
Feasible Algorithms for Semantics
— Employing Automata and

Inference Systems

Dag Hovland

Dissertation for the degree of Philosophiae Doctor (PhD)

Department of Informatics
University of Bergen, Norway

December 2010

ii

Scientific Environment

The research presented in this thesis was produced while the au-
thor was employed as a PhD student at the Department of Informatics,
University of Bergen. The author was enrolled in the Research School
in Information and Communication Technology, and was part of the
research group for software development theory. The supervisor for
this PhD work was Marc Bezem, and the co-supervisor was Khalid A.
Mughal.

iii

Acknowledgements

I am indebted to my supervisor Marc Bezem, without whom this
thesis would not have been. I am grateful for his struggle to teach
me the difference between what I know and what I believe. He has
also been outstanding in taking care of practical matters. I thank my
co-supervisor Khalid A. Mughal for asking the questions that led to
much of this research, and for inspiration to go on. I must thank the
whole group for software development theory for useful discussions
and input, especially Andrew Polonsky and Federico Mancini.

Finally, I must thank Hanne, Øyvind, and Simien for staying with
a busy PhD-student. I am also grateful for the wonderful coffee from
the Zapatist cooperative Yachil Xojobal in Chiapas, Mexico.

iv CONTENTS

Contents

1 Introduction 1

2 The Inclusion Problem for Regular Expressions 5
2.1 Introduction . 5
2.2 Regular Expressions . 7

2.2.1 Term Trees and Positions 11
2.2.2 1-Unambiguous Regular Expressions 14

2.3 Rules for Inclusion . 17
2.4 Properties of the Algorithm 19

2.4.1 1-Unambiguity and the Rules 24
2.4.2 Invertibility of the Rules 28
2.4.3 Termination and Polynomial Run-time 31

2.5 Soundness and Completeness 37
2.6 Related Work and Conclusion 43

2.6.1 Conclusion . 43

3 Numerical Constraints and Unordered Concatenation 45
3.1 Introduction . 45
3.2 Regular Expressions with Unordered Concatenation and

Numerical Constraints . 49
3.3 Complexity of Membership under Unordered Concate-

nation . 53
3.3.1 Membership is in NP 53
3.3.2 Membership is NP-hard 54

3.4 Finite Automata with Counters 57
3.4.1 Counter States and Update Instructions 57
3.4.2 Overlapping Update Instructions 58
3.4.3 Finite Automata with Counters 59
3.4.4 Word recognition. 60
3.4.5 Searching with FACs 62

3.5 Subscripting and Unambiguity 63
3.5.1 Constraint Normal Form 66

CONTENTS v

3.5.2 Subscripted Expressions 72
3.5.3 Unambiguity . 85

3.6 First, Last, and Follow . 86
3.6.1 Calculating first, last, and follow 88

3.7 Constructing FACs . 100
3.8 Related Work and Conclusion 107

3.8.1 Related Work . 107
3.8.2 Conclusion . 108

4 A Type System for Usage of Software Components 110
4.1 Introduction . 110
4.2 Example: Objects on the Free Store in C++ 112
4.3 Syntax . 113

4.3.1 Bags and Multisets 113
4.3.2 Grammar . 114
4.3.3 Examples . 116

4.4 Operational Semantics . 117
4.4.1 Unsafe States . 118
4.4.2 Valid States . 120

4.5 Type System . 121
4.5.1 Types . 121
4.5.2 Typing Rules . 124

4.6 C++ Example Continued 125
4.7 Properties of the Type System 127

4.7.1 Type Inference . 131
4.8 Correctness . 133
4.9 Related Work and Conclusion 144

vi LIST OF FIGURES

List of Figures

2.1 Algorithm for inclusion of regular expressions 18
2.2 Example usage of the inference rules to decide a∗b∗ v

(a + b)∗ and (ab)∗a v a(ba)∗ 20
2.3 Example usage of the inference rules to decide that (ab)∗ v

a∗b∗ is not sound . 22
2.4 Example usage of the inference rules 28
2.5 The execution graph corresponding to input a∗b∗, (a +

b)∗. (cf. Fig. 2.2). 38
3.1 Example invocation of grep 47
3.2 Term tree for (&(a2, b))3..4 51
3.3 Term tree for µ((&(a2, b))3..4) 51
3.4 Illustration of FAC recognizing ‖(&(a2, b))3..4‖. 62
4.1 C++ code using threads and objects on the free store. . 113
4.2 Program P, a model of the C++ program in Fig. 4.1. . . 117

LIST OF TABLES vii

List of Tables

2.1 The first-set of a regular expression 9
2.2 The rules for the relation v (Continued in Table 2.3). . . 19
2.3 The rules for the relation v (Continued from Table 2.2). 21
2.4 The rules that might apply for any combination of header-

forms of the left-hand and right-hand expressions 25
4.1 Syntax . 114
4.2 Transition rules for a component program P (continued

in Table 4.3) . 119
4.3 Transition rules for a component program P (continued

from Table 4.2) . 120
4.4 The parts of the types . 122
4.5 Typing Rules (continued in Table 4.6)) 125
4.6 Typing Rules (continued from Table 4.5)) 126

1

1 Introduction

The main contribution of the thesis is three polynomial-time algo-
rithms, each covering a semantic issue concerning a specific formal
language. Hence the first part of the title, “Feasible Algorithms for Se-
mantics”. One algorithm uses automata, and the two others use infer-
ence systems, hence the second part of the title, “Employing Automata
and Inference Systems”.

The wider context of this thesis is that of theoretical computer sci-
ence. Most parts fall within, or close to, the scope of formal methods for
software engineering. The idea of formal methods is to support and
even guide, the construction of information systems by fundamental
knowledge developed in formal language and automata theory, pro-
cess algebra, and type theory. Large parts of the thesis are also in the
field of formal languages, or more specifically, regular expressions.

The thesis is based on three extended abstracts. Chapter 2 extends
“The Inclusion Problem for Regular Expressions” [38], Chapter 3 ex-
tends “Regular Expressions with Numerical Constraints and Automata
with Counters” [37], and Chapter 4 extends “A Type System for Usage
of Software Components” [36].

All three chapters have a core in an algorithm for deciding a certain
semantic issue concerning a formal language. In Chapters 2 and 3 the
language is that of regular expressions with some extensions, and the
semantics is the set of words denoted by a regular expression. The
semantic issue in Chapter 2 is whether the sets denoted by two regular
expressions are in an inclusion relation. In Chapter 3 we are interested
in deciding whether a word is in the language of a a regular expres-
sion, and in using this to search a text for a word matching a regular
expression. In the last chapter, the formal language is that of process
expressions, and the (static) semantics are types of these expressions.
The types give information about the bounds on the number of active
component instances during execution of the process expression. The
semantic issue is to infer the type of an expression. In all three chap-
ters it has been a goal to find polynomial-time algorithms to decide the
issues/questions. Chapters 2 and 4 have inference systems at the core

2 Introduction

of this algorithm, while Chapter 3 uses an automata-based approach.

Chapter 2 presents a polynomial-time algorithm for the inclusion
problem for a subclass of the classical regular expressions. The in-
put to the problem consists of two expressions, and the question is
whether the language of the first expression is included in the language
of the last expression. This problem was shown PSPACE-complete
in Meyer & Stockmeyer [54], for arbitrary regular expressions. The
classical algorithm involves the construction of a deterministic finite
automaton for the second expression. A lower bound for this con-
struction is given by the Myhill-Nerode theorem. Only for the subclass
called the 1-unambiguous regular expressions is there known a general
polynomial-time construction of deterministic finite automata recog-
nizing the same languages. The algorithm presented in Chapter 2 is
not based on construction of automata, and can therefore be faster than
the lower bound implied by the Myhill-Nerode theorem. The output
of the algorithm is “Yes”, “No” or “1-ambiguous”. If it returns “Yes”,
the language of the first expression is included in that of the second
expression. If it returns “No”, this inclusion is not the case, and if it re-
turns “1-ambiguous”, the right-hand expression is not 1-unambiguous.
The algorithm automatically discards irrelevant parts of the second ex-
pression. The irrelevant parts of the second expression might even be
1-ambiguous. For example, if r is a regular expression such that any
deterministic finite automaton recognizing r is very large, the algo-
rithm can still, in time independent of r, decide that the language of
ab is included in that of (a + r)b. The algorithm is based on a syntax-
directed inference system.

Chapter 3 is concerned with the class of regular expressions ex-
tended with operators for unordered concatenation and numerical con-
straints. Unordered concatenation is used in the Standard General-
ized Markup Language (SGML), the precursor of XML. XML Schema
uses a very limited form of unordered concatenation. Numerical con-
straints are an extension of regular expressions used in many appli-
cations, both in XML Schema and in the standard UNIX regular ex-
pressions. Regular expressions with unordered concatenation and nu-
merical constraints denote the same languages as the classical regular
expressions, but, in certain important cases, exponentially more suc-
cinct. The chapter contains a proof that the membership problem for
regular expressions with unordered concatenation (without numerical

3

constraints) is already NP-hard. The main contribution of Chapter 3 is
a polynomial-time algorithm for the membership problem for regular
expressions with numerical constraints and unordered concatenation,
when restricted to a subclass called strongly 1-unambiguous.

The last chapter is concerned with counting the number of active
component instances in a concurrent execution model allowing locking
and freeing instances. The aim is to support component-based soft-
ware engineering by modeling exclusive and inclusive usage of soft-
ware components. Truong and Bezem describe in several papers ab-
stract languages for component software with the aim to find bounds
to the number of instances of components. Their languages include
primitives for instantiating and deleting instances of components and
operators for sequential, alternative and parallel composition, and a
scope mechanism. The language is in Chapter 4 supplemented with
primitives for usage of component instances. The main contribution is
a type system which guarantees the safety of usage, in the following
way: When a well-typed program executes a subexpression denoting
usage of a component instance, it is guaranteed that an instance of that
component is available. Type inference is shown to be polynomial. An
alternative to using a type system is of course to run all possible exe-
cutions of the program, and count the number of instances. However,
the number of execution traces for any given program, is, in general,
super-polynomial in the size of the program. Hence, this brute force
approach is not feasible in this context.

The research questions that sparked all three papers came from
the development of software for an e-learning environment at the De-
partment of Informatics, University of Bergen. The questions concern-
ing regular expressions were originally motivated by certain problems
with the use of XML documents and XML Schema in the software. The
work on the type system for component software (Chapter 4) elabo-
rated the idea that one could support the developers in keeping track
of the different components and Java packages used in a Java web ap-
plication.

Since each chapter is based on a different extended abstract, each
chapter can be read without reading the others. They are as self-
contained as one can expect from a paper in the field. The only excep-
tion is some references in Chapter 3 to definitions in Chapter 2. Famil-
iarity with the basic complexity classes, mathematical sets, operations

4 Introduction

on sets, and common notation for these is assumed and necessary to
understand the content. Furthermore, knowledge of classical regular
expressions is necessary to understand the introductions in Chapters 2
and 3.

“The Inclusion Problem for Regular Expressions” [38] won a prize
for best student paper in LATA 2010. Implementations of the algo-
rithms given in Chapters 2 and 4 are available from the the website
http://www.ii.uib.no/~dagh. An implementation of the algorithm
described in [37] is also available, but it has not been extended to in-
clude the unordered concatenation treated in Chapter 3. As a final
remark, during the course of my PhD I also co-authored three pa-
pers that are not included in this thesis. The papers “Investigating the
Limitations of Java Annotations for Input Validation” [48] and “The
SHIP Validator: An Annotation-Based Content-Validation Framework
for Java Applications” [49], are hard to reconcile with the other ma-
terial, and have therefore been left out of the thesis. The paper “A
Type System for Counting Instances of Software Components” [3] is
presently under review by a journal. The latter paper has been the
starting point and background for the material included in Chapter 4.
I prefer to stick to the single-authored material, and therefore chose
not to include [3].

http://www.ii.uib.no/~dagh

5

2 The Inclusion Problem for
Regular Expressions

This chapter presents a polynomial-time algorithm for the inclusion
problem for a large class of regular expressions. The algorithm is not
based on construction of finite automata, and can therefore be faster
than the lower bound implied by the Myhill-Nerode theorem. The
algorithm automatically discards irrelevant parts of the right-hand ex-
pression. The irrelevant parts of the right-hand expression might even
be 1-ambiguous. For example, if r is a regular expression such that
any DFA recognizing r is very large, the algorithm can still, in time
independent of r, decide that the language of ab is included in that of
(a + r)b. The algorithm is based on a syntax-directed inference system.
It takes arbitrary regular expressions as input. If the 1-ambiguity of
the right-hand expression becomes a problem, the algorithm will re-
port this. Otherwise, it will decide the inclusion problem for the input.

2.1 Introduction

The inclusion problem for regular expressions was shown PSPACE-
complete in Meyer & Stockmeyer [54]. The input to the problem con-
sists of two expressions, the left-hand expression and the right-hand ex-
pression, respectively. The question is whether the language of the left-
hand expression is included in the language of the right-hand expres-
sion. The classical algorithm starts with constructing non-deterministic
finite automata (NFAs) for each of the expressions, then constructs a
DFA from the NFA recognizing the language of the right-hand expres-
sion, and a DFA recognizing the complement of this language. Then
an NFA recognizing the intersection of the language of the left-hand
expression with the complement of the language of the right-hand ex-
pression is constructed. Finally, the algorithm checks that no final state
is reachable in the latter NFA. The super-polynomial blowup occurs
when constructing a DFA from the NFA recognizing the right-hand ex-

6 The Inclusion Problem for Regular Expressions

pression. A lower bound to this blowup is given by the Myhill-Nerode
theorem [34, 57]. All the other steps, seen separately, are polynomial-
time.

1-Unambiguous regular expressions were first used in SGML [1],
and first formalized and studied by Brüggemann-Klein & Wood [10,
12]. The latter show a polynomial-time construction of DFAs from
1-unambiguous regular expressions. The classical algorithm can there-
fore be modified to solve the inclusion problem in polynomial time
when the right-hand expression is 1-unambiguous. This chapter presents
an alternative algorithm for inclusion of 1-unambiguous regular ex-
pressions. As in the modified classical algorithm, the left-hand ex-
pression can be an arbitrary regular expression. If the right-hand ex-
pression is 1-unambiguous, the algorithm is guaranteed to decide the
inclusion problem, while if it is not 1-unambiguous (i.e., the expression
is 1-ambiguous), it might either decide the problem correctly, or report
that the 1-ambiguity is a problem. An implementation of the algorithm
is available from the website of the author. The algorithm can of course
also be run twice to test whether the languages of two 1-unambiguous
regular expressions are equal.

A consequence of the Myhill-Nerode theorem is that for many
regular expressions, the minimal DFA recognizing this language, is
of super-polynomial size. For example, there are no polynomial-size
DFAs recognizing expressions of the form (b + c)∗c(b + c) · · · (b + c).
An advantage of the algorithm presented in this chapter is that it
only treats the parts of the right-hand expression which are neces-
sary; it is therefore sufficient that these parts of the expression are
1-unambiguous. For some expressions, it can therefore be faster than
the modified classical algorithm above. For example, the algorithm
described in this chapter will (in polynomial time) decide that the lan-
guage of ab is included in that of (a + (b + c)∗c(b + c) · · · (b + c))b,
and the sub-expression (b + c)∗c(b + c) · · · (b + c) will be discarded.
The polynomial-time version of the classical algorithm cannot easily
be modified to handle expressions like this, without adding complex
and ad hoc pre-processing.

To summarize: Our algorithm always terminates in polynomial
time. If the right-hand expression is 1-unambiguous, the algorithm
will return a positive answer if and only if the expressions are in an
inclusion relation, and a negative answer otherwise. If the right-hand

2.2 Regular Expressions 7

expression is 1-ambiguous, three outcomes are possible: The algorithm
might return a positive or negative answer, which is then guaranteed
to be correct, or the algorithm might also decide that the 1-ambiguity
of the right-hand expression is a problem, report this, and terminate.

Section 2.2 defines operations on regular expressions and proper-
ties of these. Section 2.3 describes the algorithm for inclusion, and
Section 2.4 shows some important properties of the algorithm. The
last section covers related work and a conclusion.

2.2 Regular Expressions

Fix an alphabet Σ of letters. Assume a, b, and c are members of Σ.
l, l1, l2, . . . are used as variables for members of Σ.

Definition 2.2.1 (Regular Expressions). The regular expressions over the
language Σ are denoted RΣ and defined in the following inductive manner:

RΣ ::= RΣ + RΣ | RΣ · RΣ | R∗Σ |Σ | ε

We use r, r1, r2, . . . as variables for regular expressions. Concatenation is
right-associative, such that, e.g., r1 · r2 · r3 = r1 · (r2 · r3). The sign for
concatenation, ·, will often be omitted. A regular expression denoting the
empty language is not included, as this is irrelevant to the results in this
chapter. We denote the set of letters from Σ occurring in r by sym(r).

The semantics of regular expressions is defined in terms of sets
of words over the alphabet Σ. We lift concatenation of words to sets
of words, such that if L1, L2 ⊆ Σ∗, then L1 · L2 = {w1 · w2 | w1 ∈
L1, w2 ∈ L2}. ε denotes the empty word of zero length, such that for
all w ∈ Σ∗, ε · w = w · ε = w. Integer exponents are short-hand for
repeated concatenation of the same set, such that for a set L of words,
e.g., L2 = L · L, and we define L0 = {ε}.

Definition 2.2.2 (Language of a Regular Expression). The language of a
regular expression r is denoted ‖r‖ and is defined by the following inductive
rules: ‖r1 + r2‖ = ‖r1‖ ∪ ‖r2‖, ‖r1 · r2‖ = ‖r1‖ · ‖r2‖, ‖r∗‖ =

⋃
0≤i‖r‖i

and for a ∈ Σ ∪ {ε}, ‖a‖ = {a}.

All subexpressions of the forms ε · r, ε + ε or ε∗ can be simplified
to r, ε, or ε respectively, in linear time, working bottom up. We will

8 The Inclusion Problem for Regular Expressions

often tacitly assume there are no subexpressions of these forms. Fur-
thermore, we use ri as a short-hand for r concatenated with itself i
times.

Definition 2.2.3 (Nullable Expressions). [29, 53] The nullable regular
expressions are denoted NΣ and are defined inductively as follows:

NΣ ::= NΣ + RΣ | RΣ +NΣ |NΣ ·NΣ | RΣ
∗ | ε

We now show that the nullable expressions are exactly those denot-
ing a language containing the empty word.

Lemma 2.2.4. For all regular expressions r ∈ RΣ, ε ∈ ‖r‖ ⇔ r ∈ NΣ.

Proof. By induction on the regular expression r. The base cases r =
ε and r ∈ Σ, and the induction case where r is of the form r∗1 are
immediate from Definitions 2.2.2 and 2.2.3.

For the induction case where r = r1 + r2, we first treat the direction
from left to right, that is, we assume ε ∈ ‖r1 + r2‖, and will prove that
r ∈ NΣ. From Definition 2.2.2 this implies that ε ∈ ‖r1‖ or ε ∈ ‖r2‖.
Using the induction hypothesis we get that r1 ∈ NΣ or r2 ∈ NΣ. From
Definition 2.2.3 we then get that r ∈ NΣ, as needed. For the other
direction, assume r1 + r2 ∈ NΣ. From Definition 2.2.3 we then get that
r1 ∈ NΣ or r2 ∈ NΣ. But then the induction hypothesis implies that
ε ∈ ‖r1‖ or ε ∈ ‖r2‖. By using Definition 2.2.2 we then get that ε ∈ ‖r‖,
as needed.

The induction case where r = r1 · r2 can be shown by replacing “+”
with “·” and “or” with “and” in the previous paragraph.

Intuitively, the first-set of a regular expression is the set of letters
that can occur first in a word in the language. An inductive definition
of the first-set is given in Table 2.1. Similar definitions have been given
by many others, e.g., Glushkov [29] and Yamada & McNaughton [53].

Lemma 2.2.5 (first). [29, 53] For any regular expression r, first(r) = {l ∈
Σ | ∃w : lw ∈ ‖r‖} and first(r) can be calculated in time linear in r.

The proof is by an easy induction on r, using Table 2.1 and Defini-
tion 2.2.2. The followLast-set of a regular expression is the set of letters
which can follow a word in the language.

2.2 Regular Expressions 9

first(ε) = ∅, r ∈ Σ⇒ first(r) = {r}
r = r1 + r2 ⇒ first(r) = first(r1) ∪ first(r2)
r = r1 · r2 ∧ r1 ∈ NΣ ⇒ first(r) = first(r1) ∪ first(r2)
r = r1 · r2 ∧ r1 6∈ NΣ ⇒ first(r) = first(r1)
r = r∗1 ⇒ first(r) = first(r1)

Table 2.1: The first-set of a regular expression

Definition 2.2.6 (followLast). [10]

followLast(r) = {l ∈ sym(r) | ∃u, v ∈ sym(r)∗ : (u ∈ ‖r‖ ∧ ulv ∈ ‖r‖)}

To limit the number of rules in the inference system explained in
Section 2.3, we will put regular expressions on header-form.

Definition 2.2.7 (Header-form). A regular expression is in header-form if it
is of the form ε, l · r1, (r1 + r2) · r3 or r∗1 · r2, where l ∈ Σ and r1, r2, r3 ∈ RΣ.

A regular expression can in linear time be put in header-form with-
out changing the denoted language by applying the mapping hdf. We
need the auxiliary mapping header, which maps a pair of regular ex-
pressions to a single regular expression. It is defined by the following
inductive rules:

header(ε, r) = r

header(r1, r2) =
(write r1 as r′1 · · · r′n for n ≥ 1, where r′n is not a concatenation)

r1 · r2 if n = 1
header(r′1, r2) if n = 2, r′2 = ε
header(r′1, r′2 · · · r′n−1 · r2) if n > 2, r′n = ε

header(r′1, r′2 · · · r′n · r2) if n ≥ 2, r′n 6= ε

We can now define hdf(r) = header(r, ε). We summarize the basic
properties of these mappings in the following lemma:

Lemma 2.2.8. For any regular expression r:

1. hdf(r) is in header-form,

2. ‖hdf(r)‖ = ‖r‖,

10 The Inclusion Problem for Regular Expressions

3. ∃n ≥ 0, r1, . . . , rn ∈ RΣ − {ε} : hdf(r) = r1 · · · rn · ε.

4. hdf(hdf(r)) = hdf(r).

Proof. 1. We first show that for any r1 ∈ RΣ − {ε} and any r2 ∈
RΣ, header(r1, r2) is in header form by induction on r1. If r1 is not a
concatenation, then, since, r1 6= ε, we get directly from the definitions
that header(r1, r2) = r1 · r2 is in header form. Otherwise, if r1 is of the
form r′1 · r′2, we get that the result is a new call to header where the first
argument is r′1. Since we have assumed that ε prefixes are removed,
r′1 6= ε. Thus we can apply the induction hypothesis to r′1 and get that
the result is in header form.

Now, by definition hdf(r) = header(r, ε). If r = ε, hdf(r) = ε, which
is in header form. Otherwise, we can use the result above to get that
header(r, ε) is in header form.

2. Since hdf(r) = header(r, ε) we only need to show that for any
r1, r2 ‖header(r1, r2)‖ = ‖r1r2‖. The latter follows almost directly from
associativity of concatenation and neutrality of concatenation with ε.

3. If r = ε, hdf(r) = ε so we are done. Otherwise, since hdf(r) =
header(r, ε), it is sufficient to prove by induction on r ∈ RΣ − {ε} that
for any r′1, . . . , r′m ∈ RΣ − {ε} there are r1, . . . , rn ∈ RΣ − {ε} such that

header(r, r′1 · · · r′m · ε) = r1 · · · rn · ε

If r is not a concatenation, then we get

header(r, r′1 · · · r′m · ε) = r · r′1 · · · r′m · ε

Otherwise, if r = r′′1 · r′′2 is a concatenation, we get a new call to header,
where the first argument is r′′1 and the second argument is of the form
required by the induction hypothesis. (Recall that ε prefixes have been
removed). Therefore we can apply the induction hypothesis to get the
result.

4. From the previous item, there are r1, . . . , rn ∈ RΣ − {ε} such
that hdf(r) = r1 · · · rn · ε. If n = 0, the lemma holds since hdf(ε) =
header(ε, ε) = ε. Otherwise, we get from the definitions of hdf and

2.2 Regular Expressions 11

header

hdf(hdf(r)) =

hdf(r1 · · · rn · ε) =
header(r1 · · · rn · ε, ε) =

header(r1, r2 · · · rn · ε) =
r1 · · · rn · ε =

hdf(r)

2.2.1 Term Trees and Positions

Given a regular expression r, we follow Terese [4] and define the
term tree of r as the tree where the root is labeled with the main op-
erator (choice, concatenation, or star) and the subtrees are the term
trees of the subexpression(s). If a ∈ Σ ∪ {ε} the term tree is a single
root-node with a as label.

We use 〈n1, . . . , nk〉, a possibly empty sequence of natural numbers,
to denote a position in a term tree. We let p, q, including subscripted
variants, be variables for such possibly empty sequences of natural
numbers. The position of the root is 〈〉. If r = r1 · r2 or r = r1 + r2, and
n1 ∈ {1, 2}, the position 〈n1, . . . , nk〉 in r is the position 〈n2, . . . , nk〉 in
the subtree of child n1, that is, in the term tree of rn1 . If r = r1

∗, the
position 〈1, n1, . . . , nk〉 in r is the position 〈n1, . . . , nk〉 in the term tree
of r1. Let pos(r) be the set of positions in r.

For two positions p = 〈m1, . . . , mk〉 and q = 〈n1, . . . , nl〉, the nota-
tion p� q will be used for the concatenated position 〈m1, . . . , mk, n1, . . . , nl〉.
We will also use this notation for lists of positions, so if p, p1, . . . , pn are
positions, then p� (p1 · · · · · pn) = (p� p1) · · · · · (p� pn). Further, we
use the notation for concatenating a position with each elements of a
set consisting of lists of positions, such that if p is a position, and S is
a set of lists of positions, then p� S = {p� q | q ∈ S}.

Below we will encounter regular expressions whose alphabet are
sets of positions. Concatenating a position with such an expression is
defined by concatenating the position with all the positions occurring
in the expression. Note that the language of such a regular expression

12 The Inclusion Problem for Regular Expressions

is a set of lists of positions. Hence, for p a position, r1 ∈ RΣ, and
r ∈ Rpos(r1)

, ‖p� r‖ = p� ‖r‖.
Whenever concatenating with a position of length one, we will of-

ten omit the sign � and abbreviate, such that for example p1 = p�〈1〉,
2S = 〈2〉 � S, ir = 〈i〉 � r, etc.

For a position p in r we will denote the subexpression rooted at this
position by r[p].Note that r[〈〉] = r. We also set r[ε] = ε. Furthermore,
given p1, . . . , pn in pos(r) ∪ {ε}, put r[p1 · · · · · pn] = r[p1] · · · · · r[pn].
Lastly, we lift r[] to sets of string, such that if S ⊆ pos(r)∗, then r[S] =
{r[w] | w ∈ S}.

Note that for r ∈ RΣ, p ∈ pos(r), and q ∈ pos(r[p]), we have
r[p� q] = r[p][q]. This can be shown by induction on r[p] (see, e.g.,
Terese [4]). For example in the case of r[p] = r1 · r2, we have that q is
a position in either r1 or r2. Assume it is in r1, then q = 1q′ for some
q′ ∈ pos(r1). As r[p][〈1〉] = r1 = r[p1] we get that r[p][1q′] = r[p1][q′],
and by the induction hypothesis r[p1][q′] = r[p1� q′].

The concept of marked expressions will be important in this chap-
ter. It was first used in a similar context by Brüggemann-Klein &
Wood [12]. The intuition is that the marked expression is the expres-
sion where every instance of any symbol from Σ is substituted by its
position in the expression.

Definition 2.2.9 (Marked Expressions). If r ∈ RΣ is a regular expression,
µ(r) ∈ Rpos(r) is the marked expression, defined in the following inductive
manner:

• µ(ε) = ε

• for l ∈ Σ, µ(l) = 〈〉

• µ(r1 + r2) = 1µ(r1) + 2µ(r2)

• µ(r1 · r2) = 1µ(r1) · 2µ(r2)

• µ(r∗1) = (1µ(r1))
∗

Note that, e.g., µ(b) = µ(a) = 〈〉, which shows that marking is
not injective. Furthermore ‖µ(r1 · r2)‖ = 1‖µ(r1)‖ · 2‖µ(r2)‖, ‖µ(r1 +
r2)‖ = 1‖µ(r1)‖ ∪ 2‖µ(r2)‖, and ‖µ(r∗)‖ = 1‖µ(r)∗‖. The following
lemma will often be used tacitly.

Lemma 2.2.10. For any regular expression r,

2.2 Regular Expressions 13

1. ‖r‖ = r[‖µ(r)‖]

2. For any p ∈ sym(µ(r)), µ(r)[p] = p.

3. For any p ∈ pos(r), r[p] ∈ Σ iff p ∈ sym(µ(r)).

Proof.

1. By induction on r. The base cases r = ε and r ∈ Σ are immediate
from Definitions 2.2.2 and 2.2.9 and the definition of r[].

For the inductive case where r = r1 + r2, by Definition 2.2.9, µ(r1 +
r2) = 1µ(r1) + 2µ(r2). Applying Definition 2.2.2 to the latter we get
‖µ(r1 + r2)‖ = ‖1µ(r1)‖ ∪ ‖2µ(r2)‖. Hence, by definition of concate-
nating a position with a regular expression, ‖µ(r1 + r2)‖ = 1‖µ(r1)‖ ∪
2‖µ(r2)‖. By applying distributivity of r[] over concatenation we get
r[‖µ(r1 + r2)‖] = r[1‖µ(r1)‖] ∪ r[2‖µ(r2)‖]. Note now that for any
i ∈ {1, 2} and any q ∈ pos(ri), we have r[iq] = r[〈i〉][q] = ri[q]. Apply-
ing this we get r[‖µ(r1 + r2)‖] = r1[‖µ(r1)‖]∪ r2[‖µ(r2)‖]. By applying
the induction hypothesis we get r[‖µ(r1 + r2)‖] = ‖r1‖ ∪ ‖r2‖. Hence,
by Definition 2.2.2, r[‖µ(r1 + r2)‖] = ‖r1 + r2‖.
The inductive case where r = r1 · r2, can be shown by replacing “+”
and “∪” with “·” in the previous paragraph.

For the inductive case where r = r∗1 , by Definition 2.2.9, µ(r∗1) =
(1µ(r1))

∗. Applying Definition 2.2.2 to the latter we get ‖µ(r∗1)‖ =⋃
0≤i‖1µ(r1)‖i. Hence, by definition of concatenating a position with

a regular expression, ‖µ(r∗1)‖ =
⋃

0≤i(1‖µ(r1)‖)i. By applying dis-
tributivity of r[] over union and concatenation we get r[‖µ(r∗1)‖] =⋃

0≤i(r[1‖µ(r1)‖])i. Note now that for any q ∈ pos(r1), we have r[1q] =
r[〈1〉][q] = r1[q]. Applying this we get r[‖µ(r∗1)‖] =

⋃
0≤i(r1[‖µ(r1)‖])i.

By applying the induction hypothesis we get r[‖µ(r∗1)‖] =
⋃

0≤i‖r1‖i.
Hence, by Definition 2.2.2, r[‖µ(r∗1)‖] = ‖r∗1‖.

2. By induction on r. The base case r = ε holds vacuously. The
base case r ∈ Σ holds immediately from Definition 2.2.9. For the
inductive cases where r = r1 · r2 or r = r1 + r2, we assume some
p ∈ sym(µ(r)) and proceed to show that µ(r)[p] = p. By Defini-
tion 2.2.9, sym(µ(r)) = 1sym(µ(r1)) ∪ 2sym(µ(r2)). Hence, there is
i ∈ {1, 2} and p′ ∈ sym(µ(ri)) such that p = ip′. By the induc-
tion hypothesis for ri, µ(ri)[p′] = p′, hence (iµ(ri))[p′] = p. Since

14 The Inclusion Problem for Regular Expressions

µ(r)[p] = (1µ(r1) · 2µ(r2))[ip′] = (iµ(ri))[p′] we get µ(r)[p] = p. The
inductive case where r = r∗1 is similar to the previous case, but easier.

3. By induction on r. The base cases, and the cases where p = 〈〉,
hold directly from Definition 2.2.9.

For the inductive cases where r = r1 · r2 or r = r1 + r2, and p 6= 〈〉, there
is i ∈ {1, 2} and p′ ∈ pos(ri) such that p = ip′. We have r[p] = ri[p′]
and that p ∈ sym(µ(r)) iff p′ ∈ sym(µ(ri)). Hence, the lemma holds by
applying the induction hypothesis for ri.

For the inductive case where r = r∗1 and p 6= 〈〉, we can use the same
argument as in the previous case, except that i is set to 1.

2.2.2 1-Unambiguous Regular Expressions

Definition 2.2.11 (Star Normal Form). [10, 12]: A regular expression is
in star normal form iff for all subexpressions r∗: r 6∈ NΣ and first(µ(r)) ∩
followLast(µ(r)) = ∅.

Brüggemann-Klein & Wood described also in [10, 12] a linear time
algorithm mapping a regular expression to an equivalent expression
in star normal form. We will therefore often tacitly assume that all
regular expressions are in star normal form.

It is almost immediate that hdf preserves star normal form, as
starred subexpressions are not altered.

Definition 2.2.12. [10, 12] A regular expression r is 1-unambiguous if for
any two upv, uqw ∈ ‖µ(r)‖, where p, q ∈ sym(µ(r)) (i.e., r[p], r[q] ∈ Σ)
and u, v, w ∈ sym(µ(r))∗ such that r[p] = r[q], we have p = q.

Examples of 1-unambiguous regular expressions are aa∗ and b∗a(b∗a)∗,
while (ε+ a)a and (a+ b)∗a are not 1-unambiguous. The languages de-
noted by 1-unambiguous regular expressions will be called 1-unambiguous
regular languages. An expression which is not 1-unambiguous is called
1-ambiguous. Brüggemann-Klein & Wood [12] showed that there exist
regular languages that are not 1-unambiguous regular languages, e.g.
‖(a + b)∗(ac + bd)‖. However, the reverse of (a + b)∗(ac + bd), namely
(ca + db)(a + b)∗ is 1-unambiguous. There are of course also expres-
sions like (a + b)∗(ac + bd)(c + d)∗, which denotes a 1-ambiguous lan-
guage, read both backwards and forwards.

2.2 Regular Expressions 15

Brüggemann-Klein & Wood characterized the 1-unambiguous reg-
ular expressions in [12, Lemma 3.2]. The latter lemma implies that all
subexpressions of a 1-unambiguous regular expression (in star normal
form) are 1-unambiguous. Another important consequence is that if
r1 and r2 are 1-unambiguous, and first(r1) ∩ first(r2) = ∅, then r1 + r2
is 1-unambiguous. Lastly, r1 · r2 is 1-unambiguous if r1 and r2 are 1-
unambiguous, r1 ∈ NΣ ⇒ first(r1) ∩ first(r2) = ∅, and followLast(r1) ∩
first(r2) = ∅. The latter three facts will be used several times.

Lemma 2.2.13. For a 1-unambiguous regular expression r, hdf(r) is also
1-unambiguous.

Proof. First we prove by induction on r1, where r1 6= ε, that if r1 · r2 is 1-
unambiguous, then header(r1, r2) is 1-unambiguous. The cases where
r1 6= ε is not a concatenation hold immediately, as header(r1, r2) =
r1 · r2. For the remaining cases, there are n ≥ 1 and r′1, . . . , r′n ∈
RΣ − {ε} such that either n ≥ 2, r1 = r′1 · · · r′n, and r′n is not a con-
catenation, or r1 = r′1 · · · r′n · ε. We first show that r′1 · · · r′n · r2 is 1-
unambiguous. Let u, p, q, v, w as in Definition 2.2.12 such that u · p ·
v, u · q ·w ∈ ‖µ(r′1 · · · r′n · r2)‖ and (r′1 · · · r′n · r2)[p] = (r′1 · · · r′n · r2)[q] ∈
sym(µ(r′1 · · · r′n · r2)). Note now that the u, p, q, v, w can easily be mod-
ified to get u′, p′, q′, v′, w′ such that p = q ⇔ p′ = q′, u′ · p′ · v′, u′ ·
q′ · w′ ∈ ‖µ(r1 · r2)‖, and (r1 · r2)[p′] = (r1 · r2)[q′]. But since r1 · r2
1-unambiguous by assumption, we get from Definition 2.2.12 that p′ =
q′. Therefore p = q. Thus r′1 · · · r′n · r2 is 1-unambiguous. By the
induction hypothesis on r′1 this implies that header(r′1, r′2 · · · r′n · r2) is
1-unambiguous. Hence, header(r1, r2) = header(r′1, r′2 · · · r′n · r2) is 1-
unambiguous.

Secondly, we prove that if r 6= ε and r is 1-unambiguous, then also
r · ε is 1-unambiguous. Take any u, p, q, v, w as in Definition 2.2.12 for
r · ε such that u · p · v, u · q · w ∈ ‖µ(r · ε)‖ and (r · ε)[p] = (r · ε)[q]. It
is easy to see that there are u′, p′, q′, v′, w′ such that u = 1u′, p = 1p′,
q = 1q′, v = 1v′, and w = 1w′. This implies that u′ · p′ · v′, u′ · q′ · w′ ∈
‖µ(r)‖ and r[p′] = r[q′]. We can use Definition 2.2.12 for r to get
p′ = q′. Therefore p = q and r · ε is 1-unambiguous.

Finally, if r = ε, hdf(r) = ε is 1-unambiguous. Otherwise, if r 6= ε,
we have by the previous paragraph that r · ε is 1-unambiguous. By
the paragraph above, this implies that header(r, ε) is 1-unambiguous.
Since hdf(r) = header(r, ε) we get that hdf(r) is 1-unambiguous.

16 The Inclusion Problem for Regular Expressions

1-unambiguity is different from, though related with, unambiguity,
as used to classify grammars in language theory, and studied for reg-
ular expressions by Book et al. [6]. From [6]: “A regular expression is
called unambiguous if every tape in the event can be generated from
the expression in one way only”1 It is not hard to see that the class of
1-unambiguous regular expressions is included in the class of unam-
biguous regular expressions.

Proof. We first prove by induction on r that if r is in star normal form,
and r is ambiguous, then there are u, u′ ∈ ‖µ(r)‖ such that u 6= u′ but
r[u] = r[u′]. The base cases hold vacuously.

For the induction case where r = r1 + r2, there must be a word
w which is either generated in two ways by r1 or by r2, or which is
generated by both r1 and r2. In the former case, it suffices to use the
induction hypothesis for r1 or r2. In the latter case, we get u ∈ ‖µ(r1)‖
and u′ ∈ ‖µ(r2)‖ such that r1[u] = w = r2[u′]. Hence, r[1u] = w =
r[2u′] and 1u 6= 2u′.

For the induction case where r = r1 · r2, let w be a witness that
r is ambiguous. There must be w1 ∈ ‖r1‖ and w2 ∈ ‖r2‖ such that
w = w1 · w2. For i ∈ {1, 2}, if wi can be generated in two ways by ri,
we get the result by the induction hypothesis for ri. Otherwise, we get
w′1 ∈ ‖r1‖ and w′2 ∈ ‖r2‖ such that w1 6= w′1, w2 6= w′2 and w = w′1 ·w′2.
Furthermore, there are u1, u′1 ∈ ‖µ(r1)‖ and u2, u′2 ∈ ‖µ(r2)‖ such
that w1 = r1[u1], w′1 = r1[u′1], w2 = r2[u2], and w′2 = r2[u′2]. Hence,
r[1u1 · 2u2] = r[1u′1 · 2u′2] and 1u1 · 2u2 6= 1u′1 · 2u′2.

For the induction case where r = r∗1 , let w be a witness that r∗1 is
ambiguous. Note that ε can only be generated in one way, since r is
in star normal form and r1 6∈ NΣ. Hence, w 6= ε, and there must be
w1, . . . , wn ∈ ‖r1‖ such that w = w1 · · ·wn. If one of the wi’s is gener-
ated in two ways by r1 we get the result from the induction hypothesis
for r1. Otherwise, there must be w′1, . . . , w′m ∈ ‖r1‖ different from
w1, . . . , wn such that w = w′1 · · ·w′m. Then there is i such that wi 6= w′i ,
but for 0 < j < i, wj = w′j. Hence, there is l ∈ Σ and w′ ∈ Σ∗ such
that either wi = w′i lw

′ or wilw′ = w′i . The cases are symmetric, so we
treat only wi = w′i lw

′. Then there are u1, . . . , un, u′1, . . . , u′m ∈ ‖µ(r1)‖
such that ∀j ∈ {1, . . . , n} : wj = r1[uj] and ∀j ∈ {1, . . . , m} : w′j =

r1[u′j]. Hence, r[1(u1 · · · un)] = w = r[1(u′1 · · · u′m)]. There are also

1In modern language, “tape” is “word” and “event” is “language”.

2.3 Rules for Inclusion 17

p, p′ ∈ sym(µ(r1)) and u′, u′′, u′′′ ∈ sym(µ(r1))
∗ such that ui = u′pu′′,

u′i+1 = p′u′′′, l = r1[p] = r1[p′], w′ = r1[u′′], and w′i = r1[u′]. Since
p′u′′′ ∈ ‖µ(r1)‖, p′ ∈ first(µ(r1)). If u′i 6= u′ we get immediately
u′1 · · · u′m 6= u1 · · · un and we are done. Otherwise, since u′i, u′i pu′′ ∈
‖µ(r1)‖, we get p ∈ followLast(µ(r1)). Since r is in star normal form
p 6= p′, hence u′1 · · · u′m 6= u1 · · · un.

We now proceed to show that the class of 1-unambiguous regu-
lar expressions is included in the class of unambiguous regular ex-
pressions. We prove the contra-positive statement. We assume that
r is ambiguous and proceed to show that r is 1-ambiguous. If r is
not in star normal form, we get that r is 1-ambiguous from Defini-
tions 2.2.12 and 2.2.11. Otherwise, we get from the arguments above
u, u′ ∈ ‖µ(r)‖ such that u 6= u′ but r[u] = r[u′]. Let u1 be the
longest common prefix of u and u′. Then there are p, q, v, w such that
u1 pv, u1qw ∈ ‖µ(r)‖, p 6= q and r[p] = r[q]. By Definition 2.2.12 this
means r is 1-ambiguous.

The inclusion is strict, as for example the expression (a + b)∗a is
both unambiguous and 1-ambiguous. See also [10, 12] for comparisons
of unambiguity and 1-unambiguity.

2.3 Rules for Inclusion

The algorithm is based on an inference system described in Ta-
bles 2.2 and 2.3, inductively defining a binary relation v between reg-
ular expressions. The core of the algorithm is a goal-directed, depth-
first search using this inference system. We will show later that a pair
of regular expressions is in the relation v if and only if their languages
are in the inclusion relation.

We will say that r1 v r2 is sound, if ‖r1‖ ⊆ ‖r2‖. Each rule con-
sists of a horizontal line with a conclusion below it, and zero, one,
or two premises above the line. All rules but one also have side-
conditions in square brackets. We only allow rule instances where the
side-conditions are satisfied. This means that matching the conclusion
of a rule implies satisfying the side-conditions. Note that (StarChoice1)
and (LetterChoice) each have only one premise.

