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AB S T R A C T

The overall topic of this work is a graph operation known as edge-
local complementation (ELC) and its applications to iterative decoding of
classical codes. Although these legacy codes are arguably not well-suited
for graph-based decoding, they have other desirable properties resulting
in much current research on the general problem of forging this alloy.
From this perspective, these codes are typically referred to as high-
density parity-check codes. Our approach is to gain diversity by means
of ELC. Based on the known link between ELC and the information
sets of a code, C, we identify a one-to-one relationship between ELC
operations and the automorphism group of a code, Aut(C). With respect
to a specific parity-check matrix, H, we classify these code-preserving
permutations into trivial and nontrivial permutations, based on whether
the matrix is preserved (under ELC) up to row permutations, or not.
The corresponding iso-ELC operations preserve the structure of the
graph, and simulation data are presented on the performance benefit of
using iso-ELC operations as a source of diversity. Generalizing this to
random (noniso) ELC, we explore the benefits of a simplified, entirely
graph-local (i.e., distributive) implementation of ELC-based decoding.
Special codes are chosen, which are structurally well-suited for this
type of random ELC decoding. At an extreme, certain codes are ELC-
preserved, in that any ELC operation is an iso-ELC operation. Although
less useful from a coding perspective, the corresponding graphs are
interesting to determine and classify. However, in the general case, we
observe negative effects of random ELC, which causes the weight of
the graph to increase. Based on this, we explore the specific structural
properties which determine which ELC operations (i.e., which edges
of a graph) are desirable for ELC, from a decoding perspective. This is
dominated by the weight increase (in terms of number of new edges)
resulting from ELC, which also causes detrimental short cycles, so we
identify the graphical conditions (i.e., subgraphs) for which ELC is
weight-bounding ELC (WB-ELC). These operations are used to reduce
the weight of a systematic H (given a code), and also used in a proposed
decoder based on WB-ELC. At a slightly different approach, we also
apply ELC operations in an adaptive decoding scheme. As ELC is a
local operation, we can, to a certain extent, target the (inferred) least
reliable positions specifically. This is a well-known technique to improve
decoding, normally implemented via Gaussian elimination, which we
improve by using beneficial properties of the ELC operation.
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Introduction

1 IN F O R M A T I O N TH E O R Y

Information theory is the field of research centered on quantification of
information. A mathematical theory of such digital representations was
to a large extent defined in the groundbreaking work of Shannon in
1948 [1]. At the core lies a description of an optimal representation of
a finite set of messages, which constitute some information measured
in bits. This measure of information content is in terms of entropy,
which can be thought of as the surprise involved in learning (observing
or receiving) each of these messages. If a particular message is less
likely than the others, then the entropy of this message is relatively
high. This concept forms the basis for many fields of research, from
efficient (and lossless) compression to reliable communications over a
noisy channel. Such a channel can be any medium over which digital or
analog information is conveyed. There are many examples, from the
extremes of deep-space probes sending high-resolution images back to
Earth, or communications satellites within our own atmosphere relaying
information to the ground. At the other extreme, our everyday life is also
highly dependant on reliable communications through noisy channels.
For instance, music and movies may be read off an imperfect, perhaps
even scratched compact disc, such that its content may be enjoyed
through expensive speakers or high-definition television screens. This
would not be possible without the groundbreaking work by Shannon,
which gave birth to an entire science.

The insight of Shannon was that the disturbances due to the natural
presence of noise could, at least in theory, be overcome by the use of
coding. The compression mentioned above is one example, and is re-
ferred to as source coding, which optimizes the amount of data to be
transmitted. To improve the noisy situation, however, a different type
of coding is needed, known as channel coding. The idea is to introduce
redundancy into the transmission [1]. In its simplest form, one may con-
sider a simple repetition code, in which the information to be conveyed
– e.g., a single number – is repeated several times. Say the receiver is
a person at the other end of a busy street, where the noise is due to
traffic. By keeping a list of what he thinks he has heard, the receiver
will eventually – after a sufficient number of repetitions – have some
number which has occurred more frequently than others, and which
he may conclude to be the correct number. Although the error rate is
still not zero, it can be made arbitrarily low by increasing the number
of repetitions.
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Fig. 1: One-way communications scenario from a transmitter to a source, illustrating
the problem of forward error correction.

The disctinction between information and redundancy is apparent;
only the single number of useful content is delivered, at the cost of
the number of repetitions (the redundancy). This thesis is deals with
the forward error correction problem, in which the transmitter can com-
municate to the receiver and there is no feedback link in the opposite
direction. This situation is shown schematically in Fig. 1. The notion of
redundancy has a double meaning in information theory. Consider the
situation at the source; in order to attain efficient communications, the
information to be transmitted is compressed so as to remove (ideally)
all redundancy. However, as mentioned, specific, carefully constructed
redundancy is then added to the compressed information before ven-
turing a transmission. The specific design of such redundancy is an
important research field in its own right.

1 .1 SH A N N O N CA P A C I T Y

The capacity of a channel gives the maximum rate at which error-free
communications can be achieved. In other words, how many bits of
(source) information can be conveyed per channel use (bits actually
transmitted). In the binary case, this rate, R, is a number less than 1.

Shannon described the source coding (compression) in terms of a min-
imum rate needed to describe the information content to be transmitted.
Furthermore, he also proved the concept of a maximum possible rate for
reliable transmission, in terms of the minimum amount of redundancy
required to protect this information. This is dealt with in his source
coding and channel coding theorems, respectively. This maximum rate
is also known as the capacity, C, (also called the Shannon limit) of a
channel, and is the maximum rate at which error-free communications
can be guaranteed [1]. By error-free, it is understood that the probability
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of error can be made arbitrarily low as long as R < C. Communication
at a rate higher than C will, accordingly, incur an error probability
bounded away from 0, regardless of blocklength. This is achieved by
adding redundancy to the code, so in order to maintain the desired
transmission rate, the blocklength must be increased accordingly. Shan-
non’s channel theorem is asymptotic, and it is nonconstructive in the
sense that Shannon did not conceive of any concrete code construction
for which this could actually be performed – one of the most important
research problem within this field of science.

1 .2 TH E BA S I C NO T A T I O N

A (block) code, C, is defined as the set of length-n strings (codewords)
output of some encoding function. Our focus in this work is restricted
to the binary case, where each codeword symbol is a bit, taking a value
in the binary Galois field, denoted by GF(2) = {0, 1}. Binary addition
(modulo 2) is denoted by ⊕, and is sometimes referred to as an “XOR”
operation. The encoding is a mapping from length-k to length-n vectors
(n > k), where k bits are information and n − k bits are redundant.
As discussed above, the transmission rate (number of information bits
conveyed per transmitted symbol) may now be defined as R = k/n.
We will use uppercase italics for matrices, script notation and curly
brackets for sets, and boldface notation for vectors.

A linear code is written [n, k], and has the useful property that the
binary sum of any two codewords is also a codeword. Furthermore, a
linear code is conveniently represented using a basis for the space of
codewords. Any set of k linearly independent codewords which form a
basis for C is referred to as a generator matrix, G, of the code. In other
words, a linear code is understood as the vector space generated by the
rows of a k× n matrix, G

C = 〈G〉 ⊂ GF(2)n (1)

where GF(2)n is the space of all binary vectors of length n. In this work,
we will focus exclusively on linear codes. The dimension of the code
is dim(C) = dim(G) = k, such that |C| = 2k. The corresponding null
space of C is the vector space in which all vectors are orthogonal to C.
Thus, this is also a linear code, commonly referred to as the dual code
of C

C⊥ = {x′ ∈ GF(2)n | x · x′ = 0 ∀ x ∈ C}. (2)
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This dual code has dimension n− k (the co-dimension of C), so it may
be compactly represented by an (n− k)× n matrix, H. This also gives
that GHT = 0, so H is typically referred to as a parity-check matrix of C.
These matrices are said to be in systematic form if an identity matrix can
be found among the columns. In particular, G is in standard form if the k
rightmost columns comprise the identity matrix, Ik. The corresponding
standard form parity-check matrix follows directly

G = [P | Ik] ⇔ H = [In−k | PT ] (3)

where PT is the transpose of P. The sets of coordinates (column positions)
corresponding to the I and P parts of G are an information set, I , and
a parity set, P , respectively. The matrices H and G are not unique for
a code. For instance, by means of Gaussian elimination, an identity
matrix (associated with an information set) can be placed in different
subsets of columns of G. Each resulting matrix has a distinct P-part,
and gives an associated systematic parity-check matrix. The number of
distinct information sets is a property of the code. The weight of any
parity-check matrix, H, for the code is lower-bounded by

|H|min ≥ (n− k) dmin(C⊥).

In systematic form we have

|H|ip
min ≥ k(dmin − 1) + n− k (4)

and (3) gives
|G|ip

min = |H|ip
min + 2k− n.

In the following, even if H is not in systematic form, we will always
assume that it has full rank, meaning that it contains n− k linearily
independent rows. If C⊥ = C, we say that the code is self-dual, and the
above observations on G and H give that such a code is also always
half-rate, R = k/n = 1/2.

The group of permutations, acting on the n columns of H, which
preserve the code, is known as the automorphism group of the code,
Aut(C) = {σ : σ(C) = C}. The automorphism group of the code is the
same as that for the dual code [2].

1 .3 CH A N N E L MO D E L S

Any scenario in which content is to be transmitted from one place to
another should be thought of as a channel. Moreover, channels exist over

4



Introduction

which information is transferred not in space, but (conceptually) in time,
e.g., where content is written to a storage medium, and later read off
using some imperfect mechanism for reading and writing. As we have
mentioned, in any channel there is a natural presence of disturbance
or noise. Several models exist which attempt to describe the behaviour
of such real-life channels. These models are necessarily simplified
mathematical constructions, which focus on certain parameters of the
actual channel noise.

In this work, our focus is restricted to the case of binary transmission,
where the information to be transmitted is completely described by the
binary alphabet, denoted by GF(2). All channels considered also share
the property of being symmetric on the output which means that, from
the perspective of the receiver, the two possible origins of a received
bit, yi, are equally likely. Then, the channel transition probability, p, is

p := Pr(yi | xi = 0) = Pr(yi | xi = 1). (5)

Another important general assumption on binary-input output-symmetric
channels is that the noise affects each bit independently. These are re-
ferred to as memoryless channels, for which the (blockwise) transition
probability may be written

Pr(y | x) =
n−1

∏
i=0

Pr(yi | xi).

The simplest channel model is the binary symmetric channel (BSC),
in which a bit is flipped with some fixed transition probability – see
Fig. 2(a). A general assumption is that p < 1/2. If, otherwise, a majority
of the bits are received in error, it would be more useful to simply flip all
received bits and simply consider the transition probability to be 1− p.
For the BSC, the capacity is known to be Cbsc(p) = 1− H(p), where
H(p) = -p log2 p− (1− p) log2(1− p) is the binary entropy function.

Of conceptual importance, we also describe the binary erasure chan-
nel (BEC) [3] illustrated in Fig. 2(b). This channel differs significantly
from the other channels described – and from most channels in general
– in that the channel makes no mistakes; a received value of 0 or 1 is
known to be correct. However, a different type of disturbance charac-
terizes this channel, in that a value is erased with probability p, upon
which all information on that particular value is lost to the receiver.
As a consequence, no mistakes can be amplified or introduced by a
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(a) Binary Symmetric Channel (b) Binary Erasure Channel

Fig. 2: Binary-input discrete output-symmetric channel models.

decoding algorithm; if a symbol is corrected (i.e., the value of an erasure
is determined) then this must be the correct value, and is never sub-
sequently changed. The channel parameter is the erasure probability,
p = Pr(y = ?) (assuming symmetry).

This channel was devised by Elias in 1955 as a simplified, theoretical
channel model [3]. And, as we will see, the BEC has indeed led to
significant observations which, to a certain extent, are transferrable to
more general channel models. Also, with the arrival of the Internet,
the BEC has come to model a real-life channel, where information is
lost in packets, which is a detectable event.1 It is known that certain
code-specific properties affecting the performance of a code on the BEC
also influence the performance on more general channels. The capacity
of the BEC is Cbec(p) = 1− p.

The most important channel model for this work is the additive white
Gaussian noise (AWGN) channel. This channel differs from the BSC
and the BEC mainly in that the output is real-valued, and that the noise
is additive. The additive noise has a (zero mean) Gaussian distribution,
written N (0, η2), where the channel parameter describing the noise
level is the variance, η2 = N0/2. Here, N0 = 2η2 is the double-sided
power spectral density [4]

The AWGN channel uses a modulation scheme to map the input to
peaks of a waveform in such a way as to maximally separate these peaks,
making the signal more robust against channel noise. Binary phase shift

1Although, in pactice and especially on a wired network, packets are not strictly inde-
pendent.
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�

Fig. 3: Binary-input additive white Gaussian noise channel.

keying (BPSK) maps 0 and 1 to
√

Es and -
√

Es, respectively, where Es
is the energy (amplitude) used in transmission. It is standard to use
unit energy, Es = 1. This gives mean μ = ±√Es for the corresponding
Gaussian probability density function (pdf)

f (y; η2, μ) � 1√
2πη2

e−(y−μ)2/2η2
. (6)

In a coded transmission, in which only a fraction R = k/n of the
bits convey information (as opposed to redundancy), the energy per
information bit is denoted by Eb = Es/R. We will refer to the signal-to-
noise ratio (SNR) as Eb/N0, where all reported values (e.g., on error-rate
plots) are in decibels (dB), 10 log10(Eb/N0).

The received signal must be demodulated using the distribution (6) of
the noise [5], giving likelihood densities (as shown in Fig. 4)

Pr(yi | xi = 1) = f (yi; N0/2, -
√

Es) =
1√

πN0
e−(yi+

√
Es)2/N0 ,

and, symmetrically,

Pr(yi | xi = 0) = f (yi; N0/2,
√

Es) =
1√

πN0
e−(yi−

√
Es)2/N0 .

Alternatively, this may be converted to a binary output by quantizing
the real output to the nearest constellation point (i.e., ±√Es for BPSK),
denoted by [yi < 0]. This expression evaluates to 1 iff the argument
(inside the brackets) is true [6].

As illustrated in Fig. 4, Pr(yi | xi) is typically interpreted as the
channel likelihood, although the probability of any specific yi is by
definition 0 (since f is a pdf). In the case of antipodal modulation (as
with BPSK, with unit energy), the pdf’s for (source symbols) ‘0’ and
‘1’ are completely symmetrical and equally spaced from energy 0. By
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Fig. 4: Demodulating channel output, yi, to get channel likelihood densities.

“reading off” the pdf’s, we see that the density Pr(yi | xi = 0) will
be greater than the alternative Pr(yi | xi = 1) so long as yi > 0. The
opposite holds for yi < 0. Thus, a hard decision (quantization) can be
made by simply comparing the received channel value against 0. The
total probability of receiving y ∈ [a, b] corresponds to the area under
the pdf in that same interval,

∫ b
a f (y; η2, μ) dy. This gives a transition

probability, which relates the AWGN channel to the BSC when using
BPSK [7]

p = Pr(y < 0 | x = 0) = Pr(y > 0 | x = 1)

=
∫ ∞

0
f (y; N0/2, -

√
Es) dy = Q(

√
2Es/N0)

as illustrated in Fig. 4. The complementary error function, or Q-function,
is

Q(y) � 1√
2π

∫ ∞

y
e−u2/2 du. (7)

More robust communications (in terms of noise tolerance) is achieved
by either increasing μ or decreasing η2, either of which reduce the
intersecting area by moving the pdf’s further apart and/or by increasing
the amplitude (making the curves taller and more narrow).

The capacity of the binary-input, continuous-output AWGN channel
can be computed numerically as

Cawgn = 1−
∫ ∞

-∞
f (y; η2, μ) log2(1 + e−y) dy.

The AWGN channel is among the most prevalent channel model used
in simulating a code and/or decoder, since additive noise is found to
be a constituent part of most real-life channels. Especially, deep-space
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communications is described quite accurately by an additive noise
model, whereas everyday wireless communications, on the other hand,
is affected by a much more complex disturbance pattern, also including
fading and interference with other communications.

2 CL A S S I C A L CO D I N G TH E O R Y

The term classical coding theory is a reference to the early work of coding
theory, which formed the foundations of the field as it is today. The term
is in a sense a misnomer, in suggesting that the results and techniques
are outdated – not modern – when, in truth, the classical concepts are
still active research fields. Perhaps a better interpretation of the term
would be a classical view on coding theory, as this view has undergone a
significant change recently. The classical view on coding theory can be
summarized as taking a code perspective. Intuitively, the early work in
the field would be inspired by Shannon, trying to find specific, practical
code constructions promised by his famous theorems.

2 .1 HA M M I N G DI S T A N C E

Among the first codes invented were the results of Hamming’s efforts to
cope with errors and faulty circuitry in early computers in the 1950s [8].
By examining current error control measures, such as error detection
via a parity bit or correction via simple repetition codes, Hamming’s
codes were designed with several overlapping parity bits, in order to
increase – and even maximize – the difference (in terms of bits) between
codewords. The number of bits which differ between two codewords be-
came known as the Hamming distance, where the minimum Hamming
distance between any pairs of distinct words in a code is a concrete
measure on the capabilities of the code. By increasing the minimum
distance, stronger codes result in which more noise is tolerated before
a codeword is, eventually, confused with another codeword. A code of
minimum distance dmin can detect any pattern of up to td = dmin − 1
errors (the corresponding noisy vectors are distinguishable from valid
codewords), and correct (i.e., detect and locate) up to t = (dmin− 1)/2�
errors. (The same code can correct dmin − 1 erasures on the BEC.) We
sometimes extend the notation for a linear code to [n, k, dmin]. The

9
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Hamming distance between two binary vectors equals the weight of
the binary sum (XOR) of the vectors,

dH(x, x′) = |x⊕ x′|. (8)

In order to facilitate error correction, Hamming used the concept of
the syndrome of a vector. The parity-check matrix of a linear code spans
the null space of the code (or the dual code), in that, for any x ∈ C,
xHT = 0. H generates the dual code, C⊥, consisting of codewords
orthogonal to C. The result of such a code membership test for any
length-n binary vector, y

s(y) := yHT (9)

is referred to as the syndrome of y, as a nonzero syndrome indicates
that something is wrong with this vector (in terms of being a codeword
in C).

By constructing H from all 2m binary tuples of length m = n− k (ex-
cept the all-zero vector), Hamming ensured that any pair of columns in
H are pairwise linearly independent. As such, no sum of two columns
could give the zero syndrome, giving a code of minimum distance
3. This gives t = 1, and since all non-zero syndromes are present (as
columns) in H, any single error can be corrected by flipping the bit
corresponding to the column in H matching the syndrome, alterna-
tively declaring a decoder failure (more than a single error must have
occurred). By convention, column i, 0 ≤ i < n, of H is the binary repre-
sentation of the number i + 1. The specific construction of Hamming
codes means that these are all [2m − 1, 2m − 1− m, 3] codes, where
m ≥ 3. In this sense, the Hamming codes are fixed-minimum distance
codes.

The syndrome (9) of a received noisy vector, y = xs + e, (assuming
additive noise) can be written

s(y) = HyT = H(xs + e)T = HxT
s + HeT . (10)

Since HxT
s = 0, the syndrome is s(y) = HeT . Thus, a lookup table

can be made based on the syndrome of all possible correctable error
patterns, HeT , and the corresponding error pattern, e. The Hamming
codes (in the column ordering described above) comprise a special
case, where H is itself the lookup table, identifying all error patterns of
weight t = 1. Although computing the syndrome lookup table may be
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complex to compute (it is nontrivial to find the proper coset leaders),
this is mainly a preprocessing cost.

2 .2 MA X I M U M LI K E L I H O O D DE C O D I N G A N D UN I O N BO U N D

An optimum decoder outputs the codeword which minimizes the a
posteriori probability (APP) (i.e., the probability of word error) given the
received vector, Pr(x �= xs | y). Equivalently, this can be implemented
by maximizing Pr(x = xs | y). Using Bayes’ rule

posterior (APP)︷ ︸︸ ︷
Pr(x = xs | y) =

likelihood︷ ︸︸ ︷
Pr(y | x = xs)

prior︷ ︸︸ ︷
Pr(x = xs)

Pr(y)
∝ Pr(y | x = xs). (11)

The proportionality between likelihood and posterior follows from the
simplifying assumption that all codewords, xs ∈ C, have equal prior
probability, Pr(x = xs) = 1/|C|, and that the normalizing constant,
Pr(y), is independent of x. From a vector perspective, one typically
considers the (prior) probability of the source outputing any specific
codeword to be the same for all codewords. This is referred to as the
assumption of uniform priors. The optimum maximum a posteriori proba-
bility (MAP) decoder outputs the codeword for which the associated
APP is maximized

xmap := arg max
x∈C

Pr(x = xs | y) = arg max
x∈C

Pr(y | x = xs) =: xml

(12)

which coincides with the output of from the optimum maximum likeli-
hood decoder (MLD). This equality between xmap and xml follows from
the assumption of uniform priors [4].

Consider the BSC(p) channel. Since we assume that p < 1/2 (that
a bit is more likely to be received correctly, than in error), (12) can be
maximized in terms of Hamming distance (8)

Pr(y | x = xs) = dH(x, y)p + (n− dH(x, y))(1− p). (13)

Still, this does not guarantee that xml = xs. When no more than
t = (dmin − 1)/2� bits are in error on a vector, this approach is guaran-
teed to succeed (correctly determine xs). This can be viewed as spheres
of radius t centered on each codeword, which then contain no other
codewords. Any received vector which arrives within such a sphere,

11
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is then decoded (correctly) to the corresponding codeword. Any algo-
rithm which achieves this is known as a bounded distance decoder (BDD).
In this definition, we assume the BDD is configured to decode up to its
maximum capability of t errors.

In comparison, MLD will correctly identify some (but not all) vectors
at a distance greater than t. The performance of the (perhaps imprac-
tical) MLD can be estimated by considering not only the minimum
distance of the code, but the weight of all nonzero codewords in C. The
probability of the optimum decoder making an error (outputing a differ-
ent codeword than what was sent) can be bounded using a union bound.
Consider the specific event {xml | xs}, of sending xs and receiving y,
which is decoded to xml �= xs. This event represents a simplified code
containing only the two codewords xs and xml. The likelihood of this
event may be expressed in terms of the distance between xml and xs. In
a linear code, we may assume xs = 0. The overall error probability (of
the entire code) can then be expressed as the probability of the union
of the events, corresponding to the possible decoder errors

Pr(xml �= 0 | y) = Pr(
⋃

x∈ C, x �= 0

{x | 0}) ≤ ∑
x∈ C, x �= 0

Pr({x | 0}) (14)

which is upper bounded by the corresponding sum. In the general case,
the constituent events are not disjoint.

The weight enumerator, A, of a code counts the codewords grouped
by weight, such that Aw contains the number of codewords of weight
w. On the BSC(p) channel, (14) can be expressed as

Pr(
⋃

x �= 0∈ C
{x | 0}) ≤ ∑

w≥dmin

Aw

w

∑
i=�w/2�

(
w
i

)
pi(1− p)w−i.

On a channel with unquantized output, a soft distance measure can
be in terms of squared Euclidean distance. For the AWGN channel, the
union bound is expressed in terms of the Q-function (7),

Pr(
⋃

x �= 0∈ C
{x | 0}) ≤ ∑

w≥dmin

Aw Q
(√

2wR Eb/N0

)
where R is the rate of the code, and R Eb/N0 is the rate-normalized
SNR [7].

2 .3 SO M E CL A S S I C A L CO D E S

Typically, decoding algorithms for classical codes would have to be
tailored for the specific design of the code, and general low-complexity

12
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algorithms are indeed rare in the literature. The popularity and success
of a classical code construction typically lies in the combination of at-
tractive code parameters (most commonly, minimum distance), and the
description of a practical decoding algorithm. In this section, we will
briefly describe some of the most popular classical code constructions
in use today.

Binary quadratic residue (QR) codes are cyclic codes of prime block-
length, n, such that 2 is a quadratic residue modulo n [9]. The rate
and minimum distance of these [n, (n± 1)/2, dmin ≥ �

√
n �] codes are

bounded away from 0, as n increases. In this work, we consider only the
QR codes of dimension (n + 1)/2. By adding an extra parity bit, we ob-
tain an extended QR (EQR) code of parameters [n + 1, (n + 1)/2, dmin +
1], giving a code which is half-rate and self-dual (or equivalent to its
dual). Furthermore, for certain parameters, the structure of Aut(C) of
EQR codes is known, such that three generators may be calculated [9].

