Caesium-137 in sediments from two Norwegian fjords

Including dating sediment cores

by

Ingrid Sværen

Master of Science Thesis in Environmental Chemistry

Department of Chemistry

University of Bergen

Norway

May, 2010

Caesium-137 in sediments from two Norwegian fjords

Including dating sediment cores

-

by

Ingrid Sværen

Preface

This master thesis has been conducted on part-time, besides my usual work at the Institute of Marine Research in the period August 2007 to May 2010. A master degree which for me has become increasingly interesting as the work has progressed.

Great thanks to my advisor at Institute of Chemistry at the University of Bergen, Professor Leif Sæthre and my other advisors at the Norwegian Radiation Protection Authority (NRPA), Dr. Torbjørn Gäfvert and Professor Elis Holm. I am sincerely grateful for their help in initiating this work, and for helping me throughout the work.

The analysis is conducted at the Chemistry Laboratory of the Institute of Marine Research, which also is my usual place of work. I want to thank my colleagues here and particularly Dr. Hilde Elise Heldal for invaluable help and thorough feedback in the writing process. Further, the director of IMR, Tore Nepstad is thanked for allowing me to make this master in connection to my regular work at the IMR Chemistry Laboratory, and for allowing me to use the laboratory facilities for my measurements.

I further want to acknowledge my colleagues at the IMR: Toril Standal, Jane Strømstad Møgster and Linda Fonnes Lunde for having collected the samples and Kjell Bakkeplass for making the maps. I want to thank Dr. Per Roos at the DTU, Denmark for the Pu-analysis.

I have tried my best when completing this thesis in English, and I am in great debt to Egil for his help with this difficult and strange language!

A particular thanks also to my family and friends who all have enthusiastically supported a grown-up student.

My greatest thanks goes to those who are the rock of my life; my children and my husband Egil, which throughout this work has given me advice, comments and support; I could not have done this without you!

Bergen 30.mai 2010 Ingrid Sværen

Contents

	List of a	abbreviations	9
Sur	nmary		11
1.	Introdu	ction	13
	11	Radioactivity	13
	111	Caesium-137	13
	1.1.1	Sources	13
	1112	Source identification	17
	1.1.5	Norwegian Marine areas	18
	1.2	The Sognefiord	19 19
	1.2.1	The Lakseford	19
	1.2.2	Caesium-137 in Norwegian Marine areas	20
	131	Monitoring marine radioactivity	20
	132	Riota	20
	133	Water	
	13.5	Sediments	
	1.3.4	Cs_137 in Norwegian fiords	
	1.5.5	Cs 137 dynamics	25 26
	1.4	Co-157 dynamics	
	1.5	Lead 210 dating	
	1.5.1	Cs 137 dating	20
	1.5.2	Cs-157 datiling	20 20
	1.0	Dackground for this study	
2	1./	Objective	
2.	Materia	al and Methods	
	2.1	Sample description	31
	2.2	Sample collection	33
	2.3	Sample preparation	35
	2.4	Instrument and facilities	36
	2.5	Particle size analysis	37
	2.6	Pu-analysis	37
	2.7	Measurements	37
	2.7.1	Gamma spectroscopy	37
	2.7.2	Measuring Cs-137	38
	2.7.3	Quality assurance in Cs-137 measurements	45
	2.7.4	Pb-210 and Ra-226	45
	2.7.5	Measuring Pb-210	48
	2.7.6	Measuring Ra-226	51
	2.7.7	Quality assurance in Pb-210 and Ra-226 measurements	53
	2.8	Dating	53
3.	Results	-	56
	3.1	Particle analysis	56
	3.2	Results on Pu-analysis	
	33	Cs-137 results	57
	34	Ph-210 and Ra-226 content	61
	3 5	Dating	64
4	Discuss	sion	
••			
	4.1	Evaluating the define	09 • ד
	4.Z	Evaluating the dating	
	4.3		

	4.3.1	Cs-137 activity concentrations in surface sediment	73
	4.3.2	Cs-137 activity concentrations as function of age	75
	4.3.3	Cs-137 activity concentrations in relations to sources	77
	4.4	Particle size distribution	82
	4.5	238 Pu/239+ 240 Pu ratio	82
	4.6	Conclusion	82
5.	Reference	ces	84

Appendix I	
Appendix II	
Appendix III	
Appendix IV	
Appendix V	
Appendix VI	

List of abbreviations

Bi	Bismuth		
Bq	Becquerel		
Ch	Channel		
CIC	Constant initial concentration		
Cps	Counts per. Second		
CRS	Constant rate of supply		
Cs	Caesium		
d.w.	Dry weight		
HPGe	High purity germanium		
IAEA	International Atomic Energy Agency		
IMR	Institute of Marine Research		
KF	Correction factor		
LORAKON	Lokal radioaktivitets kontroll		
NKS	the Nordic Committee for Nuclear Safety Research		
NPL	National Physical Laboratory		
NRPA	Norwegian Radiation Protection Authority		
Pb	Lead		
PBq	Peta Becquerel $10 \cdot 10^{15}$ Bq		
Pu	Plutonium		
R/V	Research vessel		
Ra	Radium		
RAME	<u>Ra</u> dioactivity in the <u>Marine Environment</u>		
Rn	Radon		
Roi	<u>Region of interest</u>		
T _{1/2}	Half life		
TBq	Tera Becquerel; $10 \cdot 10^{12}$ Bq		
w.w.	Wet weight		

Summary

The fission product Cs-137 is present in all parts of the Norwegian environment, brought here atmospherically or by ocean currents. The most important sources are fallout from atmospheric nuclear weapons tests, discharges from nuclear fuel repossessing plants and fallout from the Chernobyl accident which have caused the presence of this radionuclide in the marine environment. The environmental presence of this radionuclide is thoroughly monitored, and the content in the Norwegian marine environment is relatively low. Earlier investigations have, however, shown elevated contents of Cs-137 in surface sediments from a few Norwegian fjords compared to the content in surface sediments from open marine areas. The fjords with elevated contents of Cs-137 are all connected to land areas which received relatively high amounts of fallout from the Chernobyl accident in 1986.

In this work the Cs-137 activity concentrations in 14 sediment cores from the outlet and the head of the Laksefjord and the Sognefjord, have been investigated. Using the lead-210 dating method with correction of supported lead-210, each one-centimeter-layer in 11 of the cores has been dated.

The Cs-137 activity concentrations in the upper sediment-layer from all 14 cores show Cs-137 content of three different levels. In the outlet of the Sognefjord the Cs-137 level (approximately 33 Bq/kg (d.w.)) is about 6 times above the level (approximately 5.8 Bq/kg (d.w.)) in the Laksefjord. In the head of the Sognefjord the Cs-137 level (approximately 293 Bq/kg (d.w.)) is about 10 times above the level in the outlet of the Sognefjord. In all cores analyzed, the Cs-137 activity concentrations in the upper layers are highest. This indicates a continuous supply of Cs-137 in the ocean currents or of Cs-137 in run-off from land. There are no specific signals in the dated sediment layers indicating which of the main sources is the dominating. It is likely to believe that the Sognefjord which is much deeper than the areas outside the fjord can accumulate Cs-137 from ocean currents and run-off.

Chernobyl fallout on the land area surrounding the head of the Sognefjord is most likely the source to the elevated contents of Cs-137 there. The Cs-137 can be focused in the head of fjords due to the ratio between the drain-off area and the area receiving the drain-off. There are also elevated contents of Cs-137 in some other Norwegian fjords. These fjords are also located in areas which received a large amount of Chernobyl fallout. Fjords located in areas

which received a relatively moderate amount of Chernobyl fallout does not show these elevated levels.

1. Introduction

1.1 Radioactivity

Natural occurring and anthropogenic radionuclides exists everywhere both in the terrestrial and in the marine environment. Ionizing radiation from radionuclides can be harmful to humans and environment, and the risk is well documented. To better protect both people and the surrounding environment from harmful effects of radiation, it is important to understand the long-time behavior of radionuclides in nature.

Measurement of anthropogenic radionuclides in marine sediments can provide good estimates of past and present radioactive contamination. The inventory of a certain radionuclide, time and source of deposition can also be determined.

1.1.1 Caesium-137

Caesium (Cs) is an alkali metal with atomic number 55. Caesium has physical and chemical properties similar to those of rubidium and potassium. Caesium-137 (Cs-137) is a radionuclide formed mainly as a fission product by nuclear fission. Cs-137 arises from a number of decays after fission: Tellur-137 (3.5 seconds) \rightarrow Iod-137 (24.2 seconds) \rightarrow Xenon-137 (3.83 minutes) \rightarrow Cs-137 (30.17 years) \rightarrow Barium-137m (2.55 minutes) \rightarrow stable Barium-137; half life in brackets (Aarkrog, 1994).

Cs-137 did not exist prior to discovery of nuclear fission. But after more than 60 years with nuclear weapons and nuclear industry this nuclide is present almost everywhere on earth, both in marine and terrestrial areas.

Cs-137 has often been chosen as the most significant representative of anthropogenic radionuclides found in the marine environment. It is the most abundant anthropogenic radionuclide, and it is the largest contributor to dose among the anthropogenic radionuclides (Povinec, 2003). The radionuclide can be measured by gamma spectroscopy (Chapter 2.7.1), and there exists several investigations on this radionuclide in Norwegian marine and terrestrial ecosystems.

1.1.2 Sources

There are several important sources to the Cs-137 in the Norwegian environment. The domestic source of Cs-137 is limited; most of the nuclide is transported to Norwegian areas

atmospherically or by ocean currents. The most important sources are atmospheric atomic bomb tests conducted mainly in the 1950s and 1960s, i.e. as global fallout, discharges to the marine environment from the repossessing plants at Sellafield and La Hague and fallout from the Chernobyl accident (Povinec, 2003). Table 1.1 shows the amounts of Cs-137 released from the most important sources to Northern European Seas in the period 1952-1998 (Povinec, 2003).

Source	Cs-137 (TBq)
Global fallout	12 000
Sellafield	41 000
La Hague	1 000
Chernobyl accident	6 000

Table 1.1: Sources of Cs-137 in Northern European Seas (1952-1998), based on IAEA (2001).

The Chernobyl accident in 1986 caused large amounts of radioactive fallout throughout Europe; with Norway as one of the most affected countries outside the former USSR. Altogether the accident released several different radionuclides. However, due to the long half life of Cs-137, this is now the main contributor to radioactive contamination of the Norwegian land area (NRPA, 2009a). Run-off from land affected by the Chernobyl accident acts as a secondary domestic source.

Totally, it is estimated that about 85 PBq of Cs-137 was released (UNSCEAR, 2000). Figure 1.1 shows the distribution of Chernobyl fallout onto Norway (NRPA 2009b). Shortly after the fallout, measurements showed very high levels of radioactive fallout cesium in reindeer (150 000Bq/kg), sheep (40 000 Bq/kg,), mushroom (typically 45 000Bq/kg, but levels as high as 1-2 millions Bq/kg was registered) and fresh water fish (30 000 Bq/kg), (Thørring, 2006a); all numbers are activity related to wet weight. Norwegian authorities have established a limit for maximum content of Cs-137 in most foods at 600 Bq/kg (NRPA, 2009c).

Figure 1.1: Cs-137 fallout after the Chernobyl accident in 1986 (NRPA, 2009b).

The Chernobyl accident did also contaminate the Baltic. This was the most affected marine area, totally receiving about 5 PBq of Cs-137 (Evans, 1991). Due to its narrow and shallow entrance; the long exchange time of water; the mean residence time is 25-35 years (Matthäus and Schinke, 1999); the concentration of Cs-137 decreases very slowly in the Baltic. Outflow of contaminated waters from the Baltic, entering the Norwegian Coastal Current, is today one of the most important source to Cs-137 along the entire Norwegian coast (Thørring et.al., 2006b). The outflow from the Baltic to the North Sea was in 2000 approximately 40 TBq/year (Dahlgaard, 2002); reduced to approximately 30 TBq/year in 2006 (Thørring, 2006b); in this work named Chernobyl Baltic.

Earlier deposition of radioactive global fallout from the nuclear weapons test in the 1950s and 1960s onto Norway was also considerable. Globally this is the greatest source to radioactive

pollution of the environment (NRPA, 2009d). The majority of the total atmospheric releases occurred in the two periods 1952-1958 and 1961 -1962 (UNSCEAR, 1993), separated by a test ban treaty in 1959-1960. In 1963, Great Britain, USA and the USSR signed a treaty banning all atmospheric tests, which resulted in a large decrease in the total global fallout (NRPA, 2009d). Calculations show that the total fallout of Cs-137 in Norway from the tests varied between approx. 2 kBq/m² and approx. 14 kBq/m² (NRPA, 2009d). Radioactive materials from these tests were transported over large areas in the atmosphere, and the fallout occurred mainly at rainfall; i.e. strongly correlated with rainfall. This caused larger deposition in areas with strong and frequent precipitation. Wet areas along the Norwegian coast were most affected. Figure 1.2 shows annual precipitation in Norway varying from 280 to 4200 mm year⁻¹ (Bergan, 2002).

Figure 1.2: Precipitation map of Norway (Bergan, 2002).

As seen in table 1.1, controlled liquid discharges from the European nuclear fuel reprocessing plant at Sellafield (UK) is the most important source to radioactivity to Northern European Seas from 1952 to 1998. The discharges of most radionuclides from Sellafield peaked in the mid- to late-seventies. Due to significantly decreasing discharges after 1978, the concentrations of Cs-137 have declined considerably and at present they are only slightly

above the global fallout in North Atlantic surface waters. Remobilization of Cs-137 from the highly contaminated Irish Sea sediment is now a dominant source of water contamination to the North Sea (Povinec, 2003). In Cook et. al. (1997) it is calculated an annual loss of 86 TBq in solution from the North-east Irish Sea. Figure 1.3 indicates how the Chernobyl fallout and Sellafield discharge have dominated the level of Cs-137 in surface water in North European water in one decade each (Povinec, 2003).

Figure 1.3: Cs-137 in surface waters (1976–1980) a). Cs-137 in surface waters (1981–1985) b). Cs-137 in surface waters (1986–1990) c). Cs-137 in surface waters (1991–1995) d) (Povinec, 2003)

1.1.3 Source identification

The fallout or discharge from each source has a unique composition and development in time. For most sources this information is available. It is thus possible to identify the source to a radioactive contamination in a location, based on measurements of more than one nuclide, do decay corrections and calculate the ratio between them. This can be exemplified with the ratio between fresh caesium-134 and Cs-137 from the Chernobyl accident which was 0.59 +/-0.06 (Smith and Beresford, 2005). If measured cesium-contents deviate from this, it would be an indication of one or more additional sources. The ratio between different plutonium-isotopes (²³⁸Pu/^{239, 240}Pu) in a sample can also indicate the source to the radioactive contamination in the sample (Varga, 2007). From weapons test fallout the ²³⁸Pu/^{239, 240}Pu ratio

was 0.033. From Chernobyl the 238 Pu/ ${}^{239, 240}$ Pu ratio was 0.49. Liquid discharges from Sellafield have 238 Pu/ ${}^{239, 240}$ Pu ratio 0.2-0.3 (Becks, 2000).

Sources can also be identified by comparing activity concentration profiles for a specific radionuclide, in dated sediment cores, with age at which the radionuclide was released. A peak in a certain time period indicates the time it was deposited and can thus lead to identification of the actual source.

1.2 Norwegian Marine areas

Norway has a very long coastline and is surrounded by Kattegat, Skagerrak, the North Sea, the Norwegian Sea and the Barents Sea. The prevailing ocean current pattern along the Norwegian coast is from south to north. Atlantic water entering the North Sea in the north and an anti clock wise circulation in the North Sea is reaching the outlet from Baltic and continues in the Norwegian coastal current heading north, as shown in Figure 1.4 and Figure 1.5. The Norwegian coastal current are transporting water with its content from the North Sea and up along the coast of Norway.

Figure 1.4: The North Sea: inflow, outflow, circulation and depth (Gjøsæter, et. al., 2008).

Figure 1.5: The Norwegian coastal current. Red arrows indicate Atlantic water; green arrows indicate the Norwegian Coastal Current (Dahl et. al., 2007).

Norwegian fjords are all influenced by the Norwegian coastal current (Figure 1.5) and are all different with respect to length and depth. The presence of a sill or not and sill dept is important for water exchange rate in the fjords. Other factors influencing the water circulation in a fjord and the water content are the amount of river run-off, the drain-off areas and the run-off nature.

1.2.1 The Sognefjord

The Sognefjord is the longest and deepest fjord in Norway, located on the west coast. The distance from the sill at the coast to its head in Skjolden is about 178 km. The width is 5 km in the outer part and about 2 km in the Lusterfjord. The fjord has several side arms which are relatively shallow compared to the main fjord. The sill dept is about 165 m. The dept is increasing from the sill to the east with the greatest dept, 1304 m between Ikjefjord and Kyrkjebø. From this point the dept decreases towards the east. The fjord is U-shaped with almost flat bottom and steep slopes on the sides. The bottom is covered with sediments, mainly clay transported to the fjord by the rivers. The area of the fjord is 950 km². The volume is about 525 km³. Several rivers enter the fjord typically at the head of its arms. The rivers entering the fjord originate from different catchment areas.

Fjord oceanography shows that in the upper 165 m there is free water exchange between the fjord and the coastal water. The basin water is found below the silldept and is the most heavy water in the fjord. In order for this water to be replaced, water with greater density must cross the sill. The brackish water layer (surface) has low salinity, but is dependent of the season. Below the brackish water the salinity is above 32.5 ‰, in the basin water below the sill the salinity is even higher (Svendsen, 2006). In the Sognefjord replacement of the basin water occurs as seldom as every 8th year (Hermansen, 1974). Water mass exchange only occurs at the mouth of the fjord, and the sources of fresh water are rivers at the head of the fjord or head of the side arms.

1.2.2 The Laksefjord

The Laksefjord is a fjord in northern Norway in Finnmark County. The length is slightly over 70 km and is in north south direction. There is no sill in the fjord and deepest point; 327 m is in the outlet. Several rivers enter the fjord in the head and along the sides.

In the Laksefjord there is a rapid exchange of water masses between the coastal currents and even the innermost fjords as well as the comparatively small discharge of freshwater from the rivers. The Laksefjord is to a certain degree part of the Norwegian Coastal Current (Wassmann et.al., 1999).

1.3 Caesium-137 in Norwegian Marine areas

1.3.1 Monitoring marine radioactivity

Radioactivity in Norwegian marine areas, both in coastal areas and in the open sea, is monitored by Institute of Marine Research (IMR) and in the national Radioactivity in the Marine Environment (RAME) Programme funded by the Ministry of the Environment and coordinated by the NRPA. The RAME Programme coordinates sampling and measurements of several radioactive nuclides in sediments, biota and seawater from the Barents Sea, the Norwegian Sea, the North Sea, the Skagerrak, the Kattegat and Norwegian fjords. Cs-137 is one of the radionuclides monitored. The monitoring results from the RAME Programme are presented in annual reports.

1.3.2 Biota

Figure 1.6 shows activity concentrations of Cs-137 in cod from different European areas in 2003. The activity concentration ranges from 0.2 Bq/kg (w.w.) to 8.6 Bq/kg (w.w.) (Baltic) (NRPA, 2005). The content of Cs-137 in biota is dependent of salinity in the surrounding seawater (Andersson and Meili, 1994). Biota from Norwegian fjords has also been analyzed on Cs-137 content in the RAME Programme. The content of Cs-137 is generally very low (< 10 Bq/kg w.w.).

Figure 1.6: Activity concentrations of Cs-137 in cod, 2003. (NRPA, 2009e)

1.3.3 Water

Activity concentrations of Cs-137 in surface seawater samples collected from the Kattegat, the North Sea, the Norwegian Sea and the Barents Sea in 2006 were between 46.8 Bq/m³ (Kattegat) and 0.6 Bq/m³ (Norwegian Sea) (NRPA, 2008). In Figure 1.7 are shown preliminary results on Cs-137 in surface seawater in Norwegian marine areas in 2008, as analyzed by IMR. The Cs-137 activity concentrations in surface seawater are decreasing when following the ocean current along the Norwegian coast; Figure 1.4 and Figure 1.5.

Figure 1.7: Activity concentrations of Cs-137 in surface water from 2008 (Preliminary results).

1.3.4 Sediments

Activity concentrations of Cs-137 in surface sediments samples collected from the North Sea, the Norwegian Sea and the Barents Sea in 2005 and 2006 were between < 0.9 Bq/kg (d.w.) (Norwegian Sea 2006) and 24.9 Bq/kg (d.w.) (Norwegian Sea 2006) (NRPA, 2007) (NRPA, 2008). Cs-137 in samples of surface sediments from 2008 in the RAME Programme analyzed at the IMR; are presented in Figure 1.8. Surface sediment samples from 2008 indicate a tendency of higher Cs-137 activity concentrations inside the fjords than outside.

Figure 1.8: Activity concentrations of Cs-137 in surface sediments from 2008 (preliminary results).

There are two marine areas in Western Europe which are exceptional with respect to Cs-137 content in surface sediments. These are the Irish Sea and the Baltic. The content of Cs-137 in surface sediments from those areas varies.

The activity concentrations of Cs-137 in Irish Sea surface waters in 2001 is shown in Figure 1.9.The content is decreasing from 100 Bq/m³ near the Sellafield plant to 10 Bq/m³ further away (Department of Food and Rural Affairs, 2003). The activity concentrations of Cs-137 in sediments from the years 1982 and 1999 from the vicinity of Sellafield have a maximum content of 7875 Bq/kg and of 680 Bq/kg Bq/kg respectively in the surface layer (Jones, 2007).

Figure 1.9: Activity concentrations (Bq /liter) of caesium-137 in filtered surface water from the Irish Sea, September 2001 (Department of Food and Rural Affairs, 2003).

The activity concentrations of Cs-137 in 2007 in Baltic sediments were about 39 kBq/m² and 29 kBq/m² at the sampling stations of the eastern Gulf of Finland and the Bothnian Sea. At the other stations of the Baltic Sea the amounts were clearly smaller: 0.8-5 kBq/m². In Figure 1.10 are shown the total amounts of Cs-137 in sediments at different sampling stations in the Baltic Sea at the beginning of the 2000's (STUK-B 91, 2008).

Figure 1.10: Total amounts of Cs-137 (Bq/m²) in bottom sediments at different sampling stations in the Baltic Sea at the beginning of the 2000's (STUK-B 91, 2008).

1.3.5 Cs-137 in Norwegian fjords

Investigations on surface sediments (0-1, 0-2 cm) from Norwegian fjords and the coast in the period from 1999 to 2008 have been made as a part of the RAME Programme.

As a part of the present study all the results on Cs-137 activity concentrations in surface sediment samples from Norwegian fjords have been collected, Appendix I Table A1 to Table A4. The Cs-137 activity concentrations in Norwegian fjords from 1999 to 2008 are shown in Figure 1.11.

Figure 1.11: Cs-137 in surface sediments, Bq/kg (d.w.).

The activity concentrations of Cs-137 in the surface sediments differ considerably along the coast. The activity concentrations (including preliminary results) are in the range from < 0.7 Bq/kg (d.w.) to 415 Bq/kg (d.w.) (NRPA, 2001) (NRPA, 2003) (NRPA, 2004) (NRPA, 2005) (NRPA, 2006) (NRPA, 2007) (NRPA, 2008) (NRPA, 2009f).

The activity concentrations on the Skagerrak coast (totally 34 measurements) ranges from < 0.7 to 40 Bq/kg (d. w.), with the highest values in the eastern part of the Skagerrak coast. One exception is the inner part of the Drammensfjord with a value of 290 Bq/kg (d.w.); Appendix I Table A1.

Samples from the coast from Kristiansand up the west coast of Norway (totally 17 measurements), has in general activity concentrations of Cs-137 from 2 to 41 Bq/kg (d.w.). Important exceptions are 415 and 323 Bq/kg (d.w.) in the Sognefjord, 102 Bq/kg (d.w.) in the Nordfjord and 85 Bq/kg (d.w.) in the Sunndalsfjord; Appendix I Table A2.

In the area from Trøndelag to Lofoten (totally 26 measurements) the activity concentrations are in general in the range from 2 to 48 Bq/kg (d.w.). Exceptions are 67 Bq/kg (d.w.) in the Trondheimsfjord, 102 Bq/kg (d.w.) in the Beistadfjord, 330 Bq/kg (d.w.) in the Namsfjord, 365 Bq/kg (d.w.) in the Velfjord, 317 Bq/kg (d.w.) in the Vefsnfjord and 126 Bq/kg (d.w.) in the Ranafjord; Appendix I Table A3.

From Lofoten to the Russian border (totally 59 measurements) the activity concentrations of Cs-137 are in the range from 1.9 to 20.2 Bq/kg (d.w.). All the measured samples from this coastline are within this range; Appendix I Table A4.

1.4 Cs-137 dynamics

Cs-137 behavior in the marine water column is very similar to that of conservative tracers (Povinec, 2003). Conservative tracers are less particle-reactive than others. Complexed cesium in seawater has a weak affinity for sediment particles; cesium remains in solution and are transported by the flow field more or less passively without being affected by other processes. Conservative tracers can travel over a long distance from the point of injection without being deposited on the seabed. In the marine environment, most anions, alkali and alkali earth group elements behave conservatively (Vintro, 2009). In the marine environment conservative radionuclides introduced at the surface will migrate downwards by the process of diffusion and advection (Boven, 1979). Of all Cs-137 transported through the North Sea, only about 2 % is stored in the North Sea sediments, the rest passes through (Becks, 2000).

Cs-137 in run-off from land bound in organic particles is desorbed from suspended particles in the river when salinity increases (Vintro, 2009).

Some clay minerals have a high adsorption capacity for cesium. Coughtrey and Thorne (1983) stated that the degree to which Cs-137 binds to sediments depends primarily on their content of the clay mineral illite, as Cs-137 is expected to bind irreversibly to this mineral. This is also the case for Cs-137 bound to clay particles in river run-off. In small particles the surface area in contact with cesium is relatively larger than for larger particles. Knowledge about the particle size distribution within the sediment is important when evaluating the Cs-137 content.

In open marine areas the Cs-137 is conservative, but when reaching coastal areas with a high content of clay particles it will bind to sediment particles and rapidly be transferred into the sediments.

1.5 Sediments

Sediments are the final sink for most particles and organic material present in the seawater. Marine sediments accumulate by sinking of particulate matter, deposition on seabed and buried by subsequent accumulations. Organisms living in surface sediments will cause bioturbation in the top layer, but when sediments are buried and the density of organisms is reduced in the sediments, the sediments are left more or less undisturbed. Bioturbation is the displacement and mixing of sediment particles by benthic fauna. This can also cause transport of oxygen into the sediments changing the chemical form of the elements present and thus change the mobility (SFT, 2010).

Resuspension of sediments occur at the surface of the seabed. On sites with strong current or mechanical disturbance (waves, tidal activity) the degree of resuspension may be high, especially of materials with low volume density. On sites with weak current there will be less resuspension and smaller particles will not be removed. Smaller particles will therefore be concentrated in deep areas with low current velocity near the bottom as in deep fjords. Other factors also influencing sediments are avalanches and landslides. This is highly relevant in fjords with steep slopes like some of the Norwegian fjords.

1.5.1 Lead 210 dating with Ra-226 correction

Sediment cores from marine sediments can be sliced into samples representing sediment layers deposited in a certain period of time. When sediments accumulate undisturbed, it is possible to measure the age of these sediment layers and the sedimentation rates. The age (within the last 120 years) of the sediments can be measured based on the content of natural radioactivity; Lead-210 (Pb-210) and radium-226 (Ra-226) (Goldberg, 1963). Fresh Pb-210 ($t_{1/2} = 22$ years) will be deposited on surface sediments together with precipitating material. When buried, the Pb-210 will decay and the Pb-210 concentration in the profile of the core will follow the exponential decline with depth as a result from radioactive decay. The age of a particular layer is found by calculating the amount of Pb-210 which has decayed. Dated sediment layers, therefore enables investigations of sediment layers deposited at a certain time in near history.

1.5.2 Cs-137 dating

As described; Chapter 1.1.2; the main sources of Cs-137 to the marine environment are known with respect to time and change of quantity. The single most known incidence is the Chernobyl accident in April 1986, causing a steep change in Cs-137 content in the environment. This can be utilized when examining sediment profiles; at which layer in the sediment core is the Chernobyl peak found? If the sediments have been undisturbed, this is the sediment layer deposited in 1986. It is then possible to calculate the sedimentation rate and thus the age of every layer in the core. This method is frequently used, but is normally followed and verified by Pb-210 dating (Tadjiki and Erten, 1994) (Ritchie and McHenry, 1990). This method is not useful when the sediments consist of sand (Ritchie and McHenry, 1990).

1.6 Background for this study

From the regular monitoring of radioactivity in Norwegian marine areas; the surface sediment sample with the maximum Cs-137 activity concentration is 415 Bq/kg (d.w.) in a surface sediment sample from 2005, from the head of The Sognefjord (NRPA, 2007). Several other surface sediment samples from Norwegian fjords have Cs-137 activity concentrations which are considerably higher than samples from open marine areas.

The samples with high contents of Cs-137 are all from fjord bottoms and from fjords which receive drain-off from areas which received considerable amounts of fallout after the Chernobyl accident in 1986; Figure 1.12.

Figure 1.12: Chernobyl fallout (NRPA, 2009b) and fjords with high contents of Cs-137.

Some of these areas also overlap with areas receiving considerable amounts of precipitation during weapon test global fallout, Figure 1.2. Chernobyl fallout on land surrounding the inner part of the Sognefjord was high. In some specific catchment area with rivers ending up in the Sognefjord the fallout was 10-25 kBq/m² Cs-137 (Figure 1.1). The western part of the Sognefjord is also in an area with heavily affected by global fallout, Figure 1.2.

In Northern Norway (Troms and Finnmark) there are no fjords with elevated Cs-137 content. This district received considerable less Chernobyl fallout. This confirms the conclusion from Matishov and Matishov (2005); in Northern Norway (Troms and Finnmark), the origin of Cs-137 in the terrestrial environment is mainly global weapons fallout.

One of the reasons for the elevated levels of Cs-137 in the Sognefjord can be direct fallout from the Chernobyl accident and run-off from nearby areas affected by the Chernobyl

accident. Radionuclides held in the catchment soils are slowly transferred to river water by erosion of soil particles and by desorption from the soil. The Cs-137 is further transported to the sea where it reaches water with a specific salinity, and Cs-137 will be dissolved or deposited in sediments. Cs-137 binds to sediments, but the degree of binding is dependent of the particle and the water in which it exists (Salbu et.al., 1998).

The fate of this Cs-137 in the fjords will depend of many processes influencing the bioavailability and mobility of the nuclide. The water exchange may be very slow in some fjords and run-off from land will continue. This may result in increasing contents of Cs-137 in Norwegian fjords. Contamination in Norwegian terrestrial areas and in open ocean areas will also influence the content of Cs-137 in the Norwegian fjords.

1.7 **Objective**

The main objective with this study is to measure and compare the content of Cs-137 in sediment cores from the head and near mouth of the Sognefjord and head and near mouth of the Laksefjord.

The secondary objective is to examine to in which degree the three known sources; Chernobyl, Sellafield and global weapons test fallout, have affected the content of Cs-137 in the sediments of the two fjords.

In order to meet the second objective, dating the sediments was necessary and was conducted using the Pb-210 dating method with correction of Ra-226 (Goldberg, 1963) (Appelby and Oldfield, 1977), and also introducing this new method at the IMR-laboratory. In addition there have been done investigations on particle size distribution and on the ratio between Pu-isotopes in the sediments.

2. Material and Methods

2.1 Sample description

Sediment samples were taken in two Norwegian fjords; the Laksefjord in northern Norway and the Sognefjord in southern Norway; Figure 2.1.

Figure 2.1: Sampling areas; sites L1 and L2 in the Laksefjord, sites S1 and S3 in the outlet of the Sognefjord and sites S2 and S4 in the head of the Sognefjord.

The Sognefjord was chosen as investigation area based on earlier knowledge of relatively high Cs-137 content in the surface sediment measured in samples from the inner part of the fjord in 2005 (NRPA, 2007). The Laksefjord was chosen as investigation area as a comparison to the Sognefjord due to its long distance from Sellafield, the Baltic Sea and other areas with relatively high amounts of Chernobyl fallout. The Laksefjord is still a fjord in the Norwegian coastal current, and in vicinity to Russian areas with nuclear industry.

The sampling sites from inner part of the Sognefjord were placed approx. at the same position as the surface sediment sample with extraordinary high Cs-137 content from 2005. The sampling sites from outer part of the Sognefjord were chosen based on knowledge of depth, bottom conditions and the geographical position near the outlet of the fjord, but inside the sill. The sampling sites in the Laksefjord were chosen as a representative for a fjord adjacent to the Norwegian coastal current; and in the inner and outer part of the fjord.

In the Laksefjord there were 2 sampling sites, L1and L2, and in the Sognefjord there were 4 sampling sites; S1 to S4; Figure 2.1. L1 and L2 were taken from R/V "Johan Hjort" in November 2007, S1 and S2 were taken from R/V "Håkon Mosby" in November 2007. S3 and S4 were taken from R/V "Håkon Mosby" in November 2008 in the same position as the sample taken the previous year; Table 2.1.

Sampling site	Position	Dept	Sampling date	Fjord
L1	N70 ° 57'-E26 ° 54'	325 m	03.11.08	Laksefjord
L2	N70 ° 30'-E26 ° 38'	234 m	03.11.08	Laksefjord
S1	N61 ° 06'-E05 ° 12'	914 m	20.11.07	Sognefjord
S2	N61 ° 28'-E07 ° 33'	128 m	18.11.07	Sognefjord
S3	N61 ° 06'-E05 ° 12'	909 m	23.11.08	Sognefjord
S4	N61 ° 28'-E07 °33'	128 m	22.11.08	Sognefjord

 Table 2.1: Position, depth and sampling date for all samples

2.2 Sample collection

The samples were taken with a Smøgen boxcorer; Figure 2.2.

Figure 2.2: Smøgen boxcorer

The boxcorer is a grabtype sample device equipped with an inner box in stainless steel with area 30×30 cm and height of 40 cm. This device takes a surface undisturbed portion of the seabed, Figure 2.3; in the following called a grab sample.

Figure 2.3: A grab sample of undisturbed seabed taken with a Smøgen boxcorer.

The boxcorer is supported with lead weights on a supporting frame, and is forced into the seabed by the weights. How far into the sediments the sample device penetrates depends on

the compactness of the seabed. When removing the boxcorer from the seabed a grab is closing the device in the bottom beneath the sediment sample. On top the device is closed by hatches to prevent the top layer from disturbance. The undisturbed surface includes a water layer on top of the sediments.

From the boxcorer grab sample, subsamples were taken with PVC sewage tubes with an inner diameter of 10 cm. The tubes had a length of 40 cm and they where manually pressed into the boxcorer grab sample; Figure 2.4. Excess material was removed. Lids were put in bottom and on top of each core sample, and they were frozen in standing position to -20 °C and transferred to the laboratory for further preparation and analysis.

Figure 2.4: Sub sampling from grab sample; photo: Hilde Elise Heldal.

The total sampling included two or three cores from each boxcorer grab sample, Table 2.2.

Sampling site	Number of cores	Core identity
L1	2	L1-1 and L1-2
L2	2	L2-1 and L2-2
S 1	3	S1-1, S1-2 and S1-3
S2	3	S2-1, S2-2 and S2-3
S 3	2	S3-1 and S3-2
S4	2	S4-1 and S4-2

Table 2.2: Sample identification

2.3 Sample preparation

Before sample preparation, the tubes with sediments were thawed over night in standing position. The sediment cores were sequentially cut in standing position by using a piston from the bottom of the tube pressing towards the top of the tube; Figure 2.5.

Figure 2.5: Corer cutting device; photo: Hilde Elise Heldal.

The cores were gradually pressed upwards and cut in one centimeter slices and transferred to pre weighed aluminum dishes and dried. The water on top of the sediment cores were collected and dried and the material remaining was added to the top slice. All sample-slices were weighed before and after drying, and % dry weight was calculated.

The samples from S1 and S2 were dried in room temperature until complete dryness. Samples from L1, L2, S3 and S4 were freeze-dried until complete dryness. The length of the sediment cores varied between 7 cm and 16 cm. Altogether the sediment cores were sliced into 140 samples, varying from 7 to 16 slices from each core. An overview of the samples and dry weight data are given in Appendix II, Table A5.

After drying, the samples were crushed and homogenized using a mortar. Known amounts of dry sample material were transferred to the specific sample geometry. The geometry used was

a flat 60 ml geometry; 60 ml p.e. box with lid counting container; 60 ml p.e.box: Nolato AB, art.no. 110170 (box) and 112040 (lid).

The samples were wrapped in aluminum foil and taped with aluminum tape to prevent radon-222 (Rn-222) leakage from the sediment and marked, Figure 2.6. Samples were stored at least 4 weeks to allow ingrowth of lead-214 (Pb-214) and bismuth-214 (Bi-214) prior to analysis.