Figure 2.1 describes the algorithm for deciding inclusion of regu-
lar expressions. The algorithm takes a pair of regular expressions as

18 The Inclusion Problem for Regular Expressions

Input: Two regular expressions r1 and r2

Output: “Yes”, “No” or “1-ambiguous”
Initialize stack T and set S as empty ;
push (hdf(r1), hdf(r2)) on T;
while T not empty do

pop (r3, r4) from T;
if (r3, r4) 6∈ S then

if first(r3) 6⊆ first(r4) or r3∈NΣ ∧ r4 6∈NΣ or r4=ε∧ r3 6=ε then
return “No”;

end
if r3 v r4 matches conclusion of more than one rule instance
then

return “1-ambiguous”;
end
add (r3, r4) to S;
for all premises r5 v r6 of the rule instance where r3 v r4
matches the conclusion do

push (hdf(r5), hdf(r6)) on T;
end

end
end
return “Yes”;

Figure 2.1: Algorithm for inclusion of regular expressions

2.4 Properties of the Algorithm 19

input, and if it returns “Yes” they are in an inclusion relation, if it
returns “No” they are not, and if it returns “1-ambiguous”, the right-
hand expression is 1-ambiguous. The stack T is used for a depth-first
search, while the set S keeps track of already treated pairs of regular
expressions. Both S and T consist of pairs of regular expressions.

Figures 2.2, 2.3, and 2.4 show examples of how to use the inference
rules. The example noted in the introduction, deciding whether ‖ab‖ ⊆
‖(a + (b + c)∗c(b + c) · · · (b + c))b‖ is shown in Fig. 2.4. Note that
branches end either in an instance of the rule (Axm), usage of the store
of already treated relations, or a failure. In addition to correctness
of the algorithm, termination is of course of paramount importance.
It is natural to ask how the algorithm possibly can terminate, when
the rules (LetterStar), (LeftStar), and (StarChoice2) have more complex
premises than conclusions. This will be answered in the next section.

Table 2.2: The rules for the relation v (Continued in Table 2.3).

(Axm)

ε v r
[r ∈ NΣ]

(Letter)
r1 v r2

l · r1 v l · r2

(LetterStar)
l · r1 v r2r∗2r3

l · r1 v r∗2r3
[l ∈ first(r2)]

(LetterChoice)
l · r1 v rir4

l · r1 v (r2 + r3)r4

[
i ∈ {2, 3}

l ∈ first(ri)

] (LeftChoice)
r1r3 v r4
r2r3 v r4

(r1 + r2)r3 v r4
(LeftStar)

r1r∗1r2 v r3r4
r2 v r3r4

r∗1r2 v r3r4

[
first(r∗1r2) ∩ first(r3) 6= ∅
∃l, r5 : r3 = l ∨ r3 = r∗5

]

2.4 Properties of the Algorithm

To help understanding the algorithm and the rules, Table 2.4 shows
which rules might apply for each combination of header-forms of the
left-hand and right-hand expressions. The following lemma implies

20 The Inclusion Problem for Regular Expressions
St

or
e(

1)
(L

et
te

r)
5

:a
∗ b
∗
v

(a
+

b)
∗

(L
et

te
rC

h
oi

ce
)

4
:a

a∗
b∗
v

a(
a
+

b)
∗

(L
et

te
rS

ta
r)

3
:a

a∗
b∗
v

(a
+

b)
(a

+
b)
∗

(L
ef

tS
ta

r)
2

:a
a∗

b∗
v

(a
+

b)
∗

St
or

e(
6)

(L
et

te
r)

10
:b
∗
v

(a
+

b)
∗

(L
et

te
rC

h
oi

ce
)

9
:b

b∗
v

b(
a
+

b)
∗

(L
et

te
rS

ta
r)

8
:b

b∗
v

(a
+

b)
(a

+
b)
∗

(L
ef

tS
ta

r)
7

:b
b∗
v

(a
+

b)
∗

(A
xm

)

11
:ε
v

(a
+

b)
∗

6
:b
∗
v

(a
+

b)
∗

1
:a
∗ b
∗
v

(a
+

b)
∗

St
or

e(
3)

(L
et

te
r)

7
:b
(a

b)
∗ a
v

(b
a)
∗

(L
ef

tS
ta

r)
6

:a
b(

ab
)∗

a
v

a(
ba
)∗

(A
xm

)

(L
et

te
r)

9
:ε
v

(b
a)
∗

8
:a
v

a(
ba
)∗

(L
et

te
r)

5
:(

ab
)∗

a
v

a(
ba
)∗

(L
et

te
rS

ta
r)

4
:b
(a

b)
∗ a
v

ba
(b

a)
∗

(L
et

te
r)

3
:b
(a

b)
∗ a
v

(b
a)
∗

(L
ef

tS
ta

r)
2

:a
b(

ab
)∗

a
v

a(
ba
)∗

St
or

e(
9)

(L
et

te
r)

12
:ε
v

(b
a)
∗

11
:a
v

a(
ba
)∗

1
:(

ab
)∗

a
v

a(
ba
)∗

Figure 2.2: Example usage of the inference rules to decide a∗b∗ v
(a + b)∗ and (ab)∗a v a(ba)∗

2.4 Properties of the Algorithm 21

Table 2.3: The rules for the relation v (Continued from Table 2.2).

(StarChoice1)

r∗1r2 v rir5

r∗1r2 v (r3 + r4)r5


i ∈ {3, 4}

first(r∗1r2) ∩ first(ri) 6= ∅
first(r∗1r2) ⊆ first(rir5)

r2 6∈ NΣ ∨ ri ∈ NΣ


(StarChoice2)

r1r∗1r2 v (r3 + r4)r5
r2 v (r3 + r4)r5

r∗1r2 v (r3 + r4)r5



first(r∗1r2) ∩ first(r3 + r4) 6= ∅ (r4 6∈NΣ ∧ first(r∗1r2)∩first(r3r5) 6=∅
∨ first(r∗1r2) ∩ first(r3) 6= ∅
∨(r2 ∈ NΣ ∧ r4 6∈ NΣ)


 (r3 6∈NΣ ∧ first(r∗1r2)∩first(r4r5) 6=∅
∨ first(r∗1r2) ∩ first(r4) 6= ∅
∨(r2 ∈ NΣ ∧ r3 6∈ NΣ)




(ElimCat)

r1 v r3

r1 v r2r3

 ∃l, r4, r5 : r1 = l · r4 ∨ r1 = r∗4r5
r2 ∈ NΣ

first(r1) ⊆ first(r3)



that if the second “if” inside the main loop of the algorithm fails, then
there is always at least one rule matching the pair. Note also that the
conditions in the lemma hold for all pairs which are in the inclusion
relation.

Lemma 2.4.1. For any regular expressions r1 and r2 in header normal form,
where first(r1) ⊆ first(r2), r1 6∈ NΣ ∨ r2 ∈ NΣ, and r1 = ε ∨ r2 6= ε, there
is at least one rule instance with conclusion r1 v r2.

Proof. By a case distinction on r1 and r2, using Tables 2.2, 2.3, and 2.4,
Definition 2.2.2, and Lemma 2.2.5. The only combinations that are
never matched are when the right-hand expression is ε while the left-
hand expression is not (5, 9, and 13 in Table 2.4), and the combinations
where the left-hand expression is ε while the right-hand is of the form
l · r (2 in Table 2.4). The former cannot occur under the assumptions

22 The Inclusion Problem for Regular Expressions

Fail because first((ab)∗) 6⊆ first(b∗)
(Letter) 7 : (ab)∗ v b∗

(LetterStar) 6 : b(ab)∗ v bb∗

(ElimCat) 5 : b(ab)∗ v b∗

(Letter) 4 : b(ab)∗ v a∗b∗

(LetterStar) 3 : ab(ab)∗ v aa∗b∗

(LeftStar) 2 : ab(ab)∗ v a∗b∗
(Axm)

8 : ε v a∗b∗

1 : (ab)∗ v a∗b∗

Figure 2.3: Example usage of the inference rules to decide that (ab)∗ v
a∗b∗ is not sound

of the lemma since subexpressions of the forms ε · r′, ε + ε and ε∗

are assumed removed, while the latter combinations follow from that
l · r 6∈ NΣ.

The cases when r1 = ε (1, 2, 3, and 4 in Table 2.4) the pair matches
(Axm), as the only side condition, r2 ∈ NΣ, is true by assumption.
When both expressions start with a letter (6 in Table 2.4), the pair
matches (Letter), which has no side-conditions.

In the cases where r1 = lr′ and r2 = (r3 + r4)r5 (7 in Table 2.4) we
have by assumption either that l ∈ first(r3 + r4), such that (LetterChoice)
matches, or we have r3 + r4 ∈ NΣ and l ∈ first(r5) such that (ElimCat)
matches the pair.

In the cases where r1 = lr′ and r2 = r∗3r4 (8 in Table 2.4) we have by
assumption either that l ∈ first(r3), such that (LetterStar) matches, or
we have l ∈ first(r4) such that (ElimCat) matches the pair.

The cases where r1 = (r3 + r4)r5 (9, 10, 11, and 12 in Table 2.4)
match (LeftChoice) which has no side-conditions.

The cases where r1 = r∗3r4 and r2 = l · r5 (14 in Table 2.4) are
matched by (LeftStar). The first side-condition holds by the assump-
tions in the lemma, and the second by the form of r2.

For the cases where r1 = r∗3r4 and r2 = r∗5r6 (16 in Table 2.4), note
that from the assumptions in the lemma, first(r1) ⊆ first(r∗5r6). There
are two cases to treat. Firstly, we can have first(r1) ⊆ first(r6) such that
the pair matches (ElimCat). Otherwise, we have first(r1)∩ first(r5) 6= ∅
which implies that the pair matches (LeftStar).

2.4 Properties of the Algorithm 23

We now treat the hardest case (15 in Table 2.4). For expository rea-
sons we stick to the notation in (StarChoice2) and take the left hand side
(“r1”) to be r∗1r2 and the right hand side (“r2”) to be (r3 + r4)r5. The
pair can possibly match (ElimCat), (StarChoice1), or (StarChoice2). We
will treat this case by assuming that the pair does not match (ElimCat)
or (StarChoice1), and proceeding to show that it is then matched by
(StarChoice2). We only need to show that all the side-conditions of
(StarChoice2) hold. For the first side-condition, note that one assump-
tion in the lemma is that first(r∗1r2) ⊆ first((r3 + r4)r5). If r3 + r4 6∈ NΣ,
we have first((r3 + r4)r5) = first(r3 + r4) and therefore get first(r∗1r2) ⊆
first(r3 + r4), so the first side-condition holds. Otherwise, if r3 + r4 ∈
NΣ, we get from the fact that (ElimCat) does not match the conclusion
that first(r∗1r2) 6⊆ first(r5), so we must also have the first side-condition.
For the two remaining side-conditions of (StarChoice2), note first that
since (StarChoice1) does not match, we get the following two facts:

first(r∗1r2)∩first(r3)=∅∨ first(r∗1r2) 6⊆first(r3r5) ∨ (r2∈NΣ ∧ r3 6∈NΣ) (2.1)

first(r∗1r2)∩first(r4)=∅∨ first(r∗1r2) 6⊆first(r4r5) ∨ (r2∈NΣ ∧ r4 6∈NΣ) (2.2)

From the fact that (ElimCat) did not match, we get that r3 ∈ NΣ ⇒
first(r∗1r2) 6⊆ first(r5) and that r4 ∈ NΣ ⇒ first(r∗1r2) 6⊆ first(r5). There-
fore, first(r∗1r2)∩first(r3) = ∅⇒ first(r∗1r2) 6⊆ first(r3r5) and first(r∗1r2)∩
first(r4) = ∅ ⇒ first(r∗1r2) 6⊆ first(r4r5). Hence (2.1) and (2.2) can be
simplified to

first(r∗1r2) 6⊆first(r3r5) ∨ (r2∈NΣ ∧ r3 6∈NΣ) (2.3)

first(r∗1r2) 6⊆first(r4r5) ∨ (r2∈NΣ ∧ r4 6∈NΣ) (2.4)

Applying standard operations in propositional logic to (2.3) and (2.4)
we get  (r3 6∈NΣ ∧ first(r∗1r2) 6⊆first(r3r5))

∨ (r3∈NΣ ∧ first(r∗1r2) 6⊆first(r3r5))
∨ (r2∈NΣ ∧ r3 6∈NΣ)

 (2.5)

 (r4 6∈NΣ ∧ first(r∗1r2) 6⊆first(r4r5))
∨ (r4∈NΣ ∧ first(r∗1r2) 6⊆first(r4r5))
∨ (r2∈NΣ ∧ r4 6∈NΣ)

 (2.6)

We use again that first(r∗1r2) ⊆ first((r3 + r4)r5) = first(r3r5)∪ first(r4r5)
to get the following implications: first(r∗1r2) 6⊆ first(r3r5)⇒ first(r∗1r2)∩

24 The Inclusion Problem for Regular Expressions

first(r4r5) 6= ∅, first(r∗1r2) 6⊆ first(r4r5) ⇒ first(r∗1r2) ∩ first(r3r5) 6= ∅,
(r3 ∈ NΣ ∧ first(r∗1r2) 6⊆ first(r3r5)) ⇒ first(r∗1r2) ∩ first(r4) 6= ∅, and
(r4 ∈ NΣ ∧ first(r∗1r2) 6⊆ first(r4r5)) ⇒ first(r∗1r2) ∩ first(r3) 6= ∅. Ap-
plying these implications to (2.5) and (2.6) gives exactly the two last
side-conditions of (StarChoice2).

2.4.1 1-Unambiguity and the Rules

We must make sure that the rules given in Tables 2.2 and 2.3 pre-
serve 1-unambiguity for the right-hand expressions.

Lemma 2.4.2 (Preservation of 1-unambiguity). For any rule instance, if
the right-hand expression in the conclusion is 1-unambiguous, then also the
right-hand expressions in all the premises are 1-unambiguous.

Proof. For most rules we either have that the right-hand expression is
the same in the premise and the conclusion, or we can use the fact
that all subexpressions of a 1-unambiguous regular expression are 1-
unambiguous. The latter fact was shown by Brüggemann-Klein &
Wood [12, Lemma 3.2]. The remaining cases can also be shown by
using [12, Lemma 3.2]. For the convenience of the reader, we show it
in an alternative way using Definition 2.2.12.

For the rule (LetterStar), the right-hand expression of the premise
is of the form r1r∗1r2 and we know that r∗1r2 is 1-unambiguous. We will
prove that r1r∗1r2 is 1-unambiguous given that r∗1r2 is 1-unambiguous.
We must use the fact that all expressions are in star normal form (see
Definition 2.2.11), thus r1 6∈ NΣ, and first(µ(r1)) ∩ followLast(µ(r1)) =
∅. Take u, v, w ∈ sym(µ(r1r∗1r2))

∗ and p, q ∈ sym(µ(r1r∗1r2)) as in
Definition 2.2.12, such that upv, uqw ∈ ‖µ(r1r∗1r2)‖ and (r1r∗1r2)[p] =
(r1r∗1r2)[q]. To prove 1-unambiguity of r1r∗1r2 we must show that p = q.
For each of the words upv and uqw there are two possibilities to con-

2.4 Properties of the Algorithm 25

Table 2.4: The rules that might apply for any combination of header-
forms of the left-hand and right-hand expressions

R
ig

ht
Le

ft
ε

l·
r

(r
1
+

r 2
)
·r

3
r∗ 1
·r

2

ε
1

:(
A

xm
)

2
:6⊆

3
:(

A
xm

)
4

:(
A

xm
)

l·
r

5
:6⊆

6
:(

L
et

te
r)

7
:

(E
lim

C
at
)

(L
et

te
rC

h
oi

ce
)

8
:

(E
lim

C
at
)

(L
et

te
rS

ta
r)

(r
1
+

r 2
)
·r

3
9

:6⊆
10

:(
L

ef
tC

h
oi

ce
)

11
:

(L
ef

tC
h

oi
ce
)

12
:

(L
ef

tC
h

oi
ce
)

r∗ 1
·r

2
13

:6⊆
14

:
(L

ef
tS

ta
r)

15
:

(E
lim

C
at
)

(S
ta

rC
h

oi
ce

1
)

(S
ta

rC
h

oi
ce

2
)

16
:

(E
lim

C
at
)

(L
ef

tS
ta

r)

26 The Inclusion Problem for Regular Expressions

sider:

∃!u1, u2, p1, v1 :
u=(1u1) · (2u2) ∧ v=2v1 ∧ p=2p1
∧u1 ∈ ‖µ(r1)‖ ∧ u2 p1v1 ∈ ‖µ(r∗1r2)‖

(2.7)

∃!u1, p1, v1, v2 :
u=1u1 ∧ p=1p1 ∧ v=(1v1) · (2v2)
∧u1 p1v1 ∈ ‖µ(r1)‖ ∧ v2 ∈ ‖µ(r∗1r2)‖

(2.8)

∃!u1, u2, q1, w1 :
u=(1u1) · (2u2) ∧ w=2w1 ∧ q=2q1
∧u1 ∈ ‖µ(r1)‖ ∧ u2q1w1 ∈ ‖µ(r∗1r2)‖

(2.9)

∃!u1, q1w1, w2 :
u=1u1 ∧ q=1q1 ∧ w=(1w1) · (2w2)
∧u1q1w1 ∈ ‖µ(r1)‖ ∧ w2 ∈ ‖µ(r∗1r2)‖

(2.10)

Exactly one of (2.7) or (2.8) must hold, and exactly one of (2.9) or (2.10)
must hold. Firstly, if both (2.8) and (2.10) hold, then p1 = q1 follows
from 1-unambiguity of r1, and thus p = 1p1 = 1q1 = q. Secondly, if
both (2.7) and (2.9) hold, the u1 and u2 chosen must be the same in both
cases, and therefore 1-unambiguity of r∗1r2 can be used to get p1 = q1.
Thus p = 2p1 = 2q1 = q. We now show that the two remaining
combinations cannot hold. By symmetry, we only treat one case, and
assume (by contradiction) that (2.8) and (2.9) hold. This implies that
u2 = ε, thus p1 ∈ followLast(µ(r1)) and q1 ∈ first(µ(r∗1 · r2)). Now
we can use (〈1, 1〉 � (u1 · p1 · v1)) · v2 ∈ ‖µ(r∗1r2)‖ and (〈1, 1〉 � u1) · q1 ·
w1 ∈ ‖µ(r∗1r2)‖ together with the fact that (r∗1r2)[q] = (r∗1r2)[〈1, 1〉 � p1]
in Definition 2.2.12 to show that 〈1, 1〉 � p1 = q1. Combined with q1 ∈
first(µ(r∗1 · r2)) we get that p1 ∈ first(µ(r1)). But then p1 ∈ first(µ(r1))∩
followLast(µ(r1)), which contradicts with the fact that r∗1r2 is in star
normal form.

For (LetterChoice) and (StarChoice1), the right-hand expression in
the conclusion is of the form (r1 + r2)r3. We can, by symmetry, as-
sume the right-hand expression in the premise is r1r3. We assume
the right-hand expressions in the conclusion is 1-unambiguous and
show that r1r3 also is 1-unambiguous. Note now that ‖µ(r1 · r3)‖ =
1‖µ(r1)‖ · 2‖µ(r3)‖, and ‖µ((r1 + r2)r3)‖ = 1‖µ(r1 + r2)‖ · 2‖µ(r3)‖ =
(〈1, 1〉 � ‖µ(r1)‖) · 2‖µ(r3)‖ ∪ (〈1, 2〉 � ‖µ(r1)‖) · 2‖µ(r3)‖. For any
upv, uqw ∈ ‖µ(r1r3)‖ as in Definition 2.2.12 concerning r1r3 we there-
fore have corresponding u′, p′, q′, v′, w′ concerning (r1 + r2)r3 which
are obtained by prefixing the positions in u, p, q, v, w starting in 1 with
one more 1. Furthermore, p′ = q′ ⇒ p = q. Since (r1 + r2)r3 is 1-
unambiguous we have that (r1 + r2)r3[p′] = (r1 + r2)r3[q′] ⇒ p′ = q′

2.4 Properties of the Algorithm 27

and therefore also that r1r3[p] = r1r3[q] ⇒ p = q, such that r1r3 is also
1-unambiguous.

We must now substantiate the claim that if the side-conditions of
more than one applicable rule hold, the right-hand expression is 1-
ambiguous.

Lemma 2.4.3. For any two regular expressions r1 and r2, where r2 is 1-unam-
biguous, there is at most one rule instance with r1 v r2 in the conclusion.

Proof. This is proved by comparing each pair of rule instances of rules
occurring in Table 2.4 and using Definition 2.2.12. For each case, we
show that the existence of several rule instances with the same conclu-
sion implies that the right-hand expression is 1-ambiguous.

• We first consider the case that one rule has several instances match-
ing the same conclusion. The only rules that can have more than one
instance with the same conclusion are (StarChoice1) and (LetterChoice).
For (LetterChoice), the conclusion is of the form l · r1 v (r2 + r3) · r4,
and the existence of two instances implies that l ∈ first(r2) ∩ first(r3).
This can only be the case if the right-hand expression is 1-ambiguous.
For (StarChoice1), the conclusion is of the form r∗1r2 v (r3 + r4)r5, and
the existence of two instances of this rule would imply that first(r∗1r2)
and first(r4) have a non-empty intersection, which furthermore is in-
cluded in first(r3r5). The expression (r3 + r4)r5 is therefore 1-ambiguous.

• If instances of both (ElimCat) and either (LetterStar) or (LetterChoice)
match the pair of expressions (see 7 and 8 in Table 2.4), then the right-
hand expression is of the form r2r3. From (LetterStar) and (LetterChoice)
the left-hand expression is of the form lr1 and l ∈ first(r2). From
(ElimCat) we get that r2 ∈ NΣ and l ∈ first(r3). But this means that r2r3
is 1-ambiguous.

• If instances of both (ElimCat) and either (StarChoice1) or (StarChoice2)
had the same conclusion (see 15 in Table 2.4), then the the conclu-
sion is of the form r∗1r2 v (r3 + r4)r5. From (ElimCat), we get that
r3 + r4 ∈ NΣ and first(r∗1r2) ⊆ first(r5). From the second side-condition
of (StarChoice1) or the first side-condition of (StarChoice2) we get that
first(r∗1r2) ∩ first(r3 + r4) 6= ∅. This means that first(r3 + r4)∩first(r5) 6=

28 The Inclusion Problem for Regular Expressions

(Axm)

(Letter) 4 : ε v ε

(Letter) 3 : b v b
(LetterChoice) 2 : ab v ab

1 : ab v (a + (b + c)∗c(b + c) · · · (b + c))b

Figure 2.4: Example usage of the inference rules

∅. We combine the latter with r3 + r4 ∈ NΣ to get that the right-hand
expression (r3 + r4)r5 is 1-ambiguous.

• For the cases where both an instance of (StarChoice1) and one
of (StarChoice2) match the conclusion, we can by symmetry assume
the instance of (StarChoice1) has i = 3. The last side-condition of
(StarChoice1) is then r2 6∈ NΣ ∨ r3 ∈ NΣ. This is exactly the negation of
the third disjunct of the third side condition of (StarChoice2). We must
therefore have that the remaining disjunction holds, that is,

(r3 6∈NΣ ∧ first(r∗1r2)∩first(r4r5) 6=∅) ∨ first(r∗1r2)∩first(r4) 6=∅ (2.11)

Assume first that the left disjunct of (2.11) holds. Then since r3 6∈ NΣ,
we get first(r3r5) = first(r3). Combined with the third side-condition of
(StarChoice1) this implies that first(r4r5) ∩ first(r3) 6= ∅, which means
that (r3 + r4)r5 is 1-ambiguous. Otherwise, if the right disjunct of
(2.11) holds, we can use the third side-condition of (StarChoice1) to
get that first(r4) ∩ first(r3r5) 6= ∅, which also means that (r3 + r4)r5 is
1-ambiguous.

• If instances of both (ElimCat) and (LeftStar) match the pair of ex-
pressions (see 16 in Table 2.4), then the conclusion is of the form r∗1r2 v
r3r4, where r3 ∈ NΣ and both first(r∗1r2) ⊆ first(r4) and first(r∗1r2) ∩
first(r3) 6= ∅. This can only hold if r3r4 is 1-ambiguous.

2.4.2 Invertibility of the Rules

We shall now prove that the rules given in Tables 2.2 and 2.3 are
invertible. By this we mean that, for each rule instance, assuming that

2.4 Properties of the Algorithm 29

no other rule instance matches the conclusion, then the conclusion is
sound if and only if all premises are sound.

Proof. By a case distinction on the rules. For all rules, the fact that the
premise(s) implies the conclusion follows almost directly from Defini-
tion 2.2.2. We only treat the converse:

• For (Axm), we only note that the side-condition is that the right-
hand expression is nullable, and then {ε} is of course a subset of the
language.

• For (Letter) we are just removing a single letter prefix from both
languages, and this preserves the inclusion relation.

• For (LetterStar), the conclusion is of the form lr1 v r∗2r3. Note
that ‖r∗2r3‖ = ‖r2r∗2r3‖ ∪ ‖r3‖. Since (ElimCat) does not match the
conclusion, and r∗2 ∈ NΣ, we must have that first(lr1) 6⊆ first(r3), that
is, l 6∈ first(r3). Therefore ‖lr1‖ ∩ ‖r3‖ = ∅, and thus ‖lr1‖ ⊆ ‖r2r∗2r3‖
and the premise is sound

• For (LetterChoice), the conclusion is of the form lr1 v (r2 + r3)r4.
Again we depend on the fact that no other instance of (LetterChoice)
nor (ElimCat) match the conclusion. We can assume by symmetry that
i = 2 and the premise is of the form lr1 v r2r4. Since i = 3 does
not match we get that l 6∈ first(r3). Note that ‖(r2 + r3)r4‖ = ‖r2r4‖ ∪
‖r3r4‖. Since (ElimCat) does not match the conclusion we get that
(r2 + r3) ∈ NΣ ⇒ l 6∈ first(r4). This implies that ‖lr1‖ ∩ ‖r3r4‖ = ∅, so
‖lr1‖ ⊆ ‖r2r4‖ and we have the premise.

• For (LeftChoice), the implication follows from Definition 2.2.2.

• (LeftStar) and (StarChoice2) hold by Definition 2.2.2, as ‖r∗1r2‖ =
‖r1r∗1r2‖ ∪ ‖r2‖.

• For (StarChoice1), the conclusion is of the form r∗1r2 v (r3 + r4)r5.
Note again that ‖(r3 + r4)r5‖ = ‖r3r5‖ ∪ ‖r4r5‖. We can, by symme-
try, assume i = 3. The second side-condition is then that first(r∗1r2) ∩
first(r3) 6= ∅. Note that this implies the first side-condition and the
middle disjunct of the second side-condition in (StarChoice2). Since
(StarChoice2) does not match, we must have the negation of the third
side-condition of (StarChoice2). Hence

first(r4)∩first(r∗1r2)=∅∧ (r3 ∈ NΣ ∨ first(r4r5)∩first(r∗1r2)=∅) (2.12)

30 The Inclusion Problem for Regular Expressions

Now, if r3 ∈ NΣ, we get that ‖r5‖ ⊆ ‖r3r5‖, which implies that
‖(r3 + r4)r5‖ = ‖r3r5‖ ∪ (‖r4r5‖ − ‖r5‖). From (2.12) we have that
first(r4)∩first(r∗1r2)=∅, which implies that (‖r4r5‖ − ‖r5‖) ∩ ‖r∗1r2‖ =
∅. Therefore the premise r∗1r2 v r3r5 is sound. On the other hand, if
r3 6∈ NΣ, we get from (2.12) that first(r4r5)∩first(r∗1r2)=∅. This implies
that ‖r∗1r2‖ ∩ ‖r4r5‖ = ∅, which implies that the premise r∗1r2 v r3r5 is
sound.

• For (ElimCat), we have ‖r2r3‖ = (‖r2r3‖ − ‖r3‖) ∪ ‖r3‖. There-
fore it is sufficient to show that first(r1) ∩ first(r2) = ∅. Note that the
left-hand expression is constrained by the first side-condition to be of
the form l · r4 or r∗4r5. The right-hand expression must from Defini-
tion 2.2.3, and the definition of header-form be of the form r∗6r3 or
(r6 + r7)r3. We do a case distinction on these forms. If r1 is of the
form l · r4, then since neither (LetterStar) or (LetterChoice) matches
the conclusion, we get that l 6∈ first(r2), and the premise r1 v r3
must be sound. If the conclusion is of the form r∗4r5 v r∗6r7, then
we must have that the first side-condition of (LeftStar) fails. Thus
first(r∗4r5) ∩ first(r∗6) = ∅. Lastly, if the conclusion is of the form r∗4r5 v
(r6 + r7)r3, note that from the second side-condition of (ElimCat) we
have r6 + r7 ∈ NΣ, so we can by symmetry assume r6 ∈ NΣ. We will
use that (StarChoice1) with i = 3 does not match, and that the third and
fourth side-conditions of this instance of (StarChoice1) hold by the as-
sumption that the side-conditions of (ElimCat) hold. This implies that
the second side-condition of (StarChoice1) with i = 3 does not hold, so
we get first(r∗4r5) ∩ first(r6) = ∅. If r7 ∈ NΣ, we can use a similar ar-
gument to also get first(r∗4r5)∩ first(r7) = ∅. Otherwise, if r7 6∈ NΣ, we
use the fact that (StarChoice2) does not match. The first disjunct of the
second side-condition of (StarChoice2) holds, since we have assumed
r7 6∈ NΣ, and we argued above that first(r∗4r5) ⊆ first(r6r3). Therefore
either the first or the third side-condition of (StarChoice2) must fail.
Either case implies that first(r∗4r5) ∩ first(r7) = ∅, so we are done.

Invertibility implies that, at any point during an execution of the
algorithm, the pair originally given as input is in the inclusion relation
if and only if all the pairs in both the store S and the stack T are in the
inclusion relation. These properties are used in the proofs of soundness
and completeness below.

2.4 Properties of the Algorithm 31

2.4.3 Termination and Polynomial Run-time

To prove that the algorithm always terminates in polynomial time,
we will prove that the number of iterations of the main loop where at
least one new pair is pushed onto the stack T, has an upper bound
in the product of the number of positions in the two regular expres-
sions given as input. This implies that the whole algorithm runs in
polynomial time, by the following three observations.

• The number of positions in a regular expression is linear in the
length of the regular expression.

• The number of iterations where no new pair is pushed to the stack
T, cannot be more than one more than half the total of all iterations.
Note that the iterations where no pairs are pushed are those where
the first “if”-test “(r1, r2) ∈ S” succeeds, those where the second “if”-
test fails, and those where the pair matches (Axm). That these are not
more than one more than the half follows from that the other rules
never push more than two pairs, and standard arguments on binary
trees.

• The time used in each iteration of the loop is polynomial in the
size of the regular expressions given as input.

Assume that the algorithm is given rl and rr as input. We will
prove that there is an injective mapping from each r′ occurring on
the left-hand or right-hand of a pair in the stack T during the run
of the algorithm, to a p in pos(rl) or pos(rr), respectively. If r is the
corresponding input expression, then r[p] is the first factor of r′.

For the purposes of this section, let 〉〈 be a special undefined position,
and let pos(r)〉〈 = pos(r) ∪ {〉〈}. We proceed to define a mapping nextr,
which will be used to describe the expressions occurring in a run of the
algorithm in terms of subexpressions of the corresponding expression
given as input.

Definition 2.4.4 (nextr). For a regular expression r, let the mapping nextr :
pos(r)→ pos(r)〉〈 be defined in the following top-down inductive manner:

• Put nextr(〈〉) =〉〈.

• If r[p] = r1 · r2, put nextr(p1) = p2 and put nextr(p2) = nextr(p).

32 The Inclusion Problem for Regular Expressions

• If r[p] = r1 + r2, put nextr(p1) = nextr(p2) = nextr(p).

• If r[p] = r∗1 , put nextr(p1) = p.

We extend nextr to next∗r which maps a position in r to a list of positions in r:

next∗r (p) =
{

ε if nextr(p) =〉〈
nextr(p) · next∗r (nextr(p)) otherwise

Example 2.4.5. Let Σ = {a, b, c, d} and r = ((a · b) · c∗) · d. Then pos(r) =
{〈〉, 〈1〉, 〈1, 1〉, 〈1, 1, 1〉, 〈1, 1, 2〉, 〈1, 2〉, 〈1, 2, 1〉, 〈2〉}, and nextr and next∗r
have the following values:

pos(r) nextr next∗r
〈〉 〉〈 ε
〈1〉 〈2〉 〈2〉
〈1, 1〉 〈1, 2〉 〈1, 2〉 · 〈2〉
〈1, 1, 1〉 〈1, 1, 2〉 〈1, 1, 2〉 · 〈1, 2〉 · 〈2〉
〈1, 1, 2〉 〈1, 2〉 〈1, 2〉 · 〈2〉
〈1, 2〉 〈2〉 〈2〉
〈1, 2, 1〉 〈1, 2〉 〈1, 2〉 · 〈2〉
〈2〉 〉〈 ε

We now need an auxiliary lemma concerning header.

Lemma 2.4.6. For any regular expressions r, r1, . . . , rn, r′1, . . . , r′m, and
r′, if header(r, r1 · · · rn · ε) = r′1 · · · r′m · ε, then header(r, r1 · · · rn · r′) =
r′1 · · · r′m · r′.

Proof. By induction on r. For the base case r = ε we have by definition
that header(r, r1 · · · rn · ε) = r1 · · · rn · ε, and header(r, r1 · · · rn · r′) =
r1 · · · rn · r′, which means the lemma holds. For the cases where r
is a letter, choice, or a starred expression, we get by definition that
header(r, r1 · · · rn · ε) = r · r1 · · · rn, and header(r, r1 · · · rn · r′) = r · r1 · · · rn ·
r′, which also means the lemma holds. For the induction cases when
r = r′′1 · ε we get header(r, r1 · · · rn · ε) = header(r′′1 , r1 · · · rn · ε) and
header(r, r1 · · · rn · r′) = header(r′′1 , r1 · · · rn · r′). We now get the result
by applying the induction hypothesis for r′′1 to header(r′′1 , r1 · · · rn · ε) =
r′1 · · · r′m · ε. Lastly, we treat the induction cases where there are p ≥ 2
and r′′1 , . . . , r′′p ∈ RΣ − {ε} such that either r = r′′1 · · · r′′p and r′′p is not a

2.4 Properties of the Algorithm 33

concatenation, or r = r′′1 · · · r′′p · ε. We then get

header(r, r1 · · · rn · ε) = header(r′′1 , r′′2 · · · r′′p · r1 · · · rn · ε)
header(r, r1 · · · rn · r′) = header(r′′1 , r′′2 · · · r′′p · r1 · · · rn · r′)

We get the result by applying the induction hypothesis for r′′1 to
header(r′′1 , r′′2 · · · r′′p · r1 · · · rn · ε) = r′1 · · · r′m · ε.

Corollary 2.4.7. For m > 0, and regular expressions r, r′, r′′, r′1, . . . , r′m, if
hdf(r) = r′′ · hdf(r′1 · · · r′m · ε), then hdf(r · r′) = r′′ · hdf(r′1 · · · r′m · r′).

Proof. If r = ε, the corollary holds vacuously. Otherwise, we can
assume there are r′′1 , . . . , r′′n ∈ RΣ − {ε} and n ≥ 0 such that either
r′ = r′′1 · · · r′′n where n ≥ 1 and r′′n is not a concatenation, or that
r′ = r′′1 · · · r′′n · ε. Put r′′′ = r′′1 · · · r′′n · ε. Then hdf(r · r′) = header(r, r′′′),
hdf(r′1 · · · r′m · r′) = header(r′1, r′2 · · · r′m · r′′′), and header(r, ε) = r′′ ·
header(r′1, r′2 · · · r′m · ε). From Lemmas 2.2.8 and 2.4.6 we therefore get
header(r, r′′′) = r′′ · header(r′1, r′2 · · · r′m · r′′′). Hence, hdf(r · r′) = r′′ ·
hdf(r′1 · · · r′m · r′).

We now need an auxiliary lemma concerning the mapping next∗.

Lemma 2.4.8. For any regular expressions r, r1, r2, and any position p ∈
pos(r) such that hdf(r[p]) = r1 · r2, there is an n ≥ 0 and positions q,
p1, . . . , pn ∈ pos(r) such that p ≤ q, next∗r (q) = p1 · · · · · pn · next∗r (p),
and r1 · r2 = r[q] · hdf(r[p1] · · · r[pn] · ε).

Proof. By induction on the expression r[p]. The base case when r[p] = ε
holds vacuously. The base cases when r[p] ∈ Σ, and the induction cases
where r[p] is of the forms r1 + r2 or r∗1 hold immediately (without us-
ing the induction hypothesis), as hdf(r[p]) = r[p] · ε = r[p] · hdf(ε)
and we can use q = p and n = 0. The remaining induction cases are
when r[p] is of the form r[p1] · r[p2]. By the note after Definition 2.2.2
r[p1] 6= ε and we have the induction hypothesis for r[p1]. Combin-
ing this with Definition 2.4.4, we get that there are q, p1, . . . , pn, such
that p1 ≤ q, next∗r (q) = p1 · · · pn · next∗r (p1) = p1 · · · pn · p2 · next∗r (p),
and hdf(r[p1]) = r[q] · hdf(r[p1] · · · r[pn] · ε). The latter fact applied to
Corollary 2.4.7 implies that hdf(r[p]) = r[q] · hdf(r[p1] · · · r[pn] · r[p2]),
so we have proved the lemma.

34 The Inclusion Problem for Regular Expressions

We can now formulate the main lemma of this section, defining the
mapping iterPos.

Lemma 2.4.9. For each regular expression r given as input to any execution
of the algorithm there exists a mapping iterPosr with the following properties.

• The domain of iterPosr is the set of non-ε expressions occurring on the
same side as r in any pair on the stack during the execution of the algorithm.

• The codomain of iterPosr is pos(r).

• If p = iterPosr(r′), then r′ = r[p] · hdf(r[next∗r (p)]).

Proof. By induction on the number of iterations of the main loop in an
execution of the algorithm. We can assume that the lemma holds for
the expressions in the pair that is popped from the stack, and show that
it holds for the expressions being pushed onto the stack. Remember
that hdf is applied to the expressions before they are pushed onto the
stack.

The base case is the expressions rl and rr given as input. By sym-
metry we treat only rl . We can apply Lemma 2.4.8 to rl and 〈〉 to
get q, p1, . . . , pn such that hdf(rl) = rl [q] · hdf(rl [p1] · · · rl [pn] · ε), and
next∗rl

(q) = p1 · · · pn · next∗rl
(〈〉). By Definition 2.4.4 next∗rl

(〈〉) = ε, so
we get hdf(rl) = rl [q] · hdf(rl [next∗rl

(q)]), and we can let iterPosrl (rl) =
q.

The induction case for (Axm), the induction cases where the first
if-test “(r1, r2) 6∈ S” fails, and the cases where the second if-test holds
(such that “No” is returned) all hold directly by using the induction
hypothesis, since the stack is not changed.

In the remaining induction cases, the expressions put on the stack
follow five patterns: 1: that hdf(r) is pushed after popping r, 2: that
hdf(r) is pushed after popping l · r, 3: that hdf(r1r3) is pushed after
popping (r1 + r2)r3, 4: that hdf(r1r∗1r2) is pushed after popping r∗1r2,
and lastly, 5: that r2 is pushed after popping r1r2 where r1 ∈ NΣ. We
treat these cases separately.

1. If we push hdf(r) on the stack after popping r, we get from
Lemma 2.2.8 that hdf(r) = r, so we get the result from the induction
hypothesis.

2.4 Properties of the Algorithm 35

2. The first interesting case is where l · r1 is a member of the pair
popped from the stack T, and hdf(r1) is a member of the pair pushed.
Assume r is the corresponding input expression. By the induction
hypothesis we know that there is a p such that iterPosr(lr1) = p, r[p] =
l, and hdf(r[next∗r (p)]) = r1. If r1 = ε, the lemma holds vacuously.
Otherwise, we must now calculate the value of iterPosr(r1), that is, a
p′ ∈ pos(r), and show that it has the required properties. We have
r[next∗r (p)] 6= ε, so we get next∗r (p) 6= ε, thus nextr(p) 6=〉〈, and r1 =
hdf(r[nextr(p)] · r[next∗r (nextr(p))]). We can now apply Lemma 2.4.8
to r and nextr(p), and get p′, p1, . . . , pn such that hdf(r[nextr(p)]) =
r[p′] · hdf(r[p1] · · · r[pn] · ε) and next∗r (p′) = p1 · · · pn · next∗rl

(nextr(p)).
By applying this to Corollary 2.4.7 we get that

hdf(r[nextr(p)] · r[next∗r (nextr(p))])
= r[p′] · hdf(r[next∗r (p′)])

Applying Lemma 2.2.8 we therefore get

hdf(r1) = r1 = r[p′] · hdf(r[nextr(p′)]),

so the lemma holds.

3. We next treat the case when we push a pair containing an ex-
pression of the form hdf(r1r3) on the stack after popping a pair con-
taining (r1 + r2)r3. Assume r is the corresponding input expression. By
the induction hypothesis there is a p such that iterPosr((r1 + r2)r3) = p,
r[p] = (r1 + r2), and hdf(r[next∗r (p)]) = r3. If hdf(r1r3) = ε the lemma
holds vacuously. Otherwise, since r1 = r[p1] we get from Lemma 2.4.8
for r and p1 that there are p′, p1, . . . , pn such that:

hdf(r1) = r[p′] · hdf(r[p1] · · · r[pn] · ε) (2.13)

next∗r (p′) = p1 · · · pn · next∗r (p1) (2.14)

Applying Corollary 2.4.7 to (2.13) we get

hdf(r1 · r3) = r[p′] · hdf(r[p1] · · · r[pn] · r3)

Since r3 = r[next∗r (p)] we get hdf(r1 · r3) = r[p′] · hdf(r[p1] · · · r[pn] ·
r[next∗r (p)]). Furthermore, from Definition 2.4.4 nextr(p1) = nextr(p),
and therefore next∗r (p1) = next∗r (p). Combining the latter with (2.14)
we get next∗r (p′) = p1 · · · pn · next∗rl

(p). Finally, we therefore get hdf(r1 ·
r3) = r[p′] · hdf(r[next∗r (p′)]), and we can put iterPosr(r3) = p′.

36 The Inclusion Problem for Regular Expressions

4. We treat the case where r∗1r2 is a member of the pair popped
from the stack, and hdf(r1r∗1r2) is a member of the pair pushed. As-
sume r is the corresponding input expression. By the induction hy-
pothesis we have a p such that iterPosr(r∗1r2) = p, where r[p] = r∗1 and
hdf(r[next∗r (p)]) = r2. Since r1 = r[p1], we can apply Lemma 2.4.8 to r
and p1, to get p′, p1, . . . , pn, such that hdf(r1) = r[p′] · hdf(r[p1 · · · pn])
and next∗r (p′) = p1 · · · pn · next∗r (p1). By Definition 2.4.4, we get

next∗r (p′) = p1 · · · pn · p · next∗r (p)

Thus, applying Corollary 2.4.7 we get

hdf(r1r∗1r2) = r[p′] · hdf(r[next∗r (p′)])

So we can set iterPosr(r1r∗1r2) = p′.

5. For the case where r1r2 is popped from the stack, r1 ∈ NΣ,
and hdf(r2) is pushed, assume again that r is the corresponding in-
put expression. From the induction hypothesis there is a p such that
iterPosr(r1r2) = p, r1 = r[p], and r2 = hdf(r[next∗r (p)]). If nextr(p) =〉〈,
then r2 = ε and the lemma holds vacuously for hdf(r2) = ε. Other-
wise, r2 = hdf(r[nextr(p)] · r[next∗r (nextr(p))]). Applying Lemma 2.4.8
to r and nextr(p) gives q, p1, . . . , pn such that hdf(r[nextr(p)]) = r[q] ·
hdf(r[p1] · · · r[pn] · ε) and next∗r (q) = p1 · · · pn · next∗r (nextr(p)). Apply-
ing Corollary 2.4.7 to this we get hdf(r[nextr(p)] · r[next∗r (nextr(p))]) =
r[q] ·hdf(r[p1] · · · r[pn] · r[next∗r (nextr(p))]) = r[q] ·hdf(r[next∗r (q)]). Thus
hdf(r2) = r[q] · hdf(r[next∗r (q)]), and we can set iterPosr(r2) = q.