Well known classical codes, such as the [7, 4, 3] Hamming code and
the [23, 12, 7] Golay code (and their extensions), are examples of QR
codes. These particular codes (and, in fact, all Hamming codes) have
very special properties which make them well-suited to test various
concepts within graph and coding theory. For instance, they are perfect
codes in that the codewords are spaced by a radius of exactly t to
neighboring codewords, meeting the sphere-packing bound, also called
the Hamming bound, with equality. In other words, there are no gaps
between the spheres spanned out around each codeword, so – regard-
less of noise level – there is always exactly one codeword (though not
necessarily the transmitted one) within distance t of the received vector.
These codes are also optimal, in the sense that they have the maximum
minimum distance possible, for a fixed rate (k and n). Furthermore, we
will see later that these codes also have strong graph-structural proper-
ties.

Binary Bose-Chaudhuri-Hocquenghem (BCH) codes is a class of
codes which is a t-error correcting generalization of the Hamming
codes, of parameters [2m − 1, k, dmin], for m ≥ 3 [7]. The resulting
dimension, k, depends on the construction, n− k ≤ mr, where r < 2m−1

and dmin ≥ 2r + 1. The construction of these codes is based on extended
Galois fields, to using primitive (irreducible) polynomials. Codewords
are viewed as polynomials over this field, and encoding performed via
polynomial division (the codeword is the remainder). Polynomials may

13
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be represented by binary length-n sequences, so the codes are binary
codes. These codes are cyclic codes, in that any shift (with wrap at the
boundary) of a codeword is also a codeword.

BCH codes are designed for random noise, and decoded using syn-
drome decoding where the procedure described for Hamming codes is
implemented in terms of polynomials, y(z) = yo + y1z + · · ·+ yn−1zn−1 =
x(z) + e(z). The syndrome polynomial, s(z), then identifies the error
location(s) allowing correction (assuming no more than t errors have
occurred) via an error-location polynomial. BCH codes can be decoded
efficiently using the Berlekamp-Massey (BM) algorithm [7].

A special type of (nonbinary) BCH code designed to handle bursts of
noise is the Reed-Solomon (RS) code [7]. These codes are generalized
to the nonbinary case, where each symbol of the code is over GF(2q).
Mapped to a binary code, each symbol is represented by q bits. As such,
these codes are very suitable for correcting burst errors, where many
consecutive bits are in error, since a symbol-level decoder will correct t
symbols (i.e., qt bit errors). Such errors are frequent on compact discs,
where a scratch or a fingerprint affects many bits in one physical area
of the disc which is otherwise error-free.

The parameters of RS codes are [n, k, n− k + 1]. This is the maximum
possible minimum distance (Singleton bound), which means that the
codes are optimal. As such, they can correct up to t = (n− k)/2� sym-
bol errors, i.e. a maximum of q(n− k)/2� bit errors. A binary image is
a [qn, qk, dmin] code, where the resulting minimum distance depends
on the particular representation of the field symbols as q-dimensional
binary vectors (i.e., the mapping). Being BCH codes, these codes are
also well-suited for BM decoding.

Furthermore, in this thesis, we consider some general extremal, self-
dual codes described by Harada and Gulliver [10, 11], which have trivial
or small (|Aut(C)| ≈ n) automorphism group.

2 .4 PE R M U T A T I O N DE C O D I N G

We will now expand the discussion on syndrome decoding introduced
with the Hamming codes. Certain properties of the syndrome can be
used to devise a more powerful algebraic decoding algorithm, known
as permutation decoding (PD) [9]. This algorithm may be applied to
any code for which the structure supports a nontrivial Aut(C). The
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main idea is to avoid the lookup table, and rather focus entirely on the
syndrome. Rather than locating the error positions, the concept is to
produce an error-free information set, such that the output codeword is
computed by simply re-encoding the parity bits.

The premise for this technique is that H is in systematic form, where
the I-part (submatrix) of H corresponds to the columns indexed by the
parity set P . Let yI and yP be the subvectors of y indexed by P and I ,
respectively. Then, the syndrome (10) can be split into two parts

s(y) = HyT = IyT
I + PyT

P = yT
I + PyT

P (15)

where the identity submatrix simplifies the expression. If there is no
noise (e = 0), we receive y = x which is detected by the zero syndrome.
Thus, for y ∈ C, (15) reduces to

yT
I = PyT

P (16)

since s(y) = 0. An error in position i of y (ei �= 0) adds column hi to
the syndrome

s(y) = ∑
i : ei �=0

hi mod 2. (17)

Let us assume |e| ≤ t errors have occurred, such that e is correctable.
Then, BDD would always be able to determine x = y − e, the ML
decision.

Consider the special cases where all errors occur in the I-part of H.
This is a parity set of the code, so BDD on y is achieved by simply re-
encoding yP (i.e., the corresponding information set) which we assume
to be error-free. The decoder output is

x = yPG. (18)

In the case where |e| ≤ t, this gives x = xs. In fact, in many cases we
are only concerned with obtaining the information bits, so the decoder
can stop by simply outputing yP. This brings us to the idea behind
PD: It is possible to determine whether all errors have indeed occurred
within the I-part of H (a parity set).

Theorem 1 ([2, Ch. 17]). Given a systematic parity-check matrix, H, for
an [n, k, dmin] code, and a received channel vector y = xs + e. Assuming
|e| ≤ t = (dmin− 1)/2� errors have occurred, then these are all confined to
the n− k positions corresponding to the I-part of H if and only if the weight
of the syndrome is |s| ≤ t.
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Definition 1 (Permutation Decoding [9, 12]). Given a noisy codeword,
y = xs + e, where |e| ≤ t, try to find a σ ∈ Aut(C) such that |s(σ(y))| ≤ t.
If all errors have been moved into a parity set, then Theorem 1 shows that the
decoding may stop, using (18) to produce x = σ−1(yPG) = xs as the decoder
output.

The decoding ends when |s| ≤ t (success), or when Aut(C) has been
exhausted (failure). The effectiveness of PD depends on Aut(C). Even if
|e| ≤ t, the required permutation to detect (and correct) this particular
noise pattern may not exist in Aut(C). Furthermore, the preprocessing
stage of determining Aut(C) may be prohibitally complex. Since Aut(C)
is a code property, it is valid irrespective of the information set (for any
choice of parity-check matrix). The re-encoding may be done directly
on H, by adding columns of P, alleviating the need to keep a generator
matrix in memory.

2 .5 SO F T DE C I S I O N DE C O D I N G

Although classical coding is dominated by hard decision (quantized)
decoding, an entire field of research is devoted to devising algebraic
decoding algorithms which can take advantage also of the unquantized,
“raw” channel output, typically referred to as soft information. It can
be shown that maximum likelihood decoding (optimum decoding)
has a gain of up to 2-3 dB when soft decisions are used rather than
hard decisions [7]. The main efforts in this field concentrate on either
convolutional codes or on list-based algorithms for block codes [7].
An important algorithm for computing exact posterior information
on either a convolutional or a block code is the Viterbi algorithm. A
significant element in this algorithm is that the soft decoding takes place
on a trellis, a special graph representation of the code. Therefore, the
Viterbi algorithm is one of the first examples of the decoding of codes
on graphs via message passing. However, the complexity of the Viterbi
algorithm depends on the complexity of the underlying trellis, and it
generally holds that powerful codes have high complexity. As such, this
approach quickly becomes impractical for some applications.

3 MO D E R N CO D I N G TH E O R Y

Modern coding theory embodies the “paradigm shift” from classical to
modern coding schemes. In broad strokes, the shift in paradigm that
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took place in the 1990’s, was sparked by the advent of turbo codes in
1993 [13], and the discovery that these simple parallel concatenated, ran-
domly interleaved convolutional codes closely approached the capacity
on any memoryless channel. The re-discovery of Gallager’s low-density
parity-check (LDPC) codes [14] at around the same time [15, 16] con-
firmed that random codes perform surprisingly well, precisely in line
with Shannon’s predictions half a century before [1].

As opposed to classical coding theory, the defining properties of mod-
ern coding theory are not only minimum distance, but also randomness,
sparsity, and locality; i.e., codes on graphs. One important discovery is
that optimized pseudorandom codes can achieve what classical codes
(under optimal BDD) can not. By increasing the blocklength of the code,
optimized graph codes (i.e., carefully designed Turbo codes and irregu-
lar LDPC codes) may closely approach the capacity of the channel [17].
Furthermore – and of equal importance – this capacity-approaching
performance is achieved using an efficient (though suboptimal) decod-
ing algorithm able to handle long codes, if a sparse graph representation
(of the parity-check matrix) exists. A graph, G, is defined as sparse if
|G| = O(n) [18]. By taking a localized (i.e., graph-based) view on the
decoding problem, both the overall decoding complexity is reduced,
and the decoder will generally correct more than t errors in a block.
Recent developments in the field are collected in [4].

3 .1 CO D E S O N GR A P H S

A linear code, represented by an (n− k)× n parity-check matrix, H, can
equivalently be represented by a graph. To form an adjacency matrix,
H may be combined with its transpose, giving a (2n− k)× (2n− k)
matrix

TG(H) =
[

0 H
HT 0

]
representing the Tanner graph of H [15]. This graph is bipartite, where
one partition, denoted by V , corresponds to the n columns of H, and
the other, U , to the n− k rows of H. Just as H is a nonunique basis for
C⊥, there are many structurally distinct Tanner graphs for the same
code.

The emphasis on locality in modern coding theory is related to the
partitioning of a complex problem into a system of simpler subprob-
lems. The decoding problem of a linear code has an inherently simple
partitioning. The parity-check matrix defines a set of simultaneous
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constraints which must all be satisfied for a vector to be a codeword. If
a code has a sparse parity-check matrix, then the rows of this matrix
define a system of truly local (weakly-linked) constraints sharing the
same variables (codeword positions).

The Tanner graph is a special case of the more general class of factor
graphs [19], which are used to encode – or realize – a multivariate func-
tion, F, on a set of variables, V , in a graphical manner, based on some
nontrivial partitioning into a system of subfunctions

F(V) = f1(V1) f2(V2) . . . fK−1(VK−1)

where Vi ⊂ V . This is a general description, reflecting the range of
applications of factor graphs across different scientific fields [19]. The
most famous application of factor graphs is Pearl’s belief propagation
(BP) algorithm, which, as we will see, forms the basis also for the
application of factor graphs to the problem of statistical inference and
error-correction [20].

In general terms, the nodes of the bipartite factor graph comprise one
set of function nodes and one set of variable nodes, with an edge ( f , v)
iff v ∈ V is in the domain of f . In this sense, fi(Vi) is a subfunction of
F(V), with “communications links” to all the other nodes (subfunctions)
concerned with one or more of the same variables.A function node
operates by executing this subfunction, producing an output for each
adjacent edge. An important principle of BP is that all functions operate
according to an extrinsic principle; the output of a function, f , along a
specific edge ( f , v) is defined as the marginal of the function on all its
variables except v, i.e. the sum

Pr(v) = ∑
v′∈Vi\{v}

fi(Vi). (19)

For each fixed value of v (in the binary case, 0 and 1), the marginal
Pr(v) equals the total probability of fi over all assignments to the other
variables, Vi \ {v}. In the following, we will adopt the standard short-
hand notation for a marginal on v, rewriting (19) as, Pr(v) = ∑∼v fi(Vi)
[19]. The marginal on v represents the posterior probability (APP) of
the corresponding variable, conditioned on the other variables, under
the restrictions of the local subfunction. This way, all the information
needed for a node to operate is locally available. The (local) neighborhood
of a node, v, (i.e., the set of nodes incident on v) is denoted by Nv, and
we also use the notation N u

v = Nv \ {u}.
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Since variables are shared between factor nodes, the variable nodes
must serve the special purpose of linking the entire system together. By
enforcing the simple equality function, these nodes attempt to ensure a
coherence between their adjacent edges, which is vital as these represent
a specific variable. As we will see, a variable node can also be seen
as containing a local subfunction which facilitates the description of
a single update rule. If the function F has a factorization in which no
subfunctions share more than one variable, then the resulting factor
graph is a tree. In fact, to form a connected tree, all subfunctions must
share at most one variable. In this case, all subfunctions are indepen-
dent such that the solutions to the subproblems may be combined to
an exact global solution.

We now return to the application of factor graphs that is relevant
for this thesis. In the context of optimum soft-decision decoding, the
global problem to be solved is to determine the codeword nearest to the
received noisy channel vector, y, according to some metric. Recall the
MAP decision problem. Computing the APPs for each codeword is not
practical, as the size of the task grows exponentially in k = dim(C).2 The
purpose of a factor graph is to partition the problem of determining
the maximum bitwise APPs, Pr(xi | y), for each codeword position
0 ≤ i < n. For a linear code, we may assume that the probability
of a bit being 0 or 1 at the source, is equal (uniform priors) [7]. The
vector formed by quantizing the MAP decision at each position is not
necessarily a codeword, so the bitwise MAP decoder is optimal in terms
of bit error rate [21].

A factor graph provides a very efficient framework for computing
this MAP decision, at a complexity linear in the blocklength. Each row
of H is a constraint (or check equation), sharing the set V of n variable
nodes. Any codeword of C must satisfy all the constraints of H, so
that C can be viewed as the intersection of the n− k supercodes (of C)
“checked” by each individual row, hj, of H, such that

C = 〈H〉 = 〈h0〉 ∩ 〈h1〉 ∩ · · · ∩ 〈hn−k−1〉.

Each of these supercodes have dimension n− 1 (only one constraint).
From the graph perspective, where a check node has ρ = deg( f ) adja-
cent edges, the supercodes can be viewed as [ρ, ρ− 1, 2] single parity-

2Alternatively, exponential in the codimension, dim(C⊥), if based on the parity-check
matrix.
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check (SPC) code. This supercode can detect all single (td = 1) parity
errors.

Example 1 (Partitioning of the decoding problem). Consider the [7, 4, 3]
Hamming code represented by the standard form (i.e., systematic) parity-
check matrix,

0 1 2 3 4 5 6

H =
[ 1 0 0 1 1 0 1

0 1 0 1 0 1 1
0 0 1 0 1 1 1

]
.

(20)

The (global) code membership function is then

F(V) = f0(v0 + v3 + v4 + v6) f1(v1 + v3 + v5 + v6) f2(v2 + v4 + v5 + v6).
(21)

A single constraint, say the first row ( f0), gives the supercode parity check
matrix, H(0) = [1 | 1 1 1] (checking positions 0, 3, 4, and 6), so this is a
[4, 3] SPC code with generator matrix

0 3 4 6

G(0) = [P | Iρ−1] =
[ 1 1 0 0

1 0 1 0
1 0 0 1

]
.

where we have omitted the zero columns. The fact that the ρ = 4 positions
of this code correspond to positions 0, 3, 4, and 6 of the global code is en-
coded in the factor graph realization. This way, a local supercode can decode,
contributing information to the global decoding problem.

Similarily, choosing column h3 = (1 1 0)T of (20) (variable v3), we see
that the input likelihood, Pr(y3 | v3), is repeated to γ = 2 check nodes, f0
and f1. As such, this equality constraint (EQC) can be implemented via a
length-3 repetition code. The two possible codewords are (0 0 0) and (1 1 1),
so the corresponding generator matrix for this [3, 1] repetition code is, G(3) =
[1 1 | 1], which gives

H(3) = [Iγ | PT ] =
[

1 0 1
0 1 1

]
.

Consider the γ + 1 inputs to variable node v3. The equality constraint of this
repetition code enforces that edge 0 equals edge 2, and that edge 1 equals edge
2. ♦

For simplicity in the following arguments, let us assume that the
code is such that an acyclic Tanner graph representation exists. In this
case, all messages passed along edges are independent of each other
(satisfying the extrinsic principle), and the APPs computed by BP are
exact (as on a trellis) [21]. With this simplifying assumption, we will
describe the concepts of graph-based decoding.
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3.2 ME S S A G E PA S S I N G

Each supercode covers a subset of the positions of the ‘global’ code,
C. Since these subsets overlap, the problem of decoding a received
vector with respect to C is solved by the simultaneous decoding of
the supercodes. In this sense, one often says that a check node checks
its adjacent variables, and when the quantized sum of these variables
is zero a codeword of this supercode is obtained. When the global
syndrome check (for the main code) is satisfied, all n− k supercodes
have a codeword, and a codeword for the global code is found at the
variable nodes.

In the acyclic case, the BP rule is that a node may update an edge
as soon as messages are pending on all other adjacent edges (recall the
extrinsic principle discussed above). This process initiates at the leaf
nodes, which serve as input nodes in the sense that the input vector
(in this case, the channel likelihood vector) is placed onto these nodes,
which is then injected into the factor graph as these nodes update their
single edge. Eventually, all edges are updated in both directions. Be-
yond this time, any subsequent updates will simply recalculate existing
information, so the BP algorithm stops [4].

The process of feeding the output of one decoder into the input of
another, following the extrinsic principle, is known as message passing.
This process invokes the equality constraint in all the variable nodes,
and the SPC decoder in the check nodes. In order to solve the global
decoding problem, the codewords of the constituent supercodes must
be combined in an attempt to form a global decision (i.e. a codeword)
for the full [n, k] code which, hopefully, agrees with the source vec-
tor, xs. The received channel vector, y, consists of soft information, the
real-valued input values, corresponding to the source vector plus some
amount of noise resulting from transmission across the channel (assum-
ing additive noise). From a local perspective, each supercode is only
aware of its immediate surroundings, namely its adjacent edges and
nodes in the factor graph.

The computation of a function can be expressed by a “truth table,”
which relates the configuration space of the variables to an indicator
function [22]. This indicator function is a restriction of the function on
the configurations, in the sense that it is 1 only when the corresponding
configuration on the variables gives a valid function output. Let V de-
note the (sub) set of c q-ary variables, which take a configuration of the
configuration space, s ∈ S c

q . Any local function, F, can be implemented
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by its appropriate binary indicator vector, 1F(s), of length qc, which is
1 iff the corresponding configuration, s, of the input variables is a valid
state for this function; otherwise, it is zero. Here, c is the number of
variables to the function, where one of these is considered an output
while the rest are inputs. When notationally convenient, we use the
equivalent function notation, fF(s) = 1F(s), or simply f (s) for short.

Before describing the details on computing local functions, we should
establish a notion of what the input messages are. First of all, the initial
messages are the likelihoods coming from the channel. After being
demodulated from channel symbols, we have a vector of normalized
bitwise likelihoods, Pr(yi | vi). These are attached to the factor graph
on special-purpose input nodes, or Forney-style half edges [23], see Fig. 6.
These should be viewed as leaf nodes, one connected to each variable
node. The purpose of message passing on the factor graph is to solve the
decoding problem, which we encode as a distributed form of a bitwise
MAP decoding. The decoding is based on BP, so the messages deal
with probabilities, or likelihoods, of binary variables, as represented by
real-valued vectors of length 2.

Consider the case of a parity check function, f = 1XOR, on three vari-
ables,N f = {b, p, q}, i.e., a [3, 2] SPC code. Say we want to marginalize
on b. The input messages are then μp→ f = (p0, p1) and μq→ f = (q0, q1).
However, as these are output messages of variable nodes p and q (we
have not yet discussed variable node update) we initially take the sim-
plifying assumption that the “input” nodes (p and q; b is currently
the output) are leaf nodes. Then, the input messages to f are the like-
lihoods from the channel on these nodes; (p0, p1) = Pr(y | p) and
(q0, q1) = Pr(y | q). The corresponding truth table for f = 1XOR is then

p q b Ψb 1XOR Ψb · 1XOR ∑∼b Ψb · 1XOR

0 0 0 p0q0 1 p0q0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

p0q0 + p1q1
0 1 0 p0q1 0 0

1 0 0 p1q0 0 0

1 1 0 p1q1 1 p1q1

0 0 1 p0q0 0 0
⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

p0q1 + p1q0
0 1 1 p0q1 1 p0q1

1 0 1 p1q0 1 p1q0

1 1 1 p1q1 0 0
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where Ψb denotes the product of incoming messages from all adjacent
variables except b, according to the configuration of the corresponding
variables in the truth table. The notation ∑∼b denotes the component-
wise sum, according to the possible assignments of the marginalized
variable, b, giving the vector

μ f→b = ∑
∼b

Ψb f (b, p, q) = ∑
∼b

Ψb · 1XOR. (22)

This message from f to b conveys information on the value of b, from
the perspective of f (given the subtree rooted in the node f )

Pr(b = α | ⊕
v∈N b

f

v = α) (23)

where α ∈ {0, 1}. In the top half of the configuration space, variable b
is fixed to 0, and the two valid (sub) configurations of p and q (i.e., 00
and 11) are summed to produce the 0-field of μ f→b. Similarily, if b = 1,
then p and q must be configured to 01 or 10, which gives the 1-field.
Thus, for two inputs, the (normalized) marginal on b coming from f is

μ f→b = z−1(p0q0 + p1q1, p0q1 + p1q0) (24)

where z−1 = 1/(∑ Ψb · 1XOR) is a normalization constant such that the
fields (marginal likelihoods) sum to 1. This exact same process is then
repeated at each variable, to produce the three marginals which are
then passed out onto the corresponding adjacent edges. As is apparent
from the small example, a marginal is computed as a sum of products.
Using vector notation, we denote this soft-XOR operation [24] by ⊕̃,
such that (24) becomes

μ f→b = z−1
∼⊕

v∈N b
f

μ f←v . (25)

Extending to four variables (three inputs and one output), the config-
uration space has 24 configurations. However, the structure of the XOR
function is such that it is easily factorized. Extending the three-variable
case by a fourth variable, d, is a matter of adding a column to the right
of b in the truth table, which is 0 in the initial 8 configurations. Then, a
copy of S3

2 (the three-variable truth table considered above) is added to
the end of the table, where the new column d now takes value 1. Since
we are simply copying S3

2 , the computed function values for Ψp1XOR,
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Fig. 5: Factoring a four-variable XOR function into a cascade of atomic (three-variable)
XOR functions, linked by a state variable, ω. This figure shows the calculation of
∑∼d Ψd f (d, b, p, q) as ∑∼d Ψd f2(d, b, ω), by reusing ∑∼ω Ψω f1(ω, p, q).

Ψq1XOR, and Ψb1XOR can also be re-used when computing Ψd1XOR.
Similar for the next 8 configurations, for which d is configured to 1.
To evaluate the 4-variable case graphically, we factor the problem into
two instances of 3-variable cases, combined by a new state variable,
ω, as shown in Fig. 5. Denote the [4, 3] SPC supercode by f = f1 ◦ f2.
To evaluate μ f→d we first evaluate μ f1→ω = (ω1

0, ω1
1) using (24). We

use the superscript ‘1’ to denote that this is only the “left-hand part”
contribution to the value of ω. This is the purpose of the state node.
Then, the desired output (for d) may be evaluated the same way, as
μ f→d = μ f2→d = (d0, d1). To see that this gives the same result as
directly evaluating the 24 state XOR function, we expand

(d0, d1) = (ω1
0, ω1

1)⊕̃(b0, b1) = (s1
0b0 + s1

1b1, ω1
0b1 + ω1

1b0)
= [b0(p0q0 + p1q1) + b1(p0q1 + p1q0)

b1(p0q0 + p1q1) + b0(p0q1 + p1q0)]
= (p0, p1)⊕̃(q0, q1)⊕̃(b0, b1).

Thus, each outgoing message can be calculated in a recursive manner.
After computing d, we continue by computing for b, such that we may
reuse (ω1

0, ω1
1) when we calculate (b0, b1) = (ω1

0, ω1
1)⊕̃(d0, d1). Next,

the state variable is used to calculate p and q, where the “right-hand
part” of ω is (ω2

0, ω2
1) = (b0, b1)⊕̃(d0, d1).