Figure 2.6: Sample preparation

A Mettler Toledo PG 5001-S, with weighing range of 2 g to 2 kg and a resolution on 0.1 g was used for sample weighing.

2.4 Instrument and facilities

The samples have been measured on the IMR Chemistry Laboratory on an ORTEC gammadetector: GMX Series GAMMA-X HPGE (High Purity Germanium) Coaxial Photon Detector system with PopTop cryostat configuration. Resolution (FWHM) at 1.33 MeV (Co-60) is 1.95 keV. Relative efficiency at 1.33 MeV is 38%. Crystal diameter is 59.0 mm and crystal length is 78.3 mm. The detector is cooled electrically with Ortec X-Cooler; mechanical cooler for HPGe detectors. The cooler is protected by Ortec CryoSecure Compressor Power Controller.

For detector shielding a Mdl Fabcast 04B1, low background shielding is used. This is a circular lead shield from machined stepped lead rings mounted in a frame with 10 cm solid lead with Cu/Cd lining and 25mm lead under shield.
The counting room at IMR is a low background counting room with 195 mm concrete walls including sand with a high content of olivine; giving low background and low quantification limits. The mean count rate from background the last five years in the Cs-137 peak ROI is 0,00411cps for the detector used.

The program used to collect the gammaspectra is ORTEC GammaVision.

Particle size analysis was done on Endekott thread sieves. The particle sizing was carried out at Unifob AS, Seksjon for anvendt miljøforskning (Uni Environment, SAM-Marin).

All the calculations are done in Microsoft Excel.

2.5 Particle size analysis

Particle size analyses (Buchanan, 1984) were done on the 0-1 cm slice samples from one of the cores from each sampling site. The samples were sieved in the fractions: $< 63 \mu m$, $> 63 \mu m$, > 2 mm. Results on particle size analysis are given in chapter 3.1.

2.6 Pu-analysis

The Pu-analysis has been carried out at the NUK-division at Risø DTU, Denmark. The method used is an internal modified method using ICP-MS based on several previous published methods (pers.comm. DR. Per Roos, DTU, Denmark).

2.7 Measurements

2.7.1 Gamma spectroscopy

Gamma spectroscopy enables identifying and quantifying gamma ray emitters. Each gamma ray emitter emits radiation with one or more unique energies as given in Schøtzig and Schraeder (1993). The intensity of the radiation is depended of the amount of the radionuclide. When gamma ray emissions from a sample are collected and analyzed with a gamma spectroscopy system, a gamma energy spectrum is produced. A detailed analysis of this spectrum is made in order to determine the identity and quantity of gamma ray emitters present in the sample. A peak in the spectrum at one or more exact energies enables an identification of the radionuclide. The area of the peak is proportional to the activity of the radionuclide. The equipment used in gamma spectroscopy includes an energy-sensitive

radiation detector, a pulse sorter (i.e., multichannel analyzer), and associated amplifiers and data readout devices.

Radionuclides with gamma ray emissions at known energies are used to calibrate the spectrum from channels to keV.

2.7.2 Measuring Cs-137

Cs-137 decays by beta decay with a half life of 30.17 years (Schøtzig and Schraeder, 1993), to a metastable nuclear isomer of barium-137 (Ba-137m). Barium-137m has a half life of 2.55 minutes and is responsible for the gamma ray emission at 662 keV (Schøtzig and Schraeder, 1993). This energy is conventionally regarded as the 'Cs-137 gamma' energy. Cs-137 can be measured by gamma spectroscopy using the 662 keV line or by beta counting after radiochemical separation.

An accredited method is used for analyzing dried sediment samples for Cs-137 at IMR (Sværen, 2001), is based on the method described by Anderson et.al. (1992) used within the Lorakon programme (Brungot and Amundsen, 2003).

After washing the detector and lead shielding, the background is measured, normally overnight. In this work this background is called the external background. The background data are used both in Cs-137, Pb-210 and Ra-226 measurements.

A known amount of the sample is transferred to the specific geometry and measured. The detector is calibrated with a known quantity of Cs-137 measured in the same geometry as the sample.

The standard used for calibrating the detector is delivered from Analytics; a 60 ml solid matrix with density 1.15g/cc. The Cs-137 activity is specified to 76.7 Bq, with a total uncertainty of 4.4%. The reference date is 01.10.2002. This standard is made in the specific geometry; 60 ml container equipped from the laboratory.

The detector is controlled weekly with a Cs-137 point source to ensure that the peak of the Cs-137 is not moving and that the efficiency of the detector is as expected; Appendix III, Figure A1.

Every second month a control sample is measured. The control sample is an ordinary sediment surface sample with 2.8 +/- 0.3 Bq/kg Cs-137. The control sample has been measured over several years. The results are shown in Appendix III, Figure A2.

Gamma Vision functions: mark the region of interest, ROI, gross area and live counting time are used. The energy area where the Cs-137 peak is expected is marked; ROI 1, ROI 2 and ROI 3 as shown in Figure 2.7a. ROI 1 is covering the peak with a width of 41 channels. ROI 2 and ROI 3 are each 5 channels out to each side of the peak, both with a width of 10 channels, and representing the internal background. In each measurement the gross area in ROI 1, ROI 2 and ROI 3 with corresponding counting time are manually read.

Figure 2.7: Marking individual ROIs for measuring Cs-137 (a), the internal background (b).

Background

External background is measured and calculated: The Cs-137 background level of the detector is measured once every second month to ensure that the detector is not contaminated; gross area and counting time are read.

$$bk = \frac{B_1 - \left[\left(\frac{B_2 + B_3}{20} \right) \cdot 41 \right]}{T}, \text{ cps} \qquad (1)$$

B₁ = Gross area in ROI 1

$$B_2 = Gross area in ROI 2$$

$$B_3 = Gross area in ROI 3$$

T = Counting time, sec.

In all measurements in this work the external background, bk is zero. All data are presented in Appendix III, Table A6.

Internal background is related to each measurement and is exemplified in Figure 2.7b. Gross area and counting time are read and the internal background is calculated:

$$BK = \frac{\left(\frac{N_2 + N_3}{20}\right) \cdot 41}{T}, \text{ cps} \qquad (2)$$

N₂ and N₃ = Gross area in ROI 2 and ROI 3
T = Counting time, sec.

Calibration

The detector is calibrated every second month to find the geometry factor (efficiency) for the Cs-137 peak. The detector is calibrated with the Cs-137 standard; measured normally over night. Gross area and counting time are read.

Cs-137 activity in the standard on calibration date is calculated:

$$A_{Cs-137} = A_0 \cdot e^{-\ln \frac{2}{t_2^{l}}t}$$
,Bq (3)

A_0	= Cs-137 activity on reference date, Bq
t _{1/2}	= 11020 days, (Schøtzig and Schraeder, 1993)
t	= days since reference date

Internal background connected to standard measurement is calculated (eq. 2) and geometry factor is calculated:

$$G = \frac{A_{Cs-137}}{\frac{N_1}{T} - BK}, Bq/cps \qquad (4)$$

N_1	=	Gross area in ROI 1
Т	=	counting time, sec.
BK	=	internal background from eq. (2)
A _{Cs-1}	37=	from eq. (3)

These calibrations are repeated every second month. All data are presented in Appendix III, Table A7.

Measurement

All samples are measured and gross area and counting time are read. The activity of Cs-137 in the sample is then calculated:

Internal background connected to the sample measurement is calculated from eq. (2), and Cs-137 activity in sample is calculated:

$$a_{Cs-137} = G \cdot \left(\frac{N_1}{T} - BK\right)$$
,Bq (5)

G	=	Geometry factor from eq. (4)
N_1	=	Gross area in ROI 1
Т	=	Counting time, sec
BK	=	internal background from eq. (2)

The results are calculated to activity/ weight:

$$A = (a / w) \cdot 1000,$$
 Bq/kg (6)

a = from eq. (5), Bq

The activity A is decay corrected to activity A_0 , on sampling date according to equation (3). All data on Cs-137 measurements are presented in Appendix IV Table A19 to A32.

Quantification limit

The quantification levels are dependent on the background, the counting time and amount of sample. The quantification limit is based on the minimum net counts in the Cs-137 gamma line. L.A. Currie (1968) defines three limiting levels: Lc is the net signal level (instrument response) above which an observed signal may be reliably recognized as "detected". Ld is the "true" net signal level which may be a priori expected to lead to detection. Lq is the level at which the measurement precision will be satisfactory for quantitative determinations. The Lq is the conservative way of calculating the lowest measurable level; this to make sure that low levels of Cs-137 are not false identified and quantified.

$$Lq_m = 50 \left[1 + \sqrt{1 + \frac{B_m}{25}} \right] \tag{7}$$

 Lq_m is the minimum number of net counts in ROI 1 necessary to reach the quantification limit. B_m is the number of internal background counts: BK from equation (2) is multiplied with counting time, giving B_m . The sum of B_m plus Lq is compared with the number of counts in the ROI 1. When N1 – $B_m > Lq$ the measurement is above the quantification limit. When the measurement is below quantification limit, the result is reported to be less than the quantification limit.

Measurement uncertainty:

The uncertainty in all results is found by the principle that every variable in calculating the result has an uncertainty. The uncertainty used is two times the standard deviation. To find the standard deviation the following general equation is used, on the variables x, y, z... (Bjørnes and Hovde, 1978):

$$s(\text{Result}) = \sqrt{\left(\frac{\partial f}{\partial x} \cdot s_x\right)^2 + \left(\frac{\partial f}{\partial y} \cdot s_y\right)^2 + \left(\frac{\partial f}{\partial z} \cdot s_z\right)^2 + \dots}$$
(8)

The measurement uncertainty includes uncertainty in background, sample measurement, calibration and sample amount. Uncertainty calculations conducted with this method is in good agreement with results from repeated measurement of Cs-137 in a control sample, Appendix Figure A2.

All variables involved in the calculation of Cs-137 activity concentration have an uncertainty, also calculated by the general equation (8). The uncertainty is here specified as s(variable). Uncertainty in measured internal background:

$$sBK = \frac{sB}{T}$$
, cps (9)

$$sB = \sqrt{\left[\frac{41 \cdot sN_2}{20} \right]^2 + \left[\frac{41 \cdot sN_3}{20} \right]^2}$$
, counts (10)

Variables from sample counting:

$$sN_{2} = (N2)^{1/2}$$

$$N_{2} = Gross area in ROI 2$$

$$sN_{3} = (N3)^{1/2}$$

$$N_{3} = Gross area in ROI 3$$

$$T = counting time, sec.$$

Uncertainty in the Geometry factor:

$$sG_{Cs-137} = \sqrt{\left[\frac{T \cdot sA}{N - BK \cdot T}\right]^2 + \left[\frac{A \cdot N \cdot sT}{(N - BK \cdot T)^2}\right]^2 + \left[\frac{A \cdot T^2}{(N - BK \cdot T)^2} \cdot sBK\right]^2 + \left[\frac{-A \cdot T}{(N - BK \cdot T)^2} \cdot sN\right]^2}, Bq/cps$$
(11)

Variables from standard counting:

T = counting time, sec. sT = 1 sec. N = Gross area in ROI 1 sN = $(N)^{1/2}$

BK	=	BK from eq. (2)
sBK	=	sBK from eq. (9)
А	=	A_{Cs-137} from eq. (3)
sA	=	sA _{Cs-137} from certificate, 4,4%.

Uncertainty in Cs-137 activity in sample, Bq:

$$sa_{Cs-137} = \sqrt{\left[\left(\frac{N}{T} - BK\right) \cdot sG \right]^2 + \left[\frac{G}{T} \cdot sN \right]^2 + \left[\frac{-G \cdot N}{T^2} \cdot sT \right]^2 + \left[-G \cdot sBK \right]^2} , Bq \quad (12)$$

Variables from sample counting:

N	=	Gross area in ROI 1
sN	=	$(N)^{1/2}$
Т	=	counting time, sec.
sT	=	1sec.
BK	=	BK from eq. (2)
sBK	=	sBK from eq. (9)
G	=	G from eq. (4)
sG	=	sG_{Cs-137} from eq. (11)

Uncertainty in Cs-137 activity concentration in sample, Bq/kg:

$$sA = \sqrt{\left[\frac{1000}{P} \cdot sa \ J^2 + \left[\frac{-a \cdot 1000 \cdot sP}{P^2} \ J^2\right]}, Bq/kg$$
(13)

$$A = activity in the sample
sa = uncertainty in activity from eq. (12)
$$P = sample weight, g$$$$

The activity concentration of Cs-137 in samples is given as $A\pm 2sA$. All data on uncertainty are presented in Appendix IV Table A19 to A32.

2.7.3 Quality assurance in Cs-137 measurements

To ensure the quality of the Cs-137 measurements, a control sample has been measured every second months in several years with satisfactory results; Appendix III Figure A2. In addition IMR participate regularly in intercomparison exercises on sediment and aqueous samples. In the period 1995 to 2009 samples with Cs-137 activity concentrations between 0.3 Bq/kg and 23 700 Bq/kg have been measured; all with acceptable results and within the given uncertainty. The intercomparison exercises have been organized by The Nordic Committee for Nuclear Safety Research (NKS) (1995, 1999, 2001 and 2004), International Atomic Energy Agency (IAEA) (2000 and 2002), IMR and NRPA (2004) and National Physical Laboratory (NPL) (2007, 2008 and 2009).

2.7.4 Pb-210 and Ra-226

Uranium-238 is a natural radionuclide existing on earth. U-238 decays in the uranium decay series, Figure 2.8. Pb-210 and Ra-226 are daughters in the uranium decay series. Ra-226 decays by alpha to Rn-222. Rn-222, an inert gas, escapes from earth's surface into atmosphere. Decay daughters of Rn-222, of which Pb-210 has the longest half-life, is removed from the atmosphere via washout, forming a widespread, continuously deposited on the earth's surface. Individual Pb-210 atoms become readily attached to airborne particulate material and are removed both by washout and by dry deposition.

URANIUM-238 DECAY CHAIN	J				
Nuclide Half-life					
Uranium-238	4.5 10 ⁹ years				
 Thorium-234 	24.5 days				
 Protactinium-234 	1.14 minutes				
 Uranium-234 	2.33 10 ⁵ years				
 Thorium-230 	8.3 10 ⁴ years				
 Radium-226 	1601 years				
 Radon-222 	3.825 days				
 Polonium-218 	3.05 minutes				
• Lead-214	26.8 minutes				
• Bismuth-214	19.7 minutes				
 Polonium-214 	1.5 10 ⁻⁴ seconds				
• Lead-210	22 years				
• IBismuth-210	5 days				
•↓ Polonium-210	140 days				
• Lead-206	stable				

Figure 2.8: Uranium-238 radioactive decay (Schøtzig and Schraeder, 1993).

In aquatic systems, Pb-210 is removed from the water column by settling particles and deposited on the sediments. Measurements of Pb-210 and Ra-226 in sediment cores will provide data which enable calculating the age of the sediment.

Pb-210 decays by gamma to Bi-210 with a half life of 22.3 years and is responsible for the gamma ray emission at 46.5 keV (Schøtzig and Schraeder, 1993). Pb-210 is measured by gamma spectroscopy on this energy-line.

A known amount of sample is transferred to the specific geometry and measured with gamma spectroscopy. The detector is calibrated with a standard with a known amount of Pb-210 in the same geometry as the sample.

The standard used for calibrating the detector is delivered from QSA Global GmbH; specified to be 7.46 kBq Pb-210, with a total uncertainty of 4.4%. The reference date is 1 of July 2008 at 12:00 UTC; calibrated at Deutscher Kalibrierdienst, DKD. Density is approx 1.0g/cm3. The standard is made in the specific geometry; 60 ml container equipped from the laboratory.

Gamma rays from Pb-210 at 46.5 keV can be partially absorbed in the sample; self - absorption. This self-absorption depends on sample composition. The problems of self-

absorption, are solved by making a direct transmission measurement on each sample; making a sample specific self-absorption correction factor, KF (Cutshall et. al., 1983). An empty sample container, the Pb-210 standard, and the samples are each measured with a Pb-210 point source placed on top, Figure 2.9.

The point source used is QSA Global GmbH: 255 kBq Pb-210, reference date 1 of July 2008 at 12:00 UTC; calibrated at Deutscher Kalibrierdienst, DKD.

Figure 2.9: Transmission-measurement on each sample.

In uranium decay series Ra-226 decays via radon and polonium to Pb-214 and further on to Bi-214. If radon is prevented from escaping, there will be equilibrium between Ra-226, Pb-214 and Bi-214 after 4 weeks. Ra-226 can then be determined by gamma spectroscopy on the Pb-214 gamma lines at 295 keV and 352 keV and by the Bi-214 gamma line at 609 keV (Schøtzig and Schraeder, 1993). Ra-226 content is further calculated from the average of Pb-214 and Bi-214 content (Zaborska et.al., 2008).

The standard used for calibrating the detector is delivered from QSA Global GmbH; specified to be 3.54 kBq Ra-226, with a total uncertainty of 5%. The reference date is 1 of July 2008 at 12:00 UTC; calibrated at Deutscher Kalibrierdienst, DKD. Density approx 1.1 g/cm^3 . The standard is made in the specific geometry; 60 ml container equipped from the laboratory.

The program Gamma Vision is used when marking the detected peaks, mark peak function; and finding the net area with uncertainty and counting time.

2.7.5 Measuring Pb-210

All variables and equations are presented in Table 2.3.

Background: The gamma emission peak at 46.5 keV from the background measurement is manually marked and net area of the peak, uncertainty in net peak area and counting time are read. The background measurements are presented in Appendix III Table A8.

Calibration: Detector is calibrated by measuring a standard with a known quantity of Pb-210 in the same geometry as the samples. The standard is normally measured over night. The gamma emission peak at 46.5 keV from the Pb-210 standard is marked and net area of the peak, uncertainty in net peak area and counting time are read. The counting rate R_{cal} is calculated. R_{cal} data are presented in Appendix III table A9.

The standard activity on calibration date is calculated. The activity data are presented in Appendix III table A10.

The geometry factor, g_{Pb-210} , is calculated. The data on $_{gPb-210}$ are presented in Appendix III Table A11.

Density correction factor (KF) for the Pb-210 standard is found by a 600 second measurement of the standard with the Pb-210 point source placed on top of it, R_{cal+} . The data on R_{cal+} are presented in Appendix III Table A12.

Additionally a 600 second measurement of an empty container of the same type as the standard and sample container with a Pb-210 point source placed on top, R_s . The data on R_s are presented in Apendix III Table A13.

The density correction factor KF for the standard is calculated, and the geometry factor is further corrected for density. The data on KF and corrected geometry factor are presented in Appendix III Table A14. The corrected geometry factor is further used to calculate the Pb-210 content in the samples.

Sample measurement: At least 4 weeks after filling the measuring container and wrapping it in aluminum foil, the sample was measured overnight and count rate in 46.5 keV was found and corrected for background; R. The sample was then consecutively measured in 600

seconds with the Pb-210 point source placed on top to find the count rate; R_+ . The density correction factor KF, for each sample was calculated followed by calculation of the Pb-210 activity concentration.

Finally, the activity A is decay-corrected to activity A_0 on sampling date according to radioactive decay equation. All data on Pb-210 from sample measurements are presented in Appendix V Table A33 to A43.

Uncertainty: All variables used in the calculation of Pb-210 in sediment samples also have an uncertainty. The uncertainty is given as s(variable). All data on uncertainty in Pb-210 measurements are presented in Appendix V Table A33 to A43.

Finally, the activities of Pb-210 in samples are given as $A \pm 2sA$.

The method is further controlled by measuring samples with a known quantity of Pb-210; Table 2.5.

		Pb-210 peak at 46.5 keV			
		Equation		Uncertainty	
Variable	Symbol	1			
Background	BK	$BK = net area/counting time_cps$		sBK = s(net area) / counting time cps	
measurement	Dir	Dir net alea counting time, eps		shire alou) / counting time, eps	
Calibration:					
Counting rate	R _{cal}	$R_{cal} = net area / counting time, cps$		$sR_{cal} = s(net area) / counting time, cps$	
standard					
Activity in	A _{0Pb-210}	$A_0 = 7,46 \text{ kBq}$		4,4 %	
standard on					
reference date	.1/			0.1	
Half life	t ¹ /2	$t\frac{1}{2} = 8145 \text{ days}$		8 days	
Days decayed	t	t = days from reference date to me	easuring		
Activity in	Apr. 210			$sA_{PL,210} = \pm/-5\%$	
standard on	- PD-210	$A_{Pb-210} = A_0 \cdot e^{-m \frac{1}{t_2}T}$ Ba		51 P0-210 17 5 76	
calibration date		, 29			
geometry factor	g	$= A_{Pb-210} / R_{cal} , \qquad \qquad Bq/cps$		$sg = sA / R_{cal}, \qquad Bq/cps$	
Counting rate	R _{cal+}	R_{cal+} = net area/ counting time, cps		$sR_{cal+} = s(net area) / counting time, cps$	
standard point					
source on top					
Counting rate	R _s	R_s = net area/ counting time, cps		$sR_s = s(net area) / counting time, cps$	
empty container					
top					
Density	KF	KF=		sKF is set to 0.01	
correction		$\ln \left[\left(\frac{R_{ral}}{R_{ral}} - \frac{R}{R} \right) / \frac{R_{ral}}{R_{ral}} \right] / \left[\left(\frac{R_{ral}}{R_{ral}} - \frac{R}{R} \right) / \frac{R_{ral}}{R_{ral}} \right]$	(R _a) –11	SICI 15 Set to 0,01.	
factor standard		$\lim_{t \to \infty} \left[\left(2 \operatorname{car}_{t}^{+} 2 \operatorname{c}_{t}^{+} \right)^{2} \operatorname{cs}_{s}^{+} \right] \left[\left(\left(2 \operatorname{car}_{t}^{+} 2 \operatorname{c}_{t}^{+} \right)^{2} \operatorname{cs}_{s}^{+} \right)^{2} \operatorname{cs}_{s}^{+} \right]$	1.5/ 1]		
Geometry	G	$G_k = g/KF_Bq/cps$		$\int \frac{sg_{-1}^2}{1-g} \cdot sKF_{-1}^2 = \mathbf{R}g/c\mathbf{R}g$	
factor				$sG = \sqrt{\frac{1}{KF}} \frac{1}{F} \frac{1}{F} \frac{1}{KF^2} \frac{1}{F} $	
				V	
Sample Measure	ment:				
Count rate	R	R=(net area/counting time)-BK,	sR = s(t)	net area) / counting time, cps	
sample		cps			
Count rate	R ₊	R_+ = net area/ counting time,	$sR_+ = s$	(net area) / counting time, cps	
sample point		cps			
source on top	ИЕ	KE	-VE in		
Density	KF	$\mathbf{KF} = \frac{1}{10} (\mathbf{P} - \mathbf{P}) / \mathbf{P} / (\mathbf{P} - \mathbf{P}) / \mathbf{P} = 1$	SKF 18 9	set to 0,01.	
factor for the		$III (\mathbf{K}_{+} - \mathbf{K}) / \mathbf{K}_{S} / (\mathbf{K}_{+} - \mathbf{K}) / \mathbf{K}_{S} - 1$			
sample					
Activity in	А	$A = G_{le} \cdot R \cdot KF / V \cdot Ba/kg$		2	
sample on			$sA = \sqrt{\frac{s}{2}}$	$\frac{G \cdot R \cdot KF}{V} \Big ^{2} + \left(\frac{sR \cdot G \cdot KF}{V}\right)^{2} + \left(\frac{sKF \cdot G \cdot R}{V}\right)^{2} + \left(\frac{-G \cdot R \cdot KF}{V}\right)^{2} = \frac{-G \cdot R \cdot KF}{V} \Big ^{2}$	
measuring date			D.A.	\mathbf{v}) (\mathbf{v}) (\mathbf{v}) (\mathbf{v}^2)	
Sampla waight	V	ka	, Вq/к <u>g</u>		
Activity in	V Ac	<u>^xg</u>	1 10 K	ъ.	
sample on	A 0	$A_0 = \frac{2 P_{b-210}}{-\ln \frac{2}{t}}$, Bq/kg			
sampling date		$e t\frac{1}{2}$			

Table 2.3: Variables and equations in Pb-210 measurements and calculations.

2.7.6 Measuring Ra-226

All variables and equations are presented in Table 2.4.

Background: The gamma emission peaks at 295keV, 352keV and 609keV from background measurement is marked and net area of the peak and counting time are read. The background measurements are presented in Appendix III Table A15.

Calibration: The detector is calibrated by measuring a standard with a known quantity of Ra-226 in the same geometry as the samples. In a similar manner as for previous measurements the gamma emission peaks at 295 keV, 352 keV and 609 keV are marked, and the net area of the peaks and counting time are read; followed by calculation of count rates (cps) in each of the three peaks.

The activity of Ra-226 in standard on calibration date is calculated. The activity data are presented in Appendix III Table A16.

The geometry factors (G) for each peak are calculated and background corrected according to values in Appendix III Table A15. The geometry factors are given in Appendix III Table A17.

Sample measurement: The sample is measured overnight and the gamma emission peaks at 295 keV, 352 keV and 609 keV are marked, and the net area of the peaks and counting time are read. The count rate in each peak is calculated.

The background corrected activity of Pb-214 (two peaks) and Bi-214 (one peak) in the sample is calculated. The activity, ARa-226, used in dating calculations is the average of the Pb-214 and Bi-214 measurements.

The Ra-226 activity is not corrected for decay due to its long half-life.

All data on Ra-226 from sample measurements are presented in Appendix VI Table A44 to A54.

Uncertainty:

All variables used in the calculation of Ra-226 in sediment samples have an uncertainty. The uncertainty is given as s(variable).

All data on uncertainty in Ra-226 results are presented in Appendix VI Table A44 to A54.

Finally, the activities of Ra-226 in samples are given as A \pm 2sA.