Note now that the mappings iterPosrl and iterPosrr are injective. We
show this by letting r ∈ {rl , rr}, and assuming that for two regular
expressions r1 and r2 occurring on the same side as r in two pairs in
the stack, we have iterPosr(r1) = iterPosr(r2) = p for some p. But from
Lemma 2.4.9 we then have r1 = r2 = r[p] · hdf(r[next∗r (p)]). So the
mapping iterPosr is injective.

We are now done with showing termination and polynomial run-
time, since Lemma 2.4.9 implies that the product of the number of
positions in the two regular expressions given as input is an upper
bound to the number of pairs of members from RΣ − {ε} occurring

2.5 Soundness and Completeness 37

in the stack. The latter number is exactly the number of iterations
of the main loop where new pairs are pushed to the stack, since an
ε on the left-hand side can only be matched by (Axm) and if only
the right-hand side is ε, this leads to a “No” answer. As argued in
the beginning of this section, this means the run-time of the whole
algorithm is polynomial.

2.5 Soundness and Completeness

We need some auxiliary definitions and lemmas before we can
prove soundness.

Definition 2.5.1 (Execution graph). An execution graph is a directed graph
representing a successful run of the algorithm. The nodes correspond to the
iterations of the main loop in the algorithm where the test “(r1, r2) ∈ S” fails.
Each node is labeled by the name and conclusion of the rule instance matching
the pair popped from the stack in the corresponding iteration. There is an edge
from each node to the node(s) labeled with the premise(s) of the rule instance
applied in the corresponding iteration.

Every usage of the store corresponds to a loop in the graph. Note
that the only nodes without outgoing edges in an execution graph, are
those labeled (Axm).

Example 2.5.2. Figure 2.5 shows the execution graph corresponding to a run
of the algorithm with input a∗b∗, (a + b)∗.

Let the size of a regular expression be the sum of the number of
letters and operators ∗ and + occurring in the expression. Note that the
concatenation operator and ε are not counted. We will label an edge
in an execution graph as left-increasing or right-increasing, respectively,
if the left-hand or right-hand expression labeling the start node has
smaller size than the corresponding expression in the end node. Left-
decreasing and right-decreasing labels are defined similarly.

Nodes labeled (StarChoice2) and (LeftStar) have one left-increasing
and left-decreasing outgoing edge. An edge is right-increasing if and
only if it starts in a node labeled (LetterStar). Outgoing edges from
all other rules are left-decreasing, right-decreasing, or both. If an edge
is neither left-increasing nor left-decreasing then the expression on the

38 The Inclusion Problem for Regular Expressions

(L
eftS

tar),a ∗b ∗
v

(a
+

b) ∗

(L
etterS

tar),aa ∗b ∗
v

(a
+

b) ∗

(L
etterC

h
oice),aa ∗b ∗

v
(a

+
b)(a

+
b) ∗

(L
etter),aa ∗b ∗

v
a(a

+
b) ∗

(L
eftS

tar),b ∗
v

(a
+

b) ∗

(L
etterS

tar),bb ∗
v

(a
+

b) ∗

(L
etterC

h
oice),bb ∗

v
(a

+
b)(a

+
b) ∗

(L
etter),bb ∗

v
b(a

+
b) ∗

(A
xm

),ε
v

(a
+

b) ∗

Figure 2.5: The execution graph corresponding to input a∗b∗, (a + b)∗.
(cf. Fig. 2.2).

2.5 Soundness and Completeness 39

left-hand side in the start and end node are the same. The similar state-
ment holds for the right-hand side. The edges corresponding to usage
of the store S have no labels, since by construction the expressions in
the start and end node are the same.

Lemma 2.5.3. If there is a left-increasing edge in a loop, then there is also a
node labeled (Letter) in the loop.

Proof. We prove a stronger statement, which implies that any path
starting with a left-increasing edge, and not containing a node labeled
(Letter) cannot be a loop: We show that in a path where there is no
node labeled (Letter) and which starts with a left-increasing edge, the
left-hand expressions in all nodes except the first node are of the form
r′1 · · · r′n · r∗1r2 for some r′1 · · · r′n 6∈ NΣ. This is proved by induction on
the length of the path. For the base case, only one edge in the path,
note that the start node must be labeled (StarChoice2) or (LeftStar), so
the left-hand expression in the first node is of the form r∗1r2 and the
left-hand expression in the last node is r1r∗1r2. Now, r1 6∈ NΣ follows
from the fact that the expressions are in star normal form.

There is an induction case for each premise of each rule. Note that
(Axm) cannot be applied because of the induction hypothesis. For the
premises corresponding to edges which are neither left-decreasing nor
left-increasing, the left-hand expression is unchanged, and we can just
use the induction hypothesis. For the premises corresponding to left-
increasing edges, note that by the induction hypothesis the start node is
of the form r′1 · · · r′n · r∗1r2, and the left-hand expression in the last node
is r′ · r′1 · · · r′n · r∗1r2 for some r′, and r′1 · · · r′n 6∈ NΣ ⇒ r′ · r′1 · · · r′n 6∈ NΣ.

The interesting cases are the premises corresponding to left-decrea-
sing edges. For (LeftChoice), we can apply the induction hypothesis to
get that the left-hand expression in the start node is (r′1 + r′2) · r′3 · · · r′n ·
r∗1r2 where (r′1 + r′2) · r′3 · · · r′n 6∈ NΣ. The last node has left-hand ex-
pression r′i · r′3 · · · r′n · r∗1r2 for i ∈ {1, 2}. But (r′1 + r′2) · r′3 · · · r′n 6∈ NΣ ⇒
r′i · r′3 · · · r′n 6∈ NΣ, so the lemma holds also for the new last node.

For a left-decreasing edge, corresponding to a premise of (StarChoice2)
or (LeftStar), we get from the induction hypothesis and Definition 2.2.3
that the left-hand expression in the starting node is of the form r′1

∗ ·
r′2 · · · r′n · r∗1r2 where r′2 · · · r′n 6∈ NΣ. The left-hand expression in the last
node is r′2 · · · r′n · r∗1r2, so the lemma holds also for this case.

40 The Inclusion Problem for Regular Expressions

Lemma 2.5.4. If there is a right-increasing edge in a loop, then there is also
an instance of (Letter) in the loop.

Proof. We prove a stronger statement which implies that any path start-
ing with a right-increasing edge, and not containing a node labeled
(Letter) cannot be a loop: In a path where there is no node labeled
(Letter) and which starts with a right-increasing edge, all nodes except
the first are of the form l · r1 v r′1 · · · r′n · r∗2r3 for some r′1 · · · r′n 6∈ NΣ
where l ∈ first(r′1 · · · r′n). This is proved by induction on the length of
the path.

For the base case, only one edge in the path, the first node must be
labeled with (LetterStar) and l · r1 v r∗2r3. The last node is then labeled
l · r1 v r2r∗2r3. That r2 6∈ NΣ follows from that the expressions are in
star normal form. l ∈ first(r2) is the side conditions on (LetterStar).

There are induction cases for all rules, but the only rules that can
match the relation are (LetterStar), (LetterChoice) and (ElimCat).

For (LetterStar), the conclusion must be of the form

l · r1 v r′1
∗r′2 · · · r′n · r∗2r3

where r′2 · · · r′n 6∈ NΣ. From the side-condition we get l ∈ first(r′1). Thus
the lemma holds for the premise l · r1 v r′1r′1

∗r′2 · · · r′nr∗2r3.
For the cases matching (LetterChoice) the conclusion is of the form

l · r1 v (r′1 + r′2)r
′
3 · · · r′nr∗2r3, and the premise is l · r1 v r′i · r′3 · · · r′nr∗2r3

where i ∈ {1, 2}, l ∈ first(r′1) and r′i · r′3 · · · r′n 6∈ NΣ.
For (ElimCat), the conclusion is of the form l · r1 v r′1 · · · r′n · r∗2r3 for

some r′1 ∈ NΣ, where r′1 · · · r′n 6∈ NΣ. The latter implies that r′2 · · · r′n 6∈
NΣ, and the side-conditions ensure that l ∈ first(r′2 · · · r′n · r∗2r3), which
imply that l ∈ first(r′2 · · · r′n). So the lemma also holds for the premise
l · r1 v r′2 · · · r′n · r∗2r3.

Lemma 2.5.5. In any loop, there is at least one instance of (Letter)

Proof. At least one rule instance in a loop is right- or left-increasing
or -decreasing. This implies there must be at least one left- or right-
increasing instance, and the result follows immediately from Lem-
mas 2.5.3 and 2.5.4.

Definition 2.5.6 (Letter-path). A letter-path is a path in an execution
graph of the algorithm where the last node is labeled (Letter) and there are no
other nodes labeled (Letter),

2.5 Soundness and Completeness 41

Lemma 2.5.7 (Letter-path language conservation). In every letter-path, if
the last node is labeled lr1 v lr2 and the first node is labeled r3 v r4, then
‖r2‖ ⊆ {w | lw ∈ ‖r4‖}

Proof. By induction on the length of the letter-path.
The base case is a path consisting of a single node labeled (Letter).

This case is immediate, as we get r4 = l · r2.
There are induction cases for each of the rules shown in Tables 2.2

and 2.3, except (Axm) and (Letter). The cases where the right-hand ex-
pression is unchanged ((LeftChoice), (LeftStar), and (StarChoice2)) hold
immediately from the induction hypothesis.

For (LetterStar), the right-hand expression in the label of the first
node is of the form r∗5r6 and the induction hypothesis is that ‖r2‖ =
{w | lw ∈ ‖r5r∗5r6‖}. The inclusion ‖r5r∗5r6‖ ⊆ ‖r∗5r6‖ follows from
Definition 2.2.2, thus we also get that {w | lw ∈ ‖r5r∗5r6‖} ⊆ {w | lw ∈
‖r∗5r6‖}, so the lemma holds.

For (LetterChoice) and (StarChoice1), the right-hand expression in
the conclusion is of the form (r5 + r6)r7, and by symmetry we can
assume the right-hand expression in the premise is r5r7, so the in-
duction hypothesis is that ‖r2‖ ⊆ {w | lw ∈ ‖r5r7‖}. But since
‖r5r7‖ ⊆ ‖(r5 + r6)r7‖ follows from Definition 2.2.2 we also get that
{w | lw ∈ ‖r5r7‖} ⊆ {w | lw ∈ ‖(r5 + r6)r7‖}, so the lemma holds.

For (ElimCat), the right-hand expression in the conclusion is of the
form r5r6 where r5 ∈ NΣ, and the induction hypothesis is that ‖r2‖ ⊆
{w | lw ∈ ‖r6‖}. But since ‖r6‖ ⊆ ‖r5r6‖ follows from Definition 2.2.2
and r5 ∈ NΣ, we also get that {w | lw ∈ ‖r6‖} ⊆ {w | lw ∈ ‖r5r6‖}, so
the lemma holds.

Lemma 2.5.8. For any node r1 v r2 in an execution graph, and for any
w ∈ ‖r1‖, w 6= ε, there is a letter-path from this node to an instance of
(Letter) such that w is in the language of the left-hand expression in the
conclusion of this instance of (Letter).

Proof. For all rules, except (Letter), the union of the languages of the
left-hand expressions in the premise(s) equals the language of the left-
hand expression in the conclusion. We can therefore construct the
letter-path by repeatedly choosing the next node corresponding to a
premise where the left-hand expression matches w. This process will
terminate in an instance of (Letter) by the following arguments. In-

42 The Inclusion Problem for Regular Expressions

stances of (Axm) will not occur as w 6∈ ‖ε‖, and Lemma 2.5.5 assures
that all loops contain at least one instance of (Letter).

Lemma 2.5.9. For any r1 v r2 in an execution graph of the algorithm,
‖r1‖ ⊆ ‖r2‖.

Proof. The lemma can be reformulated, stating that for all w ∈ Σ∗,
and all r1 v r2 in the execution graph, w ∈ ‖r1‖ implies w ∈ ‖r2‖.
We prove this simultaneously for all nodes in the execution graph, by
induction on the length of w. The base case is that w = ε. In this
case r1 ∈ NΣ, and the algorithm guarantees that also r2 ∈ NΣ. The
induction case is that w = lw′ for some l ∈ Σ and w′ ∈ Σ∗. Assume
some r1 v r2 in the execution graph, where lw′ ∈ ‖r1‖. We must
prove that lw′ ∈ ‖r2‖. From Lemma 2.5.8 there is a letter-path starting
with the instance with conclusion r1 v r2, and ending in an instance of
(Letter) with conclusion lr3 v lr4 such that w′ ∈ ‖r3‖. From using the
induction hypothesis on w′ and the premiss r3 v r4 of this instance of
(Letter) we then get that w′ ∈ ‖r4‖, and therefore w = l · w′ ∈ ‖lr4‖.
Lemma 2.5.7 now states that ‖r4‖ ⊆ {v | lv ∈ ‖r2‖}, so we get that
w ∈ ‖r2‖.

Soundness is now an immediate corollary of the previous lemma.

Theorem 2.5.10 (Soundness). Let r1, r2 be regular expressions. If the algo-
rithm is run with r1 and r2 as input, and returns “Yes”, then ‖r1‖ ⊆ ‖r2‖.

Proof. Since the input is r1 and r2 we know that r1 v r2 occurs in the
corresponding execution graph. From Lemma 2.5.9 we then get that
‖r1‖ ⊆ ‖r2‖.

Since the rules are invertible, and, as seen above, the algorithm
always terminates, we get completeness almost for free.

Theorem 2.5.11 (Completeness). If ‖r1‖ ⊆ ‖r2‖, the algorithm will either
accept r1 v r2, or it will report that the 1-ambiguity of r2 is a problem.

Proof. Since the rules are invertible, and the algorithm always termi-
nates, all that remains is to show that for all regular expressions r1 and
r2, where their languages are in an inclusion relation, there is at least
one rule instance with conclusion r1 v r2. But this follows directly
from Lemma 2.4.1.

2.6 Related Work and Conclusion 43

2.6 Related Work and Conclusion

This chapter is an extension of work in [38]. Martens, Neven &
Schwentick study in [50] the complexity of the inclusion problem for
several sub-classes of the regular expressions. Colazzo, Ghelli & Sar-
tiani, describe in [18] and [26] asymmetric polynomial-time algorithms
for inclusion of a subclass of regular expressions called collision-free.
The collision-free regular expressions have at most one occurrence of
each symbol from Σ, and the Kleene star can only be applied to dis-
junctions of letters. The latter class is strictly included in the class of
1-unambiguous regular expressions. The main focus of Colazzo, Ghelli
and Sartiani is on the extensions of regular expressions used in XML
Schemas. These extensions are not covered by the algorithm presented
here. Hosoya et al. [35] study the inclusion problem for XML Schemas.
They also use a syntax-directed inference system, but the algorithm
is not polynomial-time. Salomaa [63] presents two axiom systems for
equality of regular expressions, but does not treat the run-time. The
inference system used by our algorithm has some inspiration from the
concept of derivatives of regular expressions, first defined by Brzo-
zowski [13]. The first use of derivatives for the inclusion problem is
by Brzozowski in [14]. Antimirov reinvents and details this approach
in [2], as a term rewriting system for inequalities of regular expres-
sions. Chen & Chen [16] adopt Antimirov’s algorithm to the inclusion
problem for 1-unambiguous regular expressions. They do not treat
the left-hand and right-hand together in the way the rules of the al-
gorithm in this chapter do. The analysis of their algorithm depends
on both the left-hand and the right-hand regular expressions being 1-
unambiguous.

2.6.1 Conclusion

We have described a polynomial-time algorithm for language in-
clusion of regular expressions. The algorithm is based on a syntax-
directed inference system, and is guaranteed to give the correct answer
if the right-hand expression is 1-unambiguous. If the right-hand ex-
pression is 1-ambiguous the algorithm either reports an error or gives
the correct answer. In certain cases, irrelevant parts of the right-hand
expression are automatically discarded. This is the main advantage

44 The Inclusion Problem for Regular Expressions

over the classical algorithms for inclusion. An implementation of the
algorithm is available on the author’s website.

45

3 The Membership Problem for
Regular Expressions with
Numerical Constraints and
Unordered Concatenation

We study the membership problem for regular expressions extended
with operators for unordered concatenation and numerical constraints. Un-
ordered concatenation is used in the ISO standard for the Standard
Generalized Markup Language (SGML), the precursor of XML. XML
Schema uses a very limited form of unordered concatenation. Nu-
merical constraints are an extension of regular expressions used in
many applications, e.g. text search (e.g., UNIX grep), document for-
mats (e.g. XML Schema). Regular expressions with unordered con-
catenation and numerical constraints denote the same languages as
the classical regular expressions, but, in certain important cases, expo-
nentially more succinct. We show that the membership problem for
regular expressions with unordered concatenation (without numerical
constraints) is already NP-hard. Kilpeläinen & Tuhkanen have in [42]
shown that the membership problem for regular expressions with nu-
merical constraints is in P. We also show a polynomial-time algorithm
for the membership problem for regular expressions with numerical
constraints and unordered concatenation, when restricted to a subclass
called strongly 1-unambiguous.

3.1 Introduction

In the ISO standard for the Standard Generalized Markup Lan-
guage (SGML) [1], the precursor of XML, the operator “&” is used for
what in this chapter is called unordered concatenation, that is, the lan-
guages are concatenated, but in any order. For example, &(ya, basta)
denotes {yabasta, bastaya}. In SGML “&” is infix, but because it is

46 Numerical Constraints and Unordered Concatenation

not associative and not binary, we find it more clear to write it prefix.
Brüggemann-Klein [11, 15] investigates unambiguity of regular expres-
sions extended with such an unordered concatenation operator. XML
Schema [21] uses a restricted form of unordered concatenation, called
all.

Numerical constraints allow expressing that a subexpression must be
matched a number of times specified by a lower and a upper bound.
For example, (a + b)2..3 denotes the words of length 2 or 3 consisting
only of a’s and b’s. Numerical constraints are used in XML Schema,
and also in applications for text search, e.g. GNU grep. The Sin-
gle UNIX Specification [59] requires this as a standard part of regu-
lar expressions. In the GNU version of the UNIX program grep [30]
and in the programming language Perl they are included as standard
and in XML Schema [21] the 1-unambiguous subclass is allowed. In
GNU grep you can, for example, write ([0-9]{1,3}\.){3}[0-9]{1,3}
to match any IPv4 address in dotted-decimal notation. Regular ex-
pressions with numerical constraints has been studied by, among oth-
ers, Meyer & Stockmeyer [54], Sperberg-McQueen [64], Kilpeläinen &
Tuhkanen [42, 43], Gelade et al. [24, 25], Gelade [22], Ghelli et al. [27],
Gelade et al.[23], and Hovland [37]

Common uses of regular expressions with numerical constraints
and/or unordered concatenation are matching and searching. With
matching we mean the membership problem, the problem of deciding
whether a given word is in the language defined by the regular expres-
sion. Searching means to decide whether one or more sub-strings of a
given text match the regular expression. For an overview of searching
and matching with classical regular expressions, see Navarro & Raf-
finot [56, Chapter 5]. Kilpeläinen & Tuhkanen [42] showed that for
the regular expressions with numerical constraints, matching can be
done with a polynomial-time dynamic programming algorithm. Using
this algorithm, one can also search in polynomial time. Unfortunately,
their algorithm uses space quadratic in the length of the word being
matched. For many real-world applications the word is very long, and
quadratic space in the word can be too much.

Many programs that search using regular expressions with numer-
ical constraints use algorithms with super-polynomial behavior in the
length of the regular expression. These programs typically have as in-
put one short regular expression and many, long, texts to be searched.

3.1 Introduction 47

It is therefore common to construct a deterministic finite automaton
(DFA) for matching or searching. By using the string Σ∗rΣ∗, a DFA can
be used to search in time linear in the length of the text. A quadratic
algorithm is usually preferred, as it is faster in most practical cases.
Meyer & Stockmeyer [54] show that the inclusion problem for regular
expressions with squaring is EXPSPACE-complete. Furthermore, the
problem of deciding whether the languages of two arbitrary DFAs are
in the inclusion relation is in P. Therefore, any general method for con-
structing a DFA recognizing the language of a regular expression with
numerical constraints must use superpolynomial space in the worst
case.

As an example, consider an experiment lasting 100 hours, where we
need to record the moments at which some (unspecified) events take
place. We will use one string to describe each 100-hour experiment.
For each hour when there is an event, the hour is given, followed by
“h”, followed by a string describing the events occurring that hour.
This string is formatted in the following way: for each minute when
there is an event, the minute is given, followed by “m”, followed by the
second and “s” for each second at which there was an event during
that minute. If there were, e.g., a total of three events during one ex-
periment, at 3:12:22, 3:12:43 and 20:45:01, then the string describing the
experiment is 3h12m22s43s20h45m1s. For testing the strings we decide
to use the regular expression ((0 + · · · + 9)1..2h((1 + · · · + 5)0..1(0 +
· · ·+ 9)m((1 + · · ·+ 5)0..1(0 + · · ·+ 9)s)1..60)1..60)0..100 by executing the
command in Fig. 3.1 (See next section for syntax and semantics of the
regular expressions). However, this command turns out to use over
2 gigabytes of memory1, independent of the length of the text to be
matched.

grep -E \
"([0-9]{1,2}h([1-5]?[0-9]m([1-5]?[0-9]s){1,60}){1,60}){0,100}"

Figure 3.1: Example invocation of grep

An algorithm for the matching problem will be called a fast-matcher,
if there is a constant c such that the algorithm runs in time O(|r|c · |w|)

1Measurements done with procps version 3.2.7 running GNU grep version 2.5.3 com-
piled with GNU cc version 4.1.2 on a machine with four 2,0 GHz 32-bit CPUs running
CentOS-5.2 with Linux 2.6.18 and GNU C library version 2.5.

48 Numerical Constraints and Unordered Concatenation

(where r is the regular expression and w is the word to be matched).
There exists a fast-matcher for the classical regular expressions (with-
out numerical constraints). The algorithm constructs a non-deterministic
finite automaton (NFA) recognizing the regular expression, and runs
the NFA on the word by maintaining the set of possible states. The
latter set is limited by the size of the NFA, and the number of steps
is exactly the length of the word. Construction of an NFA recognizing
the language of a regular expression is possible in polynomial time.
The downside of this algorithm is that each step in the matching is
not constant-time. Brüggemann-Klein [10] describes a different fast-
matcher for a subset of the regular expressions, called 1-unambiguous
regular expressions. Their algorithm constructs in polynomial time
a deterministic finite automaton from a 1-unambiguous regular ex-
pression. However, no polynomial-time construction of an NFA is
known for 1-unambiguous regular expressions with numerical con-
straints. Furthermore, a polynomial-time construction of DFAs from
1-unambiguous regular expressions with numerical constraints would
imply P=NP, since Kilpeläinen [41] has shown that the inclusion prob-
lem is NP-hard for these expressions.

In this article we describe the finite automata with counters, and a
fast-matcher for a subset of the regular expressions with numerical
constraints and unordered concatenation, called strongly 1-unambiguous
regular expressions. The algorithm works by constructing determin-
istic finite automata with counters from these expressions. The al-
gorithm, but without support for unordered concatenation, has been
implemented2 in C in a manner inspired by grep. The command in
Fig. 3.1 executed with our implementation on the same machine uses
less memory by three orders of magnitude.

Concerning unordered concatenation, this chapter has a theoretical
and a more practical motivation. The theoretical motivation is curios-
ity about the properties of the SGML-style unordered concatenation
operator. The operator is intuitive and seems useful for searches and
definitions in natural language text. The practical motivation concerns
the all operator from XML Schema. The operator can be seen as un-
ordered concatenation where the arguments are restricted to being ei-
ther a single letter or a choice between the empty word and a single
letter. In light of the results from this chapter, some of the restrictions

2Available from http://www.ii.uib.no/~dagh/fac

http://www.ii.uib.no/~dagh/fac

3.2 Regular Expressions with Unordered Concatenation and
Numerical Constraints 49

on the use of this operator seem unnecessary. More specifically, mem-
bership is shown to be tractable for the strongly 1-unambiguous regular
expressions with unordered concatenation and numerical constraints.

It is also possible to see the all operator as a restricted form of what
is usually called shuffling or interleaving3. Ghelli et al. [27] have studied
the membership problem for this extension together with numerical
constraints. They obtain linear runtime, but they must restrict their
scope to a very limited subclass, where for example the starred subex-
pressions must be disjunctions of letters. Shuffling has been studied
by Mayer & Stockmeyer [51] and Ogden et al. [58], and membership
shown to be intractable when unrestricted use of the parallel interleav-
ing operator is allowed together with choice and Kleene star.

In this chapter we will study the regular expressions with unordered
concatenation and numerical constraints, and the membership prob-
lem for these expressions. In the next section we give a definition of
these expressions and their languages, and in Section 3.3 we show that
the membership problem is NP-complete already without numerical
constraints. In Section 3.4 we define the finite automata with coun-
ters. In Section 3.5 we define subscripting, some auxiliary lemmas,
and strong 1-unambiguity. In Section 3.6 we define the mappings first,
last, and follow, which are central to the construction of finite automata
with counters given in Section 3.7. In Section 3.7 we show that finite
automata with counters can be constructed in polynomial time from
regular expressions with unordered concatenation and numerical con-
straints. If the expression is strongly 1-unambiguous, the construction
leads to a deterministic automaton. The last section presents some
related work and a conclusion.

3.2 Regular Expressions with Unordered Concatenation
and Numerical Constraints

Fix an alphabet Σ of letters. Assume a, b, and c are members of Σ.
l, l1, l2, . . . are used as variables for members of Σ. Let N = {1, 2, . . .},
N1 = {2, 3, 4, . . .} ∪ {∞}, and N0 = {0, 1, 2, . . .}. We define that n < ∞
for all numbers n.

3Email communication with C. M. Sperberg-McQueen: http://lists.w3.org/
Archives/Public/xmlschema-dev/2009May/0063.html

http://lists.w3.org/Archives/Public/xmlschema-dev/2009May/0063.html
http://lists.w3.org/Archives/Public/xmlschema-dev/2009May/0063.html

50 Numerical Constraints and Unordered Concatenation

Definition 3.2.1. Given an alphabet Σ, RΣ is the set of regular expressions
with unordered concatenation and numerical constraints over Σ, defined
by the following grammar:

RΣ ::= RΣ + RΣ | RΣ · RΣ | RN..N1
Σ |&(RΣ, . . . , RΣ) |Σ | ε

We only allow rl..u for l ≤ u. Parentheses are used, when necessary, to group
sub-expressions. We use r, r1, r2, . . . as variables for regular expressions. The
sign for concatenation, ·, will often be omitted. A regular expression denoting
the empty language is not included, as this is irrelevant to the results in this
chapter. We use rl.. as shorthand for rl..∞, r0..n as shorthand for r1..n + ε, r+

as shorthand for r1..∞, r∗ as shorthand for r0.., and rn for rn..n. We denote the
set of letters from Σ occurring in r by sym(r).

The reason that the unordered concatenation operator is not binary
infix, is that, as we will see below, it is not associative. The star-free
regular expressions with unordered concatenation are the subset of RΣ with
no numerical constraints, that is, no subexpressions of the form rl..u.

We use similar definitions of positions in term trees and concate-
nation of positions as in Section 2.2.1. The only difference is that the
term trees have some new operators.

Definition 3.2.2 (Marked Expressions). If r ∈ RΣ is a regular expression,
µ(r) ∈ Rpos(r) is the marked expression, defined in the following inductive
manner:

• µ(ε) = ε

• for l ∈ Σ, µ(l) = 〈〉

• µ(r1 + r2) = 1µ(r1) + 2µ(r2)

• µ(r1 · r2) = 1µ(r1) · 2µ(r2)

• µ(rl..u
1) = (1µ(r1))

l..u

• µ(&(r1, . . . , rn)) = &(1µ(r1), . . . , nµ(rn))

Example 3.2.3. Consider Σ = {a, b} and r = (&(a2, b))3..4. Then µ(r) =
(&(〈1, 1, 1〉2, 〈1, 2〉))3..4. The term trees of r and µ(r) are shown in Figs. 3.2
and 3.3, respectively.

3.2 Regular Expressions with Unordered Concatenation and
Numerical Constraints 51

..

&
..

a 2 2
b

3 4

Figure 3.2: Term tree for (&(a2, b))3..4

..

&
..

〈1, 1, 1〉 2 2

〈1, 2〉
3 4

Figure 3.3: Term tree for µ((&(a2, b))3..4)

We lift concatenation of words to sets of words, such that if L1, L2 ⊆
Σ∗, then

L1 · L2 = {w1 · w2 | w1 ∈ L1 ∧ w2 ∈ L2}.

Moreover, ε denotes the empty word of zero length, such that for all
w ∈ Σ∗, ε · w = w · ε = w. Further, we allow non-negative integers
as exponents meaning repeated concatenation, such that for an L ⊆
Σ∗, we have Ln = Ln−1 · L for n > 0 and L0 = {ε}. The semantics
of unordered concatenation is defined in terms of permutations. By
Perm({1, . . . , n}) we mean the set of permutations of {1, . . . , n}. If
σ ∈ Perm({1, . . . , n}), we assume σ = σ1, . . . , σn. For convenience, we
recall in Definition 3.2.4 the language denoted by a regular expression,
and extend it to unordered concatenation and numerical constraints.

Definition 3.2.4 (Language). The language ‖r‖ denoted by a regular ex-

52 Numerical Constraints and Unordered Concatenation

pression r ∈ RΣ, is defined in the following inductive way:

‖r1 + r2‖ = ‖r1‖ ∪ ‖r2‖
‖r1 · r2‖ = ‖r1‖ · ‖r2‖

‖&(r1, . . . , rn)‖ =
⋃

σ∈Perm({1,...,n})
‖rσ1‖ · · · ‖rσn‖

‖rl..u‖ =
u⋃

i=l

‖r‖i

for a ∈ Σ ∪ {ε}, ‖a‖ = {a}

All subexpressions of the forms ε · r, r · ε, ε + ε, εl..u, or

&(r1, . . . , ri, ε, ri+1, . . . , rn)

can be simplified to r, r, ε, ε, or &(r1, . . . , rn) respectively, in linear time,
working bottom up. We will often tacitly assume there are no subex-
pressions of these forms.

Some examples of regular expressions and their languages are:
‖&(ab, c)‖ = {abc, cab} and ‖&(a, b, c)‖ = {abc, bac, acb, bca, cab, cba}.
Note that unordered concatenation is not associative, for example:
‖&(&(a, b), c)‖ = {abc, bac, cab, cba} 6= {abc, acb, bca, cba} = ‖&(a, &(b, c))‖.

Remark 3.2.5. The language of any regular expression with unordered con-
catenation is also the language of some regular expression without unordered
concatenation, since unordered concatenation can be translated to choice by
exploiting the following equality: &(r1, . . . , rn) = r1 ·&(r2, . . . , rn) + · · ·+
rn · &(r1, . . . , rn−1). This translation gives a super-polynomial blowup of
the expression. The existence of a translation without a super-polynomial in-
crease in size would imply that NP=P, since the membership problem for the
classical regular expressions is in P, while we will show that the problem is
NP-complete for regular expressions with unordered concatenation.

The above translation does not preserve 1-unambiguity, and in fact, Brügge-
mann-Klein noted in [15] that there are 1-unambiguous regular expressions
with unordered concatenation which denote languages that are not denoted by
any 1-unambiguous regular expressions without unordered concatenation.

3.3 Complexity of Membership under Unordered Concatenation 53

3.3 Complexity of Membership under Unordered Con-
catenation

For regular expressions with numerical constraints (without un-
ordered concatenation), the membership problem is known to be in
P [42]. In this section we treat only the star-free regular expressions
with unordered concatenation. For the remainder of this section, “reg-
ular expression” will mean “star-free regular expression with unordered
concatenation”. The usage of the exponents in the expressions and
words in this section is only a short-hand for repeated concatenation.
The membership-problem is to decide, given a regular expression with
unordered concatenation r ∈ RΣ, and a word w ∈ Σ∗, whether w ∈ ‖r‖.
This is also called matching.

The fact that the above membership is in NP is not hard to see. The
certificate for an instance of the problem, consists in making all the
necessary choices in the regular expression, such that one can see that
the word is in the language. The size of the certificate is polynomial in
the lengths of the word and the regular expression.

3.3.1 Membership is in NP

In this section we give the construction of the polynomial-size cer-
tificate for membership of star-free regular expressions with unordered
concatenation. The principles of this construction seem to be folklore.
This certificate is needed for the standard proof of a problem being in
NP. Given a word w and a regular expression r, the polynomial-size
certificate cert(r, w) certifying that w ∈ ‖r‖ is a list of numbers. We use
the same notations for lists of numbers as for positions. cert(r, w) is
defined by induction on header-form of r

cert(ε, ε) = 〈〉.
cert(l · r, lw) = cert(r, w), where l ∈ Σ.

cert((r1 + r2)r3, w) =

{
1cert(r1 · r3, w), if w ∈ ‖r1 · r3‖
2cert(r2 · r3, w), if w ∈ ‖r2 · r3‖.

cert(&(r1, . . . , rn) · r′, w) = icert(ri ·&(r1, . . . , ri−1, ri+1, . . . , rn) · r′, w),

where 1 ≤ i ≤ n and
w ∈ ‖ri ·&(r1, . . . , ri−1, ri+1, . . . , rn) · r′‖.

54 Numerical Constraints and Unordered Concatenation

That cert(r, w) is defined for all w and r whenever w ∈ ‖r‖ is proved
by an easy induction on r and using Definition 3.2.4.

The list cert(r, w) consists of numbers which are no larger than the
logarithm of the largest number of parameters to any unordered con-
catenation in r. The number of elements in cert(r, w) is at most the
product of the length of w and the sum of +’s and &’s in r.

To use the certificate cert(r, w) to check that w ∈ ‖r‖ we proceed in
the following inductive manner, assuming that r is in header form:

• If r = ε then we must have w = ε which is easy to check.

• If r = l · r1 for some l ∈ Σ, then we must have w = l · w1 and
cert(r, w) = cert(r1, w1). We can use the method recursively to check
that cert(r1, w1) certifies that w1 ∈ ‖r1‖.

• If r = (r1 + r2)r3 then cert(r, w) = icert(ri · r3, w) for i ∈ {1, 2}, so
we can use the method recursively to check that cert(ri · r3, w) certifies
that w ∈ ‖rir3‖.

• If r = &(r1, . . . , rn)r′, then there is an i ∈ {1, . . . , n} such that
w ∈ ‖ri ·&(r1, . . . , ri−1, ri+1, . . . , rn)r′‖ and

cert(r, w) = icert(ri ·&(r1, . . . , ri−1, ri+1, . . . , rn)r′, w).

We can therefore use the method recursively to check that

cert(ri ·&(r1, . . . , ri−1, ri+1, . . . , rn)r′, w)

certifies that w ∈ ‖ri&(r1, . . . , ri−1, ri+1, . . . , rn)r′‖.

3.3.2 Membership is NP-hard

To show that membership is NP-hard, we use a reduction from
satisfiability of propositional formulas in conjunctive normal form.
Satisfiability of propositional formulas was shown to be NP-hard by
Cook [19], though the name “NP” is of newer origin. A polynomial-
time translation to conjunctive normal form is given by Tseitin [69]. To
make the construction readable, we will use exponents as a shorthand
for repeated concatenation. The alphabet consists of the names of the
Boolean variables. Given a formula with c clauses and v variables,

3.3 Complexity of Membership under Unordered Concatenation 55

we construct a regular expression r which is a unordered concatena-
tion of c + v expressions. The first c expressions in the unordered
concatenation each represent a clause. In these clause-expressions, dis-
junction is represented by choice (+), a positive literal is represented
by itself, and a negated literal is represented by concatenating the re-
spective letter with itself c + 1 times. The last v expressions in the
unordered concatenation, one for each variable x, are of the following
form ((x + ε)cxc2

) + (xc+1 + ε)c. The word w that we will check for
membership, is x1

c2+c · · · xv
c2+c, assuming the variables are x1, . . . , xv.

Example 3.3.1. Let the formula be

(x1 ∨ ¬x2 ∨ ¬x3 ∨ x4) ∧ (x3 ∨ ¬x5 ∨ x6) ∧ (x3 ∨ ¬x6)

Then v = 6, c = 3 and Σ = {x1, x2, x3, x4, x5, x6}. The regular expression
becomes &((x1 + x4

2 + x4
3 + x4), (x3 + x4

5 + x6), (x3 + x4
6), r1, r2, r3, r4, r5, r6),

where each ri is ((xi + ε)3x9
i) + (x4

i + ε)3. The word to check membership in
the language of this regular expression becomes x12

1 · · · x6
12.

Note first that the formula is satisfiable, e.g. let x1 and x3 be true and the
others false. We should also get that the word is a member of the constructed
expression. This is done as follows: In the first three parts of the unordered
concatenation we choose x1, x3 and x3. In r1 we match x11

1 , in r3 we match
x10

3 and the other ri’s match x12
i .

We must show that the problem instance of the membership prob-
lem is only polynomially larger than the propositional formula. Let the
length of the formula be n, and the number of clauses be c and vari-
ables v as above. The length of the word we must check membership
for, is v(c2 + c). The length of the first part of the regular expression
representing the clauses, is not more than (c + 1)n, and the last part,
representing the choices of variables, is v(2c2 + 9c).

Finally, we must show that the word is in the language of the reg-
ular expression if and only if the propositional formula is satisfiable.
The main idea is that in the choices in the last v parts of the regular
expressions, the left choice can be used if the corresponding variable
can be true, and the right choice if it can be false, and that in the sub-
expressions representing the clauses, the chosen subexpression must
be true in the formula.

We first show that if w ∈ ‖r‖, then the formula is satisfiable. A sat-
isfiable assignment can be extracted from the matching process in the

56 Numerical Constraints and Unordered Concatenation

following manner: For each variable, define its truth value according to
which of the choices were used for the matching of the parts of the un-
ordered concatenation corresponding to the variables; If the left hand
choice was used, the variable is true, otherwise false. We will show that
this assignment satisfies the formula by showing that for each clause-
expression, the subexpression used in the matching corresponds to a
true literal. More specifically, we show that no subexpression corre-
sponding to a false literal under the assignment can have been used in
the matching. For a variable x and the subexpression of r representing
it, if the left-hand choice is used when matching w (so the assignment
of the variable is to true), then this covers between c2 and c2 + c of the
x in the word w. This means that in none of the subexpressions repre-
senting the clauses, can the subexpression xc+1, representing a negated
literal, be chosen, as that would give more x than there are in the word
w. On the other hand, if the right hand choice in the sub-expression
representing the variable x is chosen, that is, (xc+1 + ε)c, then there
can be no single x chosen in any of the clause-subexpressions, as we
would then get (xc+1)jxk for some k < c + 1 and j ≥ 0, and this cannot
match the (xc+1)c in the word w.

We now show the other direction, that is, that if the formula is
satisfiable, then the word w above is in the language of the regular
expression r described above. Since the formula is satisfiable, there
is at least one satisfying assignment of the variables to truth values.
Take such an assignment. Now, for the first c parts of the unordered
concatenation, we can use the choice that corresponds to a true lit-
eral under this assignment. For the last v parts we use the left-hand
choice if the corresponding variable is true in the assignment, and the
right-hand choice otherwise. Thus, for variables that are assigned true,
the parts of the unordered concatenation corresponding to the clauses
match between 0 and c occurrences of the corresponding letter, while
the part of the unordered concatenation corresponding to the variable
can be used to match between c2 and c2 + c of the corresponding letter,
and thus the c2 + c repeated letters in the word w can be matched. For
the variables that are assigned false, the clause parts will match (c+ 1)i

of the corresponding letters for some i, 0 ≤ i ≤ c. But the variable-part
of the unordered concatenation can be used to match the remaining
(c + 1)(c+1−i) occurrences of the letter in the word.

Some remarks on the above proof are in order. Note that it is

3.4 Finite Automata with Counters 57

enough for NP-hardness with one single top-level unordered concate-
nation. It is also interesting to note that the proof can easily be adapted
to show that the membership problem for regular expressions extended
with shuffling is NP-hard.

3.4 Finite Automata with Counters

In this section we describe the finite automata with counters (FAC).
The earliest reference having resemblances to FACs are the multicounter
automata found in Greibach [31]. Sperberg-McQueen [64], Gelade et
al. [23], Gelade et al. [24, 25], and Hovland [37] describe the use of
FACs to decide the membership problem for regular expressions with
numerical constraints. For subexpressions with numerical constraints
we use the counters to keep track of the number of times the subex-
pression has been matched, and use this to control that the numerical
constraints are not violated. For regular expressions with unordered
concatenation we will use the counters to keep track of which parts
of a unordered concatenation have been matched. We keep a counter
for every argument in every unordered concatenation. All counters
are initially 0. A part of an unordered concatenation can only be used
for matching if the corresponding counter is 0, the counter will then
be increased to 1. The matching process is only allowed to leave the
unordered concatenation when all parts not in NΣ have been matched.
The counters are then reset to 0.

The FACs described here are a variant of those described by the
author in [37], modified to fit unordered concatenation. In general, the
counters map to integers not smaller than 0. In the case of unordered
concatenation, only the values 0 and 1 are used.

3.4.1 Counter States and Update Instructions

We define counter states, which will be used both to keep track
of which sub-expressions of an unordered concatenation have been
matched, and also to keep track of how many times subexpressions
with numerical constraints have been matched. Let C be the set of po-
sitions of subexpressions we need to keep track of. We model counter
states as mappings γ : C →N0. Let γ0 be the counter state in which all
counters are 0. We define an update instruction ψ as a partial mapping

58 Numerical Constraints and Unordered Concatenation

from C to {inc, res, one} (inc for increment, res for reset, one for setting to
1). Update instructions ψ define mappings fψ between counter states
in the following way: If ψ(p) = inc, then fψ(γ)(p) = γ(p) + 1, if
ψ(p) = res then fψ(γ)(p) = 0, if ψ(p) = one then fψ(γ)(p) = 1, and
otherwise fψ(γ)(p) = γ(p).

Definition 3.4.1 (Satisfaction of update instructions). We define a sat-
isfaction relation between update instructions and counter states. Given
γ : C → N0, ψ : C → {inc, res, one}, min : C → N0, and max : C → N1,
γ |=max

min ψ is defined by the following inductive rules

γ |=max
min ∅

γ |=max
min ψ1 ∪ {p 7→ inc} ⇔ γ |=max

min ψ1 ∧ γ(p) < max(p)

γ |=max
min ψ1 ∪ {p 7→ res} ⇔ γ |=max

min ψ1 ∧ γ(p) ≥ min(p)

γ |=max
min ψ1 ∪ {p 7→ one} ⇔ γ |=max

min ψ1 ∧ γ(p) ≥ min(p)

The intuition of Definition 3.4.1 is that a counter can only be in-
creased if the value is smaller than the maximum, while a value can
only be reset if it’s value is at least as large as the minimum.

Example 3.4.2. Let C = {p1, p2}, min(p1) = max(p1) = 2, min(p2) =
1, max(p2) = ∞ and γ = {p1 7→ 2, p2 7→ 1}, and let ψ1 = {p1 7→
inc}, ψ2 = {p1 7→ res, p2 7→ inc} and ψ3 = {p1 7→ one, p2 7→ res}.
Then fψ1(γ) = {p1 7→ 3, p2 7→ 1}, fψ2(γ) = {p1 7→ 0, p2 7→ 2} and
fψ3(γ) = {p1 7→ 1, p2 7→ 0}. Furthermore, γ |=max

min ψ2 and γ |=max
min ψ3

hold, while it does not hold that γ |=max
min ψ1.