3 .3 SU M-PR O D U C T AL G O R I T H M

The Sum-Product algorithm (SPA) [19] is a well-known instance of the
BP algorithm, which follows naturally from the evaluation of functions
according to a truth table. It is common in the literature to describe the
SPA in terms of two separate update rules; one for a function node, and
one slightly simpler for a variable node. However, also the variable node
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rule can be expressed using a truth table. Representing the workings
of a variable node in terms of a “function” is somewhat forcing the
issue, but consider the purpose of a variable node, v. The incoming
messages from the adjacent check nodes are marginals on v. In a tree,
they represent the “view” on the value of v, from the perspective of
each adjacent check node. Consider one, fi. The message (vector) μ fi→v
expresses the probability that v is 0, given the state of the other variables
adjacent to fi. In other words, fi is telling v, “the probability that you
are 0, is the sum of the probabilities that my other variables also sum to
0.” And similarily for the probability that v is 1. From another adjacent
check node, say f j, the node v receives “beliefs” on its state from the
perspective of a different branch of the tree. In total, v receives a set of
information (messages) on its state, which it must attempt to combine
in order to decide its state; i.e., the APP Pr(v | y). In terms of a “local
function,” this can be expressed as an equality constraint, with two
valid states; when all inputs are 0 or all inputs are 1. The output of v to
fi, then, expresses the joint probability that v is 0 given the marginals
received from all the check nodes except fi – again, in terms of the
extrinsic principle. In this sense, node v acts as a mediator representing
and negotiating the value of v.

Example 2. Consider again variable node v3 of the previous example. Say
the γ = 2 adjacent edges (check nodes), f0 and f1, contain marginal like-
lihoods (pending messages) (0.1, 0.9) and (0.6, 0.4), respectively. The third
edge contains the channel likelihood, y3 = (0.3, 0.7), such that the hard deci-
sion vector is (1 0 1). The truth table representation of this function on four
variables is

u3 y3 f0 f1 1EQC Ψu31EQC Ψ f0 1EQC Ψ f11EQC

0 0 0 0 1 0.3 · 0.1 · 0.6 0.5 · 0.3 · 0.6 0.5 · 0.3 · 0.1

0 0 0 1 0 0 0 0

. . . . . . . . .

0 1 1 1 0 0 0 0

1 0 0 0 0 0 0 0

. . . . . . . . .

1 0 1 1 0 0 0 0

1 1 1 1 1 0.7 · 0.9 · 0.4 0.5 · 0.7 · 0.4 0.5 · 0.7 · 0.9
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where 1EQC is the indicator vector for the equality constraint (EQC). Let us
first calculate the bitwise APP for v3, i.e. the (normalized) marginal posterior
on the state node, u3. According to (26) we have

μ
(0)
u3 = z−1 0.018 = 0.067 = Pr(v3 = 0 | y),

μ
(1)
u3 = z−1 0.252 = 0.933 = Pr(v3 = 1 | y),

where z−1 = (0.018 + 0.252)−1 = 3.704.
The two output messages, μv→ f0 and μv→ f1 , are computed the same way

as the APP, by marginalizing 1EQC on f0 and f1, respectively. The “input
message” from the degree-1 state node remains neutral, u3 = (0.5, 0.5), and
we have

μv→ f0 = z−1(0.18, 0.28) = (0.39, 0.61)

where z−1 = (0.18 + 0.28)−1 = 2.174. The calculation for f1 yields

μv→ f1 = z−1(0.03, 0.63) = (0.067, 0.932).

♦The indicator function, 1ECQ, for a variable node is simple. The truth
table representation in Example 2 leads to the following update rule:

μ
(α)
b→ f = ∑

∼ f
Ψ f · 1EQC

= Pr(b = α |
For all f ∈ N f

b︷ ︸︸ ︷⊕
v∈N b

f0

v = α,
⊕

v∈N b
f1

v = α, . . . ,
⊕

v∈N b
fγ−1

v = α)

= Pr(b = α | ∧
f ′∈N f

b

[
⊕

v∈N b
f ′

v = α ]) (26)

as illustrated in Fig. 6. Since 1ECQ has only one contribution to each
marginal, the sum-part (as well as the two-state indicator function) is
usually omitted such that (26) may be written in vector notation as

μv→ f = yv ∏
f ′∈Nv\{ f }

μv← f ′ (27)

where the product is vector point product.
The marginal likelihood on v, Pr(y | v), is then the joint likelihood of

all adjacent messages to v. Using Bayes’ theorem (11), and the fact that
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Fig. 6: Update of a variable node, v. Notice the input half-edge, y, and the output state
node, u, containing the channel likelihood and the posterior probability (APP),
respectively.

Pr(y) is independent of v and the assumption of uniform priors, we
have that the bitwise APP is porportional to the likelihood. As such, the
normalization stage produces the APP, Pr(v | y). As seen in Example 2,
this APP can be calculated by attaching a state node, u, to v – see Fig. 6.
Note that such degree-1 nodes will not produce any output message
(along their single edge), due to the extrinsic principle.3

From an implementational point of view, the XOR rule on |N v
f | vari-

ables can be implemented in a cascade of degree-3 nodes, interconnected
by state nodes

μ f→v =
∼⊕

v′∈Nv\{v}
μ f←v′ . (28)

We have thus seen two important simplifications of message passing,
in which the particular structure of the indicator function is exploited
in order to give an efficient implementation of both the function and
the variable node rules. In fact, as shown in Fig. 5, this is an extension
of the factorization approach which makes factor graphs an efficient
tool for computing exact marginals. Further simplifications are used in
the literature, to facilitate implementation. Rather than working in the

3Also note that this notion of degree-1 nodes differs from that discussed in Paper IV, in
which the “systematic nodes” also contain an input node which makes them degree-2
nodes in this current context.
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(a) SPC (b) REP

Fig. 7: The trellis of the dual (repetition) code has simpler trellis than that of the SPC
code, so the check node is commonly computed on the dual code.

probability domain, it is common to compress the likelihoods into a
likelihood ratio,

νi =
μ0

i
μ1

i
=

Pr(yi | vi = 0)
Pr(yi | vi = 1)

. (29)

Appropriate clipping (truncating of real numbers in a finite-precision
computer) is performed during the demodulation process to avoid
dividing by zero and buffer overflow. For increased numerical sta-
bility, one typically takes the logarithm of the ratio, working in the
log-likelihood ratio (LLR) domain, denoted by

Li = ln(νi). (30)

The quantization rule becomes the sign operation, sign(Li).

Working in the LLR domain has several benefits in implementing the
SPA. For instance, the variable rule (27) reduces to addition (which is,
generally, a less costly operation than real-valued multiplication)

μv→ f = yv + ∑
f ′∈N f

v

μv← f ′ . (31)

The check rule (28) can be re-expressed [4] as

μ f→v =

⎛
⎝ ∏

v′∈N v
f

sign(μ f←v′)

⎞
⎠ 2 tanh−1

⎛
⎝ ∏

v′∈N v
f

tanh

( |μ f←v′ |
2

)⎞⎠ .

(32)

This can be computed efficiently via the Bahl-Cocke-Jelinek-Raviv
(BCJR) algorithm [25], which is reminiscent of the Viterbi algorithm
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but which also produces the bitwise APP values for all variables (out-
going messages for all adjacent edges). This algorithm traverses the
trellis twice (rather than once), and with a more complex local opera-
tion at each edge (i.e., the hyperbolic tangent function, and its inverse,
in (32)). Although more complex than the Viterbi algorithm, the soft
output (extrinsic values) generated facilitate message passing. This is
implemented based on a trellis representation of the [ρ, ρ− 1] (SPC)
supercode, 〈hj〉, generated by one row hj of H – see Fig. 7(a). The max-
imum state space of the trellis is known to be bounded by ρmax〈hj〉 ≤
min(dim〈hj〉, dim〈hj〉⊥) [7], which gives ρmax〈hj〉 ≤ min(ρ, 1) = 1.
Thus, for any SPC code (regardless of ρ), the minimal trellis has only
2 states. However, the trellis branch complexity, in terms of number of
“edges” (transitions between trellis sections), determines the number of
computations required in a trellis-based decoding algorithm to decode
a received sequence [7]. The dual of the SPC code is the repetition
(REP) code. Since the two codewords of the dual code are uniform
(all-zero and all-one), there is no need for any interconnecting (i.e.,
0 ↔ 1) branches, and obviously the branch complexity is simpler – see
Fig. 7(b).

An “efficient” implementation of the BCJR algorithm will thus be
on the dual code, using a Fourier transform to convert the “SPC LLRs”
into dual “REP LLRs,” and back. Then, for this specific two-state, no-
intersection trellis, the forward and backward (past and future APP)
pass of the BCJR algorithm may be performed using only two inde-
pendent arrays, with a subsequent combination stage to produce the
outputs.

3 .4 SPA O N CO D E S W I T H CY C L E S

The SPA update rules produce exact APP values when the correspond-
ing code realization is acyclic. However, to achieve this the code must
either be very weak,4 or the partitioning of the code must be coarse, such
that cycles are confined within component codes, at the cost of increased
complexity (which is exponential in component code dimension) [26].
Hence, we need cycles to give codes which are simultaneously useful
and useable.

4A tree graph is a code of minimum distance 2. This follows from the presence of
multiple leaf variable nodes in the graph. When R > 1/2, the I-part of H is smaller
than the P-part, such that a weight-2 codeword is formed by a vector which is nonzero
in these two positions (syndrome sums to 0) [4].
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The practical approach to BP message passing decoding of cyclic
graphs is to implement the SPA rules, and compensate for the lack
of starting and ending states by allowing the decoder to iterate, with
some stopping criterion. The cost is apparent, in terms of latency (more
than one pass through the graph), and the need for a global stopping
criterion which violates the locality argument of the SPA; either the
syndrome is zero or a maximum number of iterations is exhausted (or
some other stopping criterion). The stopping criterion requires polling
the state of all check nodes in the graph, as well as issuing a halting
signal to all variable nodes. Finishing the example used in the previous
sections, the entire Tanner graph of the [7, 4, 3] Hamming code is drawn
in Fig. 8, where the cycles are obvious – especially the shortest of length
4. Attached to each check node is a state node, sj, which contains the
soft syndrome value of the corresponding supercode. This value can be
viewed as the state of the check node, reflecting the probability that
the adjacent variable nodes hold a codeword of the supercode. Only
when all checks hold such a supercodeword does V correspond to a
codeword of C, and decoding may stop.

The crucial insight by Gallager was that BP in the context of decoding
does not need to be exact. The APP value for each variable node is
only required to converge towards its correct value. In BPSK signalling,
the LLR should only tip slightly to the correct side of zero for the
quantizing (hard decision) stage to produce the correct bit – at which
point the APP is discarded anyway. Furthermore, the feedback of cycles
can be reconsidered in terms of information attenuation. As information
passes around a cycle, it is gradually moderated by other nodes such
that the self-reinforcing effect on the originating node is reduced. As
such, the adverse effect of a cycle is depends on the length of the
cycle, where especially length-4 cycles are detrimental to performance.
The minimum cycle length in the graph is referred to as the girth, g,
of the graph. Within the first g/2 iterations, information has not yet
passed through the shortest cycles, and calculations are still exact – a
finite-length formulation of the local tree assumption.

It is well known that certain properties of the parity-check matrix
(or the corresponding graph) will also affect the error-correction per-
formance, and must be taken into account along with the overall prop-
erties related to the code. With the shift into modern (i.e., graph-based,
iterative) coding theory, one says that the minimum distance is not
everything [21]. For instance, one is no longer satisfied to decode t
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Fig. 8: Tanner graph representation of the [7, 4, 3] Hamming code. The syndrome bits sj
correspond to the “state” or output of each check node. The hard decision on each
is combined to form the final output of the global function (21), F(v0, . . . , v6) =
1C (v0, . . . , v6).

errors; to compete with current records, one needs to decode beyond
the minimum distance.

The specific instance of SPA message passing on a Tanner graph
is the standard system for decoding of codes on graphs, with LDPC
codes as the most famous example. The constituent supercodes and the
necessary communication between these, as described above, lead to
the SPA. This algorithm is exact so long as the problem instance (i.e.,
the Tanner graph) is a tree. However, an iterative version for decoding
of general codes, which are commonly either extremely large (LDPC
codes) or very dense (HDPC codes), becomes very complex to analyze.

3 .5 LDPC CO D E S

Gallager’s LDPC codes, in the 1960’s, were the first codes to approach
the capacity as described by Shannon on a general channel – they
are “asymptotically good” [18].5 However, again there were challenges;
Gallager’s codes were described simply as random constructions, with
only very general parameters such as size (matrix dimensions), row and
column degree (regular codes), and a property that no pair of columns
share more than one common nonzero entry (no cycles of length 4). As
such, LDPC codes exist only as ensembles, or families, of codes which

5Gallager proved that the minimum distance of most (with a high probability, any
random selection) LDPC codes in a regular ensemble with column weight γ ≥ 3 is,
asymptotically, lower bounded by a positive constant times the blocklength [27].
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share the same parameters, but are otherwise completely random and
different. Subsequently, it was found that irregular LDPC codes could
perform better than regular ones [28]. Such an ensemble is defined
by the variable and check node degree distributions, referring to the
fraction of nodes of specific degree (number of adjacent edges).

When an ensemble can be proven to approach capacity on the AWGN
channel, less is known for the performance of some specific sample (i.e.,
code) from the ensemble. Given an ensemble of codes of some rate, R <
C, (codes from an ensemble have the same design rate, such that almost
all have the same rate) the error probability function characterizing the
decoding algorithm can be used to calculate a threshold on the error-
rate performance of the ensemble with the channel/algorithm pair [29]
(where we focus on the AWGN channel). This is the minimum SNR
required for the decoder to converge (on a cycle-free Tanner graph)
averaged over all codes in the ensemble, as the blocklength goes to
infinity. Any sample (LDPC code) from the ensemble can then be
simulated, to compare the slope of the FER-vs-SNR curve against this
threshold.

3 .6 BE L I E F PR O P A G A T I O N TH R E S H O L D

As BP is known to compute the exact MAP values when the factor
graph is a tree (acyclic), it is possible to estimate the limit of the perfor-
mance of an ensemble of codes under message passing decoding. The
concentration theorem proves that, asymptotically in n, the performance
of a randomly chosen code converges to the expected performance of
its ensemble [29]. Independently of decoding algorithm (i.e., the variant
of BP used), as long as the bit-error probability of the decoder, P(τ)

b ,
can be shown to be monotonically increasing with channel parameter, p
(where q > p is a worse channel), while simultaneously decreasing in the
number of BP iterations τ, p has a finite limit known as the threshold,
pbp.

Using a technique called density evolution (DE) practical experiments
can be implemented to allow the determination of a threshold channel
parameter, beyond which (i.e., for less noise) error-free communications
is possible. That means, the error probability can be made arbitrarily
low, by choosing a sufficiently long code from the ensemble in question
[29, 30]. DE is an asymptotic analysis based on the degree distributions
of the ensemble. By considering an infinitely long code, the independece
of messages under any finite number of iterations of BP is assured, and
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DE may compute the threshold on the performance of the ensemble by
tracking the “evolution of densities” – i.e., the convergence of the pdfs –
as a function of iterations. Under these ideal, yet artifical, circumstances,
one may determine the best possible performance of the ensemble.

A simplification of DE is to use Gaussian approximations on the pdfs,
which are reduced to their corresponding means. These are easier to
compute, and tracking these gives a very useful estimate on the thresh-
old. This is commonly implemented in terms of extrinsic information
transfer (EXIT) charts [31], which visualize the information exchange
between concatenated decoders as decoding trajectories. An estimate on
the threshold is then the largest channel parameter (i.e., the highest level
of noise) for which the constituent decoders remain able to exchange
new information. For LDPC codes, the corresponding supercodes are
the variable and check nodes, representing each different degree if the
ensemble is irregular. As we have seen, the corresponding iterative
decoders exchange information in terms of message passing such that
the output of one decoder is the input to another. Graphically, for each
decoder, the extrinsic mutual information can be plotted as a function of
the a priori mutual information (in the interval 0 to 1). The information
exchange can then be visualized by plotting the inverse of the other
decoder on the same chart. The information exchange, as a function of
decoder iteration number, is then visualized as a zig-zag line between
the two plots. Unless the plots intersect, the mutual information con-
verges to 1 (upper-right corner of the chart), corresponding to virtually
error-free decoding [31]. The threshold, in this context, is then the max-
imum noise level for which the plots do not intersect, giving what is
often called an open tunnel.

Using these techniques, the asymptotic performance of different
ensembles can be compared, which has led to the discovery of opti-
mized irregular LDPC codes with record-breaking gaps to capacity (the
Shannon limit) on various channels. Implemented as an optimization
problem, it is possible to determine the degree distributions which
optimize the threshold. Assuming long blocklengths, codes from such
ensembles perform similar to their ensemble averages. How this relates
to finite-length codes from the same ensembles, however, is not easily
predicted, as structural dependencies on the code representation can not
be ruled out. This is typically estimated numerically for the specific
code and graph in question.
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In practice, it is possible to estimate this threshold by approximated
analysis. To motivate the meaning of the threshold, we will outline a
naive (perhaps inefficient) procedure where the threshold is estimated
by means of standard error-rate simulations. A sufficiently large code
from the ensemble is chosen, for which the average P(τ)

b (for some large
number of iterations, τ) for increasing p (i.e., simulating the bit-error
probability) is determined by simulations. This is repeated, to produce
an average BER plot over many random codes from the ensemble. By
repeating this procedure for increasing values of n (simulating the
limiting bit-error probability as n goes to infinity), eventually a slope
resembling a vertical limit will appear. When the curve reaches some
predefined target FER (low enough to emulate “error-free” communi-
cations, but not so low that it is impractical to simulate accurately),
the crossing point (p-value) is the estimated pbp. This verifies that Pb
can indeed be made as small as desired (the target FER) for any suffi-
ciently large, but otherwise randomly chosen, code from the ensemble,
provided that the noise level is below the threshold, p < pbp.

This threshold value can be thought of as a capacity of a code/decoder
pair on a given channel, indicating the best possible (asymptotic) per-
formance of the code ensemble. The capacity of the channel is a maxi-
mum rate, computed according to a function of the channel parameter,
C = f (p). Thus, the capacity interpreted as a maximum channel pa-
rameter, pSha, corresponds to evaluating the inverse of this function
for the design rate, R, of the ensemble, pSha = f−1(R). The gap from
threshold to capacity is then reported as the limiting performance of
the ensemble, on the given channel.

3 .7 FI N I T E-LE N G T H CH A L L E N G E S

We have seen how finite-length topological problems, such as weight
and girth, hamper the performance of soft-decision decoding of practical-
sized LDPC codes. Allowing the SPA to be iterative does to a certain
extent improve the performance, but one is still failing to approach
the near-capacity asymptotical performance of large codes. The frame
error-rate (FER) performance of finite-length codes under iterative de-
coding is characterized by two classes of errors. The FER plot obtained
by simulating such a code over an SNR range (as described above) then
takes the form of the sum of the corresponding two curves, and it is
this curve which differs significantly from the limiting curve giving the
threshold. At low SNR (high noise), the first class of errors is due to the
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decoding algorithm, which struggles, and often fails, to converge to a
codeword. We will go into detail on some of the causes of this problem
in the following, but for now only refer to the fact that the slope of the
FER curve at low SNR is much less steep than that of a code well-suited
for iterative decoding (e.g., a long LDPC code).

As the SNR improves (in the simulations context), the decoder has an
easier task of decoding, causing the curve to drop at some rate. This is
referred to as the waterfall region of the curve. However, at some point,
the number of errors is low enough for the decoder to begin making
errors due to minimum-weight codewords of the code. Although diffi-
cult to calculate for long codes, it is known that the minimum distance
of a regular LDPC code is in the order of the blocklength; i.e. quite
large. Accordingly, for finite-length codes, the minimum distance is
weaker, preventing the error-rate from maintaining its slope. In terms of
a threshold, this effect means that this code will not reach the threshold
it might have appeared to approach, but rather flatten out towards a
significantly higher SNR. The discontinuity resulting from the now
even further decreased slope is referred to as the error-floor region.

This identifies two obvious areas of improvement, either by increas-
ing the slope in the waterfall region, or “lowering the floor,” or both.
For HDPC codes, large minimum distance (compared to blocklength)
is usually among the defining properties, so the FER response is domi-
nated by the waterfall region with less dramatic (or nono) floor-effect.

Experience from the conceptually simple binary erasure channel
(BEC), which is easier to analyze than the BSC and AWGN channels,
has identified some of the factors in this complex problem. Interestingly,
these observations also have an effect on the performance under more
general channels, thus providing valuable insight. Since positions not
erased on the BEC are known to be correct, optimal decoding may be
done by a hard-decision algorithm which iteratively finds a solvable
check equation, corrects the erasure, and removes all the edges involved
from the graph. If all erasures are correctable, the ML codeword is
recovered. In this sense, a solvable equation corresponds to a check
node to which only one of the adjacent variable nodes correspond to an
erasure. This single error is always correctable, as the check-sum (XOR)
of the other bits.

Among the most important recent discoveries on the dynamics of
iterative decoding are stopping sets [32] which cause a deadlock in the
iterative process. On the BEC, the iterative process stops when no
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solvable equation can be found. A stopping set is a subset of codeword
positions which, if all are erased, will cause the decoder to stop. To test
whether some subset of variable nodes, V′ ⊆ V , is a stopping set, it is
easiest to consider the subgraph of TG(H) induced by these variable
nodes; i.e. the nodes V′, the adjacent check nodes, U′ = ⋃

v∈V′
Nv ⊆ U , as

well as the edges connecting V′ to U′. We discard all the other variable
nodes, which correspond to codeword positions which are assumed not
to be erased. If V′ is a stopping set, such that decoding fails if all these
positions are erased, then U′ must contain no check nodes of degree 1.

According to this definition, the support sets (the nonzero positions)
of all codewords are also stopping sets – which makes sense, in terms
of our interest in a decoding algorithm which stops on reaching a code-
word. To see that a codeword x corresponds to a stopping set, consider
the subgraph induced by the support of x. From the discussions on the
SPA, we know that all the check equations must be satisfied (i.e., sum to
0) for x to be a codeword. Focusing on the check nodes in U′, we must
then have that these all connect back to V′ an even number of times
(recall that all positions outside the support of x are zero, by definition),
which completes the argument since 2 is the smallest nonzero even
number. However, the converse is generally not true; a stopping set
does not need to be the support set of a codeword. This is obvious
from thinking of an induced graph (on a stopping set) for which one or
more of the check nodes have odd degree greater than 2. As such, the
stopping sets are not a code property, but depend on the structure of
TG(H). Stopping sets completely characterize the performance of the
SPA (or BP) decoder on the BEC, since knowledge of the stopping sets
enables us to improve the decoder by taking the proper action when
the decoder stops. To allow decoding to resume, one would modify
the structure of TG(H) such that one or more of the erasures are no
longer in a stopping set. Such action may be to apply a permutation (on
the columns of H) from Aut(C) [33, 34], or, simply, to add rows of H
such that the sum (modulo 2) becomes a new linear combination (code-
word of the dual code) which actually has the desired single edge into
the erased positions. Another approach is to simply keep a set of dis-
tinct Tanner graphs, periodically changing graphs during decoding [35].

As an indication of the complexity of analyzing the SPA decoder on
more general channels (such as the AWGN channel), even with the
concrete tools derived from the BEC channel, it has been shown that
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mirages exist in the decoding space, in which the decoder attempts to
converge. These attract the iterative process towards what appears to
be a solution, only to find once it gets nearer that there really is nothing
there. These false solutions are described as pseudocodewords [36–38] and
near-codewords are known to arise due to the local action of the SPA. A
code is partitioned into a system of supercodes, in which a node is only
concerned with the structure of its immediate surroundings. As a local
subgraph can be the same in several distinct Tanner graphs for the same
code, there is no guarantee that check nodes converge “their” subset of
the variable bits (codeword positions) towards super-codewords which
actually intersect with a global solution (codeword in the main code).
In fact, it has been shown that pseudocodewords coincide with failed
(i.e., non-integer) solutions of the linear programming decoder [39]. As a
general class of problematic topologies in the Tanner graph, Richardson
defined (a, b) trapping sets as any set of a variable nodes adjacent to
b check nodes via an odd number of edges which, simply put, fail to
converge after some high number of SPA iterations [40]. Despite this
loose-fitting definition, the same trapping sets may be observed by
repeated experiments, yet the link to the underlying Tanner graph is
generally not well understood.

3 .8 HI G H-DE N S I T Y PA R I T Y-CH E C K CO D E S

Although classical codes were found to have graphical representations
ill fitted for iterative decoding, the question of whether iterative decod-
ing might be modified such as to accomodate the use of strong classical
codes, has recently received renewed interest. The aim of this research is
to modify the dynamics of message passing so as to reduce the negative
impact of various finite-length problems. Some of these problems are
understood analytically – such as weight or density, cycles, stopping
sets, and pseudocodewords, to name perhaps the most important.