$ \begin{array}{ c c c c c c } \hline Equation & Uncertainty \\ \hline Equation & Uncertainty \\ \hline Background \\ measurement \\ \hline Background \\ \hline Backgr$	Variable	Sign	Ra-226 determination		
Background measurementBK = net area_295keV counting time, cpsShK = s(net area_295keV) / counting time, cpsShK = s(net area_295keV) / counting time, cpsBackground measurementBK_352keVBK = net area_352keV counting time, cpsShK = s(net area_352keV) / counting time, cpsShK = s(net area_352keV) / counting time, cpsBackground measurementBK = net area_352keV counting time, cpsShK = s(net area_352keV) / counting time, cpsShK = s(net area_352keV) / counting time, cpsCalibration: Count rate standardCps_352keV counting time, cpsSh(cps_352keV) = s(net area_352keV) / counting time, cpsSh(cps_352keV) = s(net area_352keV) / counting time, cpsCount rate standardcps_352keV counting time, cpsSh(cps_352keV) = s(net area_352keV) / counting time, cpsSh(cps_352keV) = s(net area_352keV) / counting time, cpsActivity in standard on reference dateAn = 3,54 kBq5 %Activity in standard on reference dateAn = 3,54 kBq5 %Activity in standard on ceference dateAn = 3,54 kBq5 %Activity in standard on ceference dateAn = 206 (Schøtzig and Schraeder, 1993)7 yearsDays decayedtt = adys from reference date to measuring dateSh(cs = sA / cps_352keV, Bq/cpsGeometry factorGageskeV= A_{ka-226} / cps_352keV, Bq/cpsSG = sA / cps_352keV, Bq/cpsGeometry factorGageskeV= A_{ka-226} / cps_352keV, Bq/cpsSG = sA / cps_352keV, RefGeometry factorGs_552keV= cat area_352keV/ counting time, cpsS(cps_552keV) =			Equation		Uncertainty
$\begin{array}{ c c c c c c } \hline \mbox{measurement} & \mbox{issuev} & \mbo$	Background	BK _{295keV}	$BK = net area_{295keV} / counting times the second secon$	me, cps	sBK = s(net area _{295keV}) / counting
Background measurementBK = net area3528ev/ counting time, cpsBK = s(net area3528ev) / counting time, cpsBackground measurementBK = net area3528ev/ counting time, cpssBK = s(net area4528ev) / counting time, cpsCalibrationCalibrationCount rate standardcp5298ev = net area3528ev/ counting time, cpss(cp5298ev) = s(net area3528ev) / counting counting time, cpsCount rate standardcp5298ev = net area3528ev/ counting time, cpss(cp5298ev) = s(net area3528ev) / counting time, cpsCount rate standardcp5868ev counting time, cpss(cp5298ev) = s(net area3698ev) / counting time, cpsCount rate standardcp5868ev counting time, cpss(cp58298ev) = s(net area3698ev) / counting time, cpsCount rate standardcp5868ev counting time, cpss(cp58298ev) = s(net area3698ev) / counting time, cpsCount rate standard on reference dateAo counting time, cpss(cp58298ev) = s(net area3698ev) / counting time, cpsDays decayed that if ift/2 t/2 = 1601 years (Schotzig and Schrader, 1993)7 yearsDays decayed calibration datet t = days from reference date to measuring datesG = sA / cp5298ev , Bq/cpsGeometry factorG3531ev counting time, cpssG = sA / cp5298ev , Bq/cpsGeometry factorG3531ev counting time, cpssG = sA / cp5298ev , Bq/cpsGeometry factorG3531ev counting time, cpssG = sA / cp5298ev , Bq/cpsGeometry factorG3531ev counting time, cpss(cp5328ev) = s(net area3998ev) / counting time, cpsSample measurement <td>measurement</td> <td></td> <td></td> <td></td> <td>time, cps</td>	measurement				time, cps
measurementtime, cpsBackgroundBK = net area_352keV/ counting time, cpsskk = s(net area_600keV) / counting time, cpsCalibration:Count ratecps_958keVcps_958keV = net area_395keV/s(cps_95keV) = s(net area_995keV) / counting time, cpsCount ratecps_252keVcps_958keV = net area_395keV/s(cps_95keV) = s(net area_325keV) / counting time, cpsCount ratecps_252keVcps_152keV = net area_395keV/s(cps_152keV) = s(net area_325keV) / counting time, cpsCount ratecps_252keVcps_152keV = net area_600keV/s(cps_152keV) = s(net area_325keV) / counting time, cpsCount ratecps_152keVcps_152keV = net area_600keV/s(cps_152keV) = s(net area_600keV) / counting time, cpsCount ratecps_152keVcps_152keV = net area_600keV/s(cps_152keV) = s(net area_600keV) / counting time, cpsCount ratecps_152keVcps_152keVs(cps_152keV) = s(net area_152keV) / counting time, cpsCount ratecps_152keVcps_152keVs(cps_152keV) = s(net area_152keV) / counting time, cpsCount ratecps_162keVcounting time, cpscounting time, cpsCount ratecps_162keVa_0 = 3.54 kBq5 %standard oncschizig and Schraeder, 1993)7 yearsCalibration dateftt = days from reference date toGeometry factorG295keV= A_{R+226} / cps_295keV, Bq/cpssG = sA / cps_295keV, Bq/cpsGeometry factorG295keV= A_{R+226} / cps_295keV, Bq/cpssG = sA / cps_295keV, Bq/cpsGeometry factorGps_295keVcounting time, cps <td>Background</td> <td>BK_{352keV}</td> <td>$BK = net area_{352keV} / counting times the second secon$</td> <td>me, cps</td> <td>$sBK = s(net area_{352keV}) / counting$</td>	Background	BK _{352keV}	$BK = net area_{352keV} / counting times the second secon$	me, cps	$sBK = s(net area_{352keV}) / counting$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	measurement				time, cps
measurementtrme, cpsCalibration :Count ratecps225keV = net area225keV/ counting time, cpss(cps225keV) = s(net area225keV) / counting time, cpsCount ratecps255keVcps255keV = net area325keV/ counting time, cpss(cps255keV) = s(net area325keV) / counting time, cpsCount ratecps332keVcps255keV = net area325keV/ counting time, cpss(cps255keV) = s(net area325keV) / counting time, cpsCount ratecps353keVcps353keVcps353keVs(cps353keV) = s(net area335keV) / counting time, cpsCount ratecps353keVcounting time, cpscounting time, cpsActivity in standard on reference dateA0=3,54 kBq5 %Activity in standard on reference datef(b2 = 1601 years (Schøtzig and Schraeder, 1993)7 yearsDays decayedtt = adys from reference date to measuring datesAke,226 = +/- 5 %Activity in standard on calibration dateAn=26 / cps35keV, Bq/cpssG = sA / cps25keV, Bq/cpsGeometry factorG255keV= A_{Ra-226 / cps35keV, Bq/cpssG = sA / cps25keV, Bq/cpsGeometry factorG352keV= A_{Ra-226 / cps35keV, Bq/cpssG = sA / cps35keV, Bq/cpsMeasurementcps35keVcps35keV = net area295keV/ counting time, cpss(cps25keV) = s(net area295keV) / counting time, cpsSample measurementcps35keVcps35keV = net area295keV/ counting time, cpss(cps25keV) = s(net area35keV) / counting time, cpsSample measurementcps35keVcps35keV = net area295keV/ counting time, cpss(cps25keV) = s(net	Background	BK _{609keV}	$BK = net area_{352keV} / counting tin$	me, cps	$sBK = s(net area_{609keV}) / counting$
Cumbration: StandardCpS295keV counting time, cpsS(CpS295keV) = s(net area295keV) / counting time, cpsStandardCPS295keV counting time, cpss(CpS295keV) = s(net area295keV) / s(CpS352keV) = s(net area295keV) / s(CpS352keV) = s(net area353keV) / s(CpS352keV) = s(net area353keV) / counting time, cpsCount rate standardcPS395keV counting time, cpss(CpS295keV) = s(net area3295keV) / s(CpS3660keV) = s(net area3606keV) / counting time, cpsCount rate standardcPS395keV counting time, cpss(CpS3660keV) = s(net area3606keV) / counting time, cpsActivity in standard on reference dateA_0=3,54 kBq5 %Days decayedtt = days from reference date to measuring date7 yearsActivity in standard on calibration dateA_8k+226 G205keV $A_{7b-100} = A_0 \cdot e^{-n\frac{2}{r_1^2}}$, BqsA_{Ra+226} +/- 5 %Geometry factorG295keV= A_{Ra+226} / cpS295keV, Bq/cpssG = sA / cpS295keV , Bq/cpsGeometry factorG352keV= A_{Ra+226} / cpS352keV, Bq/cpssG = sA / cpS352keV , Bq/cpsGeometry factorG352keV= A_{Ra+226} / cpS352keV, Bq/cpssG = sA / cpS352keV , Bq/cpsSample measurementcpS352keV = net area352keV/ counting time, cpss(cpS352keV) = s(net area352keV) / counting time, cpsSample measurementcpS352keV = net area352keV/ counting time, cpss(cpS352keV) = s(net area352keV) / counting time, cpsSample measurementcpS352keV = net area352keV/ counting time, cpss(cpS352keV) = s(net area352keV) / counting time, cpsSample measurementcpS352keV	measurement				time, cps
Count rate standardCps_2sk_VCps_2sk_VCps_2sk_VStep Sigk_VSite area_2sk_VStep Sigk_VStep Sigk_VSite area_2sk_VStep Sigk_VSite area_2sk_VStep Sigk_VStep Sigk_V <td>Calibration:</td> <td>cns</td> <td>cps — pot prop /</td> <td></td> <td>s(aps) = s(pat area) /</td>	Calibration:	cns	cps — pot prop /		s(aps) = s(pat area) /
SamadaCount rate standardCount rate cpsss2kevCount rate area counting time, cpsCounting time, cpsCounting time, cpsCount rate standardcps counting time, cpscounting time, cpss(cpsss2kev) = s(net area socning time, cpss(cpsss2kev) = s(net area counting time, cpsActivity in standard on reference dateA0 = 3,54 kBqs(cpsss2kev) = s(net area counting time, cpss(cpsss2kev) = s(net area counting time, cpsDays decayedttt = days from reference date to measuring date7 yearsActivity in standard on calibration dateARx-226 SocowArps-30 = Ar · e^{-bt} r_2^{-2}, BqsARa-226 = +/- 5 %Geometry factorG295kev= ARx-226 / cps295kev, Bq/cpssG = sA / cps295kev , Bq/cpsGeometry factorG352kev= ARx-226 / cps352kev/, Bq/cpssG = sA / cps295kev , Bq/cpsGeometry factorG609kev= ARx-226 / cps352kev/, Bq/cpssG = sA / cps352kev / Bq/cpsSample measurementcps352kevcps352kev = net area counting time, cpss(cps352kev) = s(net area s25kev) / counting time, cpsSample measurementcps352kevcps352kev = net area counting time, cpss(cps352kev) = s(net area s25kev) / counting time, cpsSample measurementcps352kevcps352kev = net area counting time, cpss(cps352kev) = s(net area s25kev) / counting time, cpsSample measurementcps352kevcps352kev = net area counting time, cpss(cps352kev) = s(net area s25kev) / counting time, cpsSample measurementcps352kevcps3	standard	CPS295keV	counting time cps		$s(cps_{295keV}) = s(nct arca_{295keV})$
StandardCP-502eVCP-502eVCP-502eVCOUNTING time, cpsCounting time, cpscounting time, cpscounting time, cpss(cps _{209keV}) = s(net area _{609keV}) / counting time, cpsActivity in standard on reference dateA ₀ = 3,54 kBq5 %Activity in standard on reference date A_{0} = 3,54 kBq7 yearsDays decayedtt = days from reference date to measuring date7 yearsActivity in standard on reference date $A_{9-20} = A_0 \cdot e^{-ik\frac{2}{2}}$, BqsA _{Ra-226} = +/- 5 %Counting time, cps $A_{9-210} = A_0 \cdot e^{-ik\frac{2}{2}}$, BqsA _{Ra-226} = +/- 5 %Counting time, cpssG = sA / cps _{205keV} , Bq/cpssG = sA / cps _{205keV} , Bq/cpsGeometry factorG _{205keV} = A _{Ra-226} / cps _{305keV} , Bq/cpssG = sA / cps _{305keV} , Bq/cpsGeometry factorG _{352keV} = A _{Ra-226} / cps _{305keV} , Bq/cpssG = sA / cps _{305keV} , Bq/cpsGeometry factorG _{609keV} = A _{Ra-226} / cps _{305keV} , Bq/cpssG = sA / cps _{305keV} , Bq/cpsSample measurementcps _{305keV} = net area _{205keV} / counting time, cpss(cps _{305keV}) = s(net area _{205keV}) / counting time, cpsSample measurementcps _{305keV} = net area _{205keV} / counting time, cpss(cps _{205keV}) = s(net area _{305keV}) / counting time, cpsSample measurementcps _{305keV} = net area _{005keV} / counting time, cpss(cps _{205keV}) = s(net area _{305keV}) / counting time, cpsSample measurementcps _{305keV} = net area _{005keV} / counting time, cpss(cps _{205keV}) = s(net area _{005keV}) / counting time, cpsSample <td>Count rate</td> <td>CDS252keV</td> <td>$cps_{252keV} = net area_{252keV}/$</td> <td></td> <td>$S(cps_{252leav}) = S(net area_{252leav}) /$</td>	Count rate	CDS252keV	$cps_{252keV} = net area_{252keV}/$		$S(cps_{252leav}) = S(net area_{252leav}) /$
Count rate standardcps _{609kev} cps _{609kev} = net area _{609kev} / counting time, cpss(cps _{609kev}) = s(net area _{609kev}) / counting time, cpsActivity in standard on 	standard	•P ^{3332Kev}	counting time, cps		counting time, cps
standardcounting time, cpscounting time, cpsActivity in reference dateA ₀ =3,54 kBq5 %Half lifet/2kl/2 = 1601 years (Schøtzig and Schraeder, 1993)7 yearsDays decayedtt = days from reference date to measuring date7 yearsActivity in standard on calibration dateA _{Ra-226} $A_{rb-210} = A_{0} \cdot e^{-\ln \frac{2}{r_{1}^{2}}}$, BqsA _{Ra-226} = +/- 5 %Geometry factorG _{295keV} = A _{Ra-226} / cps _{395keV} , Bq/cpssG = sA / cps _{395keV} , Bq/cpsGeometry factorG _{352keV} = A _{Ra-226} / cps _{352keV} , Bq/cpssG = sA / cps _{360keV} , Bq/cpsGeometry factorG _{09keV} = A _{Ra-226} / cps _{352keV} , Bq/cpssG = sA / cps _{360keV} , Bq/cpsMeasurement:Sample measurementcps _{352keV} cps _{352keV} / counting time, cpss(cps _{352keV}) = s(net area _{295keV}) / counting time, cpsSample measurementcps _{352keV} cps _{352keV} / counting time, cpss(cps _{352keV}) = s(net area _{352keV}) / counting time, cpsSample measurementcps _{352keV} cps _{400keV} = net area _{352keV} / counting time, cpss(cps _{352keV}) = s(net area _{352keV}) / counting time, cpsSample measurementcps _{352keV} cps _{600keV} = net area _{400keV} / counting time, cpss(cps _{400keV}) = s(net area _{400keV}) / counting time, cpsSample measurementcps _{600keV} cps _{600keV} = net area _{400keV} / counting time, cpss(cps _{400keV}) = s(net area _{400keV}) / counting time, cpsSample measurementcps _{600keV} cps _{600keV} = net area _{400keV} / counting time, cpss(cps _{400keV}) = s(net area ₄₀₀	Count rate	cps _{609keV}	$cps_{609keV} = net area_{609keV}/$		$s(cps_{609keV}) = s(net area_{609keV}) /$
Activity in standard on reference date $A_{0}=3,54 \text{ kBq}$ 5 \% Half lifet/2t/2=1601 years (Schøtzig and Schraeder, 1993)7 yearsDays decayedtt = days from reference date to measuring date7 yearsActivity in standard on calibration date A_{Ra-226} $A_{Pb-210} = A_0 \cdot e^{-in\frac{2}{r_{1}^{2}}}$, Bq $sA_{Ra-226} = +/-5 \%$ Geometry factor G_{295keV} $=A_{Ra-226} / cps_{295keV}$, Bq/cps $sG = sA / cps_{295keV}$, Bq/cps Geometry factor G_{352keV} $=A_{Ra-226} / cps_{352keV}$, Bq/cps $sG = sA / cps_{352keV}$, Bq/cps Geometry factor G_{09keV} $=A_{Ra-226} / cps_{395keV}$, Bq/cps $sG = sA / cps_{352keV}$, Bq/cps Geometry factor G_{09keV} $=A_{Ra-226} / cps_{395keV}$, Bq/cps $sG = sA / cps_{352keV}$, Bq/cps Geometry factor G_{09keV} $=A_{Ra-226} / cps_{395keV}$, Bq/cps $sG = sA / cps_{360keV}$, Bq/cps Geometry factor G_{09keV} $=A_{Ra-226} / cps_{395keV}$, Bq/cps $sG = sA / cps_{360keV}$, Bq/cps Geometry factor G_{09keV} cps_{352keV} $ent area_{352keV} / counting time, cps$ Sample measurement cps_{352keV} $cps_{352keV} = net area_{352keV} / counting time, cps$ $s(cps_{352keV}) = s(net area_{352keV}) / counting time, cps$ Sample measurement $cps_{309keV} = net area_{352keV} / counting time, cps$ $s(cps_{609keV}) = s(net area_{609keV}) / counting time, cps$ Sample measurement $cps_{309keV} = net area_{352keV} / counting time, cps$ $s(cps_{609keV})^2 + (ciedarea_{609keV}) / counting time, cps$ <	standard		counting time, cps		counting time, cps
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Activity in	A _{0Ra-226}	$A_0 = 3,54 \text{ kBq}$		5 %
reference datet/2t/2 = 1601 years (Schøtzig and Schraeder, 1993)7 yearsDays decayedttt = adays from reference date to measuring date7 yearsActivity in standard on calibration dateA _{Ra-226} $A_{Pb-210} = A_0 \cdot e^{-\frac{1}{h_1^2}}$, BqSA _{Ra-226} = +/- 5 %Geometry factorG _{295keV} $= A_{Ra-226} / cps_{295keV}$, Bq/cpsSG = sA / cps_{295keV}, Bq/cpsGeometry factorG _{352keV} $= A_{Ra-226} / cps_{352keV}$, Bq/cpsSG = sA / cps_{352keV}, Bq/cpsGeometry factorG _{352keV} $= A_{Ra-226} / cps_{352keV}$, Bq/cpsSG = sA / cps_{352keV}, Bq/cpsGeometry factorG _{609keV} $= A_{Ra-226} / cps_{369keV}$, Bq/cpsSG = sA / cps_{352keV}, Bq/cpsMeasurement:Sample measurementcps_{295keV} = cps_{295keV} = net area_{295keV}/ counting time, cpss(cps_{295keV}) = s(net area_{295keV}) / counting time, cpsSample measurementcps_{352keV} = cps_{352keV} = net area_{352keV}/ counting time, cpss(cps_{352keV}) = s(net area_{352keV}) / counting time, cpsSample measurementcps_{352keV} = net area_{369keV}/ counting time, cpss(cps_{352keV}) = s(net area_{369keV}) / counting time, cpsSample neasurementcps_{609keV} = net area_{609keV}/ counting time, cpss(cps_{5609keV}) = s(net area_{609keV}) / counting time, cpsWeight of sample on measuring dateAA=G · (cps - BK) / V V $A = \sqrt{\left(\frac{G(cps - BK)}{V}\right)^2 + \left(\frac{G(cgs - BK)}{V}\right)^2 + \left(\frac{G(cgs - BK)/V}{V^2}\right)^2 + \left(\frac{G(cgs - BK)/V}{V^2}\right)^2 + \left(\frac{Ba}{V}\right)^2 + \left(\frac{G(cgs - BK)/V}{V^2}\right)^2$	standard on				
Half lifeU/2U/2 = 1001 years (Schötzig and Schraeder, 1993)/ yearsDays decayedtt = days from reference date to measuring datesA _{Ra-226} Activity in standard on calibration dateA _{Ra-226} $A_{Pb-210} = A_0 \cdot e^{-ih\frac{2}{r_1}}$, BqsA _{Ra-226} = +/- 5 %Geometry factorG _{295keV} = A _{Ra-226} / cps _{295keV} , Bq/cpssG = sA / cps _{295keV} , Bq/cpsGeometry factorG _{352keV} = A _{Ra-226} / cps _{352keV} , Bq/cpssG = sA / cps _{295keV} , Bq/cpsGeometry factorG _{609keV} = A _{Ra-226} / cps _{352keV} , Bq/cpssG = sA / cps _{352keV} , Bq/cpsGeometry factorG _{609keV} = A _{Ra-226} / cps _{609keV} , Bq/cpssG = sA / cps _{609keV} , Bq/cpsGeometry factorG _{609keV} = A _{Ra-226} / cps _{609keV} , Bq/cpssG = sA / cps _{609keV} , Bq/cpsMeasurement: </td <td>reference date</td> <td>.1.(</td> <td>1/ 1/01</td> <td></td> <td>-</td>	reference date	.1.(1/ 1/01		-
Days decayedtt= days from referencedate toActivity in standard on calibration dateA _{Ra-226} $A_{Pb-210} = A_0 \cdot e^{-ib\frac{2}{r_1}}$, Bq $sA_{Ra-226} = +/-5$ %Geometry factorG _{295keV} $= A_{Ra-226} / cps_{295keV}$, Bq/cps $sG = sA / cps_{295keV}$, Bq/cpsGeometry factorG _{352keV} $= A_{Ra-226} / cps_{352keV}$, Bq/cps $sG = sA / cps_{352keV}$, Bq/cpsGeometry factorG _{609keV} $= A_{Ra-226} / cps_{352keV}$, Bq/cps $sG = sA / cps_{352keV}$, Bq/cpsGeometry factorG _{609keV} $= A_{Ra-226} / cps_{609keV}$, Bq/cps $sG = sA / cps_{609keV}$, Bq/cpsGeometry factorG _{609keV} $= A_{Ra-226} / cps_{609keV}$, Bq/cps $sG = sA / cps_{609keV}$, Bq/cpsMeasurement: $smple$ cps_{295keV} cps_{295keV} = net area $_{295keV}/$ $s(cps_{295keV}) = s(net area_{295keV}) / counting time, cpsSamplemeasurementcps_{352keV}cps_{352keV} = net area_{352keV}/counting time, cpss(cps_{295keV}) = s(net area_{352keV}) / counting time, cpsSamplemeasurementcps_{509keV} = net area_{609keV}/counting time, cpss(cps_{295keV}) = s(net area_{352keV} / counting time, cpsSamplemeasurementcps_{609keV} = net area_{609keV}/counting time, cpss(cps_{609keV}) = s(net area_{609keV} / counting time, cpsWeight ofsampleV1 \cdot 10^4 kgActivity insample onmeasuring dateA = G \cdot (cps - BK) / Va = \sqrt{\left(\frac{sG(cps - BK)}{V}\right)^2 + \left(\frac{G \cdot sRK}{V}\right)^2 + \left(\frac{-G(cps - BK) \times V}{V^2}\right)^2}$	Half life	t½	$t^{1/2} = 1601$ years		/ years
Days decayedtt= days from referencedatesActivity in standard on calibration date A_{Ra-226} $A_{Pb-210} = A_0 \cdot e^{-iE_{T_2}^2}$, Bq $sA_{Ra-226} = +/-5\%$ Geometry factor G_{295keV} $= A_{Ra-226} / cps_{295keV}$, Bq/cps $sG = sA / cps_{295keV}$, Bq/cpsGeometry factor G_{352keV} $= A_{Ra-226} / cps_{352keV}$, Bq/cps $sG = sA / cps_{352keV}$, Bq/cpsGeometry factor G_{609keV} $= A_{Ra-226} / cps_{352keV}$, Bq/cps $sG = sA / cps_{352keV}$, Bq/cpsGeometry factor G_{609keV} $= A_{Ra-226} / cps_{609keV}$, Bq/cps $sG = sA / cps_{609keV}$, Bq/cpsMeasurement: $Sample$ measurement $cps_{295keV} = net area_{295keV} / counting time, cpss(cps_{295keV}) = s(net area_{295keV}) / counting time, cpsSamplemeasurementcps_{352keV}cps_{352keV} = net area_{352keV} / counting time, cpss(cps_{352keV}) = s(net area_{352keV}) / counting time, cpsSamplemeasurementcps_{352keV}cps_{352keV} = net area_{352keV} / counting time, cpss(cps_{352keV}) = s(net area_{352keV}) / counting time, cpsSamplemeasurementcps_{300keV}cps_{300keV} = net area_{300keV} / counting time, cpss(cps_{300keV}) = s(net area_{352keV}) / counting time, cpsWeight ofsampleneasuring dateA = G \cdot (cps - BK) / VsA = \sqrt{\left(\frac{s0}{20}(cps - BK)\right)^2 + \left(\frac{G \cdot sBK}{V}\right)^2 + \left(\frac{-G(cps - BK) \cdot sV}{V^2}\right)^2}Ba$			(Schøtzig and Schraeder, 1993)		
Dely structionProvide and the measuring dateActivity in standard on calibration date A_{Ra-226} $A_{Pb-210} = A_0 \cdot e^{-ik\frac{2}{r_{2}^{\prime}}}$, Bq $sA_{Ra-226} = +/-5 \%$ Geometry factor G_{295keV} $= A_{Ra-226} / cps_{295keV}$, Bq/cps $sG = sA / cps_{295keV}$, Bq/cpsGeometry factor G_{352keV} $= A_{Ra-226} / cps_{352keV}$, Bq/cps $sG = sA / cps_{352keV}$, Bq/cpsGeometry factor G_{609keV} $= A_{Ra-226} / cps_{609keV}$, Bq/cps $sG = sA / cps_{352keV}$, Bq/cpsGeometry factor G_{609keV} $= A_{Ra-226} / cps_{609keV}$, Bq/cps $sG = sA / cps_{609keV}$, Bq/cpsMeasurement: $Scps_{295keV}$ cps_{295keV} $e^{rastruction} - cps_{10}$ Sample measurement cps_{352keV} $cps_{352keV} = net area_{295keV}/counting time, cpss(cps_{295keV}) = s(net area_{352keV}) / counting time, cpsSamplemeasurementcps_{352keV}cps_{352keV} = net area_{352keV}/counting time, cpss(cps_{509keV}) = s(net area_{352keV}) / counting time, cpsSamplemeasurementcps_{309keV}cps_{309keV} = net area_{609keV}/counting time, cpss(cps_{609keV}) = s(net area_{609keV}) / counting time, cpsSamplemeasurementcps_{609keV}cps_{609keV} = net area_{609keV}/counting time, cpss(cps_{609keV}) = s(net area_{609keV}) / counting time, cpsWeight ofsamplemeasuring dateAA = G \cdot (cps - BK) / Vs_{A} = \sqrt{\left(\frac{sG(cps - BK)}{V}\right)^2 + \left(\frac{G \cdot sBK}{V}\right)^2 + \left(\frac{-G(cps - BK) \cdot sV}{V^2}\right)^2}Ba$	Days decayed	t	t = days from reference	date to	
Activity in standard on calibration date A_{Ra-226} $A_{Pb-210} = A_0 \cdot e^{-m_{L_2}^2 t}$, Bq $sA_{Ra-226} = +/-5 \%$ Geometry factor G_{295keV} $= A_{Ra-226} / cps_{295keV}$, Bq/cps $sG = sA / cps_{295keV}$, Bq/cpsGeometry factor G_{352keV} $= A_{Ra-226} / cps_{352keV}$, Bq/cps $sG = sA / cps_{352keV}$, Bq/cpsGeometry factor G_{609keV} $= A_{Ra-226} / cps_{609keV}$, Bq/cps $sG = sA / cps_{352keV}$, Bq/cpsGeometry factor G_{609keV} $= A_{Ra-226} / cps_{609keV}$, Bq/cps $sG = sA / cps_{609keV}$, Bq/cpsMeasurement: $SG = sA / cps_{352keV}$, Bq/cps $sG = sA / cps_{609keV}$, Bq/cpsSample measurement cps_{295keV} $cps_{295keV} = net area_{295keV}/counting time, cpss(cps_{295keV}) = s(net area_{295keV}) / counting time, cpsSamplemeasurementcps_{352keV} = net area_{352keV}/counting time, cpss(cps_{352keV}) = s(net area_{352keV}) / counting time, cpsSamplemeasurementcps_{352keV} = net area_{352keV}/counting time, cpss(cps_{352keV}) = s(net area_{352keV}) / counting time, cpsSamplemeasurementcps_{609keV}cps_{609keV} = net area_{609keV}/counting time, cpss(cps_{609keV}) = s(net area_{609keV}) / counting time, cpsWeight ofsampleV1 \cdot 10^{-4} kgActivity insample onmeasuring dateA = G \cdot (cps - BK) / VsA = \sqrt{\left(\frac{sG(cps - BK)}{V}\right)^2 + \left(\frac{G \cdot cps}{V}\right)^2 + \left(\frac{-G(cps - BK) \cdot sV}{V^2}\right)^2}$	2 ajs accajea	· ·	measuring date		
standard on calibration date $A^{Pb-210} - A^0 \cdot e^{-t_2^2}$, BqGeometry factorG_{295keV= A_{Ra-226} / cps_{295keV}, Bq/cpssG = sA / cps_{295keV}, Bq/cpsGeometry factorG_{352keV= A_{Ra-226} / cps_{352keV}, Bq/cpssG = sA / cps_{352keV}, Bq/cpsGeometry factorG_{609keV= A_{Ra-226} / cps_{609keV}, Bq/cpssG = sA / cps_{352keV}, Bq/cpsGeometry factorG_{609keV= A_{Ra-226} / cps_{609keV}, Bq/cpssG = sA / cps_{352keV}, Bq/cpsMeasurement:SG = sA / cps_{609keV}, Bq/cpsSample measurementcps_{295keV} cps_{295keV} = net area_{295keV/ counting time, cpsSample measurementcps_{352keV} cps_{352keV} = net area_{352keV/ counting time, cpsSample measurementcps_{352keV} cps_{352keV} = net area_{352keV/ counting time, cpsSample measurementcps_{609keV} counting time, cpsSumple measurementcps_{609keV} = net area_{609keV/ counting time, cpsSumple measurementcps_{609keV} = net area_{609keV/ counting time, cpsSumple measurementcps_{609keV} = net area_{609keV/ counting time, cpsWeight of sampleVActivity in sample on measuring dateA = G · (cps - BK) / V VSumple on measuring dateAA = G · (cps - BK) / VSumple on measuring dateAActivity in sample on measuring dateA	Activity in	A _{Ra-226}	$-\ln\frac{2}{t}$		$sA_{Ra-226} = +/-5\%$
calibration dateImage: Constraint of the second secon	standard on		$A_{Pb-210} - A_0 \cdot e t_{\frac{1}{2}}^{I}$, Bq		
Geometry factor G_{295keV} $= A_{Ra-226} / cps_{295keV}$, Bq/cps $sG = sA / cps_{295keV}$, Bq/cps Geometry factor G_{352keV} $= A_{Ra-226} / cps_{352keV}$, Bq/cps $sG = sA / cps_{352keV}$, Bq/cps Geometry factor G_{609keV} $= A_{Ra-226} / cps_{609keV}$, Bq/cps $sG = sA / cps_{609keV}$, Bq/cps Geometry factor G_{609keV} $= A_{Ra-226} / cps_{609keV}$, Bq/cps $sG = sA / cps_{609keV}$, Bq/cps Measurement:Sample measurement cps_{295keV} $cps_{295keV} = net area_{295keV} / counting time, cps$ $s(cps_{295keV}) = s(net area_{295keV}) / counting time, cps$ Sample measurement cps_{352keV} $cps_{352keV} = net area_{352keV} / counting time, cps$ $s(cps_{352keV}) = s(net area_{352keV}) / counting time, cps$ Sample measurement $cps_{609keV} = net area_{609keV} / counting time, cps$ $s(cps_{609keV}) = s(net area_{609keV}) / counting time, cps$ Sample measurement $cps_{609keV} = net area_{609keV} / counting time, cps$ $s(cps_{609keV}) = s(net area_{609keV}) / counting time, cps$ Weight of sample V $1 \cdot 10^4 kg$ Activity in sample on measuring date $A = G \cdot (cps - BK) / V$ $sA = \sqrt{\left(\frac{sG(cps - BK)}{V}\right)^2 + \left(\frac{G \cdot sBK}{V}\right)^2 + \left(\frac{-G(cps - BK) \cdot sV}{V^2}\right)^2}$ Ba	calibration date		_		
Geometry factor G_{352keV} $= A_{Ra-226} / cps_{352keV}$, Bq/cps $sG = sA / cps_{352keV}$, Bq/cps Geometry factor G_{609keV} $= A_{Ra-226} / cps_{609keV}$, Bq/cps $sG = sA / cps_{609keV}$, Bq/cps Measurement:Sample measurement cps_{295keV} $cps_{295keV} = net area_{295keV} / counting time, cps$ $s(cps_{295keV}) = s(net area_{295keV}) / counting time, cps$ Sample measurement $cps_{352keV} = net area_{352keV} / counting time, cps$ $s(cps_{352keV}) = s(net area_{352keV}) / counting time, cps$ Sample measurement $cps_{352keV} = net area_{352keV} / counting time, cps$ $s(cps_{352keV}) = s(net area_{352keV}) / counting time, cps$ Sample measurement $cps_{609keV} = net area_{609keV} / counting time, cps$ $s(cps_{609keV}) = s(net area_{609keV}) / counting time, cps$ Sample measurement $cps_{609keV} = net area_{609keV} / counting time, cps$ $s(cps_{609keV}) = s(net area_{609keV}) / counting time, cps$ Weight of sample V $1 \cdot 10^4 kg$ Activity in sample on measuring date $A = G \cdot (cps - BK) / V$ $s_A = \sqrt{\left(\frac{sG(cps - BK)}{V}\right)^2 + \left(\frac{G \cdot sBK}{V}\right)^2 + \left(\frac{-G(cps - BK) \cdot sV}{V^2}\right)^2}$	Geometry factor	G _{295keV}	$= A_{Ra-226} / cps_{295keV}, \qquad Bq/c_{J}$	ps	$sG = sA / cps_{295keV}$, Bq/cps
Geometry factor G_{609keV} $= A_{Ra-226} / cps_{609keV}$, Bq/cps $sG = sA / cps_{609keV}$, Bq/cps Measurement:Sample measurement cps_{295keV} $cps_{295keV} = net area_{295keV} / counting time, cps$ $s(cps_{295keV}) = s(net area_{295keV}) / counting time, cps$ Sample measurement cps_{352keV} $cps_{352keV} = net area_{352keV} / counting time, cps$ $s(cps_{352keV}) = s(net area_{352keV}) / counting time, cps$ Sample measurement $cps_{352keV} = net area_{352keV} / counting time, cps$ $s(cps_{352keV}) = s(net area_{352keV}) / counting time, cps$ Sample measurement $cps_{609keV} = net area_{609keV} / counting time, cps$ $s(cps_{609keV}) = s(net area_{609keV}) / counting time, cps$ Weight of sample measuring dateV $1 \cdot 10^4 kg$ Activity in sample on measuring dateA = G \cdot (cps - BK) / V $sA = \sqrt{\left(\frac{sG(cps - BK)}{V}\right)^2 + \left(\frac{G \cdot sDK}{V}\right)^2 + \left(\frac{-G(cps - BK) \cdot sV}{V^2}\right)^2}$	Geometry factor	G _{352keV}	$= A_{Ra-226} / cps_{352keV}, \qquad Bq/c_{J}$	ps	$sG = sA / cps_{352keV}$, Bq/cps
Measurement:Sample measurement cps_{295keV} cps_{295keV} = net $area_{295keV}/$ counting time, cps $s(cps_{295keV}) = s(net area_{295keV}) / counting time,cpsSamplemeasurementcps_{352keV}cps_{352keV} = net area_{352keV}/counting time, cpss(cps_{352keV}) = s(net area_{352keV}) / counting time,cpsSamplemeasurementcps_{352keV}cps_{352keV} = net area_{352keV}/counting time, cpss(cps_{352keV}) = s(net area_{352keV}) / counting time,cpsSamplemeasurementcps_{609keV} = net area_{609keV}/counting time, cpss(cps_{609keV}) = s(net area_{609keV}) / counting time,cpsWeight ofsampleV1 \cdot 10^{-4} kgActivity insample onmeasuring dateA = G \cdot (cps - BK) / VsA = \sqrt{\left(\frac{sG(cps - BK)}{V}\right)^2 + \left(\frac{G \cdot sBK}{V}\right)^2 + \left(\frac{-G(cps - BK) \cdot sV}{V^2}\right)^2}Ba$	Geometry factor	G _{609keV}	$= A_{Ra-226} / cps_{609keV}, \qquad Bq/c_{J}$	ps	$sG = sA / cps_{609keV}$, Bq/cps
Sample measurement cps_{295keV} cps_{295keV} = net area $_{295keV}$ $s(cps_{295keV})$ = $s(net area_{295keV})$ / counting time, cps Sample measurement cps_{352keV} cps_{352keV} = net area $_{352keV}$ / counting time, cps $s(cps_{352keV})$ = $s(net area_{352keV})$ / counting time, cps Sample measurement cps_{609keV} cps_{609keV} = net area $_{609keV}$ / counting time, cps $s(cps_{609keV})$ = $s(net area_{609keV})$ / counting time, cps Sample measurement cps_{609keV} = net area $_{609keV}$ / counting time, cps $s(cps_{609keV})$ = $s(net area_{609keV})$ / counting time, cps Weight of sampleV $1 \cdot 10^4$ kgActivity in sample on measuring date $A = G \cdot (cps - BK) / V$ $sA = \sqrt{\left(\frac{sG(cps - BK)}{V}\right)^2 + \left(\frac{G \cdot sBK}{V}\right)^2 + \left(\frac{-G(cps - BK) \cdot sV}{V^2}\right)^2}$ Bq	Measurement:				
In EnderIn EnderIn EnderIn EnderIn EnderIn EnderIn EnderIn EnderImage: measurementcps_352keVcps_352keV = net area_352keV/ counting time, cpss(cps_352keV) = s(net area_352keV) / counting time, cpsSample measurementcps_609keVcps_609keV = net area_609keV/ counting time, cpss(cps_609keV) = s(net area_609keV) / counting time, cpsWeight of sampleVcps_609keV = net area_609keV/ counting time, cpss(cps_609keV) = s(net area_609keV) / counting time, cpsWeight of sampleV1 · 104 kgActivity in sample on measuring dateA = G · (cps - BK) / VsA = $\sqrt{\left(\frac{sG(cps - BK)}{V}\right)^2 + \left(\frac{G \cdot sDK}{V}\right)^2 + \left(\frac{-G(cps - BK) \cdot sV}{V^2}\right)^2}$	Sample	CDS295keV	$cps_{295keV} = net area_{295keV}/$	s(cps295	$_{keV}$ = s(net area _{295keV}) / counting time,
Sample measurementcps_{352keV}cps_{352keV} = net area_{352keV}/ counting time, cpss(cps_{352keV}) = s(net area_{352keV}) / counting time, cpsSample measurementcps_{609keV}cps_{609keV} = net area_{609keV}/ counting time, cpss(cps_{609keV}) = s(net area_{609keV}) / counting time, cpsWeight of sampleVcps_{609keV} = net area_{609keV}/ counting time, cpss(cps_{609keV}) = s(net area_{609keV}) / counting time, cpsWeight of sampleVl · 10^4 kgActivity in sample on measuring dateA = G · (cps - BK) / V PsA = $\sqrt{\left(\frac{sG(cps - BK)}{V}\right)^2 + \left(\frac{G \cdot sBK}{V}\right)^2 + \left(\frac{-G(cps - BK) \cdot sV}{V^2}\right)^2}}$	measurement	1 200000	counting time, cps	cps	
Sample measurementcps_{352keV}cps_{352keV} = net area_{352keV}/ counting time, cpss(cps_{352keV}) = s(net area_{352keV}) / counting time, cpsSample measurementcps_{609keV}cps_{609keV} = net area_{609keV}/ counting time, cpss(cps_{609keV}) = s(net area_{609keV}) / counting time, cpsWeight of sampleV1 · 10 ⁻⁴ kgActivity in sample on measuring dateA = G · (cps - BK) / VsA = $\sqrt{\left(\frac{sG(cps - BK)}{V}\right)^2 + \left(\frac{G \cdot sBK}{V}\right)^2 + \left(\frac{-G(cps - BK) \cdot sV}{V^2}\right)^2}$					
measurementcounting time, cpscpsSample measurement cps_{609keV} $cps_{609keV} = net area_{609keV}/counting time, cpss(cps_{609keV}) = s(net area_{609keV}) / counting time,cpsWeight ofsampleV1 \cdot 10^4 \text{ kg}Activity insample onmeasuring dateAA = G \cdot (cps - BK) / VsA = \sqrt{\left(\frac{sG(cps - BK)}{V}\right)^2 + \left(\frac{G \cdot sDK}{V}\right)^2 + \left(\frac{-G(cps - BK) \cdot sV}{V^2}\right)^2}Ba$	Sample	cps _{352keV}	$cps_{352keV} = net area_{352keV}/$	s(cps ₃₅₂	$_{keV}$) = s(net area _{352keV}) / counting time,
Sample measurementcps_{609keV}cps_{609keV} = net area_{609keV}/ counting time, cpss(cps_{609keV}) = s(net area_{609keV}) / counting time, cpsWeight of sampleV1 · 10 ⁻⁴ kgActivity in sample on measuring dateA = G · (cps - BK) / V $sA = \sqrt{\left(\frac{sG(cps - BK)}{V}\right)^2 + \left(\frac{G \cdot sDK}{V}\right)^2 + \left(\frac{-G(cps - BK) \cdot sV}{V^2}\right)^2}$	measurement		counting time, cps	cps	
Sample measurementcps_{609keV}cps_{609keV}end area_{609keV}/ counting time, cpss(cps_{609keV}) = s(net area_{609keV}) / counting time, cpsWeight of sampleV1 · 10 ⁻⁴ kgActivity in sample on measuring dateAA = G · (cps - BK) / V $sA = \sqrt{\left(\frac{sG(cps - BK)}{V}\right)^2 + \left(\frac{G \cdot sBK}{V}\right)^2 + \left(\frac{-G(cps - BK) \cdot sV}{V^2}\right)^2}$	Samm1a		ang	alana) = $a(not area) / accurting time$
Inclusion interventionCounting time, cpscpsWeight of sampleV $1 \cdot 10^4$ kgActivity in sample on measuring dateA $A = G \cdot (cps - BK) / V$ $sA = \sqrt{\left(\frac{sG(cps - BK)}{V}\right)^2 + \left(\frac{G \cdot sBK}{V}\right)^2 + \left(\frac{-G(cps - BK) \cdot sV}{V^2}\right)^2}$ Bo	Sample	cps _{609keV}	$cps_{609keV} = net area_{609keV}$	s(cps ₆₀₉	$_{\rm keV}$ = s(net area _{609keV}) / counting time,
Weight of sampleV $1 \cdot 10^4 \text{ kg}$ Activity in sample on measuring dateA = G \cdot (cps - BK) / V $sA = \sqrt{\left(\frac{sG(cps - BK)}{V}\right)^2 + \left(\frac{G \cdot sDK}{V}\right)^2 + \left(\frac{-G(cps - BK) \cdot sV}{V^2}\right)^2}$ Bo	measurement		counting time, eps	Cps	
sampleA = G · (cps - BK) / V $sA = \sqrt{\left(\frac{sG(cps - BK)}{V}\right)^2 + \left(\frac{G \cdot scps}{V}\right)^2 + \left(\frac{-G(cps - BK) \cdot sV}{V^2}\right)^2}$ assumptionassumptionassumptionmeasuring dateBq	Weight of	V		1 · 10 ⁻⁴	kg
Activity in sample on measuring date A = G · (cps – BK) / V $sA = \sqrt{\left(\frac{sG(cps - BK)}{V}\right)^2 + \left(\frac{G \cdot sps}{V}\right)^2 + \left(\frac{G \cdot spK}{V}\right)^2 + \left(\frac{-G(cps - BK) \cdot sV}{V^2}\right)^2}$ Bo	sample				
sample on measuring date $SA = \sqrt{\left(\frac{SG(CPS - BK)}{V}\right) + \left(\frac{G \cdot SDK}{V}\right) + \left(\frac{G \cdot SDK}{V}\right) + \left(\frac{-G(CPS - BK) \cdot SV}{V^2}\right)}$	Activity in	А	$A = G \cdot (cps - BK) / V$	(-0)	$(PK)^{2} (C_{resp})^{2} (C_{resp})^{2} (C_{res})^{2} (C_{res})^{2} (C_{resp})^{2} (C_{resp})^{$
measuring date	sample on			$sA = \sqrt{\frac{sG(s)}{sG(s)}}$	$\frac{c_{PS}-b_{K}}{V} + \left(\frac{\sigma \cdot sc_{PS}}{V}\right) + \left(\frac{\sigma \cdot sc_{K}}{V}\right) + \left(\frac{\sigma \cdot sb_{K}}{V}\right) + \left(\frac{-\sigma \cdot (c_{PS}-b_{K}) \cdot sV}{V^{2}}\right)$
I	measuring date			Ba	

Table 2.4: Variables and equations in Ra-226 measurements.

2.7.7 Quality assurance in Pb-210 and Ra-226 measurements

Implementing a new method in the laboratory will require precautions to secure the accuracy of the results.

To ensure the quality of Pb-210 and Ra-226 measurements, sediment samples with a known content of those nuclides have been analyzed (IMR result) as shown in Table 2.5. All results are within the uncertainty given.

Reference	Reference valu	ue, Bq/kg	IMR result	Reference	
material	Pb-210	Ra-226	Pb-210	Ra-226	
IAEA-368 measured 24.04.09	23,2 (19,8-27,2)	21,4 (20,3-22,6)	23,0 ±3	22,9±2,8	IAEA, 1991
IAEA-368 measured 18.05.09	23,2 (19,8-27,2)	21,4 (20,3-22,6)	25,3±2	23,3±2,5	IAEA, 1991
IAEA-368 measured 13.01.10	23,2 (19,8-27,2)	21,4 (20,3-22,6)	21,9±4		IAEA, 1991
IAEA-384	20,9 (19-21,9)	2,4 (2-2,9) info.value		3,7 +/- 1,6	IAEA, 2000
IAEA-385	35,5 (31,2-38,9) info.value	22,7 (21,8-24,0)	42,6±5	22,2 +/- 2,9	IAEA, 2005

Table 2.5: Comparison of IMR-results with reference materials on Pb-210 and Ra-226 content.

95% confidence interval in parentheses.

2.8 Dating

The Pb-210 dating method (Goldberg, 1963) is based on fractionation of U-238 series nuclides, Figure 2.8, in near surface rocks and soil. The total content of Pb-210 in the sediments has its origin from Ra-226 in the sediments (supported) and from deposit of Rn-daughters (Pb-210) on earth's surface (unsupported). There is equilibrium between the nuclides in the U-238 decay series and the content of Ra-226 in the sediments equals the Pb-210 supported. The excess Pb-210 compared to Ra-226 (Pb-210 supported) represents the amount of Pb-210 in settling particles (unsupported); eq. 14.

At sites where the deposition rate of unsupported Pb-210 has been constant over the past century and disturbance of the sediments has not occurred, the concentration profile in cores

follows the exponential decline with depth which results from radioactive decay (Goldberg, 1963).

The content of excess Pb-210 in each layer can be calculated:

$$C_{Pb-210}$$
 unsupported = C_{Pb-210} total - C_{Ra-226} Bq/kg (14)

C = concentration

Two models can be used when calculating age of sediment layers from cores as described in Appleby and Oldfield (1977).

CIC-model: Age - depth profiles is determined from Pb-210 measurements assuming a constant initial concentration (CIC) of unsupported Pb-210 pr. dry weight sediment.