3.4.2 Overlapping Update Instructions

Given mappings max and min, two update instructions are called
overlapping, if there is a counter state that satisfies both of the update
instructions.

Definition 3.4.3 (Overlapping Update Instructions). Given mappings
max and min, update instructions ψ1 and ψ2 are overlapping, if and only
if there is a counter state γ, such that both γ |=max

min ψ1 and γ |=max
min ψ2 hold.

3.4 Finite Automata with Counters 59

Whether two update instructions are overlapping can be decided in
linear time, relative to the size of C, by the algorithm presented in the
following lemma.

Lemma 3.4.4. Given mappings max and min, two update instructions are
overlapping if and only if: for every p such that it is mapped to inc by one
of the update instructions, and it is mapped to either res or one by the other
update instruction, it must hold that min(p) < max(p).

Proof. “If-part”: Assume that for every p which is mapped to inc by
one update instruction, and to res or one by the other, min(p) < max(p).
We must show that the update instructions are overlapping. A counter
state γ satisfying both update instructions can be constructed as fol-
lows. Let γ(p) = min(p) if p is mapped to res or one by at least one of
the update instructions, otherwise let γ(p) = 0.

“Only if-part”: Assume the update instructions are overlapping.
Thus there is at least one counter state γ which satisfies both update
instructions ψ1 and ψ2. Now, for every p such that ψi(p) = inc and
ψ3−i(p) ∈ {res, one} for i ∈ {1, 2}, we get that min(p) ≤ γ(p) < max(p)
from Definition 3.4.1, such that min(p) < max(p).

3.4.3 Finite Automata with Counters

Definition 3.4.5 (Finite Automata with Counters). A finite automaton
with counters (FAC) is a tuple (Σ, Q, C,A, Φ, min, max, qI ,F). The members
of the tuple are described below:

• Σ is a finite, non-empty set (the alphabet).

• Q and C are finite sets of states and counters, respectively.

• qI ∈ Q is the initial state.

• A : Q − {qI} → Σ maps each non-initial state to the letter which is
matched when entering the state.

• Φ maps each state to a set of pairs of a state and an update instruction.

Φ : Q→ ℘(Q× (C → {inc, res, one})) .

• min : C →N0 and max : C →N1 are the counter-conditions.

60 Numerical Constraints and Unordered Concatenation

• F ⊂ Q× (C → {res}) describes the final configurations (See Defini-
tion 3.4.6).

Running or executing an FAC is defined in terms of transitions be-
tween configurations. The configurations of an FAC are pairs, where the
first element is a member of Q, and the second element is a counter
state.

Definition 3.4.6 (Configuration of an FAC). A configuration of an FAC
is a pair (q, γ), where q ∈ Q is the current state and γ : C → N0 is the
counter state. A configuration (q, γ) is final, if there is (q, ψ) ∈ F such that
γ |=max

min ψ.

Intuitively, the first member of each of the pairs mapped to by Φ,
is the state that can be entered, and the second member describes the
changes to the current configuration of the automaton in this step.
Thus, Φ and A together describe the possible transitions of the au-
tomaton. This is formalized as the transition function δ.

Definition 3.4.7 (Transition function of an FAC). For an FAC (Σ, Q, C,
A, Φ, qI ,F), the transition function δ is defined for any configuration (q, γ)
and letter l by

δ((q, γ), l) = {(p, fψ(γ)) | A(p) = l, (p, ψ) ∈ Φ(q), γ |=max
min ψ}.

Definition 3.4.8 (Deterministic FAC). An FAC (Σ, Q, C,A, Φ, qI ,F) is
deterministic if and only if |δ((q, γ), l)| ≤ 1 for all q ∈ Q, l ∈ Σ and γ :
C →N0.

Deciding whether an FAC is deterministic can be done in polyno-
mial time as follows: For each state p, for each two different (p1, ψ1),
(p2, ψ2) both in Φ(p), verify that either A(p1) 6= A(p2) or that ψ1 and
ψ2 are not overlapping. That this test is sound and complete follows
using the definition of δ and the properties of overlapping update in-
structions.

3.4.4 Word recognition.

An FAC either accepts or rejects a given input. A deterministic FAC
recognizes a word by treating letters in the word one by one. It starts
in the initial configuration (qI , γ0). An FAC in configuration (q, γ), with

3.4 Finite Automata with Counters 61

letter l ∈ Σ next in the word, will reject the word if δ((q, γ), l) is empty.
Otherwise it enters the unique configuration (q′, γ′) ∈ δ((q, γ), l). If
the whole word has been read, a deterministic FAC accepts the word
if and only if it is in a final configuration. The subset of Σ∗ consisting
of words being accepted by an FAC A is denoted ‖A‖. A deterministic
FAC accepts or rejects a word in time linear in the length of the word.

Example 3.4.9. Let

Σ = {a, b}
Q = {qI , a〈1, 1, 1〉, b〈1, 2〉}
C = {〈1〉, 〈1, 1〉, 〈1, 1, 1〉, 〈1, 2〉}

Figure 3.4 illustrates a deterministic FAC (Σ, Q, C,A, Φ, min, max, qI ,F)
which recognizes ‖(&(a2, b))3..4‖. Note that the names of the non-initial
states are decorated with the values of A. Every state is depicted as a rectan-
gle with the name of the state, and with F described by the reset instructions.
Every member of Φ is shown as an arrow, annotated with the corresponding
update instruction. C, min, and max are shown in the top of the figure. The
sequence of configurations of this FAC while recognizing aabbaabaa is :

(qI , γ0)
(a〈1, 1, 1〉, {〈1〉 7→ 1, 〈1, 1〉 7→ 1, 〈1, 1, 1〉 7→ 1, 〈1, 2〉 7→ 0})
(a〈1, 1, 1〉, {〈1〉 7→ 1, 〈1, 1〉 7→ 1, 〈1, 1, 1〉 7→ 2, 〈1, 2〉 7→ 0})
(b〈1, 2〉, {〈1〉 7→ 1, 〈1, 1〉 7→ 1, 〈1, 1, 1〉 7→ 0, 〈1, 2〉 7→ 1})
(b〈1, 2〉, {〈1〉 7→ 2, 〈1, 1〉 7→ 0, 〈1, 1, 1〉 7→ 0, 〈1, 2〉 7→ 1})
(a〈1, 1, 1〉, {〈1〉 7→ 2, 〈1, 1〉 7→ 1, 〈1, 1, 1〉 7→ 1, 〈1, 2〉 7→ 1})
(a〈1, 1, 1〉, {〈1〉 7→ 2, 〈1, 1〉 7→ 1, 〈1, 1, 1〉 7→ 2, 〈1, 2〉 7→ 1})
(b〈1, 2〉, {〈1〉 7→ 3, 〈1, 1〉 7→ 0, 〈1, 1, 1〉 7→ 0, 〈1, 2〉 7→ 1})
(a〈1, 1, 1〉, {〈1〉 7→ 3, 〈1, 1〉 7→ 1, 〈1, 1, 1〉 7→ 1, 〈1, 2〉 7→ 1})
(a〈1, 1, 1〉, {〈1〉 7→ 3, 〈1, 1〉 7→ 1, 〈1, 1, 1〉 7→ 2, 〈1, 2〉 7→ 1})

The last configuration is final, since min(〈1〉) ≤ 3, min(〈1, 1〉) ≤ 1, and
min(〈1, 1, 1〉) ≤ 2.

Lemma 3.4.10 (Linear-time recognition). For any deterministic FAC A =
(Σ, Q, C, A, Φ, min, max, qI , F), if σ(A) is the size of the textual represen-
tation of A, then for any word w ∈ Σ∗, the FAC A accepts or rejects w in
time O(|w|σ(A)2).

62 Numerical Constraints and Unordered Concatenation

fh1,1,1i! incg

fh1i! inc,

 h1,1i! res,

h1,2i! one,

h 1,1,1i! resg

fh1i!inc,

h1,1i!inc,

h1,1,1i!incg

q

?F:

ah1,1,1i
fh1i!res,

h1,1i!res,

h1,2i!res,

h1,1,1i!resg

F:

min:

max:
h1ih1,1i

3 1

4 1

C:

I

fh1i!inc,

h1,2i!incg

bh1,2i
fh1i!res,

h1,1i!res,

h1,2i!resg

F:

fh1,2i! inc,

h 1,1,1i! resg

fh1i! inc,

 h1,1i! one,

h1,2i! res,
h 1,1,1i! oneg

fh1i! inc,

 h1,1i! one,

h1,2i! res,
h 1,1,1i! incg

fh1,1i! inc,

h 1,1,1i! incg

fh1i! inc,

 h1,1i! res,

h1,2i! oneg

h1,2ih1,1,1i

1 2

1 2

Figure 3.4: Illustration of FAC recognizing ‖(&(a2, b))3..4‖.

Proof. The FAC makes at most |w| steps in the recognition, and at each
step, there can be at most max{|Φ(q)| | q ∈ Q} outgoing edges, and
for each of these we might have to check the counter state γ against
at most |C| constraints. Testing whether the last configuration is ac-
cepting, takes time O(|C| ·max{|F (q)| | q ∈ Q}). Thus we get the
result, as |C|, max{|F (q)| | q ∈ Q} and max{|Φ(q)| | q ∈ Q} are all
O(σ(A)).

3.4.5 Searching with FACs

We formalize the problems called matching and searching as the bi-
nary predicates m, s ⊆ RΣ ×Σ∗, defined as follows: m(r, w)⇔ w ∈ ‖r‖

3.5 Subscripting and Unambiguity 63

and s(r, w) ⇔ ∃u, v, v′ : (w = u · v · v′ ∧ v ∈ ‖r‖). A determinis-
tic FAC recognizing ‖r‖ can decide m(r, w) in time linear in |w|. If
the alphabet (Σ) is fixed, an approach for solving s(r, w) is to solve
m(Σ∗ · r · Σ∗), where Σ here denotes the disjunction of all the letters.
For our purposes, this approach is not usable, as we cannot in general
construct a deterministic FAC recognizing Σ∗ · r · Σ∗. Also, in practical
cases, the size of Σ can be prohibitively large. Another option is there-
fore to decide s(r, w) by executing m(r, w′) for every subword w′ of w.
This leads to O(|w|2) executions of the algorithm for m. However, a
deterministic FAC can also decide in linear time the prefix problem. The
latter is also formalized as a binary predicate, namely p ⊆ RΣ × Σ∗,
where p(r, w) ⇔ ∃u, v : (w = u · v ∧ u ∈ ‖r‖). O(|w|) executions of
an algorithm for p is sufficient to decide s. Thus, deterministic FACs
can be used to search in time quadratic in the length of the text.

3.5 Subscripting and Unambiguity

In this section we will introduce notation and lemmas that are nec-
essary for the construction of FACs from regular expressions.

Definition 3.5.1 (Concatenating positions). For p ∈N∗ and S, S′ ⊆N∗

• Put p� S = {p� q | q ∈ S}

• Put S� S′ = {p� q | p ∈ S, q ∈ S′}

• For ψ : (N∗ → {inc, res, one}), put p� ψ = {(p� q) 7→ ψ(q) | q ∈
dom(ψ)}.

• For S ⊆ N∗ × (N∗ → {inc, res, one}) put p� S = {(p� q, p� ψ) |
(q, ψ) ∈ S}.

Definition 3.5.2 (Subposition). We use the notation p ≤ q for p a prefix
or subposition of q, that is, p ≤ q ⇔ ∃p1 : q = p� p1. We write p < q iff
p ≤ q and p 6= q.

Definition 3.5.3 (Subexpression). Assume a regular expression r.

• For any position p ∈ pos(r) we will denote the subexpression rooted at
this position by r[p].

64 Numerical Constraints and Unordered Concatenation

• For any string of positions p1 · · · pn, where p1, . . . , pn ∈ pos(r), put
r[p1 · · · pn] = r[p1] · · · r[pn].

• For a set S of strings of positions in r, that is, S ⊆ (pos(r))∗, put
r[S] = {r[w] | w ∈ S}.

Note that r[〈〉] = r. Note that for any regular expression r, and
any position p, ‖p� µ(r)‖ = p� ‖µ(r)‖. The following lemma, corre-
sponding to Lemma 2.2.10, will often be used tacitly.

Lemma 3.5.4. For any regular expression r,

1. ‖r‖ = r[‖µ(r)‖]

2. For any p ∈ sym(µ(r)), µ(r)[p] = p

3. For any p ∈ pos(r), r[p] ∈ Σ iff p ∈ sym(µ(r)).

Proof.

1. By induction on r, similar to the proof of the corresponding
part of Lemma 2.2.10. We treat only the induction case where r =
&(r1, . . . , rn) in more detail. By Definition 3.2.2 and Definition 3.2.4,

‖µ(r)‖ =
⋃

σ∈Perm({1,...,n})
(‖σ1µ(rσ1)‖ · · · ‖σnµ(rσn)‖) (3.1)

For each i, ‖σiµ(rσi)‖ = σi‖µ(rσi)‖. We now apply distributivity of r[]
over union and concatenation to (3.1) and get

r[‖µ(r)‖] =
⋃

σ∈Perm({1,...,n})
(r[‖σ1µ(rσ1)‖] · · · r[‖σnµ(rσn)‖]) (3.2)

By the properties of concatenating positions, and Definition 3.5.3

∀i ∈ {1, . . . , n} : r[‖σiµ(rσi)‖] = r[〈σi〉][‖µ(rσi)‖] = rσi [‖µ(rσi)‖] (3.3)

We apply (3.3) and the induction hypothesis to (3.2) and get

r[‖µ(r)‖] =
⋃

σ∈Perm({1,...,n})
(‖rσ1‖ · · · ‖rσn‖) (3.4)

Hence, by Definition 3.2.4 r[‖µ(&(r1, . . . , rn))‖] = ‖&(r1, . . . , rn)‖.

3.5 Subscripting and Unambiguity 65

2. By induction on r, similar to the proof of the corresponding
part of Lemma 2.2.10. We treat only the induction case where r =
&(r1, . . . , rn) in more detail. p ∈ sym(µ(r)) implies there is i ∈ {1, . . . , n}
and p′ ∈ sym(µ(ri)) such that p = ip′. By the induction hypothesis for
ri, µ(ri)[p′] = p′, hence i(µ(ri)[p′]) = p. By Definitions 3.2.2 and 3.5.3,
r[ip′] = (iµ(ri))[p′] = i(µ(ri)[p′]). Thus r[p] = p.

3. By induction on r, similar to the proof of the corresponding
part of Lemma 2.2.10. We treat only the induction case where r =
&(r1, . . . , rn) and p 6= 〈〉. There is i ∈ {1, . . . , n} and p′ ∈ pos(ri)
such that p = ip′. We have r[p] = ri[p′] and that p ∈ sym(µ(r)) iff
p′ ∈ sym(µ(ri)). Hence, the lemma holds by applying the induction
hypothesis for ri.

Definition 3.5.5. Let r ∈ RΣ and p ∈ pos(r).

1. Put 〈]〉(r) ⊆ pos(r) to be the positions of all subexpressions r1 occur-
ring in a subexpression rl..u

1 of r. Expressed formally, 〈]〉(r) =

{q� 〈1〉 ∈ pos(r) | ∃n ∈N, m ∈N1, r1 ∈ RΣ : r[q] = rn..m
1 }.

2. Put 〈&〉(r) ⊆ pos(r) to be the positions of all arguments of all un-
ordered subexpressions in r. Expressed formally, 〈&〉(r) =

{q� 〈i〉 ∈ pos(r) | ∃r1, . . . , rn ∈ RΣ : r[q] = &(r1, . . . , rn))}.

3. Put 〈&〉(r, p) ⊆ pos(r) to be all positions in r which correspond to the
argument of any unordered subexpressions above position p in r. Expressed
formally, 〈&〉(r, p) =

{q� 〈i〉 ∈ pos(r) | q ≤ p ∧ ∃r1, . . . , rn ∈ RΣ : r[q] = &(r1, . . . , rn))}.

4. Put 〈]〉(r, p) ⊆ 〈]〉(r) to be the left children of all positions of all
numerical constraints in r above p. Expressed formally,

〈]〉(r, p) = {q ∈ 〈]〉(r) | q ≤ p}.

5. Put 〈&]〉(r) = 〈&〉(r)∪〈]〉(r) and 〈&]〉(r, p) = 〈&〉(r, p)∪〈]〉(r, p).

66 Numerical Constraints and Unordered Concatenation

In the sequel we need to express the set of regular expressions
whose language contains the empty word. The set of nullable expres-
sions, NΣ = {r ∈ RΣ | ε ∈ ‖r‖}, has an easy inductive definition
extending Definition 2.2.3.

Definition 3.5.6 (Nullable Expressions). Given an alphabet Σ, the set of
nullable expressions, NΣ, is defined in the following inductive manner

NΣ ::= NΣ ·NΣ |NΣ + RΣ | RΣ +NΣ |NN..N1
Σ |&(NΣ, . . . ,NΣ) | ε

3.5.1 Constraint Normal Form

We will below define the right unambiguity we need for construct-
ing deterministic automata. However, the construction of FACs can be
applied to any regular expression, but it must first be put in constraint
normal form. The construction of an FAC from an expression in this
class can also be done in polynomial time, but the FAC might not be
deterministic. Furthermore, we can in polynomial time put an expres-
sion in constraint normal form. An expression is in constraint normal
form if, for every subexpression of the form rn..m, r is not nullable.

Definition 3.5.7. A regular expression r is in constraint normal form if it
has no subexpression of the form rn..m

1 with r1 ∈ NΣ.

For example, (a∗a)2..3 is in constraint normal form, while (a∗)2..3 is
not.

There is a mapping from arbitrary regular expressions to regular
expressions in constraint normal form, called cnf, which preserves the
language of the regular expression.

Let |r| ∈ N be the size of the regular expression r, that is, the sum
of the number of letter-, ε-, and operator- occurrences in r.

Definition 3.5.8. We define simultaneously the mappings cnf : RΣ → RΣ
and cnf> : NΣ − {ε} → RΣ with the following inductive rules:

• cnf(ε) = ε (and cnf>(ε) undefined).

• cnf(r) = r (and cnf>(r) undefined) if r ∈ Σ.

• cnf(r) = cnf(r1) + ε and cnf>(r) = cnf(r1) when r = r1 + ε or
r = ε + r1, where r1 6∈ NΣ.

3.5 Subscripting and Unambiguity 67

• cnf(r) = cnf(r1) + ε and cnf>(r) = cnf>(r1), when r = r1 + ε or
r = ε + r1, where r1 ∈ NΣ.

• cnf(r1 + r2) = cnf(r1) + cnf(r2) and cnf>(r1 + r2) = r′1 + r′2, when
r1, r2 6= ε and for i ∈ {1, 2}: if ri ∈ NΣ, r′i = cnf>(ri), else r′i = cnf(ri).

• cnf(r1 · r2) = cnf(r1) · cnf(r2) and cnf>(r1 · r2) = cnf>(r1) · cnf(r2)+
cnf>(r2), when |r1| > |r2|.

• cnf(r1 · r2) = cnf(r1) · cnf(r2) and cnf>(r1 · r2) = cnf(r1) · cnf>(r2)+
cnf>(r1), when |r1| ≤ |r2|.

• cnf(rn..m
1) = cnf(r1)

n..m (and cnf>(r) undefined), when r1 6∈ NΣ.

• cnf(rn..m
1) = cnf>(r1)

1..m + ε and cnf>(rn..m
1) = cnf>(r1)

1..m, when
r1 ∈ NΣ.

• cnf(&(r1)) = cnf(r1) and cnf>(&(r1)) = cnf>(r1).

• cnf(&(r1, . . . , rn)) = &(cnf(r1), . . . , cnf(rn)) and cnf>(&(r1, . . . , rn)) =

&(cnf(r1), . . . , cnf(ri−1), cnf>(ri), cnf(ri+1), . . . , cnf(rn))

+cnf>(&(r1, . . . , ri−1, ri+1, . . . , rn))

when n ≥ 2 and ri is the largest of the expressions r1, . . . , rn.

Before we can show the correctness of the definition of cnf, we
need some new notation. For a set L ⊆ Σ∗ put L> = L − {ε} and
εL = L ∩ {ε}.

Lemma 3.5.9. For any regular expression r:

1. cnf(r) is defined, and if r ∈ NΣ − {ε}, cnf>(r) is also defined.

2. ‖r‖ = ‖cnf(r)‖, and if r ∈ NΣ − {ε}, ‖cnf>(r)‖ = ‖r‖>.

3. cnf(r) is in constraint normal form.

4. |cnf(r)| ≤ |r|2, and if r ∈ NΣ − {ε}, |cnf>(r)| ≤ |r|2.

Proof. All parts are proved in a simultaneous induction on the size of r.
The base cases r = ε and r ∈ Σ hold easily, as cnf(r) = r is in constraint
normal form, and r is not in the domain of cnf>.

68 Numerical Constraints and Unordered Concatenation

For the induction cases where r = r1 + ε or r = ε + r1 note that
r1 6= ε, as subexpressions of the form ε + ε are simplified. All parts
then hold by using the induction hypothesis for r1.

The induction case where r = r1 + r2 and r1, r2 6= ε holds by apply-
ing the induction hypothesis for r1 and r2.

For the induction case where r = r1 · r2 and |r1| > |r2|, all parts hold
for cnf directly from the induction hypothesis. For cnf> we need some
more details. For part 1 note that since r1 · r2 ∈ NΣ then also r1, r2 ∈
NΣ. Furthermore, r1, r2 6= ε since subexpressions of the forms rε and
εr are simplified. For part 2, note that since r1, r2 ∈ NΣ, ‖r1 · r2‖> =
(‖r1‖> · ‖r2‖>) ∪ ‖r1‖> ∪ ‖r2‖>. Furthermore, since ‖r1‖> · ‖r2‖> ∪
‖r1‖> = ‖r1‖> · ‖r2‖, we get that (‖r1‖> · ‖r2‖>) ∪ ‖r1‖> ∪ ‖r2‖> =
(‖r1‖> · ‖r2‖) ∪ ‖r2‖>. By applying the induction hypothesis and Def-
inition 3.2.4 we get (‖r1‖> · ‖r2‖)∪ ‖r2‖> = ‖cnf>(r1) · r2 + cnf>(r2)‖,
hence ‖r1 · r2‖> = ‖cnf>(r1 · r2)‖. Part 3 holds directly from the induc-
tion hypothesis. For part 4, by the definition, |cnf>(r)| = |r1|2 + 2|r2|2,
which since |r2| < |r1| is smaller than (|r1|+ |r2|)2 = |r1|2 + 2|r1||r2|+
|r2|2 > |r1|2 + 3|r2|2.

The induction case where r = r1 · r2 and |r1| ≤ |r2| is similar to the
previous case.

For the induction case where r = rl..u
1 , where r1 6∈ NΣ, all parts hold

for cnf directly from the induction hypothesis. Since r1 6∈ NΣ, r 6∈ NΣ,
so r is not in the domain of cnf>.

We next treat the induction case where r = rl..u
1 for r1 ∈ NΣ. Part 1

holds from the induction hypothesis, the assumption r1 ∈ NΣ, and the
fact that subexpressions of the form εl..u are simplified. For part 2 it is
sufficient to show that ‖(cnf>(r1))

1..u‖ = ‖rl..u
1 ‖

>
. By Definition 3.2.4

and the induction hypothesis for r1 we get

‖(cnf>(r1))
1..u‖ =

u⋃
i=1

(‖r1‖>)i (3.5)

By Definition 3.2.4 ‖rl..u
1 ‖ =

⋃u
i=l‖r1‖i, hence it only remains to show

that
u⋃

i=1

(‖r1‖>)i = (
u⋃

i=l

‖r1‖i)

>

(3.6)

We split the equality (3.6) in two inclusions. Firstly, if a word w is
in the left-hand set, then w is a concatenation of j words from ‖r1‖>,

3.5 Subscripting and Unambiguity 69

where 1 ≤ j ≤ u. If j ≥ l, we can choose i = j and the same words as
in the left-hand side, hence w is also in the right-hand set. Otherwise,
if j < l, we let i = l, and choose the same words as on the left-hand
side for the first j words, and choose ε from the last l − j parts of the
concatenation. Hence w is also in the right-hand set. Secondly, if a
word w is in the right-hand set, it is a concatenation of l ≤ i ≤ u words
from ‖r1‖, where at least one word is not ε. Put i on the left-hand
side union the number of non-epsilon words chosen on the right-hand
side. All these words are of course in ‖r1‖>, and they number at most
u and at least 1. Hence w is also in the left-hand set. For part 3 we use
parts 2 and 3 of the induction hypothesis on r1. Part 4 holds from the
induction hypothesis.

For the induction case where r = &(r1) all parts hold directly from
the induction hypothesis.

For the induction case where r = &(r1, . . . , rn), n ≥ 2, and ri is
the largest of the expressions, all parts hold for cnf directly from the
induction hypothesis. For cnf> note that we have r1, . . . , rn ∈ NΣ−{ε},
so part 1 holds by using the induction hypothesis. For part 2 we use
Definition 3.2.4, and distributivity of > over union to get

‖&(r1, . . . , rn)‖> =
⋃

σ∈Perm({1,...,n})
(‖rσ1‖ · · · ‖rσn‖)

> (3.7)

For any σ ∈ Perm({1, . . . , n}), put σ−1(i) such that σσ−1(i) = i. We get
that for any σ ∈ Perm({1, . . . , n})

(‖rσ1‖ · · · ‖rσn‖)
>

=

(
‖rσ1‖ · · · ‖rσ

σ−1(i)−1
‖ · ‖ri‖> · ‖rσ

σ−1(i)+1
‖ · · · ‖rσn‖

∪(‖rσ1‖ · · · ‖rσ
σ−1(i)−1

‖ · ‖rσ
σ−1(i)+1

‖ · · · ‖rσn‖)
>

)
(3.8)

A word is a member of the set on either side of the equality in (3.8)
if it is of the form w1 · · ·wn, where for each wj, wj ∈ ‖rσj‖, and there is
at least one wj such that wj 6= ε.

70 Numerical Constraints and Unordered Concatenation

By applying the induction hypothesis and (3.8) to (3.7), we get

‖&(r1, . . . , rn)‖> =

⋃
σ∈Perm({1,...,n})

 ‖cnf(rσ1)‖ · · · ‖cnf(rσ
σ−1(i)−1

)‖·
·‖cnf>(ri)‖ · ‖cnf(rσ

σ−1(i)+1
)‖ · · · ‖cnf(rσn)‖

∪‖rσ1‖ · · · ‖rσ
σ−1(i)−1

‖ · ‖rσ
σ−1(i)+1

‖ · · · ‖rσn‖)
>



=

 ⋃
σ∈Perm({1,...,n})

(
‖cnf(rσ1)‖ · · · ‖cnf(rσ

σ−1(i)−1
)‖·

·‖cnf>(ri)‖ · ‖cnf(rσ
σ−1(i)+1

)‖ · · · ‖cnf(rσn)‖

)
∪(⋃σ∈Perm({1,...,n})−{i}‖rσ1‖ · · · ‖rσn‖)

>


(3.9)

Applying Definition 3.2.4 and the induction hypothesis once more
to (3.9) we get

‖&(r1, . . . , rn)‖>

= ‖&(cnf(r1), . . . , cnf(ri−1), cnf>(ri), cnf(ri+1), . . . , cnf(rn))

+cnf>(&(r1, . . . , ri−1, ri+1, . . . , rn))‖

Hence, ‖&(r1, . . . , rn)‖> = ‖cnf>(&(r1, . . . , rn))‖.
Part 3 holds from the induction hypothesis. For part 4, recall that

the size of an unordered concatenation is the sum of the size of the
arguments plus one. We therefore get

|&(r1, . . . , rn)|2

= (|r1|+ · · ·+ |rn|+ 1)2

= Σn
j=1(|rj|2 + |rj|+ |rj|Σk∈{1,...,n}−{j}|rk|

= Σn
j=1|rj|2 + Σn

j=1|rj|+ Σn
j=1(|rj|Σk∈{1,...,n}−{j}|rk|)

(3.10)

Since ri is the largest argument to the unordered concatenation,

|ri|Σj∈{1,...,n}−{i}|rj| ≥ Σj∈{1,...,n}−{i}|rj|2 (3.11)

3.5 Subscripting and Unambiguity 71

By the induction hypothesis, Definition 3.5.8, and (3.11) we get

|cnf>(&(r1, . . . , rn))|
≤ Σn

j=1|rj|2 + (|r1|+ · · ·+ |ri−1|+ |ri+1|+ · · ·+ |rn|+ 1)2

= Σn
j=1|rj|2 + Σj∈{1,...,n}−{i}(|rj|2 + |rj|+ |rj|(Σk∈{1,...,n}−{j,i}|rk|))

=

(
Σn

j=1|rj|2 + Σj∈{1,...,n}−{i}|rj|2 + Σj∈{1,...,n}−{i}|rj|
+Σj∈{1,...,n}−{i}(|rj|Σk∈{1,...,n}−{j,i}|rk|)

)

≤
(

Σn
j=1|rj|2 + |ri|Σj∈{1,...,n}−{i}|rj|+ Σn

j=1|rj|
+Σj∈{1,...,n}−{i}(|rj|Σk∈{1,...,n}−{j}|rk|)

)

=

(
Σn

j=1|rj|2 + Σn
j=1|rj|

+|ri|Σj∈{1,...,n}−{i}|rj|+ Σj∈{1,...,n}−{i}(|rj|Σk∈{1,...,n}−{j}|rk|))

)
= Σn

j=1|rj|2 + Σn
j=1|rj|+ Σn

j=1(|rj|Σk∈{1,...,n}−{j}|rk|)
(3.12)

Hence, combining (3.10) and (3.12) we get

|cnf>(&(r1, . . . , rn))| ≤ |&(r1, . . . , rn)|2

The following corollary is mainly a summary of Lemma 3.5.9.

Corollary 3.5.10. For any regular expression r, cnf(r) can be calculated
in polynomial time, is in constraint normal form, and recognizes the same
language as r.

Proof. All properties are immediate from Lemma 3.5.9, except the poly-
nomial runtime. To show that the runtime is polynomial, we will re-
quire some pre-processing before applying the rules of Definition 3.5.8.
For each subexpression of r, we calculate the size, and whether it is nul-
lable. This can be done in time polynomial in r in a bottom-up manner.
We can then prove by induction on the size of r that calculating cnf(r)
takes time O(|r|2) and if r ∈ NΣ − {ε}, calculating cnf>(r) takes time
O(|r|2). The base cases are immediate. The inductive cases for choice
and star hold by applying the induction hypothesis. The cases for con-
catenation and unordered concatenation are similar to part 4 of the
corresponding cases in the proof of Lemma 3.5.9.

72 Numerical Constraints and Unordered Concatenation

The mappings cnf and cnf> are inspired by the mappings ◦ and •

defined in [10] and − defined in [12]

3.5.2 Subscripted Expressions

Subscripting is inspired by the bracketing used by Koch & Scher-
zinger [47] and Gelade et al. [23]. The intuition is that for a regular
expression r, the subscripted regular expression ss(r), is such that all
subexpressions of the form rl..u

1 or &(r1, . . . , rn) are subscripted with
their position in the term tree.

Definition 3.5.11. For any regular expression r, the subscripted regular
expression ss(r) is defined by the following inductive rules:

• ss(ε) = ε.

• If l ∈ Σ, then ss(l) = l.

• ss(r1 + r2) = �1ss(r1) +�2ss(r2)

• ss(r1 · r2) = �1ss(r1) · �2ss(r2)

• ss(rl..u
1) = (�1ss(r1))

l..u
〈〉

• ss(&(r1, . . . , rn)) = &(�1ss(r1), . . . ,�nss(rn))〈〉

where for i ∈ N and r a subscripted regular expression, �ir denotes the
expression where all positions in subscripts in r are prefixed with i.

For example, ss((&(a2, b))3..4) = (&(a2
〈1,1〉, b)〈1〉)3..4

〈〉 .

Lemma 3.5.12. For any regular expression r, any p ∈ pos(r), and any
subscripted regular expression r′q, if ss(r)[p] = r′q, then p = q.

Proof. By induction on r. The base cases hold vacuously. For the induc-
tive cases where r = r1 · r2 or r = r1 + r2 we must have p 6= 〈〉. Hence,
there are i ∈ {1, 2}, pi ∈ pos(ri), and r′′qi

such that p = ipi, q = iqi and
ss(ri)[pi] = r′′qi

. By the induction hypothesis on ri, pi = qi, hence p = q.
For the inductive cases where r = rl..u

1 and r = &(r1, . . . , rn), if p = 〈〉,
the lemma holds immediately, as r′q = ss(r). The case where p 6= 〈〉 is
similar to the cases for concatenation and choice.

3.5 Subscripting and Unambiguity 73

For a regular expression r, let Γr =
⋃

p∈〈&]〉(r){↑p, ↓p}. The lan-
guage of a subscripted expression r is a set of strings over sym(r) ∪ Γr.
For the not subscripted parts we use the same rules as in Defini-
tion 3.2.4, while

‖rl..u
p ‖ = (

u⋃
i=l

({↑p1} · ‖r‖)i) · {↓p1},

and ‖&(r1, . . . , rn)p‖ =

ε‖&(r1,...,rn)‖∪⋃σ∈Perm({1,...,n})

 ε‖rσ1‖ ∪ {↑pσ1} · ‖rσ1‖
>

· · ·
ε‖rσn‖ ∪ {↑pσn} · ‖rσn‖

>


> · {↓p1 · · · ↓pn}

Example 3.5.13. The word

↑〈1〉↑〈1,1〉↑〈1,1,1〉〈1, 1, 1〉↑〈1,1,1〉〈1, 1, 1〉↓〈1,1,1〉↑〈1,2〉〈1, 2〉↓〈1,1〉↓〈1,2〉
↑〈1〉↑〈1,2〉〈1, 2〉↑〈1,1〉↑〈1,1,1〉〈1, 1, 1〉↑〈1,1,1〉〈1, 1, 1〉↓〈1,1,1〉↓〈1,1〉↓〈1,2〉
↑〈1〉↑〈1,1〉↑〈1,1,1〉〈1, 1, 1〉↑〈1,1,1〉〈1, 1, 1〉↓〈1,1,1〉↑〈1,2〉〈1, 2〉↓〈1,1〉↓〈1,2〉
↓〈1〉

is in ‖ss(µ((&(a2, b))3..4))‖.

For a word w ∈ (Σ ∪ Γr)∗, put [(w) ∈ Σ∗ the same as w except that
all symbols from Γr are removed. Furthermore, for S ⊆ (Σ ∪ Γr)∗, put
[(S) = {[(w) | w ∈ S}.

Lemma 3.5.14. For any regular expression r in constraint normal form

1. ε‖ss(r)‖ = ε‖r‖.

2. [(‖ss(r)‖) = ‖r‖.

Proof. We will use repeatedly that for L1, L2 ⊆ (Σ ∪ Γr)∗, εL1 ∪ εL2 =
(L1 ∩ {ε}) ∪ (L2 ∩ {ε}) = (L1 ∪ L2) ∩ {ε} = εL1∪L2 , and εL1·L2 = (L1 ∩
{ε}) ∩ (L2 ∩ {ε}) = (L1 ∩ L2) ∩ {ε} = εL1∩L2 . We will also often use
tacitly that [() is neutral for the empty set and ε, and distributes over
union, intersection, and concatenation.

74 Numerical Constraints and Unordered Concatenation

1. By induction on r. The base cases are easy, since by Defini-
tion 3.5.11 ss(r) = r.

For the induction case where r = r1 + r2, by Definition 3.5.11 and the
definition of the language of a subscripted expression, ε‖ss(r1+r2)‖ =
ε‖�1ss(r1)‖∪‖�2ss(r2)‖ = ε‖�1ss(r1)‖ ∪ ε‖�2ss(r2)‖. Since ε‖�iss(ri)‖ = ε‖ss(ri)‖

for i ∈ {1, 2}, we can apply the induction hypothesis for r1 and r2 to
get ε‖ss(r1+r2)‖ = ε‖r1‖ ∪ ε‖r2‖ = ε‖r1‖∪‖r2‖. By applying Definition 3.2.4,
we get ε‖ss(r1+r2)‖ = ε‖r1+r2‖.

For the induction case where r = r1 · r2, by definition ε‖ss(r1·r2)‖ =
ε‖�1ss(r1)‖·‖�2ss(r2)‖ = ε‖ss(r1)‖ ∩ ε‖ss(r2)‖. We apply the induction hy-
pothesis for r1 and r2 to get ε‖ss(r1·r2)‖ = ε‖r1‖ ∩ ε‖r2‖ = ε‖r1‖∩‖r2‖. By
applying Definition 3.2.4, we get ε‖ss(r1·r2)‖ = ε‖r1·r2‖.

For the induction case where r = rl..u
1 , by Definition 3.5.11 and the

definition of the language of a subscripted expression ε‖ss(r
l..u
1)‖ =

ε(
⋃u

i=l({↑〈1〉}·‖�1ss(r1)‖)i)·{↓〈1〉} = ε
⋃u

i=l‖ss(r1)‖i
. By Definition 3.2.1, l ≥ 1,

hence, ε
⋃u

i=l‖ss(r1)‖i
= ε‖ss(r1)‖. Since r is in constraint normal form,

r1 6∈ NΣ, thus ε‖r1‖ = ∅. By applying the induction hypothesis for
r1 we therefore get ε‖ss(r

l..u
1)‖ = ∅. Furthermore, since l ≥ 1 and

ε‖r1‖ = ∅, we get by Definition 3.2.4 that ε‖r
l..u
1 ‖ = ∅ = ε‖ss(r

l..u
1)‖.

For the induction case where r = &(r1, . . . , rn), by Definition 3.5.11 and
the definition of the language of a subscripted expression

ε‖ss(&(r1,...,rn))‖ = ε‖&(�1ss(r1),...,�nss(n)rn)‖ =
n⋂

i=1

ε‖ss(ri)‖

By applying the induction hypothesis and Definition 3.2.4, we there-
fore get

ε‖ss(&(r1,...,rn))‖ =
n⋂

i=1

ε‖ri‖ = ε‖&(r1,...,rn)‖

2. By induction on r. For each case we use the corresponding part
of Definition 3.5.11. The base cases are easy, since ss(r) = r.

For the induction case where r = r1 + r2, by Definition 3.5.11 and the
definition of the language of a subscripted expression ‖ss(r1 + r2)‖ =
‖�1ss(r1)‖ ∪ ‖�2ss(r2)‖. Furthermore, [(‖�1ss(r1)‖ ∪ ‖�2ss(r2)‖) =
[(‖ss(r1)‖)∪ [(‖ss(r2)‖), and by the induction hypothesis [(‖ss(r1)‖)∪

3.5 Subscripting and Unambiguity 75

[(‖ss(r2)‖) = ‖r1‖ ∪ ‖r2‖. By Definition 3.2.4, ‖r1‖ ∪ ‖r2‖ = ‖r1 + r2‖,
hence, [(‖ss(r1 + r2)‖) = ‖r1 + r2‖.
The induction case for r = r1 · r2 can be shown by replacing + and ∪
with · in the preceding paragraph.

For the induction case where r = rl..u
1 , by Definition 3.5.11 and the def-

inition of the language of a subscripted expression, we get ‖ss(r)‖ =
(
⋃u

i=l({↑〈1〉} · ‖�1ss(r1)‖)i) · {↓〈1〉}. Hence, [(‖ss(r)‖) = ⋃u
i=l([(‖ss(r1)‖))i.

By applying the induction hypothesis for r1 and Definition 3.2.4 we
therefore get [(‖ss(rl..u

1)‖) = ⋃u
i=l‖r1‖i = ‖rl..u

1 ‖
For the induction case where r = &(r1, . . . , rn), by Definition 3.5.11
and the definition of the language of a subscripted expression, we get
‖ss(r)‖ =

ε‖&(�1ss(r1),...,�nss(rn))‖∪⋃σ∈Perm({1,...,n})

 ε‖�σ1 ss(rσ1)‖ ∪ {↑pσ1} · ‖�σ1 ss(rσ1)‖
>

· · ·
ε‖�σn ss(rσn)‖ ∪ {↑pσn} · ‖�σn ss(rσn)‖

>


>

·{↓p1 · · · ↓pn}
(3.13)

We apply that [() is neutral for the empty set and ε, and distributes
over union, intersection, and concatenation to (3.13), and get [(‖ss(r)‖) =

ε‖&(�1ss(r1),...,�nss(rn))‖∪⋃σ∈Perm({1,...,n})

 [(ε‖�σ1 ss(rσ1)‖ ∪ ‖�σ1 ss(rσ1)‖
>)

· · ·
[(ε‖�σn ss(rσn)‖ ∪ ‖�σn ss(rσn)‖

>)


> (3.14)

By Definition 3.2.4, the definition of the language of a subscripted ex-
pression, and part 1 of the present lemma, we get

ε‖&(�1ss(r1),...,�nss(rn))‖

= ε‖ss(r1)‖ ∩ · · · ∩ ε‖ss(rn)‖

= ε‖r1‖ ∩ · · · ∩ ε‖rn‖

= ε‖&(r1,...,rn)‖

(3.15)

By applying (3.15) and that that for any set S, S> ∪ εS = S to (3.14) we

76 Numerical Constraints and Unordered Concatenation

get [(‖ss(r)‖) =

ε‖&(r1,...,rn)‖ ∪

 ⋃
σ∈Perm({1,...,n})

 [(‖�σ1 ss(rσ1)‖)
· · ·

[(‖�σn ss(rσn)‖)


> (3.16)

By applying the induction hypothesis for r1, . . . , rn to (3.16) we get
[(‖ss(r)‖) =

ε‖&(r1,...,rn)‖ ∪

 ⋃
σ∈Perm({1,...,n})

(‖rσ1‖ · · · ‖rσn‖)

>

(3.17)

By applying Definition 3.2.4 and (again) that for any set S, S> ∪ εS = S
to (3.17), we get [(‖ss(r)‖) = ⋃

σ∈Perm({1,...,n})(‖rσ1‖ · · · ‖rσn‖). Hence,
by Definition 3.2.4 [(‖ss(r)‖) = ‖r‖.

For positions p, q, put p � ↑q = ↑p�q and p � ↓q = ↓p�q. For
positions p, q, and a subscripted regular expression r put p � rq =
(p� r)p�q. We extend the rules in Definitions 3.5.1 and 3.5.3 to include
subscripts and arrows.

Lemma 3.5.15. For any regular expression r in constraint normal form
r[[(‖ss(µ(r))‖)] = ‖r‖.

Proof. By Lemma 3.5.14 r[[(‖ss(µ(r))‖)] = r[‖µ(r)‖]. By Lemma 3.5.4
r[‖µ(r)‖] = ‖r‖. Hence, r[[(‖ss(µ(r))‖)] = ‖r‖.

We summarize some properties of the languages of subscripted ex-
pressions in the following lemma.

Lemma 3.5.16. For any regular expression r in constraint normal form, any
u, v, w ∈ (Σ ∪ pos(r) ∪ Γr)∗, any p, q ∈ pos(r), any l, m ∈ Σ, and any
α, β ∈ Γ∗r :

1. ‖ss(r)‖ ∩ (Γ∗r)
> = ∅

2. If αlu ∈ ‖ss(r)‖, then there are p1, . . . , pi ∈ pos(r) such that α =
↑p1 · · · ↑pi .

3.5 Subscripting and Unambiguity 77

3. If ulα ∈ ‖ss(r)‖, then there are p1, . . . , pi ∈ pos(r) such that α =
↓p1 · · · ↓pi .

4. If αpu, βpv ∈ ‖ss(µ(r))‖, then α = β.

5. If upα, vpβ ∈ ‖ss(µ(r))‖, then α = β.

6. If ulαmv ∈ ‖ss(r)‖, then there are p1, . . . , pi, . . . , pi+j such that α =
↓p1 · · · ↓pi · ↑pi+1 · · · ↑pi+j .

Proof.