In the context of applying soft-decison, iterative decoding to small
blocklength, high-rate codes, the classical codes used are grouped under
the category high-density parity-check (HDPC) codes. This term signifies
the legacy from LDPC codes; that these codes are to be used for iterative
SPA, or SPA-like, decoding, while at the same time pointing out the
main distinction from LDPC codes. The various code constructions
which qualify as HDPC codes is diverse, yet the trait of high density
is the most important common qualifier. As we have seen, low-density
is understood as a fraction of nonzero entries which is constant in
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blocklength. Accordingly, high-density refers to a fraction which grows
linearly in blocklength.

The concept of HDPC codes is quite recent, and begs the question
why, in the context of iterative decoding, one would want high-density
codes. The motivation for this area of research – to which this thesis
is devoted – is to enjoy the benefits of both iterative decoding and
small code size. Furthermore, classical code constructions are based on
maximizing Hamming distance, and usually defined according to an
algebraic or recursive structure which gives practical implementation
in hardware (as opposed to storing a large, random matrix). Benefits
include efficient encoding – one of the bottlenecks for LDPC schemes –
as well as structural properties which can be used to enhance decoding.
As we have discussed, stopping sets represent one of the pitfalls for
iterative decoding. The algebraic, nonrandom design of HDPC codes
generally ensures a nontrivial Aut(C). Applying a permutation from
Aut(C) on the columns of H might then move one or more erasures
away from a stopping set – without really changing the structure of
TG(H) (see graph isomorphism in the following). Such dynamic de-
coding can be implemented efficiently on HDPC codes, by simply
permuting the soft input vector rather than H. This decoding algorithm
for HDPC codes is referred to as random redundant decoding (RRD) [33],
and stems from the permutation decoder (PD) described earlier in this
thesis. Rather than checking the weight of the syndrome after each
permutation, and correcting errors by re-encoding, RRD attempts to
correct errors via standard SPA iterations between permutations. The
rationale of this decoder is not explicitly in terms of avoiding stopping
sets, but rather that the increased diversity from permutations may have
beneficial effects on SPA decoding in general. For instance, to name
another example, the structure of small cycles in TG(H) is arguably
amortized over codeword positions. In the following papers, we refer
to this algorithm simply as SPA-PD.

The concept of employing code-preserving permutations to gain
diversity forms one of two main categories of iterative SISO HDPC
decoding. As mentioned, the structure of TG(H) is really preserved
under permutations: This is especially easy to see if the permutations
are on the soft input vector rather than H. This naturally identifies
the other main category as containing algorithms based on changing
the structure of TG(H). Again, obviously, the code must be preserved,
so the permissible operations are, roughly, row-additions (online) and
keeping several preprocessed matrices (or Tanner graphs) in memory
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(offline). This is described as multiple-bases belief propagation (MBBP) [41],
with numerous variations in the literature. A more in-depth survey is
given in Paper III of this thesis.

4 ED G E-LO C A L CO M P L E M E N T A T I O N

The main topics of this thesis, as indicated by the title, are HDPC codes
and a graph operation known as edge-local complementation (ELC). In
short, the aim of this research is to investigate the specifications and
benefits of using ELC to gain diversity during SISO decoding of HDPC
codes. As with much other work on HDPC codes, our approach is a
unification of the two categories outlined above; in one sense, as we
will see, ELC amounts to row-additions on H, thus changing the basis
during decoding, yet we also outline how ELC may, in fact, preserve
the structure of H, amounting to permutations on H.

4 .1 SO M E GR A P H TH E O R Y

Before going into the details on ELC, some basic concepts of graph
theory are summarized. A graph, G = (W , E), is defined as a set of
nodes, v ∈ W , connected via a set of edges, E ⊂ W ×W . This graph is
represented by an n× n adjacency matrix, G. At some abuse of notation,
we denote both the graph and its adjacency matrix by G, and typically
write (vi, vj) ∈ G (rather than E ). A simple graph is defined as an
undirected (i.e., (vi, vj) = (vj, vi)) graph with no repeated edges or
“self-loops” (i.e., (vi, vi) /∈ G). A graph is bipartite if E induces a split
of W into two disjoint sets, W = U ∪ V , where U ∩ V = ∅ and all
edges are between U and V . The weight of a graph is the number of
edges, |G| = |E |. An adjacency matrix for an undirected graph is always
symmetrical about the main diagonal. Thus, the weight of G is also
equal to the number of nonzero entries in the upper (or lower) triangular
submatrix. For convenience, we repeat some previous definitons here.
The local neighborhood of a node v is the set of nodes adjacent to v,
and is denoted by Nv, while N u

v is shorthand notation for Nv \ {u}. Let
EA,B denote the subgraph induced by the nodes in A ∪ B – i.e., it is a
set of |EA,B| edges. Furthermore, Eu,v is shorthand notation for EN v

u ,N u
v ,

the local neighborhood of the edge (u, v).
In this work, we consider labelled graphs, where each node is assigned

a unique identificator; usually a number. The nodes in U and V are
numbered separately, running from 0 to |V| − 1, and from 0 to |U | − 1.
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The canonical form of a graph, denoted by N(G), is defined as the graph
resulting from sorting the rows and columns of G in some deterministic
order. As such, any graph has a deterministic canonical form, but
which may be common for several distinct graphs. In this case, we
say that these graphs are structurally equivalent – or isomorphic. More
specifically, two graphs G and G′ are isomorphic iff there exists a
permutation π on W , such that (u, v) ∈ G iff (π(u), π(v)) ∈ G′. We
may thus determine isomorphism by comparing canonical form graphs,
N(G) = N(G′). The specific sorting rules which facilitates to resolve
such a problem are naturally very complex indeed and we only refer
to the graph automorphism software package, Nauty, which handles
this in an efficient manner [42]. As a simpler concept, consider a parity-
check matrix, H. In being a basis for C⊥, it is invariant under reordering
of rows; this is an elementary row operation which preserves the code.

The adjacency matrix for a Tanner graph is TG(H) =
[

0 H
HT 0

]
, so we

may describe two Tanner graphs, TG(H) and TG(H′), as isomorphic
iff the parity-check matrices, H and H′, are equal after sorting the rows
(in lexicographical order). The canonical form of a parity-check matrix,
H, is written R(H).

4 .2 ED G E-LO C A L CO M P L E M E N T A T I O N

ELC is defined on an edge of a simple (not necessarily bipartite) graph,
(u, v) ∈ G [43]. The subgraph induced by (u, v) is the set of nodes
adjacent to either u or v, or both. The remaining nodes of the graph
(adjacent to neither u nor v) are ignored – we say they are nonlocal
to (u, v). Let these three first sets be A = N v

u \ N u
v , B = N u

v \ N v
u ,

and C = N v
u ∩N u

v . The arbitrary edges between two sets of nodes is
denoted by A ∼ B. ELC on an edge (u, v) will complement any edges
(edges replaced by nonedges, and vice versa) connecting all these sets,
A � B, A � C, B � C, followed by the swap of nodes u and v. This is
illustrated in Fig. 9. In this sense, we say that ELC is a local operation
as it only affects edges within a distance of one from the ELC edge,
(u, v). The resulting graph, after ELC, is denoted by G(u,v). ELC is a
self-invertible operation as two ELC operations on the same edge is the
identity. Since the edges connecting u to {A, C, v}, and those connecting
v to {B, C, u}, are are not affected by ELC on (u, v), it follows that ELC
preserves the connectedness of the graph.

ELC was initially described in [43], as “complementation along an
edge.” Other authors have since referred to the operation as pivot on
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(an edge of) a graph, to connotate the resulting transformation which
is centered on an edge. Thus, the edge becomes a pivot (a fixed-point),
around which the graph is transformed. The term “pivot” is used
interchangeably with “ELC.”

ELC has been used in various contexts, mainly graph-theoretical work.
For instance, ELC has been used to classify the orbits of graphs (under
ELC). The orbit of a graph is defined as the set of structurally distinct
(nonisomorphic) graphs found via any sequence of ELC operations.
Nonbipartite graphs are of interest in various contexts within quantum
information theory. In the context of “conventional” coding theory,
as we consider, we have seen how graphs are restricted exclusively
to the bipartite case. This slightly simplifies the description of ELC,
in that the common set, C, is always empty. Also, since the nodes
in A and B must belong to opposite partitions, the complementation
must preserve the bipartiteness of the graph – but, generally, the specific
bipartition is changed: u and v change partitions. For bipartite graphs,
ELC orbits have been used to classify all binary linear codes [44], and
is known to generate all information sets (i.e., parity-check matrices,
up to row-equivalence) of the code. The animation at the bottom of
odd-numbered pages shows an example of ELC on the simple 8-node
graph corresponding to the [8, 4, 4] extended Hamming code. This
code has the very special property of having only a single graph in its
orbit, such that any ELC will be an iso-ELC. In this example, note that
the beginning and ending graphs both take the shape of a “cube,” yet
with a different labelling of nodes (note the nodes swapped at the end).
In this sense, this code is ELC-preserved.6

The effect of (bipartite) ELC on the underlying (parity-check) matrix
is to reduce the corresponding column to a systematic (weight-1) col-
umn. This is precisely as in the definition of Gaussian elimination (GE),
where the single remaining nonzero entry is referred to as the pivot of
the column, or a pivot position. Furthermore, the fact that ELC can be
implemented as row additions on a matrix (as in GE), proves that ELC
preserves the code. As we have seen, there is a one-to-one relationship
between a Tanner graph TG(H) and a simple bipartite graph, G. This
is an important observation, which gives the foundations for applying
graph operations (i.e., ELC) to improve decoding. To our knowledge,
ours is the only use of ELC as an aid to improve graph-based decoding.

6The fact that ELC is (self) invertible is apparent by flipping the animation in the
opposite direction.
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Fig. 9: ELC on edge (u, v) of a simple graph. Bold links mean that the edges connecting
the two sets have been complemented. This graph may be a subgraph of a larger
graph, in which case the rest of the graph remains unchanged.

The ELC operation is related to another simple graph operation, local
complementation (LC). This operation acts on a node, v, rather than an
edge, complementing the neighborhood, i.e., v � Nv. Originally defined
by de Fraysseix [45], this operation was also studied by Bouchet [46].
In fact, the ELC operation may be implemented by a sequence of LC
operations: ELC(u, v) = LC(u) LC(v) LC(u). LC orbits of graphs have
been used to classify self-dual additive codes over GF(4) (i.e., quantum
codes) [47]. Furthermore, interlace polynomials, defined with respect
to ELC and LC [48, 49], have been used to study problems in DNA
sequencing [50]. The LC operation also preserves connectedness, but
not bipartiteness.

5 CO N T R I B U T I O N S O F T H I S TH E S I S

The novel work presented in this thesis consists of five papers. I will first
give a short overview of each paper. All the work is presented as joint
work, and I have made an attempt to point out my main contributions
to each paper. This is an inherently difficult task, as the cooperation
in this group has been very tight. As a general comment, I should
emphasize that all papers where I am listed as the first author were
written by me, while the coauthors have (mainly) proof-read and made
general adjustments.
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PA P E R I

This paper introduces our work on using ELC to improve an iterative,
SISO decoder. This work considers the general graphical requirements
for ELC to be an isomorphic (iso-ELC) operation. The [8, 4, 4] extended
Hamming code is used as a toy code and a proof of concept for the SPA-
ELC decoding algorithm. This code is ELC-preserved, which means
that the resulting graphs under ELC are equal up to node permutations.
This gives the benefit of using randomly placed ELC operations and still
achieve the desired effect of using iso-ELC operations to give diversity
during decoding [51].

For this work, we consider both a serial and a parallel, list version
of the decoder, and show an improvement over standard flooding SPA
decoding. We call these the random adaptive decoder (RAD), and the
list adaptive decoder (LAD). Alternative approaches to implementing
iso-ELC operations during decoding have significant drawbacks, involv-
ing precomputing and storing a possibly large list of ELC sequences
which preserve graph structure. Furthermore, as these depend on the
Tanner graph, it would be required to compensate for changes in la-
belling resulting from ELC operations, or, alternatively, undoing the
previous iso-ELC operation to return to the initial graph such that the
next operation may be applied. The results and experiences from the
extended Hamming code and the RAD led us to investigate further the
use of ELC in decoding of HDPC codes.

My Contributions to Paper I

I have implemented a simulations setup to test the performance of the
isomorphic SPA-ELC decoder. This setup consists mainly of an AWGN
noise simulator; a Tanner graph implementation suited for ELC; an SPA
implementation working in the LLR domain; and a database system for
keeping track of simulations data (when run in parallel on a Linux cluster).
The Tanner graph view of ELC is based on my work, and the knowledge
of the extended Hamming code being ELC-preserved led us to look into
how and when ELC is a graph isomorphism (and, correspondingly, a
code automorphism). Using my software, I designed and implemented
decoding algorithms (LAD and RAD) to test the concept of isomorphic
SPA-ELC decoding.

Knudsen, J. G., Riera, C., Parker, M. G., Rosnes, E.: Adaptive
soft-decision decoding using edge local complementation. In Proc. Second
Int. Castle Meeting on Coding Theory and Applications, LNCS 5228, pp. 82–94.
Castillo de la Mota, Medina del Campo, Spain, Sep. 2008.
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PA P E R II

The effect of the SPA-ELC decoder is extended to larger, more general
codes. The codes considered are still small and strongly structured,
from the perspective of iterative decoding which is typically concerned
with large and sparse codes; i.e., we consider HDPC codes rather than
LDPC codes. The desired effect is, here, to test the effect of the SPA-
ELC decoder when random ELC does generally not preserve graph
structure (nonisomorphic). As a natural step from the extended [8, 4, 4]
Hamming code, we consider the [24, 12, 8] extended Golay code, as
well as two EQR codes, [48, 24, 12] and [104, 52, 20]. The extended
Golay code is nearly ELC-preserved: ELC gives only two structurally
distinct graphs, which, similarily to the case in Paper I, gives a benefit
for SPA decoding and a performance comparable to SPA-PD [33]. The
length-48 and 104 EQR codes, on the other hand, have vast such orbits
of graphs, containing graphs of varying weight [44]. Increased weight is
well known to have an adverse effect on decoding, affecting both error-
rate performance (increase in number of small cycles), and complexity
(larger input space for each node to process). As such, the performance
of SPA-ELC cannot keep up with that of SPA-PD as we go on to bigger
codes (at least for the specific EQR codes considered in this work).
However, the gain to SPA decoding remains large, and increasing for
larger codes (at FER 10-4, we find a gain of over 1 dB for the EQR48
code, and over 2dB for EQR104). This indicates both that the SPA-ELC
algorithm scales with blocklength, but also that SPA decoding does not.

An important aspect of many SISO HDPC decoding algorithms is
that the extrinsic contribution (as opposed to the channel input) to
the LLRs in variable nodes is scaled down by a damping coefficient,
0 < α(t) < 1, which is an nondecreasing function of the iteration
number, 0 ≤ t ≤ τ [34]. As such, α(t) reflects our confidence in the
soft information produced by the decoder at iteration t. This technique
derives from the iterative decoding problem interpreted as a gradient
descent algorithm, where the solution takes the form of a minimum, and
α(t) controls the step width in the convergence (descent). The damping
used in [33] is a global operation, affecting the entire Tanner graph,
so we propose an edge-local variant which damps only those edges
affected by ELC. The performance of SPA-ELC with (and without,
as a simplified algorithm) such local damping is compared to the
performance of SPA-PD and SPA, both in terms of FER performance
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and decoder complexity (in average number of SPA messages computed
per frame).

My Contributions to Paper II

Having determined suitable types of codes (i.e., graphs) for ELC decoding
in Paper I, I was able to produce positive results also for random (non-
isomorphic) ELC. For this work, I implemented the SPA-PD algorithm
[33], which we have seen corresponds to iso-ELC, to serve as a benchmark
for decoder performance. After calibrating the setup, I used the same
framework (loops I1, I2, and I3) to implement our SPA-ELC decoder –
with and without edge-local damping. (Many variants were tested and
found inefficient, including the use of global damping with ELC.) Also,
as preprocessing, the parity-check matrices used for decoding were opti-
mized (using several approaches) on both weight and number of 4-cycles.
Extensive FER simulations were then maintained on a Linux cluster.

Knudsen, J. G., Riera, C., Danielsen, L. E., Parker, M. G.,
Rosnes, E.: Iterative decoding on multiple Tanner graphs using ran-
dom edge local complementation. In Proc. IEEE Int. Symp. Inform. Theory,
pp. 899–903. Seoul, Korea, Jun./Jul. 2009.

PA P E R II I

Inspired by the success of SPA-ELC on the special Hamming and Golay
codes, the third paper explores the structural properties of the Tanner
graph which affect the performance of ELC and SPA-ELC decoding.
In an abbreviated version of this paper [52] (omitted), we determine
the specific subgraphs on which ELC will not increase the weight
of the graph beyond a given threshold value – which we define as
weight-bounding ELC (WB-ELC). Based on the SPA-ELC and SPA-PD
algorithms, a generalized SISO HDPC decoder framework is outlined,
which is used to implement a novel SPA-WBELC decoder. In addition
to the theoretical observations on WB-ELC, the main results of the
abbreviated version is to show a gain in error-rate performance of
SPA-WBELC over SPA-PD. The strength of the SPA-PD algorithm is
strongly affected by the size of Aut(C). For this work, we choose HDPC
codes with strong structural properties (most importantly, extremal in
terms of minimum distance) [10, 11], but with relatively small Aut(C).
Especially, a gain is shown for codes where Aut(C) is trivial, where
SPA-PD reduces to SPA.
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This work is extended to a fulltext version, which is included as Pa-
per III. The WB-ELC observations are related to our previous work, and
presented as a generalization of iso-ELC, as discussed in Paper I. To
formalize the theoretical background for WB-ELC, this extended work
discusses the concept of iso-ELC and its relation to Aut(C) in greater
mathematical detail. In this context, the orbit of the code is general-
ized to a set of equivalent isomorphic orbits, each of size |Aut(C)|/|D|,
centered on each structurally distinct graph in the ELC orbit of the
code. A notion of Tanner graph row-equivalence is defined, which gives
subgroups DH � Aut(C) (varying with H), consisting of trivial per-
mutations which preserve the Tanner graph and have no effect on
iterative decoding. This gives rise to a canonical Tanner graph form,
based on sorting the rows of H. The one-to-one relationship between
permutations in Aut(C) and iso-ELC operations (i.e., sequences of 0 to
max(k, n− k) ELC operations) is proven via an algorithm to find the
minimum-length sequence of ELC operations connecting two Tanner
graphs for the same code (including also nonisomorphic graphs from
the same orbit, for which the ELC sequence does not correspond to
a permutation from Aut(C)). The classification of Aut(C) into trivial
and nontrivial permutations, denoted DH and KH , respectively, where
Aut(C) = DH ◦ KH , depends on the parity-check matrix, H. In sys-
tematic form, this depends on whether the action of a permutation is
confined to within I and P , or not. We explore the structure of the
subset of nontrivial permutations, with an emphasis on whether or not
this can be written as a group (for any parity-check matrix for the code).

The paper ends with a discussion on several applications of WB-ELC
operations, with an emphasis on the SPA-WBELC decoding algorithm.
Other applications, which are used in a preprocessing stage of the SPA-
WBELC decoder, are an heuristic to optimize (reduce) the weight of a
parity-check matrix in systematic form, and an algorithm to traverse
the bounded-weight sub-orbit of the code (i.e., the orbit of graphs under
WB-ELC, with some threshold). All applications are centered around
a base algorithm to enumerate all WB-ELC sequences, given a graph
and a threshold. The search complexity is bounded, and verified by
simulations. Several instances of this base algorithm are then proposed
to improve the overhead of determining a random WB-ELC sequence
(typically for real-time use). The complexity of these is compared by
simulations on various self-dual HDPC codes.
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My Contributions to Paper III

The specific cases for WB-ELC, at depth 1 and depth 2, were implemented
using my graph software, so that these could be checked and adjusted
to the form presented in the paper. This work led to an understanding
of the relationship between the cases, and what would be a practical
(nested) implementation of the enumeration algorithm. This was then
simulated extensively, to verify and adjust the complexity bound deviced
by Danielsen. Simulations on the performance of the SPA-WBELC decoder
were run, after choosing parameters based on empirical data. Furthermore,
in being a generalization of WB-ELC, various observations on iso-ELC,
which we have worked on after Paper I, fit naturally in the context of this
extended paper. An algorithm by Rosnes to convert a permutation from
Aut(C) to an iso-ELC sequence, was generalized to handle also the case
of nonisomorphic graphs. The Tanner graph canonical form stems from
B. D. McKay’s Nauty graph format (encoding rows of a binary adjacency
matrix, G, as integers), which I modified to a specific Tanner graph format
(encoding only H – the upper-right quadrant of G). This way, Tanner
graphs can be represented by a unique string of Ascii characters, for ease
of comparison and storage on disk.

Knudsen, J. G., Riera, C., Danielsen, L. E., Parker, M. G.,
Rosnes, E.: Random edge-local complementation with applications to
iterative decoding of HDPC codes. Tech. Report no. 395, Department of
Informatics, University of Bergen, Norway, Aug. 2010.

Submitted to IEEE Trans. Inform. Theory, 2010.
The material in this paper was presented in part at the International

Zürich Seminar on Communications (IZS), Zürich, Switzerland, Mar. 2010,
and at the Workshop on Linear Programming and Message-Passing Ap-
proaches to High-Density Parity-Check Codes and High-Density Graphi-
cal Models, Tel Aviv, Israel, Mar. 2010.

PA P E R IV

This paper differs from the previous three in that the ELC-stage of the
proposed decoder is adaptive, rather than random. This work is based on
the adaptive belief propagation (ABP) decoder [53], in which Gaussian
elimination (GE) is used in an attempt to reduce the columns of H
corresponding to the least reliable parity set to an identity matrix. The
reliability measure is simply the LLR magnitude. From the perspective
of iterative decoding, variable nodes of degree one (not counting the
input “half edge”) are practically isolated in terms of message-passing,
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in the sense that they receive information from their single check node,
without affecting the rest of the graph (sending only the input message
in return). Furthermore, these nodes are not part of any cycles. The
contribution of our proposed ABP-ELC decoder is to implement the
adaptive stage using p � n − k ELC operations, for a complexity
improvement over the GE-stage of ABP. This is an important gain, as
a GE-stage is considered a heavy overhead. Our experience with the
SPA-ELC decoder suggests a significant reduction in the number of
ELC operations is obtainable (p is typically configured between 1 and
3). Also, we extend the heuristic used to determine good ELC locations.
This is based on the fact that each ELC operation swaps a pair of
positions between I and P (in H). The best choice, in a greedy sense,
should ensure not only that the weakest position is swapped into P ,
but also that a reliable position is swapped into I .

The technique of edge-local damping is extended to a somewhat more
involved form of local damping, which we refer to as local neighborhood
damping, scaling all edges adjacent to all variable nodes affected by
ELC. We also observe a gain in FER by SPA-ABP over ABP. This gain is
verified by simulation data, for both the length-48 EQR code, as well
as a binary image of the [31, 25, 7] RS code over GF(25). Efficient soft-
decision decoding of RS codes is considered an important problem in
coding theory [54]. The observed gain is accredited to the generalized
damping scheme, as well as the benefit of preserving soft information
by avoiding global operations. Specifically, we avoid global damping
which involves discarding soft information on all edges. Interestingly,
this more involved damping has a beneficial effect on the high-rate RS
code, but not for the self-dual EQR code.

My Contributions to Paper IV

The improved heuristic was my idea, and the proposed adaptive ELC-
stage (to replace the GE-stage) was designed and tested by me. Both
implemented using the SISO HDPC framework, the ABP-ELC decoder
is simulated and compared against the ABP decoder. First, a calibration
was made to ensure that our implementation would reproduce the data
reported in [53]. The reported gain was reached through fine-tuning of
ABP-ELC parameters; mainly, determining an “optimum” choice of p
through repeated simulations.