Age of layer:
$$X = \frac{1}{\lambda} \cdot \ln \frac{C_{top}}{C_X} , \text{Years}$$
(15)

 λ = decay constant for Pb-210; 0,0315

0,0315 år-1 (Appleby and Oldfield 1977)

 C_{top} = excess Pb-210 in top layer C_x = excess Pb-210 in layer X

CRS-model: Age - depth profiles is determined from Pb-210 measurements assuming a constant rate of supply (CRS) of unsupported Pb-210 to the sediments per unit time (not per unit dry weight as CIC-model). This method will give better results if sedimentation rates are altering (Appleby and Oldfield 1977).

The content of excess Pb-210 in each layer is calculated.

 $C_{Pb-210unsupported} = C_{Pb-210unsupported} \cdot LW$, Bq (16) LW = layer weight, kg

The inventory of excess Pb-210, A0, in the entire core can then be calculated:

$$A_0 = \int_0^L C$$
, Bq (17)

L= length of core

The inventory of excess Pb-210 in the layers beneath the layer of dept X is calculated:

$$A_{X} = \int_{X}^{L} C$$
, Bq (18)

The age of the layer X is calculated:

Age of layer:
$$X = \frac{1}{\lambda} \cdot \ln \frac{A_0}{A_x}$$
, Years (19)

 $\lambda = \text{decay constant for Pb-210}$ $\lambda = \ln 2 / t_{1/2} = 0,0315 \text{ years-1}$

Uncertainty:

Uncertainty in the dating are not calculated using the principle as described in Chapter 2.7.2, but estimated according to Binford (1989). Ninety-five percent confidence intervals range from 1-2 years at 10 years of age (10-20%), 10-20 (10-20%) years at 100 years and 8-90 (5-60%) at 150 years old.

3. Results

The work includes measuring Cs-137 in 14 cores from 6 different sampling sites. 11 of the cores were analyzed for Pb-210 and Ra-226 in order to date each of the 1 cm slices from the cores. In all the 14 cores there were Cs-137 activity concentrations above the quantification level in the upper sediment layers.

3.1 Particle analysis

One specific 0-1cm layer from each sampling site was analyzed for particle size, Figure 3.1. At all 6 sites the content of clay and silt was dominating. The content of clay and silt was above 90 % in all 6 samples. The two sampling sites in the outlet of the Sognefjord contained the highest sand content, with 9.7% (S3) and 8.0% (S1) respectively. There was no gravel in any of the samples. The detailed results from particle size analysis are shown in Appendix IV Table A18.

Figure 3.1: Particle size distribution.

3.2 Results on Pu-analysis

One specific 0-1 cm layer from each sampling site was analyzed for content of Pu-isotopes. The 238 Pu/ ${}^{239+240}$ Pu ratio was calculated and are shown in Table 3.1. All the 238 Pu/ ${}^{239+240}$ Pu ratios were in range 0.025 to 0.067.

Sampling site	²³⁸ Pu/ ²³⁹⁺²⁴⁰ Pu activity ratio
L1	0.044
L2	0.039
S1	0.067
S2	0.058
S3	0.067
S4	0.025

 Table 3.1: 238Pu/239+240Pu ratio in surface sediment layer from the 6 sampling sites.

3.3 Cs-137 results

The Cs-137 activity concentrations in sediment cores from the 6 sampling sites differ considerably and are presented in Figures 3.2 to 3.7. The Cs-137 activity concentrations in the upper sediment-layer from all 14 cores show Cs-137 activity concentrations in three activity concentration levels. In the outlet of Sognefjorden the Cs-137 level is about 6 times above the level in Laksefjorden. In the head of Sognefjorden the Cs-137 level is about 10 times above the level in the outlet of Sognefjorden.

In Laksefjorden the Cs-137 activity concentration in 0-1 cm layer is from 5.0 Bq/kg (d.w.) to 6.7 Bq/kg (d.w.) at the two sampling sites L1 and L2. The activity concentrations are decreasing with increasing depth in the sediments, Figure 3.2, 3.3 and Table 3.2. The quantification limits are reached at 4 to 6 cm depth. There seems to be no difference in the concentrations in the outlet of the fjord (L1) and in the head of the fjord (L2).

Figure 3.2: Cs-137 in cores from outlet of Laksefjorden, sampling site L1 (2008).

Figure 3.3: Cs-137 in cores from the head of Laksefjorden, sampling site L2 (2008).

Depth	L1-1 Cs-137, Bq/kg (d.w.)	Uncertainty, Bq/kd (d.w.)	L1-2 Cs-137, Bq/kg (d.w.)	Uncertainty, Bq/kd (d.w.)	L2-1 Cs-137, Bq/kg (d.w.)	Uncertainty, Bq/kd (d.w.)	L2-2 Cs-137, Bq/kg (d.w.)	Uncertainty, Bq/kd (d.w.)
0-1 cm	5.7	0.8	5.7	1.0	6.7	1.2	5.0	0.9
1-2 cm	5.7	0.8	2.9	0.7	6.5	1.2	4.7	1.0
2-3 cm	3.4	1.2	1.7	0.5	4.7	1.0	3.7	0.8
3-4 cm	< 3.8		< 2.7		4.8	1.0	< 2.8	
4-5 cm	1.2	0.5	< 3.0		4.7	0.9	2.2	0.8
5-6 cm	< 2.3		< 3.0		3.5	0.7	< 2.9	
6-7 cm	< 3.5		< 3.0		< 2.4		< 2.6	
7-8 cm	< 3.0		< 3.5		< 3.2		< 2.5	
8-9 cm	< 1.6		< 1.5		< 2.6		< 1.2	
9-10 cm	< 2.9		< 2.9		< 2.7		< 2.5	
10-11 cm	< 2.7		< 3.1		< 1.3			
11-12 cm	< 3.1		< 2.9		< 2.5			
12-13 cm			< 3.0		< 3.0			
13-14 cm			< 1.3					
14-15 cm			< 2.7					

Table 3.2: Cs-137	in all lavers in the	cores from the Lakse	fiord.
14010 0.20 20 1			

In the Sognefjord the Cs-137 activity concentration in the outer part of the fjords differs considerably from the activity concentrations in the inner part of the fjord. In the outlet of the

fjord, sampling sites S1 (2007) and S3 (2008), the Cs-137 activity concentration in 0-1 cm layer is from 27.9 to 36.2 Bq/kg (d.w.), with decreasing concentrations with increasing depths in the sediments, Figure 3.4, 3.5 and Table 3.3.

Figure 3.4: Cs-137 in cores from the outlet of Sognefjorden, sampling site S1 (2007).

Figure 3.5: Cs-137 in cores from the outlet of Sognefjorden, sampling site S3 (2008).

Denth	S1-1 Cs-137, Bq/kg (d.w.)	Uncertainty, Bq/kd (d.w.)	S1-2 Cs-137, Bq/kg (d.w.)	Uncertainty, Bq/kd (d.w.)	S1-3 Cs-137, Bq/kg (d.w.)	Uncertainty, Bq/kd (d.w.)	S3-1 Cs-137, Bq/kg (d.w.)	Uncertainty, Bq/kd (d.w.)	S3-2 Cs-137, Bq/kg (d.w.)	Uncertainty, Bq/kd (d.w.)
0-1 cm	28	4	36	4	32	3	36	3	33	3
1-2 cm	32	5	31	3	31	3	30	3	24	2
2-3 cm	25	3	27	2	35	3	24	3	17.9	2.0
3-4 cm	18.4	2.0	21	2	30	3	2.6	0.5	11.7	1.2
4-5 cm	23.5	2.4	24	2	27	3	2.8	0.9	7.6	1.1
5-6 cm	22.3	2.3	15.6	2.0	28	3	< 2.9		< 3.3	
6-7 cm	8.6	1.3	13.0	1.9	24	2	< 3.3			
7-8 cm	5.3	1.1	6.6	1.3	9.5	2.6				
8-9 cm	2.4	0.9	5.4	1.3	10.0	1.6				
9-10 cm	2.7	1.0	2.9	0.6	3.4	0.6				
10-11 cm	1.3	0.3	2.8	1.0	4.1	1.1				
11-12 cm	< 2.9		< 3.1		< 3.5					
12-13 cm	< 3.1		< 3.2		< 3.7					
13-14 cm	< 1.7		< 3.3		< 4.4					
14-15 cm	< 2.9		< 1.7							
15-16 cm	< 1.6									

Table 3.3: Cs-137 in all layers in the cores from the outlet of the Sognefjord.

The quantification limit is reached at 11 to 14 cm depth for sampling site S1, but for sampling site S3 the quantification limit is reached at 5 to 6 cm depth. There seem to be no difference in the Cs-137 activity concentrations in the upper layers in cores between the two years.

In the head of the fjord, sampling sites S2 (2007) and S4 (2008), the Cs-137 activity concentration in upper (0-1cm) layer is from 327 to 242 Bq/kg (d.w.), with decreasing concentrations with increasing depths in the sediments, Figure 3.6, 3.7 and Table 3.4. The quantification limit is reached at 11 to 14 cm depth for sampling site S2, but for sampling site S4 the quantification limit is not reached in these 8 and 9 cm long cores respectively. There seems to be no difference in Cs-137 activity concentrations in the upper layers in cores between the two years.

Figure 3.6: Cs-137 in cores from the head of Sognefjorden, sampling site S2 (2007).

Figure 3.7: Cs-137 in cores from the head of Sognefjorden, sampling site S4 (2008).

Depth	<i>S2-1</i> Cs-137, Bq/kg (d.w.)	Uncertainty, Bq/kd (d.w.)	S2-2 Cs-137, Bq/kg (d.w.)	Uncertainty, Bq/kd (d.w.)	S2-3 Cs-137, Bq/kg (d.w.)	Uncertainty, Bq/kd (d.w.)	<i>S4-1</i> Cs-137, Bq/kg (d.w.)	Uncertainty, Bq/kd (d.w.)	S4-2 Cs-137, Bq/kg (d.w.)	Uncertainty, Bq/kd (d.w.)
0-1 cm	242	25	327	28	267	24	327	30	300	27
1-2 cm	254	24	331	30	228	20	275	24	294	26
2-3 cm	296	28	316	29	181	17	169	15	150	14
3-4 cm	287	26	286	25	140	14	63	7	129	12
4-5 cm	291	27	219	19	113	10	23	3	37	4
5-6 cm	274	26	163	14	78	7	13.9	1.4	45	5
6-7 cm	207	22	112	10	41	4	13.0	1.3	13.0	1.6
7-8 cm	114	12	52	5	26	4	37.8	3.7	20.6	2.1
8-9 cm	69	6	39	4	11.0	1.1			51.3	4.8
9-10 cm	44	6	26	3	7.5	1.3				
10-11 cm	20.0	1.9	14.4	1.7	5.4	0.6				
11-12 cm	12.1	1.6	14.8	1.8	< 3.8	1.2				
12-13 cm	4.1	1.2	7.2	1.3						
13-14 cm	< 6.9	1.1	2.2	0.4						
14-15 cm	< 2.8	1.1	< 2.0							
15-16 cm			< 3.6							

Table 3.4: Cs-137 in all layers in the cores from the head of the Sognefjord.

All data collected used in calculating the Cs-137 activity concentrations are presented in Appendix IV Table A19 to A32.

3.4 Pb-210 and Ra-226 content

The content of Pb-210 and Ra-226 in 11 of the sediment-cores are presented in Figures 3.8 to 3.11. The results from all cores show a similar pattern. In the top layer is the fresh Pb-210 fallout, with a subsequent decrease down into the sediments because the fallout Pb-210 is buried and decays with a half life of 22.3 years. The content of Ra-226 is not changing with increasing depths, as this nuclide is a part of the U-238 decay chain in the sediments, according to chapter 2.8.

At a certain depth the Pb-210 content equals the Ra-226 content. This is the content of supported Pb-210 according to chapter 2.8. The Pb-210 content will not decrease below this because decay of Ra-226 in the sediments will be a constant supply of Pb-210.

All data collected used for calculating the Pb-210 and Ra-226 content, results and uncertainties are presented in Appendix V Table A33 to A43.

In Figure 3.8 are the content of Pb-210 and Ra-226 in L1-1 (blue) and L1-2 (red) cores from the outlet of the Laksefjord. The two cores are taken from the same grab sample. The results

show good agreement between the depths, to about 8 centimeters, at which the unsupported Pb-210 reaches zero. Figure 3.9 shows the content of Pb-210 and Ra-226 in L2-1 (blue) and L2-2 (red) cores from the head of the Laksefjord. The two cores are taken from the same grab sample. The results shows good agreement on Ra-226 results between the two cores. However there seems to be a large difference in the Pb-210 content. The depth at which the unsupported Pb-210 reaches zero are different for the two cores; 6 cm in core L2-2 and 10 cm in core L2-1.

Figure 3.8: Pb-210 and Ra-226 in cores from the outlet of Laksefjorden, sampling site L1.

Figure 3.9: Pb-210 and Ra-226 in cores from the head of Laksefjorden, sampling site L2.

Figure 3.10 shows the content of Pb-210 and Ra-226 in S1-1 (blue), S1-2 (red), S1-3 (green) and S3-1 (yellow) cores from the outlet of the Sognefjord. Three of the cores are taken from the same grab sample. Core S3-1 is taken at approximately the same position one year later.

The results shows good agreement on Ra-226 results between the four cores. The content of Ra-226 and thus supported Pb-210 is the same in the four cores. The Pb-210 results from two of three cores from the same grab sample shows good agreement. The third core from the same grab sample shows the same pattern but at a slightly different depth.

Figure 3.10: Pb-210 and Ra-226 in cores from the outlet of Sognefjorden, sampling site S1 and S3.

The depth at which the unsupported Pb-210 reaches zero are for two of the cores 11 cm, while one of them does not reach zero. The core S3-1, taken one year later, does not reach zero unsupported Pb-210, but the curve turns at about 4 cm depth. Below this depth there seems to be a constant Pb-210 content. It is then reasonable to assume that this is the layer where the unsupported Pb-210 is zero. This assumption is made when dating this core.

In the three cores from grab sample S1, the Pb-210 content is not decreasing uniformly down through the sediment cores. At 4 cm depth (S1-1 and S1-2) and 6 cm depth (S1-3) the Pb-210 content is higher than the layer above.

In Figure 3.11 are the content of Pb-210 and Ra-226 in the S2-1 (blue), S2-2 (red) and S4-2 (green) cores from the head of the Sognefjord. The two cores taken from the same grab sample, S2-1 and S2-2 show good agreement in Pb-210 content, but the earlier seen, Figure 3.10, pattern of Pb-210 not decreasing uniformly is not seen here. Core S4-2 is taken at approximately the same position and one year later.

Figure 3.11: Pb-210 and Ra-226 in cores from the head of Sognefjorden, sampling site S2 and S4.

The results shows good agreement in Ra-226 results between the three cores. The depth at which the unsupported Pb-210 reaches zero are for both cores from the same grab sample about 14 cm. The core S4-2, taken one year later, reaches zero unsupported Pb-210 at about 8 cm. The latter core is not long enough to clearly show the Pb-210 minimum.

3.5 Dating

The slices from 11 of the cores were dated according to Goldberg (1963) described in Chapter 2.8., using the content of Pb-210 corrected for content of Ra-226. The age of sediment layers were determined both with CRS and CIC models (Appleby and Oldfield, 1977) in order to have a better platform when judging the results.

Table 3.5 to 3.8 show the Cs-137 content in the core slices, as compared to the year of deposition. The uncertainty in the dating was estimated according to Binford (1989). Ninety-five percent confidence intervals range from 1-2 years at 10 years of age (10-20%), 10-20 (10-20%) years at 100 years and 8-90 (5-60%) at 150 years old.

The CRS and CIC models gave different results; and the difference was larger than the estimated uncertainty.

In the cores from the Laksefjord, the Cs-137 measured was found in the upper layers. The oldest layer with Cs-137 were dated (CRS) to 1958 (L1-1), 1986 (L1-2), 1967 (L2-1) and 1947 (L2-2) and (CIC) 1966 (L1-1), 1973 (L1-2), 1969 (L2-1) and 1967 (L2-2).

In all the cores from the outlet of the Sognefjord, Cs-137 are measured above quantification limit at depths which was deposited before and partly long before nuclear industry started; S1-1 (1882), S1-2 (1913), S1-3 (1891) and S3-1(1931).

From the head of the Sognefjord, Cs-137 are measured above quantification limit in depths which was deposited before and partly long before nuclear industry started; S2-1 (1880), S2-2 (1892) and S4-2 (prior to 1903).

Core	L1-1			Core	L1-2		
	Cs-137, Bq/kg	CRS-model			Cs-137, Bq/kg	CRS-model	
Depth	(d.w.)	Year	CIC-model Year	Depth	(d.w.)	Year	CIC-model Yea
0-1 cm	5,7	2008 (-1)	2008 (-1)	0-1 cm	5,7	2008 (-1)	2008 (-1)
1-2 cm	5,7	1998 (+/-2)	2006 (+/-1)	1-2 cm	2,9	1996 (+/-2)	1988 (+/-4)
2-3 cm	3,4	1987 (+/-4)	1996 (+/-2)	2-3 cm	1,7	1986 (+/-4)	1973 (+/-7)
3-4 cm	2,3	1972 (+/-7)	1981 (+/-5)	3-4 cm	< 2,7	1977 (+/-6)	1963 (+/-9)
4-5 cm	1,2	1958 (+/-10)	1966 (+/-8)	4-5 cm	< 3,0	1966 (+/-8)	1946 (+/-12)
5-6 cm	< 2,3	1940 (+/-14)	1956 (+/-10)	5-6 cm	< 3,0	1955 (+/-11)	1931 (+/-15)
6-7 cm	< 3,5	1922 (+/-17)	1928 (+/-16)	6-7 cm	< 3,0	1947 (+/-12)	1927 (+/-16)
7-8 cm	< 3,0	1907 (+/-20)	1912 (+/-19)	7-8 cm	< 3,5	1938 (+/-14)	1904 (+/-21)
8-9 cm	< 1,6	1891 (+/-23)	1918 (+/-18)	8-9 cm	< 1,5	1930 (+/-16)	1894 (+/-23)
9-10 cm	< 2,9			9-10 cm	< 2,9	1924 (+/-17)	1909 (+/-20)
10-11 cm	< 2,7			10-11 cm	< 3,1	1911 (+/-19)	1908 (+/-20)
11-12 cm	< 3,1			11-12 cm	< 2,9		
				12-13 cm	< 3,0		
				13-14 cm	< 1,3		
				14-15 cm	< 2,7		

Table 3.5: Age of the core slices from outlet of Laksefjorden compared to Cs-137 content, 20% uncertainty in parentheses.

Table 3.6: Age of the core slices from the head of Laksefjorden compared to Cs-137 content, 20% uncertainty in parantheses.

Core	L2-1			Core	L2-2		
	Cs-137, Bq/kg	CRS-model			Cs-137, Bq/kg	CRS-model	
Depth	(d.w.)	Year	CIC-model Yea	r Depth	(d.w.)	Year	CIC-model Year
0-1 cm	6,7	2008 (-1)	2008 (-1)	0-1 cm	5,0	2008 (-1)	2008 (-1)
1-2 cm	6,5	2002 (+/-1)	2007 (+/-1)	1-2 cm	4,7	1995 (+/-3)	2006 (+/-1)
2-3 cm	4,7	1994 (+/-3)	1990 (+/-4)	2-3 cm	3,7	1976 (+/-6)	1983 (+/-5)
3-4 cm	4,8	1987 (+/-4)	1987 (+/-4)	3-4 cm	< 2,8	1957 (+/-10)	1952 (+/-11)
4-5 cm	4,7	1978 (+/-6)	1982 (+/-5)	4-5 cm	2,2	1947 (+/-12)	1967 (+/-8)
5-6 cm	3,5	1967 (+/-8)	1969 (+/-8)	5-6 cm	< 2,9	1926 (+/-16)	1934 (+/-15)
6-7 cm	< 2,4	1957 (+/-10)	1962 (+/-9)	6-7 cm	< 2,6	1910 (+/-20)	1905 (+/-21)
7-8 cm	< 3,2	1939 (+/-12)	1948 (+/-12	7-8 cm	< 2,5	1890 (+/-24)	1901 (+/-21)
8-9 cm	< 2,6	1925 (+/-17)	1945 (+/-13	8-9 cm	< 1,2		
9-10 cm	< 2,7	1893 (+/-23)	1912 (+/-19	9-10 cm	< 2,5		
10-11 cm	< 1,3						
11-12 cm	< 2,5						
12-13 cm	< 3,0						

Core	S1-1		
Depth	Cs-137, Bq/kg (d.w.)	CRS-model Year	CIC-model Year
0-1 cm	27,9	2007 (-1)	2007 (-1)
1-2 cm	31,8	1999 (+/-2)	2001 (+/-1)
2-3 cm	24,8	1992 (+/-3)	1993 (+/-3)
3-4 cm	18,4	1984 (+/-5)	1981 (+/-5)
4-5 cm	23,5	1977 (+/-6)	1991 (+/-3)
5-6 cm	22,3	1963(+/-9)	1987 (+/-4)
6-7 cm	8,6	1943 (+/-13)	1959 (+/-10)
7-8 cm	5,3	1926 (+/-16)	1939 (+/-14)
8-9 cm	2,4	1913 (+/-19)	1925 (+/-16)
9-10 cm	2,7	1901 (+/-21)	1917 (+/-18)
10-11 cm	1,3	1881 (+/-25)	1905 (+/-20)
11-12 cm	< 2,9		
12-13 cm	< 3,1		
13-14 cm	< 1,7		
14-15 cm	< 2,9		
15-16 cm	< 1,6		

Core	S1-2				
Depth	Cs-137, Bq/kg (d.w.)	CRS-m Year	odel	CIC-m	odel Year
0-1 cm	36,2	2007	(-1)	2007	(-1)
1-2 cm	31,0	2003	(+/-1)	2001	(+/-1)
2-3 cm	26,8	1996	(+/-2)	1995	(+/-2)
3-4 cm	20,9	1986	(+/-4)	1989	(+/-4)
4-5 cm	24,3	1977	(+/-6)	1993	(+/-3)
5-6 cm	15,6	1966	(+/-8)	1982	(+/-5)
6-7 cm	13,0	1959	(+/-10)	1973	(+/-7)
7-8 cm	6,6	1948	(+/-12)	1956	(+/-10)
8-9 cm	5,4	1939	(+/-14)	1952	(+/-11)
9-10 cm	2,9	1923	(+/-17)	1925	(+/-16)
10-11 cm	2,8	1912	(+/-19)	1921	(+/-17)
11-12 cm	< 3,1	1898	(+/-22)	1909	(+/-20)
12-13 cm	< 3,2				
13-14 cm	< 3,3				
14-15 cm	< 1,7				

Core	S1-3		
Depth	Cs-137, Bq/kg (d.w.)	CRS-model Year	CIC-model Year
0-1 cm	31,9	2007 (-1)	2007 (-1)
1-2 cm	30,6	2003 (+/-1)	2008 (-2)
2-3 cm	34,7	1996 (+/-2)	2005 (+/-1)
3-4 cm	30,3	1990 (+/-4)	1999 (+/-2)
4-5 cm	27,2	1982 (+/-3)	1993 (+/-3)
5-6 cm	27,8	1974 (+/-7)	1990 (+/-3)
6-7 cm	24,3	1965 (+/-8)	1995 (+/-2)
7-8 cm	9,5	1947 (+/-12)	1978 (+/-6)
8-9 cm	10,0	1927 (+/-16)	1960 (+/-9)
9-10 cm	3,4	1905 (+/-20)	1926 (+/-16)
10-11 cm	4,1	1890 (+/-23)	1932 (+/-15)
11-12 cm	< 3,5		
12-13 cm	< 3,7		
13-14 cm	< 4,4		

Core	S3-1		
Depth	Cs-137, Bq/kg (d.w.)	CRS-model Year	CIC-model Year
0-1 cm	35,5	2008 (-1)	2008 (-1)
1-2 cm	30,1	1992 (+/-3)	2002 (+/-1)
2-3 cm	24,0	1978 (+/-5)	1996 (+/-2)
3-4 cm	2,6	1893 (+/-13)	1922 (+/-17)
4-5 cm	2,8		1911 (+/-19)
5-6 cm	< 2,9		1909 (+/-20)
6-7 cm	< 3,3		1913 (+/-19)

Table 3.7: Age of the core slices from the outlet of Sognefjorden compared to Cs-137 content, 20% uncertainty in parentheses.

Core	S2-1					Core	S2-2				
	Cs-137, Bq/kg	CRS-m	nodel				Cs-137, Bq/kg	CRS-m	nodel		
Depth	(d.w.)	Year		CIC-m	odel Year	Depth	(d.w.)	Year		CIC-m	odel Year
0-1 cm	241,6	2007	(-1)	2007	(-1)	0-1 cm	327,2	2007	(-1)	2007	(-1)
1-2 cm	253,5	2004	(+/-1)	2012	(-6)	1-2 cm	331,2	2002	(+/-1)	2002	(+/-1)
2-3 cm	296,1	2001	(+/-1)	2014	(-7)	2-3 cm	315,9	1998	(+/-2)	2003	(+/-1)
3-4 cm	286,5	1997	(+/-2)	2008	(-2)	3-4 cm	286,1	1993	(+/-3)	1998	(+/-2)
4-5 cm	291,1	1991	(+/-3)	2008	(-2)	4-5 cm	219,3	1987	(+/-4)	1993	(+/-3)
5-6 cm	274,2	1985	(+/-4)	2007	(-1)	5-6 cm	163,2	1981	(+/-5)	1991	(+/-3)
6-7 cm	207,4	1976	(+/-6)	1996	(+/-2)	6-7 cm	111,9	1974	(+/-7)	1985	(+/-4)
7-8 cm	113,8	1969	(+/-8)	2002	(+/-1)	7-8 cm	52,3	1968	(+/-8)	1973	(+/-7)
8-9 cm	69,3	1957	(+/-10)	1988	(+/-4)	8-9 cm	38,8	1961	(+/-9)	1971	(+/-7)
9-10 cm	43,6	1946	(+/-12)	1985	(+/-4)	9-10 cm	25,6	1954	(+/-11)	1973	(+/-7)
10-11 cm	20,0	1930	(+/-15)	1973	(+/-7)	10-11 cm	14,4	1942	(+/-13)	1965	(+/-8)
11-12 cm	12,1	1910	(+/-19)	1961	(+/-9)	11-12 cm	14,8	1930	(+/-15)	1967	(+/-8)
12-13 cm	4,1	1889	(+/-24)	1935	(+/-14)	12-13 cm	7,2	1913	(+/-19)	1953	(+/-11)
13-14 cm	< 6,9			1902	(+/-21)	13-14 cm	2,2	1891	(+/-23)	1937	(+/-14)
14-15 cm	< 2,8			1889	(+/-24)	14-15 cm	< 2,0				
						15-16 cm	< 3,6				

Table 3.8: Age of the core slices from the head of Sognefjorden compared to Cs-137 content, 20% uncertainty in parentheses.

Core	S4-2		
	Cs-137, Bq/kg	CRS-model	
Depth	(d.w.)	Year	CIC-model Year
0-1 cm	299,9	2008 (-1)	2008 (-1)
1-2 cm	293,8	2000 (+/-2)	1996 (+/-2)
2-3 cm	150,2	1987 (+/-4)	1974 (+/-7)
3-4 cm	128,6	1976 (+/-6)	1980 (+/-6)
4-5 cm	36,8	1955 (+/-11)	1955 (+/-11)
5-6 cm	44,8	1940 (+/-14)	1957 (+/-10)
6-7 cm	13,0	1921 (+/-17)	1928 (+/-16)
7-8 cm	20,6	1903 (+/-21)	1918 (+/-18)
8-9 cm	51,3		1908 (+/-20)

4. Discussion

4.1 Inaccuracy in sampling and sample preparation

All samples in this work are collected from a boxcorer grab sample. An ideal grab sampling with a boxcorer is described; Chapter 2.2; When the boxcorer hits the bottom it may however, depending on the bottom conditions, penetrate with tilt and thus take a sample in a certain angle into the sediment, instead of a clean vertical cut. Further, when placing the grab sample on the sampling platform (research vessel) in order to do sub sampling with tubes, it will be set straight and the result is a core in a certain angle downwards into the sediments; Figure 4.1. The result of this inaccuracy will be slices non-parallel to the sediment surface. The range of this inaccuracy is difficult to estimate, but may cause single sample slices containing material from more than the one centimeter layer and slices adjacent to each other containing some material from the same layer. This could also be the reason for obtaining different length of the cores from the same grab sample.

Figure 4.1 Schematic drawing of boxcorer sampling, subsampling of cores (in black) and 1cm slices (white lines).

Compression of the seabed with the sampling device, when taking the grab sample and when sub sampling the cores, may also cause inaccuracy as the compression will not be equal throughout the grab sample and the core. When sub sampling cores in tubes, material will be transported along the walls of the tubes both when pressing it into the sediment and when pushing the core out of the tube. This may cause some contamination of single sediment slices from slices below or above. To reduce this effect, the tubes chosen were 10 cm in diameter. The relative amount of sediment next to the tube walls will then be less compared to sediments in tubes with a smaller diameter. But cores moved along the tube walls will still lead to disturbance of the sedimentation layers, moving Cs-137 and Pb-210 along the core.

Cutting the cores may also add inaccuracy to the samples, as measuring and cutting layers of one centimeter thickness in this wet material was difficult. The result may have been better if the cores had not been thawed completely. The water content was between 40% and 65%, Appendix II Table 5, and the sediments were soft and lost their initial form when pushed out of the tubes. Based on this experience, the uncertainty in the sliced layers can be estimated to \pm 1 cm.

The result of inaccuracy when cutting the cores is visible in the profile-curves. In the Pb-210 profile in Figure 3.10, the S1-3 profile-curve is further down than the S1-1 and S1-2 profile-curves, and moving the S1-3 profile curve upwards one centimeter will improve the coherence between the three cores from the S1 grab sample. This is also seen in the other profiles; Figure 3.2 to 3.11, and will cause deviation in the age estimate of a specific depth in cores from the same grab sample.

Loss of sediment material during the cutting process may also be a problem. This is roughly estimated to be 5 % in each core. An evenly distributed loss from each slice will not affect the dating. But if not evenly distributed, however, it would cause inaccuracy in the dating. If the majority of sediment loss was from the upper slices, it would cause dating the lower slices to be too young, or contrary; if the majority of loss was from the lower slices it would cause dating the lower slices to be too old. In this work this inaccuracy is not known, but is estimated to be within the total uncertainty described; Chapter 2.8. The loss of material will also influence the recalculation from activity per. weight to activity per. area.

The slicing of core L2-2 was not entirely successful. The core fell partly out of the tube during the cutting process, and this could add an uncertainty in the following analysis of this specific core.

The cores were relatively short, between 6 cm and 16 cm. All but two cores, (S4-1 and S4-2), were long enough to reach down to depths where the Cs-137 activity concentrations was below the quantification limit.

Marine sediments contain a certain amount of seawater when sampled. The seawater is dried out when preparing the samples prior to measuring leaving the salt in the dry sample. This salt is not a part of the sample but adds weight to it. The salinity in the water above the sediments in this study is estimated to 35 ‰ (pers. comm. Dr. Lars Asplin, IMR, Norway), leaving 35 g salt per liter water dried out. An estimated content of salt in the samples based on the dry weight data; Appendix IV Table A19 to A32; is 5 %.

The sample weights in this study are not corrected for salt-content since a majority of the comparative studies are not salt-content corrected (NRPA, 2001) (NRPA, 2003, 2004, 2005, 2006, 2007, 2008, 2009f). In some of the comparative studies, there is no information about salt-content correction.

The deviation in measurements between parallel cores from the same grab sample could partly be caused by the sampling and sample preparation, but is also because one should expect that Cs-137 is not homogenous distributed within the sediments.

4.2 Evaluating the dating

In this work the age of the sediment layers are calculated using both the CRS-model and CICmodel (Appleby and Oldfield, 1977), giving different results. The models should give the same results if the accumulation rate is constant over time. If the accumulation rate is not constant, the CRS-model should be preferred (Appleby and Oldfield, 1977). However, both these models presume that disturbance of the sediments has not occurred. This seems not to be the fact in the sampling areas in the Sognefjord, since the Pb-210 content in those cores does not decrease uniformly with depth.

The result of the dating must be reviewed as the method is a result from models which includes assumptions on of how nature acts. The Cs-137 in the cores could be a supplementary method to the Pb-dating, as the known sources, in specific events, have caused steep changes in the Cs-137 concentrations in the environment. None of the cores measured for Cs-137 gave any indication of age of layer. Cs-137 was found in layers dated to long before 1950 in all cores from the Sognefjord, and using the deepest layer containing Cs-137 as a reference to 1952 cannot be done.

The data material with its uncertainty is not sufficiently good to lead to any conclusion on which dating model giving the best result in this work. On the other hand, if doing the exercise of correcting the Cs-137 activity concentrations for decay according to the calculated age (CRS) of the sediment layers, as done for core S2-1; Figure 4.2; the Chernobyl peak are

Figure 4.2: Cs-137 decay-corrected according to the age of sediment.

In all cores, the Ra-226 content in all the sample slices from the same core was similar. This is expected; Chapter 2.8. The Pb-210 content decreased with increasing depth reaching the Ra-226 value; this was the case for 10 of the 11 cores analyzed for date. This is again as expected; the unsupported Pb-210 will decay and the remaining Pb-210 is in equilibrium with Ra-226; Chapter 2.8. The 11th core (S3-1) reached a minimum content of Pb-210 which was somewhat higher than the Ra-226 content. The reason for this is unknown. The dating of this core is done after correction for the difference between Ra-226 and minimum content of Pb-210.

Dating the cores showed that Cs-137 in layers deposited before nuclear era started and is not a good indication of the accuracy of the dating in this work. However, Cs-137 in old layers can be the actual situation as seen in other investigations; Chapter 4.3.2.

At sampling site L2 there was a large difference in the Pb-210 content in the two cores. As mentioned; Chapter 4.1; the slicing of L2-2 was not successful. This might well have caused disturbance in the core layers in L2-2, causing the difference in the two cores, Figure 3.8.

At sampling site S1 there is not a linear decrease of the Pb-210 content with increasing depth of the profile. At 4 cm depth (S1-1 and S1-2) and 6 cm depth (S1-3) the Pb-210 content is higher than in the slices above. This indicates that the sediment layers have been disturbed, most likely at the time these layers where deposited. This is evident in all the three cores from
the same grab sample, indicating that mixing of samples is not likely. The CRS-dating will not reflect this, but can be seen in the CIC-dating; Table 3.7.

In order to assure the quality of the dating method used, it is necessary to participate in an intercomparison test in Pb-210 and Ra-226 measurements and dating cores. This is not completed in this work, but will be a necessary action further on.

4.3 Cs-137 results

4.3.1 Cs-137 activity concentrations in surface sediment

In the Laksefjord the Cs-137 activity concentration found in surface sediments in the present study (from 5.0 to 6.7 Bq/kg (d.w.)) are in good agreement with other observations from the Laksefjord, showing Cs-137 activity concentrations in surface sediments from 2.0 to 9.1 Bq/kg (d.w.) (NRPA, 2004) (NRPA, 2006) (NRPA, 2008) (NRPA, 2009f); Appendix I table A4. In samples from 1995 (H. Nies, 1999) and 2006 (Boitsov, 2009), Cs-137 activity concentrations in Barents Sea surface sediments were from 1.5 to 5.8 Bq/kg. In Føyn and Sværen (1995) the Cs-137 activity concentrations in surface sediments from the Barents Sea from 1991, 1992 and 1993 were between < 1.0 and 8.6 Bq/kg (d.w.).

It is not possible to see any time-trend (the last 15-20 years) comparing present and earlier measurements.

In the Sognefjord the Cs-137 activity concentration found in surface sediments from the outlet of the fjord in the present study (from 27.9 to 36.2 Bq/kg (d.w.) at S1 and S3) are in good agreement with other observations. Samples from the outlet of the Sognefjord collected by IMR in 2005 (NRPA, 2007) and 2008 (preliminary results) contained 45.4 and 36.0 Bq/kg (d.w.) respectively in surface sediment; Appendix I Table A2.

The activity concentrations in the samples from 2007 and 2008 are similar. It is not possible to see any time trend comparing present and earlier investigations; (45.4 in 2005, 32 (average) in 2007 and 34.4 (average) in 2008, all in Bq/kg d.w.).

No other measurements on Cs-137 content in sediments from the outer part of the Sognefjord, is known.