1. By induction on r. The base cases are immediate. The induc-
tion cases where r = r1 · r2 or r = r1 + r2 follow from the induction
hypothesis.

For the induction case where r = rl..u
1 we must use that r is in con-

straint normal form, thus r1 6∈ NΣ. Therefore any word in ‖ss(r)‖
must contain letters from r1.

For the induction case where r = &(r1, . . . , rn), note that from the
definition, for any word w ∈ ‖ss(r)‖> there is a i, 1 ≤ i ≤ n, a u ∈
‖ss(ri)‖> and a v such that w = ↑〈i〉 · iu · v. By the induction hypothesis
u 6∈ Γ∗ri

, so the lemma holds.

2. By induction on r. The base case r = ε holds vacuously. The
base case where r ∈ Σ hold since α = ε. The induction case for choice
hold directly from the induction hypothesis. The induction case for
concatenation hold by applying part 1 and the induction hypothesis.

For the induction case where r = rl..u
1 , we get from part 1 that there are

α1, u1, and u2 such that α · l · u = ↑〈1〉 · 1α1 · l · 1u1 · u2 and α1 · l · u1 ∈
‖ss(r1)‖. We can apply the induction hypothesis for r1 to get the result.

For the induction case where r = &(r1, . . . , rn), we can again use part 1
to get that there is a j, 1 ≤ j ≤ n, and there are α1, u1, and u2 such
that α · l · u = ↑〈j〉 · jα1 · l · ju1 · u2 and α1 · l · u1 ∈ ‖ss(rj)‖. We can now
apply the induction hypothesis for rj to get the result.

3. Analogous to the previous part.

4. By induction on r. The base cases hold immediately. The induc-
tion case for r = r1 + r2 holds by applying the induction hypothesis for
r1 and r2. The induction case for r = r1 · r2 holds by applying part 1
together with the induction hypothesis for r1 and r2.

78 Numerical Constraints and Unordered Concatenation

For the induction case where r = rl..n
1 note that by part 1 and by defini-

tion there must be α1, β1 ∈ Γ∗r1
, p1 ∈ pos(r1), u1, v1 ∈ (pos(r1) ∪ Γr1)

∗,
and u2, v2 ∈ (pos(r) ∪ Γr)∗ such that αpu = ↑〈1〉 · 1(α1 · p1 · u1) · u2,
βpv = ↑〈1〉 · 1(β1 · p1 · v1) · v2, and α1 p1u1, β1 p1v1 ∈ ‖ss(µ(r1))‖. By
applying the induction hypothesis for r1 we get α1 = β1, hence α = β.

For the induction case where r = &(r1, . . . , rn) note that by part 1
and by definition there must be i ∈ {1, . . . , n}, α1, β1 ∈ Γ∗ri

, u1, v1 ∈
(pos(ri) ∪ Γri)

∗, u2, v2 ∈ (pos(r) ∪ Γr)∗, and p1 ∈ sym(µ(ri)) such that
p = ip1, αpu = ↑〈i〉 · i(α1 p1u1) · u2, βpu = ↑〈i〉 · i(β1 p1v1) · v2, and
α1 p1u1, β1 p1v1 ∈ ‖ss(µ(ri))‖. By applying the induction hypothesis
for ri we get α1 = β1, hence α = β.

5. By induction on r. The base cases hold immediately. The induc-
tion case for r = r1 + r2 holds by applying the induction hypothesis
for r1 and r2. The induction case for r = r1 · r2 holds by applying 1
together with the induction hypothesis for r1 and r2.

For the induction case where r = rl..u
1 note that by 1 and by definition

there must be α1, β1 ∈ Γ∗r1
p1 ∈ sym(µ(r1)), u1, v1 ∈ (pos(r) ∪ Γr)∗, and

u2, v2 ∈ (pos(r1) ∪ Γr1)
∗ such that upα = u1 · ↑〈1〉 · 1(u2 p1α1) · ↓〈1〉 and

vpβ = v1 · ↑〈1〉 · 1(v2 p1β1) · ↓〈1〉. By applying the induction hypothesis
for r1 we get α1 = β1, hence α = β.

For the induction case where r = &(r1, . . . , rn) note that by 1 and by
definition there must be i ∈ {1, . . . , n}, α1, β1 ∈ Γ∗ri

, p1 ∈ sym(µ(ri)),
u1, v1 ∈ (pos(r) ∪ Γr)∗, and u2, v2 ∈ (pos(ri) ∪ Γri)

∗ such that upα =
u1 · i(u2 p1α1) · ↓〈1〉 · · · ↓〈n〉, vpβ = v1 · ↑〈i〉 · i(v2 p1β1) · ↓〈1〉 · · · ↓〈n〉, and
u2 p1α1, v2 p1β1 ∈ ‖ss(µ(ri))‖. By applying the induction hypothesis for
ri we get α1 = β1, hence α = β.

6. By induction on r. The base cases hold vacuously.

For the induction case where r = r1 · r2, note that ‖ss(r1 · r2)‖ =
�1‖ss(r1)‖ · �2‖ss(r2)‖. The cases where u · l · α ·m · v = u · l · α ·m · v1 ·
v2 and u · l · α ·m · v1 ∈ �1‖ss(r1)‖, and the cases where u · l · α ·m · v =
u1 · u2 · l · α ·m · v1 · v2 and u2 · l · α ·m · v ∈ �1‖ss(r1)‖, hold by apply-
ing the induction hypothesis for r1 and r2, respectively. The remaining
cases hold by applying parts 2 and 3.

The induction case where r = r1 + r2 holds by applying the induction
hypothesis for r1 and r2.

3.5 Subscripting and Unambiguity 79

For the induction case where r = rl..u
1 , note that from definition

‖ss(r)‖ = (
u⋃

i=l

({↑〈1〉} · ‖�1ss(r1)‖)i) · {↓〈1〉}

From 1 we have ‖�1ss(r1)‖ ∩ (>Γ∗r) = ∅. Thus, either ulαmv =
u1u2lαmv1v2, where u2lαmv1 ∈ ‖�1ss(r1)‖, or ulαmv = u1u2lα1α2m1v1v2,
where u2lα1, α2mv1 ∈ ‖�1ss(r1)‖. In the former case we can apply the
induction hypothesis for r1 to get the result. In the latter case we apply
parts 2 and 3 of this lemma.

The induction case where r = &(r1, . . . , rn) holds either by applying
the induction hypothesis for one of the ri, or by applying 2 and 3 to-
gether with Lemma 3.5.15 and the definition of the languages of sub-
scripted expressions.

Subscripted expressions are central in the construction of FACs.
The next definition describes how a word in Γ∗r defines an update in-
struction.

Definition 3.5.17. Given a regular expression r, and a word α over Γr, we
define the update instruction updater(α) : 〈&]〉(r) → {inc, res, one} in the
following way.

(updater(α))(c) =


one if both ↓c and ↑c are in α
res if ↓c but not ↑c is in α
inc if ↑c but not ↓c is in α

If α is empty, updater(α) is the empty update instruction.

We will further define a mapping s() with the purpose of describ-
ing the connection between words in the subscripted language and
configurations of the FAC during matching of a word.

Definition 3.5.18. For any regular expression r and any word w ∈ (pos(r)∪
Γr)∗, sr(w) is an update instruction over 〈&]〉(r), defined in the following
inductive manner: sr(ε) = γ0, sr(α) = updater(α)(γ0) for α ∈ (Γ∗r)

>, and
sr(w · p · α) = updater(α)(sr(w)) for α ∈ Γ∗r , p ∈ pos(r).

80 Numerical Constraints and Unordered Concatenation

Definition 3.5.19. For any regular expression r, min(r) and max(r) are
mappings with domain 〈&]〉(r) and codomains N0 and N1, respectively.
For any q1 ∈ 〈]〉(r) we have r[q] = r[q1]l..u and put min(r)(q1) = l and
max(r)(q1) = u. For any q ∈ 〈&〉(r), put max(r)(q) = 1, and if r[q] ∈ NΣ,
put min(r)(q) = 0, otherwise let min(r)(q) = 1.

Lemma 3.5.20 formulates some easy properties of update(), s(), and
|=. The lemma will often be used tacitly.

Lemma 3.5.20. For any regular expression r, any q ∈ pos(r), any w ∈
(pos(r[q]) ∪ Γr[q])

∗, and any α ∈ Γ∗r[q], the following holds:

1. updater(q� α) = q� updater[q](α).

2. q� sr[q](w) = sr(q� w).

3. sr(q� w) |=max(r)
min(r) updater(q� α) if and only if sr[q](w) |=max(r[q])

min(r[q])
updater[q](α).

Proof.

1. Immediate from Definition 3.5.17.

2. By strong induction on the word w. The cases when w = ε
and when r = α hold immediately, and by using part 1, respectively.
The induction cases where w = w′pα hold by applying the induction
hypothesis for w′ and part 1 to α.

3. From parts 1 and 2 and Definitions 3.5.19 and 3.4.1.

Lemma 3.5.21. For any regular expression r in constraint normal form, the
following holds:

1. For any w ∈ ‖ss(r)‖, sr(w) = γ0.

2. If there are u, v ∈ (pos(r)∪ Γr)∗, α ∈ Γ∗r , and p, q ∈ pos(r) such that
upαqv ∈ ‖ss(µ(r))‖ or upα ∈ ‖ss(µ(r))‖, then sr(u) |=max(r)

min(r) updater(α).

Proof.

3.5 Subscripting and Unambiguity 81

1. By induction on the regular expression r. The base cases hold
immediately. The induction case where r = r1 + r2 holds by applying
the induction hypothesis for r1 and r2, and part 2 of Lemma 3.5.20.

For the induction case where r = r1r2, there are w1 ∈ ‖ss(r1)‖ and
w2 ∈ ‖ss(r2)‖ such that w = 1w1 · 2w2. If w1 = ε or w2 = ε, we
get from the induction hypothesis for r2 or r1, respectively, combined
with part 2 of Lemma 3.5.20 that sr(w) = γ0. Otherwise, we get from
Lemma 3.5.16 that there are i, j ≥ 0, k ≥ 1, p, p1, . . . , pi ∈ pos(r1),
q1, . . . , qj, qj+1, . . . , qj+k ∈ pos(r2), α1, . . . , αk ∈ Γ∗r2

, and u, v ∈ (pos(r) ∪
Γr)∗ such that w1 = up↓p1 · · · ↓pi and w2 = ↑q1 · · · ↑qj qj+1α1 · · · qj+kαk.
Note that the positions in 1pos(r1) and 2pos(r2) do not overlap. We
use the latter fact, together with the induction hypothesis for r1, Defi-
nition 3.5.17, and Definition 3.5.18 to get that

updater(1(↓p1 · · · ↓pi) · 2(↑q1 · · · ↑qj))(sr(1u))

=updater(2(↑q1 · · · ↑qj))(updater(1(↓p1 · · · ↓pi))(sr(1u)))

=updater(2(↑q1 · · · ↑qj))(sr(1w1))

=updater(2(↑q1 · · · ↑qj))(γ0).

Using the latter equation, the induction hypothesis for r2 and Defini-
tion 3.5.18 we get

sr(w)

= updater(2αk)(· · · (updater(2α1)(updater(1(↓p1 · · · ↓pi)

· 2(↑q1 · · · ↑qj))(sr(1u)))) · · ·)
= updater(2αk)(· · · (updater(2α1)(updater(2(↑q1 · · · ↑qj))(γ0))) · · ·)
= updater(2w2)

= γ0

For the induction case when r = rl..u
1 , by definition all words end in

↓〈1〉. Combined with the induction hypothesis and a calculation anal-
ogous to the case for concatenation, we get the lemma.

For the induction case where r = &(r1, . . . , rn), by definition all words
end in ↓〈1〉 · · · ↓〈n〉. Combined with the induction hypothesis and a
calculation analogous to the case for concatenation, we get the lemma.

82 Numerical Constraints and Unordered Concatenation

2. By induction on the regular expression r. The base cases hold
immediately. The induction case where r = r1 + r2 hold by applying
the induction hypothesis for r1 or for r2.

For the induction case where r = r1 · r2 we treat first the case where
upα ∈ ‖ss(µ(r1 · r2))‖. If 〈1〉 ≤ p, note that from part 1 of Lemma 3.5.16
we must have upα ∈ 1‖ss(µ(r1 · r2))‖, and we get from the induction
hypothesis for r1 that sr(u) |=max(r)

min(r) updater(α). Otherwise, if 〈2〉 ≤ p,
we must have u1, u2 such that u = u1 · u2, u1 ∈ 1‖ss(µ(r1))‖, and
u2 pα ∈ 2‖ss(µ(r2))‖. We get from the induction hypothesis for r2 that
sr(u2) |=

max(r)
min(r) updater(α). Combined with part 1 of the current lemma

we get sr(u1 · u2) |=
max(r)
min(r) updater(α).

If upαqv ∈ ‖ss(µ(r1 · r2))‖, we only treat the case where there are p′ ∈
pos(r1) and q′ ∈ pos(r2) such that p = 1p′ and q = 2q′. (The other
cases follow from using the induction hypothesis, part 1 of the current
lemma, and part 1 of Lemma 3.5.16.) Then we also have α1 ∈ Γr1

∗,
α2 ∈ Γr2

∗, u′ ∈ (pos(r1) ∪ Γr1)
∗, and v′ ∈ (pos(r2) ∪ Γr2)

∗ such that
upαqv = 1(u′ · p′ · α1) · 2(α2 · q′ · v′), u′ · p′ · α1 ∈ ‖ss(µ(r1))‖, and α2 · q′ ·
v′ ∈ ‖ss(µ(r2))‖. We can apply the induction hypothesis for r1 to get
that sr1(u

′) |=max(r1)
min(r1)

updater1
(α1). This implies that sr1·r2(u) |=

max(r)
min(r)

updater(1α1). Furthermore, from part 2 of Lemma 3.5.16, there are
p1, . . . , pi ∈ pos(r2) such that α2 = ↑p1 · · · ↑pi . Combined with part 1
of the current lemma, and the fact that for each pk ∈ {p1, . . . , pi},
max(r)(pi) ≥ 1, we get that sr1·r2(u) |=

max(r)
min(r) updater(1α1 · 2α2).

For the induction case where r = rl..n
1 and upα ∈ ‖ss(µ(rl..n

1))‖, we
have, by definition, that there are u1, u2, p′, α such that u = u1 · 1u2,
p = 1p′, α = 1α1 · ↓〈1〉, and u2 p′α1 ∈ ‖ss(µ(r1))‖. From the induction

hypothesis for r1, sr1(u2) |=
max(r1)
min(r1)

updater1
(α1). Combined with part 1,

this implies that srl..n
1
(u) |=max(rl..n

1)

min(rl..n
1)

updaterl..n
1
(1α1). Lastly, we must

assure that there are at least l instances of ↑〈1〉 in u. Since this follows
from the definition, the lemma holds. Hence

srl..n
1
(u) |=max(rl..n

1)

min(rl..n
1)

updaterl..n
1
(1α1 · ↓〈1〉).

For the case where upαqv ∈ ‖ss(µ(rl..n
1))‖, we first treat the case where

3.5 Subscripting and Unambiguity 83

there are no instances of ↑〈1〉 in α. Intuitively, this implies that p and
q are from the same iteration of r1. Formally, there are w1, . . . , wi,
p1, q1, α1, u1, v1, v2 such that w1, . . . , wi, u1 p1α1q1v1 ∈ ‖ss(µ(r1))‖,
v = 1v1 · v2, and u = ↑〈1〉 · 1w1 · · · ↑〈1〉 · 1wi · ↑〈1〉 · 1u1. We can apply
the induction hypothesis for r1 to get

sr1(u1) |=
max(r1)
min(r1)

updater1
(α1).

From part 1 of the current lemma, for any p such that ↑p ∈ Γr1 or
↓p ∈ Γr1 , sr(↑〈1〉 · 1w1 · · · ↑〈1〉 · 1wi · ↑〈1〉)(1p) = 0, hence

s(1r1)
(u) |=max(r)

min(r) updater(1α1),

which implies the lemma holds.

If there is an instance of ↑〈1〉 in α, we get from parts 3 and 2 of
Lemma 3.5.16 that there are p1, . . . , pi, α1, u1, u2 such that α = α1 · ↑〈1〉 ·
↑p1 · · · ↑pi , u = u1 · ↑〈1〉 · u2, and u2 pα1 ∈ 1‖ss(µ(r1))‖. By the induction
hypothesis for r1, and part 1 of the current lemma

srl..n
1
(u) |=max(rl..n

1)

min(rl..n
1)

updaterl..n
1
(α1↑p1 · · · ↑pi).

By definition, there are less than n instances of ↑〈1〉 in u, so we also
have

srl..n
1
(u) |=max(rl..n

1)

min(rl..n
1)

updaterl..n
1
(α).

For the induction case where r = &(r1, . . . , rn) we treat first the case
where upα ∈ ‖ss(µ(r))‖. By definition and part 3 of Lemma 3.5.16
there are then i, u1, u2, p1, α1 such that i ∈ {1, . . . , n}, u = u1 · ↑〈i〉 · iu2,
u2 p1α1 ∈ ‖ss(µ(ri))‖, and α = iα1 · ↓〈1〉 · · · ↓〈n〉. From the induction
hypothesis for ri we get that

sri (u2) |=
max(ri)
min(ri)

updateri
(α1).

Note now that the set of positions occurring on the arrows in u1 · ↑〈i〉
does not overlap with the set of positions occurring on the arrows in
α1. Hence,

sr(u1 · ↑〈i〉 · iu2) |=
max(r)
min(r) updater(iα1).

84 Numerical Constraints and Unordered Concatenation

Recall from Definition 3.5.17 that

updater(↓〈1〉 · · · ↓〈n〉) = {〈1〉 7→ res, . . . , 〈n〉 7→ res}

From Definition 3.4.1 and Definition 3.5.18, we now only need to check
that for each j ∈ {1, . . . , n}, the number of ↑〈j〉 in u is at least min(r)(〈j〉).
By definition, for all j ∈ {1, . . . , n} if rj 6∈ NΣ, there is exactly one ↑〈j〉 in
u1 · ↑〈i〉. Furthermore, from Definition 3.5.19 we have that min(r)(〈j〉)
is 1 when rj 6∈ NΣ, and otherwise it is 0. Thus we have the lemma:

sr(u1 · ↑〈i〉 · iu2) |=
max(r)
min(r) updater(iα1 · ↓〈1〉 · · · ↓〈n〉).

If upαqv ∈ ‖ss(µ(&(r1, . . . , rn)))‖ we treat first the case where there is
no i ∈ {1, . . . , n} such that ↑〈i〉 is in α. By definition there are then
i, u1, u2, v1, v2, p1, q1, α1 such that i ∈ {1, . . . , n}, u = u1 · ↑〈i〉 · iu2, v =
iv1 · v2, u2 p1α1q1v1 ∈ ‖ss(µ(ri))‖, and α = iα1. From the induction
hypothesis for ri we get that

sri (u2) |=
max(ri)
min(ri)

updater1
(α1).

Note now that the set of positions occurring on the arrows in u1 · ↑〈i〉
does not overlap with the set of positions occurring on the arrows in
iα1. Hence,

sr(u1 · ↑〈i〉 · iu2) |=
max(r)
min(r) updater(iα1).

Lastly, we treat the case where upαqv ∈ ‖ss(µ(&(r1, . . . , rn)))‖ and
there is i ∈ {1, . . . , n} such that ↑〈i〉 is in α. By definition and part 3 of
Lemma 3.5.16 there are then i, j, u1, u2, p1, α1 such that i, j ∈ {1, . . . , n},
i 6= j, u = u1 · ↑〈i〉 · iu2, u2 p1α1 ∈ ‖ss(µ(ri))‖, α2q1v1 ∈ ‖ss(µ(rj))‖, and
α = iα1 · ↑〈j〉 jα2. The induction hypothesis for ri then implies that that

sr(iu2) |=
max(r)
min(r) updater(iα1).

From part 2 of Lemma 3.5.16 there are p2, . . . , pk ∈ pos(rj) such that
α2 = ↑p2 · · · ↑pk . From Definition 3.5.17 we get then that updaterj

(α2) =

{p2 7→ inc, . . . , pk 7→ inc}. Since the positions ip2, . . . , ipk do not oc-
cur on any arrows in u1 · ↑〈i〉 · iu2, we get that for m ∈ {2, . . . , k}:
sr(u)(pm) = 0. Since max(r) has N1 as co-domain, we get

sr(u1 · iu2) |=
max(r)
min(r) updater(iα1 · jα2).

3.5 Subscripting and Unambiguity 85

Lastly, there can by definition not be any ↑〈j〉 in u, hence also

sr(u1 · iu2) |=
max(r)
min(r) updater(iα1 · ↑〈j〉 · jα2).

3.5.3 Unambiguity

We can now define the right unambiguity we need for construct-
ing deterministic automata. Strongly 1-unambiguous regular expres-
sions were first defined by Koch & Scherzinger [47], but the definitions
used here also bear on Gelade et al. [23]. Section 3.7 describes how
a deterministic FAC can be constructed in polynomial time from such
expressions.

We recall the definition of 1-unambiguity such that the difference
with strong 1-unambiguity becomes clear.

Definition 3.5.22 (1-unambiguity[10, 12]). A regular expression r is 1-
unambiguous if for all upv, uqw ∈ ‖µ(r)‖, where u, v ∈ (pos(r))∗ and
p, q ∈ pos(r), r[p] = r[q] implies p = q.

Strong 1-unambiguity is needed to prevent unambiguities related to
the numerical constraints. For example, (a3..4)2 is 1-unambiguous, but
there is an ambiguity related to which of the two numerical constraints
should be increased when seeing the fourth a in a word. This corre-
sponds to the fact that there are u, v, w such that both u · a · ↑〈1,1〉 · a · v
and u · a · ↓〈1,1〉 · ↑〈1〉 · ↑〈1,1〉 · a · w are words in ‖ss((a3..4)2)‖.

Definition 3.5.23 (Strong 1-unambiguity[23, 47]). A regular expression r
is strongly 1-unambiguous if it is 1-unambiguous, and for all uαav, uβbw ∈
‖ss(r)‖, where a, b ∈ sym(r), α, β ∈ Γ∗r and u, v, w ∈ (Σ ∪ Γr)∗, a = b
implies α = β.

Examples of expressions that are not strongly 1-unambiguous are
(a1..2)1..2, (a∗a)2..3 and &(a1..2, b)1..2, while (a+ b)1..4 is strongly 1-unam-
biguous. For some of the expressions that are not strongly 1-unam-
biguous, we can multiply the numerical constraints to possibly get
strongly 1-unambiguous expressions. In general, for regular expres-
sions of the form (rl1..u1)l2..u2 , if l2 ≥ l1−1

u1−l1
, then

‖rl1·l2..u1·u2‖ = ‖(rl1..u1)l2..u2‖

86 Numerical Constraints and Unordered Concatenation

For example, ‖(a1..2)1..2‖ = ‖a1..4‖.

Lemma 3.5.24. Any strongly 1-unambiguous regular expression r is in con-
straint normal form.

Proof. By induction on r. All cases are easy, except where r = rl..n
1 .

For the latter case, we will prove the contrapositive, that is, by assum-
ing rl..n

1 is not in constraint normal form, we will prove that rl..n
1 is

not strongly 1-unambiguous. By the induction hypothesis r1 is in con-
straint normal form, so we must have r1 ∈ NΣ. Recall that subexpres-
sions of the forms ε · ε, ε + ε, &(ε, . . . , ε), and εl..n are not allowed, so
there must be a ∈ sym(r1), α ∈ Γ∗r1

, and u ∈ (sym(r1) ∪ Γr1)
∗ such that

αau ∈ ‖ss(r1)‖, hence there is a v such that ↑〈1〉 · 1α · a · v ∈ ‖ss(rl..u
1)‖.

By Lemma 3.5.14 applied to r1 ∈ NΣ, we get ε ∈ ‖ss(r1)‖. Using the
definition of the language of a subscripted expression we get a v′ such
that ↑〈1〉 · ↑〈1〉 · 1α · 1p · v′ ∈ ‖ss(rl..u

1)‖. Hence, by Definition 3.5.23, r is
not strongly 1-unambiguous.

We do not provide a direct algorithm for testing that a regular ex-
pression is strongly 1-unambiguous. However, the polynomial-time
construction of FACs given in Definition 3.7.1 will by Lemma 3.7.2
result in a deterministic FAC if and only if the input is a strongly
1-unambiguous regular expression. Furthermore, in the paragraph be-
low Definition 3.4.8 we sketch a polynomial-time procedure for testing
that an FAC is deterministic. Hence, we can in polynomial time test
whether a regular expression is strongly 1-unambiguous.

3.6 First, Last, and Follow

Following Brüggemann-Klein & Wood [12] and Glushkov [29], we
define three mappings, first, last and follow. They are central in the
construction of FACs from regular expressions. first and last both take
a regular expression r as argument, while follow takes both a regular
expression r and a position p ∈ sym(µ(r)) as input. All three map-
pings return a set of pairs. The first member in each pair is a posi-
tion p ∈ sym(µ(r)), while the second member is an update instruction
with domain 〈&]〉(r). The algorithm to calculate the three mappings
is adapted from the algorithm for regular expressions with numerical
constraints [64, 37, 23], and follows the same pattern as for classical

3.6 First, Last, and Follow 87

regular expressions [29, 53]. The algorithm uses time polynomial in
the size of the regular expression.

Definition 3.6.1 (First, Last, and Follow). Given any r ∈ RΣ in constraint
normal form, and any p ∈ sym(µ(r)):

first(r) =
{
(q, updater(α))

∣∣∣∣ q ∈ sym(µ(r)), α ∈ Γ∗r ,
∃u : αqu ∈ ‖ss(µ(r))‖

}
last(r) =

{
(q, updater(α))

∣∣∣∣ q ∈ sym(µ(r)), α ∈ Γ∗r ,
∃u : uqα ∈ ‖ss(µ(r))‖

}
follow(r, p) =

{
(q, updater(α))

∣∣∣∣ q ∈ sym(µ(r)), α ∈ Γ∗r ,
∃u, v : upαqv ∈ ‖ss(µ(r))‖

}
Example 3.6.2. Put r = (&(a2, b))3..4 as used above. Then

first(r) =
{

(〈1, 1, 1〉, {〈1〉 7→ inc, 〈1, 1〉 7→ inc, 〈1, 1, 1〉 7→ inc}),
(〈1, 2〉, {〈1〉 7→ inc, 〈1, 2〉 7→ inc})

}
because there are non-empty S, S′ ⊆ (pos(r) ∪ Γr)∗ such that ‖ss(µ(r))‖ =
(↑〈1〉↑〈1,1〉↑〈1,1,1〉〈1, 1, 1〉S) ∪ (↑〈1〉↑〈1,2〉〈1, 2〉 · S′).

last(r) =


(
〈1, 1, 1〉,

{
〈1〉 7→ res, 〈1, 1〉 7→ res,
〈1, 2〉 7→ res, 〈1, 1, 1〉 7→ res

})
,

(〈1, 2〉, {〈1〉 7→ res, 〈1, 1〉 7→ res, 〈1, 2〉 7→ res})


because there are non-empty S, S′ ⊆ (pos(r) ∪ Γr)∗ such that ‖ss(µ(r))‖ =
(S · 〈1, 1, 1〉↓〈1,1,1〉↓〈1,1〉↓〈1,2〉↓〈1〉) ∪ (S′ · 〈1, 2〉↓〈1,1〉↓〈1,2〉↓〈1〉).

follow(r, 〈1, 1, 1〉) =
(〈1, 2〉, {〈1〉 7→ inc, 〈1, 2〉 7→ one, 〈1, 1〉 7→ res, 〈1, 1, 1〉 7→ res})
(〈1, 2〉, {〈1, 2〉 7→ inc, 〈1, 1, 1〉 7→ res})
(〈1, 1, 1〉, {〈1〉 7→ inc, 〈1, 1〉 7→ one, 〈1, 1, 1〉 7→ one, 〈1, 2〉 7→ res})
(〈1, 1, 1〉, {〈1, 1, 1〉 7→ inc})


because there are non-empty S1, S2, S3, S4, S5, S6, S7, S8 ⊆ (pos(r) ∪ Γr)∗

such that ‖ss(µ(r))‖ ∩ ((pos(r) ∪ Γr)∗ · 〈1, 1, 1〉 · (pos(r) ∪ Γr)∗) =

S1〈1, 1, 1〉↓〈1,1,1〉↓〈1,1〉↓〈1,2〉↑〈1〉↑〈1,2〉〈1, 2〉S2

∪ S3〈1, 1, 1〉↓〈1,1,1〉↑〈1,2〉〈1, 2〉S4

∪ S5〈1, 1, 1〉↓〈1,1,1〉↓〈1,1〉↓〈1,2〉↑〈1〉↑〈1,1〉↑〈1,1,1〉〈1, 1, 1〉S6

∪ S7〈1, 1, 1〉↑〈1,1,1〉〈1, 1, 1〉S8.

88 Numerical Constraints and Unordered Concatenation

follow(r, 〈1, 2〉) =
(〈1, 2〉, {〈1〉 7→ inc, 〈1, 1〉 7→ res, 〈1, 2〉 7→ one})
(〈1, 1, 1〉, {〈1〉 7→ inc, 〈1, 1〉 7→ one, 〈1, 2〉 7→ res, 〈1, 1, 1〉 7→ inc})
(〈1, 1, 1〉, {〈1, 1, 1〉 7→ inc, 〈1, 1〉 7→ inc})


because there are non-empty S1, S2, S3, S4, S5, S6 ⊆ (pos(r) ∪ Γr)∗ such that
‖ss(µ(r))‖ ∩ ((pos(r) ∪ Γr)∗ · 〈1, 2〉 · (pos(r) ∪ Γr)∗) =

S1〈1, 2〉↓〈1,1〉↓〈1,2〉↑〈1〉↑〈1,2〉〈1, 2〉S2

∪ S3〈1, 2〉↓〈1,1〉↓〈1,2〉↑〈1〉↑〈1,1〉↑〈1,1,1〉〈1, 1, 1〉S4

∪ S5〈1, 2〉↑〈1,1〉↑〈1,1,1〉〈1, 1, 1〉S6.

3.6.1 Calculating first, last, and follow

We show here an inductive definition of first, last, and follow. The
inductive definition follows the pattern first used by Glushkov [29]
for the classical regular expressions, but here the situation is much
more complicated. Note that the construction only works for regular
expressions in constraint normal form.

We define in Definitions 3.6.3 and 3.6.4 three auxiliary mappings
firstµ, lastµ, and followµ. firstµ and lastµ take a regular expression and
a position in the term tree of this expression as input. followµ takes
in addition a second position in the subtree below the first position.
Then, for any regular expression r, we calculate first(r) by firstµ(r, 〈〉),
last(r) by lastµ(r, 〈〉), and for p ∈ sym(µ(r)), we calculate follow(r, p) by
followµ(r, 〈〉, p). Note that firstµ(r, p) and lastµ(r, p) are only defined for
p ∈ pos(r), and followµ(r, p, q) is only defined when q ∈ sym(µ(r[p])),
and p ∈ pos(r).

3.6 First, Last, and Follow 89

Definition 3.6.3 (firstµ and lastµ). For any regular expression r in con-
straint normal form, and any p ∈ pos(r):

r[p] = ε ⇒ firstµ(r, p) = lastµ(r, p) = ∅

r[p] ∈ Σ⇒ firstµ(r, p) = lastµ(r, p) = {(p,∅)}

r[p] = r1 + r2 ⇒
firstµ(r, p) = firstµ(r, p1) ∪ firstµ(r, p2) ∧

lastµ(r, p) = lastµ(r, p1) ∪ lastµ(r, p2)

r[p] = r1 · r2 ∧ r1 ∈ NΣ ⇒
firstµ(r, p) = firstµ(r, p1) ∪ firstµ(r, p2)

r[p] = r1 · r2 ∧ r2 ∈ NΣ ⇒
lastµ(r, p) = lastµ(r, p1) ∪ lastµ(r, p2)

r[p] = r1 · r2 ∧ r1 6∈ NΣ ⇒ firstµ(r, p) = firstµ(r, p1)

r[p] = r1 · r2 ∧ r2 6∈ NΣ ⇒ lastµ(r, p) = lastµ(r, p2)

r[p] = rn..m
1 ⇒

firstµ(r, p) = {(q, ψ ∪ {p1 7→ inc}) | (q, ψ) ∈ firstµ(r, p1)} ∧
lastµ(r, p) = {(q, ψ ∪ {p1 7→ res}) | (q, ψ) ∈ lastµ(r, p1)}

r[p] = &(r1, . . . , rn) ⇒
firstµ(r, p) = {(q, ψ ∪ { pi 7→ inc}) | ∃i : 1 ≤ i ≤ n, (q, ψ) ∈ firstµ(r, pi)} ∧
lastµ(r, p) = {(q, ψ ∪ {pj 7→res | 1≤j≤n}) | ∃i : 1≤i≤n, (q, ψ)∈lastµ(r, pi)}

90 Numerical Constraints and Unordered Concatenation

Definition 3.6.4 (followµ). For any regular expression r in constraint normal
form, and any p ∈ pos(r):

r[p] ∈ Σ ∪ {ε} ⇒ followµ(r, p, 〈〉) = ∅

r[p] = r1 + r2 ⇒ followµ(r, p, 1q) = followµ(r, p1, q)

r[p] = r1 + r2 ⇒ followµ(r, p, 2q) = followµ(r, p2, q)

r[p] = r1 · r2 ⇒ followµ(r, p, 2q) = followµ(r, p2, q)

r[p] = r1 · r2 ∧ (p� 1q, ψ) ∈ lastµ(r, p1) ⇒
followµ(r, p, 1q) =

followµ(r, p1, q) ∪ {(q′, ψ ∪ ψ′) | (q′, ψ′) ∈ firstµ(r, p2)}

r[p] = r1 · r2 ∧ (6 ∃ψ : (p� 1q, ψ) ∈ lastµ(r, q1)) ⇒
followµ(r, p, 1q) = followµ(r, p1, q)

r[p]=&(r1, . . . , rn) ∧ i∈{1, . . . , n} ∧ (6 ∃ψ : (p� iq, ψ)∈lastµ(r, pi)) ⇒
followµ(r, p, iq) = followµ(r, pi, q)

r[p] = &(r1, . . . , rn) ∧ i ∈ {1, . . . , n} ∧ (p� iq, ψ) ∈ lastµ(r, pi) ⇒
followµ(r, p, iq) =

followµ(r, pi, q) ∪ {(q′, ψ ∪ ψ′) | (q′, ψ′) ∈ firstµ(r, p), pi 6≤ q′}

r[p] = rn..m
1 ⇒

followµ(r, p, 1q) =

followµ(r, p1, q) ∪ {ψ] ψ′ | (p� 1q, ψ)∈lastµ(r, p1), (q′, ψ′) ∈ firstµ(r, p)}

where ψ] ψ′ =


c 7→ one if ψ(c) = res∧ ψ′(c) = inc
c 7→ res if ψ(c) = res∧ c 6∈ dom(ψ′)
c 7→ inc if ψ′(c) = inc∧ c 6∈ dom(ψ)

3.6 First, Last, and Follow 91

Example 3.6.5. Put r = (&(a2, b))3..4 like in Example 3.6.2

lastµ(r, 〈1, 2〉) = {(〈1, 2〉,∅)}
lastµ(r, 〈1, 1, 1〉) = {(〈1, 1, 1〉,∅)}

lastµ(r, 〈1, 1〉) = {(〈1, 1, 1〉, {〈1, 1, 1〉 7→ res})}

lastµ(r, 〈1〉) =


〈1, 1, 1〉,


〈1, 1〉 7→ res,
〈1, 2〉 7→ res,
〈1, 1, 1〉 7→ res


 ,

(〈1, 2〉, {〈1, 1〉 7→ res, 〈1, 2〉 7→ res})


lastµ(r, 〈〉) = last(r)

firstµ(r, 〈1, 2〉) ={(〈1, 2〉,∅)}
firstµ(r, 〈1, 1, 1〉) ={(〈1, 1, 1〉,∅)}

firstµ(r, 〈1, 1〉) ={(〈1, 1, 1〉, {〈1, 1, 1〉 7→ inc})}

firstµ(r, 〈1〉) =
{

(〈1, 1, 1〉, {〈1, 1〉 7→ inc, 〈1, 1, 1〉 7→ inc}),
(〈1, 2〉, {〈1, 2〉 7→ inc})

}
firstµ(r, 〈〉) =first(r)

followµ(r, 〈1, 1〉, 〈1〉) ={(〈1, 1, 1〉, {〈1, 1, 1〉 7→ inc})}

followµ(r, 〈1〉, 〈1, 1〉) =
{

(〈1, 1, 1〉, {〈1, 1, 1〉 7→ inc}),
(〈1, 2〉, {〈1, 2〉 7→ inc, 〈1, 1, 1〉 7→ res})

}
followµ(r, 〈〉, 〈1, 1, 1〉) =follow(r, 〈1, 1, 1〉)

followµ(r, 〈1〉, 〈2〉) ={(〈1, 1, 1〉, {〈1, 1〉 7→ inc, 〈1, 1, 1〉 7→ inc})}
followµ(r, 〈〉, 〈1, 2〉) =follow(r, 〈1, 2〉)

That firstµ(r, p), lastµ(r, p) and followµ(r, p, q) are defined for their
whole domains is shown by an easy induction on r[p]. We must prove
that these calculations satisfy the specifications in Definition 3.6.1.

Lemma 3.6.6. For any regular expression r, and any positions q ∈ pos(r),
and p ∈ sym(µ(r[q])), firstµ(r, q) = q � first(r[q]), lastµ(r, q) = q �
last(r[q]), and followµ(r, q, p) = q� follow(r[q], p).

92 Numerical Constraints and Unordered Concatenation

Proof. By a simultaneous induction on r[q].
For the base case r[q] = ε, all calculations and definitions give the

empty set.
For the base case r[q] ∈ Σ, note that p = 〈〉 and ‖ss(µ(r[q]))‖ =

‖µ(r[q])‖ = {〈〉}. firstµ and lastµ return a singleton set containing
(q,∅), while q� first(r[q]) = q� last(r[q]) = q� {(〈〉,∅)} = {(q,∅)}.
Lastly, followµ(r, q, 〈〉) = follow(r[q], 〈〉) = ∅.

For the induction case where r[q] = r1 + r2, we get first by Defini-
tion 3.6.3 that firstµ(r, q) = firstµ(r, q1) ∪ firstµ(r, q2), and this is by the
induction hypothesis equal to q1� first(r[q1]) ∪ q2� first(r[q2]). That
the latter equals q� first(r[q]) follows from

‖ss(µ(r[q]))‖ = 1‖ss(µ(r[q1]))‖ ∪ 2‖ss(µ(r[q2]))‖

A similar argument holds for lastµ and last. For follow, note first
that ∃i ∈ {1, 2}, p′ ∈ sym(µ(r[qi])) : p = ip′. Assume some such
i. From Definition 3.6.4, followµ(r, q, ip′) = followµ(r, qi, p′). From
the induction hypothesis, followµ(r, qi, p′) = qi � follow(r[qi], p′). We
must show that ifollow(r[qi], p′) = follow(r[q], p). Note now that since
‖ss(µ(r1 + r2))‖ = 1‖ss(µ(r1))‖ ∪ 2‖ss(µ(r2))‖, we get the needed re-
sults from the induction hypothesis and Definition 3.6.1.

For the induction case where r[q] = r1 · r2, we first show that
firstµ(r, q) = q�first(r1 · r2). If r1 6∈ NΣ, by Definition 3.6.3, firstµ(r, q) =
firstµ(r, q1), and from Definition 3.6.1, first(r1r2) = 1first(r1). By apply-
ing the induction hypothesis for r1, we therefore get q� first(r1r2) =
firstµ(r, q). On the other hand, if r1 ∈ NΣ, by Definition 3.6.3 firstµ(r, q)
is the same as when r[q] = r1 + r2. Furthermore, using Definition 3.6.1
and part 1 of Lemma 3.5.16, we get first(r1r2) = first(r1 + r2). There-
fore we can use the same arguments as in the case for choice. The
arguments that lastµ(r, q) = q� last(r1r2) are similar: If r2 ∈ NΣ, we
can use the same arguments as in the case when r[q] = r1 + r2, and if
r2 6∈ NΣ, we can use the induction hypothesis for r2.

We proceed to show that when r[q] = r1 · r2, followµ(r, q, p) = q�
follow(r1 · r2, p). If q2 ≤ p, we can apply the induction hypothesis
for r2, and if ∀ψ : (q� p, ψ) 6∈ lastµ(r, q1) we can apply the induction
hypothesis for r1. Consider the case where ∃ψ : (q� p, ψ) ∈ lastµ(r, q1).
Then there is a p1 ∈ pos(r1) such that p = 1p1. By the induction
hypothesis on r1, lastµ(r, q1) = q1� last(r1). Hence, there is a ψ1 such
that ψ = q1� ψ1 and (q1� p1, ψ1) ∈ last(r1). By Definition 3.6.1 this

3.6 First, Last, and Follow 93

implies that there are α1 ∈ Γ∗r1
and u1 ∈ (pos(r1) ∪ Γr1)

∗ such that

ψ1 = updater1
(α1) ∧ u1 p1α1 ∈ ‖ss(µ(r1))‖ (3.18)

By Definition 3.6.4 followµ(r, q, p) = followµ(r, q1, p1)∪{(p′, ψ∪ψ′) |
(p′, ψ′) ∈ firstµ(r, q2)}. Applying the induction hypothesis for r1 and
r2 to the latter equation we get

followµ(r, q, p) =

(q1� follow(r1, p1)) ∪ {(p′, ψ ∪ ψ′) | (p′, ψ′) ∈ q2� first(r2)}
(3.19)

By Definition 3.6.1 and (3.18)

{(p′, ψ ∪ ψ′) | (p′, ψ′) ∈ q2� first(r2)} =q� (p′, updater(α1 · α2))

∣∣∣∣∣∣∣∣∣∣

p′ ∈ 2pos(r2),
α1 ∈ 1Γ∗r1

,
α2 ∈ 2Γ∗r2

,
∃u : upα1 ∈ 1‖ss(µ(r1))‖,
∃u : α2 p′u ∈ 2‖ss(µ(r2))‖

 (3.20)

By Definition 3.6.1

q1� follow(r1, p1) =

q�

(p′, updater1·r2
(α′))

∣∣∣∣∣∣
p′ ∈ 1pos(r1),
α′ ∈ 1Γ∗r1

,
∃u, v : upα′p′v ∈ 1‖ss(µ(r1))‖

 (3.21)

and

q� follow(r1 · r2, p) =

q�

(p′, updater1·r2
(α′))

∣∣∣∣∣∣
p′ ∈ pos(r1 · r2),
α′ ∈ Γ∗r1·r2

,
∃u, v : up1α′p′v ∈ ‖ss(µ(r1 · r2))‖


(3.22)

Since the p′ in (3.22) can originate in r1 or r2 we use (3.22) and (3.18)

94 Numerical Constraints and Unordered Concatenation

to get

q� follow(r[q], p) =

q�


(p′, updater(α

′))

∣∣∣∣∣∣∣∣∣∣∣∣

(
p′ ∈ 1pos(r1), α′ ∈ 1Γ∗r1

,
∃u, v : up1α′p′v ∈ 1‖ss(µ(r1))‖

)
∨

p′ ∈ 2pos(r2), α1 ∈ 1Γ∗r1
,

α2 ∈ 2Γ∗r2
, α′ = α1 · α2,

∃u : up1α1 ∈ 1‖ss(µ(r1))‖,
∃v : α2 p′v ∈ 2‖ss(µ(r2))‖




=

q�
{
(p′, updater(α

′))

∣∣∣∣ p′ ∈ 1pos(r1), α′ ∈ 1Γ∗r1
,

∃u, v : upα′p′v ∈ 1‖ss(µ(r1))‖

}⋃

q�

(p′, updater(α1 · α2))

∣∣∣∣∣∣∣∣
p′ ∈ 2pos(r2),
α1 ∈ 1Γ∗r1

, α2 ∈ 2Γ∗r2
,

∃u : upα1 ∈ 1‖ss(µ(r1))‖,
∃v : α2 p′v ∈ 2‖ss(µ(r2))‖


(3.23)

By applying (3.20) and (3.21) to (3.23), and then applying (3.19) we get
q� follow(r[q], p) = followµ(r, q, p).

