parlett and J. K. Reid. Tracking the progress of the Lanczos
algorithm for large symmetric eigenproblems. IMA Journal of Numerical
Analysis, 1(2):135, 1981.

[26] J. J. Pekar. A brief introduction to functional MRI. IEEE engineer-
ing in medicine and biology magazine: the quarterly magazine of the
Engineering in Medicine & Biology Society, 25(2):24, 2006.

[27] S. M. Smith, M. Jenkinson, M. W. Woolrich, C. F. Beckmann, T. E. J.
Behrens, H. Johansen-Berg, P. R. Bannister, M. De Luca, I. Drobnjak,
D. E. Flitney, et al. Advances in functional and structural MR image
analysis and implementation as FSL. Neuroimage, 23:S208–S219, 2004.

[28] J. V. Stone. Independent component analysis: an introduction. Trends
in Cognitive Sciences, 6(2):59–64, 2002.

[29] L. N. Trefethen and D. Bau. Numerical linear algebra. Society for
Industrial Mathematics, 1997.

[30] R. E. Walpole, R. H. Myers, S. L. Myres, and K. Ye. Probability &
Statistics for Engeneers & Scientists. Prentice Hall, seventh edition,
2002.

[31] M. W. Woolrich, S. Jbabdi, B. Patenaude, M. Chappell, S. Makni,
T. Behrens, C. Beckmann, M. Jenkinson, and S. M. Smith. Bayesian
analysis of neuroimaging data in FSL. Neuroimage, 45(1):S173–S186,
2009.

[32] M. Ystad, T. Eichele, A. J. Lundervold, and A. Lundervold. Subcortical
functional connectivity and verbal episodic memory in healthy elderly -
a resting state fmri study. NeuroImage, In Press:–, 2010.