The activity concentration inside the sill of the Sognefjord differs distinctly from the levels outside the fjord. Surface sediments collected in 2004 and 2005 from the area outside the

Sognefjord showed activity concentrations from 1.9 to 3.8 Bq/kg (d.w.) (NRPA, 2007) and 1.5 Bq/kg (d.w.) (NRPA, 2006). A depth profile across the Norwegian Trench and all along the Sognefjord to the Lusterfjord is shown in Figure 4.3. The depth in the fjord is considerably deeper than outside the sill and also much deeper than the Norwegian trench. The deepest part of the North Sea, Skagerrak and the Norwegian Trench are areas where sediments accumulate (Becks, 2000), but fjords can act as sediment traps (Syvitski et.al., 1987). It is therefore likely to believe that the deepest part of the North Sea with a following increased content of Cs-137.

Figure 4.3. Depth profile across the Norwegian trench, the Sognefjord and into the S2 and S4 area.

The Cs-137 activity concentration in the surface sediment layer (0-1 cm) in the head of the Sognefjord in this study is from 241.6 to 327.4 Bq/kg (d.w.) at the two sampling sites S2 (3 cores in 2007) and S4 (2 cores in 2008). The activity concentrations in the samples from 2007 and 2008 are similar. These results are in good agreement with earlier measurements from the same area; Cs-137 activity concentrations in 2005 and 2008 were 415 Bq/kg (d.w.) (NRPA, 2007) and 323 Bq/kg (d.w.) (preliminary results) respectively in surface sediments at the same location; Appendix I Table A2. Prior to 2005 there are no investigations on Cs-137 in sediments from this part of the fjord. The one single sample from 2005 (415 Bq/kg (d.w.))

is not enough data material to indicate a decrease in the surface sediment activity concentration from 2005 to 2007 and 2008.

The samples in the head of the Sognefjord have like the Irish Sea and the Baltic extraordinary activity concentrations of Cs-137, Chapter 1.3.4.

The 6 sampling sites in this study represent three different levels of Cs-137 activity concentrations: the Laksefjord in northern Norway with the lowest concentrations, the outlet of the Sognefjord with approximately 6 times the Laksfjord level and the head of the Sognefjord with approximately 60 times the Laksefjord level; giving the relation 1:6:60. Chernobyl fallout in the three areas differed as shown in Figure 1.1; 1-2 kBq/m² in the area surrounding the Laksefjord, 2-5 kBq/m² in the area surrounding the outlet of the Sognefjord and 10-25 kBq/m² in the area surrounding the head of the Sognefjord. This gives the following relation: 1:3:12.This strongly implies that there are other factors influencing the Cs-137 activity concentrations than the direct Chernobyl fallout.

4.3.2 Cs-137 activity concentrations as function of age

In all the cores from the Laksefjord, the youngest sediments had the highest Cs-137 activity concentrations. One core (L2-2) have Cs-137 down in a layer dated (CRS) to 1947. But Cs-137 did not exist this early. This sample was from the core in which the slicing was not successful, and there might well have been a disturbance of the core layers causing this. The three remaining cores have their oldest layer containing Cs-137 (1958, 1986, 1967 (CRS)) (1966, 1973, 1969 (CIC)) more in accordance with the development of nuclear industry. There is, however, a large difference between cores taken from the same grab sample. There seems to be no difference in the Cs-137 activity concentrations in the cores from the two sampling sites, as the difference between cores from the same grab sample is larger.

Two cores (S1-1 and S1-3) from the outlet of the Sognefjord have their maximum Cs-137 activity concentrations in layers beneath the surface layer, both from the sampling conducted in 2007. The two other cores from the outlet of Sognefjorden have the maximum Cs-137 activity concentrations in the upper one centimeter. The uncertainty in each measurement is however too large to conclude that the maximum value is higher than from the adjacent years. From surface layers there is a significant decrease in Cs-137 activity concentrations with increasing depth, indicating a continuous support of Cs-137 with time.

The oldest layers containing Cs-137 in the outlet of the fjord were dated to 1881, 1912, 1890 and 1893 (CRS) and 1905, 1921, 1932 and 1911 (CIC). This is not in accordance with the start of the nuclear industry; again, Cs-137 did not exist in environment at the time.

Two cores (S2-1 and S2-2) from the head of the Sognefjord have their maximum Cs-137 activity concentrations in layers beneath the surface layer, both from the sampling conducted in 2007. The two other cores from the head of the Sognefjord have their maximum Cs-137 activity concentrations in the upper one centimeter. From surface layers there is a significant decrease in Cs-137 activity concentrations with increasing depth, indicating a continuous support of Cs-137 with time.

The oldest layers containing Cs-137 in the head of the fjord were dated to 1889, 1913 and prior to 1903 (CRS) and 1935, 1937 and 1908 (CIC). This is not in accordance with the start of the nuclear industry; again, Cs-137 did not exist in environment at the time.

When examining the contents of Pb-210 and Ra-226 in figure 3.8 to figure 3.11 the Pb-210 content is following the expected decay of unsupported Pb-210, indicating relative correctness of the dating. The uncertainty in age of sediment layers are also increasing with increasing depths.

As described; Chapter 4.1, the sampling method and slicing method is quite rough and could cause some contamination between layers. Bioturbation or mechanical disturbance can cause vertical transport of Cs-137 in the sediments. Downward diffusion of Cs-137 in interstitial water (Appleby and Oldfield, 1977) could also cause Cs-137 in layers before the nuclear industry. Cs-137 activity concentrations found in layers deeper than expected are also observed by others (Grøttheim, 1998) (Holby and Evans, 1996) (Ritchie and McHenry, 1990). Other investigations of Cs-137 in sediment cores from Norwegian coastal areas are shown in Figure 4.4. In a) are shown the Cs-137 activity concentrations in a sediment core from Framvaren (1989), on the coast of southern Norway (Keith-Roach et. al., 2004). The Cs-137 activity concentration shows a peak at approximately 12 cm depth. In b) are shown the Cs-137 activity concentrations in a sediment core from the west coast of Norway (Bergen area) (2001) (Asplin et.al., 2003). In c) are shown Cs-137 activity concentrations in a sediment core from the coast of northern Norway (2006) (Boitsov et. al., 2009), with a maximum Cs-137 activity concentration at approximately 8 cm depth. In d) are shown the Cs-137 activity concentration in a sediment core from the head of the Oslofjord (Skagerrak area) (2007) (Skei, 2008), with a maximum Cs-137 activity concentration in a layer dated to 1985.

In three of these cores the Cs-137 peak from Chernobyl are found at a certain sediment depth.

Figure 4.4: Cs-137 i in cores from Norwegian coastal areas.

This is not the case in the sediment cores in this work. These cores have the Cs-137 maximum content in the top layers. This is also seen in core b). This fjord on the west coast of Norway has the Cs-137 maximum content in the top layers. The activity concentration distribution is similar to the cores in this work and the activity concentrations in surface sediments are similar to the surface sediments from the outlet of the Sognefjord.

4.3.3 Cs-137 activity concentrations in relations to sources

Dating the sediment cores was done in order to investigate if time of deposition of Cs-137 could indicate which source was dominating the levels at the three sampling areas. In none of the 14 sediment cores analyzed, there where peaks in years clearly indicating a dominating source present.

Global fallout of Cs-137 in Norway from atmospheric nuclear weapons tests was considerable. The country average of Cs-137 in air each year from 1955 to 1985 is shown in figure 4.5 (Bergan, 2000). Two peaks are observed; one in the late 1950s and one in 1961-1962. This is well correlated to the release from nuclear weapons testing. The precipitation;

Figure 1.2; was higher in the area surrounding the outlet of the Sognefjord than the head of the fjord and in the Laksefjord area, and thus also received more Cs-137 during the late 1950's and early 1960's (Bergan, 2000). This could cause a signal in the sediment cores.

Figure 4.5: Total beta (right axis) and Cs-137 (left axis) in air, country average each year during the period 1955 to 1985 (Bergan, 2000).

Discharges from the nuclear fuel reprocessing plant, Sellafield, have contained various amounts of Cs-137, Figure 4.6; (Thørring, 2006b).

Figure 4.6: Annual Cs-137 discharges from Sellafield (data from: Jackson et. al., 2000, OSPAR, 2006 and BNFL, 2004).

The Cs-137 discharges peaked in the seventies with a rapid decrease in 1985, and nearly all the reported Cs-137 discharge from Sellafield was in solution as Cs^+ (Mitchell et al., 1996).

Following Chernobyl (1986), there has been a continuous outflow of Chernobyl contaminated seawater from Baltic. Baltic water exchange through the Danish Straits carries annually 30 TBq Cs-137 into the Kattegat (Thørring, 2006b). Cs-137 from Sellafield and Chernobyl Baltic reaches and follows the Norwegian coastal current, Figure 1.4 and Figure 1.5. The Cs-137 will thus reach the west coast (inlet of the Sognefjord) in 3 to 4 years and the Barents Sea (inlet of the Laksefjord) in 5 to 6 years (Dahlgaard, 1995). These events could also cause signals in the sediment cores.

There are no signals in any of the core layers from Laksefjord which could specifically be connected to the mentioned sources. The upper youngest layers have the highest content of Cs-137 indicating a continuous supply. The Laksefjord has a rapid exchange of water with the Norwegian Coastal current (Wassmann et. al, 1999). The Cs-137 activity concentrations in the surface sediments are the same inside the fjord as outside which also reflect this. This also indicates that run-off is not a major recent source. The levels of Cs-137 in surface seawater in Norwegian areas from 2008 are shown in Figure 1.7. Surface water outside the inlet of the Sognefjord has an activity concentration of about 7.5 Bq/m³ (preliminary results). Surface water south west of the inlet to the Laksefjord has an activity concentration of about 1.9 Bq/m³ (preliminary results). According to Nies (1999), the surface water in 1995 from the Norwegian coast is decreasing northerly from 9.6 Bq/m³ (west coast) to 3.8 Bq/m³ (Lofoten) In (Kautsky, 1987) the surface water in 1985 from the Norwegian coast is decreasing northerly from 4.2 Bq/m³ (south west Barents Sea). A decrease in the Cs-137 activity concentrations in sediment cores from the Sognefjord to the Laksefjord as seen in this study is therefore expected.

The water in the Sognefjord has a relatively long residence time; it is changed approximately every eight year with water in the Norwegian coastal current, carrying Sellafield discharges and Chernobyl Baltic. Global fallout from weapons tests was considerable in this area, which also received Chernobyl fallout. The Cs-137 could also have its origin from remobilization of Cs-137 from shallower parts inside the fjord, as sediments are transported to deeper areas over time. The signals from weapons test fall out are most likely masked by more recent sources.

The profiles of Cs-137 activity concentrations in the S1 cores show a small peak at approximately 5 cm depth dated to 1977-1977-1974 (CRS) indicating Sellafield or 1991-1993-1990 (CIC) indicating Chernobyl. Thus it is impossible to conclude on source from the

present dating. But the peak at 5 cm depth is followed by a peak in the accompanying Pb-210 profile. The Pb-210 profile indicates that the layer at 5 cm depth are younger than the layers above and thus contains more Cs-137 (assuming a downward decrease). Disturbance of the sediments can then have caused the peak and not extra supply from an external source.

When a conservative tracer in the Norwegian coastal current such as Cs-137 reaches coastal areas with a higher content of particulate material and subsequently particulates from erosion of land in special, it will be bound to particles with clay mineral (Coughtrey and Thorne, 1983) and be transferred into the sediments. This will happen in any fjord with settling clay particles. This could be a reason to the elevated levels of Cs-137 in the Sognefjord. There is a large difference in the activity concentrations in the two sampled areas inside the fjord (1:10). There are no other results from head of other fjord arms in this fjord which could have indicated a fjord head sedimentation pattern. Samples taken in the head of a few other fjords along the Norwegian coastal current show a similar pattern, with a maximum of 365 Bq/kg (d.w.) in the Velfjord (NRPA, 2004), but there are samples from more fjords in which this pattern is not observed.; Figure 1.11. This comparison indicates that Sellafield discharges and Chernobyl Baltic are not the sources for the elevated Cs-137 activity concentrations in the head of the Sognefjord. Chernobyl fallout onto the land area surrounding the head of the Sognefjord is the most likely the source and the reason for the elevated Cs-137 activity concentrations. The fjords with no elevated Cs-137 activity concentrations are all receiving drain-off from areas which was less affected by the Chernobyl fallout.

Nevertheless, drain-off of Chernobyl fallout from the catchment area on land can be relatively small after 21 years. Saxen and Ilus (2001) showed that in the 11 years period after the Chernobyl accident, the amount of Cs-137 removed from catchment areas on land in Finland was very low. More than 97 % was retained in the catchment area. The amount of Cs-137 removed by drain-off was highest the 1-2 first years after the Chernobyl accident. The same work shows that only 6 % of the Cs-137 in Baltic was from river outlet. Though the land areas surrounding Baltic and the Sognefjord are different, it is likely to believe that a large ratio of the fallout also will be retained in the catchment areas surrounding the Sognefjord.

In the head of a fjord there will be a focusing of material from river run-off. In the area where S2 and S4 cores where taken, the catchment area delivering the drain-off are 1 134 km² (Fortunsvassdraget) while the sea area initially receiving this drain-off is only 61 km² (NVE

atlas, 2010). This gives a land/sea area ratio of 18.6. This land area received 10 to 25 kBq/m² (NRPA, 2009b) indicating that if all Cs-137 is drained into the fjord, it will receive in the range 186 kBq/m² to 465 kBq/m², in addition to the direct Chernobyl fallout. However, if only 3 % (Saxen and Ilus, 2001) will drain off from this area, the amounts will be in range 5.6 kBq/m² to 14.0 kBq/m², in addition to the direct fallout.

The Cs-137 activity concentrations in this work are in Bq pr. weight. Recalculation of the Cs-activity concentrations to Bq/m^2 can be done by the equation:

[Amount] Cs-137/m² = [Activity concentration] Cs-137/kg \cdot [sediment] kg/m², (d.w.).

The core areas where 78.5 cm^2 , and the weight of each slice is given in Appendix II, Table A5. The loss of material during core cutting process is estimated to 5 %; giving the recalculated values shown in Table 4.1.

Cores	Activity concent	trations, Cs-137	Sampling site
S2-1	19	kBq/m ²	Head of the Sognefjord
S2-2	19	kBq/m²	Head of the Sognefjord
S2-3	10	kBq/m²	Head of the Sognefjord
S4-1	10	kBq/m²	Head of the Sognefjord
S4-2	12	kBq/m ²	Head of the Sognefjord

Table 4.1: Cs-137 activity concentrations in kBq/m2.

In the two sampling sites in the head of the Sognefjord, the Cs-137 activity concentrations are in range 10 to 19 kBq/m2. This corresponds to approximately 4 % of the Chernobyl fallout on land. If again comparing with the Baltic, currently 70 % of the Cs-137 found there are located in sediments (Ikkaheimonen, Outola, 2009). But the salinity in Baltic is much less than in the Sognefjord. It is thus expected that the relative amount of Cs-137 in the fjord water is larger than in the Baltic, as the distribution factor ($K_d = Bq \cdot kg^{-1}$ sediment/ $Bq \cdot kg^{-1}$ water) is decreasing with increasing salinity (Christensen, 1998). But the budget is not complete since direct Chernobyl fallout is a part of the total inventory, and so is the Cs-137 brought here by the ocean currents.

A work done by Brydsten and Jansson (1988) on particle transport in a river ending in the Baltic with Cs-137 from Chernobyl as tracer; shows that material transported in a river are

settled in the estuary and are redistributed further away until it reaches an area where it settles. Spring flow was the greatest controlling factor for the deposition of particles in the estuary of a river. Sampling distance to a river mouth is thus important when assessing Cs-137 activity concentrations in a fjord. This was not controlled in this work.

4.4 Particle size distribution

The particle size analysis on surface sediments showed that the sediments were mainly clay and silt. The sampling sites in the head of the Sognefjord had the highest content of particles < 63um, followed by the Laksefjord and the outlet of the Sognefjord ; 99.4%, 96% and 91.2% respectively The differences between the three sampling areas was so small that firm conclusions on this parameter cannot me made. All these three areas have sediments containing a large fraction of particles which can bind Cs-137.

4.5 238 Pu/239+ 240 Pu ratio

The ²³⁸Pu/²³⁹⁺²⁴⁰Pu ratio in the surface sediment layers from the 6 sampling sites were all in the range 0.025 to 0.067. Plutonium and Cs-137 does not act the same way in nature (Vintro, 2009), however the ²³⁸Pu/²³⁹⁺²⁴⁰Pu ratio will give an indication of the source of plutonium in an area. The ratios measured indicates that weapons test fall out is the plutonium-source in all the 6 sampling sites; as the ratio from weapons test fallout was 0.033, and the ratios from the other known sources were considerably higher (Becks, 2000).

4.6 Conclusion

The results in this thesis are in good agreement with other investigations from the same areas. However, comparison of the Cs-137 activity concentrations in this work with recent studies from other areas requires recalculation as the results in this study is given as activity concentrations per. weight sediment while in the most recent studies, the results are given in activity per. area.

Dating the cores does not give as reliable results as expected. Special effort in sampling and sample preparing could probably improve this. There are no sediment layers in the cores which indicate a specific source. Correcting the Cs-137 activity concentrations according to the age found can give an indication of the source at specific layers.

The contents of Cs-137 in sediments are relatively high the Sognefjord. Sediment cores from the head and the outlet of the fjord show an overall decrease in the Cs-137 activity concentrations with increasing depths, indicating a continuous supply. This can be caused by a combination of run-off and a relatively long water residence time. The Sognefjord with is unusual depths can be a huge sediment trap with a low mobility of bottom sediments. The nuclide is found several centimeters into the sediments; in layer deposited before nuclear industry. It is not possible to conclude whether this is caused by bioturbation, diffusion of Cs-137 in interstitial water or by the sampling procedure. The elevated levels in the outlet of the Sognefjord can have its origin from Chernobyl fallout, Chernobyl Baltic and Sellafield. The origin of the Cs-137 in the Laksefjord is most likely Sellafield discharges and Chernobyl Baltic due to a rapid water exchange between the Laksefjord and the Norwegian coastal current.

It is not likely that the elevated Cs-137 activity concentrations in the head of the Sognefjord have its origin from Sellafield or Chernobyl Baltic. Chernobyl fallout on land area surrounding the Sognefjord is most likely the source. The Cs-137 can be focused in the head of fjords due to the ratio between the drain-off area and the area receiving the drain-off. There are also relatively high levels of Cs-137 in some other Norwegian fjords. These fjords are also located in areas which received a large amount of Chernobyl fallout. Fjords located in areas which received a relatively moderate amount of Chernobyl fallout does not show these elevated levels.

How this radio nuclide is bound in the sediments is not investigated here. Speciation should be done in order to see in which physicochemical forms this nuclide exists in the sediments and thus predict whether this nuclide is mobile and thus bioavailable. Analysis of Cs-137 in seawater, river run-off, precipitating particles and sediments in the estuary could be further investigated in order to find the development of this radio nuclide in the Sognefjord. Cs-137 earlier bound in Irish Sea sediment is now remobilized. Cook et. al. (1997) has calculated an annual loss of 86 TBq Cs-137, from the Irish Sea. Could also this happen in the Sognefjord, or is the Cs-137 irreversibly bound to the sediments which will be buried as time pass on?

5. References

Aarkrog, A., 1994. Source terms and inventories of anthropogenic radionuclides, in: Holm, E. (Ed.), Radioecology - Lectures in environmental radioactivity. World Scientific Publishing Co. Pte. Ltd., Singapore, Utopia Press, ISBN 981-02-1778-1: 23-38.

Andersson Sørlie, A., Strand, P., Selnæs, T.D., 1992. Brukerveilledning for Canberra serie 10 pluss. Arbeidsdokument SIS 1992:5.

Andersson, T., Meili, M., 1994. Dahlgaard, H. (ed.). The role of lake-specific abiotic and biotic factors for the transfer of radiocesium fallout to fish. Studies in Environmental Science 62. Nordic Radioecology. The transfer of Radionuclides through Nordic ecosystem to man. Elsevier Science B.V., Amsterdam. ISBN: 0-444-81617 -8: 79-92.

Appleby, P.G., Oldfield, F., 1978. The Calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena Vol.5: 1-8.

Asplin, L., Dahl, E., 2003. Havets miljø 2003. Fisken og havet, særnr.2-2003.

Becks, J.P., 2000. Storage and distribution of plutonium, 241Am, 137Cs and 210Pbxs in North Sea Sediments. Continental Self Reasearch ,20: 1941-1964.

Bergan, T.D., 2002. Radioactive fallout in Norway from atmospheric nuclear weapons tests. Journal of environmental radioactivity , 60, 189-208.

Binford, M.W., 1990. Calculation and uncertainty analysis of 210Pb dates for PIRLA project lake sediment cores. Journal of Paleolimnology, 3: 253-267.

Bjørnes, H., Hovde, P., 1978. Fysiske målinger. Universitetsforlaget. ISBN 82-00-26802-0

BNFL, 2004. Discharges and monitoring of the environment in the UK. Annual report 2003. Warrington: British Nuclear Fuels, BNFL, 2004.

Boitsov, S., Jensen, H.K.B., Klungsøyr, J., 2009. Natural background and anthropogenic inputs of polycyclic aromatic hydrocarbons (PAH) in sediments of South-Western Barents Sea. MareanoMarine Environmental Research, 68: 236-245.

Bowen, H.J.M., 1979. Environmental chemistry of the elements. Academic Press. London, 333.

Brungot, A.L., Amundsen, I., 2003. LORAKON: Kvalitetskontroll 2000 og 2001. Strålevernrapport 2003:4 Østerås: Statens Strålevern.

Brydsten, L., Jansson, M., 1989. Studies of Estuarine Sediment Dynamics Using ¹³⁷Cs from the Tjernobyl Accident as a Tracer. Estuarine, Coastal and Shielf Science, 28: 249-259.

Buchanan, J.B., 1984. Sediment analysis. Pp 41-65 in: Holme, N.A., McIntyre, A.D. (Eds.). Methods for the study of marine benthos. Blackwell Scientific Publications, Oxford.

Christensen, G.C., Bergan, T.D.S., Berge, D., Bækken, T., 1998. A comparison of sea water and fresh water in a study of sediment-water exchange of radionuclides. Radiation Protection Dosimetry, 75: 107-109.

Cook, G.T., MacKenzie, A.B., McDonald, P., Jones, S.R., 1997. Remobilization of Sellafield –Dervived Radionuclides and Transport from the North-east Irish Sea. Journal of Environmental Radioactivity, 35: 227-241.

Coughtrey, P.J., Thorne, M.C., 1983. Cesium in aquatic ecosystems. In: Radionuclide distribution and transport in terrestrial and aquatic ecosystems. Vol. 1,AA Balkema Publ., Rotterdam: pp 496.

Currie, L.A., 1968. Limits for Qualitative Detection and Quantitative Determination, Application to Radiochemistry. Analytical Chemistry, 40: 586-593.

Cutshall, N.H., Larsen, I.L., Olsen, C.R., 1983. Direct analysis of 210Pb in sediment samples: Self-absorption corrections. Nuclear Instruments and Methods 206: 309-312.

Dahl, E., Hansen, P. K., Haug, T., Karlsen, Ø., 2007. Kyst og havbruk 2007. Fisken og havet, særnr.2-2007.

Dahlgaard, H., 1995. Transfer of European Coastal Pollution to the Arctic: Radioactive Tracers. Marine Pollution Bulletin, 31: 3-7.

Dahlgaard, H., 2002. Baltic 137Cs outflow through the Danish Straits indicates remobilization, in: Strand, P., Børrezen, P., Jølle, T., (Eds.), International conference on radioactivity in the environment, Monaco 2002. Extended abstract. Østerås: Norwegian Radiation Protection Authority: 516-520.

Department of Food and Rural Affairs, 2003. Artificial Sources of Radiation. Exposure from liquid effluents.

http://www.defra.gov.uk/evidence/statistics/environment/radioact/radliquid.htm#rafg0910 Page last modified: 16 September 2003.

Evans, S., 1991. Impacts of the Chernobyl fallout in the Baltic ecosystem, in: Moberg L., (ed.), The Chernobyl fallout in Sweden. Swedish Radiation Protection Institute, Stockholm: 109-127.

Føyn, L., Sværen, I., 1995. Distribution and sedimentation of radionuclides in the Barents Sea. ICES C.M. 1995. Mini11.

Gjøsæter, H., Huse, G., Robbertstad, Y., Skogen, M., 2008 Havets ressurser og miljø 2008. Fisken og havet, særnr. I-2008.

Goldberg, E.D., 1963. Geochronology with Pb-210 in radioactive dating. International Atomic Energy Agency. Symposium Proceedings, Vienna 1962: 121-131.

Grøttheim, S., 1998. A preliminary report on radioactive contamination in the northern marine environment. Studies on distribution of radiocaesium, plutonium and americium in sea water and sediments. Norwegian Radiation Protection Authority.

Hermansen, H.O., 1974. Sognefjordens hydrografi og vannutveksling. Hovedfagsoppgave i fysisk oseanografi. Del I med tekst (56s.) + Del 2 med 46 figurer.

Holby, O., Evans, S., 1996. The Vertical Distribution of Chernobyl-Derived Radionuclides in a Baltic Sea Sediment. Journal of Environmental Radioactivity, 33: 129-145.

IAEA, 1985. Sediment Kds and concentration factors for radio-nuclides in the Marine Environment. Report coded STI/DOC/10/247, International Atomic Energy Agency, Vienna, Austria.

IAEA, 1991. Reference sheet IAEA-368 Radionuclides in Pacific Ocean sediment.

IAEA, 2000. Report on the intercomparison run IAEA-384 Radionuclides in Fangataufa Lagoon Sediment.

IAEA, 2001. Worldwide Marine Radioactive studies (WOMARS). IAEA-MEL, Report R1/01, Monaco.

IAEA, 2005. Report on the worldwide Intercomparison Exercise IAEA-385 Radionuclides in Irish Sea Sediments.

Ikkaheimonen, T.K., Outola, I., 2009. Radioactivity in the Baltic SEa: inventories and temporal trends of 137Cs and 90Sr in water and sediments. Journal of Radioanalytical Chemistry, 282: 419-425.

Jackson, D., Lambers, B., Gray, J., 2000. Radiation doses to members of the public near Sellafield, Cumbria, from liquid discharges 1952-1998. Journal of Radiological Protection, 20: 139-167.

Jones, D.G., Kershaw, P.J., McMahon, C.A., Milodowski, A.E., Murray, M., Hunt, G.J., 2007. Changing patterns of radionuclide distribution in Irish Sea subtidal sediments. Journal of Environment radioactivity, 96: 63-74.

Kautsky, H., 1987. Investigations on the Distribution of 137Cs, 134Cs and 90Sr and the Water Mass Transport Times in the Northern North Atlantic and the North Sea. Deutsches Hydrographicses zeitung, 40: 49-69.

Keith-Roach, M., J., Roos, P., 2004. Redox-dependent behaviour of technetium-99 entering a permanently stratified anoxic fjord (Framvaren fjord, Norway). Estuarine, Coastal and Shelf Science. 60: 151-161.

Matishov, D.G., Matishov, G.G., 2004. Radioecology in Northern European Seas. Springer-Verlag Berlin Heidelberg New York: 103-160. ISBN 3-540-20197-1.

Matthäus, W., Schinke, H., 1999. The influence of river runoff on deep water conditions of the Baltic Sea. Hydrobiologia, 393: 1-10.

Mitchell, P.I., Kershaw, P.J., Vintró, L., 1996. Radioactivity in the Irish Sea: past practices, present status and future perspectives. In: Guéguéniat, P., Germain, P. and Métivier, H., Editors, 1996. Radionuclides in the Oceans, Les éditions de physique, les Ulis, France: 155–175.

Nies, H., Harms, I.H., Karcher, M.J., Dethleff, D., Bahe, C., 1999. Antropogenic radioactivity in the Arctic Ocean- Review of the results from the joint German project. The Science of Total Environment 237/238: 181-191.

NRPA, 2001.Radioactivity in the Marine Environment (RAME) 1999. NRPA Report 2001:9 Østerås: Norwegian Radiation Protection Authority.

NRPA, 2003 Radioactivity in the Marine Environment 2000 and 2001. Results from the Norwegian National Monitoring Programme (RAME). StrålevernRapport 2003:8 Østerås: Norwegian Radiation Protection Authority.

NRPA, 2004. Radioactivity in the Marine Environment 2002. Results from the Norwegian National Monitoring Programme (RAME). StrålevernRapport 2004:10 Østerås: Norwegian Radiation Protection Authority.

NRPA, 2005. Radioactivity in the Marine Environment 2003. Results from the Norwegian National Monitoring Programme (RAME). StrålevernRapport 2005:20 Østerås: Norwegian Radiation Protection Authority.

NRPA, 2006. Radioactivity in the Marine Environment 2004. Results from the Norwegian National Monitoring Programme (RAME). StrålevernRapport 2006:14 Østerås: Norwegian Radiation Protection Authority.

NRPA, 2007. Radioactivity in the Marine Environment 2005. Results from the Norwegian National Monitoring Programme (RAME). StrålevernRapport 2007:10 Østerås: Norwegian Radiation Protection Authority.

NRPA, 2008. Radioactivity in the Marine Environment 2006. Results from the Norwegian National Monitoring Programme (RAME). StrålevernRapport 2008:14 Østerås: Norwegian Radiation Protection Authority.

NRPA, 2009a: NRPA website: Kilder til radioaktiv forurensning; oppdatert: 18.11.2009. http://www.nrpa.no/eway/default.aspx?pid=239&trg=Center_6304&LeftMiddle_6254=6262: 0:15,4840:1:0:0:::0:0&CenterAndRight_6254=6304:0:15,4892&Center_6304=6312:80110::0 :6314:1:::0:0

NRPA 2009b: NRPA website: Tsjernobyl-ulykken; oppdatert: 03.12.2009. http://www.nrpa.no/eway/default.aspx?pid=239&trg=Center_6304&LeftMiddle_6254=6262: 0:15,4840:1:0:0:::0:0&CenterAndRight_6254=6304:0:15,4892&Center_6304=6312:80090::0 :6321:2:::0:0

NRPA, 2009c: NRPA website: Grenseverdier for radioaktivt cesium i Norge; oppdatert 25.11.2009.

http://www.nrpa.no/eway/default.aspx?pid=239&trg=Center_6304&LeftMiddle_6254=6262: 0:15,4840:1:0:0:::0:0&CenterAndRight_6254=6304:0:15,4898&Center_6304=6312:80036::0 :6321:3:::0:0

NRPA, 2009d: NRPA website: Atmosfæriske prøvesprengninger; oppdatert: 20.10.2009. http://www.nrpa.no/eway/default.aspx?pid=239&trg=Center_6304&LeftMiddle_6254=6262: 0:15,4840:1:0:0:::0:0&CenterAndRight_6254=6304:0:15,4892&Center_6304=6312:80037::0 :6322:1:::0:0

NRPA, 2009e: NRPA website: Fisk; oppdatert: 25.11.2009.

http://www.nrpa.no/eway/default.aspx?pid=239&trg=Center_6304&LeftMiddle_6254=6262: 0:15,4840:1:0:0:::0:0&CenterAndRight_6254=6304:0:15,4894&Center_6304=6312:80365::0 :6322:1:::0:0

NRPA, 2009f. Radioactivity in the Marine Environment 2007. Results from the Norwegian National Monitoring Programme (RAME). StrålevernRapport 2009:15 Østerås: Norwegian Radation Protection Authority.

NVE-Atlas, 2010: Norwegian Water Resources and Energy Directorate <u>http://www.nve.no/no/Vann-og-vassdrag/Databaser-og-karttjenester/</u><u>http://arcus.nve.no/website/nve/viewer.htm</u>

OSPAR, 2006. Liquid discharges from nuclear installations in 2004. Radioactive substances series. Publication number 297/2006. London: OSPAR Commision, 2006.

Povinec, P.P., 2003. Temporal and spatial trends in the distribution of Cs-137 in surface of Northern European Seas – a record of 40 years of investigation. Deep-Sea Research II 50: 2785-2801.

Richie, J.C., McHenry, J.R., 1990 Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: a review. Journal of Environmental Quality, 19: 215-233.

Salbu, B., Krekling, T., Oughton, D., 1998. Characterisation of radioactive particles in the environment. Analyst, 123: 843-849.

Saxen, R., Ilus, E., 2001. Discharge of 137Cs and 90Sr by Finnish rivers to the Baltic Sea in 1986-1996. Journal of Environmental Radioactivity, 54: 275-291.

Schøtzig, U., Schraeder, H., 1993. Halbwertszeiten und Photonen-Emissionswahrscheinlichkeiten von haufig verwendeten Radionukliden. Physikalisch-Technische Bundesanstalt, Braunschweig. ISBN 3-89429-349-7.

SFT, 2010: Forurensede sedimenter. http://www.klif.no/publikasjoner/vann/1957/ta1957_01_02.html

Skei, J., Nilsson, H., 2008. Kjemiske analyser av sedimentkjerner fra deponiområdet ved Malmøykalven og randområdene. NIVA, s.54.

Smith, J.T., Beresford, N.A., 2005. Radioactive fallout and environmental transfers, in: Smith, J., Beresford, N.A. (Eds.), Chernobyl - Catastrophe and Consequences. Praxis Publishing Ltd, Chichester, UK: 35-80.

STUK-B 91. Mustonen, R., (Ed.), 2008. Strålingsovervakning av miljøn I Finland. Årsrapport 2007. STUK-B 91. Helsingfors. 67s.

Svendsen, S.W., 2006. Master Thesis in Physical Oceanography: Stratification and circulation in Sognefjorden. University of Bergen.

Sværen, I., 2010. R1: Bestemmelse av radioaktivt cesium i sedimenter og biota, målt med gamma-spektroskopi på HPGe-detektor. Intern metode. Havforskningsinstituttet.

Syvitski, J.P.M., Burell, D.C., Skei, J.M., 1987. Fjords: processes and products. New York: Springer Verlag. 379p.

Tadjiki, S., Erten, H.N., 1994. Radiochronology of sediments from the Mediterranean Sea using natural Pb-210 and fallout C-137. Journal of radioanalytical and nuclear chemistry, 181: 447-459.

Thørring, H., 2006a: Statens Strålevern: Stråleverninfo 2006:11: Radioaktive stoffer i norske matvarer etter Tsjernobyl-ulykken. <u>http://www.nrpa.no/dav/11dfeb42a3.pdf</u>

Thørring, H., Gäfvert, T., Iosjpe, M., Rudjord, A.L., 2006b. Tilførsel av radioaktive stoffer til norske kyst- og havområder. StrålevernRapport 2006:23. Østerås: Statens Strålevern, 2006.

UNSCEAR, 1993. Sources and effects of ionizing radiation, United Nations Scientific Committee on Effects of Atomic Radiation, UNSCEAR 1993 Report to the General Assembly, with Scientific Annexes; United Nations, New York.

UNSCEAR, 2000. Report to the General Assembly. Sources and effects of ionizing radiation. Volume II, Annex J. United Nations, New York: 453-551.

Varga, Z., 2007. Origin and release date assessment of environmental plutonium by isotopic composition. Analytical and Bioanalytical Chemistry, 389: 725-732.

Vintro, L. L., 2009. Marine Radioecology. Lecture in European Master in Radioecology 2009/2010. UMB.

Wassmann, P., Svendsen, H., Kecka, A., Reigstad, M., 1996. Selected aspects of the physical oceanography and particle fluxes in fjords of northern Norway. Journal of Marine Systems, 8: 53-71.

Zaborska, A., Carroll, J., Papucci C., Torricelli, L., Carroll, M.L., Walkusz-Miotk, J., Pempkowiak, J., 2008. Recent sediment accumulation rates for the Western margin of the Barents Sea. Deep Sea Research Part II, 55: 2352-2360. APPENDIX I

Appendix I Table A1:

Cs-137 activity concentrations in surface sediment samples from the Skagerrak area (NRPA, 2003) (NRPA, 2006) (NRPA, 2007).

Fjord	Year		
Iddefjorden	2001	37, 24, 31	3 sampling sites
Iddefjorden	2004	33.3	
Iddefjorden	2005	30.8	
Bunnefjorden	2001	3.2	
Bunnefjorden	2004	<1.0	
Bunnefjorden	2005	3.2	
Oslofjorden	2001	40	
Oslofjorden	2004	40.4, 30	2 sampling sites
Oslofjorden	2005	12.5, 31.7	2 sampling sites
Drammensfjorden indre	2001	290	
Drammensfjorden midt	2001	10	
Drammensfjorden ytre	2001	7.9, 7.7	2 sampling sites
Drammensfjorden ytre	2004	14.2	
Drammensfjorden ytre	2005	28.8	
Tønsbergfjorden	2004	13.7	
Tønsbergfjorden	2005	11.9	
Larvikfjorden	2004	20.4	
Frierfjorden	2001	7.2	
Grenland	2004	20.6, 21.3, 3.3, 2.3	4 sampling sites
Grenland	2005	13.3, 7.4	2 sampling sites
Eidangerfjorden	2001	9.7	
Kragerø	2004	19.1	
Kragerø	2005	22.4	
Risør	2004	<0.7	
Risør	2005	2.3	

Appendix I Table A2:

Cs-137 activity concentrations in surface sediment samples from the west coast of Norway (including preliminary results) (NRPA, 2001) (NRPA, 2003) (NRPA, 2004) (NRPA, 2007).