For the induction case where r[q] = rl..u
1 we treat first and follow in

3.6 First, Last, and Follow 95

more detail. Note that

‖ss(µ(r[q]))‖
=(by assumption)

‖ss(µ(rl..u
1))‖

=(since µ(rl..u
1) = (1µ(r1))

l..u)

‖ss((1µ(r1))
l..u)‖

=(by Definition 3.5.11)

‖(�1ss(1µ(r1)))
l..u
〈〉 ‖

=(by definition of concatenating with positions)

‖(1ss(µ(r1)))
l..u
〈〉 ‖

=(by definition of the language of a subscripted expression)

(
u⋃

i=l

({↑〈1〉} · ‖1ss(µ(r1))‖)i) · {↓〈1〉}

=(by definition of concatenating with positions)

(
u⋃

i=l

({↑〈1〉} · (1‖ss(µ(r1))‖))i) · {↓〈1〉}

=(by Definition 3.5.1)

1((
⋃

l≤i≤u

({↑〈〉} · ‖ss(µ(r1))‖)i) · {↓〈〉})

(3.24)

We use (3.24) taking into account that r1 6∈ NΣ, and we get

{(p, α) | p ∈ sym(µ(rl..u
1)), α ∈ Γrl..u

1

∗, ∃u : αpu ∈ ‖ss(µ(rl..u
1))‖} =

{(1p, ↑〈1〉1α) | p ∈ sym(µ(r1)), α ∈ Γr1
∗, ∃u : αpu ∈ ‖ss(µ(r1))‖}

(3.25)

96 Numerical Constraints and Unordered Concatenation

We use (3.25) together with Definitions 3.5.17 and 3.6.1 to get

first(r[q])

=(by Definition 3.6.1){
(p, updaterl..u

1
(α))

| p ∈ sym(µ(rl..u
1)), α ∈ Γ∗

rl..u
1

, ∃u : αpu ∈ ‖ss(µ(rl..u
1))‖

}
=(by (3.25)){

(1p, {〈1〉 7→ inc} ∪ 1updater1
(α))

| p ∈ sym(µ(r1)), α ∈ Γr1
∗, ∃u : αpu ∈ ‖ss(µ(r1))‖

}
=(by Definition 3.5.1)

1
{

(p, {〈〉 7→ inc} ∪ updater1
(α))

| p ∈ sym(µ(r1)), α ∈ Γ∗r1
, ∃u : αpu ∈ ‖ss(µ(r1))‖

}
=(by Definition 3.6.1)

1{(p, ψ ∪ {〈〉 7→ inc}) | (p, ψ) ∈ first(r1)}

(3.26)

Finally, we then get

firstµ(r, q)

=(by Definition 3.6.3)

{(p, ψ∪{q1 7→ inc}) | (p, ψ) ∈ firstµ(r, q1)}
=(by the induction hypothesis)

{(p, ψ∪{q1 7→ inc}) | (p, ψ) ∈ q1� first(r1)}
=(by Definition 3.5.1)

q1� {(p, ψ ∪ {〈〉 7→ inc}) | (p, ψ) ∈ first(r1)}
=(by (3.26))

q� first(r[q])

(3.27)

The case for last is analogous and will therefore not be treated.

For follow, note first that since p ∈ sym(µ(rl..u
1)), there is a p1 ∈

sym(µ(r1)) such that p = 1p1. Again we use (3.24) together with r1 6∈
NΣ (since r in constraint normal form), to get

3.6 First, Last, and Follow 97

{
(p′, α)

∣∣∣∣∣ p′ ∈ sym(µ(rl..u
1)), α ∈ Γrl..u

1

∗,

∃u, v : upαp′v ∈ ‖ss(µ(rl..u
1))‖

}

=

{
(1p′, 1α)

∣∣∣∣ p′ ∈ sym(µ(r1)), α ∈ Γr1
∗,

∃u, v : up1αp′v ∈ ‖ss(µ(r1))‖

}

∪

(p′, α1α2)

∣∣∣∣∣∣∣
p′∈sym(µ(rl..u

1)), α1, α2 ∈ Γrl..u
1

∗,

∃u, v :
(

up1α1∈1‖ss(µ(r1))‖
∧ α2 p′v∈‖ss(µ(rl..u

1))‖

) 
=1
{
(p′, α)

∣∣∣∣ p′ ∈ sym(µ(r1)), α ∈ Γ∗r1
,

∃u, v : up1αp′v ∈ ‖ss(µ(r1))‖

}

∪

(p′, α1α2)

∣∣∣∣∣∣∣
p′∈sym(µ(rl..u

1)), α1, α2 ∈ Γrl..u
1

∗,

∃u, v :
(

up1α1∈1‖ss(µ(r1))‖
∧ α2 p′v∈‖ss(µ(rl..u

1))‖

) 

(3.28)

Finally, we can use Definition 3.6.4, (3.28), the induction hypothesis,

98 Numerical Constraints and Unordered Concatenation

and the already proved parts about first to show that:

followµ(r, q, p) = followµ(r, q, 1p1)
= (by Definition 3.6.4)

followµ(r, q1, p1)
∪ {(q′, ψ] ψ′) | (q� 1p1, ψ) ∈ lastµ(r, q1), (q′, ψ′) ∈ firstµ(r, q)}

= (by the induction hypothesis and (3.27))
q1� follow(r1, p1)

∪
{
(q′, ψ] ψ′) | (q� 1p1, ψ) ∈ q1� last(r1), (q′, ψ′) ∈ q� first(rl..u

1)
}

= (by Definition 3.5.1)

q�
(

1follow(r1, p1)∪{
(q′, (1ψ)] ψ′) | (p1, ψ) ∈ last(r1), (q′, ψ′) ∈ first(rl..u

1)
})

= (by Definition 3.6.1)

q�



1
{
(p′, updater1

(α))

∣∣∣∣ p′ ∈ sym(µ(r1)), α ∈ Γ∗r1
,

∃u, v : up1αp′v∈‖ss(µ(r1))‖

}
∪

(
q′,

(
1updater1

(α)
] updaterl..u

1
(α2)

))
∣∣∣∣∣∣∣∣∣∣∣∣∣

p1 ∈ sym(µ(r1)),
α ∈ Γ∗r1

,
∃u : up1α∈‖ss(µ(r1))‖,
q′ ∈ sym(µ(rl..u

1)),
α2 ∈ Γ∗

rl..u
1

,

∃u : α2q′u ∈ ‖ss(µ(rl..u
1))‖




= (by Definition 3.5.17)

q�



1
{
(p′, updater1

(α))

∣∣∣∣ p′ ∈ sym(µ(r1)), α ∈ Γ∗r1
,

∃u, v : up1αp′v ∈ ‖ss(µ(r1))‖

}
∪

(p′, updaterl..u
1
(α1α2))

∣∣∣∣∣∣∣∣∣∣∣

α1 ∈ Γrl..u
1

∗,
∃u : upα1 ∈ 1‖ss(µ(r1))‖,
p′ ∈ sym(µ(rl..u

1)),
α2 ∈ Γrl..u

1

∗,

∃u : α2 p′u ∈ ‖ss(µ(rl..u
1))‖




= (by (3.28))

q�
({

(p′, updaterl..u
1
(α))

∣∣∣∣∣ p′ ∈ sym(µ(rl..u
1)), α ∈ Γ∗

rl..u
1

,

∃u, v : upαp′v ∈ ‖ss(µ(rl..u
1))‖

})
= (by Definition 3.6.1)

q� follow(r[q], p)

3.6 First, Last, and Follow 99

For the induction case where r[q] = &(r1, . . . , rn), firstµ(r, q) = q�
first(r[q]) follows by unfolding the definitions, applying the induction
hypothesis and using that {p′ ∈ pos(r[q]) | ∃w : p′w ∈ ‖µ(r[q])‖} =⋃

i∈{1,...,n}〈i〉 � {p′ ∈ pos(ri) | ∃w : p′w ∈ ‖µ(ri)‖}. Similarly, to show
that lastµ(r, q) = q � last(r[q]), we unfold the definitions, use the in-
duction hypothesis and that {p′ ∈ pos(r[q]) | ∃w : wp′ ∈ ‖µ(r[q])‖} =⋃

i∈{1,...,n}〈i〉 � {p′ ∈ pos(ri) | ∃ : wp′ ∈ ‖µ(ri)‖}. For followµ(r, q, ip),
the case where there is no (q � ip, ψ) ∈ lastµ(r, qi), is easy. The case
where there is a (q� ip, ψ) ∈ lastµ(r, qi) follows by a similar argument
as for the corresponding case when r[q] = r1 · r2.

Theorem 3.6.7 (Polynomial runtime). For any regular expression r ∈ RΣ
in constraint normal form, and all positions q ∈ sym(µ(r)):

1. Computing firstµ(r, 〈〉) and lastµ(r, 〈〉) takes time O(|r|2).

2. For any q ∈ pos(r), computing followµ(r, 〈〉, q) takes time O(|r|3).

In the proof we will use that there are a linear number of subex-
pressions of a regular expression. This is a consequence of the fact that
every subexpression is uniquely determined by an instance of a letter
or of an operator in the regular expression. Therefore we also have that
the size of pos(r) is linear in r.

Proof.

1. Note first that |firstµ(r, 〈〉)| = O(|r|) and |lastµ(r, 〈〉)| = O(|r|)
follow from Definition 3.6.1, Lemma 3.6.6, and parts 4 and 5 of Lem-
ma 3.5.16. Furthermore, since all unions are between disjoint sets, we
can represent the sets as lists. Thus union can be implemented in con-
stant time. Prefixing a number to a position (as in 1p) can also be done
in constant time. Since there are a linear number of subexpressions,
there are at most a linear number of calls to firstµ or lastµ. The work
in each call (excluding recursive calls) is at most linear, thus the total
run-time is O(|r|2).

2. Start with computing first and last for all subexpressions of r.
We calculate this bottom-up, saving all values of calls. Since there are
a linear number of subexpressions, this process can be done in time
O(|r|2). Computing followµ(r, 〈〉, q) will then mean a linear number

100 Numerical Constraints and Unordered Concatenation

of calls to followµ, each of which takes O(|r|2) time in addition to the
recursive call to followµ.

3.7 Constructing FACs

Constructions of Finite Automata with Counters from regular ex-
pressions with other extensions (not unordered concatenation) have
been given by Sperberg-McQueen [64], Gelade et al. [25], Gelade et
al. [23], and Hovland [37].

Definition 3.7.1. [FAC Construction] Given any regular expression r in
constraint normal form we construct the FAC(r),

(Σ, Q, C,A, Φ, min(r), max(r), qI ,F),

where Q = sym(µ(r)) ∪ {qI} and C = 〈&]〉(r). For all q ∈ sym(µ(r)), put
A(q) = r[q] and for q ∈ sym(µ(r)), put Φ(q) = follow(r, q). Put Φ(qI) =
first(r). The initial configuration is final if and only if r is nullable. Therefore,
the set F is defined as follows. If r ∈ NΣ put F = last(r) ∪ {(qI ,∅)}, and
otherwise put F = last(r).

The result of applying this algorithm to r = (&(a2, b))3..4 from Ex-
ample 3.2.3 is the FAC in Example 3.4.9. (The only difference is that
the non-initial states are decorated with the value of A.)

Lemma 3.7.2 (Deterministic FACs). The FAC constructed from a regular
expression is deterministic if and only if the regular expression is strongly
1-unambiguous.

Proof. Let r be a regular expression, and the FAC(r) constructed as
above.

Firstly, we will assume r is not strongly 1-unambiguous and pro-
ceed to prove that the constructed FAC is not deterministic. We first
treat the case where r is not 1-unambiguous. There are by Defini-
tion 3.5.22 upv, uqw ∈ ‖µ(r)‖, where u, v ∈ (pos(r))∗ , p, q ∈ pos(r),
r[p] = r[q] and p 6= q. If u = ε, this implies by Lemma 3.5.14 and
Definitions 3.6.1 and 3.7.1 that there are (p, ψ1), (q, ψ2) ∈ Φ(qI) where
A(p) = A(q). Furthermore, also applying part 2 of Lemma 3.5.16, we
get ψ1, ψ2 ∈ (C → {inc}), hence, γ0 |=

max(r)
min(r) ψ1 and γ0 |=

max(r)
min(r) ψ2,

3.7 Constructing FACs 101

and by Definitions 3.4.7 and 3.4.8 the FAC is not deterministic. Oth-
erwise, if u 6= ε, assume u = p1 · · · pn for p1, . . . , pn ∈ pos(r). By
Lemma 3.5.14 there are u′, v′, w′ ∈ (pos(r) ∪ Γr)∗ and α, β ∈ Γ∗r such
that u′pnαpv′, u′pnβqw′ ∈ ‖ss(µ(r))‖. We get from Definition 3.6.1
and 3.7.1 that (p, updater(α)), (q, updater(β)) ∈ Φ(pn) and A(p) =
A(q). Further, applying part 2 of Lemma 3.5.21, we get that

sr(u′) |=max(r)
min(r) updater(α)

and
sr(u′) |=max(r)

min(r) updater(β)

hence by Definitions 3.4.7 and 3.4.8 the FAC is not deterministic. Next,
we treat the case where r is 1-unambiguous. There are by Defini-
tion 3.5.23 uαav, uβbw ∈ ‖ss(r)‖, where a, b ∈ sym(r), α, β ∈ Γ∗r ,
u, v, w ∈ (Σ ∪ Γr)∗, a = b, and α 6= β. By Definition 3.5.22 there are
therefore either αpv, βpw ∈ ‖ss(µ(r))‖ or uqαpv, uqβpw ∈ ‖ss(µ(r))‖,
where p, q ∈ sym(µ(r)), α, β ∈ Γ∗r , u, v, w ∈ (pos(r) ∪ Γr)∗, and α 6= β.
This implies by Definition 3.6.1 and 3.7.1 that there is q ∈ Q and
(p, updater(α)), (p, updater(β)) ∈ Φ(q). Furthermore, from part 2 of
Lemma 3.5.21, we get that updater(α) and updater(β) are overlapping,
hence the FAC is not deterministic.

Secondly, we will assume r is strongly 1-unambiguous, and proceed
to prove that the automaton is deterministic. That is, for any config-
uration (q, γ) of the FAC(r) there are no two different pairs (p1, ψ1),
(p2, ψ2) ∈ Φ(q) such that A(p1) = A(p2), γ |=max(r)

min(r) ψ1, and γ |=max(r)
min(r)

ψ2. We prove the contrapositive, that is, assuming (p1, ψ1), (p2, ψ2) ∈
Φ(q), A(p1) = A(p2), γ |=max(r)

min(r) ψ1, and γ |=max(r)
min(r) ψ2 we prove that

(p1, ψ1) = (p2, ψ2).
For the initial configuration (qI , γ0), we have Φ(qI) = first(r). Thus

from Definition 3.6.1 there are α1, α2 ∈ Γ∗r and u, v ∈ (pos(r) ∪ Γr)∗

such that ψ1 = updater(α1), ψ2 = updater(α2), and α1 p1u, α2 p2v ∈
‖ss(µ(r))‖. Since r is 1-unambiguous, and we can take u = ε in Defini-
tion 3.5.22, we get p1 = p2. Furthermore, from part 4 of Lemma 3.5.16
and Definition 3.6.1 we also get α1 = α2, hence (p1, ψ1) = (p2, ψ2).

For a non-initial configuration (q, γ) assume (p1, ψ1), (p2, ψ2) ∈
Φ(q) = follow(r, q), whereA(p1) = A(p2), γ |=max(r)

min(r) ψ1, and γ |=max(r)
min(r)

ψ2. From Definition 3.6.1, we get that there are u, v, w ∈ (Γr ∪ pos(r))∗

102 Numerical Constraints and Unordered Concatenation

and α, β ∈ Γ∗r such that uqαp1v and uqβp2w are in ‖ss(µ(r))‖, and ψ1 =
updater(α) and ψ2 = updater(β). Since r is strongly 1-unambiguous
and r[p1] = A(p1) = A(p2) = r[p2] we get from Definition 3.5.22
that p1 = p2 and from Definition 3.5.23 that α = β which implies that
ψ1 = ψ2. So we get (p1, ψ1) = (p2, ψ2) which means that the automa-
ton is deterministic.

Theorem 3.7.5 states that the construction of FACs is correct. To
prove the theorem we need some auxiliary lemmas.

Lemma 3.7.3. Let r be any regular expression in constraint normal form,
q, p ∈ pos(r), α ∈ Γ∗r and u, v, v′, w ∈ (pos(r) ∪ Γr)∗.

1. If upα, wpv ∈ ‖ss(µ(r))‖ and sr(w) |=max(r)
min(r) updater(α), then

wpα ∈ ‖ss(µ(r))‖.

2. If upαqv, wpv′ ∈ ‖ss(µ(r))‖ and sr(w) |=max(r)
min(r) updater(α), then

there is a v′′ such that wpαqv′′ ∈ ‖ss(µ(r))‖.

Proof.

1. By induction on r. The base case r = ε holds vacuously. The
base case where r ∈ Σ holds immediately, since then ‖ss(µ(r))‖ = {〈〉},
and thus u, α, w, and v are all ε.

The induction case where r = r1 + r2 holds by applying the induction
hypothesis for r1 and r2.

For the induction case where r = r1 · r2, we have upα, wpv ∈ ‖ss(µ(r1 ·
r2))‖, and sr1r2(w) |=max(r)

min(r) updater(α), and want to prove that wpα ∈
‖ss(µ(r1 · r2))‖. We have either 〈1〉 ≤ p, or 〈2〉 ≤ p. In the former case,
note that r2 ∈ NΣ, and by part 1 of Lemma 3.5.16 we therefore get
that there are v1, v2 such that v = v1v2 and upα, wpv1 ∈ 1‖ss(µ(r1))‖.
Therefore we can apply the induction hypothesis for r1 to get that
wpα ∈ 1‖ss(µ(r1))‖, and thus wpα ∈ ‖ss(µ(r1 · r2))‖. The case where
〈2〉 ≤ p follows from using the induction hypothesis for r2 and that
1Γr1 ∩ 2Γr2 = ∅.

For the induction case where r = rl..n
1 , we have upα, wpv ∈ ‖ss(µ(rl..n

1))‖,
and srl..n

1
(w) |=max(r)

min(r) updater(α), and want to prove that also wpα ∈
‖ss(µ(rl..n

1))‖. By the definition of subscripted language, we get there

3.7 Constructing FACs 103

is j such that l ≤ j ≤ n and there are u1, . . . , uj such that upα =
↑〈1〉u1 · · · ↑〈1〉uj pα1↓〈1〉 and u1, . . . , uj−1, uj pα1 ∈ 1‖ss(µ(r1))‖. There is
also m such that l ≤ m ≤ n, and there are w1, . . . , wm, v1, v2 such that
wpv = ↑〈1〉w1 · · · ↑〈1〉wm pv1v2 and w1, . . . , wm−1, wm pv1 ∈ 1‖ss(µ(r1))‖.
From Lemma 3.5.16 α1 = ↓x1 · · · ↓xj for x1, . . . , xj ∈ 1pos(r1). Note
now that from part 1 of Lemma 3.5.21, for p′ 6= 〈1〉, srl..n

1
(w)(p′) =

srl..n
1
(wm)(p′). Therefore srl..n

1
(wm) |=max(r)

min(r) updater(α1), and we can ap-
ply the induction hypothesis for r1 to get that wm pα1 ∈ 1‖ss(µ(r1))‖.
Since l ≤ m ≤ u, we can now use the definition of the language of a
subscripted expression to get that wpα ∈ ‖ss(µ(rl..n

1))‖.
For the induction case where r = &(r1, . . . , rn), we have upα, wpv ∈
‖ss(µ(&(r1, . . . , rn)))‖, and s&(r1,...,rn)(w) |=max(r)

min(r) updater(α), and want
to prove that also wpα ∈ ‖ss(µ(&(r1, . . . , rn)))‖. We can by symmetry
assume that 〈n〉 ≤ p, such that there is a p′ ∈ pos(rn) such that p = np′.
By the definitions and Lemma 3.5.16, there are u1, w1, v2 ∈ (pos(r) ∪
Γr)∗, u2, v1, w2 ∈ (pos(rn) ∪ Γrn)

∗ and α1 ∈ Γ∗rn , such that

u · p · α = u1 · ↑〈n〉 · n(u2 · p′ · α1) · ↓〈1〉 · · · ↓〈n〉 (3.29)

u2 · p′ · α1 ∈ ‖ss(µ(rn))‖ (3.30)

w · p · v = w1 · ↑〈n〉 · n(w2 · p′ · v1) · v2 · ↓〈1〉 · · · ↓〈n〉 (3.31)

w2 · p′ · v1 ∈ ‖ss(µ(rn))‖ (3.32)

Since the positions on the arrows in nα1 are non-overlapping with
the rest of α, and since s&(r1,...,rn)(w) |=max(r)

min(r) updater(α) we get that

srn(w2) |=
max(rn)
min(rn)

updatern(α1). We can apply the induction hypothe-
sis for rn to (3.32) and (3.30) to get that w2 · p′ · α1 ∈ ‖ss(µ(rn))‖. It
is now immediate from the definitions that w1 · ↑〈n〉 · n(w2 · p′ · α1) ·
v2 · ↓〈1〉 · · · ↓〈n〉 ∈ ‖ss(µ(&(r1, . . . , rn−1)))‖. We need to show the pre-

vious expression with v2 removed. But since s&(r1,...,rn)(w) |=max(r)
min(r)

updater(α) we know that there is a ↑〈i〉 in w for all ri 6∈ NΣ. Thus it is
OK to remove v2, and we get that wpα ∈ ‖ss(µ(r))‖.

2. By induction on the regular expression r. The base cases where
r = ε or r ∈ Σ hold vacuously.

The induction case where r = r1 + r2 holds by applying the induction
hypothesis for r1 and r2.

104 Numerical Constraints and Unordered Concatenation

For the induction case where r = r1 · r2, we have upαqv, wpv′ ∈ ‖ss(µ(r1 ·
r2))‖ and sr(w) |=max(r)

min(r) updater(α), and wish to prove that there is a v′′

such that wpαqv′′ ∈ ‖ss(µ(r1 · r2))‖. Note first that if 〈1〉 ≤ p ∧ 〈1〉 ≤ q
or 〈2〉 ≤ p ∧ 〈2〉 ≤ q, we get the result by applying Lemma 3.5.21
and applying the induction hypothesis for r1 or r2, respectively. Oth-
erwise, we have p′ ∈ pos(r1) and q′ ∈ pos(r2) such that p = 1p′ and
q = 2q′. We then get from Lemma 3.5.16 that there are α1 ∈ Γr1

∗

and α2 ∈ Γr2
∗ such that upα1 ∈ 1‖ss(µ(r1))‖, upαqv = upα1α2qv, and

α2qv ∈ 2‖ss(µ(r2))‖. We have sr(w) |=max(r)
min(r) updater(α1), and can ap-

ply part 1 of the lemma to r1 and get that wpα1 ∈ 1‖ss(µ(r1))‖. There-
fore we also have wpα1α2qv ∈ ‖ss(µ(r1 · r2))‖.

For the induction case where r = rl..n
1 , we have upαqv, wpv′ ∈ ‖ss(µ(rl..n

1))‖
and srl..n

1
(w) |=max(r)

min(r) updater(α), and wish to prove that there is a v′′

such that wpαqv′′ ∈ ‖ss(µ(rl..n
1))‖. If there is no ↑〈1〉 in α, we get the

result from the induction hypothesis for r1 and Lemma 3.5.21. Other-
wise, note that since r is in constraint normal form, r1 6∈ NΣ, so there
is exactly one ↑〈1〉 in α. Using the definition of the language of a sub-
scripted expression, and Lemma 3.5.21 we get that there are p′, q′ ∈
pos(r1), u1, v2, w1, v′2 ∈ (pos(r) ∪ Γr)∗, u2, v1, w2, v′1 ∈ (pos(r1) ∪ Γr1)

∗,
and α1, α2 ∈ Γ∗r1

such that

p = 1p′ ∧ q = 1q′ (3.33)

upαqv = u1 · ↑〈1〉 · 1(u2 · p′ · α1) · ↑〈1〉 · 1(α2 · q′ · v1) · v2 (3.34)

u2 · p′ · α1 ∈ ‖ss(µ(r1))‖ (3.35)

α2 · q′ · v1 ∈ ‖ss(µ(r1))‖ (3.36)

w · p · v′ = w1 · ↑〈1〉 · 1(w2 · p′ · v′1) · v′2 (3.37)

w2 · p′ · v′1 ∈ ‖ss(µ(r1))‖ (3.38)

sr1(w2) |=
max(r1)
min(r1)

updater1
(α1) (3.39)

By applying part 1 of the lemma for r1 to (3.35), (3.38), and (3.39) we
get w2 · p′ · α1 ∈ ‖ss(µ(r1))‖. But then we can use srl..n

1
(w) |=max(r)

min(r)
updater(α) to get that the number of ↑〈1〉 in w1 plus two is at most n.
Furthermore, if v′2 is ↓〈1〉, put v′′2 = v′2, otherwise, put v′′2 such that

3.7 Constructing FACs 105

v′2 ∈ ↑〈1〉 · 1‖ss(µ(r1))‖ · v′′2 . Thus w1 · ↑〈1〉 · 1(w2 · p′ · α1) · ↑〈1〉 · 1(α2 ·
q′ · v1) · v′′2 = w · p · α · q · 1v1 · v′′2 ∈ ‖ss(µ(r))‖.
For the induction case where r = &(r1, . . . , rn), we have upαqv, wpv′ ∈
‖ss(µ(&(r1, . . . , rn)))‖ and s&(r1,...,rn)(w) |=max(r)

min(r) updater(α), and wish
to prove that there is a v′′ such that wpαqv′′ ∈ ‖ss(µ(&(r1, . . . , rn)))‖.
If there is an i such that 〈i〉 ≤ p and 〈i〉 ≤ q, then the result follows by
applying the induction hypothesis for ri. Otherwise, there are i, j, p′, q′

such that 1 ≤ i, j ≤ n, i 6= j, p = ip′, and q = jq′. Furthermore, there
are u1, u2, α1, α2, v1, v2 such that

upαqv = u1 · ↑〈i〉 · i(u2 · p′ · α1) · ↑〈j〉 · j(α2 · q′ · v1) · v2 (3.40)

u2 · p′ · α1 ∈ ‖ss(µ(ri))‖ (3.41)

α2 · q′ · v1 ∈ ‖ss(µ(rj))‖ (3.42)

w · p · v′ = w1 · ↑〈i〉 · i(w2 · p′ · v′1) · v′2 (3.43)

w2 · p′ · v′1 ∈ ‖ss(µ(ri))‖ (3.44)

sri (w2) |=
max(ri)
min(ri)

updateri
(α1) (3.45)

We can apply (3.41), (3.44), and (3.45) to part 1 of the lemma for ri to get
w2 · p′ · α1 ∈ ‖ss(µ(ri))‖. Since w1 · ↑〈i〉 · iw2 · p · v′ ∈ ‖ss(µ(&(r1, . . . , rn)))‖
there cannot be any ↑〈i〉 in w1. Since s&(r1,...,rn)(w) |=max(r)

min(r) updater(α)

there cannot be any ↑〈j〉 in w1. We now distinguish two cases. If
v′2 does not contain ↑〈j〉 (this implies that rj ∈ NΣ), then we already
have w1 · ↑〈i〉 · i(w2 · p′ · α1) · ↑〈j〉 · j(α2 · q′ · v1) · v′2 = w · p · α · q · jv1 ·
v′2 ∈ ‖ss(µ(&(r1, . . . , rn)))‖. That means the lemma holds for v′′ =
jv1 · v′2. Otherwise, if there is a ↑〈j〉 in v′2, then there are va, vb, vc ∈
(pos(r) ∪ Γr) k ∈ {1, . . . , n} − {j, i} and vj ∈ j‖ss(µ(rj))‖ such that
v′2 = va↑〈j〉vjvb and either vb = ↑〈k〉vc or vb = ↓〈1〉 · · · ↓〈n〉. Thus
w1 · ↑〈i〉 · i(w2 · p′ · α1) · ↑〈j〉 · j(α2 · q′ · v1) · v′a · vb = w · p · α · q · jv1 · va ·
vb ∈ ‖ss(µ(&(r1, . . . , rn)))‖, and the lemma holds for v′′ = jv1 · va · vb.

Lemma 3.7.4. For any regular expression r in constraint normal form and
any word w, if FAC(r) recognizes w, then there is a w′ ∈ ‖ss(µ(r))‖ such
that w = r[[(w′)].

106 Numerical Constraints and Unordered Concatenation

Proof. If w = ε, then by Definition 3.4.5 and the definition of word
recognition by FAC the initial configuration is final, and by Defini-
tion 3.7.1 r ∈ NΣ. Hence, we can use w′ = ε as ε ∈ ‖ss(µ(r))‖ and
ε = r[[(ε)].

For the case where w 6= ε is recognized by FAC(r), there is n ≥
1 and l1, . . . , ln ∈ Σ such that w = l1 · · · ln. We prove in the next
paragraph that if the sequence of configurations used to match w =
l1 · · · ln is (qI , γ0), (q1, γ1), . . . , (qn, γn), then there are α1, . . . , αn ∈ Γ∗r
and v such that α1q1 · · · αnqnv ∈ ‖ss(µ(r))‖, w = r[q1 · · · qn], and for i ∈
{1, . . . , n}, γi = sr(α1q1 · · · αi−1qi−1αi). Since the configuration (qn, γn)
is final, there are by Definitions 3.7.1, 3.6.1, and 3.4.6 u ∈ (pos(r) ∪
Γr)∗ and αn+1 ∈ Γ∗r such that uqnαn+1 ∈ ‖ss(µ(r))‖ and γn |=max(r)

min(r)
updater(αn+1). We can now apply part 1 of Lemma 3.7.3 to get w′ =
α1q1 · · · αnqnαn+1 ∈ ‖ss(µ(r))‖.

We prove by induction on m that for any prefix (qI , γ0), (q1, γ1),
. . . , (qm, γm) of length m + 1 of any sequence of configurations used to
match the word w = l1 · · · ln, there are α1, . . . , αm ∈ Γ∗r , w′ ∈ (pos(r) ∪
Γr)∗ such that α1q1 · · · αm · qmw′ ∈ ‖ss(µ(r))‖, and for all 1 ≤ i ≤ m,
li = r[qi] and γi = sr(α1q1 · · · αi−1qi−1αi).

The base case is the prefix of length 1 containing only the initial
configuration, in which case w′ = ε, m = 0, and sr(ε) = γ0.

For the inductive case, we assume a prefix of length m + 1, and that
the next configuration in the sequence is (qm+1, γm+1). This implies
that δ((qm, γm), lm+1) = (qm+1, γm+1). By construction of the FAC and
Definition 3.6.1 this implies that r[qm+1] = lm+1 and that there are
u, v ∈ (pos(r) ∪ Γr)∗ and an αm+1 ∈ Γ∗r such that uqmαm+1qm+1v ∈
‖ss(µ(r))‖, γm+1 = fupdater(αm+1)

(γm), and γm |=max(r)
min(r) updater(αm+1).

The induction hypothesis gives us words α1, . . . , αm ∈ Γ∗r , w′ ∈ (pos(r)∪
Γr)∗ such that α1q1 · · · αmqmw′ ∈ ‖ss(µ(r))‖ and that li = r[qi] and
γi = sr(α1q1 · · · αi−1qi−1αi) for all 1 ≤ i ≤ m . Therefore γm+1 =
sr(α1 · · · αm+1). Furthermore, since γm = sr(α1 · · · αm), and

α1q1 · · · αm · qmw′, uqmαm+1qm+1v ∈ ‖ss(µ(r))‖,

we can apply Lemma 3.7.3 to get α1q1 · · · αmqmαm+1qm+1w′′ ∈ ‖ss(µ(r))‖
for some w′′, and the lemma holds.

Theorem 3.7.5. For any regular expression r in constraint normal form,
FAC(r) constructed as in Definition 3.7.1 recognizes exactly ‖r‖.

3.8 Related Work and Conclusion 107

Proof. First, assume a regular expression r in constraint normal form,
and a word w which is recognized by FAC(r). We must show that
w ∈ ‖r‖. By Lemma 3.7.4 we get a word w′ ∈ ‖ss(µ(r))‖ such that
w = r[[(w′)]. By Lemma 3.5.15, r[[(w′)] ∈ ‖r‖, thus w ∈ ‖r‖.

Conversely, assume w = l1 · · · ln ∈ ‖r‖, where n is the length of
w. We must show that w is recognized by FAC(r). Since w ∈ ‖r‖,
we get from Lemma 3.5.15 that there is a w′ ∈ ‖ss(µ(r))‖ such that
r[[(w′)] = w. Furthermore, there are α1, . . . , αn+1 ∈ Γ∗r and p1, . . . , pn ∈
sym(µ(r)) such that [(w′) = p1 · · · pn and w′ = α1 p1 · · · αn pnαn+1. By
Definitions 3.7.1 and 3.6.1 this implies that (p1, updater(α1)) ∈ Φ(qI),
(pn, updater(αn+1)) ∈ F , and furthermore, for 1 ≤ i < n,

(pi+1, updater(αi+1)) ∈ Φ(pi)

Recall that γ0 = sr(ε), put γ1 = updater(α1), and for each i > 1, let
γi = sr(α1q1 · · · αi−1qi−1αi). It follows from Definition 3.5.18 that for
each i ≥ 1, γi = updater(αi)(γi−1). Consider the sequence of con-
figurations (qI , γ0), (q1, γ1), . . . , (qn, γn). To prove that this is a run of
FAC(r) which recognizes w it suffices to check that for any i, 1 ≤ i < n,

γi |=
max(r)
min(r) updater(αi+1)

But this is immediate from Lemma 3.5.21.

Corollary 3.7.6. For any regular expression r, we can in polynomial time
construct an FAC recognizing exactly ‖r‖. For any word w, and any strongly
1-unambiguous regular expression r, we can in polynomial time decide whether
w ∈ ‖r‖.

Proof. From Theorem 3.7.5, Corollary 3.5.9, and Lemmas 3.6.7, 3.7.2,
and 3.4.10.

3.8 Related Work and Conclusion

3.8.1 Related Work

Sperberg-McQueen [64] has studied regular expressions with nu-
merical constraints and a translation to finite automata with coun-
ters, though no proofs are given. Gelade et al. [24, 25] and Gelade
et al. [23] also wrote about this, including full proofs. The latter was

108 Numerical Constraints and Unordered Concatenation

published simultaneously with the paper [37]. The present chapter
is based on [37], but also incorporates ideas from [23], most notably
the bracketing, which was inspiration for the subscripted expressions.
Section 6 from [23], including the proofs for Section 6 in the Appendix
of [23] has inspired some of the content in Sections 3.5.2, 3.5.3, and 3.7.

Kilpeläinen & Tuhkanen [42, 43, 44], Gelade [22], Gelade et al. [24,
25], and Gelade et al. [23] also investigated properties of the regu-
lar expressions with numerical constraints, and give algorithms for
membership. Stockmeyer & Meyer [54] study the regular expressions
with squaring, a subclass of the regular expressions with numerical
constraints. Colazzo, Ghelli & Sartiani, describe in [28] an algorithm
for linear-time membership in a subclass of regular expressions called
collision-free. The collision-free regular expressions have at most one
occurrence of each symbol from Σ, and the counters (and the Kleene
star) can only be applied directly to letters or disjunctions of letters.
The latter class is strictly included in the class of strongly 1-unam-
biguous regular expressions. The results by Brüggemann-Klein & Wood
in [9, 10, 12] concerning 1-unambiguous regular expressions, are in
some ways what the present chapter attempts to extend to the regular
expressions with numerical constraints and unordered concatenation.

Extensions of finite automata similar to Finite Automata with Coun-
ters have been studied by many authors. The earliest is the treatment of
multicounter automata by Greibach [31]. The definitions used in this
chapter are adapted from Hovland [37]. Brüggemann-Klein [11, 15]
gives an algorithm for deciding 1-unambiguity of regular expressions
with unordered concatenation. Unordered concatenation is also men-
tioned in [12, 10]. Strong 1-unambiguity has also been mentioned by
Brüggemann-Klein & Wood [12, 10] and Sperberg-McQueen [64], and
Gelade et al. [23]. The first in-depth study of strong 1-unambiguity
was by Koch & Scherzinger [47].

3.8.2 Conclusion

We have studied the membership problem for regular expressions
extended with numerical constraints and with an operator similar to
“interleaving” in SGML. The membership problem was shown to be
NP-complete already without the numerical constraints. We defined
Finite Automata with Counters (FAC), and a polynomial-time transla-

3.8 Related Work and Conclusion 109

tion from the regular expressions with numerical constraints and un-
ordered concatenation to these automata. Further we defined strongly
1-unambiguous regular expressions, a subset of the regular expressions
with numerical constraints and unordered concatenation in constraint
normal form, and for which the FAC resulting from the translation is
deterministic. The deterministic FAC can recognize the language of the
given regular expression in time linear in the size of word to be tested.
Testing whether an FAC is deterministic can be done in polynomial
time. This implies that the restrictions put on unordered concatena-
tion in XML Schema might be stronger than necessary.

110 A Type System for Usage of Software Components

4 A Type System for Usage of
Software Components

The aim of this chapter is to support component-based software
engineering by modeling exclusive and inclusive usage of software
components. Truong and Bezem describe in several papers abstract
languages for component software with the aim to find bounds to the
number of instances of components. Their languages include primi-
tives for instantiating and deleting instances of components and oper-
ators for sequential, alternative and parallel composition, and a scope
mechanism. The language is here supplemented with the primitives
use , lock and free . The main contribution is a type system which
guarantees the safety of usage, in the following way: When a well-
typed program executes a subexpression use [x] or lock [x], it is guar-
anteed that an instance of x is available. Type inference is shown to be
polynomial.

4.1 Introduction

The idea of “Mass produced software components” was first for-
mulated by McIlroy [52] in an attempt to encourage the production of
software routines in much the same way industry manufactures ordi-
nary, tangible products. The last two decades “component” has got the
more general meaning of a highly reusable piece of software. Accord-
ing to Szyperski [66] (p. 3), “(. . .) software components are executable
units of independent production, acquisition, and deployment that can
be composed into a functioning system”. We will model software that
is constructed of such components, and assume that during the exe-
cution of such a program, instances of the components can be created,
used and deleted.

Efficient component software engineering is not compatible with
programmers having to acquire detailed knowledge of the internal
structure of components that are being used. Components can also

4.1 Introduction 111

be constructed to use other components, such that instantiating one
component, could lead to several instances of other components. This
lack of knowledge in combination with nested dependencies weakens
the control over resource usage in the composed software.

The goal of this chapter is to guarantee the safe usage of compo-
nents, such that one can specify that some instances must be available,
possibly exclusively to the current thread of execution. In [5, 67, 68],
Truong and Bezem describe abstract languages for component soft-
ware with the aim of finding bounds of the number of instances of
components existing during and remaining after execution of a com-
ponent program. Their languages include primitives for instantiating
and deleting instances of components and have operators for sequen-
tial, alternative and parallel composition and a scope mechanism. The
first three operators are well-known, and have been treated by for ex-
ample Milner [55] (where alternative composition is called summation).
The scope mechanism works like this: Any component instantiated in
a scope has a lifetime limited to the scope. Furthermore, inside a scope,
only instances in the local store of the same scope can be deleted. The
types count the maximum number of active component instances dur-
ing execution and remaining after execution of a component program.

The languages described by Truong and Bezem lack a direct way
of specifying that one or more instances of a component must exist at
some point in the execution. In this chapter we have added the prim-
itives use , lock and free in order to study the usage of components.
The first (use) is used for “inclusive usage”, that is, when a set of in-
stances must be available, but these instances may be shared between
threads. The other form (lock and free) is used when the instances
must be exclusively available for this execution thread. The differ-
ence between exclusive and inclusive usage can be seen by compar-
ing the expressions newx(use [x] ‖ use [x]) and newx(lock [x]free [x] ‖
use [x]). The first expression is safe to execute, while executing the lat-
ter expression can lead to an error if x is locked, but not freed, by the
left thread before it is used by the right thread. Instances of the same
component cannot be distinguished, such that locking and freeing is
not applied to specific instances, but to the number of instances of each
component.

The type system must guarantee that the instances that are to be
used are available. The system will not test whether the deletion of

112 A Type System for Usage of Software Components

instances in local stores is safe, as this can be tested by the type sys-
tems in [3, 5, 67, 68] while ignoring lock , free , and use . Only non-
recursive programs are treated, but an extension with loops and sim-
ple recursion, described in [3], can also be applied to this system. An
alternative to using a type system is of course to run all possible exe-
cutions of the program, and count the number of instances. However,
the number of execution traces for any given program, is, in general,
super-polynomial in the size of the program. Hence, this brute force
approach is not feasible in this context.

Section 4.2 introduces an example using C++, to which our type
system is applied in Section 4.6. The language of component pro-
grams is defined in Section 4.3, and the operational semantics is de-
fined in Section 4.4. The types and the type system are explained in
Section 4.5. Important properties of the type system are formulated in
Section 4.7, while the main results concerning correctness are collected
in Section 4.8. The chapter ends with a section on related work and a
conclusion.

4.2 Example: Objects on the Free Store in C++

We will introduce an example with dynamically allocated mem-
ory in C++ [65]. In Section 4.6 we will apply the type system to the
example. The example is inspired by a similar one in [3].

In the program fragment in Fig. 4.1, so-called POSIX threads [39]
are used for parallelism. After creating an instance of the class C, the
function pthread_create launches a new thread calling the function
which is third in the parameter list with the argument which is fourth.
This function call, either P1(C_instance) or P2(C_instance), is exe-
cuted in parallel to P3(C_instance), and the two threads are joined in
pthread_join before the instance of C is deleted.

The dynamic data type C and the functions P1, P2, P3 are left
abstract. We will assume the latter three functions use the instance of
C in some way, and that P2 needs exclusive access to the instance.

The question in this example is whether we can guarantee that P2
gets exclusive access to the instance of C. In this small example it is pos-
sible to see that this is not the case. After the grammar is explained in
the next section we will model the program in the language as shown
in Fig. 4.2, and use the type system to answer the question and correct

4.3 Syntax 113

void EX(int choice) {
pthread_t pth;
C* C_instance = new C();
pthread_create(&pth, NULL, choice ? P1 : P2 , C_instance);
P3(C_instance);
pthread_join(pth, NULL);
delete C_instance;

}

Figure 4.1: C++ code using threads and objects on the free store.

the program.

4.3 Syntax

The language for components is parametrized by an arbitrary set
C = {a, b, c, . . .} of component names. We let variables x, y, z range over
C. Bags and multisets are used frequently in this chapter, and will
therefore be explained here.