Knudsen, J. G., Riera, C., Danielsen, L. E., Parker, M. G.,
Rosnes, E.: Improved adaptive belief propagation decoding using edge-
local complementation. In Proc. IEEE Int. Symp. Inform. Theory, pp. 774–778.
Austin, Texas, Jul. 2010.
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PA P E R V

This paper stems from the work on enumerating codes and graphs
in terms of their ELC orbit, focused on the extreme case of orbit size
1. Any ELC operation will – necessarily – give the same graph up to
isomorphism, so the graph and code are ELC-preserved. This work
explores the graph theoretical structural properties of such graphs,
identifying all instances of blocklength up to 16. From this exhaustive
search, the resulting codes include the Hamming codes (and their
extensions), as well as some trivial star graphs. The remaining codes
found are all categorized as expansions of either Hamming codes or star
graphs, to form larger graphs. From a coding theory perspective, we
conclude that all corresponding codes from the expansions do not have
favorable minimum distance.

We also consider non-bipartite ELC-preserved graphs, identify all
such graphs of up to 12 nodes, and describe expansion constructions.
Although non-bipartite graphs do not have immediate applications in
error-correction, these graphs are interesting from a graph theoretical
point of view.

My Contributions to Paper V

The focus on ELC-preserved graphs was, in part, motivated by my request
for a larger ELC-preserved graph than the [8, 4, 4] extended Hamming
code, on which SPA-PD can be easily implemented via random ELC
operations (one does not even need to know Aut(C)). Collaboration on
iso-ELC for Paper I and Paper III helped clarify the situation and re-
quirements for the ELC-preserved case. Furthermore, simple testing and
simulations revealed the challenges in applying “Hamming expansion”
codes for iterative decoding, namely dmin = 4 (where also the numvber
of minimum-weight codewords is O(n)), and many 4-cycles.

Danielsen, L. E., Parker, M. G., Riera, C., Knudsen, J. G.:
On graphs and codes preserved by edge local complementation, 2010.
arXiv:1006.5802.

This paper was presented at the 10th Nordic Combinatorial Conference
(NORCOM 2010), Reykjavik, Iceland, May 2010.
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The notation in this chapter has been edited to make it consistent with
the thesis.





A D A P T I V E S O F T - D E C I S I O N

I T E R A T I V E D E C O D I N G U S I N G E D G E

L O C A L C O M P L E M E N T A T I O N

Joakim Grahl Knudsen Constanza Riera

Matthew G. Parker Eirik Rosnes

We describe an operation to dynamically adapt the struc-
ture of the Tanner graph used during iterative decoding.
Codes on graphs–most importantly, low-density parity-check
codes–exploit randomness in the structure of the code. Our
approach is to introduce a similar degree of controlled ran-
domness into the operation of the message-passing decoder,
to improve the performance of iterative decoding of classical
structured (i.e., non-random) codes for which strong code
properties are known. We use ideas similar to Halford and
Chugg (IEEE Trans. on Commun., April 2008), where permu-
tations on the columns of the parity-check matrix are drawn
from the automorphism group of the code, Aut(C). The
main contributions of our work are: 1) We maintain a graph-
local perspective, which not only gives a low-complexity,
distributed implementation, but also suggests novel applica-
tions of our work, and 2) we present an operation to draw
from Aut(C) such that graph isomorphism is preserved,
which maintains desirable properties while the graph is be-
ing updated. We present simulation results for the additive
white Gaussian noise channel, which show an improvement
over standard sum-product algorithm decoding.
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1 IN T R O D U C T I O N

Inspired by the success of iterative decoding of low-density parity-check
codes (LDPC) codes, originally introduced by Gallager [1] and later
rediscovered in the mid 1990’s by MacKay and Neal [2], on a wide
variety of communication channels, the idea of iterative, soft-decision
decoding has recently been applied to classical algebraically constructed
codes in order to achieve low-complexity Belief Propagation decoding
[3–5]. Both Reed-Solomon and Bose-Chaudhuri-Hocquenghem (BCH)
codes have been considered in the context of iterative decoding. Certain
algebraically constructed bipartite graphs are known to exhibit good
code properties, such as large minimum distance and a non-trivial
automorphism group. However, these typical classical properties do not
necessarily lend themselves well to modern graph-based coding the-
ory. Factors which influence the performance of iterative, soft-decision
decoders are pseudo-codewords [6], stopping and trapping sets [7, 8],
sparsity, girth, and degree distributions [9]. Structural weaknesses of
graphical codes are inherent to the particular parity-check matrix, H,
which can be said to implement the code in the decoder. This matrix is
a non-unique (n− k)-dimensional basis for the null space of the code,
C, which, in turn, is a k-dimensional subspace of {0, 1}n. Although
any basis (for the dual code, C⊥) is a parity-check matrix for C, their
performance in decoders is not uniform. In this work, we assume that
H is of full rank and in standard [I | P]-form, where I is the identity
matrix.

We propose a class of adaptive decoders which facilitate message-
passing on classical linear codes, by taking advantage of (non-trivial)
graph structure. It is well known that H can be mapped into a bipartite
(Tanner) graph, TG(H), which is described by its adjacency matrix,[

0 H
HT 0

]
. With H being in standard form, a specific information set

(on the codeword positions) is implied. We will refer to bit nodes (i.e.,
columns of H) corresponding to I and P as parity and information nodes,
respectively,1 and rows of H correspond to constraint (check) nodes.
Using a localized, low-complexity graph edge-operation, we update
the parity-check matrix, but still stay within the automorphism group
of the code, Aut(C). Thus, the graph update rule can be viewed as
a particular relabelling (isomorphism) of the bit nodes. Furthermore,
by selectively or randomly shifting sensitive substructures (e.g., short

1Note that these terms refer to the generator matrix of the code, G � [PT | Ik ].
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(a) (b)

Fig. 1: ELC on edge (u, v) of a bipartite graph. Doubly slashed links mean the edges
connecting two sets have been complemented.

cycles, or weight-1 nodes) within the graph, we aim to influence the
flow of extrinsic information through TG(H) in a way helpful to the
decoding process.

In a recent paper by Halford and Chugg, “random redundant itera-
tive decoding” is achieved by applying permutations drawn at random
from Aut(C) [5]. Rather than applying these permutations to H, the
same effect is achieved by permuting the soft input vector. While their
strategy is perceived to be a series of global updates, our approach
achieves a similar effect by using only local updates on TG(H). In
our characterization of locality, we assume that an edge can not ‘see’
beyond a radius of a constant number of edges. Similarly to [5], per-
mutations can be drawn from a precomputed list input to the decoder.
However, our distributed approach also allows us to dispense with
precomputation, to realize a completely distributed and local graph
update rule, which, nevertheless, keeps the series of graphs generated
within Aut(C).

2 ED G E LO C A L CO M P L E M E N T A T I O N

The operation of edge local complementation (ELC) [10–12], also known
as pivot, is a local operation on a simple graph. Fig. 1(a) shows GNu∪Nv ,
the local subgraph of a bipartite graph induced by nodes u, v, and
their disjoint neighborhoods which we denote N v

u � Nu \ {v} and
N u

v � Nv \ {u}, respectively.
ELC on a bipartite graph is described as the complementation of

edges between these two sets; ∀ v′ ∈ N v
u , u′ ∈ N u

v , check whether edge
(u′, v′) ∈ G, in which case it is deleted (otherwise, it is created). Finally,
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the edges adjacent to u and v are swapped. As such, ELC updates the
set of constraints (rows of H) by changing the edges of TG(H), whereas
nodes are invariant. The complexity of the graph-based algorithm is
O(deg(u) deg(v)). The fact that ELC amounts to row additions assures
that the code is preserved. In the following, we use the notation G i to
denote a graph G that has been subject to i ELC operations (similarly
for Hi).

Consider the simple, n-node bipartite graph described by G =
[

0 P
PT 0

]
.

This graph is related to TG(H) by the abstraction of degree-1 parity
nodes, as shown in Figs. 2(a) - 2(b). Keeping track of the bipartition of
G (which changes due to the swap), means we can obtain an associated
parity-check matrix, H1, for C by mapping grey nodes onto rows (con-
straint nodes), and white nodes to columns (bit nodes), with non-zero
entries according to edges. While the mapping of bit nodes must follow
the prescription of the labelling of G (i.e., the code), the ordering of
rows is arbitrary.

The local application of ELC has the global effect of row additions
on the associated H, thus preserving the bipartiteness and vector space
(i.e., C) [12]. Consider again Fig. 1, where we choose u to be a constraint
node, and v a bit node. With this setup, ELC on edge (u, v) is equivalent
to adding ‘row u’ to rows u′ ∈ N u

v (as dictated by the non-zero entries
of ‘column v’). Since H is in standard form, an immediate effect of ELC
on some edge (c, p) is that the edges adjacent to information node, p, are
swapped with that of the degree-1 parity node adjacent to the constraint
node, c, as seen in Fig. 2 (b,e). As opposed to [5], we are permuting H,
whereas the soft input vector remains invariantly connected to (the bit
nodes of) TG(H). The indices of Fig. 2 show how the order of the soft
input vector is preserved. Extrinsic information is lost on edges deleted
in the local complementation. However, sum-product algorithm (SPA)
update rules are such that these messages remain stored in adjacent bit
nodes as a posteriori probabilities (APPs) [13].

As can be readily verified, although ELC preserves the code, it can
have a negative impact on parameters of its implementation, H, as a
decoder. Edges complemented are at distance 2 from (u, v), so for a
typical sparse, girth-6 graph, many 4-cycles result, and density increases
[14]. ELC does not generally preserve graph isomorphism (structure),
so the operation will often given us a different structure in the (ELC)
orbit of G [15]. The matrices Hi in this orbit are the set of structurally
different parity-check matrices for the same code, as discussed in the
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(a) G (b) TG(H) (c) Structure is a cube

(d) ELC (0, 4) (e) ELC (0, 4) (f) ...relabelled cube

Fig. 2: (a) through (c) are three equivalent representations of the (8, 4) extended Ham-
ming code. (d) through (e) show the corresponding representation after ELC
is applied to edge (0, 4). Fig. 5 shows the parity-check matrices of (b) and (e),
respectively.

Introduction. We briefly mention that all information sets of C may be
enumerated by traversing this orbit of G [11].

2 .1 IS O-ELC

In this section we describe an application of ELC to preserve key
features of the graph, to remedy the drawbacks enumerated in the
previous section. We define iso-ELC as a sequence of ELC operations
over which (global) graph isomorphism is preserved. Such an operation
will be in Aut(C), in that its action has the appearance of a relabelling on
the nodes of a graph, or–equivalently–a permutation on the columns of
a matrix (H). If there exist sequences of ELC operations which preserve
the structure of G, then Aut(C) must be non-trivial. Isomorphism is
a certificate on the properties of the resulting graphs (matrices) used
during decoding; that these remain the same as for the initial G (H),
which can be assumed to have been carefully selected. The relabelling,
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however, alters the flow of messages in TG(H), i.e., which nodes are
exchanging information. Note in particular how, after the iso-ELC in
Fig. 2(f), node 4 is no longer part of a 4-cycle (whereas node 0 now is).

In the following, we derive three requirements for ELC being an
isomorphism.

A. Most generally, to have an isomorphism, the number of edges in
G must remain invariant under ELC. ELC is a local operation, so
we only have to consider the subgraph GNu∪Nv . Edge complemen-
tation on edge (u, v) can then be achieved by complementing the
corresponding deg(u)× deg(v) submatrix, H(u,v). The resulting
matrix after complementation is denoted by HC

(u,v). Define |H|
as the weight (number of non-zero entries) of H. In order for
|H(u,v)| = |HC

(u,v)|, at least one of the dimensions must be an even
number, and |H(u,v)| must equal (deg(u) · deg(v)) /2. If these
conditions are met, we define the ELC operation as edge-count
preserving.

B. More specifically, we define a local isomorphism as an operation
which preserves the structure of subgraph GNu∪Nv , without mak-
ing any assumptions on the overall (global) structure of G. We
then define the ELC operation to be local iso-ELC iff H(u,v) can be
recovered from HC

(u,v) by row/column permutations only. Fig. 3
shows a small example.

C. Finally, most specifically, we say that ELC is a (global) iso-ELC iff
H can be restored from H1, using only row/column permutations,
considering the entire matrix.

These requirements lead to the following observation,

C ⇒ B ⇒ A.

In the following, we will consider global isomorphisms only, and we
will refer to such sequences as as simply being iso-ELC operations, or
sequences.

2 .2 IS O-OR B I T

The definitions of iso-ELC are naturally extended to the case where a
single ELC can not by itself be an isomorphism. Consider, for instance,
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Fig. 3: ELC on (0, 1) is (A) edge-count preserving and (B) a local isomorphism, but
not (C) a global isomorphism due to node 6. This node is not local to the ELC
edge.

a girth-6 graph. Here, the local neighborhood (of any edge) must be
empty, and, after a single ELC, this neighborhood becomes a complete
(bipartite) (sub)graph at distance 2 from the ELC edge (all 4-cycles). This
violates requirement A, and the resultant graph can not be isomorphic
to the initial one–neither locally, nor globally.2

In the general case, iso-ELC is described as an ordered set of l edges
on which ELC must be applied to achieve an isomorphism. This is
referred to as a l-iso sequence (or, a length-l iso sequence). The set of
all isomorphisms of G (reachable via iso-ELC, for d ≥ 1) is called the
iso-orbit of G, which corresponds to a subset of Aut(C). ELC can be used,
in a preprocessing stage, to recursively search for iso-ELC sequences.
For each such relabelling of G, we keep the corresponding iso sequence
leading to it. Since ELC is reversible, identical isomorphisms may be
found via sequences of different length, and involving different edges,
where certain operations cancel each other out. As such, for each unique
labelling, we keep only the minimum length sequence in the iso-orbit.

From a decoding perspective, row permutations of H give the same
TG(H). By canonising the rows of H (in our case, sorting according to
decimal value of the binary rows), we ensure that the iso-orbit contains
only non-trivial isomorphisms of G. The complexity of such a brute
force search may be high, so for strongly structured (and large) graphs
it may be necessary to bound the recursion with a maximum depth,
lmax. This possibly partial iso-orbit is then simply referred to as the
l-iso-orbit of G.

2This is also evident simply from the change in girth.
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2.3 LO C A L IS O CR I T E R I O N S

Although the message-passing decoder can be provided with TG(H)
and a list of iso-sequences, to facilitate adaptive decoding, our stated
graph local approach lends itself to ad hoc determination of iso-sequences
during decoding. In this subsection, we describe some 1-iso conditions
which ensure that ELC on the single edge (u, v) of G gives an isomor-
phism of G.

From a local perspective, an edge (u, v) can sometimes determine
whether or not (global) structure will be preserved if it applies an ELC.
This edge may only examine its local subgraph, GNu∪Nv . In this manner,
we alleviate both the potentially expensive preprocessing stage, as well
as the overhead of storing and permuting a list of sequences. Where
a local criterion is satisfied, (u, v) may remain unaware of the implicit
(iso) permutations that occur, except from the fact that (u, v) remains
invariant (hence the alternative term, pivot).

We define  as the symmetric difference, i.e., for sets A and B, A 
B � (A \ B) ∪ (B \ A).

Lemma 1. ELC on the edge (u, v) of a simple bipartite graph, G, preserves
G up to local graph isomorphism if at least one of the sets N v

u and N u
v satisfy

one of the following conditions, with {α, α′} = {u, v},

• ∃ α, α′ such that N α′
α = ∅, or

• ∃ α, α′ such thatN α′
α can be partitioned in pairs {wi, w′i}, whereNwi  

Nw′i
= N α

α′ ∀i, {wi, w′i} ∩ {wj, w′j} = ∅, i �= j.

Global isomorphism can be ensured by the condition that the subgraphs in-
duced by N α′

α and their neighbors, and N α
α′ and their neighbors, are both

bipartite complete graphs. Less restrictive conditions will also ensure global
isomorphism, depending on the permutation of the vertices of the graph.
Proof. We will prove the two parts separately.

• Either N v
u = ∅, or N u

v = ∅. Let N v
u = ∅. Then ELC on (u, v) has

the effect of disconnecting v from N u
v , while connecting u to N u

v .
The permutation that gives us the isomorphism is σ = (u v). The
same permutation applies when N u

v = ∅.

• For every wi ∈ N α′
α , ∃ w′i ∈ N α′

α such that Nwi  Nw′i
= N α

α′ : The
permutation that gives us the isomorphism is σ = (u v) ∏(wi w′i).
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Fig. 4: Example of Lemma 1, where α = 0, α′ = 4, w0 = 5, and w′0 = 6. These
graphs are isomorphic.

An example of Lemma 1 is found in Fig. 4.
As any individual ELC operation complements edges local to u and v

(i.e., 4-cycles), we say that 1-iso ‘sequences’ can only exist for graphs of
girth 4, or locally acyclic (tree) graphs for which the first part of Lemma
1 applies. Similar criteria have been identified for l = 2, but these were
not applied in this initial work.

3 ST R U C T U R E O F T H E [8, 4] EX T E N D E D HA M M I N G
CO D E

The (8, 4) extended Hamming code is a well-suited test case for adaptive
decoding; it has strong classical properties (large automorphism group
and minimum distance), yet for any implementation H it is ill-suited
for message-passing (dense, and many 4-cycles). We acknowledge that
this is a toy code, which presents obvious difficulties in arguing any
sense of ‘locality’ of such a small graph. However, the positive nature
of our results show that this code does suffice as motivation for the
proposed class of adaptive decoders, and we direct the reader to the
Future Work section of this article.

The associated graph has one structure in its orbit; the cube of
Fig. 2(c), meaning that its structure is so strong that any edge of any
G i satisfies Lemma 1 (is an iso-ELC). Starting from G as in Fig. 2(b),
with parity-check matrix in Fig. 5(a), we find the iso-orbit of the graph.
Grouped by length, l = 1 to 4, this orbit consists of 12, 30, 12, and 1 iso-
morphisms, respectively, all resembling a cube. Including the initial la-
belling, this sums up to 56 structurally distinct, non-trivial parity-check
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1 0 0 0 1 1 1 0

0 1 0 0 1 1 0 1

0 0 1 0 1 0 1 1

0 0 0 1 0 1 1 1

H =

��������������

(a) Standard form (b) After ELC on (0, 4)

Fig. 5: The [8, 4] extended Hamming code, implemented by its standard form parity-
check matrix (a), and an isomorphism (b).

matrices for the code.3 Necessarily, the 12 1-iso sequences correspond
to the 12 edges of G (P-part of H).

4 S I M U L A T I O N RE S U L T S

The adaptive decoder has been tested in two instances, and compared
against a SPA decoder using standard flooding scheduling on output
y from the additive white Gaussian noise (AWGN) channel.4 During
implementation we made sure that all decoders were allocated an equal
maximum number of iterations (τ = 100). In the following description,
we assume an initial syndrome check has failed, so we have a vector to
input to the decoder.5

Due to the symmetry of the [8, 4] code in standard form, we know
any ELC will preserve isomorphism. Thus, when considering the adap-
tive decoders presented and analyzed in the following, the reader is
encouraged to think of these as truly localized (i.e., independent of
preprocessing and input lists), as if these were determined ad hoc. In
comparison, Halford and Chugg [5] are applying (non-local) permuta-
tions drawn at random from the full automorphism group of the code.
They also restrict to a cyclic subgroup of Aut(C)–we do not do this. As
discussed, our use of iso-ELC naturally gives a subset of Aut(C).

3Note that the full automorphism group of this code may be found by row permutations
on these generators; 56 · 4! = 1344 = |Aut(C)|.

4One flooding iteration consists of the SPA update of all bit (information and parity)
nodes, followed by the update of all constraint nodes.

5For locality, we emphasize that constraint nodes of TG(H) can be viewed as [n, n− 1, 2]
component parity-check codes, which can be computed (checked) concurrently and
distributively. However, a stopping criterion for the whole code is inherently a global
decision.
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The proposed random adaptive decoder (RAD) is a (flooding) SPA de-
coder, but which is designed to adapt (via random iso-ELC) to another
G i, with regular iteration interval, t. The decoder stops as soon as the
syndrome check is satisfied (valid codeword, though not necessarily
the one sent), or when T iterations are exhausted (detected frame error).
In a localized manner, this decoder performs a random walk (with
repetitions) in the iso-orbit of G, taking advantage of the discussed
symmetry. As such, the range–i.e., the number of matrices available to
this decoder–includes all 56 non-trivial isomorphisms.

The list adaptive decoder (LAD) is an extension of this idea, but where
we apply iso-ELC operations from a precomputed list, L ⊆ iso-orbit(G).
In addition to the initial labelling, the range of this decoder is D =
|L|+ 1. A pool of τ flooding iterations is allocated. Graph G i, 0 ≤ i < D,
is allocated hi = �(τ − I)/(D − i)� iterations to come to a decoder
decision, where I is the total number of iterations used by previous
decoders G j, j < i. Depending on τ and L, hi may go to 0, so an overall
minimum, hmin, should be set. This means that, although the list L
may not be employed in its entirety, we ensure that the graphs used are
doing useful work (more than 1 iteration). This minium should reflect
parameters of the graph and code. Before applying the next iso-ELC
from L, G i compares its local decision to a running optimum kept in the
decoder, and overwrites if a better decoder output is found (in squared
Euclidean distance from y). This comparison is devised to favor valid
decoder states, in that distance measures of detected failures are only
considered as long as no valid state has been found. The LAD does not
stop on reaching a valid decoder state, but continues until timeout (τ
iterations). The final graph, Gδ, where τ/hmin� ≤ δ ≤ D− 1, outputs
the optimum decision as the decoder result. In case no graph reached a
valid syndrome, the error state nearest to y (of the δ timeout states) is
output. This is in an effort to reduce the bit-error contribution.

Fig. 6 benchmarks the performance of RAD and LAD against stan-
dard SPA, and the optimal maximum likelihood decoder (MLD), in
terms of bit-error rate (BER) and frame-error rate (FER), where an
improvement is seen. The LAD plot is slightly nearer to the optimal
MLD plot than the RAD, but the gain is not significant compared to
the complexity tradeoff (Fig. 7). A detailed look at the (detected and
undetected) frame errors, Fig. 6(b), reveals that adaptive decoders out-
perform SPA in terms of detected errors (timeout), where RAD shows
the best gain. The RAD performs a random walk around the 56 se-
quences in the iso-orbit of G, while, for the LAD, we chose the subset
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(a) Our class of decoders (both RAD and LAD) outperform SPA, both in BER and
FER. Only a small improvement was seen when using the entire iso-orbit, LAD(56).
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Fig. 6: Simulations results on an AWGN channel. Maximum τ = 100 iterations
used. t = 10 for RAD, and |L| = 12 for LAD. At least 100 detected and 100
undetected frame errors were sampled for each Eb/N0 point.
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of 12 1-iso sequences (defined by the 12 edges of the initial G) such that
hmin = �100/13� = 7.

Only a small additional gain was achieved by using the full iso-orbit.
In this case, we used the same minimum as for the LAD; hmin = 7
iterations. This means that not all 56 sequences were guaranteed to
be used, so we permuted the order of sequences in L before every
decoding instance. As such, in the cases where the graphs did non-
negligible work (i.e., there were errors), on average each graph ran
all its hmin iterations. Hence, we may say that 13 random iso-ELC
operations (sequences) were applied at random from the iso-orbit of G.
The simulation ‘LAD(56)’ in Fig. 6(a) demonstrates the benefit of using
the entire iso-orbit, albeit slim, for this small code.

Fig. 7 shows the complexity (average number of flooding iterations
used) of the decoders, where we observe another improvement of RAD
over SPA and LAD decoding. At high Eb/N0, complexity averages go to
0, which is due to the majority of received frames satisfying the initial
syndrome check (which we do not count as an iteration). While LAD
expectedly uses a higher average number of iterations, since it does
not stop at the first valid syndrome, an interesting observation is the
complexity gain of RAD, which is linked to the reduction in number of
timeouts (detected frame errors–see Fig. 6(b)).

5 CO N C L U S I O N A N D FU T U R E WO R K

We have described and tested a class of adaptive iterative decoders,
which dynamically update the edge-space of the code implementation,
TG(H), using local decisions and operations. Concrete ‘iso-criterions’
are described and mathematically proven, and simulations on the
AWGN channel show a gain when using our ideas. Two related in-
stances of our class of adaptive decoders are described, where we
conclude that, although LAD is slightly better than RAD in terms of
BER, that gain comes at a cost of increased complexity (average number
of iterations used) and loss of locality. Furthermore, RAD outperforms
LAD in terms of FER, which gives an interesting latency reduction.