Fjord	Year		
Sørfjorden	2005	23.1	
Fensfjorden	2002	11	
Masfjorden	2002	2	
Sognefjorden head	2005	415	
Sognefjorden head	2008	323	
Sognefjorden mouth	2005	45.4	
Sognefjorden mouth	2008	34.4	
Nordfjord	1999	102	
Innvik	2001	9.4	
Nordfjord indre	2002	19, 20	2 sampling sites
Geirangerfjorden	2002	40	
Stor/Sulafjord	2002	7.8	
Storfjorden	2005	16.2	
Sunndalsfjorden	2002	85	
Frøyfjorden	2002	6	
Romsdalsfjorden	1999	41	
Romsdalsfjorden	2001	18.3	
Moldefjorden	2005	27.4	

Appendix I Table A3:

Cs-137 activity concentrations in surface sediment samples from Trøndelag to Lofoten (*NRPA, 2001*) (*NRPA, 2003*) (*NRPA, 2004*) (*NRPA, 2005*) (*NRPA, 2007*) (*NRPA, 2008*) (*NRPA, 2009*).

Fjord	Year		
Trondheimsfjorden	2001	67	
Beistadfjorden	1999	102	
Beistadfjorden	2001	6.2	
Namsfjorden	1999	330	
Namsfjorden	2001	83	
Namsfjorden	2002	186	
Bindalsfjorden	2001	48	
Tosenfjorden	2001	30	
Velfjorden	2002	365	
Vefsenfjorden	2002	317	
Ranafjorden	1999	2	
Ranafjorden	2001	126	
Glomfjord	2001	16.9	
Glomfjord	2005	5.6	
Sørfolla	1999	5.7	
Follafjordene	2002	3.1, 7.7, 11, 8.6, 11.8	5 sampling sites
Ofotfjorden	1999	14.3	
Ofotfjorden	2001	3.9	
Tysfjord	2002	5.6, 2.5	2 sampling sites
Ofotfjorden	2003	15.9	
Ofotfjprden	2006	5.9	
Ofotfjorden	2007	9	

Appendix I Table A4:

Cs-137 activity concentrations in surface sediment samples from Lofoten to the Russian border (NRPA, 2001) (NRPA, 2003) (NRPA, 2004) (NRPA, 2005) (NRPA, 2006) (NRPA, 2007) (NRPA, 2008) (NRPA 2009).

Fjord	Year		
Vågsfjorden-Astafjorden	2006	16.4	
Vågsfjorden-Astafjorden	2007	10.5	
Balsfjorden	2001	16	
Balsfjorden	2006	12.7	
Tromsø	2004	13.1, 20.2, 4.2,	3.8 4 sampling sites
Tromsø	2005	7	
Tromsø	2006	2.6	
Tromsø	2007	11.1	
Ullsfjorden	2006	10.8	
Ullsfjorden	2007	10.3	
Malangen	2002	16,5.6	2 sampling sites
Malangen	2005	7.5	
Malangen	2006	6.6	
Malangen	2007	14	
Lyngenfjorden ytre	2002	12, 6.1, 7.7	3 sampling sites
Lyngen	2006	8.3	
Lyngen	2007	5.9	
Kvænangen	2006	8.5	
Kvænangen	2007	1.9	
Altafjorden	1999	20.1	
Altafiorden	2001	14.5	
Altafjorden	2004	13.1	
Altafjorden	2005	8.9	
Altafjorden	2006	10.6	
Altafjorden	2007	10.1	
Porsangerfjorden	1999	7.2	
Porsangerfjorden	2001	12.4	
Porsangerfjorden	2004	9.8, 9	
Porsangerfjorden	2005	9.9	
Porsangerfjorden	2006	7.4	
Porsangerfjorden	2007	9, 6.5	2 sampling sites
Laksefjorden	2002	2, 6.2	2 sampling sites
Laksefjorden	2004	9.1, 4.7	2 sampling sites
Laksefjorden	2006	6.6	
Laksefjorden	2007	7.4	
Tanafjorden	1999	13.8	
Tanafjorden	2001	9.9	
Tanafjorden	2003	10.9	
Tanafjorden	2004	3.5	
Tanafjorden	2005	9.2	
Tanafjorden	2006	8.6	
Tanafjorden	2007	5.7	
Varangerfjorden	2003	4.6	
Varangerfjorden indre	2004	4.5, 5.6	2 sampling sites
Varangerfjorden	2006	5.2	
Varangerfjorden	2007	6, 7.6, 4	3 sampling sites

APPENDIX II

Corer	S1-1						S1-2					S1-3						
Date			20.1	1.07					20.1	1.07					20.1	1.07		
Layer	Empty cont., g	Gross wet weight, g	Gross dry weight, g	Net wet weight, g	Net dry weight, g	% dry weight	Empty cont., g	Gross wet weight, g	Gross dry weight, g	Net wet weight, g	Net dry weight, g	% dry weight	Empty cont., g	Gross wet weight, g	Gross dry weight, g	Net wet weigh,. g	Net dry weight, g	% dry weight
0-1 cm	2.5	150.0	61.7	147.5	59.2	40.1	2.5	91.4	35.3	88.9	32.8	36.9	2.5	134.4	49.0	131.9	46.5	35.3
1-2 cm	2.5	114.1	51.7	111.6	49.2	44.1	2.5	126.6	56.8	124.1	54.3	43.8	2.5	140.3	64.1	137.8	61.6	44.7
2-3 cm	2.5	117.3	53.9	114.8	51.4	44.8	2.6	162.7	74.6	160.1	72	45.0	2.5	132.3	59.5	129.8	57.0	43.9
3-4 cm	2.5	131.9	61.8	129.4	59.3	45.8	2.5	120.9	55.7	118.4	53.2	44.9	2.5	140.0	64.6	137.5	62.1	45.2
4-5 cm	2.5	138.6	64.7	136.1	62.2	45.7	2.5	106.5	50.1	104	47.6	45.8	2.5	138.1	65.4	135.6	62.9	46.4
5-6 cm	2.5	121.3	59.1	118.8	56.6	47.6	2.5	84.8	34.7	82.3	32.2	39.1	2.5	121.6	58.3	119.1	55.8	46.9
6-7 cm	2.5	134.8	67.8	132.3	65.3	49.4	2.5	104.1	52.2	101.6	49.7	48.9	2.5	138.1	65.1	135.6	62.6	46.2
7-8 cm	2.5	111.6	56.8	109.1	54.3	49.8	2.5	100.6	50.5	98.1	48	48.9	2.5	153.3	73.0	150.8	70.5	46.8
8-9 cm	2.5	118.3	61.0	115.8	58.5	50.5	2.5	144.0	71.6	141.5	69.1	48.8	2.5	150.6	72.6	148.1	70.1	47.3
9-10 cm	2.5	144.6	75.2	142.1	72.7	51.2	2.5	147.0	76.2	144.5	73.7	51.0	2.5	150.3	76.9	147.8	74.4	50.3
10-11 cm	2.5	133.1	71.0	130.6	68.5	52.5	2.5	139.1	72.5	136.6	70	51.2	2.5	157.3	83.1	154.8	80.6	52.1
11-12 cm	2.5	158.6	84.9	156.1	82.4	52.8	2.5	167.3	88.7	164.8	86.2	52.3	2.5	176.4	91.5	173.9	89.0	51.2
12-13 cm	2.5	156.6	85.1	154.1	82.6	53.6	2.5	148.1	76.9	145.6	74.4	51.1	2.5	154.9	82.8	152.4	80.3	52.7
13-14 cm	2.5	133.9	71.2	131.4	68.7	52.3	2.5	155.8	82.1	153.3	79.6	51.9	2.5	118.5	64.0	116.0	61.5	53.0
14-15 cm	2.5	168.0	90.1	165.5	87.6	52.9	2.5	155.3	83.7	152.8	81.2	53.1						
15-16 cm	2.5	146.2	80.6	143.7	78.1	54.3												
Length	16 cm						15 cm						14 cm					

Appendix II Table A5: Overview of samples; weighing data and dry weight calculations in each layer; from corers S1-1, S1-2 and S1-3.

Corer	S2-1	2-1					\$2-2					S2-3						
Date			18.1	1.07					18.1	1.07					18.1	1.07		
Layer	Empty cont., g	Gross wet weight, g	Gross dry weight, g	Net wet weight, g	Net dry weight, g	% dry weight	Empty cont., g	Gross wet weight, g	Gross dry weight, g	Net wet weight, g	Net dry weight, g	% dry weight	Empty cont., g	Gross wet weight, g	Gross dry weight, g	Net wet weight, g	Net dry weight, g	% dry weight
0-1 cm	2.5	141.4	66.80	138.9	64.3	46.3	2.6	163.3	76.7	160.7	74.1	46.1	2.5	108.2	49.1	105.7	46.6	44.1
1-2 cm	2.5	105.5	52.90	103.0	50.4	48.9	2.6	132.1	67.9	129.5	65.3	50.4	2.5	161.0	82.2	158.5	79.7	50.3
2-3 cm	2.5	110.9	56.20	108.4	53.7	49.5	2.5	153.3	82	150.8	79.5	52.7	2.5	126.3	69.0	123.8	66.5	53.7
3-4 cm	2.5	149.6	79.10	147.1	76.6	52.1	2.5	148.0	81.9	145.5	79.4	54.6	2.5	139.9	79.0	137.4	76.5	55.7
4-5 cm	2.5	138.7	75.10	136.2	72.6	53.3	2.6	143.0	80.8	140.4	78.2	55.7	2.5	131.3	76.0	128.8	73.5	57.1
5-6 cm	2.5	144.7	79.20	142.2	76.7	53.9	2.6	130.3	75.1	127.7	72.5	56.8	2.5	137.7	80.8	135.2	78.3	57.9
6-7 cm	2.5	135.6	76.30	133.1	73.8	55.4	2.6	131.2	76.2	128.6	73.6	57.2	2.5	164.5	97.3	162.0	94.8	58.5
7-8 cm	2.5	136.2	77.60	133.7	75.1	56.2	2.6	150.2	88.3	147.6	85.7	58.1	2.5	143.7	85.3	141.2	82.8	58.6
8-9 cm	2.5	142.2	81.70	139.7	79.2	56.7	2.6	146.3	86.6	143.7	84	58.5	2.5	140.8	84.0	138.3	81.5	58.9
9-10 cm	2.5	137.2	79.20	134.7	76.7	56.9	2.5	156.1	92.8	153.6	90.3	58.8	2.5	108.4	65.3	105.9	62.8	59.3
10-11 cm	2.5	142.5	82.70	140.0	80.2	57.3	2.5	142.0	84.6	139.5	82.1	58.9	2.5	131.7	80.1	129.2	77.6	60.1
11-12 cm	2.5	117.0	69.30	114.5	66.8	58.3	2.5	125.4	75.8	122.9	73.3	59.6	2.5	118.1	71.2	115.6	68.7	59.4
12-13 cm	2.5	180.4	108.00	177.9	105.5	59.3	2.6	131.0	78.6	128.4	76	59.2						
13-14 cm	2.5	166.0	99.50	163.5	97.0	59.3	2.5	167.0	100.6	164.5	98.1	59.6						
14-15 cm	2.5	134.4	80.2	131.9	77.7	58.9	2.6	118.3	71.4	115.7	68.8	59.5						
15-16 cm							2.5	119.8	72.7	117.3	70.2	59.8						
Length	15 cm						16 cm				12 cm							

Continued Appendix II Table A5: Overview of samples; weighing data and dry weight calculations in each layer; corers S2-1, S2-2 and S2-3

Corer	S3-1						S3-2					
Date			20.1	1.07					20.1	1.07		
Layer	Empty cont., g	Gross wet weight, g	Gross dry weight, g	Net wet weight, g	Net dry weight, g	% dry weight	Empty cont., g	Gross wet weight, g	Gross dry weight, g	Net wet weight, g	Net dry weight, g	% dry weight
0-1 cm	2.6	94.8	46.0	92.2	43.4	47.1	2.5	96.1	47.0	93.6	44.5	48.9
1-2 cm	2.6	64.4	32.8	61.8	30.2	48.9	2.6	102.1	50.0	99.5	47.4	49.0
2-3 cm	2.6	127.0	62.6	124.4	60.0	48.2	2.5	106.8	52.9	104.3	50.4	49.5
3-4 cm	2.6	139.4	68.1	136.8	65.5	47.9	2.5	99.6	49.0	97.1	46.5	49.2
4-5 cm	2.5	147.5	72.9	145.0	70.4	48.6	2.5	139.0	70.6	136.5	68.1	50.8
5-6 cm	2.6	139.0	71.0	136.4	68.4	50.1	2.5	134.9	64.8	132.4	62.3	48.0
6-7 cm	2.6	191.5	93.4	188.9	90.8	48.1						
Lenght	7 cm						6 cm					

Continued Appendix II Table A5: Overview of samples; weighing data and dry weight calculations in each layer; from corers S3-1and S3-2

Corer	S4-1						S4-2					
Date			20.1	1.07					20.1	1.07		
Layer	Empty cont., g	Gross wet weight, g	Gross dry weight, g	Net wet weight, g	Net dry weight, g	% dry weight	Empty cont., g	Gross wet weight, g	Gross dry weight, g	Net wet weight, g	Net dry weight, g	% dry weight
0-1 cm	2.6	182.1	86.9	179.5	84.3	47.0	2.50	129.80	59.6	127.30	57.10	44.9
1-2 cm	2.6	131.2	68.9	128.6	66.3	51.6	2.50	180.50	94.4	178.00	91.90	51.6
2-3 cm	2.5	157.9	86.7	155.4	84.2	54.2	2.50	195.20	109.7	192.70	107.20	55.6
3-4 cm	2.6	162.7	92.3	160.1	89.7	56.0	2.50	180.20	105.6	177.70	103.10	58.0
4-5 cm	2.5	110.6	64.9	108.1	62.4	57.7	2.50	160.70	94.7	158.20	92.20	58.3
5-6 cm	2.5	166.4	98.7	163.9	96.2	58.7	2.50	110.80	65.3	108.30	62.80	58.0
6-7 cm	2.5	154.6	92.6	152.1	90.1	59.2	2.50	158.40	92.9	155.90	90.40	58.0
7-8 cm	2.6	128.8	76.9	126.2	74.3	58.9	2.50	163.40	96.8	160.90	94.30	58.6
8-9 cm							2.50	135.00	81.3	132.50	78.80	59.5
Length	8 cm						9 cm					

Continued Appendix II Table A5: Overview of samples; weighing data and dry weight calculations in each layer; from corers S4-1and S4-2

Corer	L1-1						L1-2					
Date			03.1	1.08					03.1	1.08		
Layer	Empty cont., g	Gross wet weight, g	Gross dry weight, g	Net wet weight, g	Net dry weight, g	% dry weight	Empty cont., g	Gross wet weight, g	Gross dry weight, g	Net wet weight, g	Net dry weight, g	% dry weight
0-1 cm	2.5	131.2	55.4	128.7	52.9	41.1	2.5	82.7	44.9	80.2	42.4	52.9
1-2 cm	2.5	110.9	49.2	108.4	46.7	43.1	2.5	92.7	51.1	90.2	48.6	53.9
2-3 cm	2.5	124.2	56.2	121.7	53.7	44.1	2.5	98.7	55	96.2	52.5	54.6
3-4 cm	2.5	126.4	58	123.9	55.5	44.8	2.5	112.0	62	109.5	59.5	54.3
4-5 cm	2.5	147.8	69	145.3	66.5	45.8	2.5	142.7	79.2	140.2	76.7	54.7
5-6 cm	2.5	111.1	53.7	108.6	51.2	47.1	2.5	120.8	67.5	118.3	65	54.9
6-7 cm	2.5	128.5	63.6	126	61.1	48.5	2.5	118.6	66.4	116.1	63.9	55.0
7-8 cm	2.5	143.5	72.4	141	69.9	49.6	2.5	153.7	86.5	151.2	84	55.6
8-9 cm	2.5	169.9	85.7	167.4	83.2	49.7	2.5	139.9	78	137.4	75.5	54.9
9-10 cm	2.5	189.8	95.6	187.3	93.1	49.7	2.5	139.9	77.8	137.4	75.3	54.8
10-11 cm	2.5	166.1	84	163.6	81.5	49.8	2.5	174.9	98	172.4	95.5	55.4
11-12 cm	2.5	131.0	68.4	128.5	65.9	51.3	2.5	154.7	86.6	152.2	84.1	55.3
12-13 cm							25	139.5	77 1	137	74.6	54 5
13-14 cm							2.5	150.1	81.5	147.6	79	53.5
14-15 cm							2.5	107.0	58.1	104.5	55.6	53.2
Length	12 cm						15 cm					

Continued Appendix II Table A5: Overview of samples; weighing data and dry weight calculations in each layer; from corers L1-1and L2-1

Corer	L2-1						L2-2					
Date			18.1	1.07					18.1	1.07		
Layer	Empty cont., g	Gross wet weight, g	Gross dry weight, g	Net wet weight, g	Net dry weight, g	% dry weight	Empty cont., g	Gross wet weight, g	Gross dry weight, g	Net wet weight, g	Net dry weight, g	% dry weight
0-1 cm	2.5	89.9	47.9	87.4	45.4	51.9	2.5	177.7	94.8	175.2	92.3	52.7
1-2 cm	2.5	96.0	51.7	93.5	49.2	52.6	2.5	176.2	93.6	173.7	91.1	52.4
2-3 cm	2.5	95.6	52.8	93.1	50.3	54.0	2.5	185.5	103.8	183.0	101.3	55.4
3-4 cm	2.5	117.1	65.2	114.6	62.7	54.7	2.5	171.0	96.8	168.5	94.3	56.0
4-5 cm	2.5	130.4	72.9	127.9	70.4	55.0	2.5	128.6	72.7	126.1	70.2	55.7
5-6 cm	2.5	120.0	67.1	117.5	64.6	55.0	2.5	164.8	93.5	162.3	91.0	56.1
6-7 cm	2.5	164.0	92.2	161.5	89.7	55.5	2.5	265.8	148.2	263.3	145.7	55.3
7-8 cm	2.5	127.3	71.7	124.8	69.2	55.4	2.5	140.3	77.1	137.8	74.6	54.1
8-9 cm	2.5	157.8	88.9	155.3	86.4	55.6	2.5	155.4	84.4	152.9	81.9	53.6
9-10 cm	2.5	157.0	87.8	154.5	85.3	55.2	2.5	177.3	94.4	174.8	91.9	52.6
10-11 cm	2.5	171.6	95.8	169.1	93.3	55.2						
11-12 cm	2.5	188.3	105.8	185.8	103.3	55.6						
12-13 cm	2.5	147.0	82.9	144.5	80.4	55.6						
Length	13 cm						10 cm					

Continued Appendix II Table A5: Overview of samples; weighing data and dry weight calculations in each layer; from corers L2-1and L2-2

APPENDIX III

Appendix III Figure A1: Weekly measurement of Cs-137 activity in point source.

Appendix III Figure A2: Every second month measurement of Cs-137 in sediment control sample.

Measuring date	Gross area in ROI 1	Gross area in ROI 2	Gross area in ROI 3	Counting time, sec.	Internal background, cps	External background, cps
17.02.2009	273	69	73	62 124	0.0047	-0.0003
22.04.2009	334	94	78	87 667	0.0040	-0.0002
25.05.2009	1782	427	479	434 212	0.0043	-0.0002
06.07.2009	350	85	99	87 822	0.0043	-0.0003
04.09.2009	379	82	113	90 173	0.0044	-0.0002
26.11.2009	469	135	113	101 025	0.0050	-0.0004
06.01.2010	349	82	91	81 254	0.0044	-0.0001

Appendix III Table A6: External background in Cs-137 peak in sample measuring period.

Calibration date	Reference date	Activity in the standard, Bq	Uncertainty in standard activity, Bq	Gross area in ROI 1	Gross area in ROI 2	Gross area in ROI 3	Counting time, sec.	Internal background, cps	G, Bq/cps	sG, Bq/cps
23.02.2009	01.10.2002	66.3	2.9	625 758	3641	2858	331 823	0.04	35.9	1.6
23.04.2009	01.10.2002	66.0	2.9	163 221	925	720	86 949	0.039	35.9	1.6
01.07.2009	01.10.2002	65.7	2.9	185 461	1073	819	98 573	0.039	35.7	1.6
02.09.2009	01.10.2002	65.4	2.9	341 320	1905	1521	182 749	0.038	35.8	1.6
01.12.2009	01.10.2002	65.1	2.9	139 930	769	626	75 885	0.038	36	1.6
12.01.2010	01.10.2002	64.9	2.9	161 308	899	660	87 579	0.036	35.9	1.6

Appendix III Table A7: Cs-137 geometry factor measured every second month

Appendix III Table A8: Background in Pb-210 peak in sample measuring period.

Measured background; cps in 45,6 keV								
			mark peak ch-			uncertainty,		
date	net area	+ /-	ch	counting time, sec.	BK, cps	cps		
17.02.2009	-14	37	329-349	62 124	-0.0002	0.0006		
25.04.2009	230	51	333-345	434 212	0.0005	0.0001		
22.05.2009	28	22	333-345	87 667	0.0003	0.0003		
03.07.2009	54	23	333-345	87 822	0.0006	0.0003		
04.09.2009	13	23	333-345	90 173	0.0001	0.0003		
26.11.2009	110	46	329-349	101 025	0.0011	0.0005		
06.01.2010	-11	43	329-349	81 254	-0.0001	0.0005		
=>	Mean back	0.0004	+ /- 0.0004					

Appendix III Table A9: Pb-210 standard calibration.

Measured Pb-210 standard; R _{cal} , cps in 45,6keV									
				mark peak ch-				uncertain	
date		net area	+ /-	ch	counting time, sec.	R _{cal} , Cps		ty, cps	
02.06.20	09	9713 032	3684	333-345	349 504		27.79	0.01	
09.12.2009		3463 209	2015	329-349	98 118		35.30	0.02	
The cps diff	fers	depending	g on mark p	eak results : 333	3-345 or 329 -349				
			R _{ade} cps	uncertainty,					
=>	roi: 333-345 27.80		0.01		(02.06.09)				
=>	roi: 329-349 35.30		0.02	0.02					
=>	each sample has to be marked with roi								

Activity in the standard, A _{std}									
A ₀ =		7460	Bq						
t _{1/2}		8145	days						
Ref. date		01.07.2008							
Uncertainty		5	%						
Calibration		days	Activity on counting						
date	Ref. date	decayed	date, Bq		uncertainty, Bq				
02.06.2009	01.07.2008	336		7442	362	roi: 333-345			
09.12.2009	01.07.2008	526		7438	356	roi: 329-349			

Appendix III Table A10: Pb-210 activity in standard at calibration date.

Appendix III Table A11: Pb-210 geometry factor, g.

Geon	netry factor, g _{Pb-210} :			
		g _{Pb-210,} Bq/cps	uncertainty, Bq/cps	
=>	roi: 333-345	267.7	13.0	
=>	roi: 329-349	210.7	10.1	

Appendix III Table A12: Pointsource on top of the Pb-210 standard measured.

Pointsource on	top of the Pb-21					
			mark peak	counting time,		uncertainty,
date	net area	+ /-	ch-ch	sec.	Cps	cps
30.04.2009	240 871	596	333-345	600	401.5	1.0
26.02.2010	306 420	641	329-349	600	510.7	1.1
The cps differs	depending on ma	rk peak ı	results : 333-34	5 or 329 -349		
				uncertainty,		
		\mathbf{R}_{cal+}		cps		
=>	roi: 333-345	401.5		1.0		
=>	roi: 329-349	510.7		1.1		

Pointsource or	n top of an empty	, containe	er; R _s			
			mark peak	counting time,		uncertainty,
date	net area	+ /-	ch-ch	sec.	Cps	cps
14.03.2009	443 267	788	333-345	600	738.8	1.3
29.04.2009	3 794 425	2306	333-345	5120	741.1	0.5
29.04.2009	450 146	791	333-345	600	750.2	1.3
08.12.2009	584 216	808	329-349	600	973.7	1.3
The cps differs depending on mark peak results : 333-3			esults : 333-34	5 or 329 -349		
				uncertainty,		
		R _s , cps		cps		
=>	roi: 333-345	741.7		0.5		
=>	roi: 329-349	973.7		1.3		
=>	each sample has	to be ma	arked with roi			

Appendix III Table A13: Measurement of point source on top of an empty container.

Appendix III Table A14: Pb-210 geometry factor, G.

Geometry fa	ctor, G _{Pb-210} :				
			uncertainty		
roi: 333-345	КF _{Рb-210} =	1.38	0.01		
roi: 329-349	КF _{Рb-210} =	1.40	0.01		
		G _{Pb-210,} Bq/cps		uncertainty, Bq/cps	
=>	roi: 333-345	189.4		9.5	
=>	roi: 329-349	144.2		7.3	

Appendix III Table A15: Background in 295keV, 352keV and 609keV peaks in sample measuring period.

Measured ba	ackground; c					
	295 keV		352 keV peak,		609 keV peak,	
Date	peak, cps	uncertainty	cps	uncertainty	cps	uncertainty
22.04.2009	0.0009	0.0007	0.0035	0.0006	0.0033	0.0006
26.11.2009	0.0027	0.0006	0.0025	0.0006	0.0021	0.0005
Mean						
value	0.0018	0.0006	0.0030	0.0006	0.0027	0.0006
Nuclide	Activity	Uncertainty	Date			
---------	----------	-------------	---------------------			
Ra-226	3540 Bq	5 %	01.07.08 (ref.date)			
Ra-226	3539 Bq	5%	27.10.08			
Ra-226	3539 Bq	5%	05.11.08			
Ra-226	3538 Bq	5%	10.12.09			
Ra-226	3537 Bq	5%	07.04.10			

Appendix III Table A16: Ra-226 activity in standard at calibration date.

Appendix III Table A17: Ra-226 geometry factors, G295keV, G352keV and G609keV

Measuring	Net area in 609 keV		Net area in 352 keV		Net area in 295 keV	
date	peak	Uncertainty	peak	Uncertainty	keV peak	Uncertainty
27.10.2008	48,2	0,1	69,6	0,1	42,2	0,1
05.11.2008	48,2	0,1	69,8	0,1	41,9	0,1
10.12.2009	48,2	0,1	69,5	0,1	42,1	0,1
07.04.2010	48,3	0,1	69,5	0,1	42,1	0,1
	609 keV		352 keV		295 keV	
G-factor	peak	Uncertainty	peak	Uncertainty	peak	Uncertainty
27.10.2008	73,1	3,7	50,8	2,5	83,9	4,2
05.11.2008	73,4	3,7	50,7	2,5	84,5	4,2
10.12.2009	73,4	3,7	50,9	2,5	84,0	4,2
07.04.2010	73,2	3,7	50,9	2,5	84,0	4,2
Mean	73,3	7,4	50,8	5,0	84,1	8,4

APPENDIX IV

Appendix IV Table A18: Results on sieving 0-1 cm slice from each sampling site.

Sampling site	% clay + silt (< 63 μm)	% sand (>63 μm <2 mm)	% gravel (> 2 mm)
L1	97,5	2,5	0,0
L2	96,2	3,8	0,0
S1	92,0	8,0	0,0
S2	99,3	0,7	0,0
\$3	90,3	9,7	0,0
S4	99,4	0,6	0,0

Sample identity	Sampling date	Date of measurement	Sample weight, g	Geometry factor	sG	Gross area in ROI 1	Gross area in ROI 2	Gross area in ROI 3	Counting time, sec.	Cs-137, Bq/kg	Uncertainty, Bq/kg
L1-10-1 cm	03.11.2008	20.04.2009	34.6	35.9	1.6	2932	374	407	245981	5.7	0.8
L1-1 1-2 cm	03.11.2008	27.04.2009	36.7	35.9	1.6	3247	391	460	258873	5.7	0.8
L1-1 2-3 cm	03.11.2008	28.04.2009	34.4	35.9	1.6	763	115	141	74068	3.4	1.2
L1-1 3-4 cm	03.11.2008	29.04.2009	35.7	35.9	1.6	703	107	149	74857	< 3.8	
L1-1 4-5 cm	03.11.2008	30.04.2009	38.1	35.9	1.6	2856	568	612	348683	1.2	0.5
L1-1 5-6 cm	03.11.2008	06.05.2009	37.0	35.9	1.6	1333	278	312	166805	< 2.3	
L1-1 6-7 cm	03.11.2008	07.05.2009	37.3	35.9	1.6	702	158	185	88688	< 3.5	
L1-1 7-8 cm	03.11.2008	08.05.2009	42.5	35.9	1.6	731	172	164	90242	< 3.0	
L1-1 8-9 cm	03.11.2008	11.05.2009	45.1	35.9	1.6	1919	440	495	252171	< 1.6	
L1-1 9-10 cm	03.11.2008	12.05.2009	43.2	35.9	1.6	589	148	154	80979	< 2.9	
L1-1 10-11 cm	03.11.2008	13.05.2009	47.8	35.9	1.6	627	137	165	84026	< 2.7	
L1-1 11-12 cm	03.11.2008	14.05.2009	41.4	35.9	1.6	559	130	157	84250	< 3.1	

Appendix IV Table A19: Data and results from Cs-137 measurements on core L1-1.

Sample identity	Sampling date	Date of measurement	Sample weight, g	Geometry factor	sG	Gross area in ROI 1	Gross area in ROI 2	Gross area in ROI 3	Counting time, sec.	Cs-137, Bq/kg	Uncertainty, Bq/kg
L1-2 0-1 cm	03.11.2008	04.11.2009	42.0	35.8	1.6	1216	125	170	94248	5.7	1.0
L1-2 1-2 cm	03.11.2008	06.11.2009	47.4	35.8	1.6	1912	293	328	167791	2.9	0.7
L1-2 2-3 cm	03.11.2008	09.11.2009	44.1	35.8	1.6	2226	401	435	250732	1.7	0.5
L1-2 3-4 cm	03.11.2008	10.11.2009	43.0	35.8	1.6	803	158	182	101639	< 2.7	
L1-2 4-5 cm	03.11.2008	11.11.2009	44.9	35.8	1.6	709	137	155	81379	< 3.0	
L1-2 5-6 cm	03.11.2008	12.11.2009	42.8	35.8	1.6	674	160	143	86258	< 3.0	
L1-2 6-7 cm	03.11.2008	13.11.2009	45.4	35.8	1.6	689	165	148	83517	< 3.0	
L1-2 7-8 cm	03.11.2008	03.11.2009	45.7	35.8	1.6	485	127	127	65440	< 3.5	
L1-2 8-9 cm	03.11.2008	16.11.2009	47.2	35.8	1.6	1909	416	452	242163	< 1.5	
L1-2 9-10 cm	03.11.2008	17.11.2009	45.6	35.8	1.6	673	133	169	84918	< 2.9	
L1-2 10-11 cm	03.11.2008	18.11.2009	44.2	35.8	1.6	641	148	153	82518	< 3.1	
L1-2 11-12 cm	03.11.2008	19.11.2009	43.8	35.8	1.6	673	125	161	88001	< 2.9	
L1-2 12-13 cm	03.11.2008	20.11.2009	45.4	35.8	1.6	657	155	165	83986	< 3.0	
L1-2 13-14 cm	03.11.2008	21.11.2009	47.7	35.8	1.6	2755	639	647	339097	< 1.3	
L1-2 14-15 cm	03.11.2008	25.11.2009	48.0	35.8	1.6	627	142	136	84157	< 2.7	

Appendix IV Table A20: Data and results from Cs-137 measurements on core L1-2.

Sample identity	Sampling date	Date of measurement	Sample weight, g	Geometry factor	sG	Gross area in ROI 1	Gross area in ROI 2	Gross area in ROI 3	Counting time, sec.	Cs-137, Bq/kg	Uncertainty, Bq/kg
L2-1 0-1 cm	03.11.2008	21.04.2009	42.7	35.9	1.6	1188	137	132	80659	6.7	1.2
L2-1 1-2 cm	03.11.2008	10.06.2009	43.5	35.9	1.6	1289	155	162	81857	6.5	1.2
L2-1 2-3 cm	03.11.2008	11.06.2009	44.8	35.9	1.6	1063	130	156	81671	4.7	1.0
L2-1 3-4 cm	03.11.2008	12.06.2009	45.1	35.9	1.6	1099	138	155	84126	4.8	1.0
L2-1 4-5 cm	03.11.2008	13.06.2009	49.6	35.9	1.6	1527	189	219	107251	4.7	0.9
L2-1 5-6 cm	03.11.2008	15.06.2009	46.4	35.9	1.6	1817	255	292	154974	3.5	0.7
L2-1 6-7 cm	03.11.2008	16.06.2009	49.9	35.9	1.6	1026	182	217	101024	< 2.4	
L2-1 7-8 cm	03.11.2008	17.06.2009	49.7	35.9	1.6	672	140	145	66798	< 3.2	
L2-1 8-9 cm	03.11.2008	18.06.2009	49.1	35.9	1.6	893	142	167	86055	< 2.6	
L2-1 9-10 cm	03.11.2008	19.06.2009	49.1	35.9	1.6	741	144	168	84405	< 2.7	
L2-1 10-11 cm	03.11.2008	22.06.2009	51.6	35.9	1.6	2236	423	500	256847	< 1.3	
L2-1 11-12 cm	03.11.2008	23.06.2009	52.8	35.9	1.6	697	139	165	83581	< 2.5	
L2-1 12-13 cm	03.11.2008	25.06.2009	49.0	35.9	1.6	498	102	124	67315	< 3.0	

Appendix IV Table A21: Data and results from Cs-137 measurements on core L2-1.

Sample identity	Sampling date	Date of measurement	Sample weight, g	Geometry factor	sG	Gross area in ROI 1	Gross area in ROI 2	Gross area in ROI 3	Counting time, sec.	Cs-137, Bq/kg	Uncertainty, Bq/kg
L2-2 0-1 cm	03.11.2008	15.05.2009	50.2	35.9	1.6	1246	134	178	87572	5.0	0.9
L2-2 1-2 cm	03.11.2008	19.05.2009	48.6	35.9	1.6	1123	147	147	82279	4.7	1.0
L2-2 2-3 cm	03.11.2008	20.05.2009	51.1	35.9	1.6	1104	132	179	90314	3.7	0.8
L2-2 3-4 cm	03.11.2008	26.05.2009	49.9	35.9	1.6	770	154	158	78798	< 2.8	
L2-2 4-5 cm	03.11.2008	28.05.2009	49.6	35.9	1.6	1037	141	228	92445	2.2	0.8
L2-2 5-6 cm	03.11.2008	29.05.2009	49.6	35.9	1.6	606	127	139	71836	< 2.9	
L2-2 6-7 cm	03.11.2008	03.06.2009	55.8	35.9	1.6	649	135	144	72587	< 2.6	
L2-2 7-8 cm	03.11.2008	04.06.2009	48.4	35.9	1.6	849	184	231	102055	< 2.5	
L2-2 8-9 cm	03.11.2008	08.06.2009	48.6	35.9	1.6	2704	550	626	329124	< 1.2	
L2-2 9-10 cm	03.11.2008	09.06.2009	51.9	35.9	1.6	757	153	189	87760	< 2.5	

Appendix IV Table A22: Data and results from Cs-137 measurements on core L2-2.

Sample identity	Sampling date	Date of measurement	Sample weight, g	Geometry factor	sG	Gross area in ROI 1	Gross area in ROI 2	Gross area in ROI 3	Counting time, sec.	Cs-137, Bq/kg	Uncertainty, Bq/kg
S1-1 0-1 cm	20.11.2007	28.07.2009	50.0	35.7	1.6	803	34	38	17416	27.9	3.6
S1-1 1-2 cm	20.11.2007	07.08.2009	42.3	35.7	1.6	522	22	13	12411	31.8	4.5
S1-1 2-3 cm	20.11.2007	11.08.2009	41.5	35.7	1.6	2906	130	152	83800	24.8	2.5
S1-1 3-4 cm	20.11.2007	12.08.2009	45.0	35.7	1.6	2391	132	160	80523	18.4	2.0
S1-1 4-5 cm	20.11.2007	13.08.2009	42.3	35.7	1.6	3092	153	199	88609	23.5	2.4
S1-1 5-6 cm	20.11.2007	14.08.2009	39.6	35.7	1.6	2888	135	185	93698	22.3	2.3
S1-1 6-7 cm	20.11.2007	19.08.2009	41.8	35.7	1.6	1545	151	177	90182	8.6	1.3
S1-1 7-8 cm	20.11.2007	20.08.2009	41.0	35.7	1.6	1017	116	150	80859	5.3	1.1
S1-1 8-9 cm	20.11.2007	21.08.2009	42.6	35.7	1.6	934	155	183	88118	2.4	0.9
S1-1 9-10 cm	20.11.2007	28.07.2009	45.0	35.7	1.6	795	141	127	74240	2.7	1.0
S1-1 10-11 cm	20.11.2007	05.08.2009	47.2	35.7	1.6	6418	1241	1337	674888	1.3	0.3
S1-1 11-12 cm	20.11.2007	06.08.2009	48.2	35.7	1.6	642	151	163	81850	< 2.9	
S1-1 12-13 cm	20.11.2007	07.08.2009	48.6	35.7	1.6	564	133	143	71040	< 3.1	
S1-1 13-14 cm	20.11.2007	10.08.2009	45.0	35.7	1.6	1678	383	496	242765	< 1.7	
S1-1 14-15 cm	20.11.2007	18.08.2009	49.0	35.7	1.6	641	159	187	83599	< 2.9	
S1-1 15-16 cm	20.11.2007	17.08.2009	46.8	35.7	1.6	1785	441	508	246471	< 1.6	

Appendix IV Table A23: Data and results from Cs-137 measurements on core S1-1.