4.3.1 Bags and Multisets

Bags are like sets but allow multiple occurrences of elements. For-
mally, a bag with underlying set of elements C is a mapping M : C→N.
Bags are often also called multisets, but we reserve the term multi-
set for a concept which allows one to express a deficit of certain el-
ements as well. Formally, a multiset with underlying set of elements
C is a mapping M : C→Z. We shall use the operations ∪,∩,+,−
defined on multisets, as well as relations ⊆ and ∈ between multisets
and between an element and a multiset, respectively. We recall briefly
their definitions: (M ∪ M′)(x) = max(M(x), M′(x)), (M ∩ M′)(x) =
min(M(x), M′(x)), (M + M′)(x) = M(x) + M′(x), (M − M′)(x) =
M(x)−M′(x), M ⊆ M′ iff M(x) ≤ M′(x) for all x ∈ C. The operation
+ is sometimes called additive union. Bags are closed under all opera-
tions above with the exception of −. Note that the operation ∪ returns
a bag if at least one of its operands is a bag. For convenience, multi-
sets with a limited number of elements are sometimes denoted as, for

114 A Type System for Usage of Software Components

example, M = [2x,−y], instead of M(x) = 2, M(y) = −1, M(z) = 0
for all z 6= x, y. In this notation, [] stands for the empty multiset, i.e.,
[](x) = 0 for all x ∈ C. We further abbreviate M + [x] by M + x and
M − [x] by M − x. Both multisets and bags will be denoted by M or
N (with primes and subscripts), it will always be clear from the con-
text when a bag is meant. For any bag, let set(M) denote its set of
elements, that is, M = {x ∈ C | M(x) > 0}. Note that a bag is also a
multiset, while a multiset is also a bag only if it maps all elements to
non-negative numbers.

4.3.2 Grammar

Table 4.1: Syntax

Expr ::= Factor | Expr · Expr
Factor ::= newx | delx | lockM | freeM | useM | nop

| (Expr + Expr) | (Expr ‖ Expr) | ScExp
ScExp ::= {M, Expr}
M ::= bag of elements from C

Prog ::= nil | Prog, x−≺ Expr

Component expressions are given by the syntax in Table 4.1. We let
capital letters A, . . . , E (with primes and subscripts) range over Expr.
A component program P is a comma-separated list starting with nil and
followed by zero or more component declarations, which are of the form
x−≺ Expr, with x ∈ C (nil will usually be omitted, except in the case
of a program containing no declarations). dom(P) denotes the set of
component names declared in P (so dom(nil) = ∅). Declarations of
the form x−≺ nop are used for primitive components, i.e., components
that do not use subcomponents.

We have two primitives new and del for creating and deleting in-
stances of a component, three primitives free , lock and use for speci-
fying usage of instances of components and four primitives for compo-
sition: sequential composition denoted by juxtaposition, + for choice
(also called sum), ‖ for parallel and {. . .} for scope. Note that instances
of the same component cannot be distinguished. The effect of lock is

4.3 Syntax 115

therefore to decrease the number of instances available for usage, while
free increases this number.

Executing the sum E1 + E2 means choosing either one of the ex-
pressions E1 or E2 and executing that one. Executing E1 and E2 in
parallel, that is, executing (E1 ‖ E2), means executing both expressions
in some arbitrary interleaved order. Executing an expression inside a
scope, {[], E} means executing E, while only allowing deletion of in-
stances inside the same scope, and after the execution of E, deleting all
instances inside the scope.

The grammatical ambiguity in the rule for Expr is unproblematic.
Like in process algebra, sequential composition can be viewed as an
associative multiplication operation and products may be denoted as
E E′ instead of E · E′. The operations + and ‖ are also associative and
we only parenthesize if necessary to prevent ambiguity. Sequential
composition has the highest precedence, followed by ‖ and then +.
The primitive nop models zero or more operations that do not involve
component instantiation or deallocation.

In the third clause of the grammar we define scope expressions, used
to limit the lifetime of instances and the scope of deletion. A scope
expression is a pair of a bag, called the local store, and an expression.
Scope expressions appearing in a component declaration in a program
are required to have an empty local store. Non-empty local stores only
appear during execution of a program.

Definition 4.3.1. By var(E) we denote the set of component names occur-
ring in E, formally defined by var(nop) = ∅, var(newx) = var(delx) =
{x},var(useM) = var(freeM) = var(lockM) = set(M), var(E1 +
E2) = var(E1 ‖ E2) = var(E1 E2) = var(E1) ∪ var(E2) and var({M, E}) =
set(M) ∪ var(E).

Definition 4.3.2. The size of an expression E, denoted σ(E), is defined by
σ(newx) = σ(delx) = σ(useN) = σ(lockN) = σ(freeN) = σ(nop) =
1, σ({M, E}) = σ(E) + 1 and σ(A + B) = σ(AB) = σ(A||B) = σ(A) +
σ(B) + 1. The size of a program P, denoted σ(P), is defined by σ(P, x −≺
A) = σ(P) + 1 + σ(A) and σ(nil) = 1.

116 A Type System for Usage of Software Components

4.3.3 Examples

We assume that a program is executed by executing newx, where
x is the last component declared in the program, starting with empty
stores of component instances. Examples of programs that will execute
properly and will be well-typed are

Example 4.3.3.

x−≺ nop, y−≺ newx use [x] lock [x] free [x]
x−≺ nop, y−≺ newx newx {[], (use [x] ‖ lock [x])} free [x]

Examples of programs that can, for some reason, produce an error
are:

Example 4.3.4.

x−≺ nop, y−≺ newx newx {[], (use [x] ‖ lock [x])}
x−≺ nop, y−≺ newx lock [x] use [x] free [x]
x−≺ nop, y−≺ newx {[], (use [x] ‖ lock [x])} free [x]
x−≺ nop, y−≺ newx free [x] lock [x]
x−≺ nop, y−≺ newx {[], (use [x] + lock [x])} free [x]

The first program leaves one instance of x locked after execution.
The second will get stuck as no instance of x will be available for use by
the use-statement. The third might also get stuck. Note that there ex-
ists an error-free execution of the third program, where the left branch
of (use [x] ‖ lock [x]) is executed before the right one. But as we do
not wish to make any assumptions about the scheduling of the parallel
execution, we consider this an error. The fourth program tries to free a
component instance that is not locked. The fifth program has a run in
which free [x] is executed, but no instance of x has been locked.

C++ Example

We now describe the model of the example program in Fig. 4.1 (page
113). Functions (such as EX) as well as objects on the free store (such
as C_instance) are modeled as components. We let call f abbreviate
new f del f and use this expression to model a function call. Note that f
is deleted automatically by call f , which models the (automatic) deal-
location of stack objects created by f . However, the subcomponents

4.4 Operational Semantics 117

c −≺ nop,
p1 −≺ use [c],
p2 −≺ lock [c] free [c],
p3 −≺ use [c],
ex −≺ newc ((callp1 + callp2) ‖ callp3) delc

Figure 4.2: Program P, a model of the C++ program in Fig. 4.1.

of f are not deleted by del f . We use small letters for the compo-
nent names and model functions as components, where the function
body is given by the right hand side of the declaration. Since P2 needs
exclusive access to an instance of C we add lock [c] free [c] to the dec-
laration of p2. For p1 and p3 we indicate the non-exclusive usage by
use [c]. Collecting all declarations we get the program in Fig. 4.2.

4.4 Operational Semantics

A state, or state expression, is a pair (Mu, {M, E}) consisting of a
bag Mu (called the global store) with underlying set of elements C,
and a scope expression {M, E}. The store M in this scope expression
is called the local store of the expression. An initial state is of the form
([], {[], newx}), and a terminal state is of the form (Mu, {M, nop}).

A state (Mu, {M, E}) expresses that we execute E with a local bag
M and a global bag Mu of instances of components. The local stores
keep track of the instances allocated inside the corresponding scopes.
The instances in the local store are deleted when the corresponding
scope is exited. The global store keeps track of all instances available
for lock or free . The intuition is that in any state during the execution
a well-typed program, the global store should be a subset of the sum
of all the local stores. (See also Corollary 4.8.4, page 140.)

The operational semantics is given in Tables 4.2 and 4.3 as a state
transition system in the style of structural operational semantics [61].
The inductive rules are osPar1, osPar2, osScp and osSeq. The other
rules are not inductive, but osNew, osDel, osLock, osUse and osPop are
conditional with the condition specified as a premiss of the rule. The
transition relation with respect to a program P is denoted by P, with
transitive and reflexive closure by ∗P.

118 A Type System for Usage of Software Components

Remark 4.4.1. The type systems in [3, 5, 67, 68] can be used to test whether
the deletion of instances is safe, by first translating use , lock , and free

to nop. We need therefore only consider programs where deletion of instances
from the local store is safe. That is, whenever delx is executed, we can assume
there is an x in the corresponding local store.

4.4.1 Unsafe States

A stuck state is usually defined as a state which is not terminal,
and where there is no possible next transition. We wish to use a dif-
ferent condition, because we want to assure that all possible runs are
error-free. This means that we do not assume anything about the in-
terleaving used in parallel executions. This is more in line with how
parallelism works by default in many environments, for example with
pthreads and C++ without mutex locking. Informally, we call a state
unsafe if there is at least one transition which cannot be used in this
state, but which would be possible with a larger global store. For ex-
ample, ([], {[x], lock [x] ‖ free [x]}) is an unsafe state, because using
osPar1 is possible with global store containing x.

Definition 4.4.2 (Unsafe states). Given a component program P, a state
(Mu, {M, E}) is called unsafe if and only if there exist bags M′u, M′ and N
and an expression E′ such that (Mu + N, {M, E}) P (M′u + N, {M′, E′}),
but not (Mu, {M, E}) P (M′u, {M′, E′})

It is also possible to characterize the unsafe states with the fol-
lowing inductive rules parametrized by a program P and bags Mu
and M. The base cases are that for all x and N, where x 6∈ Mu
and N 6⊆ Mu, (Mu, {M, lockN}), (Mu, {M, useN}), (Mu, {M, delx})
and (Mu, {M, {N, nop}}) are unsafe. The induction cases are that for
all expressions E and F, if (Mu, {M, E}) is unsafe then for all bags
N, also (Mu, {N, {M, E}}), (Mu, {M, EF}), (Mu, {M, E ‖ F}), and
(Mu, {M, F ‖ E}) are unsafe. There is no induction case for E + F,
since (Mu, {M, E + F}) is safe. That is, osAlt1 or osAlt2 can be applied
independent of the size of the global store. Proving equality of the
inductive characterization and Definition 4.4.2 is done by induction on
the derivation of the step (Mu + N, {M, E}) P (M′u + N, {M′, E′}).
Recall also that deletion of component instances in the local store is
assumed to always be safe, as this can be assured by the system in [3]

4.4 Operational Semantics 119

Table 4.2: Transition rules for a component program P (continued in
Table 4.3)

(osNop)

(Mu, {M, nop E}) P (Mu, {M, E})
(osNew)

x−≺ A ∈ P
(Mu, {M, newx}) P (Mu + x, {M + x, A})
(osDel)

x ∈ (M ∩Mu)

(Mu, {M, delx}) P (Mu − x, {M− x, nop})
(osLock)

N ⊆ Mu

(Mu, {M, lockN}) P (Mu − N, {M, nop})
(osFree)

(Mu, {M, freeN}) P (Mu + N, {M, nop})
(osUse)

N ⊆ Mu

(Mu, {M, useN}) P (Mu, {M, nop})
(osScp)

(Mu, {N, A}) P (M′u, {N′, A′})
(Mu, {M, {N, A}}) P (M′u, {M, {N′, A′}})

120 A Type System for Usage of Software Components

Table 4.3: Transition rules for a component program P (continued from
Table 4.2)

(osPop)
N ⊆ Mu

(Mu, {M, {N, nop}}) P (Mu − N, {M, nop})
(osAlti)

i ∈ {1, 2}
(Mu, {M, (E1 + E2)}) P (Mu, {M, Ei})

(osSeq)
(Mu, {M, A}) P (M′u, {M′, A′})

(Mu, {M, A E}) P (M′u, {M′, A′ E})
(osParEnd)

(Mu, {M, (nop ‖ nop)}) P (Mu, {M, nop})

(osPar1)
(Mu, {M, E1}) P (M′u, {M′, E′1})

(Mu, {M, (E1 ‖ E2)}) P (M′u, {M′, (E′1 ‖ E2)})

(osPar2)
(Mu, {M, E2}) P (M′u, {M′, E′2})

(Mu, {M, (E1 ‖ E2)}) P (M′u, {M′, (E1 ‖ E′2)})

while ignoring lock , free , and use . A state which is not unsafe is
called safe.

4.4.2 Valid States

For some state (Mu, {M, E}) in a run, Mu models all component
instances available for usage. We must therefore have Mu not larger
than the sum of N in all subexpressions {N, A} of E. For example
([x], {[], nop}) should not appear in a run because Mu ⊃ []. Condi-
tions for this to be true will be stated later. However, there are tran-
sitions where the states in the transition fulfill this condition, while

4.5 Type System 121

the derivation of the transition contains states which do not fulfill the
condition. An example is the transition ([x], {[x], {[], use [x]}}) P
([x], {[x], {[], nop}}), in which both states fulfill this condition, while
it is the result of applying osScp to the premiss ([x], {[], use [x]}) P
([x], {[], nop}), where none of the two states fulfill the condition.

To express this property more formally we need a way to sum all
the local stores in an expression. In doing so, however, one would
count in instances that will never coexist, such as in {M1, E1}+ {M2, E2}
and {M1, E1} {M2, E2}. Therefore we also define the notion of a valid
expression, in which irrelevant bags are empty.

Definition 4.4.3 (Sum of local stores). For any expression E, let ΣE be the
sum of all N in subexpressions {N, A} of E. More formally: Σ{M, E} =
M + ΣE and Σ(E1 ‖ E2) = Σ(E1 E2) = Σ(E1 + E2) = ΣE1 + ΣE2 and
Σdelx = Σnewx = ΣuseN = ΣlockN = ΣfreeN = Σnop = []. An
expression E is valid if for all subexpressions of the form (E1 + E2) we have
Σ(E1 + E2) = [], and for all subexpressions of the form F E′, F a factor, we
have ΣE′ = [].

Note that an expression is valid if and only if all its subexpressions
are valid. We will say that a state (Mu, {M, E}) is valid if and only if
E is valid. The initial state is valid by definition. In any declaration
x−≺ E, since only empty bags are allowed to occur in E, E is obviously
valid and ΣE = [].

4.5 Type System

4.5.1 Types

A type of a component expression is a tuple

X = 〈Xu, Xn, Xl , Xd, Xp, Xh〉

where Xn, Xu and Xp are bags and Xl , Xd and Xh are multisets. We
use U, . . . , Z to denote types. The properties of the different parts of
the types are summarized in Table 4.4, and will be explained below.
The bag Xu (u for “usage”) contains the minimum size the global store
must have for an expression to be safely executed.

Because of sequential composition, we also need a multiset Xl . To
run the expression E1 E2, we must not only know the minimum safe

122 A Type System for Usage of Software Components

Table 4.4: The parts of the types

Xu: Minimum size of the global store for safe execution.
Xn: Largest decrease of the global store during execution.
Xl : Lower bound of the net effect on the global store.

Xd:
Net change in the difference
between the local and the global store.

Xp:
Maximum increase, during execution, of the difference
between the global store and the sum of all local stores.

Xh:
Maximum net effect on the difference between
the global store and the sum of all the local stores.

sizes for executing E1 and E2 separately, but also how much E1 de-
creases or increases the global store. The multiset Xl therefore con-
tains, for each x ∈ C, the lowest net increase in the number of instances
in the global store after the execution of the expression. (Where a de-
crease is negative increase.) This implies that, if the type of E is X and
if (Mu, {M, E}) ∗P (M′u, {M′, nop}), then Xl ⊆ M′u −Mu.

The scope operator makes necessary the component Xd. When a
scope is popped with the rule osPop, the remaining bag in the scope
is subtracted from the global store. The difference between these two
bags must therefore be controlled by Xd. In addition, concerning the
two alternatives in a choice expression, the net effect on the difference
between the global store and the local store are required to be equal.
This corresponds to the requirement “Xd

1 = Xd
2” on the rule Alt. An ex-

ample of an invalid expression excluded by this rule is (lockx+ usex).
If the latter expression was allowed in a program, it would not be possi-
ble to give the guarantees needed for osPop to the number of instances
of x locked after execution. The multiset Xd therefore contains the
exact change in the difference between the local store and the global
store made by execution of the expression. This difference is required
to be independent of how the expression is executed. This implies
that, if the type of E is X and if (Mu, {M, E}) ∗P (M′u, {M′, nop}),
then Xd = (M′u −M′)− (Mu −M).

Parallel composition necessitates the bag Xn. The minimum safe
size for executing (E1 ‖ E2) depends not only on the minimum safe

4.5 Type System 123

size for executing each of E1 and E2, but also on how much each of
them decreases the global store. For example, both usex and lockx freex
need one instance of x, but usex ‖ usex also needs only one, whereas
lockx freex ‖ lockx freex needs two instances of x. Xn contains, for
each x ∈ C, the highest negative net change in the number of instances
in the global store during the execution of the expression. This implies
that, if the type of E is X and if (Mu, {M, E}) ∗P (M′u, {M′, E′}), then
−Xn ⊆ M′u −Mu.

As seen in Example 4.3.4 in Section 4.3.3, there are grammatically
correct programs that “free” instances that are not locked. So far, we
have not distinguished between free [x] lock [x] and lock [x] free [x].
Obviously, these expressions cannot be assigned the same type. For
example, the program

x−≺ nop, y−≺ newx free [x] lock [x]

is wrong, and should not be well-typed, while the program

x−≺ nop, y−≺ newx lock [x] free [x]

is correct and should be well-typed. There is a need for types con-
cerned with the difference between the number of instances in the
sum of all local stores and the number of instances in the global store.
If (Mu, {M, E}) is a state during the execution of a component pro-
gram, then the value of (Mu − Σ{M, E})(x) for a component x is
negative if an instance of x is locked, but not yet freed, and posi-
tive if it has been freed without being locked. The latter is seen as
an error and should not occur in the run of a well-typed program.
The bag Xp and multiset Xh are used for keeping track of the set
Mu − Σ{M, E}, and contain, the highest positive change during execu-
tion and the highest net increase of this bag after execution. This implies
that if the type of E is X, then if (Mu, {M, E}) ∗P (M′u, {M′, E′}) then
Xp ⊇ (M′u − Σ{M′, E′})− (Mu − Σ{M, E}). And, if (Mu, {M, E}) ∗P
(M′u, {M′, nop}), we get Xh ⊇ (M′u − M′) − (Mu − Σ{M, E}). In the
type of a well-typed program these parts must be empty bags. These
parts of the type can also be seen to give guarantees about the max-
imum decrease in the difference between the sum of the local stores
and the global store, that is, the maximum decrease in the number of
locked instances.

124 A Type System for Usage of Software Components

4.5.2 Typing Rules

The typing rules in Table 4.5 and Table 4.6 must be understood with
the above interpretation in mind. They define a ternary typing relation
Γ ` E : X and a binary typing relation ` P : Γ in the usual inductive
way. Here Γ is usually called a basis, mapping component names to
the type of the expression in its declaration. In the relation ` P : Γ, Γ
can be viewed as a type of P. An expression of the form Γ ` E : X or
` P : Γ will be called a typing and will also be phrased as ‘expression E
has type X in Γ’ or ‘program P has type Γ’, respectively.

A basis Γ is a partial mapping of components x ∈ C to types. By
dom(Γ) we denote the domain of Γ, and for any x ∈ dom(Γ), Γ(x)
denotes its type in Γ. For a set S ⊆ dom(Γ), Γ|S is Γ restricted to the
domain S. For any x ∈ C and type X, {x 7→ X} denotes a basis with
domain {x} and which maps x to X. An expression E is called typable
in Γ if Γ ` E : X for some type X. The latter type X will be proved to
be unique and will sometimes be denoted by Γ(E).

Definition 4.5.1 (Well-typed program). A program P with at least one
declaration is well-typed if there are Γ and X such that ` P : Γ, Γ ` newx : X
and Xd = Xu = Xp = Xh = [], where x is the last component declared in P.

The condition in Definition 4.5.1 that parts Xd, Xu, Xp, and Xh be
empty deserves an explanation. Xd must be empty, because the global
and local store must be equal in the final state, that is, no instances
are still locked when the program ends. Xu is the minimum safe size
of the global store, and we assume the program is executed starting
with an empty global store, so Xu must be empty. Xp must be empty,
because this is the only way to guarantee that, during execution, no
instance is freed, unless there already is a locked instance of the same
component. Xh must be empty, because we must guarantee that there
does not remain any locked instances after execution.

Type inference in this system is similar to [3, 5, 67, 68]. In particular,
the type inference algorithm has quadratic runtime. An implementa-
tion of the type system can be downloaded from the author’s website.

4.6 C++ Example Continued 125

Table 4.5: Typing Rules (continued in Table 4.6))

(AxmP)

` nil :∅

(Axm)

Γ ` nop : 〈[], [], [], [], [], []〉

(New)
Γ(x) = X

Γ ` newx : 〈Xu, Xn, Xl + x, Xd, Xp, Xh〉
(Del)

Γ(x) = X
Γ ` delx : 〈[x], [x], [−x], [], [], []〉
(Lock)

set(N) ⊆ dom(Γ)
Γ ` lockN : 〈N, N,−N,−N, [],−N〉
(Use)

set(N) ⊆ dom(Γ)
Γ ` useN : 〈N, [], [], [], [], []〉
(Free)

set(N) ⊆ dom(Γ)
Γ ` freeN : 〈[], [], N, N, N, N〉
(Prog)
Γ ` E : X, ` P : Γ, x 6∈ dom(Γ)
` P, x−≺ E : Γ ∪ {x 7→ X}

4.6 C++ Example Continued

Recall the C++ program in Fig. 4.1 and the component program in
Fig. 4.2. Type inference gives the following results:

callp1 : 〈[c], [], [], [], [], []〉,
callp2 : 〈[c], [c], [], [], [], []〉,
callp3 : 〈[c], [], [], [], [], []〉,
callex : 〈[c], [], [], [], [], []〉

126 A Type System for Usage of Software Components

Table 4.6: Typing Rules (continued from Table 4.5))

(Par)
Γ ` E1 : X1, Γ ` E2 : X2

Γ ` E1 ‖ E2 :
〈

(Xu
1 + Xn

2) ∪ (Xu
2 + Xn

1), Xn
1 + Xn

2 ,
Xl

1 + Xl
2, Xd

1 + Xd
2 , Xp

1 + Xp
2 , Xh

1 + Xh
2

〉
(Alt)

Γ ` E1 : X1, Γ ` E2 : X2, Xd
1 = Xd

2

Γ ` E1 + E2 : 〈Xu
1 ∪ Xu

2 , Xn
1 ∪ Xn

2 , Xl
1 ∩ Xl

2, Xd
1 , Xp

1 ∪ Xp
2 , Xh

1 ∪ Xh
2〉

(Seq)
Γ ` E1 : X1, Γ ` E2 : X2

Γ ` E1 E2 :
〈

Xu
1 ∪ (Xu

2 − Xl
1), Xn

1 ∪ (Xn
2 − Xl

1),
Xl

1 + Xl
2, Xd

1 + Xd
2 , Xp

1 ∪ (Xp
2 + Xh

1), Xh
1 + Xh

2

〉
(Scope)

Γ ` E : X, set(M) ⊆ dom(Γ)
Γ`{M, E} : 〈Xu ∪ (M− Xd), Xn ∪ (M− Xd), Xd −M, Xd −M, Xp, Xh〉

This signals in the first multiset (·u) of the type of callex that one in-
stance of c is needed before execution of callex. This is caused by the
possible choice of callp2 instead of callp1 by ex, whereby there could
be parallel calls to p2 and p3. One way to fix this is to instantiate two
instances of C instead of just one. Then one instance could be passed
to P1 or P2 and the second to P3. This means that P is changed by
changing ex into ex′ −≺ newc newc ((callp1 + callp2) ‖ callp3) delc.
The type of callex′ is 〈[], [], [c], [], [], []〉 which signals that the expres-
sion now can be executed starting with an empty store. But the third
multiset (·l) signals that there is one instance of c left after execution.
This can be fixed by deleting one more instance, that is, changing ex′ to
ex′′ −≺ newc newc ((callp1 + callp2) ‖ callp3 delc) delc. The type
of callex′′ is 〈[], [], [], [], [], []〉.

Another way of solving the original problem is to remove the par-
allelism from the program, such that ex is changed to, e.g.,

ex′′′ −≺ newc (callp1 + callp2) callp3 delc

4.7 Properties of the Type System 127

The type of callex′′′ is also 〈[], [], [], [], [], []〉.

4.7 Properties of the Type System

This section contains several basic lemmas about the type system.
We will use quite often the fact that if a multiset is not a superset

of a union, then it is not a superset of both the multisets joined by
the union. That is, for any multisets A, B and C, A 6⊇ B ∪ C implies
A 6⊇ B ∨ A 6⊇ C. This can be shown by using the definitions of union
and ⊇ for multisets, or via the, perhaps more intuitive, contrapositive
statement, that is, if both A ⊇ B and A ⊇ C, then also A ⊇ B ∪ C.

Lemma 4.7.1 (Basics). 1. If Γ ` E : X, then var(E) ⊆ dom(Γ).

2. If ` P : Γ and Γ ` E : X, then dom(P) = dom(Γ) and−Xu ⊆ −Xn ⊆
Xl and Xh ⊆ Xp.

Proof. 1. By structural induction on the derivation of Γ ` E : X.

2. By induction on ` P : Γ one proves dom(P) = dom(Γ). The two
last parts require a double induction, the primary induction on the
length of Γ and a secondary induction on the derivation Γ ` E : X. The
primary base case, Γ = ∅ and E = nop is trivial. Now let Γ ` E : X
for some non-empty Γ and assume the result has been proved for all
shorter bases. We prove Xn ⊆ Xu, −Xn ⊆ Xl and Xh ⊆ Xp by a
secondary induction on the derivation of Γ ` E : X. The secondary base
cases E = nop, E = delx , E = freeN, E = lockN and E = useN are
trivial. Consider the base case E = newx with Γ(x) = X′ for some X′.
Then Γ′ ` E′ : X′ for some Γ′ ⊂ Γ with x−≺ E′ ∈ P. Now we can apply
the induction hypothesis to Γ′ and the result for X follows from that of
X′. Consider the secondary induction case where Γ ` E : X is inferred
from the following application of the rule Par:

(Par)
Γ ` E1 : X1, Γ ` E2 : X2

Γ ` E1 ‖ E2 :
〈

(Xu
1 + Xn

2) ∪ (Xu
2 + Xn

1), Xn
1 + Xn

2 ,
Xl

1 + Xl
2, Xd

1 + Xd
2 , Xp

1 + Xp
2 , Xh

1 + Xh
2

〉
Then Xu = (Xu

1 + Xn
2)∪ (Xu

2 + Xn
1) ⊇ Xu

1 + Xn
2 ⊇ Xn

1 + Xn
2 = Xn. In the

second last step we apply the induction hypothesis. That −Xn ⊆ Xl

128 A Type System for Usage of Software Components

and Xh ⊆ Xp follows by applying the induction hypothesis. The sec-
ondary induction cases Seq, Scp and Alt follow by similar calculations.

Lemma 4.7.2 (Associativity). If Γ ` A : X, Γ ` B : Y and Γ ` C : Z, then
the two ways of typing the expression A B C by the rule Seq, corresponding
to the different parses (A B)C and A (B C), lead to the same type.

Proof. By applying Seq to Γ ` A : X and Γ ` B :Y we get

Γ ` A B :
〈

Xu ∪ (Yu − Xl), Xn ∪ (Yn − Xl),
Xl + Yl , Xd + Yd, Xp ∪ (Yp + Xh), Xh + Yh

〉
and combining this with Γ ` C : Z we get

Γ ` A B C :

〈 (Xu ∪ (Yu − Xl)) ∪ (Zu − (Xl + Yl)),
(Xn ∪ (Yn − Xl)) ∪ (Zn − (Xl + Yl)),
(Xl + Yl) + Zl , (Xd + Yd) + Zd,
(Xp ∪ (Yp + Xh)) + Zp, (Xh + Yh) + Zh

〉

By applying Seq to Γ ` B :Y and Γ ` C : Z we get

Γ ` B C :
〈

Yu ∪ (Zu −Yl), Yn ∪ (Zn −Yl),
Yl + Zl , Yd + Zd, Yp ∪ (Zp + Yh), Yh + Zh

〉
and combining this with Γ ` A : X we get Γ ` A B C : 〈Xu ∪ ((Yu ∪
(Zu − Yl)) − Xl), Xn ∪ ((Yn ∪ (Zn − Yl)) − Xl), Xl + (Yl + Zl), Xd +
(Yd + Zd), Xp ∪ (Yp ∪ (Zp + Yh) + Xh), Xh + (Yh + Zh)〉. It remains
to prove that the two types resulting from the combination are equal.
For the parts l , d and h of the tuples this trivially follows from the
associativity of + for multisets. For the remaining parts this follows
from the associativity of ∪ and the distributivity of + and − over
∪.

The following lemma is necessary since the typing rules are not
fully syntax-directed. If, e.g., E1 = A · B, then the type of E1 · E2 could
have been inferred by an application of the rule Seq to A and B E2. In
that case we apply the previous lemma.

Lemma 4.7.3 (Inversion).

4.7 Properties of the Type System 129

1. If ` P : Γ and Γ(x) = X, then there exists a program P′ and an
expression A such that P′, x −≺ A is the initial segment of P and ` P′ :
Γ|dom(P′) and Γ|dom(P′) ` A : X.

2. If Γ ` newx : X, then X = 〈Γ(x)u, Γ(x)n, Γ(x)l + x, Γ(x)d, Γ(x)p, Γ(x)h〉.

3. If Γ ` delx : X, then X = 〈[x], [x], [−x], [], [], []〉.

4. If Γ ` lockN : X, then X = 〈N, N,−N,−N, [],−N〉.

5. If Γ ` freeN : X, then X = 〈[], [], N, N, N, N〉.

6. If Γ ` useN : X, then X = 〈N, [], [], [], [], []〉.

7. If Γ ` nop : X, then X = 〈[], [], [], [], [], []〉.

8. For ◦ ∈ {+, ‖, ·}, if Γ ` (E1 ◦ E2) : X, then there exists Xi such that
Γ ` Ei : Xi for i = 1, 2. Moreover,

X = 〈Xu
1 ∪ Xu

2 , Xn
1 ∪ Xn

2 , Xl
1 ∩ Xl

2, Xd
1 , Xp

1 ∪ Xp
2 , Xh

1 ∪ Xh
2〉

and Xd
1 = Xd

2 if ◦ = +,

X =

〈
(Xu

1 + Xn
2) ∪ (Xu

2 + Xn
1), Xn

1 + Xn
2 ,

Xl
1 + Xl

2, Xd
1 + Xd

2 , Xp
1 + Xp

2 , Xh
1 + Xh

2

〉
if ◦ = ‖, and

X =

〈
Xu

1 ∪ (Xu
2 − Xl

1), Xn
1 ∪ (Xn

2 − Xl
1),

Xl
1 + Xl

2, Xd
1 + Xd

2 , Xp
1 ∪ (Xp

2 + Xh
1), Xh

1 + Xh
2

〉
if ◦ = ·.

9. If Γ ` {M, A} : X, then there exists a type Y, such that Γ ` A : Y and
X = 〈Yu ∪ (M−Yd), Yn ∪ (M−Yd), Yd −M, Yd −M, Yp, Yh〉.

Proof. We first prove the first part by an easy induction on ` P : Γ.
The base case AxmP is trivial, and in the induction case we have the
following application of the rule Prog:

Γ′ ` B : Z, ` P′ : Γ′, y 6∈ dom(Γ′)
` P′, y−≺ B : Γ′ ∪ {y 7→ Z}

If x = y we have the result from the rule application. Otherwise we
can apply the induction hypothesis to the premiss ` P′ : Γ′.

The other parts are proved by structural induction on the deriva-
tion of Γ ` E : X. The base cases Axm, Lock, Free, Use, Del and New and
the induction cases Alt, Scp and Par are obvious (no need for the induc-
tion hypothesis). The only interesting case is the rule Seq, which has
three sub-cases. Consider the conclusion Γ ` E1 E2 : X. If this has been

130 A Type System for Usage of Software Components

inferred by an application of Seq with premises Γ ` Ei : Xi for i = 1, 2
we are done (no need for the induction hypothesis). However, it is
possible that E1 = A B and that Seq is applied to A and B E2. The third
case, E2 = B C and Seq applied to E1 B and C, follows by symmetry.
So let E1 = A B and consider the following application of the rule Seq.

Γ ` A :Y1, Γ ` B E2 :Y2

Γ ` E1 E2 :
〈

Yu
1 ∪ (Yu

2 −Yl
1), Yn

1 ∪ (Yn
2 −Yl

1),
Yl

1 + Yl
2, Yd

1 + Yd
2 , Yp

1 ∪ (Yp
2 + Yh

1), Yh
1 + Yh

2

〉
The type in the conclusion is the type X for which we have to find
types Xi such that Γ ` Ei : Xi for i = 1, 2, and X = 〈Xu

1 ∪ (Xu
2 −

Xl
1), Xu

1 ∪ (Xu
2 − Xl

1), Xl
1 + Xl

2, Xd
1 + Xd

2 , Xp
1 ∪ (Xp

2 + Xh
1), Xh

1 + Xh
2〉. By

the induction hypothesis applied to Γ ` B E2 : Y2 we get types Z and
X2 such that Γ ` B : Z and Γ ` E2 : X2. By applying Seq to Γ ` A : Y1
and Γ ` B : Z we get a type X1 such that Γ ` E1 : X1. It follows
by Lemma 4.7.2 (Associativity) that X = 〈Yu

1 ∪ (Yu
2 − Yl

1), Yu
1 ∪ (Yu

2 −
Yl

1), Yl
1 + Yl

2, Yd
1 + Yd

2 , Yp
1 ∪ (Yp

2 + Yh
1), Yh

1 + Yh
2 〉.

The last lemma in this section is concerned with three forms of
uniqueness of the types inferred in the type system. This is necessary
in some of the proofs, and for an algorithm for type inference.

Lemma 4.7.4 (Uniqueness of types).

1. If Γ1 ` E : X, Γ2 ` E :Y and Γ1|var(E) = Γ2|var(E), then X = Y.

2. If ` P : Γ and ` P : Γ′, then Γ = Γ′.

3. If ` P1 : Γ1 and ` P2 : Γ2 and P2 is a reordering of a subset of P1, then
Γ1|dom(P2)

= Γ2.

Proof. 1. By structural induction on the derivation of Γ1 ` E : X.
In the cases of the rules Axm, Lock, Free, Use, Del and New we have
that E = nop, E = lockN, E = freeN, E = useN, E = delx and
E = newx, for some bag N and component x. In all three cases X = Y
follows by applying the Inversion Lemma 4.7.3 to Γ2 ` E :Y.

Assume Γ1 ` E : X is inferred by the following application of the rule
Par:

Γ1 ` E1 : X1, Γ1 ` E2 : X2

Γ1 ` E1 ‖ E2 :
〈

(Xu
1 + Xn

2) ∪ (Xu
2 + Xn

1), Xn
1 + Xn

2 ,
Xl

1 + Xl
2, Xd

1 + Xd
2 , Xp

1 + Xp
2 , Xh

1 + Xh
2

〉

4.7 Properties of the Type System 131

Applying the Inversion Lemma to Γ2 ` E1 ‖ E2 : Y gives types Yi such

that Γ2 ` Ei :Yi and Y =

〈
(Yu

1 + Yn
2) ∪ (Yu

2 + Yn
1), Yn

1 + Yn
2 ,

Yl
1 + Yl

2, Yd
1 + Yd

2 , Yp
1 + Yp

2 , Yh
1 + Yh

2

〉
. Now

we apply the induction hypothesis to the premises Γ2 ` Ei : Xi and get
Xi = Yi for i = 1, 2. It follows that X = Y.

The cases of the rules Alt, Scp and Seq are analogous to the case of Par.

2. The base case AxmP is trivial. Assume therefore ` P : Γ is in-
ferred by the following application of the rule Prog:

Γ1 ` E : X, ` P1 : Γ1, x 6∈ dom(Γ1)

` P1, x−≺ E : Γ1 ∪ {x 7→ X}

From applying Lemma 4.7.3 to ` P : Γ′ and then the induction hypoth-
esis and part 1 of this lemma we get Γ = Γ′.

3. Let conditions be as above. We use induction on the derivation
of ` P2 : Γ2. The base case is P2 = nil, in which case Γ2 = Γ1|∅ =
∅. For the induction case assume ` P2 : Γ2 has been inferred by the
following application of the rule Prog:

` P′2 : Γ′2, Γ′2 ` E : Γ2(x), x 6∈ dom(Γ′2)
` P′2, x−≺ E : Γ′2 ∪ {x 7→ Γ2(x)}

Since x ∈ dom(Γ1) we get by the Inversion Lemma 4.7.3 that there is P′1
such that P′1, x−≺ E is an initial segment of P1 and for Γ′1 = Γ1|dom(P′1)

we have ` P′1 : Γ′1 and Γ′1 ` E : Γ1(x). Since Γ′2 ` E : Γ2(x) the Basics
Lemma 4.7.1 implies var(E) ⊆ dom(P′2). Since dom(P1) ⊃ dom(P′2) we
have from the Basics Lemma 4.7.1 and the Uniqueness Lemma 4.7.4
that Γ1|dom(P′2)

` E : Γ1(x). From the induction hypothesis Γ1|dom(P′2)
=

Γ′2 so from the Uniqueness Lemma 4.7.4 we get Γ1(x) = Γ2(x). This
combined with the induction hypothesis, Γ1|dom(P′2)

= Γ′2, implies that
Γ1|dom(P2)

= Γ2.

4.7.1 Type Inference

Type inference means to compute, for a given component program
P and expression E, types Γ and X such that ` P : Γ and Γ ` E :

132 A Type System for Usage of Software Components

X if there are such types, and to report failure otherwise. This may
require reordering P, a task that should not burden the programmer.
We should then prove that the type, if it exists, is independent of the
specific reordering used. We prepare reordering with a lemma.

Lemma 4.7.5. For any program P, the following are equivalent:

1. ` P : Γ for some Γ;

2. Every x is declared at most once in P and for every initial segment
P′, x−≺ A of P there is Γ such that ` P′ : Γ and there is X such that Γ ` A : X.

Proof. For proving that 1 implies 2, assume 1 and let P′, x−≺ A be an
initial segment of P. At some point in the derivation of ` P : Γ, P′ is
extended to P′, x−≺ A by the following application of Prog:

` P′ : Γ′, Γ′ ` A : X, x 6∈ dom(Γ′)
` P′, x−≺ A : Γ′ ∪ {x 7→ X}

for some Γ′ and X. By the premiss we get the result.
It remains to prove that 2 implies 1. This will be done by induction

on the length of P. The base case nil is typed by AxmP. Assume
P = P′, x−≺ A satisfies 2. Therefore x 6∈ dom(P′), and there is Γ′ and
X such that ` P′ : Γ′ and Γ′ ` A : X. By Lemma 4.7.1 x 6∈ dom(Γ′). By
Prog we conclude that ` P′, x−≺ A : Γ′ ∪ {x 7→ X}.

Part 2 of the above lemma partially specifies the ordering in P. For
example, if P is nil, x−≺ newz, y−≺ newz, z−≺ nop then both

P1 = nil, z−≺ nop, x−≺ newz, y−≺ newz

and
P2 = nil, z−≺ nop, y−≺ newz, x−≺ newz

satisfy 2. The Lemma 4.7.4, part 3 proves that in general types do not
depend on the ordering chosen.

Theorem 4.7.6 (Type inference). There exists an algorithm that, given a
component program P and an expression E, does the following:

1. First program P is reordered to satisfy part 2 in Lemma 4.7.5. If P
cannot be reordered in such a way, or if var(E) 6⊆ dom(P), the algorithm
reports a failure.

4.8 Correctness 133

2. In the second phase a basis Γ and a type X such that ` P : Γ and
Γ ` E : X are computed, if they exist. If there is no such Γ and X, the
algorithm reports a failure.

The algorithm works in time O(σ(P)2 + σ(E)2). The types X and Γ in phase
2 are unique if they exist.

Proof. After assuring there are at most one declaration of each compo-
nent, phase 1 can easily be done by a topological sorting [45] of the
directed graph defined by: the nodes are dom(P) and there is an edge
from y to x if and only if there exists a declaration x −≺ A in P such
that y occurs in A.

For phase 2, we first use the type system to either find a Γ such that
` P : Γ, or decide that there is no such Γ. In the former case, we can also
use the type system to either find an X such that Γ ` E : X, or decide
that there is no such X. The failure to find Γ or X can only be caused
by the condition “Xd

1 = Xd
2” of the rule Alti to fail. The inference trees

have size linear in P and E, respectively. As the multiset operations are
in linear time the whole phase takes quadratic time.

The algorithm reports failure if P cannot be reordered or if the types
X and Γ cannot be found. Γ and X are independent of the particular
reordering of P by Lemma 4.7.4.

It should be noted that we can type programs and expressions that
might not safe to execute. We only prove that it is safe to run well-
typed programs, starting with empty local and global stores. (See also
Corollary 4.8.4, page 140.)

4.8 Correctness

This section contains lemmas and theorems connecting the type
system and the operational semantics. Included are theorems compa-
rable to what is often called preservation and progress, for example
in [60]. The following lemma implies that all states in sequences rep-
resenting the execution of a well-typed program are valid, as defined
in Definition 4.4.3.

Lemma 4.8.1. If ` P : Γ, Γ ` E : X, E is valid and (Mu, {M, E}) P
(M′u, {M′, E′}) is a step in the operational semantics, then also E′ is valid.

134 A Type System for Usage of Software Components

Proof. By induction on the definition of P. Assume E is valid. In
the cases of osDel, osLock, osFree, osUse, osPop and osParEnd, E′ = nop

and hence valid. In the cases of osNop, E′ is a subexpression of E and
hence valid. In the case osNew, note that ΣA = [] for any declaration
x −≺ A. In the case of osAlti, E = (E1 + E2) and hence ΣE = [], so
also ΣE′ = []. In the cases of osPar1 and osPar2 we use the induction
hypothesis, and that (E1||E2) is valid if and only if both E1 and E2 are
valid. In the case of osScp we use the induction hypothesis, and that
{M, E} is valid if and only if E. In the case of osSeq we also use the
induction hypothesis, and that AE is valid if and only if A is valid, E
is valid, and ΣE = [].

The next lemma fixes several properties of two states connected
by a single step in the operational semantics. This is used heavily in
the main theorems below. The first part expresses that typability is
preserved. The remaining parts reflect the fact that every step reduces
the set of reachable states, and the correct accounting of instances in
each step. Hence maxima do not increase and minima do not decrease.

Lemma 4.8.2 (Invariants). Let P be a component program, E a valid ex-
pression, Γ a basis and U a type such that ` P : Γ, Γ ` E : U, and
(Mu, {M, E}) P (M′u, {M′, E′}) is a step in the operational semantics.
Then we have for some type V:

1. Γ ` E′ : V.

2. M′u −Vu ⊇ Mu −Uu, i.e., the safety margin of the global store does
not decrease.

3. M′u −Vn ⊇ Mu −Un, i.e., the lower bound on the global store in all
reachable states does not decrease.

4. M′u + V l ⊇ Mu + Ul , i.e., the lower bound on the global store after
execution does not decrease.

5. M′u−M′+Vd = Mu−M +Ud, i.e., the difference between the local
and the global store after execution does not change.

6. M′u−Σ{M′, E′}+Vp ⊆ Mu−Σ{M, E}+Up, i.e., the upper bound
on the difference, in any reachable state, between the global store and the sum
of the local stores, does not increase.