As iso-ELC rotates sensitive substructures in TG(H), we expect a
gain in selectively applying iso-ELC based on local convergence as-
sessments (e.g., using entropy or reliability measures). We mention
shifting short cycles away from unreliable bit nodes–as seen in the cube
of Fig. 2. An ELC adjacent to unreliable positions also causes these to
become temporarily ‘isolated’ in terms of message-passing (weight-1
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node), such that these are set in a ‘listening state,’ rather than confusing
the adjacent nodes with its (presumed) unreliable APP [3, 16, 17]. In
our scheme, we achieve this effect without the overhead of Gaussian
elimination.

Local iso-criterions for l = 2 have been identified, and we are also
working on further generalizations. This is interesting, as, due to the
link between ELC and 4-cycles, girth-6 graph isomorphisms can not
be preserved with less than 2 ELC operations. Our results on global
isomorphisms indicate that it is not trivial to find graphs which exhibit
a non-empty iso-orbit, which simultaneously are good codes (i.e., sparse
and girth greater than 4). A reasonable next step is a more methodical
search through all codes up to some length, yet we are also looking
towards the use of local isomorphisms during decoding. For instance,
when girth is not preserved (see Section 2.1), cycle-splitting or cycle-
reduction–as in the way two 4-cycles can sometimes be split into one
6-cycle–may improve decoding.

We are working on a generalized ELC operation, which does not
depend on the matrix (graph) being in systematic form. With this
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tool, we expect to be able to compare our results with the realistically
sized BCH code of [5]. We anticipate more significant results where
larger Tanner graphs allow more true localization. Euclidean geometry
LDPC codes [18] are also potential, sufficiently structured candidates
for adaptive decoding.

Enforcing a strictly local perspective does present some practical diffi-
culties, most notably, decoder stopping criterion and optimum decoder
state comparison used in LAD. However, in the context of decoding–as
in this work–this does not present a problem, yet rather suggests poten-
tial implementations of the iterated decoder where the graph nodes are
distributed in space and/or time.
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I T E R A T I V E D E C O D I N G O N
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In this paper, we propose to enhance the performance
of the sum-product algorithm (SPA) by interleaving SPA
iterations with a random local graph update rule. This rule
is known as edge local complementation (ELC), and has the
effect of modifying the Tanner graph while preserving the
code. We have previously shown how the ELC operation
can be used to implement an iterative permutation group
decoder (SPA-PD)–one of the most successful iterative soft-
decision decoding strategies at small blocklengths. In this
work, we exploit the fact that ELC can also give structurally
distinct parity-check matrices for the same code. Our aim
is to describe a simple iterative decoder, running SPA-PD
on distinct structures, based entirely on random usage of
the ELC operation. This is called SPA-ELC, and we focus
on small blocklength codes with strong algebraic structure.
In particular, we look at the extended Golay code and two
extended quadratic residue codes. Both error rate perfor-
mance and average decoding complexity, measured by the

77



On Iterative Decoding of HDPC Codes Using ELC

average total number of messages required in the decod-
ing, significantly outperform those of the standard SPA, and
compares well with SPA-PD. However, in contrast to SPA-
PD, which requires a global action on the Tanner graph, we
obtain a performance improvement via local action alone.
Such localized algorithms are of mathematical interest in
their own right, but are also suited to parallel/distributed
realizations.

1 IN T R O D U C T I O N

Inspired by the success of iterative decoding of low-density parity-
check (LDPC) codes, originally introduced by Gallager [1] and later
rediscovered in the mid 1990’s by MacKay and Neal [2], on a wide
variety of communication channels, the idea of iterative, soft-decision
decoding has recently been applied to classical algebraically constructed
codes in order to achieve low-complexity belief propagation decoding
[3–8]. Also, the classical idea of using the automorphism group of
the code, Aut(C), to permute the code, C, during decoding (known
as permutation decoding (PD) [9]) has been successfully modified to
enhance the sum-product algorithm (SPA) in [5]. We will denote this
algorithm by SPA-PD. Furthermore, good results have been achieved by
running such algorithms on several structurally distinct representations
of C [3, 6]. Both Reed-Solomon and Bose-Chaudhuri-Hocquenghem
(BCH) codes have been considered in this context. Certain algebraically
constructed codes are known to exhibit large minimum distance and a
non-trivial Aut(C). However, additional properties come into play in
modern, graph-based coding theory, for instance, sparsity, girth, and
trapping sets [10, 11]. Structural weaknesses of graphical codes are
inherent to the particular parity-check matrix, H, used to implement C
in the decoder. This matrix is a non-unique (n− k)-dimensional basis
for the null space of C, which, in turn, is a k-dimensional subspace of
{0, 1}n. Although any basis (for the dual code, C⊥) is a parity-check
matrix for C, their performance in decoders is not uniform. H is said
to be in standard form if the matrix has n− k weight-1 columns. The
weight of H is the number of non-zero entries, and the minimum
weight is lower-bounded by (n− k)dmin(C⊥), where dmin(C⊥) denotes
the minimum distance of C⊥. It is well-known that H can be mapped
into a bipartite (Tanner) graph, TG(H), which has an edge connecting
nodes vi and uj iff Hji �= 0. Here, vi, 0 ≤ i < n, refers to the bit nodes
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(a) (b)

Fig. 1: ELC on edge (u, v) of a bipartite graph. Doubly slashed links mean that the
edges connecting the two sets have been complemented.

(columns of H), and uj, 0 ≤ j < n− k, refers to the check nodes (rows of
H). The local neighborhood of a node, v, is the set of nodes adjacent to
v, and is denoted by Nv. The terms standard form and weight extend
trivially to TG(H). In the following, we use bold face notation for
vectors, and the transpose of H is written HT .

This paper is a continuation of our previous work on edge local
complementation (ELC) and iterative decoding, in which selective use
of ELC (with preprocessing and memory overhead) equals SPA-PD
[8]. In this work, we use ELC in a truly random, online fashion, thus
simplifying both the description and application of the proposed de-
coder. The key difference from our previous work is that we do not take
measures to preserve graph isomorphism, and explore the benefits of
going outside the automorphism group of the code. This means that we
alleviate the preprocessing of suitable ELC locations (edges), as well as
the memory overhead of storing and sampling from such a set during
decoding. Our proposed decoding algorithm can be thought of as a
combination of SPA-PD [5] and multiple bases belief propagation [6].
We also discuss the modification of the powerful technique of damping
to a graph-local perspective.

2 TH E ELC OP E R A T I O N

The operation of ELC [12–14], also known as pivot, is a local operation
on a simple graph (undirected with no loops), G, which has been shown
to be useful both for code equivalence and classification [13], and for
decoding purposes [8]. It has recently been identified as a useful local
unitary primitive to be applied to graph states [14]–a proposed paradigm
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for quantum computation [15]. Fig. 1(a) shows GNu∪Nv , the local sub-
graph of a bipartite graph induced by nodes u, v, and their disjoint
neighborhoods which we denote byN v

u � Nu \ {v} andN u
v � Nv \ {u},

respectively. ELC on a bipartite graph is described as the complementa-
tion of edges between these two sets; ∀ v′ ∈ N v

u and ∀ u′ ∈ N u
v , check

whether edge (u′, v′) ∈ G, in which case it is deleted, otherwise it is cre-
ated. Finally, the edges adjacent to u and v are swapped – see Fig. 1(b).
ELC on G extends easily to ELC on TG(H) when H is in standard
form [8]. Given a bipartite graph with bipartition (V ,U ), we then have
a one-to-one mapping to a Tanner graph, with check nodes from the
set U and bit nodes from V ∪ U . Fig. 2 shows an example, where the
bipartition is fixed according to the sets V and U . In Fig. 2(a), the left
and right nodes correspond to V and U , respectively, for the simple
graph G. TG(H) may be obtained by replacing grey nodes by a check
node singly connected to a bit node, as illustrated in Fig. 2(b). Figs. 2(a)
and 2(c) show an example of ELC on the edge (0, 5). Although the
bipartition changes (edges adjacent to 0 and 5 are swapped), Figs. 2(b)
and 2(d) show how the map to Tanner graphs, in fact, preserves the
code.

By complementing the edges of a local neighborhood of TG(H), ELC
has the effect of row additions on H. The complexity of ELC on (u, v)
is O(|Nu||Nv|). The set of vertex-labeled graphs generated by ELC
on TG(H) (or, equivalently, G) is here called the ELC-orbit of C. Each
information set for C corresponds to a unique graph in the ELC-orbit
[13]. Note that this is a code property, which, as such, is independent
of the initial parity-check matrix, H. The set of structurally distinct
(unlabeled) graphs generated by ELC is here called the orbit of C, and
is a subset of the ELC-orbit. Graphs are structurally distinct (i.e., non-
isomorphic) if the corresponding parity-check matrices are not row or
column permutations of each other. Each structure in the orbit has a
set of |Aut(C)| isomorphic graphs, comprising an iso-orbit [8]. In the
following, we will refer to ELC directly on TG(H), keeping Fig. 2 in
mind.

3 DE C O D I N G AL G O R I T H M S

3.1 SPA

The SPA is an inherently local algorithm on TG(H), where the global
problem of decoding is partitioned into a system of simpler subprob-
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(a) G (b) TG(H)

(c) G′ (d) TG(H′)

Fig. 2: (a) and (c) show ELC on the edge (0, 5) of a small simple graph G. The corre-
sponding Tanner graphs, in (b) and (d), are distinct structures (e.g., the weight
of G and G′ is not the same) for the same toy [8, 4, 2] code. This code has a
total of three structures in its orbit.

lems [16]. Each node and its adjacent edges can be considered as a small
constituent code, and essentially performs maximum-likelihood decod-
ing (MLD) based on local information. The key to a successful decoder
lies in this partitioning–how these constituent codes are interconnected.
The summed information contained in a bit node, vi, is the a posteriori
probability (APP), x̂i, at codeword position i. The vector x̂ constitutes
a tentative decoding of the received channel vector, y. The decoder
input is the log-likelihood ratio (LLR) vector L = (2/σ2)y, where σ is
the channel noise standard deviation on an additive white Gaussian
noise (AWGN) channel. Subtracting the input from the APP leaves the
extrinsic information, x̂i − Li, which is produced by the decoder. The
message on the edge from node v to u, in the direction of u, μv→u, is
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computed according to the SPA rule on node v. The SPA computation
of all check nodes, followed by all bit nodes, is referred to as one flooding
iteration.

Classical codes, for which strong code properties are known, are
typically not very suitable for iterative decoding mainly due to the high
weight of their parity-check matrices, which gives many short cycles in
the corresponding Tanner graphs.

3 .2 DI V E R S I T Y DE C O D I N G

A few recent proposals in the literature have attempted to enhance
iterative decoding by dynamically modifying TG(H) during decoding,
so as to achieve diversity and avoid fixed points (local optima) in the
SPA convergence process. Efforts to improve decoding may, roughly,
be divided into two categories. The first approach is to employ several
structurally distinct matrices, and use these in a parallel, or sequential,
fashion [3, 6]. These matrices may be either preprocessed, or found
dynamically by changing the graph during decoding. However, this
incurs an overhead either in terms of memory (keeping a list of matri-
ces, as well as state data), or complexity (adapting the matrix, e.g., by
Gaussian elimination [3]). The other approach is to choose a code with
a non-trivial Aut(C), such that diversity may be achieved by permuting
the code coordinates [4, 5, 7, 8]. An example is SPA-PD, listed in Alg. 1,
where Aut(C) is represented by a small set of generators, and uniformly
sampled using an algorithm due to Celler et al. [17]. These permutations
tend to involve all, or most, of the code coordinates, making it a global
operation. Note that line 7 in Alg. 1 is to compensate for the fact that
permutations are applied to L in line 12, rather than to the columns
of H, after which the messages on the edges no longer ‘point to’ their
intended recipients. This is yet another global stage. The extrinsic in-
formation is damped by a coefficient α, 0 < α < 1, in line 10 before
being used to re-initialize the decoder. Each time α is incremented, the
decoder re-starts from the channel vector, y.

3 .3 SPA-ELC

Our proposed local algorithm is a two-stage iterative decoder, interleav-
ing the SPA with random ELC operations. We call this SPA-ELC, and
say that it realizes a local diversity decoding of the received codeword.
Our algorithm is listed in Alg. 2. Both SPA-PD and SPA-ELC perform
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Algorithm 1 SPA-PD(I1, I2, I3, α0) [5]
1: // Input: (y, H, α0, I1, I2, I3).
2: // Output: Θ−1(x̂).

3: α ← α0.
4: for I3 times do

5: L ← (2/σ2)y and Θ ← π0 // identity permutation.
6: for I2 times do

7: μv→u ← Lv, ∀ (u, v) ∈ TG(H).
8: Do I1 flooding iterations, x̂ ← SPA(TG(H)).
9: Take the hard decision of x̂ into c, stop if cHT = 0.

10: Li ← (x̂i − Li)α + Li, 0 ≤ i < n.
11: Draw random permutation π ∈ Aut(C) [17].
12: L ← π(L) and Θ ← π(Θ).
13: end for

14: α ← α0 + (1− α0)
I3

I3−1 .
15: end for

a maximum of τ � I1 I2 I3 iterations. SPA update rules ensure that
extrinsic information remains summed in bit nodes, such that an edge
may be removed from TG(H) without loss of information. New edges,
(u′, v′), should be initialized according to line 13 in Alg. 2. Although
neutral (i.e., LLR 0) messages will always be consistent with the conver-
gence process, our experiments clearly indicate that this has the effect
of ‘diluting’ the information, resulting in an increased decoding time
and worse error rate performance.

The simple SPA-ELC decoder requires no preprocessing or any com-
plex heuristic or rule to decide when or where to apply ELC. As ELC
generates the orbit of C, as well as the iso-orbit of each structure, di-
versity of structure can be achieved even for random codes, for which
|Aut(C)| is likely to be 1 while the size of the orbit is generally very
large. However, going outside the iso-orbit means that we change the
properties of H, most importantly in terms of density and number of
short cycles. Ideally, the SPA-ELC decoder operates on a set of struc-
turally distinct parity-check matrices, which are all of minimum weight.
With the exception of codes with very strong structure, such as the ex-
tended Hamming code, the ELC-orbit of a code will contain structures
of weight greater than the minimum. SPA-ELC should take measures
against the negative impact of increased weight. In this paper, we adapt
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Algorithm 2 SPA-ELC(p, I1, I2, I3, α0)
1: // Input: (y, H, α0, I1, I2, I3, p).
2: // Output: x̂.

3: α ← α0.
4: for I3 times do

5: L ← (2/σ2)y.
6: μv→u ← Lv, ∀(u, v) ∈ TG(H).
7: for I2 times do

8: Do I1 flooding iterations, x̂ ← SPA(TG(H)).
9: Take the hard decision of x̂ into c, stop if cHT = 0.

10: for p times do

11: Select random edge e = (u, v) ∈ TG(H).
12: TG(H) ← ELC(TG(H), e).
13: μv′→u′ ← (x̂v′ − Lv′)α + Lv′ ,

∀(u′, v′) ∈ TG(H), u′ ∈ N u
v , v′ ∈ N v

u .
14: end for

15: end for

16: α ← α0 + (1− α0)
I3

I3−1 .
17: end for

the technique of damping to our graph-local perspective. Damping
with the standard SPA, where TG(H) is fixed, does not work, so we
only want to damp the parts of the graph which change. As opposed to
SPA-PD, only a subgraph of TG(H) is affected by ELC, so we restrict
damping to new edges in line 13. Note that SPA-ELC simplifies to a
version without damping, denoted by SPA-ELC(p, I1, τ), when α0 = 1,
I2 = τ/I1 I3, and I3 = 1. This is, simply, flooding iterations interspersed
with random ELC operations, where new edges are initialized with the
adjacent APP (line 13).

Currently, the SPA stopping criterion (i.e., the parameters used to flag
when decoding should stop) is still implemented globally. However,
a reasonable local solution would be to remove the syndrome check
(cHT = 0) from the stopping criterion, and simply stop after τ̂ SPA-ELC
iterations, where τ̂ can be empirically determined. However, this has
obvious implications for complexity and latency. In some scenarios a
stopping criterion can be dispensed with anyway–for instance when
using the decoder as some form of distributed process controller, or for
a pipelined implementation in which the iterations are rolled out.
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Table 1: Optimization of codes used in simulations

Initial Reduced Reduced IP

W C W C W C

[24, 12, 8] * 96 366 * 96 147 * 96 366

[48, 24, 12] 320 4936 * 288 897 * 288 2672

[104, 52, 20] 1344 89138 1112 16946 1172 49839

4 RE S U L T S

We have compared SPA-ELC against standard SPA, and SPA-PD. Ex-
tended quadratic residue (EQR) codes were chosen for the comparison,
mainly due to the fact that for some of these codes, Aut(C) can be gener-
ated by 3 generators [18]. In fact, our experiments have shown that EQR
codes have Tanner graphs well-suited to SPA-ELC, at least for short
blocklengths. The codes considered have parameters [24, 12, 8] (the
extended Golay code), [48, 24, 12] (EQR48), and [104, 52, 20] (EQR104).
Parity-check matrices for the codes were preprocessed by heuristics to
minimize the weight and the number of 4-cycles. The results are listed
in Table 1, where columns marked ‘W’ and ‘C’ show the weight and
the number of 4-cycles, respectively. Columns marked ‘Initial’ show the
weight and the number of 4-cycles of the initial Tanner graph construc-
tions. ‘Reduced’ and ‘Reduced IP’ refer to optimized Tanner graphs,
where the latter is restricted to Tanner graphs in standard form. Entries
marked by an asterisk correspond to minimum weight parity-check
matrices.

In Figs. 3-5, we show the frame error rate (FER) performance and
the average number of SPA messages of SPA, SPA-PD, and SPA-ELC
for the extended Golay code, the EQR48 code, and the EQR104 code,
respectively, on the AWGN channel versus the signal-to-noise ratio,
Eb/N0.

The specific parameters used are indicated in the figure legends. For
the extended Golay code and the EQR48 code, we set a maximum at
τ = 600 iterations, which we increased to τ = 2000 to accommodate
the larger EQR104 code. For SPA-ELC we have also included results
without damping. Since SPA-ELC changes the weight of TG(H), we
can not compare complexity by simply counting iterations. Since the
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Fig. 3: [24, 12, 8] extended Golay code
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Fig. 4: [48, 24, 12] EQR48 code
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Fig. 5: [104, 52, 20] EQR104 code
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complexity of one ELC operation is much smaller than the complexity
of a SPA iteration, the total number of SPA messages may serve as
a common measure for the complexity of the decoders. We have no
initial syndrome check, so the number of iterations approaches 1 at
high Eb/N0. In the same way, the complexity approaches the average
weight of the matrices encountered during decoding. Each FER point
was simulated until at least 100 frame errors were observed.

From the figures, we observe that the SPA-ELC decoder outperforms
standard SPA decoding, both in terms of FER and decoding complexity.
The extended Golay code is a perfect example for demonstrating the
benefits of SPA-ELC. The orbit of this code contains only two struc-
tures, where one is of minimum weight (weight 96) and the other only
slightly more dense (weight 102), while the iso-orbit of the code is very
large. Thus, we can extend SPA-PD with multiple Tanner graphs (two
structures) while keeping the density low. Not surprisingly, SPA-ELC
achieves the FER performance of SPA-PD, albeit with some complexity
penalty. Note that the simple SPA-ELC decoder, without damping, ap-
proaches closely the complexity of SPA-PD at the cost of a slight loss
in FER. For the larger codes, the sizes of the orbits are very large, and
many structures are less suited for SPA-PD. Still, the same tradeoff be-
tween FER performance and complexity holds, based on whether or not
we use damping. For the EQR48 code, we have observed a rich subset
of the orbit containing minimum weight structures (weight 288). The
optimum value of p (see line 10 in Alg. 2) was determined empirically.

5 CO N C L U S I O N A N D FU T U R E WO R K

We have described a local diversity decoder, based on the SPA and the
ELC operation. The SPA-ELC algorithm outperforms the standard SPA
both in terms of error rate performance and complexity, and compares
well against SPA-PD, despite the fact that SPA-PD uses global operations.
Ongoing efforts are devoted to further improvements, and include;
selective application of ELC, rather than random; devise techniques
such that diversity may be restricted to sparse structures in the orbit;
identify a code construction suited to SPA-ELC, for which the orbit
contains several desirable structures even for large blocklengths.
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This paper describes the application of edge-local comple-
mentation (ELC), defined for a simple bipartite graph, to a
Tanner graph associated with a binary linear code, C. From
a code perspective, various properties of ELC are described
and discussed, mainly the special case of isomorphic ELC
operations and the relationship to the automorphism group
of the code, Aut(C), as well as the generalization of ELC
to weight-bounding ELC (WB-ELC) operations under which
the number of edges remains upper-bounded. The main
motivation is the use of ELC to improve iterative soft-input
soft-output decoding of high-density parity-check (HDPC)
codes using the sum-product algorithm (SPA). By updating
the edges of the Tanner graph using ELC additional diversity
is achieved, while maintaining control on the weight of the
Tanner graph (which also influences the number of short
cycles) via WB-ELC. One motivation of ELC-based SPA de-
coding is the locality argument; that diversity is achieved by
local graph action, and so is well-suited to the local actions
that constitute the SPA and allows a parallel implementation.
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Further applications of WB-ELC are described, including a
heuristic to search for a systematic parity-check matrix (i.e.,
a Tanner graph) of reduced weight – a problem which has
not received much focus in the literature. Extensive simula-
tion data is shown for a range of HDPC codes, both in terms
of matrix weight reduction, and error-rate performance of a
proposed SPA-WBELC iterative decoding algorithm. A gain
is reported over SPA decoding, and over a state-of-the-art
algorithm to decode HDPC codes using permutations from
Aut(C).

1 IN T R O D U C T I O N

Iterative soft decision decoding algorithms, applied to properly de-
signed codes, have been shown to give results which, asymptotically,
closely approach the theoretical limits established by Shannon [1]. The
advent of turbo codes in 1993 [2] and the rediscovery of low-density
parity-check (LDPC) codes at around the same time [3] (although LDPC
codes were actually invented in 1962 [4] and re-discovered once already,
in 1981 [5]) caused much attention to be focused on iterative decoding of
large, random or pseudo-random, sparse block codes. The sum-product
algorithm (SPA) is the standard soft decision iterative algorithm for de-
coding of LDPC codes on Tanner graphs [5]. The sparse, random nature
of these codes make them well-suited for graph-based implementations,
for which the SPA approximates optimum decoding at a complexity
linear in blocklength. However, the large size and random nature of
turbo and LDPC codes have negative implications when they are to be
used in practice. This inspired researchers to adapt SPA decoding to
small-size linear block codes, with blocklengths in the hundreds of bits
or below. Small LDPC codes suffer a performance degradation due to
finite-length effects and topological problems with the Tanner graph.
At small blocklengths, however, one has the benefit of using strong,
nonrandom codes – i.e., “classical codes” – for which useful properties
are known, such as large minimum distance, dmin, and nontrivial auto-
morphism group. Today, these codes remain important components in
technological devices, such as compact disc players and satellite commu-
nications, in which computational efficiency is still of vital importance
(e.g., in low-power battery or solar powered circuitry). Important legacy
codes are Bose-Chaudhuri-Hocquenghem (BCH), Reed-Solomon (RS),
and quadratic residue (QR) codes. However, a large dmin or nontrivial
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automorphism group are not obviously applicable to soft decision SPA
decoding. For instance, as a parity-check matrix, H, can at best consist
of n− k linearly independent rows (codewords of the dual code, C⊥)
of minimum weight, obviously the weight of H must increase with
dmin(C⊥). It is known that many families of codes – specifically BCH
and RS codes – do not have Tanner graphs without cycles of length 4
[6]. Furthermore, these codes do typically not have sparse duals [7],
so, when such codes are revisited from the context of iterative soft
decoding, these are commonly referred to as high-density parity-check
(HDPC) codes.

This has resulted in numerous creative approaches to adapting sub-
optimal soft decision decoding to HDPC codes. These approaches can
roughly be grouped into two categories, where one is characterized by
an adaptive decoding based on the decoder state (the received noisy
channel vector and the current codeword estimate) [8, 9]. The main idea
is based on producing an error-free information set, which can, then,
be re-encoded to produce a codeword. Such a most reliable basis (MRB)
process can also be iterative, as in order statistic decoding (OSD) using
different MRBs, either in terms of increased-order OSD (i.e., involving
also some less reliable positions), or by simply using SPA iterations to
update the codeword estimate and change the MRB [10, 11]. This way,
a list of candidate codewords may be produced, from which an output
is selected typically in terms of Euclidean distance from the received
vector.