Sample identity	Sampling date	Date of measurement	Sample weight, g	Geometry factor	sG	Gross area in ROI 1	Gross area in ROI 2	Gross area in ROI 3	Counting time, sec.	Cs-137, Bq/kg	Uncertainty, Bq/kg
S1-2 0-1cm	20.11.2007	08.10.2009	34.1	35.8	1.6	3398	147	141	84868	36.2	3.5
S1-2 1-2cm	20.11.2007	09.10.2009	39.3	35.8	1.6	3473	158	164	86209	31.0	3.0
S1-2 2-3cm	20.11.2007	15.10.2009	40.5	35.8	1.6	18752	831	952	519578	26.8	2.4
S1-2 3-4cm	20.11.2007	16.10.2009	33.8	35.8	1.6	2231	148	141	86632	20.9	2.3
S1-2 4-5cm	20.11.2007	19.10.2009	35.7	35.8	1.6	8179	411	496	272311	24.3	2.2
S1-2 5-6cm	20.11.2007	20.10.2009	29.9	35.8	1.6	1559	138	128	81232	15.6	2.0
S1-2 6-7cm	20.11.2007	21.10.2009	33.8	35.8	1.6	1279	100	134	67770	13.0	1.9
S1-2 7-8cm	20.11.2007	22.10.2009	34.8	35.8	1.6	1187	147	167	89023	6.6	1.3
S1-2 8-9cm	20.11.2007	23.10.2009	36.2	35.8	1.6	922	135	126	73433	5.4	1.3
S1-2 9-10cm	20.11.2007	26.10.2009	37.2	35.8	1.6	2538	403	470	255994	2.9	0.6
S1-2 10-11cm	20.11.2007	27.10.2009	36.3	35.8	1.6	841	146	143	90313	2.8	1.0
S1-2 11-12cm	20.11.2007	28.10.2009	41.1	35.8	1.6	650	142	133	84009	< 3.1	
S1-2 12-13cm	20.11.2007	29.10.2009	39.5	35.8	1.6	622	137	151	86575	< 3.2	
S1-2 13-14cm	20.11.2007	30.10.2009	39.5	35.8	1.6	570	133	151	85072	< 3.3	
S1-2 14-15cm	20.11.2007	02.11.2009	41.3	35.8	1.6	1863	447	495	272196	< 1.7	

Appendix IV Table A24: Data and results from Cs-137 measurements on core S1-2.

Sample	Sampling	Date of	Sample	Geometry		Gross area	Gross area	Gross area	Counting	Cs-137,	Uncertainty,
identity	uale	measurement	weight, g	Tactor	30				time, sec.	БЧ/КВ	БЧ/К
S1-3 0-1cm	20.11.2007	17.04.2009	38.8	35.9	1.6	3121	156	124	76302	31.9	3.2
S1-3 1-2cm	20.11.2007	23.02.2010	32.4	35.8	1.6	2854	157	149	84489	30.6	3.1
S1-3 2-3cm	20.11.2007	25.02.2010	36.1	35.9	1.6	6874	278	300	171372	34.7	3.1
S1-3 3-4cm	20.11.2007	26.02.2010	35.8	35.9	1.6	2850	109	146	81151	30.3	3.0
S1-3 4-5cm	20.11.2007	01.03.2010	33.2	35.9	1.6	7801	399	476	251380	27.2	2.5
S1-3 5-6cm	20.11.2007	02.03.2010	32.2	35.9	1.6	2403	112	146	79277	27.8	2.9
S1-3 6-7cm	20.11.2007	03.03.2010	35.3	35.9	1.6	3239	166	198	109959	24.3	2.4
S1-3 7-8cm	20.11.2007	04.03.2010	36.8	35.9	1.6	3579	744	656	77067	9.5	2.6
S1-3 8-9cm	20.11.2007	05.03.2010	33.1	35.9	1.6	1149	107	128	76207	10.0	1.6
S1-3 9-10cm	20.11.2007	08.03.2010	40.1	35.9	1.6	2823	429	481	268255	3.4	0.6
S1-3 10-11cm	20.11.2007	09.03.2010	38.1	35.9	1.6	880	135	133	80850	4.1	1.1
S1-3 11-12cm	20.11.2007	10.03.2010	38.5	35.9	1.6	624	153	182	90468	< 3.5	
S1-3 12-13cm	20.11.2007	11.03.2010	35.0	35.9	1.6	<u>5</u> 87	129	156	85929	< 3.7	
S1-3 13-14cm	20.11.2007	12.03.2010	33.9	35.9	1.6	476	110	129	69883	< 4.4	

Appendix IV Table A25: Data and results from Cs-137 measurements on core S1-3.

Sample identity	Sampling date	Date of measurement	Sample weight, g	Geometry factor	sG	Gross area in ROI 1	Gross area in ROI 2	Gross area in ROI 3	Counting time, sec.	Cs-137, Bq/kg	Uncertainty, Bq/kg
S3-1 0-1 cm	23.11.2008	16.01.2009	49.2	35.5	1.6	11125	369	424	193821	35.5	3.3
S3-1 1-2 cm	23.11.2008	19.01.2009	30.1	35.5	1.6	2343	119	130	70594	30.1	3.4
S3-1 2-3 cm	23.11.2008	20.01.2009	45.2	35.5	1.6	3444	182	163	87360	24.0	2.5
S3-1 3-4 cm	23.11.2008	23.01.2009	45.1	35.5	1.6	2542	463	504	249091	2.6	0.5
S3-1 4-5 cm	23.11.2008	27.01.2009	44.8	35.5	1.6	926	148	164	82950	2.8	0.9
S3-1 5-6 cm	23.11.2008	29.01.2009	49.3	35.5	1.6	675	133	115	68467	< 2.9	
S3-1 6-7 cm	23.11.2008	30.01.2009	40.4	35.5	1.6	780	154	171	86919	< 3.3	

Appendix IV Table A26: Data and results from Cs-137 measurements on core S3-1.

Appendix IV Table A27: Data and results from Cs-137 measurements on core S3-2.

Sample identity	Sampling date	Date of measurement	Sample weight, g	Geometry factor	sG	Gross area in ROI 1	Gross area in ROI 2	Gross area in ROI 3	Counting time, sec.	Cs-137, Bq/kg	Uncertainty, Bq/kg
S3-2 0-1 cm	23.11.2008	02.02.2009	40.1	35.5	1.6	11837	474	499	263308	33.2	3.1
S3-2 1-2 cm	23.11.2008	05.05.2009	38.4	35.5	1.6	5981	323	351	176573	24.3	2.4
S3-2 2-3 cm	23.11.2008	06.02.2009	43.8	35.5	1.6	2538	153	173	85231	17.9	2.0
S3-2 3-4 cm	23.11.2008	09.02.2009	41.2	35.5	1.6	5267	479	483	244387	11.7	1.2
S3-2 4-5 cm	23.11.2008	10.02.2009	47.0	35.5	1.6	1701	182	176	97031	7.6	1.1
S3-2 5-6 cm	23.11.2008	11.02.2009	40.1	35.5	1.6	874	126	164	80973	< 3.3	

Sample identity	Sampling date	Date of measurement	Sample weight, g	Geometry factor	sG	Gross area in ROI 1	Gross area in ROI 2	Gross area in ROI 3	Counting time, sec.	Cs-137, Bq/kg	Uncertainty, Bq/kg
s2-1 0-1cm	18.11.2007	06.03.2009	42.8	35.9	1.6	2673	24	27	8920	241.6	24.7
S2-1 1-2cm	18.11.2007	09.03.2009	42.0	35.9	1.6	2672	19	29	9164	253.5	23.6
S2-1 2-3cm	18.11.2007	10.03.2009	43.2	35.9	1.6	6621	55	54	18481	296.1	26.7
S2-1 3-4cm	18.11.2007	10.03.2009	44.3	35.9	1.6	3411	28	27	9887	286.5	26.0
S2-1 4-5cm	18.11.2007	10.03.2009	45.6	35.9	1.6	3721	14	27	10037	291.1	27.2
S2-1 5-6cm	18.11.2007	11.03.2009	45.9	35.9	1.6	2243	16	13	6508	274.2	26.1
S2-1 6-7cm	18.11.2007	11.03.2009	44.2	35.9	1.6	1325	25	12	5000	207.4	22.0
S2-1 7-8cm	18.11.2007	12.03.2008	48.9	35.9	1.6	1463	34	26	8956	113.8	11.9
S2-1 8-9cm	18.11.2007	13.03.2009	47.6	35.9	1.6	6745	193	203	68271	69.3	6.2
S2-1 9-10cm	18.11.2007	13.03.2009	46.8	35.9	1.6	1002	37	55	14582	43.6	5.5
S2-1 10-11cm	18.11.2007	16.03.2009	48.5	35.9	1.6	8950	584	712	238626	20.0	1.9
S2-1 11-12cm	18.11.2007	17.03.2009	49.0	35.9	1.6	1753	173	203	66930	12.1	1.6
S2-1 12-13cm	18.11.2007	19.03.2009	47.5	35.9	1.6	1060	163	186	64715	4.1	1.2
S2-1 13-14cm	18.11.2007	12.03.2009	48.3	35.9	1.6	889	156	192	64860	< 6.9	1.1
S2-1 14-15cm	18.11.2007	11.03.2009	47.0	35.9	1.6	876	181	169	66882	< 2.8	1.1

Appendix IV Table A28: Data and results from Cs-137 measurements on core S2-1.

Sample identity	Sampling date	Date of measurement	Sample weight, g	Geometry factor	sG	Gross area in ROI 1	Gross area in ROI 2	Gross area in ROI 3	Counting time, sec.	Cs-137, Bq/kg	Uncertainty, Bq/kg
s2-2 0-1cm	18.11.2007	24.06.2009	38.3	35.9	1.6	30382	201	170	87994	327.2	28.4
S2-2 1-2cm	18.11.2007	24.06.2009	39.1	35.9	1.6	5196	38	36	14502	331.2	30.0
S2-2 2-3cm	18.11.2007	25.06.2009	40.8	35.9	1.6	4976	36	23	14021	315.9	28.6
S2-2 3-4cm	18.11.2007	06.07.2009	41.9	35.7	1.6	86168	710	641	257725	286.1	24.8
S2-2 4-5cm	18.11.2007	07.07.2009	38.6	35.7	1.6	19178	183	201	80479	219.3	19.2
S2-2 5-6cm	18.11.2007	08.07.2009	43.8	35.7	1.6	17563	221	265	85883	163.2	14.3
S2-2 6-7cm	18.11.2007	09.07.2009	39.6	35.7	1.6	11148	186	213	86406	111.9	9.9
S2-2 7-8cm	18.11.2007	10.07.2009	41.8	35.7	1.6	5849	192	203	85360	52.3	4.8
S2-2 8-9cm	18.11.2007	13.07.2009	39.2	35.7	1.6	13238	626	645	259157	38.8	3.5
S2-2 9-10cm	18.11.2007	14.07.2009	42.5	35.7	1.6	3461	202	226	87889	25.6	2.6
S2-2 10-11cm	18.11.2007	15.07.2009	46.1	35.7	1.6	2669	234	254	93160	14.4	1.7
S2-2 11-12cm	18.11.2007	16.07.2009	44.4	35.7	1.6	2185	180	200	79272	14.8	1.8
S2-2 12-13cm	18.11.2007	17.07.2009	44.1	35.7	1.6	1603	197	240	83127	7.2	1.3
S2-2 13-14cm	18.11.2007	27.07.2009	47.8	35.7	1.6	12131	2204	2484	869884	2.2	0.4
S2-2 14-15cm	18.11.2007	29.06.2009	41.2	35.9	1.6	2863	575	647	247286	< 2.0	
S2-2 15-16cm	18.11.2007	26.06.2009	44.6	35.9	1.6	1089	191	240	80053	< 3.6	

Appendix IV Table A29: Data and results from Cs-137 measurements on core S2-2.

Sample identity	Sampling date	Date of measurement	Sample weight, g	Geometry factor	sG	Gross area in ROI 1	Gross area in ROI 2	Gross area in ROI 3	Counting time, sec.	Cs-137, Bq/kg	Uncertainty, Bq/kg
S2-3 0-1 cm	18.11.2007	16.03.2009	43.4	35.9	1.6	4801	34	40	14838	267.1	24.4
S2-3 1-2 cm	18.11.2007	18.03.2009	46.8	35.9	1.6	25899	232	212	86718	227.8	19.9
S2-3 2-3 cm	18.11.2007	18.03.2009	44.9	35.9	1.6	4584	59	43	19926	180.9	16.6
S2-3 3-4 cm	18.11.2007	31.01.2009	46.5	35.9	1.6	1421	22	7	7738	139.6	14.4
S2-3 4-5 cm	18.11.2007	02.04.2009	48.3	35.9	1.6	16449	256	282	104090	113.0	10.0
S2-3 5-6 cm	18.11.2007	20.03.2009	46.5	35.9	1.6	9825	218	239	90208	78.4	7.0
S2-3 6-7 cm	18.11.2007	31.03.2009	46.1	35.9	1.6	32712	1345	1421	527075	41.2	3.6
S2-3 7-8 cm	18.11.2007	20.03.2009	50.2	35.9	1.6	542	33	35	11407	26.0	4.3
S2-3 8-9 cm	18.11.2007	25.03.2009	48.4	35.9	1.6	10629	1050	1219	415845	11.0	1.1
S2-3 9-10 cm	18.11.2007	07.04.2009	45.6	35.9	1.6	1705	216	241	83534	7.5	1.3
S2-3 10-11 cm	18.11.2007	14.04.2009	47.3	35.9	1.6	10370	1409	1666	590590	5.4	0.6
S2-3 11-12 cm	18.11.2007	01.04.2009	48.3	35.9	1.6	1103	179	204	67295	< 3.8	1.2

Appendix IV Table A30: Data and results from Cs-137 measurements on core S2-3.

Sample identity	Sampling date	Date of measurement	Sample weight, g	Geometry factor	sG	Gross area in ROI 1	Gross area in ROI 2	Gross area in ROI 3	Counting time, sec.	Cs-137, Bq/kg	Uncertainty, Bq/kg
S4-1 0-1 cm	18.11.2007	25.02.2009	44.4	35.9	1.6	6577	38	47	16273	327.4	29.5
S4-1 1-2 cm	18.11.2007	27.02.2009	45.0	35.9	1.6	23686	200	177	68404	275.1	24.1
S4-1 2-3 cm	18.11.2007	02.03.2009	45.0	35.9	1.6	52313	597	647	241839	169.0	14.7
S4-1 3-4 cm	18.11.2007	02.03.2009	47.4	35.9	1.6	1450	40	48	15850	62.5	6.8
S4-1 4-5 cm	18.11.2007	03.03.2009	45.2	35.9	1.6	2673	188	190	66751	23.3	2.5
S4-1 5-6 cm	18.11.2007	06.03.2009	46.0	35.9	1.6	7407	690	743	258444	13.9	1.4
S4-1 6-7 cm	18.11.2007	09.03.2009	49.0	35.9	1.6	7240	678	763	249580	13.0	1.3
S4-1 7-8 cm	18.11.2007	10.03.2009	47.4	35.9	1.6	4030	183	207	66748	37.8	3.7

Appendix IV Table A31: Data and results from Cs-137 measurements on core S4-1.

Appendix IV Table A32: Data and results from Cs-137 measurements on core S4-2.

Sample identity	Sampling date	Date of measurement	Sample weight, g	Geometry factor	sG	Gross area in ROI 1	Gross area in ROI 2	Gross area in ROI 3	Counting time, sec.	Cs-137, Bq/kg	Uncertainty, Bq/kg
S4-2 0-1 cm	18.11.2007	12.02.2009	41.4	35.5	1.6	35340	241	256	100907	299.9	26.5
S4-2 1-2 cm	18.11.2007	13.02.2009	46.7	35.5	1.6	22315	170	169	58060	293.8	25.8
S4-2 2-3 cm	18.11.2007	13.02.2009	46.6	35.5	1.6	4471	61	71	22130	150.2	13.9
S4-2 3-4 cm	18.11.2007	16.02.2009	44.0	35.5	1.6	3631	65	50	21727	128.6	12.3
S4-2 4-5 cm	18.11.2007	18.02.2009	48.3	35.5	1.6	5051	216	247	86090	36.8	3.5
S4-2 5-6 cm	18.11.2007	19.02.2009	47.8	35.5	1.6	1583	59	69	23023	44.8	4.9
S4-2 6-7 cm	18.11.2007	24.02.2009	52.1	35.9	1.6	2277	195	208	78115	13.0	1.6
S4-2 7-8 cm	18.11.2007	25.02.2009	49.6	35.9	1.6	3303	209	274	85345	20.6	2.1
S4-2 8-9 cm	18.11.2007	26.02.2009	47.7	35.9	1.6	6593	203	250	83846	51.3	4.8

APPENDIX V

								Measuring with Pb-2	g sample 10 point			
Sample	1	1	1	Measurin	ng sample	1	1	source on	top		Results	1
Sample identity	Sampling date	Date of measurement	Sample weight, kg	Mark peak ch	Net counts in 46,5keV roi	s (net counts in 46,5keV roi)	Counting time, sec.	Net counts in 46,5keV roi	Counting time, sec.	Correction factor	Pb-210 activity, Bq/kg (d.w.)	uncertainty
L1-1 0-1cm	3.11.08	20.4.09	0.0346	333-345	8630	120	245981	248316	600	1.32	260.1	13.3
L1-1 1-2cm	3.11.08	27.4.09	0.0367	333-345	9051	124	258873	238701	600	1.34	248.9	12.7
L1-1 2-3cm	3.11.08	29.4.09	0.0344	333-345	1884	58	74068	245480	600	1.33	189.9	11.1
L1-1 3-4cm	3.11.08	30.4.09	0.0356	333-345	1337	51	74857	241989	600	1.34	128.8	8.1
L1-1 4-5cm	3.11.08	4.5.09	0.0381	333-345	4633	102	348683	229655	600	1.37	91.0	4.9
L1-1 5-6cm	3.11.08	6.5.09	0.0370	333-345	1733	65	166805	233480	600	1.36	72.1	4.5
L1-1 6-7cm	3.11.08	7.5.09	0.0373	333-345	611	45	88688	235247	600	1.35	46.3	4.3
L1-1 7-8cm	3.11.08	8.5.09	0.0425	333-345	563	44	90242	218926	600	1.40	37.8	3.7
L1-1 8-9cm	3.11.08	11.5.09	0.0451	333-345	1739	72	252171	210089	600	1.42	40.3	2.7
L1-1 9-10cm	3.11.08	12.5.09	0.0432	333-345	373	40	80979	214527	600	1.41	27.0	3.5
L1-1 10-11cm	3.11.08	13.5.09	0.0478	333-345	478	41	84026	196373	600	1.46	31.9	3.3
L1-1 11-12cm	3.11.08	14.5.09	0.0414	333-345	368	39	84250	216938	600	1.40	26.5	3.4

Appendix V Table A33: Data and results from Pb-210 measurements on core L1-1.

								Measurin	g sample			
Sample				Measurir	ng sample			source on	top		Results	
Sample identity	Sampling date	Date of measurement	Sample weight, kg	Mark peak ch	Net counts in 46,5keV roi	s(net counts in 46,5keV roi)	Counting time, sec.	Net counts in 46,5keV roi	Counting time, sec.	Correction factor	Pb-210 activity, Bq/kg (d.w.)	uncertainty
L1-2 0-1cm	3.11.08	4.11.09	0.042	329-349	5328	98	94248	288862	600	1.39	288.9	14.7
L1-2 1-2cm	3.11.08	6.11.09	0.0474	329-349	5899	119	167791	262444	600	1.45	165.3	8.5
L1-2 2-3cm	3.11.08	9.11.09	0.0441	329-349	5741	132	250732	271362	600	1.43	113.4	6.0
L1-2 3-4cm	3.11.08	10.11.09	0.043	329-349	1741	77	101639	277979	600	1.42	85.6	5.5
L1-2 4-5cm	3.11.08	11.11.09	0.0449	329-349	1041	68	81379	266102	600	1.44	61.9	5.0
L1-2 5-6cm	3.11.08	12.11.09	0.0428	329-349	883	70	86258	294318	600	1.38	49.3	4.6
L1-2 6-7cm	3.11.08	13.11.09	0.0454	329-349	809	67	83517	272771	600	1.43	45.4	4.4
L1-2 7-8cm	3.11.08	3.11.09	0.0457	329-349	477	59	65440	260648	600	1.46	34.1	4.6
L1-2 8-9cm	3.11.08	16.11.09	0.0472	329-349	1652	114	242163	270096	600	1.43	30.3	2.6
L1-2 9-10cm	3.11.08	17.11.09	0.0456	329-349	620	68	84918	263669	600	1.45	34.1	4.2
L1-2 10-11cm	3.11.08	18.11.09	0.0442	329-349	590	66	82517	266001	600	1.44	34.3	4.3
L1-2 11-12cm	3.11.08	19.11.09	0.0438	329-349	540	68	88001	265922	600	1.44	29.4	4.1
L1-2 12-13cm	3.11.08	20.11.09	0.0454	329-349	491	66	83986	269654	600	1.44	26.8	3.9
L1-2 13-14cm	3.11.08	24.11.09	0.0477	329-349	1812	134	339097	250007	600	1.48	23.9	2.2
L1-2 14-15cm	3.11.08	25.11.09	0.048	329-349	377	69	84157	258394	600	1.46	19.3	3.9

Appendix V Table A34: Data and results from Pb-210 measurements on core L1-2.

								Measuring	g sample			
Sample				Measurir	ng sample			source on	top		Results	
Sample identity	Sampling	Date of	Sample weight, kg	Mark peak ch	Net counts in 46,5keV roi	s(net counts in 46,5keV roi)	Counting	Net counts in 46,5keV roi	Counting time,	Correction	Pb-210 activity, Bq/kg (d.w.)	uncertainty
L2-1 0-1cm	3.11.08	21.4.09	0.0427	333-345	4088	81	80659	225745	600	1.38	318.9	16.9
L2-1 1-2cm	3.11.08	10.6.09	0.0435	333-345	4099	80	81857	228837	600	1.37	308.7	16.2
L2-1 2-3cm	3.11.08	11.6.09	0.0448	333-345	2583	67	81671	226628	600	1.38	189.2	10.5
L2-1 3-4cm	3.11.08	12.6.09	0.0451	333-345	2487	66	84126	224451	600	1.38	176.3	9.8
L2-1 4-5cm	3.11.08	13.6.09	0.0496	333-345	2976	73	107251	216267	600	1.40	152.8	8.4
L2-1 5-6cm	3.11.08	15.6.09	0.0464	333-345	2898	78	154974	214373	600	1.41	109.8	6.1
L2-1 6-7cm	3.11.08	16.6.09	0.0499	333-345	1674	59	101024	204078	600	1.44	92.2	5.6
L2-1 7-8cm	3.11.08	17.6.09	0.0497	333-345	800	44	66798	204339	600	1.44	66.2	5.0
L2-1 8-9cm	3.11.08	18.6.09	0.0491	333-345	969	49	86055	205001	600	1.44	62.8	4.5
L2-1 9-10cm	3.11.08	19.6.09	0.0491	333-345	542	43	84405	207612	600	1.43	34.6	3.4
L2-1 10-11cm	3.11.08	22.6.09	0.0516	333-345	1529	74	256847	208334	600	1.43	30.3	2.2
L2-1 11-12cm	3.11.08	23.6.09	0.0528	333-345	314	40	83581	198397	600	1.46	18.3	2.8
L2-1 12-13cm	3.11.08	25.6.09	0.049	333-345	269	35	67315	208492	600	1.43	20.7	3.2

Appendix V Table A35: Data and results from Pb-210 measurements on core L2-1.

								Measuring	g sample 10 point			
Sample				Measurin	ng sample			source on	top		Results	
Sample identity	Sampling date	Date of measurement	Sample weight, kg	Mark peak ch	Net counts in 46,5keV roi	s(net counts in 46,5keV roi)	Counting time, sec.	Net counts in 46,5keV roi	Counting time, sec.	Correction factor	Pb-210 activity, Bq/kg (d.w.)	uncertainty
L2-2 0-1cm	3.11.08	15.5.09	0.0502	333-345	3691	79	87572	198996	600	1.46	238.5	12.7
L2-2 1-2cm	3.11.08	19.5.09	0.0486	333-345	3250	73	82279	209630	600	1.42	225.6	12.2
L2-2 2-3cm	3.11.08	20.5.09	0.0511	333-345	1997	63	90314	202293	600	1.45	121.0	7.1
L2-2 3-4cm	3.11.08	26.5.09	0.0499	333-345	873	47	78798	203918	600	1.44	60.8	4.5
L2-2 4-5cm	3.11.08	28.5.09	0.0496	333-345	1365	56	92445	202309	600	1.45	82.5	5.3
L2-2 5-6cm	3.11.08	29.5.09	0.0496	333-345	560	42	71836	199284	600	1.45	42.8	4.0
L2-2 6-7cm	3.11.08	3.6.09	0.0558	333-345	438	41	72587	188863	600	1.49	29.7	3.3
L2-2 7-8cm	3.11.08	4.6.09	0.0484	333-345	551	44	102055	208380	600	1.43	29.1	2.9
L2-2 8-9cm	3.11.08	8.6.09	0.0486	333-345	1556	80	329124	205962	600	1.43	25.2	1.9
L2-2 9-10cm	3.11.08	9.6.09	0.0519	333-345	518	42	87760	212125	600	1.42	29.6	3.0

Appendix V Table A36: Data and results from Pb-210 measurements on core L2-2.

								Measuring	g sample			
Sample				Measurir	ng sample			with Pb-2	10 point		Results	
Sample identity	Sampling	Date of	Sample weight,	Mark	Net counts in 46,5keV	s(net counts in 46,5keV roi)	Counting	Net counts in 46,5keV	Counting time,	Correction	Pb-210 activity, Bq/kg	uncortainty
S1-1 0-1cm	20 11 07	28 7 09	∿8 0.05	333-345	1116	101) 	17416	196029	SEC. 600	1 47	380.8	22 5
S1-1 1-2cm	20.11.07	7.8.09	0.0423	333-345	594	31	12411	221100	600	1.39	318.5	22.1
S1-1 2-3cm	20.11.07	11.8.09	0.0415	333-345	3133	73	83800	219511	600	1.39	253.9	13.3
S1-1 3-4cm	20.11.07	12.8.09	0.045	333-345	2326	65	80523	211405	600	1.42	183.4	10.0
S1-1 4-5cm	20.11.07	13.8.09	0.0423	333-345	3166	73	88609	216077	600	1.40	239.7	12.5
S1-1 5-6cm	20.11.07	14.8.09	0.0396	333-345	2909	72	93698	226028	600	1.38	217.7	11.5
S1-1 6-7cm	20.11.07	19.8.09	0.0418	333-345	1432	55	90182	218177	600	1.40	105.9	6.4
S1-1 7-8cm	20.11.07	20.8.09	0.041	333-345	837	47	80859	213568	600	1.41	70.0	5.2
S1-1 8-9cm	20.11.07	21.8.09	0.0426	333-345	746	45	88118	211918	600	1.42	54.8	4.2
S1-1 9-10cm	20.11.07	28.7.09	0.045	333-345	560	41	74240	208948	600	1.43	46.2	4.1
S1-1 10-11cm	20.11.07	5.8.09	0.0472	333-345	4566	121	674888	198567	600	1.46	40.1	2.2
S1-1 11-12cm	20.11.07	6.8.09	0.0482	333-345	406	41	81850	202233	600	1.45	27.9	3.3
S1-1 12-13cm	20.11.07	7.8.09	0.0486	333-345	395	38	71040	204786	600	1.44	31.2	3.5
S1-1 13-14cm	20.11.07	10.8.09	0.045	333-345	1203	68	242765	210255	600	1.42	29.4	2.2
S1-1 14-15cm	20.11.07	18.8.09	0.049	333-345	436	40	83599	199213	600	1.46	29.2	3.1
S1-1 15-16cm	20.11.07	17.8.09	0.0468	333-345	1284	71	246471	199622	600	1.45	30.5	2.3

Appendix V Table A37: Data and results from Pb-210 measurements on core S1-1.

								Measurin	g sample			
Sample				Measurir	ng sample			source on	top		Results	
Sample identity	Sampling date	Date of measurement	Sample weight, kg	Mark peak ch	Net counts in 46,5keV roi	s(net counts in 46,5keV roi)	Counting time, sec.	Net counts in 46,5keV roi	Counting time, sec.	Correction factor	Pb-210 activity, Bq/kg (d.w.)	uncertainty
S1-2 0-1cm	20.11.07	8.10.09	0.0341	329-349	4588	92	84760	314303	600	1.34	336.9	16.9
S1-2 1-2cm	20.11.07	9.10.09	0.0393	329-349	4436	93	86103	295142	600	1.38	286.0	14.4
S1-2 2-3cm	20.11.07	15.10.09	0.0405	329-349	21968	218	518931	262954	600	1.45	239.6	11.3
S1-2 3-4cm	20.11.07	16.10.09	0.0338	329-349	2877	8	86543	321073	600	1.33	205.9	9.6
S1-2 4-5cm	20.11.07	19.10.09	0.0357	329-349	10176	150	272311	300296	600	1.37	226.2	11.0
S1-2 5-6cm	20.11.07	20.10.09	0.0299	329-349	2045	71	81232	331406	600	1.31	173.1	9.9
S1-2 6-7cm	20.11.07	21.10.09	0.0338	329-349	1456	65	67770	305333	600	1.36	135.3	8.5
S1-2 7-8cm	20.11.07	22.10.09	0.0348	329-349	1358	70	89023	317507	600	1.34	91.0	6.2
S1-2 8-9cm	20.11.07	23.10.09	0.0362	329-349	1075	63	73433	317740	600	1.34	83.8	6.1
S1-2 9-10cm	20.11.07	26.10.09	0.0372	329-349	2357	114	255994	302217	600	1.37	51.6	3.4
S1-2 10-11cm	20.11.07	27.10.09	0.0363	329-349	777	67	90313	299188	600	1.37	49.5	4.8
S1-2 11-12cm	20.11.07	28.10.09	0.0411	329-349	659	66	84009	282248	600	1.41	40.7	4.5
S1-2 12-13cm	20.11.07	29.10.09	0.0395	329-349	657	65	86575	287792	600	1.40	40.5	4.4
S1-2 13-14cm	20.11.07	30.10.09	0.0395	329-349	583	64	85072	278375	600	1.42	36.9	4.4
S1-2 14-15cm	20.11.07	2.11.09	0.0413	329-349	1566	118	272196	279859	600	1.41	29.2	2.6

Appendix V Table A38: Data and results from Pb-210 measurements on core S1-2.

								Measuring	g sample			
Sample				Measurir	ng sample			source on	top		Results	
	Sampling	Date of	Sample weight,	Mark	Net counts in 46,5keV	s(net counts in 46,5keV	Counting	Net counts in 46,5keV	Counting time,	Correction	Pb-210 activity, Bq/kg	
Sample identity	date	measurement	kg	peak ch	roi	roi)	time, sec.	roi	sec.	factor	(d.w.)	uncertainty
S1-3 0-1cm	20.11.07	17.4.09	0.0388	333-345	4233	81	76302	223684	600	1.38	397.2	20.3
S1-3 1-2cm	20.11.07	23.2.10	0.0324	329-349	5024	95	84489	293471	600	1.38	406.5	20.0
S1-3 2-3cm	20.11.07	25.2.10	0.0361	329-349	10554	138	171372	292355	600	1.39	378.7	18.0
S1-3 3-4cm	20.11.07	26.2.10	0.0358	329-349	4093	88	81151	292470	600	1.39	312.2	15.6
S1-3 4-5cm	20.11.07	1.3.10	0.0332	329-349	10471	148	251380	310246	600	1.35	270.5	12.9
S1-3 5-6cm	20.11.07	2.3.10	0.0322	329-349	2874	80	79277	303310	600	1.36	244.9	12.9
S1-3 6-7cm	20.11.07	3.3.10	0.0353	329-349	5019	100	109959	292749	600	1.39	286.4	14.2
S1-3 7-8cm	20.11.07	4.3.10	0.0368	329-349	2231	74	76907	285000	600	1.40	175.8	9.8
S1-3 8-9cm	20.11.07	5.3.10	0.0331	329-349	1330	68	76207	305030	600	1.36	113.0	7.6
S1-3 9-10cm	20.11.07	8.3.10	0.0401	329-349	2756	122	268255	276401	600	1.42	56.4	3.5
S1-3 10-11cm	20.11.07	9.3.10	0.0381	329-349	880	64	80850	272884	600	1.43	63.4	5.3
S1-3 11-12cm	20.11.07	10.3.10	0.0385	329-349	571	67	90468	276675	600	1.42	35.2	4.4
S1-3 12-13cm	20.11.07	11.3.10	0.035	329-349	517	62	85929	298698	600	1.37	35.6	4.6
S1-3 13-14cm	20.11.07	12.3.10	0.0339	329-349	346	55	69883	303495	600	1.36	29.5	4.9

Appendix V Table A39: Data and results from Pb-210 measurements on core S1-3.

								Measuring with Pb-2	g sample 10 point			
Sample				Measurir	ng sample			source on	top		Results	
Sample identity	Sampling date	Date of measurement	Sample weight, kg	Nets(netNetcounts incounts incountMark46,5keV46,5keVCountingpeak chroiroi)time, sec.		Net counts in 46,5keV roi	Counting time, sec.	Correction factor	Pb-210 activity, Bq/kg (d.w.)	uncertainty		
S2-1 0-1cm	18.11.07	23.9.09	0.048	333-345	1889	, 65	86226	204724	600	1.44	132.1	7.6
S2-1 1-2cm	18.11.07	23.9.09	0.042	333-345	372	27	17071	202497	600	1.44	150.9	12.9
S2-1 2-3cm	18.11.07	25.9.09	0.0432	333-345	393	29	17000	200493	600	1.45	156.5	13.5
S2-1 3-4cm	18.11.07	29.9.09	0.0443	333-345	1957	68	94106	186861	600	1.50	141.3	8.2
S2-1 4-5cm	18.11.07	30.9.09	0.0456	329-349	654	49	23621	254496	600	1.47	140.3	12.0
S2-1 5-6cm	18.11.07	2.10.09	0.0459	329-349	2384	94	87110	258844	600	1.46	136.8	8.2
S2-1 6-7cm	18.11.07	2.10.09	0.0442	329-349	400	42	19367	256970	600	1.47	107.0	11.9
S2-1 7-8cm	18.11.07	5.10.09	0.0489	329-349	407	37	15702	252529	600	1.48	122.8	12.1
S2-1 8-9cm	18.11.07	6.10.09	0.0476	329-349	1176	74	62537	243494	600	1.50	92.5	7.1
S2-1 9-10cm	18.11.07	7.10.09	0.0468	329-349	1571	87	88289	250573	600	1.48	87.8	6.2
S2-1 10-11cm	18.11.07	5.10.09	0.0485	329-349	3705	144	239405	254491	600	1.47	72.9	4.4
S2-1 11-12cm	18.11.07	1.10.09	0.049	329-349	804	73	63224	227339	600	1.55	61.9	6.2
S2-1 12-13cm	18.11.07	30.9.09	0.0475	329-349	728	74	71502	253999	600	1.47	48.3	5.3
S2-1 13-14cm	18.11.07	25.9.09	0.0483	329-349	119	20	14942	182582	600	1.69	42.2	7.3
S2-1 14-15cm	18.11.07	28.9.09	0.047	329-349	1892	84	242516	180337	600	1.70	42.6	2.7

Appendix V Table A40: Data and results from Pb-210 measurements on core S2-1.