4.8 Correctness 135

7. M′u−Σ{M′, E′}+Vh ⊆ Mu−Σ{M, E}+Uh, i.e., the upper bound
on the net effect on the difference between the global store and the sum of the
local stores does not increase.

Proof. All parts are proved by simultaneous induction on the definition
of P. Part 1 uses the Inversion Lemma 4.7.3 to break down the typing
Γ ` E :U. Thereafter a type for E′ can be inferred in all cases.

For the base case osNew, let Γ ` newx : U and consider a step
(Mu, {M, newx}) P (Mu + x, {M + x, A}). By applying the Inver-
sion Lemma 4.7.3 and the Uniqueness Lemma 4.7.4 we get that U =
〈Vu, Vn, V l + x, Vd, Vp, Vh〉, where V = Γ(A). Parts 4 to 7 becomes
equalities, for 6 and 7 remember that ΣA = [] from the restriction on
programs. Parts 2 and 3 follow from M′u −V� = Mu −U� + x, where
� ∈ {n, u}.

For osDel, let Γ ` delx :U and consider a step (Mu, {M, delx}) P
(Mu − x, {M − x, nop}). By applying the Inversion Lemma 4.7.3 we
get U = 〈[x], [x], [−x], [], [], []〉 and V = 〈[], [], [], [], [], []〉. This makes
parts 2 to 7 equalities.

osLock is treated similar to osDel. All parts except 6 become equali-
ties, and 6 holds since M′u = Mu − N ⊆ Mu.

For osFree, let Γ ` freeN :U and consider a step

(Mu, {M, freeN}) P (Mu + N, {M, nop})

By applying the Inversion Lemma 4.7.3 we get U = 〈[], [], N, N, N, N〉
and V = 〈[], [], [], [], [], []〉. This makes parts 2 and 3 hold from N
being a bag and M′u = Mu + N . Parts 4 to 7 become equalities.

For osUse, let Γ ` useN :U and consider a step (Mu, {M, useN}) P
(Mu, {M, nop}) inferred from N ⊆ Mu. By applying the Inversion
Lemma 4.7.3 we get U = 〈N, [], [], [], [], []〉 and V = 〈[], [], [], [], [], []〉.
This makes part 2 hold from N being a bag and M′u = Mu . Parts 3 to
7 become equalities

For the base case osNop, let Γ ` nop E′ :U and consider a step

(Mu, {M, nop E′}) P (Mu, {M, E′})

By applying the Inversion Lemma 4.7.3 we get a type V such that
Γ ` E′ : V and V = U. Parts 2 to 7 become equalities. The case
osParEnd is similar.

136 A Type System for Usage of Software Components

For osAlti, let Γ ` (E1 + E2) : U, and consider (Mu, {M, (E1 +
E2)}) P (Mu, {M, Ei}). From the Inversion Lemma 4.7.3 we have X1
and X2 such that the typings E1 : X1 and E2 : X2, where Xd

1 = Xd
2 , hold

in Γ. We have U = 〈Xu
1 ∪ Xu

2 , Xn
1 ∪ Xn

2 , Xl
1 ∩ Xl

2, Xd
1 , Xp

1 ∪ Xp
2 , Xh

1 ∪ Xh
2〉

and V = Xi. The calculations for parts 2 to 7 of the lemma are
done by using U� ⊇ X�i for � ∈ {u, n, p, h} and Ul ⊆ Xl

i using
mono/antitonicity properties of ∪, ∩, +, and −, and finally that Xd

i =

Ud. For parts 6 and 7 we also need that ΣE1 = ΣE2 = [] from E valid.
For the induction case osPar1, let Γ ` (E1 ‖ E2) : U and consider

the step (Mu, {M, (E1 ‖ E2)}) P (M′u, {M′, (E′1 ‖ E2)}), inferred
from the step (Mu, {M, E1}) P (M′u, {M′, E′1}). From the Inversion
Lemma we have types X and X2 such that typings E1 : X and E2 : X2
hold in Γ where Uu = (Xu + Xn

2) ∪ (Xu
2 + Xn) and U� = X� + X�2

for � ∈ {n, l, d, p, h}. We get from the induction hypothesis a type Y
such that Γ ` E′1 : Y and all parts of the lemma hold with X for U
and Y for V. We get Vu = (Yu + Xn

2) ∪ (Xu
2 + Yn) and V� = Y� + X�2

for � ∈ {n, l, d, p, h} by applying the typing rule Par. Parts 3 to 7
carry over from the induction hypothesis for X, Y. Part 2 follows
from M′u −Vu = M′u − (Yu + Xn

2) ∪ (Xu
2 + Yn) = ((M′u − Yu)− Xn

2) ∩
((M′u − Yn)− Xu

2) ⊇ ((Mu − Xu)− Xn
2) ∩ ((Mu − Xn)− Xu

2) = Mu −
(Xu + Xn

2) ∪ (Xu
2 + Xn) = Mu − Uu. The case of osPar2 follows by

symmetry.
For the induction case osSeq, let Γ ` A E′′ :U and consider a step

(Mu, {M, A E′′}) P (M′u, {M′, B E′′})

inferred from a step (Mu, {M, A}) P (M′u, {M′, B}). By applying
the Inversion Lemma (Lemma 4.7.3), part 8, and the induction hy-
pothesis we get types X, Y, Z such that the typings A : X, B : Y and
E′′ : Z hold in Γ, such that U = 〈Xu ∪ (Zu − Xl), Xn ∪ (Zn − Xl), Xl +
Zl , Xd + Zd, Xp ∪ (Zp + Xh), Xh + Zh〉. By applying Seq to Γ ` B : Y
and Γ ` E′′ : Z, we get V the same as U, only with Y substituted
for X. Parts 4, 5 and 7 of the lemma carry over from the induction
hypothesis for X, Y. Parts 2, 3 follow from applying parts 2 and 4,
and parts 3 and 4, respectively, of the induction hypothesis to get
M′u −V� = M′u − (Y� ∪ (Z� −Yl)) = (M′u −Y�)∩ ((M′u +Yl)− Z�) ⊇
(Mu − X�) ∩ ((Mu + Xl)− Z�) = Mu − (X� ∪ (Z� − Xl)) = Mu −U�,
where � ∈ {u, n}. Part 6 follows from a similar argument applying
parts 6 and 7 of the induction hypothesis, and that since A E′′ is valid,

4.8 Correctness 137

ΣE′′ = [], hence ΣA E′′ = ΣA and ΣBE′′ = ΣB.
For the base case osPop, let Γ ` {N, nop} :U and consider

(Mu, {M, {N, nop}}) P (Mu − N, {M, nop})

By the Inversion Lemma 4.7.3, U = 〈N, N,−N,−N, [], []〉 and further
Γ ` nop : V where V = 〈[], [], [], [], [], []〉. Hence, parts 2 to 7 become
equalities.

For the inductive case osScp, let Γ ` {N, A} :U and consider a step

(Mu, {M, {N, A}}) P (M′u, {M, {N′, A′}})

inferred from a step

(Mu, {N, A}) P (M′u, {N′, A′})

By the Inversion Lemma 4.7.3 we have X such that Γ ` A : X and
U = 〈Xu ∪ (N − Xd), Xn ∪ (N − Xd), Xd − N, Xd − N, Xp, Xh〉. We get
from the induction hypothesis that Γ ` A′ : Y, so we can apply the typ-
ing rule Scp to get Γ ` {N′, A′} : V, where V = 〈Yu ∪ (N′ − Yd), Yn ∪
(N′ − Yd), Yd − N′, Yd − N′, Yp, Yh〉. Parts 6 and 7 hold by the induc-
tion hypothesis. Parts 4 and 5 become equalities by the induction
hypothesis for A, A′ part 5. Parts 2 and 3 follow from M′u − V� =
M′u − (Y� ∪ (N′ − Yd)) = (M′u − Y�) ∩ (M′u − N′ + Yd) ⊇ (Mu −
X�) ∩ (Mu − N + Xd) = Mu − (X� ∪ (N − Xd)) = Mu − U�, where
� ∈ {u, n}.

The following Theorem 4.8.3 is a combination of several statements
which in combination are often called soundness or safety. Parts 1, 2
and 3 are similar to the properties often called preservation, progress
and termination, respectively. (See for example [60]). Parts 1, 4 and 5
assert that the parts of the types have the meanings given in 4.5.1.

Theorem 4.8.3 (Soundness). If ` P : Γ, Γ ` E : X, E is valid and Xu ⊆ Mu,
then the following holds:

1. If (Mu, {M, E}) P (M′u, {M′, E′}) and Σ{M, E} − Mu ⊇ Xp,
then there is Y such that Γ ` E′ : Y, M′u ⊇ Yu and Σ{M′, E′} −M′u ⊇ Yp.

2. If E is not nop, we have (Mu, {M, E}) P (M′u, {M′, E′}) for some
(M′u, {M′, E′}).

138 A Type System for Usage of Software Components

3. All P-sequences starting in state (Mu, {M, E}) are finite.

4. If (Mu, {M, E}) ∗P (M′u, {M′, nop}), then Xl ⊆ M′u −Mu, Xd =
(M′u −M′)− (Mu −M) and Xh ⊇ (M′u −M′)− (Mu − Σ{M, E}).

5. If (Mu, {M, E}) ∗P (M′u, {M′, E′}) then −Xn ⊆ M′u − Mu and
Xp ⊇ (M′u − Σ{M′, E′})− (Mu − Σ{M, E}).

6. All states reachable from (Mu, {M, E}) are safe.

Proof. Let ` P : Γ, Γ ` E : X and Xu ⊆ Mu.

1. Assume (Mu, {M, E}) P (M′u, {M′, E′}). E′ is typable in Γ by
Lemma 4.8.2, part 1. Moreover, Γ(E′)u ⊆ M′u and Σ{M′, E′} −M′u ⊇
Γ(E′)p follows immediately from parts 2 and 6 of the same lemma.

2. By induction on the size of E. Any E can be written in one of the
following forms: newx, delx, lockN, freeN, useN, nop, E1 E2, (E1 +
E2), (E1 ‖ E2), {N, E1}. For each of these forms we check that part
2 of the theorem holds. In case newx we have a declaration for x in
P by Lemma 4.7.1 so that we can apply osNew. In case delx we have
x ∈ M by Remark 4.4.1, and since from the Inversion Lemma [x] = Xu,
and from assumption Xu ⊆ Mu, we have x ∈ Mu, so that we can
apply osDel. In the cases lockN and useN we have N = Xu ⊆ Mu
so that we can apply osLock and osUse, respectively. In case freeN
we can apply osFree. The case nop holds vacuously. In case E1 E2, if
E1 = nop we can apply rule osNop, otherwise we have from the In-
version Lemma 4.7.3 a type X1 such that Γ ` E1 : X1 and Xu

1 ⊆ Xu.
We can then apply the induction hypothesis for the smaller E1 and use
this step as premiss for an application of osSeq. In case (E1 ‖ E2), if
E1 = E2 = nop we can apply osParEnd. Otherwise we can use the
induction hypothesis for at least one of the smaller E1 or E2 so that
we can apply osPar1 or osPar2. In case (E1 + E2) we can always apply
osAlti. In case {N, E1}, if E1 = nop, we get from the Inversion Lemma
that N = Xu, so N ⊆ Mu and we can apply osPop. Otherwise we have
from the Inversion Lemma that Γ ` E1 : Y for some Y and Yu ⊆ Mu,
so we can apply the induction hypothesis for the smaller E1 and use
osScp on this step.

4.8 Correctness 139

3. Assume ` P : Γ, and let EP be the set of terms that can be typed
in Γ. For every E ∈ EP, define |E| in the following recursive way:
|delx| = |lockN| = |freeN| = |useN| = |nop| = 1, |newx| = 1 + |A|
if x −≺ A ∈ P, |(E1 + E2)| = 1 + max(|E1|, |E2|), |{N, E1}| = 1 + |E1|
and |E1 · E2| = |(E1 ‖ E2)| = |E1|+ |E2|. By structural induction on the
derivation of Γ ` E : X one easily sees that |E| is well-defined and gives
an upper bound to the number of steps in the operational semantics.

4. By induction on the number of steps, using Lemma 4.8.2. The
base case (Mu, {M, E}) = (M′u, {M′, nop}) follows from applying the
Inversion Lemma to Γ ` nop : X. For the induction step, consider

(Mu, {M, E}) P (M′′u , {M′′, E′}) ∗P (M′u, {M′, nop})

and assume Γ(E) = X. From Lemma 4.8.2, we get Γ(E′) = Y such that
we can apply the induction hypothesis and get Yl ⊆ M′u −M′′u , Yd =
(M′u − M′)− (M′′u − M′′) and Yh ⊇ (M′u − M′)− (M′′u − Σ{M′′, E′}).
By Lemma 4.8.2, part 4, we have Xl + Mu ⊆ Yl + M′′u , so we get Xl ⊆
Yl + M′′u − Mu ⊆ M′u − Mu. By part 5 of the same lemma we have
Yd + M′′u −M′′ = Xd + Mu −M, so we get (M′u −M′)− (Mu −M) =
Xd. Finally, by part 7 of Lemma 4.8.2 we have Yh + M′′u − Σ{M′′, E′} ⊆
Xh + Mu − Σ{M, E}, so we get (M′u −M′)− (Mu − Σ{M, E}) ⊆ Xh.

5. By induction on the number of steps, using Lemma 4.8.2. The base
case (zero steps) is trivial. For the induction step, consider

(Mu, {M, E}) P (M′′u , {M′′, E′′}) ∗P (M′u, {M′, E′})

and assume Γ(E) = X. From Lemma 4.8.2 we get Γ(E′′) = Y such that
we can apply the induction hypothesis and get −Yn ⊆ M′u −M′′u and
(M′u − Σ{M′, E′})− (M′′u − Σ{M′′, E′′}) ⊆ Yp By Lemma 4.8.2, part 3,
we have Mu − Xn ⊆ M′′u − Yn so we get −Xn ⊆ M′u −Mu. By part 6
of the same lemma, we have Yp + M′′u − Σ{M′′, E′′} ⊆ Xp + Mu −
Σ{M, E}, so we get (M′u − Σ{M′, E′})− (Mu − Σ{M, E}) ⊆ Xp.

6. It is enough to show that (Mu, {M, E}) is safe, as part 1 together
with Lemma 4.8.1 guarantee that the theorem can be applied in all
reachable states. Recall the definition of unsafe states in Definition 4.4.2.
Assume there exists a bag N and a transition (Mu + N, {M, E}) P

140 A Type System for Usage of Software Components

(M′u + N, {M′, E′}), and use induction on the derivation of this tran-
sition to show that there also exists a transition (Mu, {M, E}) P
(M′u, {M′, E′}):

The base cases osFree, osAlt1, osAlt2, osNop and osParEnd are easy,
as there are no conditions or restrictions on the transition. The base
case osNew holds since P does not change. In the base cases osDel,
osLock, osUse and osPop we need to use that Xu ⊆ Mu and that the
smallest safe size of Mu, as seen from the operational semantics, in
each case is exactly Xu, as seen from the type rules. For the in-
duction cases osScp, osPar1, osPar2 and osSeq, assume that the pre-
miss from which the transition is inferred is (Mu + N, {N′, F}) P
(M′u + N, {N′′, F′}), where the Inversion Lemma 4.7.3 implies that
Γ ` F : Y for some Y, where Yu ⊆ Xu, such that Yu ⊆ Mu. We can
therefore apply the induction hypothesis to this premiss, to get the ex-
istence of (Mu, {N′, F}) P (M′u, {N′′, F′}) from which we can use the
same rule to infer (Mu, {M, E}) P (M′u, {M′, E′}).

Finally, we summarize the properties of the type system for well-
typed programs, as defined in Definition 4.5.1 on page 124. The reader
is referred to the paragraph following Definition 4.5.1 for an explana-
tion of the four bags required to be empty, to Section 4.4.1 and Defini-
tion 4.4.2 for an explanation of safe states, and to Section 4.4.2 for an
explanation of why it is important that M′u ⊆ Σ{M′, E′}.

Corollary 4.8.4. If ` P : Γ and Γ ` newx : X, where x is the last component
declared in P and Xd = Xu = Xp = Xh = [], then

• All maximal transition sequences starting with ([], {[], newx}) end with
(M, {M, nop}) for some bag M.

• All states (M′u, {M′, E′}) reachable from ([], {[], newx}) are safe, and
such that M′u ⊆ Σ{M′, E′}.

The following theorem states that the types are sharp. Informally,
this means, they are as small as they can be, while still guaranteeing
safety of execution. The part Xd is not included as it is already stated
in Theorem 4.8.3 to be exact. The property is formulated differently for
the part Xu because of its nature — the other parts contain information
about how some of the bags or the difference between them change,
while Xu only states the minimum safe size of the bag Mu.

4.8 Correctness 141

Theorem 4.8.5 (Sharpness). Assume some program P, bags M and Mu and
valid expression E such that ` P : Γ and Γ ` E : X and Mu ⊆ Σ{M, E}

1. If Mu 6⊇ Xu, then an unsafe state is reachable from (Mu, {M, E}).

2. If Mu ⊇ Xu:

n For every y ∈ C there exists a state (M′u, {M′, E′}) such that
(Mu, {M, E}) ∗P (M′u, {M′, E′}) and (M′u −Mu)(y) = −Xn(y).

l For every y ∈ C there exists a terminal state (M′u, {M′, nop})
such that (Mu, {M, E}) ∗P (M′u, {M′, nop}) and (M′u −Mu)(y) =
Xl(y).

p For every y ∈ C there exists a state (M′u, {M′, E′}) such that
(Mu, {M, E}) ∗P (M′u, {M′, E′}) and (M′u − Σ{M′, E′}) − (Mu −
Σ{M, E})(y) = Xp(y).

h For every y ∈ C there exists a terminal state (M′u, {M′, nop}) such
that (Mu, {M, E}) ∗P (M′u, {M′, nop})
and (M′u −M′)− (Mu − Σ{M, E})(y) = Xh(y).

Proof. By primary induction on the length of P and secondary induc-
tion on the derivation of Γ ` E : X. If the length of P is zero the result is
trivial. Otherwise, ` P : Γ has been proved by the following application
of Prog:

Γ′ ` A :Y, ` P′ : Γ′, x 6∈ dom(Γ′)
` P′, x−≺ A : Γ′ ∪ {x 7→ Y}

Assume the result has been proved for all programs with fewer decla-
rations than P. We now prove that X is sharp whenever Γ ` E : X by
induction on the derivation of the latter.

For Xu note that Mu 6⊇ Xu implies that there is y ∈ C such that
Mu(y) < Xu(y) and Xu(y) ≥ 1. Let y ∈ C. Note that, for � ∈ {n, p},
if some X�(y) = 0, one can take (Mu, {M′, E′}) = (Mu, {M, E}) to get
the desired result. With this in mind the base cases Axm, Lock, Free,
Use and Del are easy.

The base case New is more interesting since it uses the primary
induction hypothesis. Assume x−≺ A ∈ P and Γ ` E : X is inferred by
the following application of the rule New:

Γ(x) = Y
Γ ` newx : 〈Yu, Yn, Yl + x, Yd, Yp, Yh〉

142 A Type System for Usage of Software Components

If x is not the last variable declared in P, then the sharpness of
X = 〈Yu, Yn, Yl + x, Yd, Yp, Yh〉 follows from the primary induction hy-
pothesis (in combination with Uniqueness). Otherwise, we have that
P is P′, x −≺ A as in the application of Prog above, with ` P′ : Γ′,
Γ′ ` A : Y. Concerning part 1, note that Xu = Yu and from the Basics
Lemma x 6∈ Yu, such that if Mu 6⊇ Xu then also Mu + x 6⊇ Xu. We can
therefore use the primary induction hypothesis for A, Y on the state ob-
tained by one application of the rule osNew. For the second part, and
for any y ∈ C different from x we can use the primary induction hy-
pothesis for A, Y and prefix the sequences obtained by a step using the
rule osNew as we have M(y) = (M + x)(y), Mu(y) = (Mu + x)(y) and
Yl(y) = (Yl + x)(y). So for x, we only need to note that Y�(x) = 0 for
� ∈ {n, p, h} and take (M′u, {M′, E′}) = (Mu, {M, E}) to get −X�(x) =
Y�(x) = 0 = (M′ −M)(x) = (M′u −Mu)(x). Finally Yl(x) = 1 and we
can take (M′u, {M′, E′}) = (Mu + x, {M + x, A}).

In the induction case Alt the induction hypothesis can be applied to
the premises Γ ` Ei : Xi (i = 1, 2). For part 1, note that if Mu 6⊇ Xu, then
there is an i ∈ {1, 2} such that Mu 6⊇ Xu

i . The induction hypothesis
can then be used after an application of osAlti. For the second part,
for each y and � ∈ {n, l, d, p, h}, if X�(y) = X�i (y), then one uses the
induction hypothesis for Ei (i may vary with y, �).

In the case of the rule Seq we also apply the induction hypothesis
to the premises Γ ` Ei : Xi (i = 1, 2). For part 1, note first that if
Mu 6⊇ Xu, then either Mu 6⊇ Xu

1 or Mu 6⊇ Xu
1 − Xl

1. In the first case, we
can apply the induction hypothesis to E1, and postfix all expressions
with E2 in the obtained sequence. In the second case, where for some
y, Mu(y) < Xu

2 (y) − Xl
1(y), we take the sequence (Mu, {M, E1}) ∗P

(M′u, {M′, nop}) with M′u(y) = Mu(y) − Xl
1(y) < Xu

2 (y) such that
M′u 6⊇ Xu

2 , postfix its expressions with E2, and then proceed with an in-
stance of osNop and the sequence (M′u, {M′, E2}) ∗P (M′′u , {M′′, E′2})
with (M′′u , {M′′, E′2}) being an unsafe state. Concerning Xl and Xh we
can concatenate the two sequences obtained from the induction hy-
pothesis. For Xn and component y we distinguish between Xn(y) =
Xn

1 (y) and Xn(y) = Xn
2 (y) − Xl

1(y). In the first case we take the se-
quence for (Mu, {M, E1}) and postfix all expressions with E2 to ob-
tain a sequence for (Mu, {M, E1 E2}) with the desired property. In the
second case we take the sequence (Mu, {M, E1}) ∗P (M′u, {M′, nop})
with (M′u −Mu)(y) = Xl

1(y), postfix its expressions with E2, and then

4.8 Correctness 143

proceed with an instance of osNop and then the sequence

(M′u, {M′, E2}) ∗P (M′′u , {M′′, E′2})

with (M′′u −M′u)(y) = −Xn
2 (y). The total sequence

(Mu, {M, E1 E2}) ∗P (M′u, {M′, E2}) ∗P (M′′u , {M′′, E′2})

enjoys (M′′u − Mu)(y) = Xl
1(y) − Xn

2 (y) = −Xn(y). The remaining
case Xp, can be dealt with in a way very similar to Xn(y). Note that
ΣE2 = [] because E is valid.

For the induction case of the rule Par assume E = (E1 ‖ E2) so the
induction hypothesis can be applied to the premises Γ ` Ei : Xi (i =
1, 2). For part 1, where Xu = (Xu

1 + Xn
2) ∪ (Xu

2 + Xn
1), note that if

Mu 6⊇ Xu, then either Mu 6⊇ Xu
1 + Xn

2 or Mu 6⊇ Xu
2 + Xn

1 . In the former
case there is y such that Mu(y) < Xu

1 (y) + Xn
2 (y). We can use the

induction hypothesis for Xn
2 and y and apply osPar2 to each step in

the sequence obtained. Assume (M′u, {M′, (E1 ‖ E′2)}) is the last state
in this sequence, such that M′u(y) = Mu(y)− Xn

2 (y) < Xu
2 (y). So we

have M′u 6⊇ Xu
1 (y) and we can apply the induction hypothesis to get

an unsafe state reachable from (M′u, {M′, E1}). Apply osPar1 to each
step in the sequence to the latter unsafe state, and we get the reachable
unsafe state needed for part 1. The other case follows by symmetry.

For part 2 we apply the induction hypothesis to both premises
and concatenate both sequences using the inductive rules osPar1 and
osPar2. By additivity this gives the desired results. (Any interleaving
of the two sequences would amount to the same.)

For the induction case Scope, assume E = {Ms, Es} so the induction
hypothesis can be applied to the premiss Γ ` Es : Xs. For Xn we do
a case distinction on whether Xn(y) = Xn

s (y) or Xn(y) = Ms(y) −
Xd

s (y). In the first case we can apply the induction hypothesis to Es
and Ms to get the sequence (Mu, {Ms, Es}) ∗P (M′u, {M′s, E′s}), where
(M′u − Mu)(y) = −Xn(y). Applying osScp to every step, we get a
sequence (Mu, {M, {Ms, Es}}) ∗P (M′u, {M, {M′s, E′s}}). In the second
case, where Xn(y) = Ms(y)−Xd

s (y), we have from Theorem 4.8.3, that
for any sequence (Mu, {M, {Ms, Es}}) ∗P (M′u, {M, {M′s, nop}}) it is
true that Xd

s = (M′u − M′s) − (Mu − Ms). Postfix this sequence with
a transition osPop: (M′u, {M, {M′s, nop}}) P (M′u − M′s, {M, nop}).
We can now reorder M′u(y) = Xd

s (y) + M′s(y)−Ms(y) + Mu(y) to get
(M′u −M′s)(y)−Mu(y) = Xd

s (y)−Ms(y) = Xn(y).

144 A Type System for Usage of Software Components

The case for Xu follows from a similar argument as for Xn. The
case for Xl(y) = Xd

s (y)−Ms(y) is similar to the second case for Xn. We
have from Theorem 4.8.3, that for any sequence (Mu, {M, {Ms, Es}}) ∗P
(M′u, {M, {M′s, nop}}) it is true that Xd

s = (M′u − M′s) − (Mu − Ms).
Postfix this sequence with a transition osPop: (M′u, {M, {M′s, nop}}) P
(M′u −M′s, {M, nop}). We can now reorder M′u(y) = Xd

s (y) + M′s(y)−
Ms(y) + Mu(y) to get (M′u − M′s)(y) − Mu(y) = Xd

s (y) − Ms(y) =
Xl(y). For Xd, Xp and Xh apply the induction hypothesis to Es and
Ms and apply osScp to each step in the obtained sequence.

4.9 Related Work and Conclusion

There is a large amount of work related to similar problems. Most
approaches differ from this chapter by using super-polynomial algo-
rithms, by assuming more on the runtime scheduling of parallel exe-
cutions, or by treating only memory consumption. For the functional
languages, see e.g. [20, 32, 46, 70]. Popea and Chin in [62] also dis-
cuss usage in a related way. Their algorithm depends on solving con-
straints in Presburger arithmetic, which in the worst case uses doubly
exponential time. Igarashi & Kobayashi in [40], analyze the resource
usage problem for an extension of simply typed lambda calculus includ-
ing resource usage. The algorithm extracts the set of possible traces
of usage from the program, and then decides whether all these traces
are allowed by the specification. This latter problem is still compu-
tationally hard to solve and undecidable in the worst case. Parallel
composition is not considered. For the imperative paradigm, which is
closer to the system described here, e.g. [8, 17, 33] treat memory us-
age. The problem of component usage in a parallel setting is related to
prevention of deadlocks and race conditions. Boyapati et al. describe
in [7] an explicitly typed system for verifying there are no deadlocks
or race conditions in Java programs. In addition to the higher level of
detail, the main difference from the system described in this chapter is
the assumptions on the scheduling of parallel executions, namely the
ability of a thread to wait until another thread frees/releases a lock.
This scheduling has of course a cost in terms of added runtime and of
complexity of the implementation.

We have defined a component language with a small-step opera-

4.9 Related Work and Conclusion 145

tional semantics and a type system. The type system combined with
the system in [3] or the system in [67] guarantees that the execution of
a well-typed program will terminate and cannot reach an unsafe state.
The language described in this chapter is an extension of the language
first described in [68], and uses the results from [68, 3]. The proper-
ties proved in the current chapter are new, though, and in some ways
orthogonal to those shown in [68, 3]. The language we introduced is in-
spired by CCS [55], with the atomic actions interpreted as component
instantiation, deallocation and usage. The basic operators are sequen-
tial, alternative and parallel composition and a scope operator. The
operational semantics is SOS-style [61], with the approach to sound-
ness similar in spirit to [71]. We have presented a type system for this
language which predicts sharp bounds of the number of instances of
components necessary for safe execution. The type inference algorithm
has quadratic runtime.

146 A Type System for Usage of Software Components

BIBLIOGRAPHY 147

Bibliography

[1] ISO 8879. Information processing — text and office systems —
standard generalized markup language (SGML), October 1986.

[2] Valentin M. Antimirov. Rewriting regular inequalities (extended
abstract). In Horst Reichel, editor, FCT, volume 965 of Lecture
Notes in Computer Science, pages 116–125. Springer, 1995.

[3] Marc Bezem, Dag Hovland, and Hoang Truong. A type system
for counting instances of software components. Technical Report
363, Department of Informatics, The University of Bergen, P.O.
Box 7800, N-5020 Bergen, Norway, October 2007.

[4] Marc Bezem, Jan Willem Klop, and Roel de Vrijer, editors. Term
Rewriting Systems. Cambridge University Press, 2003.

[5] Marc Bezem and Hoang Truong. A type system for the safe in-
stantiation of components. Electronic Notes in Theoretical Computer
Science, 97:197–217, 2004.

[6] Ronald Book, Shimon Even, Sheila Greibach, and Gene Ott. Am-
biguity in graphs and expressions. IEEE Transactions on Computers,
c-20(2):149–153, 1971.

[7] Chandrasekhar Boyapati, Robert Lee, and Martin C. Rinard. Own-
ership types for safe programming: preventing data races and
deadlocks. In OOPSLA, pages 211–230, 2002.

[8] Víctor Braberman, Diego Garbervetsky, and Sergio Yovine. A
static analysis for synthesizing parametric specifications of dy-
namic memory consumption. Journal of Object Technology, 5(5):31–
58, June 2006.

[9] Anne Brüggemann-Klein. Regular expressions into finite au-
tomata. In Imre Simon, editor, LATIN, volume 583 of Lecture Notes
in Computer Science, pages 87–98. Springer, 1992.

148 BIBLIOGRAPHY

[10] Anne Brüggemann-Klein. Regular expressions into finite au-
tomata. Theoretical Computer Science, 120(2):197–213, 1993.

[11] Anne Brüggemann-Klein. Unambiguity of extended regular ex-
pressions in SGML document grammars. In Thomas Lengauer,
editor, ESA, volume 726 of Lecture Notes in Computer Science, pages
73–84. Springer, 1993.

[12] Anne Brüggemann-Klein and Derick Wood. One-unambiguous
regular languages. Information and Computation, 140(2):229–253,
1998.

[13] Janusz A. Brzozowski. Derivatives of regular expressions. J. ACM,
11(4):481–494, 1964.

[14] Janusz A. Brzozowski. Roots of star events. J. ACM, 14(3):466–477,
1967.

[15] Anne Brüggemann-Klein. Compiler-construction tools and tech-
niques for SGML parsers: Difficulties and solutions, May 1994.

[16] Haiming Chen and Lei Chen. Inclusion test algorithms for
one-unambiguous regular expressions. In John S. Fitzgerald,
Anne Elisabeth Haxthausen, and Hüsnü Yenigün, editors, ICTAC,
volume 5160 of LNCS, pages 96–110. Springer, 2008.

[17] Wei-Ngan Chin, Huu Hai Nguyen, Shengchao Qin, and Martin C.
Rinard. Memory usage verification for OO programs. In Chris
Hankin and Igor Siveroni, editors, SAS, volume 3672 of Lecture
Notes in Computer Science, pages 70–86. Springer, 2005.

[18] Dario Colazzo, Giorgio Ghelli, and Carlo Sartiani. Efficient asym-
metric inclusion between regular expression types. In Ronald Fa-
gin, editor, ICDT, volume 361 of ACM International Conference Pro-
ceeding Series, pages 174–182. ACM, 2009.

[19] Stephen A. Cook. The complexity of theorem-proving procedures.
In STOC, pages 151–158. ACM, 1971.

[20] Karl Crary and Stephanie Weirich. Resource bound certification.
In POPL ’00: Proceedings of the 27th ACM SIGPLAN–SIGACT sym-
posium on Principles of programming languages, pages 184–198, New
York, NY, USA, 2000. ACM Press.

BIBLIOGRAPHY 149

[21] Thompson et al. XML Schema part 1: Structures second edition,
W3C recommendation, 2004.

[22] Wouter Gelade. Succinctness of regular expressions with inter-
leaving, intersection and counting. In Edward Ochmanski and
Jerzy Tyszkiewicz, editors, MFCS, volume 5162 of Lecture Notes in
Computer Science, pages 363–374. Springer, 2008.

[23] Wouter Gelade, Marc Gyssens, and Wim Martens. Regu-
lar expressions with counting: Weak versus strong deter-
minism. http://lrb.cs.uni-dortmund.de/~martens/data/
mfcs09-appendix.pdf. In Rastislav Královic and Damian Ni-
winski, editors, MFCS, volume 5734 of Lecture Notes in Computer
Science, pages 369–381. Springer, 2009.

[24] Wouter Gelade, Wim Martens, and Frank Neven. Optimizing
schema languages for XML: Numerical constraints and interleav-
ing. In Thomas Schwentick and Dan Suciu, editors, Proceedings
of ICDT, volume 4353 of Lecture Notes in Computer Science, pages
269–283. Springer, 2007.

[25] Wouter Gelade, Wim Martens, and Frank Neven. Optimizing
schema languages for XML: Numerical constraints and interleav-
ing. SIAM J. Comput., 38(5):2021–2043, 2009.

[26] Giorgio Ghelli, Dario Colazzo, and Carlo Sartiani. Efficient in-
clusion for a class of xml types with interleaving and counting.
In Marcelo Arenas and Michael I. Schwartzbach, editors, DBPL,
volume 4797 of Lecture Notes in Computer Science, pages 231–245.
Springer, 2007.

[27] Giorgio Ghelli, Dario Colazzo, and Carlo Sartiani. Linear time
membership for a class of XML types with interleaving and count-
ing. In PLAN-X, 2008.

[28] Giorgio Ghelli, Dario Colazzo, and Carlo Sartiani. Linear time
membership in a class of regular expressions with interleaving
and counting. In James G. Shanahan, Sihem Amer-Yahia, Ioana
Manolescu, Yi Zhang, David A. Evans, Aleksander Kolcz, Key-
Sun Choi, and Abdur Chowdhury, editors, CIKM, pages 389–398.
ACM, 2008.

http://lrb.cs.uni-dortmund.de/~martens/data/mfcs09-appendix.pdf
http://lrb.cs.uni-dortmund.de/~martens/data/mfcs09-appendix.pdf

150 BIBLIOGRAPHY

[29] V M Glushkov. The abstract theory of automata. Russian Mathe-
matical Surveys, 16(5):1–53, 1961.

[30] GNU. GNU grep manual.

[31] Sheila A. Greibach. Remarks on blind and partially blind one-way
multicounter machines. Theor. Comput. Sci., 7:311–324, 1978.

[32] Martin Hofmann and Steffen Jost. Static prediction of heap space
usage for first-order functional programs. In POPL ’03: Proceed-
ings of the 30th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 185–197, New York, NY, USA, 2003.
ACM.

[33] Martin Hofmann and Steffen Jost. Type-based amortised heap-
space analysis (for an object-oriented language). In Peter Ses-
toft, editor, Proceedings of the 15th European Symposium on Program-
ming (ESOP), Programming Languages and Systems, volume 3924 of
LNCS, pages 22–37. Springer, 2006.

[34] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages and Computation. Addison-Wesley, 1979.

[35] Haruo Hosoya, Jérôme Vouillon, and Benjamin C. Pierce. Regu-
lar expression types for XML. ACM Trans. Program. Lang. Syst.,
27(1):46–90, 2005.

[36] Dag Hovland. A type system for usage of software components.
In Stefano Berardi, Ferruccio Damiani, and Ugo de’Liguoro, ed-
itors, TYPES, volume 5497 of Lecture Notes in Computer Science,
pages 186–202. Springer, 2008.

[37] Dag Hovland. Regular expressions with numerical constraints
and automata with counters. In Martin Leucker and Carroll Mor-
gan, editors, ICTAC, volume 5684 of Lecture Notes in Computer Sci-
ence, pages 231–245. Springer, 2009.

[38] Dag Hovland. The inclusion problem for regular expressions. In
Adrian Horia Dediu, Henning Fernau, and Carlos Martín-Vide,
editors, LATA, volume 6031 of Lecture Notes in Computer Science,
pages 309–320. Springer, 2010.

BIBLIOGRAPHY 151

[39] IEEE. The open group base specifications issue 6, 2004.

[40] Atsushi Igarashi and Naoki Kobayashi. Resource usage analysis.
ACM Trans. Program. Lang. Syst., 27(2):264–313, 2005.

[41] Pekka Kilpeläinen. Inclusion of unambiguous]REs is NP-hard.
Technical report, University of Kuopio, May 2004.

[42] Pekka Kilpeläinen and Rauno Tuhkanen. Regular expressions
with numerical occurrence indicators - preliminary results. In
Pekka Kilpeläinen and Niina Päivinen, editors, SPLST, pages
163–173. University of Kuopio, Department of Computer Science,
2003.

[43] Pekka Kilpeläinen and Rauno Tuhkanen. Towards efficient imple-
mentation of XML schema content models. In Ethan V. Munson
and Jean-Yves Vion-Dury, editors, ACM Symposium on Document
Engineering, pages 239–241. ACM, 2004.

[44] Pekka Kilpeläinen and Rauno Tuhkanen. One-unambiguity of
regular expressions with numeric occurrence indicators. Informa-
tion and Computation, 205(6):890–916, 2007.

[45] Donald E. Knuth. The Art of Computer Programming, Volume I: Fun-
damental Algorithms, Third Edition. Addison-Wesley, 1997.

[46] Naoki Kobayashi, Kohei Suenaga, and Lucian Wischik. Resource
usage analysis for the π-calculus. Logical Methods in Computer Sci-
ence, 2(3), 2006.

[47] Christoph Koch and Stefanie Scherzinger. Attribute grammars for
scalable query processing on XML streams. VLDB J., 16(3):317–
342, 2007.

[48] Federico Mancini, Dag Hovland, and Khalid A. Mughal. Investi-
gating the limitations of Java annotations for input validation. In
ARES, pages 513–518. IEEE Computer Society, 2010.

[49] Federico Mancini, Dag Hovland, and Khalid A. Mughal. The
SHIP validator: An annotation-based content-validation frame-
work for Java applications. In Internet and Web Applications and
Services (ICIW), 2010 Fifth International Conference on, pages 122 –
128, 9-15 2010.

152 BIBLIOGRAPHY

[50] Wim Martens, Frank Neven, and Thomas Schwentick. Complexity
of decision problems for simple regular expressions. In Jirí Fiala,
Václav Koubek, and Jan Kratochvíl, editors, MFCS, volume 3153
of Lecture Notes in Computer Science, pages 889–900. Springer, 2004.

[51] Alain J. Mayer and Larry J. Stockmeyer. Word problems-this time
with interleaving. Inf. Comput., 115(2):293–311, 1994.

[52] Douglas M. McIlroy. Mass produced software components. In
P. Naur and B. Randell, editors, Software Engineering: Report of a
conference sponsored by the NATO Science Committee, pages 79–87.
Scientific Affairs Division, NATO, October 1968.

[53] Robert McNaughton and H. Yamada. Regular expressions and
state graphs for automata. IRE Transactions on Electronic Computers,
9:39–47, 1960.

[54] Albert R. Meyer and Larry J. Stockmeyer. The equivalence prob-
lem for regular expressions with squaring requires exponential
space. In Proceedings of FOCS, pages 125–129. IEEE, 1972.

[55] Robin Milner. A Calculus of Communicating Systems, volume 92 of
Lecture Notes in Computer Science. Springer, 1980.

[56] Gonzalo Navarro and Mathieu Raffinot. Flexible Pattern Matching
in Strings. Cambridge University Press, 2002.

[57] A. Nerode. Linear automaton transformations. Proceedings of the
American Mathematical Society, 9(4):541–544, 1958.

[58] William F. Ogden, William E. Riddle, and William C. Rounds.
Complexity of expressions allowing concurrency. In POPL, pages
185–194, 1978.

[59] The Open Group. The Open Group Base Specifications Issue 6, IEEE
Std 1003.1, 2 edition, 1997.

[60] Benjamin C. Pierce. Types and Programming Languages. The MIT
Press, 2002.

[61] Gordon D. Plotkin. A structural approach to operational seman-
tics. Journal of Logic and Algebraic Programming, 60-61:17–139, July-
December 2004.

BIBLIOGRAPHY 153

[62] Corneliu Popeea and Wei-Ngan Chin. A type system for resource
protocol verification and its correctness proof. In Nevin Heintze
and Peter Sestoft, editors, PEPM, pages 135–146. ACM, 2004.

[63] Arto Salomaa. Two complete axiom systems for the algebra of
regular events. J. ACM, 13(1):158–169, 1966.

[64] C. M. Sperberg-McQueen. Notes on finite state automata with
counters, 2004.

[65] Bjarne Stroustrup. The C++ Programming Language, Third Edition.
Addison-Wesley, 2000.

[66] Clemens Szyperski. Component Software—Beyond Object–Oriented
Programming. Addison–Wesley / ACM Press, 2nd edition, 2002.

[67] Hoang Truong. Guaranteeing resource bounds for component
software. In Martin Steffen and Gianluigi Zavattaro, editors,
FMOODS, volume 3535 of Lecture Notes in Computer Science, pages
179–194. Springer, 2005.

[68] Hoang Truong and Marc Bezem. Finding resource bounds in the
presence of explicit deallocation. In Dang Van Hung and Martin
Wirsing, editors, Proceedings ICTAC, volume 3722 of Lecture Notes
in Computer Science, pages 227–241. Springer, 2005.

[69] G. S. Tseitin. On the complexity of derivation in propositional cal-
culus. Studies in Constructive Mathematics and Mathematical Logic,
part 2, pages 115–225, 1968.

[70] Leena Unnikrishnan, Scott D. Stoller, and Yanhong A. Liu. Op-
timized live heap bound analysis. In VMCAI 2003: Proceedings of
the 4th International Conference on Verification, Model Checking, and
Abstract Interpretation, pages 70–85, London, UK, 2003. Springer-
Verlag.

[71] Andrew K. Wright and Matthias Felleisen. A syntactic approach
to type soundness. Information and Computation, 115(1):38–94,
1994.

	Introduction
	The Inclusion Problem for Regular Expressions
	Introduction
	Regular Expressions
	Term Trees and Positions
	1-Unambiguous Regular Expressions

	Rules for Inclusion
	Properties of the Algorithm
	1-Unambiguity and the Rules
	Invertibility of the Rules
	Termination and Polynomial Run-time

	Soundness and Completeness
	Related Work and Conclusion
	Conclusion

	Numerical Constraints and Unordered Concatenation
	Introduction
	Regular Expressions with Unordered Concatenation and Numerical Constraints
	Complexity of Membership under Unordered Concatenation
	Membership is in NP
	Membership is NP-hard

	Finite Automata with Counters
	Counter States and Update Instructions
	Overlapping Update Instructions
	Finite Automata with Counters
	Word recognition.
	Searching with FACs

	Subscripting and Unambiguity
	Constraint Normal Form
	Subscripted Expressions
	Unambiguity

	First, Last, and Follow
	Calculating first, last, and follow

	Constructing FACs
	Related Work and Conclusion
	Related Work
	Conclusion

	A Type System for Usage of Software Components
	Introduction
	Example: Objects on the Free Store in C++
	Syntax
	Bags and Multisets
	Grammar
	Examples

	Operational Semantics
	Unsafe States
	Valid States

	Type System
	Types
	Typing Rules

	C++ Example Continued
	Properties of the Type System
	Type Inference

	Correctness
	Related Work and Conclusion