The other category is characterized by pseudorandom processes, in-
volving code-preserving row operations or column permutations on the
parity-check matrix, mainly to achieve increased diversity (i.e., different
parity-check equations) during SPA decoding. Our work focuses on
such random diversity-based algorithms. The aim of increased diversity
is to decrease the effect of topological problems with the Tanner graph
of the code, so that structural errors can be suppressed, e.g., by using
randomized cyclic shifts on a cyclic code (stochastic shifting iterative
decoding, SSID) [12]. One state-of-the-art decoder for HDPC codes,
the iterative permutation decoder (SPA-PD) [13], generalizes SSID to
applying random permutations from the automorphism group of the
code and performs very well on BCH codes, as well as on QR codes
[13–15], over the additive white Gaussian noise (AWGN) channel. Also,
alternatively or in conjunction [14, 16], multiple bases (matrices) for
the same dual code may be used to gain diversity. These matrices are
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usually preprocessed and typically optimized on weight [17], but can
also be produced in real-time [15, 18].

This paper describes the pseudorandom use of a simple graph opera-
tion known as edge-local complementation (ELC) [19, 20] to improve
the performance of iterative decoding [21, 22]. One advantage of ELC-
based SPA decoding is the locality argument; that diversity is achieved
by local graph action, and so is well-suited to the local actions that con-
stitute the SPA. Diversity stems from the change in Tanner graph due
to the complementation of edges in a local subgraph, corresponding
to row-additions on the associated parity-check matrix. The locality
property, which allows for parallel implementation of the SPA, also has
beneficial effects on the overall complexity of an ELC-based decoding
algorithm in many contexts. The effect of ELC on a graph is explored,
and we define a subset of ELC operations under which the weight
of the graph is upper-bounded (to within some threshold value). We
identify and describe all possible occurrences of single and double
application of ELC which is weight-bounding ELC (WB-ELC). We also
present a further specialization of WB-ELC to isomorphic ELC (iso-ELC),
under which the structure of the graph is invariant. These properties
(weight and structure) are important from a coding perspective (where
the graph is a Tanner graph), and are used to improve the error-rate
performance of a soft-input soft-output (SISO) HDPC decoder based
on interleaving SPA iterations with random ELC operations; giving a
novel SPA-ELC and a SPA-WBELC decoding algorithm. A one-to-one
relationship between iso-ELC operations and permutations from the
automorphism group of the code is presented, such that the SPA-PD
algorithm may be used as a relevant benchmark in terms of perfor-
mance, simulated for various HDPC codes. We also propose a related
application of WB-ELC to reduce (or even minimize) the weight of a
graph, i.e., finding a reduced-weight systematic parity-check matrix
for the code – an instance of weight reduction which has not received
much focus in the literature.

1 .1 OU T L I N E

This paper is organized as follows. The ELC operation, which is defined
for a simple graph, is described in Section 2. A discussion on the action
of ELC, in terms of the resulting graphs, focuses, firstly, on structurally
distinct graphs, and, secondly, on isomorphic graphs with a link to
Aut(C). Section 3 presents a generalization of iso-ELC to WB-ELC, i.e.,
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the action of ELC is discussed in terms of a maximum permitted weight
of the resulting graphs. We identify the specific subgraphs on which one
or a sequence of two (depth-1 or 2) ELC operations are WB-ELC, and go
on to prove how these cases cover all possible subgraphs within depth-2.
Adhering to the locality argument, we also prove how the search space
for depth-2 WB-ELC is limited to neighboring pairs of edges (distance 1
or 2 edges apart), such that the impact of WB-ELC is confined to a local
subgraph of maximum diameter 4. Section 4 describes an algorithm to
enumerate all WB-ELC operations (within depth-2) on a given graph,
and to within some threshold. A bound on the complexity of this
algorithm is derived, and is verified using simulations on graphs of
different sizes. Several applications of this algorithm are described,
centered around the use of WB-ELC in a iterative decoding setting. As a
preprocessing stage, the algorithm can be used to minimize the weight
of a graph (i.e., a systematic H), and also to find such a graph from
which many other distinct reduced-weight graphs can be reached using
WB-ELC. Finally, in Section 5, the use of ELC as a source of diversity
during SPA decoding is described. Two proposed decoding algorithms
– SPA-ELC and SPA-WBELC – are described, simulated, and compared
against other relevant decoding algorithms on a range of HDPC codes.
To facilitate fair comparisons, a common framework for iterative SISO
HDPC decoding is presented, within which all decoding algorithms are
implemented. Empirical data is presented on both choices of decoder
parameters, resulting error-rate performance, and decoding complexity.
Certain implementational remarks (for WB-ELC) are presented in an
appendix.

1 .2 PR E L I M I N A R I E S

We begin by introducing some notation used in the following sections.
We use uppercase italics and square brackets for matrices; script nota-
tion and curly brackets for sets; and boldface notation for vectors. A
binary linear code C of length n, dimension k, and minimum distance
dmin is denoted by [n, k, dmin], where dmin is defined as the minimum
Hamming weight of any nonzero codeword. The weight enumerator
of C is a vector, a, for which ai contains the number of codewords
of weight i. Necessarily, ai = 0, i < dmin. If ai = 0, i �= 0 mod 2
(odd weights), then C is even. If this also holds for mod 4, C is doubly
even. The column indices 0, 1, . . . , n − 1 are referred to as the coor-
dinates of the code. The dual code is C⊥, containing the codewords
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orthogonal to C, and if C = C⊥ we say the code is self-dual. Per-
mutations are written in cycle notation, where we only specify the
indices of the affected positions. For example, given a length-6 vec-
tor v and a permutation π = (0, 1, 2)(3, 4), then u = π(v) means
v0 → u1, v1 → u2, v2 → u0, v3 → u4, and v4 → u3, while v5 → u5.
Similarily, π(H) permutes the columns of a matrix, H. The identity
permutation, affecting no positions, is, then, π = ∅. The automor-
phism group of the code, Aut(C), is the group of permutations which
preserve the code, Aut(C) = {σ : σ(C) = C}. It is well known that
Aut(C) = Aut(C⊥) [23], and permutations are typically applied to H
(which generates C⊥) during decoding, or to the soft-input vector con-
taining the a posteriori probability (APP) values [13]. If Aut(C) consists
of the identity permutation alone, we say that Aut(C) is trivial.

Let Ik be the identity matrix of size k, where we use the shorthand
notation I when the dimension is obvious. The generator matrix, G,
generates C (contains k linearly independent codewords forming a basis
for the code), and the parity-check matrix, H, generates C⊥. This gives
GHT = 0, where ( · )T denotes the transpose of its argument. In the
context of iterative graph-based decoding of C, the focus is on H rather
than G. H is said to be systematic if its columns can be reordered into
the standard form

π(H) = [In−k | P] (1)

by some column permutation, π. In turn, a standard form generator
matrix is π(G) = [PT | Ik]. This permutation, π, does not in general
preserve the code. An information set, I , of the code corresponds to a
set of k columns in G which can be reduced to an identity submatrix
by means of Gaussian elimination (GE). The n− k columns at positions
P := {0, 1, . . . , n− 1} \ I form a parity set. Note that an information set
corresponds to a parity set of the dual code, such that I refers to the P-
part of H. In a systematic parity-check matrix, the columns indexed by
P are referred to as systematic (weight-1) columns, while the remaining
columns (weight greater than one) are nonsystematic. The (row) index
of the single nonzero entry of a systematic column hi, i ∈ P , is denoted
by row(i) ∈ [0, n− k). In standard form, row(i) = i, 0 ≤ i < n− k. In
systematic form, the (Hamming) weight of H, denoted by |H|, is the
number of nonzero entries in H, and the weight of H is lower-bounded
by

max
(

k(dmin(C)− 1) + n− k, (n− k)dmin(C⊥)
)

. (2)
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The Tanner graph, TG(H), associated with H is a (2n− k)-node bi-
partite graph with adjacency matrix TG(H) =

[
0 H

HT 0

]
. (At some abuse

of notation, we denote both the graph and its adjacency matrix by, in
this case, TG(H).) In the remainder of this paper, we will assume that H
is systematic. The n variable nodes, corresponding to the columns of H,
are partitioned into |P| = n− k systematic and |I| = k nonsystematic
nodes, where the former have degree one (disregarding the Forney style
“half-edge” containing the channel input to each variable node). The
n− k check nodes of TG(H), corresponding to the rows of H, each have
an associated (adjacent) systematic variable node. By grouping each
check node with its associated systematic (variable) node, an n-node,
(n− k, k)-bipartite, simple (i.e., undirected, with no double edges or
loops) graph is produced, with adjacency matrix

G = (U ∪ V , E) = π-1
[

0 P
PT 0

]
(3)

where π-1 undoes the reordering in (1). The bipartition (U , V) contains
the n− k grouped check/systematic variable nodes and the nonsys-
tematic variable nodes, respectively. Furthermore, a permutation (here,
π−1) acts on both columns and rows of G. By keeping a record of the
bipartition, (U , V), at all times, this amounts to a one-to-one mapping
between a Tanner graph (i.e., a code) and a simple bipartite graph. In
summary, given a code represented by TG(H), we construct a simple
graph by ignoring the systematic variable nodes – see Example 1. The
number of edges in G is

|G| = |E | = |H| − (n− k) (4)

which we refer to as the weight of G. If nodes in U and V have average
degree ρ̄ and γ̄, respectively, we have that |G| = kγ̄ = (n− k)ρ̄. The
local neighborhood of a node v is the set of nodes adjacent to v, and
is denoted by Nv, while N u

v is shorthand notation for Nv \ {u}. Let
EA,B denote the subgraph induced by the nodes in A ∪ B – i.e., it is a
set of |EA,B| edges. Furthermore, Eu,v is shorthand notation for EN v

u ,N u
v ,

the local neighborhood of the edge (u, v). We use the compact notation
{(u, v), . . . , (u′, v′)} for an ordered list of edges. Define the distance
between edges (or nonedges) (u, v) and (u′, v′) as the shortest path
between the sets of endpoints (nodes), {u, v} and {u′, v′}.
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Fig. 1: ELC on edge (u, v) of a bipartite simple graph. Curved links indicate arbitrary
edges. Bold links mean that the edges connecting the two sets have been com-
plemented; edges are replaced by nonedges, and vice versa. This graph may
be a subgraph of a larger graph, in which case the rest of the graph remains
unchanged.

2 ED G E-LO C A L CO M P L E M E N T A T I O N

ELC is defined on an edge of a simple graph, (u, v) ∈ G [19]. We con-
sider only bipartite graphs in this work, which simplifies the description.
ELC on an edge (u, v) will complement the edges of Eu,v, replacing edges
with nonedges and vice versa, followed by swapping the nodes u and v
– see Fig. 1. In this sense, we say that ELC is a local operation as it only
affects edges within a distance of one from the ELC edge, (u, v). The
resulting graph, after ELC, is denoted by G(u,v). ELC is a self-invertible
operation as two ELC operations on the same edge is the identity
operation, G(u,v),(u,v) = G. The number of edges affected (inserted or
removed) by the complementation of ELC is, on average,

|N v
u ||N u

v | ≈ (γ̄− 1)(ρ̄− 1). (5)

Assuming k = n− k and γ̄ = ρ̄,1 we may express the complexity of ELC
in terms of number of edge-operations performed, by using the average
node degree, γ̄. The complementation has the effect of inverting a local
neighborhood, which may increase or decrease the weight, depending
on the particular graph on which we perform an ELC operation. The
effect of repeated ELC (on random edges) is seen in Section 5 to stabilize
the weight of |G| at around 50%, i.e.

|G| ≈ k2/2 (6)

1This is a fairly realistic assumption for rate-1/2 HDPC codes.
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Fig. 2: Example of ELC on a small [9, 4, 4] code, showing also the corresponding
Tanner graphs. White and grey nodes correspond to V and U , respectively.

or, equivalently, |H| ≈ k(n−k)
2 + (n− k) = k(k + 2)/2. The complexity of

ELC at this expected weight is important to identify. Taking γ̄ = k/2, (5)
gives (k/2− 1)2 = k2/4− k + 1.

From the matrix perspective, it is easily seen that one ELC operation
implements the reduction stage of GE on a single column, as shown in
the following example.

Example 1. Consider the optimal (in terms of maximum dmin for blocklength
9 and dimension 4) [9, 4, 4] code, with parity-check matrix

H =
[ 1 0 0 0 0 1 1 1 1

0 1 0 0 1 1 0 1 1
0 0 1 0 1 1 0 0 0
0 0 0 1 1 1 1 1 0

]
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and the corresponding Tanner graph as shown in Fig. 2(a). Fig. 2(b) shows
the corresponding simple bipartite graph, while Fig. 2(d) shows an example
of ELC on the edge (0, 5), with the resulting Tanner graph, TG(H′), in
Fig. 2(c).

Note that it may be convenient to implement ELC directly on TG(H), at
the cost of minor modifications to the implementation; for instance, the inverse
of ELC on ( f0, v5) is ( f0, v0), due to the swap. By considering the resulting
H′, it can be seen that ELC is, in fact, a graph implementation of a single
stage (column) of GE; adding row 0 to rows 1, 2, and 3 to get

H′ =
[ 1 0 0 0 0 1 1 1 1

1 1 0 0 1 0 1 0 0
1 0 1 0 1 0 1 1 1
1 0 0 1 1 0 0 0 1

]
.

Now, column 5 has been reduced to systematic form, and the row additions
have effectively swapped columns 0 and 5 between I and P , giving a new
information (and parity) set of the code.

The link to GE emphasizes that ELC will always preserve the code
(i.e., the null space of H). Implemented on the Tanner graph, the inverse
operation must reflect the changed information set, as shown in Fig. 2.
In this work, we refer to ELC on G and on TG(H) interchangeably,
using the simple graph definition mainly to simplify descriptions and
proofs on ELC, while using the Tanner graph version for practical
implementations.

2 .1 MI N I M U M-LE N G T H ELC SE Q U E N C E BE T W E E N T W O

ST R U C T U R E S

The set of structurally distinct graphs which arise by iteratively doing
ELC on all edges of a bipartite simple graph G, pruning the recursion
tree on repeated structures, is known as the orbit, orbit(G), of the graph.
This orbit is the same for all graphs corresponding to the same code,
C, so we may refer to it as the orbit of the code, orbit(C). Structural
distinctness is in terms of graph isomorphism. By using the software
package Nauty [24], we obtain a canonical form of a simple graph,
denoted by N(G). Thus, for two simple graphs G and G′, we have

that G iso= G′ ⇔ N(G) = N(G′). The one-to-one relationship between
a graph and a parity-check matrix means that we may also speak of
the orbit as a set of parity-check matrices, orbit(H). We will use these
references interchangeably in the following.
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If a code has only one structure in its orbit, we say that it is an ELC-
preserved code (or, equivalently, since this graph is unique, we may say
that the graph is ELC-preserved) [25].

Theorem 1 (ELC sequence). A minimum-length ELC sequence

e = {(u0, v0), (u1, v1), . . . , (ul−1, vl−1)}
can be found to convert a systematic matrix H into another systematic matrix
H′, where H and H′ span the same space (they are in the same orbit), by
comparing the corresponding bipartitions as represented by the parity sets P
and P′. The length, l, of e is 0 ≤ l ≤ min(n− k, k). Depending on H, the
sequence e may not be unique, so equivalent sequences may be derived from
P and P′.
Proof. ELC generates the entire orbit [20], and in particular all sys-
tematic parity-check matrices for the corresponding code, so such a
sequence e must exist. Since a systematic basis for a (dual) code is
uniquely defined (up to row permutations) by its parity set, the infor-
mation set (i.e., the P-part of H) is a function of the parity set. Thus, by
comparing P and P′, we determine which coordinates are in opposite
partitions, and shall be swapped. Each ELC operation preserves the
(dual) code, and has the effect of swapping a pair of columns in H from
I to P , along with some “residual” modifications to H resulting from
the row-additions. To modify H into H′, we may thus focus on swap-
ping the corresponding pairs of columns from P into P′, thus giving
the I-part of H′, and the residual modifications must “resolve” into the
required P-part (since the P-part is unique given the I-part). Then, the
submatrices I and I′ are equal, from which it follows that P = P′, such
that H = H′ (up to row-equivalence). Alg. 1 is a constructive proof of
this theorem, showing how P and P′ are used to determine a corre-
sponding ELC sequence. Due to the possible row-equivalence, several
equivalent ELC sequences (of equal length) may exist [26]. ELC has the
effect of swapping exactly one pair of positions between I and P , so
the length of e must be exactly l = |P \ P′|, which is upper-bounded
by min(n− k, k).

The difference (coordinates to swap) corresponds to the sets L =
P \ P′ and S = P′ \ P . As each position in the identity (sub) matrix
is unique, r ∈ L can be viewed as a row-index, where r is chosen such
that (row(r), s) ∈ TG(H). When several valid choices of r exist for a
coordinate s ∈ S , a branch point arises in the algorithm leading to an
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Algorithm 1 MIN_ELC(H, H′)
1: L := P \ P′
2: S := P′ \ P
3: e := ∅
4: while S �= ∅ do

5: choose and remove any s∈S
6: choose and remove any r∈L s.t. (row(r), s)∈ TG(H)
7: ELC on (row(r), s) on TG(H)
8: e := e ∪ (row(r), s)
9: end while

equivalent ELC sequence. The resulting Tanner graphs are exactly the
same (although the matrices may be different, but only in terms of row
permutations).

Example 2. Consider the [14, 7, 3] doubly circulant QR code, represented
by a parity-check matrix

H =

⎡
⎢⎢⎣

1 0 0 0 1 0 0 1 0 1 0 0 1 1
1 1 0 0 1 0 0 1 1 0 1 0 0 1
1 0 1 0 0 0 0 1 1 0 1 0 0 1
0 0 0 1 1 0 0 1 1 0 1 0 0 1
0 0 0 0 1 0 0 0 1 0 0 1 1 1
1 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 1 0 0 1

⎤
⎥⎥⎦ .

The orbit of this code consists of 11 graphs. Choosing two distinct graphs, G
and G′, from the orbit of the code we must have that N(G) �= N(G′). Let
H be a parity-check matrix corresponding to G, and let H′ correspond to G′,
where

H′ =

⎡
⎢⎢⎣

0 1 0 0 0 0 0 0 1 1 1 0 1 0
1 1 0 0 1 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 1 1 0 0 1 1 1 0
0 1 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 1 0 0 1

⎤
⎥⎥⎦ .

It is easily seen that G and G′ are indeed nonisomorphic, simply by verifying
that |H| �= |H′|. The parity sets are P = {1, 2, 3, 5, 6, 9, 11} and P′ =
{0, 2, 3, 5, 9, 11, 13}. Now, Alg. 1 computes L = {1, 6} and S = {0, 13}.
Choosing, say, s = 13, we find that r = 1 gives (row(1), 13) = (1, 13) ∈
TG(H). ELC on edge (1, 13) of H gives the following matrix

H(1,13) =

⎡
⎢⎢⎣

0 1 0 0 0 0 0 0 1 1 1 0 1 0
1 1 0 0 1 0 0 1 1 0 1 0 0 1
0 1 1 0 1 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 1 0 0 1 1 1 0
1 0 0 0 1 1 0 0 0 0 0 0 0 0
1 1 0 0 1 0 1 0 0 0 0 0 0 0

⎤
⎥⎥⎦ .
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Then, the remaining choice of s = 0 gives r = 6, where (row(6), 0) =
(6, 0) ∈ TG(H) and, after ELC on (6, 0) on H(1,13), we get

H{(1,13),(6,0)} =

⎡
⎢⎢⎣

0 1 0 0 0 0 0 0 1 1 1 0 1 0
0 0 0 0 0 0 1 1 1 0 1 0 0 1
0 1 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 1 1 0 0 1 1 1 0
0 1 0 0 0 1 1 0 0 0 0 0 0 0
1 1 0 0 1 0 1 0 0 0 0 0 0 0

⎤
⎥⎥⎦

which gives the same Tanner graph as TG(H′) (by swapping rows 1 and
6). That the ELC sequence e = {(1, 13), (6, 0)} is not unique is reflected
by Alg. 1. Different choices would result in the sequences {(1, 0), (6, 13)}
and {(6, 13), (1, 0)}, which both give the “target” matrix, H′. The sequence
{(6, 0), (1, 13)} is not possible, since the edge (6, 0) /∈ H.2

2.2 TA N N E R GR A P H IN V A R I A N T S

In the context of graph-based, iterative decoding, we are interested in
discerning distinct Tanner graphs, when these may correspond to iso-
morphic simple bipartite graphs. A code is preserved under elementary
row operations (i.e., row additions and permutations) on the associated
basis (parity-check matrix), so we define two parity-check matrices, H
and H′, as isomorphic if and only if the rows of H′ can be permuted to
give the exact same matrix H (or vice versa). A parity-check matrix, H,
can be put in canonical form, denoted by R(H), by sorting its rows in
lexicographical order, TG(H) = TG(H′) ⇔ R(H) = R(H′).

A sequence of ELC operations, e, connecting two parity-check ma-
trices for the same code, H �= H′, with the same canonical form, i.e.,
N(G) = N(G′), has previously been defined as an iso-ELC sequence [16].

Definition 1. A permutation θ ∈ Aut(C) is called trivial if and only if
TG(H) = TG(θ(H)).

Theorem 2 (ELC finds entire Aut(C)). Each nontrivial permutation in
Aut(C), for a given H, is associated with an iso-ELC sequence, e, of length
l, for 1 ≤ l ≤ min(n− k, k) = min(dim(C⊥), dim(C)). The particular
sequence depends on the parity set, P , (i.e., on H), and is not unique.

Proof. For each nontrivial permutation σ ∈ Aut(C), H and σ(H) are
two (nonisomorphic) systematic parity-check matrices for C, i.e., they
both span the same space, and the result follows from Theorem 1.

2These equivalent ELC sequences also follow from [26].
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Proposition 1 (Trivial permutation). A permutation θ ∈ Aut(C) is trivial
if and only if it permutes no positions between I and P for the given H.
Furthermore, the set of trivial permutations forms a subgroup DH � Aut(C).

Proof. If a permutation θ is trivial for a given parity-check matrix H,
then (by definition) H and θ(H) are row-equivalent. Since H and θ(H)
are row-equivalent, θ is constrained to permute the columns from P
(i.e., the I-part of H) to indices from P (and thus permute the columns
from I (i.e., the P-part of H) to indices from I , and the result follows.

Conversely, if a permutation θ permutes no positions between I and
P for the given H, then the resulting matrix θ(H) will have weight-1
columns in exactly the same positions as H, i.e., in the positions in
P . Permuting the rows of θ(H) such that the I-parts of H and θ(H)
become identical will also make the P-parts identical (the P-part is
a function of the I-part), from which it follows that H and θ(H) are
row-equivalent, and the permutation θ is (by definition) trivial.

Finally, we need to prove that the set of trivial permutations forms a
subgroup of Aut(C). This follows directly from the first result (i.e., that a
permutation θ ∈ Aut(C) is trivial if and only if it permutes no positions
between I and P), since the composition of two such permutations
obviously permutes no positions between I and P .

In the following, we may denote the subgroup DH simply by D when
the matrix is obvious from the context. The subgroup D is not a code
property, but a property of H. Furthermore, since D is a subgroup, we
can decompose Aut(C) into a union of cosets of D;

Aut(C) = {D ◦ σ0} ∪ {D ◦ σ1} ∪ · · · ∪ {D ◦ σ|Aut(C)|/|D|−1}

where KH = {σ0, . . . , σ|Aut(C)|/|D|−1} is a set of coset leaders, given H,
which we may denote simply by K (as we do for the subgroup D)
when the matrix is obvious from the context, and σ0 is the identity
permutation.

Alg. 1 can be used to convert any σ ∈ Aut(C) into an equivalent iso-
ELC sequence, e, by taking as input H and H′ = σ(H). The correspond-
ing iso-ELC sequence depends on both σ and H, and we may emphasize
this by the notation, eσ,H . Then we have that R(σ(H)) = R(eσ,H(H)).

Proposition 2. Given a parity-check matrix H, eσ,H is an iso-ELC sequence
representation of all permutations in the coset D ◦ σ, σ ∈ Aut(C).
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Proof. The coset decomposition is in terms of row equivalence, i.e.,
R(σ(H) = R(σ′(H)) for any σ′ ∈ D ◦ σ, and the result follows.