								Measurin	g sample			
Sample				Measurir	ng sample			with Pb-2	10 point		Results	
Sample	Sampling	Date of	Sample weight,	Mark	Net counts in 46,5keV	s(net counts in 46,5keV counting time sec		Net counts in 46,5keV	Counting time,	Correction	Pb-210 activity, Bq/kg	
Sample identity	date	measurement	Kg	реак сп	roi	roi)	time, sec.	roi	sec.	Tactor	(a.w.)	uncertainty
S2-2 0-1cm	18.11.07	24.6.09	0.0383	333-345	1951	65	87994	221444	600	1.39	160.8	9.3
52-2 1-2cm	18.11.07	24.6.09	0.0391	333-345	287	26	14502	222855	600	1.39	139.0	14.2
S2-2 2-3cm	18.11.07	25.6.09	0.0408	333-345	300	25	14021	213984	600	1.41	146.9	14.1
S2-2 3-4cm	18.11.07	6.7.09	0.0419	333-345	5218	109	257725	217913	600	1.40	134.2	6.9
S2-2 4-5cm	18.11.07	7.7.09	0.0386	333-345	1350	58	80479	218508	600	1.40	119.9	7.7
S2-2 5-6cm	18.11.07	8.7.09	0.0438	333-345	1509	61	85883	204443	600	1.44	114.1	7.1
S2-2 6-7cm	18.11.07	9.7.09	0.0396	333-345	1270	56	86406	221469	600	1.39	101.3	6.6
S2-2 7-8cm	18.11.07	10.7.09	0.0418	333-345	1066	54	85360	215155	600	1.41	82.1	5.7
S2-2 8-9cm	18.11.07	13.7.09	0.0392	333-345	3025	92	259157	220962	600	1.39	80.6	4.5
S2-2 9-10cm	18.11.07	14.7.09	0.0425	333-345	1094	54	87889	204110	600	1.44	82.4	5.7
S2-2 10-11cm	18.11.07	15.7.09	0.0461	333-345	1062	57	93160	195703	600	1.47	70.5	5.1
S2-2 11-12cm	18.11.07	16.7.09	0.0444	333-345	903	51	79272	200793	600	1.45	72.4	5.4
S2-2 12-13cm	18.11.07	17.7.09	0.0441	333-345	803	51	83127	200005	600	1.45	61.4	4.9
S2-2 13-14cm	18.11.07	27.7.09	0.0478	333-345	7742	167	869884	190887	600	1.48	53.0	2.8
S2-2 14-15cm	18.11.07	29.6.09	0.0412	333-345	1614	83	247286	215150	600	1.41	41.7	3.0
S2-2 15-16cm	18.11.07	26.6.09	0.0446	333-345	612	48	80053	197427	600	1.46	47.5	4.5

Appendix V Table A41: Data and results from Pb-210 measurements on core S2-2.

								Measuring with Pb-210	sample) point			
Sample				Measuring	sample			source on t	ор		Results	
						s(net		Net			Pb-210	
			Sample		Net counts	counts in		counts in			activity,	
	Sampling	Date of	weight,	Mark	in 46,5keV	46,5keV	Counting	46,5keV	Counting	Correction	Bq/kg	
Sample identity	date	measurement	kg	peak ch	roi	roi)	time, sec.	roi	time, sec.	factor	(d.w.)	uncertainty
S3-1 0-1cm	23.11.08	15.4.09	0.0492	333-345	3743	79	75750	195753	600	1.47	286.5	15.3
S3-1 1-2cm	23.11.08	31.8.09	0.0301	333-345	7272	114	259065	240541	600	1.34	244.2	12.5
S3-1 2-3cm	23.11.08	28.8.09	0.0452	333-345	2503	67	81223	181670	600	1.51	202.1	11.2
S3-1 3-4cm	23.11.08	27.8.09	0.0451	333-345	578	42	75149	195522	600	1.47	47.0	4.3
S3-1 4-5cm	23.11.08	26.8.09	0.0448	333-345	646	47	99750	189937	600	1.49	40.0	3.7
\$3-1 5-6cm	23.11.08	25.8.09	0.0493	333-345	567	43	85075	167173	600	1.57	39.5	3.7
S3-1 6-7cm	23.11.08	24.8.09	0.0404	333-345	530	41	81661	195982	600	1.47	43.8	4.2

Appendix V Table A42: Data and results from Pb-210 measurements on core S3-1.

Appendix V Table A43: Data and results from Pb-210 measurements on core S4-1 (0-1cm) and S4-2 (1-9cm).

							Measuring	sample				
								with Pb-210) point			
Sample				Measuring	sample			source on t	ор		Results	
						s(net		Net			Pb-210	
			Sample		Net counts	counts in		counts in			activity,	
	Sampling	Date of	weight,	Mark	in 46,5keV	46,5keV	Counting	46,5keV	Counting	Correction	Bq/kg	
Sample identity	date	measurement	kg	peak ch	roi	roi)	time, sec.	roi	time, sec.	factor	(d.w.)	uncertainty
S4-1 0-1cm	22.11.08	16.4.09	0.0444	333-345	2214	71	98658	214967	600	1.41	136.3	7.9
S4-2 1-2cm	22.11.08	8.9.09	0.0467	329-349	1480	60	73411	192631	600	1.66	107.2	6.7
S4-2 2-3cm	22.11.08	14.9.09	0.0466	329-349	7695	146	529315	196974	600	1.64	76.0	3.9
S4-2 3-4cm	22.11.08	15.9.09	0.044	329-349	1059	53	74904	193795	600	1.65	78.7	5.5
S4-2 4-5cm	22.11.08	16.9.09	0.0483	329-349	1018	55	88768	190846	600	1.66	58.0	4.2
S4-2 5-6cm	22.11.08	18.9.09	0.0478	329-349	992	54	86233	181842	600	1.69	60.0	4.4
S4-2 6-7cm	22.11.08	17.9.09	0.0521	329-349	805	53	83748	179970	600	1.70	45.8	3.8
S4-2 7-8cm	22.11.08	21.9.09	0.0496	329-349	2288	91	251612	181801	600	1.69	45.1	2.8
S4-2 8-9cm	22.11.08	22.9.09	0.0477	329-349	750	52	87942	189620	600	1.67	43.1	3.7

APPENDIX VI

Sample		Measurin	g sample	:					Results							
Sample	Sample weight,	Counting time,	Net counts in 609 keV	s(net counts in 609 keV	Net counts in 352 keV	s(net counts in 352 keV	Net counts in 295 keV	s(net counts in 295 keV	Activity in 609 keV roi, Bq/kg	uncer-	Activity in 352 keV roi, Bq/kg	uncer-	Activity in 352 keV roi, Bq/kg	uncer-	Mean activity, Ra-226, Bq/kg	uncer-
identity	kg	sec.	roi	roi)	roi	roi)	roi	roi)	(d.w.)	tainty	(d.w.)	tainty	(d.w.)	tainty	(d.w.)	tainty
L1-1 0-1cm	0.0346	245981	3680	115	5317	122	3236	114	26.0	2.1	27.3	1.8	27.6	2.3	27.0	3.6
L1-1 1-2cm	0.0367	258873	4222	122	6114	128	3532	119	27.2	2.1	28.5	1.8	27.1	2.2	27.6	3.5
L1-1 2-3cm	0.0344	74068	1145	66	1739	67	1020	63	27.2	2.7	30.2	2.2	29.3	2.9	28.9	4.5
L1-1 3-4cm	0.0356	74857	1217	65	1714	69	1029	65	28.0	2.6	28.4	2.1	28.2	2.9	28.2	4.4
L1-1 4-5cm	0.0381	348683	5926	143	8444	151	5069	140	27.5	2.0	28.3	1.7	28.1	2.1	28.0	3.4
L1-1 5-6cm	0.037	166805	2786	97	4052	104	2109	98	27.8	2.2	29.2	1.9	24.6	2.3	27.2	3.7
L1-1 6-7cm	0.0373	88688	1435	72	1981	75	1351	69	26.5	2.4	26.3	1.9	30.3	2.7	27.7	4.1
L1-1 7-8cm	0.0425	90242	1511	74	2455	76	1377	72	24.3	2.1	28.9	1.9	26.6	2.4	26.6	3.7
L1-1 8-9cm	0.0451	252171	4977	122	6666	134	4019	126	27.7	1.9	26.4	1.6	26.4	2.0	26.8	3.1
L1-1 9-10cm	0.0432	80979	1480	68	2172	74	1218	69	26.5	2.2	28.0	1.9	25.8	2.4	26.8	3.8
L1-1 10-11cm	0.0478	84026	1796	67	2378	77	1475	71	28.7	2.1	26.9	1.8	27.7	2.3	27.8	3.6
L1-1 11-12cm	0.0414	84250	1473	71	2081	74	1211	71	26.2	2.3	26.6	1.9	25.5	2.5	26.1	3.8

Appendix VI Table A44: Data and results from Ra-226 measurements on core L1-1.

Sample		Measurin	g sample						Results							
			Net	s(net	Net	s(net	Net	s(net	Activity in 609		Activity in 352		Activity in 352		Mean	
	Sample	Counting	in 609	in 609	in 352	in 352	in 295	in 295	roi		roi		roi		Ra-226	
Sample	weight.	time.	keV	keV	keV	keV	keV	keV	Ba/kg	uncer-	Ba/kg	uncer-	Ba/kg	uncer-	Ba/kg	uncer-
identity	kg	sec.	roi	roi)	roi	roi)	roi	roi)	(d.w.)	tainty	(d.w.)	tainty	(d.w.)	tainty	(d.w.)	tainty
L1-2 0-1cm	0.042	94248	1590	68	2450	76	1406	71	24.8	2.1	27.8	1.8	26.3	2.3	26.3	3.6
L1-2 1-2cm	0.0474	167791	3299	89	4364	104	2650	99	26.3	1.8	24.7	1.5	24.8	1.9	25.3	3.1
L1-2 2-3cm	0.0441	250732	4801	107	6230	125	3824	118	27.4	1.8	25.2	1.5	25.7	1.9	26.1	3.1
L1-2 3-4cm	0.043	101639	1597	70	2411	77	1269	78	22.2	1.9	24.5	1.7	20.9	2.2	22.5	3.3
L1-2 4-5cm	0.0449	81379	1488	61	2147	71	1152	71	25.5	2.0	26.5	1.8	23.1	2.3	25.0	3.5
L1-2 5-6cm	0.0428	86258	1585	62	2156	74	1288	72	26.9	2.1	26.1	1.8	25.8	2.4	26.3	3.7
L1-2 6-7cm	0.0454	83517	1421	64	2197	71	1318	67	23.1	2.0	26.1	1.7	25.9	2.3	25.0	3.5
L1-2 7-8cm	0.0457	65440	1233	53	1649	63	894	62	25.9	2.1	24.7	1.8	21.8	2.3	24.1	3.6
L1-2 8-9cm	0.0472	242163	4206	108	6085	124	3555	121	22.8	1.6	23.8	1.4	22.9	1.8	23.2	2.8
L1-2 9-10cm	0.0456	84918	1493	64	2000	72	1080	71	24.0	2.0	22.9	1.6	20.1	2.1	22.3	3.3
L1-2 10-11cm	0.0442	82517	1461	62	1866	71	1072	71	24.9	2.0	22.5	1.6	21.3	2.3	22.9	3.5
L1-2 11-12cm	0.0438	88001	1418	64	2031	74	1141	72	22.5	1.9	23.3	1.7	21.4	2.2	22.4	3.4
L1-2 12-13cm	0.0454	83986	1342	62	2041	72	1139	70	21.5	1.9	23.8	1.7	21.8	2.2	22.4	3.3
L1-2 13-14cm	0.0477	339097	5945	130	8324	145	4514	144	22.8	1.6	22.9	1.4	20.3	1.6	22.0	2.7
L1-2 14-15cm	0.048	84157	1391	65	2093	71	1201	69	21.1	1.8	23.1	1.6	21.9	2.1	22.0	3.2

Sample		Measurin	g sample	:					Results							
Sample	Sample weight,	Counting time,	Net counts in 609 keV	s(net counts in 609 keV	Net counts in 352 keV	s(net counts in 352 keV	Net counts in 295 keV	s(net counts in 295 keV	Activity in 609 keV roi, Bq/kg	uncer-	Activity in 352 keV roi, Bq/kg	uncer-	Activity in 352 keV roi, Bq/kg	uncer-	Mean activity, Ra-226, Bq/kg	uncer-
identity	kg	sec.	roi	roi)	roi	roi)	roi	roi)	(d.w.)	tainty	(d.w.)	tainty	(d.w.)	tainty	(d.w.)	tainty
L2-1 0-1cm	0.0427	80659	1298	70	1927	71	1188	66	23.0	2.2	24.9	1.8	25.5	2.4	24.4	3.7
L2-1 1-2cm	0.0435	81857	1475	71	2137	73	1234	71	25.8	2.2	27.0	1.8	25.7	2.4	26.2	3.7
L2-1 2-3cm	0.0448	81671	1523	70	1965	76	1051	70	26.1	2.2	23.9	1.7	20.8	2.2	23.6	3.5
L2-1 3-4cm	0.0451	84126	1549	66	1967	78	1105	75	25.6	2.1	23.0	1.7	21.1	2.3	23.2	3.5
L2-1 4-5cm	0.0496	107251	2038	81	2872	88	1718	81	24.1	1.9	24.4	1.6	24.1	2.0	24.2	3.2
L2-1 5-6cm	0.0464	154974	2919	94	3947	104	2365	96	25.5	1.9	24.6	1.6	24.4	2.0	24.8	3.1
L2-1 6-7cm	0.0499	101024	1792	78	2436	81	1527	76	22.1	1.8	21.5	1.5	22.4	2.0	22.0	3.1
L2-1 7-8cm	0.0497	66798	1174	63	1664	68	996	62	22.0	2.0	22.4	1.6	22.2	2.2	22.2	3.4
L2-1 8-9cm	0.0491	86055	1509	73	2144	74	1238	70	22.2	1.9	22.7	1.6	21.6	2.0	22.1	3.2
L2-1 9-10cm	0.0491	84405	1519	69	1944	76	1034	72	22.9	1.9	20.7	1.5	17.9	2.0	20.5	3.1
L2-1 10-11cm	0.0516	256847	4583	124	6449	130	3579	124	21.5	1.5	21.8	1.3	19.8	1.6	21.0	2.6
L2-1 11-12cm	0.0528	83581	1414	67	1994	75	1024	69	19.8	1.7	20.1	1.4	16.6	1.8	18.8	2.9
L2-1 12-13cm	0.049	67315	1183	58	1558	66	891	62	22.3	1.9	20.9	1.6	19.6	2.1	20.9	3.3

Appendix VI Table A46: Data and results from Ra-226 measurements on core L2-1.

Sample	Sample Measuring sample								Results							
									Activity		Activity		Activity			
				s(net		s(net		s(net	in 609		in 352		in 352		Mean	
			Net	counts	Net	counts	Net	counts	keV		keV		keV		activity,	
	Sample	Counting	counts	in 609	counts	in 352	counts	in 295	roi,		roi,		roi,		Ra-226,	
Sample	weight,	time,	in 609	keV	in 352	keV	in 295	keV	Bq/kg	uncer-	Bq/kg	uncer-	Bq/kg	uncer-	Bq/kg	uncer-
identity	kg	sec.	keV roi	roi)	keV roi	roi)	keV roi	roi)	(d.w.)	tainty	(d.w.)	tainty	(d.w.)	tainty	(d.w.)	tainty
L2-2 0-1cm	0.0502	87572	1631	75	2513	76	1466	72	23.3	1.9	26.0	1.7	25.0	2.1	24.8	3.3
L2-2 1-2cm	0.0486	82279	1511	74	2187	74	1209	70	23.7	2.0	24.6	1.7	22.3	2.1	23.5	3.4
L2-2 2-3cm	0.0511	90314	1808	74	2389	82	1495	72	24.9	1.9	23.3	1.6	24.3	2.0	24.2	3.2
L2-2 3-4cm	0.0499	78798	1557	68	2077	75	1304	68	25.1	2.0	23.8	1.6	24.9	2.2	24.6	3.4
L2-2 4-5cm	0.0496	92445	1749	75	2437	82	1357	75	24.0	1.9	23.9	1.6	21.8	2.0	23.3	3.2
L2-2 5-6cm	0.0496	71836	1195	65	1796	69	1124	65	20.6	1.9	22.5	1.6	23.5	2.2	22.2	3.3
L2-2 6-7cm	0.0558	72587	1330	64	1974	72	1146	66	20.6	1.7	22.0	1.5	21.1	2.0	21.2	3.0
L2-2 7-8cm	0.0484	102055	1591	82	2537	81	1518	77	19.5	1.8	22.9	1.5	22.7	2.0	21.7	3.1
L2-2 8-9cm	0.0486	329124	5910	138	8327	149	4793	140	23.0	1.6	23.3	1.4	22.1	1.7	22.8	2.7
L2-2 9-10cm	0.0519	87760	1595	74	2253	78	1279	74	21.9	1.8	22.2	1.5	20.7	2.0	21.6	3.1

Appendix VI Table A47: Data and results from Ra-226 measurements on core L2-2.
Sample		Measurin	g sample	•					Results								
Sample	Sample weight,	Counting time,	Net counts in 609 keV	s(net counts in 609 keV	Net counts in 352 keV	s(net counts in 352 keV	Net counts in 295 keV	s(net counts in 295 keV	Activity in 609 keV roi, Bg/kg	uncer-	Activity in 352 keV roi, Bg/kg	uncer-	Activity in 352 keV roi, Bg/kg	uncer-	Mean activity, Ra-226, Bg/kg	uncer-	
identity	kg	sec.	roi	roi)	roi	roi)	roi	roi)	(d.w.)	tainty	(d.w.)	tainty	(d.w.)	tainty	(d.w.)	tainty	
S1-1 0-1cm	0.05	17416	364	34	506	35	279	35	26.7	3.3	26.5	2.5	23.9	3.7	25.7	5.6	
S1-1 1-2cm	0.0423	12411	223	30	300	29	192	27	26.5	4.5	25.4	3.2	27.2	4.7	26.4	7.2	
S1-1 2-3cm	0.0415	83800	1434	72	2171	75	1186	71	25.5	2.3	28.0	1.9	25.0	2.4	26.2	3.8	
S1-1 3-4cm	0.045	80523	1589	69	2150	78	1296	69	27.8	2.2	26.8	1.8	26.7	2.4	27.1	3.7	
S1-1 4-5cm	0.0423	88609	1741	72	2337	79	1249	76	29.4	2.3	28.1	1.9	24.4	2.4	27.3	3.8	
S1-1 5-6cm	0.0396	93698	1650	74	2418	80	1337	77	27.6	2.3	29.3	2.0	26.5	2.5	27.8	4.0	
S1-1 6-7cm	0.0418	90182	1680	75	2289	79	1282	75	28.0	2.3	27.2	1.9	25.0	2.4	26.7	3.8	
S1-1 7-8cm	0.041	80859	1554	67	2113	74	1166	70	29.6	2.4	28.7	2.0	25.9	2.5	28.0	4.0	
S1-1 8-9cm	0.0426	88118	1668	74	2373	78	1372	71	28.0	2.3	28.5	1.9	27.2	2.4	27.9	3.8	
S1-1 9-10cm	0.045	74240	1245	71	1895	74	1235	68	22.9	2.2	25.4	1.8	27.7	2.5	25.4	3.8	
S1-1 10-11cm	0.0472	674888	12969	207	18314	219	11130	202	25.7	1.7	26.0	1.5	26.2	1.8	25.9	2.8	
S1-1 11-12cm	0.0482	81850	1680	72	2305	78	1348	71	27.1	2.1	26.5	1.8	25.6	2.2	26.4	3.6	
S1-1 12-13cm	0.0486	71040	1486	65	1948	72	1145	69	27.5	2.2	25.5	1.8	24.8	2.3	25.9	3.6	
S1-1 13-14cm	0.045	242765	5118	120	6936	131	4120	121	30.0	2.0	28.9	1.7	28.4	2.0	29.1	3.3	
S1-1 14-15cm	0.049	83599	1668	73	2584	79	1429	73	25.8	2.1	28.9	1.8	26.2	2.2	27.0	3.6	
S1-1 15-16cm	0.0468	246471	5527	124	7729	134	4482	125	30.9	2.0	30.8	1.8	29.4	2.0	30.4	3.3	

Appendix VI Table A48: Data and results from Ra-226 measurements on core S1-1.

Sample		Measurin	g sample	•					Results								
									Activity		Activity		Activity				
			Net	s(net	Net	s(net	Net	s(net	in 609		in 352		in 352		Mean		
			counts	counts	counts	counts	counts	counts	keV		keV		keV		activity,		
_	Sample	Counting	in 609	in 609	in 352	in 352	in 295	in 295	roi,		roi,		roi,		Ra-226,		
Sample	weight,	time,	keV	keV	keV	keV	keV	keV	Bq/kg	uncer-	Bq/kg	uncer-	Bq/kg	uncer-	Bq/kg	uncer-	
identity	kg	sec.	roi	roi)	roi	roi)	roi	roi)	(d.w.)	tainty	(d.w.)	tainty	(d.w.)	tainty	(d.w.)	tainty	
S1-2 0-1cm	0.0341	84760	1354	59	1845	69	1040	70	28.6	2.4	28.0	2.0	25.8	2.8	27.5	4.3	
S1-2 1-2cm	0.0393	86103	1508	61	2065	71	1129	73	27.7	2.2	27.1	1.9	24.2	2.5	26.3	3.9	
S1-2 2-3cm	0.0405	518931	9426	155	13035	184	7687	177	28.0	1.9	27.7	1.6	27.0	2.0	27.6	3.2	
S1-2 3-4cm	0.0338	86543	1386	60	2008	72	1086	70	28.9	2.5	30.4	2.1	26.7	2.8	28.7	4.3	
S1-2 4-5cm	0.0357	272311	4582	112	6685	128	3752	123	29.0	2.1	30.7	1.9	28.2	2.3	29.3	3.6	
S1-2 5-6cm	0.0299	81232	1197	59	1671	68	1134	62	29.5	2.8	29.9	2.3	34.2	3.2	31.2	4.8	
S1-2 6-7cm	0.0338	67770	1117	51	1578	60	936	61	29.9	2.6	30.5	2.2	29.9	3.1	30.1	4.6	
S1-2 7-8cm	0.0348	89023	1538	61	2055	73	1184	71	30.7	2.5	29.3	2.1	27.8	2.8	29.3	4.3	
S1-2 8-9cm	0.0362	73433	1295	55	1737	1737	954	65	30.3	2.5	29.0	33.2	26.0	2.8	28.4	33.4	
S1-2 9-10cm	0.0372	255994	4344	108	6117	123	3656	121	28.2	2.0	28.5	1.8	28.2	2.2	28.3	3.5	
S1-2 10-11cm	0.0363	90313	1508	65	1968	74	1384	71	28.3	2.4	26.3	1.9	31.3	2.8	28.6	4.1	
S1-2 11-12cm	0.0411	84009	1515	61	2023	75	1246	69	27.4	2.2	26.1	1.8	26.7	2.5	26.7	3.8	
S1-2 12-13cm	0.0395	86575	1574	66	2336	76	1447	72	28.8	2.3	30.8	2.0	31.8	2.7	30.5	4.1	
S1-2 13-14cm	0.0395	85072	1510	63	2209	72	1285	70	28.0	2.3	29.5	2.0	28.3	2.6	28.6	4.0	
S1-2 14-15cm	0.0413	272196	5377	115	7666	134	4151	131	30.3	2.0	31.0	1.8	27.4	2.1	29.5	3.4	

Appendix VI Table A49: Data and results from Ra-226 measurements on core S1-2.

Sample		Measurin	g sample	•					Results								
									Activity		Activity		Activity				
			Net	s(net	Net	s(net	Net	s(net	in 609		in 352		in 352		Mean		
			counts	counts	counts	counts	counts	counts	keV		keV		keV		activity,		
	Sample	Counting	in 609	in 609	in 352	in 352	in 295	in 295	roi,		roi,		roi,		Ra-226,		
Sample	weight,	time,	keV	keV	keV	keV	keV	keV	Bq/kg	uncer-	Bq/kg	uncer-	Bq/kg	uncer-	Bq/kg	uncer-	
identity	kg	sec.	roi	roi)	roi	roi)	roi	roi)	(d.w.)	tainty	(d.w.)	tainty	(d.w.)	tainty	(d.w.)	tainty	
S1-3 0-1cm	0.0388	76302	1518	64	1999	73	1079	70	32.5	2.5	30.4	2.1	26.7	2.7	29.9	4.3	
S1-3 1-2cm	0.0324	84489	1503	59	1878	72	1177	71	34.2	2.7	30.1	2.2	31.5	3.1	31.9	4.7	
S1-3 2-3cm	0.0361	171372	2996	89	4352	105	2410	104	30.1	2.2	31.5	2.0	28.6	2.4	30.0	3.8	
S1-3 3-4cm	0.0358	81151	1407	60	1905	72	1326	67	30.0	2.5	29.1	2.1	34.2	2.9	31.1	4.4	
S1-3 4-5cm	0.0332	251380	4194	109	5743	124	3579	120	30.9	2.3	30.4	1.9	31.5	2.5	30.9	3.9	
S1-3 5-6cm	0.0322	79277	1194	61	1726	67	1034	65	28.2	2.6	29.6	2.2	29.4	3.0	29.1	4.6	
S1-3 6-7cm	0.0353	109959	1938	70	2808	82	1551	82	31.0	2.4	32.4	2.1	29.3	2.7	30.9	4.2	
S1-3 7-8cm	0.0368	76907	1319	62	1945	69	1119	67	28.8	2.5	30.8	2.1	29.1	2.8	29.6	4.3	
S1-3 8-9cm	0.0331	76207	1153	60	1788	65	1054	65	27.6	2.6	31.4	2.2	30.6	3.1	29.8	4.6	
S1-3 9-10cm	0.0401	268255	4491	115	7223	130	4096	126	25.7	1.9	30.3	1.8	28.2	2.1	28.1	3.4	
S1-3 10-11cm	0.0381	80850	1374	63	2018	69	1187	69	27.5	2.3	29.3	2.0	28.4	2.7	28.4	4.1	
S1-3 11-12cm	0.0385	90468	1888	63	2440	76	1278	64	34.6	2.5	31.6	2.1	26.9	2.4	31.1	4.0	
S1-3 12-13cm	0.035	85929	1552	57	2091	73	1244	71	32.2	2.5	31.0	2.1	30.5	2.9	31.2	4.4	
S1-3 13-14cm	0.0339	69883	1181	55	1601	63	903	65	30.7	2.6	29.8	2.2	27.6	3.1	29.4	4.6	

Appendix VI Table A50: Data and results from Ra-226 measurements on core S1-2.

Sample		Measurin	g sample	•					Results								
									Activity		Activity		Activity				
			Net	s(net	Net	s(net	Net	s(net	in 609		in 352		in 352		Mean		
			counts	counts	counts	counts	counts	counts	keV		keV		keV		activity,		
	Sample	Counting	in 609	in 609	in 352	in 352	in 295	in 295	roi,		roi,		roi,		Ra-226,		
Sample	weight,	time,	keV	keV	keV	keV	keV	keV	Bq/kg	uncer-	Bq/kg	uncer-	Bq/kg	uncer-	Bq/kg	uncer-	
identity	kg	sec.	roi	roi)	roi	roi)	roi	roi)	(d.w.)	tainty	(d.w.)	tainty	(d.w.)	tainty	(d.w.)	tainty	
S2-1 0-1cm	0.048	86226	1978	87	3200	93	1805	87	30.9	2.4	36.1	2.2	33.5	2.7	33.5	4.2	
S2-1 1-2cm	0.042	17071	395	37	538	42	354	38	35.7	4.3	34.5	3.5	37.9	5.0	36.0	7.5	
S2-1 2-3cm	0.0432	17000	354	39	560	42	368	38	30.8	4.3	35.2	3.5	38.6	4.9	34.9	7.4	
S2-1 3-4cm	0.0443	94106	2533	91	3473	105	2218	94	40.1	2.8	38.9	2.4	41.3	3.0	40.1	4.8	
S2-1 4-5cm	0.0456	23621	672	40	838	51	517	49	41.4	3.6	36.2	3.1	37.0	4.4	38.2	6.4	
S2-1 5-6cm	0.0459	87110	2354	79	3411	95	1976	94	38.9	2.6	40.0	2.4	38.3	3.0	39.1	4.6	
S2-1 6-7cm	0.0442	19367	450	38	656	44	473	40	34.1	3.8	35.5	3.2	43.0	4.6	37.5	6.8	
S2-1 7-8cm	0.0489	15702	455	30	549	40	402	38	39.4	3.6	33.2	3.2	40.9	4.8	37.9	6.8	
S2-1 8-9cm	0.0476	62537	1772	62	2525	74	1413	74	39.5	2.7	39.9	2.4	36.7	3.0	38.7	4.7	
S2-1 9-10cm	0.0468	88289	2446	76	3480	88	2065	87	39.2	2.6	39.5	2.3	38.8	2.8	39.2	4.5	
S2-1 10-11cm	0.0485	239405	6790	130	9478	149	5805	141	38.8	2.3	38.3	2.1	38.9	2.4	38.7	4.0	
S2-1 11-12cm	0.049	63224	1779	70	2590	78	1512	73	38.1	2.7	39.4	2.4	38.0	2.9	38.5	4.6	
S2-1 12-13cm	0.0475	71502	1901	71	2807	78	1682	77	36.9	2.6	38.8	2.3	38.5	2.9	38.1	4.5	
S2-1 13-14cm	0.0483	14942	407	35	562	42	386	34	37.3	4.1	36.4	3.5	41.8	4.6	38.5	7.1	
S2-1 14-15cm	0.047	242516	7129	145	9961	152	5580	141	41.7	2.5	41.2	2.2	38.0	2.4	40.3	4.1	

Appendix VI Table A51: Data and results from Ra-226 measurements on core S2-1.

Sample		Measurin	g sample	1					Results								
						_			Activity		Activity		Activity				
			Net	s(net	Net	s(net	Net	s(net	in 609		in 352		in 352		Mean		
		- ··	counts	counts	counts	counts	counts	counts	keV		keV		keV		activity,		
	Sample	Counting	in 609	in 609	in 352	in 352	in 295	in 295	roi,		roi,		roi,		Ra-226,		
Sample	weight,	time,	keV	keV	keV	keV	keV	keV	Bq/kg	uncer-	Bq/kg	uncer-	Bq/kg	uncer-	Bq/kg	uncer-	
identity	кg	sec.	roi	roi)	roi	roi)	roi	roi)	(d.w.)	tainty	(d.w.)	tainty	(d.w.)	tainty	(d.w.)	tainty	
S2-2 0-1cm	0.0383	87994	2103	83	2890	95	1690	88	40.6	3.0	39.6	2.5	38.2	3.2	39.5	5.0	
S2-2 1-2cm	0.0391	14502	296	37	403	39	285	35	33.2	5.2	32.2	3.9	38.4	5.7	34.6	8.6	
S2-2 2-3cm	0.0408	14021	345	32	542	37	265	39	39.4	4.7	44.4	4.0	35.2	6.1	39.7	8.7	
S2-2 3-4cm	0.0419	257725	7164	150	9898	171	5963	155	44.0	2.7	42.9	2.4	42.8	2.7	43.2	4.5	
S2-2 4-5cm	0.0386	80479	1913	81	2982	89	1589	87	40.1	3.0	44.8	2.8	39.1	3.3	41.3	5.3	
S2-2 5-6cm	0.0438	85883	2436	86	3285	97	1868	88	43.0	2.9	40.9	2.5	38.3	3.0	40.7	4.9	
S2-2 6-7cm	0.0396	86406	2111	82	3145	89	1702	86	40.3	2.9	42.8	2.6	38.0	3.1	40.4	5.0	
S2-2 7-8cm	0.0418	85360	2161	83	3206	88	1865	83	39.7	2.8	42.0	2.5	40.3	3.1	40.7	4.9	
S2-2 8-9cm	0.0392	259157	6459	142	8799	154	5502	140	41.6	2.6	40.1	2.3	41.7	2.7	41.1	4.4	
S2-2 9-10cm	0.0425	87889	2358	83	3252	89	1865	84	41.7	2.9	40.6	2.4	38.4	2.9	40.2	4.8	
S2-2 10-11cm	0.0461	93160	2370	93	3700	95	2066	88	36.2	2.6	40.5	2.4	37.2	2.8	37.9	4.5	
S2-2 11-12cm	0.0444	79272	2056	84	3048	87	1625	81	38.4	2.8	40.6	2.5	35.4	2.9	38.1	4.7	
S2-2 12-13cm	0.0441	83127	2149	83	3081	89	1925	79	38.5	2.7	39.2	2.4	40.7	3.0	39.5	4.7	
S2-2 13-14cm	0.0478	869884	24988	277	35172	294	21196	271	40.0	2.3	39.8	2.1	39.7	2.3	39.8	3.9	
S2-2 14-15cm	0.0412	247286	6352	141	9347	150	5440	139	41.0	2.5	42.9	2.4	41.2	2.7	41.7	4.4	
S2-2 15-16cm	0.0446	80053	2366	80	3231	86	1691	81	44.2	2.9	42.6	2.5	36.4	2.9	41.1	4.8	

Appendix VI Table A52: Data and results from Ra-226 measurements on core S2-2.

Sample		Measurin	g sample						Results									
									Activity		Activity		Activity					
				s(net		s(net		s(net	in 609		in 352		in 352		Mean			
			Net	counts	Net	counts	Net	counts	keV		keV		keV		activity,			
	Sample	Counting	counts	in 609	counts	in 352	counts	in 295	roi,		roi,		roi,		Ra-226,			
Sample	weight,	time,	in 609	keV	in 352	keV	in 295	keV	Bq/kg	uncer-	Bq/kg	uncer-	Bq/kg	uncer-	Bq/kg	uncer-		
identity	kg	sec.	keV roi	roi)	keV roi	roi)	keV roi	roi)	(d.w.)	tainty	(d.w.)	tainty	(d.w.)	tainty	(d.w.)	tainty		
S3-1 0-1cm	0.0492	75750	1797	71	2491	81	1483	1483	31.4	2.3	30.9	2.0	30.4	33.5	30.9	33.7		
S3-1 1-2cm	0.0301	259065	4400	120	6130	131	3772	120	34.8	2.6	34.9	2.2	35.7	2.8	35.1	4.3		
S3-1 2-3cm	0.0452	81223	1717	72	2327	78	1451	70	29.9	2.3	28.8	1.9	29.9	2.5	29.6	3.9		
S3-1 3-4cm	0.0451	75149	1704	67	2140	74	1292	69	32.5	2.4	28.7	1.9	28.7	2.5	30.0	4.0		
S3-1 4-5cm	0.0448	99750	2030	81	2818	90	1582	81	28.9	2.2	28.6	1.9	26.4	2.3	28.0	3.7		
S3-1 5-6cm	0.0493	85075	1762	74	2609	82	1631	72	26.8	2.1	28.5	1.8	29.6	2.3	28.3	3.6		
S3-1 6-7cm	0.0404	81661	1640	71	2188	76	1397	70	31.6	2.5	29.9	2.0	31.9	2.7	31.1	4.2		

Appendix VI Table A53: Data and results from Ra-226 measurements on core S3-1.

Appendix VI Table A54: Data and results from Ra-226 measurements on core S4-1 (0-1cm) and S4-2 (1-6cm).

Sample Measuring sample								Results								
									Activity		Activity		Activity		Mean	
			Net	s(net	Net	s(net	Net	s(net	in 609		in 352		in 352		activity,	
	Sample	Counting	counts	counts	counts	counts	counts	counts	keV roi,		keV roi,		keV roi,		Ra-226,	
Sample	weight,	time,	in 609	in 609	in 352	in 352	in 295	in 295	Bq/kg	uncer-	Bq/kg	uncer-	Bq/kg	uncer-	Bq/kg	uncer-
identity	kg	sec.	keV roi	keV roi)	keV roi	keV roi)	keV roi	keV roi)	(d.w.)	tainty	(d.w.)	tainty	(d.w.)	tainty	(d.w.)	tainty
S4-1 0-1cm	0.0444	98658	2499	88	3439	104	2139	96	37.4	2.6	36.4	2.3	37.7	2.9	37.2	4.5
S4-2 1-2cm	0.0467	73411	2013	82	2999	93	1637	85	30.8	2.5	41.2	2.5	46.1	3.3	39.4	4.9
S4-2 2-3cm	0.0466	529315	15328	216	22220	241	12912	221	34.2	2.1	42.5	2.2	49.0	2.8	41.9	4.1
S4-2 3-4cm	0.044	74904	1882	81	2833	85	1529	79	29.5	2.5	40.2	2.5	44.6	3.2	38.1	4.8
S4-2 4-5cm	0.0483	88768	2490	86	3672	94	2121	86	32.2	2.4	40.4	2.4	45.7	3.0	39.4	4.5
S4-2 5-6cm	0.0478	86233	2475	87	3452	90	2146	84	34.1	2.5	39.4	2.3	47.3	3.1	40.3	4.6
S4-2 6-7cm	0.0521	83748	2518	84	3482	94	2029	86	30.3	2.2	37.6	2.2	45.6	3.0	37.9	4.3
S4-2 7-8cm	0.0496	251612	7171	151	10441	160	6366	146	33.4	2.1	39.4	2.1	45.3	2.7	39.4	4.0
S4-2 8-9cm	0.0477	87942	2502	86	3431	96	2020	87	31.2	2.4	38.4	2.3	47.0	3.1	38.8	4.5