The set KH \ {σ0} contains permutations from Aut(C) which give
a distinct (i.e., not row-equivalent) parity-check matrix σ(H), where
σ ∈ KH \ {σ0}. Each coset leader σ corresponds to a matrix R(σ(H)),
representing the |D| row-equivalent matrices θ(σ(H)), ∀ θ ∈ D. In
other words, these all correspond to the same Tanner graph for C. In
this sense, the set of coset leaders is not unique (any σ′ ∈ D ◦ σ, where
σ �= σ0, could be used as a coset leader), which means that KH is not
unique even for a given H. Since σ0 is the identity mapping, KH can be
a group.

The set of (distinct) Tanner graphs resulting from the permutations in
KH comprise the iso-orbit of H,3 {σ0(H), . . . , σ|K|−1(H)}. These Tanner
graphs are all distinct, but correspond to isomorphic simple graphs,
R(H) �= R(σ(H)), but N(G) = N(σ(G)), ∀ σ ∈ KH \ {σ0}. The iso-
orbit can be partitioned into disjoint subsets according to the (minimal)
length, 0 ≤ l ≤ min(n− k, k), of the corresponding ELC sequences,
Kl

H = {σ ∈ KH : |P \ σ(P)| = l}. In particular, K0 = {σ0}. Thus,
for l > 0, Kl is not a group since it does not contain the identity
permutation, σ0.

Proposition 3. For any permutation α, not necessarily in Aut(C), the trivial
subgroup Dα(H) = α ◦ DH ◦ α−1, for a given H. Furthermore, Kα(H) =
α ◦ KH ◦ α−1 and Kl

α(H) = α ◦ Kl
H ◦ α−1, for all l, 0 ≤ l ≤ min(n− k, k).

Proof. Let σ = α ◦ θ ◦ α−1 where θ ∈ DH . After applying α−1 to α(H),
the original matrix H is reconstructed. Then, the effect of applying θ
to H is to permute the rows of H. Finally, the columns are permuted
according to α, and the resulting matrix will be row-equivalent to
α(H). Thus, σ is trivial with respect to α(H), from which it follows that
α ◦ DH ◦ α−1 is a subset of Dα(H). To prove equality, we use this result
with H′ = α(H), from which it follows that κ ◦ DH′ ◦ κ−1 ⊆ Dκ(H′),
where κ is any permutation. Choosing κ = α−1, we get α−1 ◦Dα(H) ◦ α ⊆
DH , from which it follows that Dα(H) ⊆ α ◦ DH ◦ α−1. Since Dα(H) is
both a subset and a super-set of α ◦ DH ◦ α−1, we have equality.

To prove the second part, i.e., to show that Kα(H) = α ◦ KH ◦ α−1, we
use the fact that for any two permutations σ1 = θ1 ◦ σ ∈ Dα(H) ◦ σ and

3The iso-orbit of H, containing Tanner graphs, should not be confused with the orbit of
C, which contains simple graphs.
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σ2 = θ2 ◦ σ ∈ Dα(H) ◦ σ from the same coset (based on Dα(H)), where σ
denotes the coset leader and θ1, θ2 ∈ Dα(H),

σ1 ◦ σ−1
2 = θ1 ◦ σ ◦ σ−1 ◦ θ−1

2 = θ1 ◦ θ−1
2 ∈ Dα(H).

Thus, if for any two permutations σ1 and σ2 from a given set, the
composition σ1 ◦ σ−1

2 /∈ Dα(H), then σ1 and σ2 belong to two different
cosets (based on Dα(H)). Now, let σ1 = α ◦ κ1 ◦ α−1 and σ2 = α ◦ κ2 ◦ α−1,
where κ1, κ2 ∈ KH , from which it follows that

σ1 ◦ σ−1
2 = α ◦ κ1 ◦ α−1 ◦ α ◦ κ−1

2 ◦ α−1 = α ◦ (κ1 ◦ κ−1
2 ) ◦ α−1.

Since κ1 ◦ κ−1
2 /∈ DH (κ1 and κ2 are from different cosets based on

DH), σ1 ◦ σ−1
2 /∈ Dα(H), and it follows that σ1 and σ2 are from two

different cosets based on Dα(H), and the result follows since |KH | =
|Aut(C)|/|DH | = |Aut(C)|/|Dα(H)| = |Kα(H)|.

To prove the third part, i.e., to show that Kl
α(H) = α ◦ Kl

H ◦ α−1 for all
l, we use the fact that the depth of σ, i.e., the length of the corresponding
ELC sequence, based on H, is the same as the depth of α ◦ σ ◦ α−1

based on α(H) for any σ in Aut(C). To show this, we write the depth
of α ◦ σ ◦ α−1 based on α(H) as

|{α ◦ σ ◦ α−1(Pα(H)) ∩ Iα(H)}|
= |{α ◦ σ ◦ α−1(α(PH)) ∩ α(IH)}|
= |{α ◦ σ(PH) ∩ α(IH)}|
= |{α(σ(PH) ∩ IH)}|
= |{σ(PH) ∩ IH}|.

Now, we can conclude that the depth of all coset leaders in Kl
α(H) (based

on Dα(H)) is the same and equal to the depth of the coset leaders from
Kl

H (based on DH), from which the result follows.

As discussed above, D depends on H, so the iso-orbit is not a code
property. The partitioning of permutations in KH into disjoint subsets
according to the length of the corresponding iso-ELC sequence may
vary for each H′ = σ(H), σ ∈ Aut(C). Still, from Proposition 3, |Kl

H | =
|Kl

σ(H)|, 0 ≤ l ≤ min(n− k, k) and σ ∈ Aut(C), and we call the set

{|Kl
H |}, 0 ≤ l ≤ min(n− k, k), the profile of the iso-orbit of H. This

profile varies with H, but is invariant over the iso-orbit of H.
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Table 1: Pairs of permutations from Aut(C) which generate K for the [8, 4, 4] ex-
tended Hamming code, as represented by (7). These 8 groups are all isomorphic
to one group, which is unique.

〈(0,4,2,7,6,3,1), (0,6,7,4,5,2,3)〉 〈(0,1,3,6,5,7,2), (0,6,1,7,4,5,2)〉
〈(0,6,4,5,1,2,3), (0,7,5,2,1,4,3)〉 〈(0,6,7,4,2,3,1), (0,4,5,2,7,6,3)〉
〈(0,2,1,6,4,5,3), (0,6,7,5,4,2,1)〉 〈(0,6,2,1,5,7,3), (0,7,5,3,4,2,1)〉
〈(0,5,7,2,4,3,1), (0,2,6,4,7,5,3)〉 〈(0,4,5,1,2,7,3), (0,6,7,5,2,1,3)〉

Since the profile varies with H ∈ orbit(C), it may be desirable to
search the orbit for a graph that has certain properties with respect to
the profile. We will illustrate this with some examples.

Example 3. For the [8, 4, 4] extended Hamming code, which is ELC-preserved,
the parity-check matrix

H =
[ 1 0 0 0 1 1 0 1

0 1 0 0 0 1 1 1
0 0 1 0 1 1 1 0
0 0 0 1 1 0 1 1

]
(7)

has the profile listed in Table 2. For this code, there exists only one conjugacy
class of subgroups of Aut(C) of size |K| = |Aut(C)|/|D| = 1344/24 =
56. K can be any of the eight distinct (but isomorphic) subgroups in this
class. The eight subgroups may all be generated by two permutations, as listed
in Table 1. This shows that K can be a group, and the minimum number
of generators is 2 (K can not be a cyclic subgroup). Generators for D are
〈(0, 2)(6, 7), (1, 3)(4, 5), (2, 3)(5, 7)〉.

Example 4. The [15, 5, 7] BCH code is a rare example of a code with only
two graphs in the orbit. The corresponding systematic parity-check matrices,
of weight 42 and 40, are

H0 =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 1 0 1 0 1
0 1 0 0 0 0 0 0 0 0 1 1 1 1 1
0 0 1 0 0 0 0 0 0 0 1 1 0 1 0
0 0 0 1 0 0 0 0 0 0 0 1 1 0 1
0 0 0 0 1 0 0 0 0 0 1 0 0 1 1
0 0 0 0 0 1 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 1 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 1 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 1 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 1 0 1 0 1 1

⎤
⎥⎥⎥⎥⎥⎦ and H1 =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 1 0 1 0 1
0 1 0 0 0 0 1 0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 0 0 0 1 0 1 0 0
0 0 0 1 0 0 1 0 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0 0 0 1 0 0 1 1
0 0 0 0 0 1 1 0 0 0 1 0 0 1 0
0 0 0 0 0 0 1 0 0 1 0 0 1 0 1
0 0 0 0 0 0 1 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 1 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 1 0 1 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎦

respectively. The corresponding trivial subgroups of Aut(C) are of size |D| =
12 and |D| = 120, where |Aut(C)| = 20 160. For the first structure, there
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are no subgroups of Aut(C) of size |K| = |Aut(C)|/|D| = 1 680. For the
second structure there are 5 conjugacy classes of subgroups of size |K| = 168
(two of which are nonisomorphic), but none of these represent K (they all
contain trivial permutations). Thus, for this code, K can not be a group. The
two profiles for K are listed in Table 2.

Example 5. The [24, 12, 8] extended Golay code, where |Aut(C)| = 244 823 040
is another rare code with only two structures in the orbit

H0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1
0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 0 1 1
0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 1 0
0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1
0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

H1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 0 1
1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 1 1 0
1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 1 0 1 0 1 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1
1 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1
1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1
0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

These are of weight 96 and 100, and |D| = 240 and 660, respectively. The
two profiles for K are listed in Table 2. As for the first structure of the BCH
code in Example 4, no subgroups of Aut(C) exist of size |K| for neither of the
two structures for the extended Golay code. Thus, K can not be a group.

Example 6. The [31, 21, 5] BCH code has 118 208 graphs in its orbit. Among
these there is a total of 8 structures for which |D| > 1, such that K may be a
true subgroup (we disregard the case when K = Aut(C)). One of these is

H =

⎡
⎢⎢⎢⎢⎢⎣

1 0 1 0 1 0 1 0 0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 1
1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0
1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 1 1 1 0 1
1 0 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 1 0 0 0 0 0
1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 1 0 1
1 0 0 0 0 0 1 0 1 0 1 0 0 0 1 1 1 1 0 1 0 0 0 0 1 0 1 0 0 0 1
1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 0 0 1 0 1 0 0
0 1 1 0 0 1 1 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 1 1 1 1 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 0 1 1 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ .

These are all of weight 120 (with one exception, at weight 140) and all have
|D| = 5, and K is indeed a group, with the profile and generator (the group

112



Random ELC With Applications to Iterative Decoding of HDPC Codes

Table 2: Profiles of K as split into subsets according to the length of the corresponding
ELC sequence. “E.H.” and “E.G.” are the extended Hamming and Golay
codes.

Code |H| 0 1 2 3 4 5 6 7 8 9 10 11 12

E.H. 16 1 12 30 12 1 - - - - - - - -

“BCH15” 42 1 29 246 678 585 141 - - - - - - -

” 40 1 0 30 60 65 12 - - - - - - -

E.G. 100 1 22 616 6 490 33 935 85 712 117 392 85 712 33 935 6 490 616 22 1

” 96 1 60 1 650 18 140 92 655 236 520 322 044 236 520 92 655 18 140 1 650 60 1

“BCH31” 120 1 0 0 0 0 0 10 10 10 - - - -

” 140 1 0 0 0 0 0 10 10 10 - - - -

” K = 〈(0, 7, 14, 21, 28, 4, 11, 18, 25, 1, 8, 15, 22, 29, 5, 12, 19, 26, 2, 9, 16, 23, 30, 6, 13, 20, 27, 3, 10, 17, 24)〉

is cyclic) listed in Table 2. This group is unique as there is only one subgroup
(in the single conjugacy class) of Aut(C) of the required size, |K| = 31. The
size of Aut(C) is 155.

Example 7. For the [48, 24, 12] extended QR (EQR) code, the possible sizes
of D are {1, 2, 3, 4, 6, 8, 12, 23, 24}. Only for |D| = 1 (the trivial case)
can K be a group. In the orbit of the code, we may determine the num-
ber of distinct structures corresponding to the different values of |D| to be
{−, 43 838, 128, 120, 13, 5, 2, 1, 1}. We omit counting for |D| = 1, which
would entail enumerating the entire orbit of the code.

Example 8. For the [63, 51, 5] BCH code and the [63, 39, 9] BCH code
(used in [13]), the possible sizes of D are {1, 2, 3, 6}. For the first code, the
corresponding number of structures is {−, 7 398, 222, 14}, and for the second
code, we find {−, > 500 000, 3 675, 38}. For all these structures (and both
codes), K can be a group.

As ELC complements edges in the local subgraph, i.e., at distance 1
from the ELC edge, we may alternatively say that ELC has the effect of
complementing 4-cycles (cycles of length 4) in the graph. This perspec-
tive leads to some observations on the relationship between iso-ELC
and the girth of the graph. Specific requirements must be satisfied for
a graph operation to be an isomorphism; most importantly, that the
number of edges in the graph remains invariant. In other words, for
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any e to be an isomorphism, the most basic requirement is that the
number of edges inserted is matched by (equals) the number of edges
removed. For this to be possible using a single ELC operation, the girth
(length of the smallest cycle in G) must be 4.

Example 9. For the [8, 4, 4] extended Hamming code, again, we have that
|K1| = |G| = 12, which is to say that the code is ELC-preserved. As such, the
coset leaders in K form telescoping sequences. Given H in standard form, the
single iso-ELC sequence in K4 contains shorter iso-ELC sequences as subsets,
as follows

{

∈ K3︷ ︸︸ ︷
∈ K2︷ ︸︸ ︷

∈ K1︷ ︸︸ ︷
(0, 6), (1, 7), (2, 4), (3, 5)} = K4.

This is due to the perfect symmetry of G, in which all local neighborhoods are
identical, forming a cube – see Fig. 3(a).

ELC on any edge of an ELC-preserved graph (corresponding to an
ELC-preserved code) is an iso-ELC operation, yet, according to the
definition of ELC, a pair of columns are indeed swapped between I
and P . This proves that Aut(C) for an ELC-preserved code can not
be trivial. On the other hand, for a large random code we expect that
Aut(C) is trivial, but that the orbit is vast (e.g. for LDPC codes).

Example 10. For the “bow-tie” graph, consisting of a single 6-cycle, an iso-
morphism is found in the application of ELC to any of the three pairs of
diametrically opposite edges, inserting and removing a chord (i.e., a 4-cycle),
as shown in Fig. 3(b). As expected, the iso-orbit of the corresponding [6, 3]
code gives |K0| = 1 and |K2| = 3.

3 WE I G H T-BO U N D I N G ELC

In the discussion on isomorphic ELC operations, a requirement is that
the number of edges in the graph must be preserved [16]. We will
generalize this, and introduce a notion of weight-bounding ELC (WB-
ELC) operations, in which the weight of H after ELC, denoted by |H′|, is
upper-bounded by some threshold, T, such that |H′| ≤ |H|+ T. So, the
depth-i iso-ELC sequences described previously are depth-i WB-ELC
for T = 0. In this work, we will restrict our focus to single and double
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(a) The identical local
neighborhoods of the
“Hamming cube.”

(b) The “bow-tie” graph, consisting of one 6-
cycle.

Fig. 3: Relationships between an isomorphism and the girth of the underlying graph.

ELC operations (depth-1 or 2), in order to facilitate the locality argument
of the ELC operation. However, the concept of WB-ELC extends to an
arbitrary length sequence of ELC operations. In this section, we only
allow an ELC sequence on a certain edge in the graph if |H| ≤ |H0|+ T,
where H0 is the initial graph and T is the weight-bounding threshold.
We give necessary and sufficient conditions to achieve this bound, both
for single ELC and for two consecutive ELCs.

Let A ∼ B be a shorthand notation for the edges in the subgraph
EA,B, i.e., those connecting nodes in A to nodes in B. Also, EC

A,B denotes
the subgraph after complementing A ∼ B. The net difference in edges
before and after complementation is ΔEA,B � |EC

A,B| − |EA,B|.
Lemma 1. The number of edges complemented between sets A and B can be
expressed as ΔEA,B � |EC

A,B| − |EA,B| = |A||B| − 2|EA,B|.
Proof. The complete bipartite graph between A and B has |A||B| edges.
This means that, for any graph between A and B, |EA,B| + |EC

A,B| =
|A||B|, so ΔEA,B = |EC

A,B| − |EA,B| = |A||B| − |EA,B| − |EA,B|.

3 .1 DE P T H-1 , S I N G L E ED G E WB-ELC

If the weight change due to the action of a single ELC is upper-bounded,
then the weight of the entire graph is upper-bounded, and since ELC is
a local operation, we say that the ELC is WB-ELC.

Theorem 3. The weight change of G under ELC on (u, v) is upper-bounded
by a threshold T iff

ΔEu,v = |N v
u ||N u

v | − 2|Eu,v| ≤ T. (8)
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Proof. ELC on (u, v) complements the edges between N v
u and N u

v ,
where (8) follows from Lemma 1. The weight change of G under ELC
on (u, v) is therefore ΔEu,v.

3 .2 DE P T H-2 , DO U B L E ED G E WB-ELC

For many graphs, it is difficult (or even impossible) to bound the weight
change by any reasonable threshold (i.e., small T), using only a single
ELC. We now determine the WB-ELC operations which exist for double
application of ELC on a graph. Given a graph, G, and a theshold, T, the
definition of a depth-2 WB-ELC operation is an ordered sequence of two
ELC operations, where the first ELC operation must change the weight
of G by more than T to a graph G�, whereas the second ELC must
compensate, by reducing the weight of G� by at least |G�| − |G| − T.
(Note that this amount is always positive, as |G�| > T + |G|; otherwise
the first ELC would change the weight by less or equal than T.) This
follows from the fact that, if the first ELC did not exceed the weight-
bounding threshold, then it would, in itself, be a depth-1 WB-ELC
operation.

A very important first observation is that the search space for depth-2
WB-ELC can be significantly reduced from that of checking all pairs of
edges in G. First, ELC on two adjacent edges, i.e., at distance 0, reduces
to a single ELC operation.

Lemma 2 (Adjacent edges [27]). ELC on {(u, v), (v, v′)}, where v′ ∈ N v
u ,

gives the same graph as ELC on (u, v′).

Proof. See Fig. 4. The full proof is found in Appendix A

From Lemma 2, we see that ELC on adjacent edges reduces to a single
ELC, which has already been covered by the discussion of depth-1 WB-
ELC. So, in order to find additional WB-ELC instances at depth-2, we
need not consider adjacent pairs of edges. We now present an important
result regarding depth-2 WB-ELC; that the distance between a pair of
edges can not be greater than two, for T ≥ -1.4

Lemma 3 (Disjoint edges). Let T ≥ -1. Any depth-2 WB-ELC where the
pair of edges are at a distance greater than two will always reduce to either
one instance, or two separate instances, of depth-1 WB-ELC.

4A special case exists for T < -1, which is accounted for in Proposition 4.
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Fig. 4: Proof of Lemma 2. ELC on adjacent edges, e.g. (u, v) and (v, v′), will always
result in the exact same graph as a single ELC on the second edge, (u, v′). Note
that, due to the swap of nodes u and v in the first ELC, the second ELC edge is
labeled (v, v′) – however, this is the same edge as (u, v′) in the initial graph.

Proof. Consider two disjoint subgraphs, Eu,v and Eu′ ,v′ , of the same
graph. In this case, ELC on {(u, v), (u′, v′)} gives the same graph as ELC
on {(u′, v′), (u, v)}, since the neighborhoods do not interact. Consider
first the case where T ≥ 0. The only possibilities for WB-ELC are: Both
ELC operations preserve weight, in which case they both classify as
depth-1 WB-ELC operations, or one ELC operation increases weight by
ΔEu,v > T, while the other ELC reduces the weight by at least ΔEu,v− T.
Since they commute, we can assume without loss of generality that
ELC on (u, v) is the operation which reduces the weight, but then this
classifies as a depth-1 WB-ELC.

For the case where T = -1, again we have two possibilities; that both
ELC operations are depth-1 WB-ELC, or that one of them does not
decrease the weight, while the other reduces the weight. Again, and
since they commute, we can assume without loss of generality that
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(a) Distance 2 (Theorem 5) (b) Distance 1 (Theorem 6)

Fig. 5: Depth-2 WB-ELC. Potential connections between sets in the (bipartite) sub-
graphs are not shown.

ELC on (u, v) is the operation which reduces the weight, but then this
classifies as a depth-1 WB-ELC.

Theorem 4 (Reduced search space). Let T ≥ -1. All depth-2 WB-ELC can
be found by considering pairs of edges at distance one or two.

Proof. The proof follows from Lemmas 2 and 3.

In this sense, we define WB-ELC (both depth-1 and depth-2) as a local
graph operation, in that its effect is confined to a subgraph of diameter
at most 4. The corresponding subgraphs are shown in Fig. 5. We have
restricted the search space considerably, and shall now cover all the
possible cases for depth-2 WB-ELC, for T ≥ -1.

Let us first consider the case where the pair of edges are at a distance
of exactly two edges apart, Fig. 5(a). Given an edge (u, v), let u′, v′ /∈
Nu ∪Nv be such that (u′, v′) ∈ G, Q = N v

u ∩N v′
u′ �= ∅, and, similarily,

Q′ = N u′
v′ ∩ N u

v �= ∅.

Theorem 5 (Distance 2). The weight change of G under ELC on {(u, v), (u′, v′)}
is upper-bounded by a threshold T iff

ΔEu,v + ΔEu′ ,v′ − 2ΔEQ′ ,Q ≤ T. (9)

This case covers all instances of depth-2 WB-ELC where the edges are at a
distance two apart.

Proof. The edges (u, v) and (u′, v′) comprise a special case of indepen-
dence since Q and Q′ are adjacent to both edges – see Fig. 5(a). As such,

118



Random ELC With Applications to Iterative Decoding of HDPC Codes

Fig. 6: Proof of Theorem 5. A special case of independence gives the equivalent sequence,
(u′, v′), (u, v); although the local subgraphs Eu,v and Eu′ ,v′ are not independent,
the overlap is confined to Q and Q′ (which is complemented twice) [26].
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the sequence {(u′, v′), (u, v)} gives the same graph as the sequence
{(u, v), (u′, v′)} [26]. In addition to the case where Q and Q′ are both
nonempty, there are two other cases at distance 2. We consider first
the case where either Q or Q′ is empty (note that if both are empty
the distance is greater than 2). In this case, the two ELC operations are
independent and this case reduces to Theorem 3 (one or two instances
of depth-1 WB-ELC). The second of these cases is where (u′, v′) /∈ G.
As u′ and v′ are not in the common neighbourhood of (u, v), we cannot
obtain this edge by ELC on (u, v), and thus the second ELC (on (u′, v′))
is not possible. We have now seen that, for depth 2 at distance 2, we
only need to consider the sequence {(u, v), (u′, v′)} where Q and Q′
are both nonempty. Since the distance is not greater than two, this case
is not covered by Theorem 3. The net effect of ELC on {(u, v), (u′, v′)}
is ΔEM′ ,M + ΔEQ′ ,M + ΔEQ′ ,N + ΔEN′ ,Q + ΔEM′ ,Q + ΔEN′ ,N . Fig. 6 illus-
trates that we have ΔEu,v = ΔEM′ ,M + ΔEM′ ,Q + ΔEM,Q′ + ΔEQ′ ,Q, and
ΔEu′ ,v′ = ΔEN′ ,N + ΔEN′ ,Q + ΔEN,Q′ + ΔEQ′ ,Q. This is the same as the
result of ELC on (u, v) summed to the result of ELC on (u′, v′) indepen-
dently, except for the double complementation of EQ′ ,Q, which gives
the desired formula.

Fig. 3(b) shows an example, where the weight-bounding is implicit
from the isomorphism.

We now consider distance one. Given an edge (u, v) and two nodes u′

and v′, we denote by B = N u,u′
v ∩N u,u′

v′ , A = N u,u′
v \ B, C = N u,u′

v′ \ B,

E = N v,v′
u ∩N v,v′

u′ , D = N v,v′
u \ E, and F = N v,v′

u′ \ E, see Fig. 5(b). We
now consider the case where both u′ and v′ are in the neighborhood of
(u, v), and where (u′, v′) /∈ G is created by the first ELC.

Theorem 6 (Distance 1). The weight change of G under ELC on {(u, v), (u′, v′)}
is upper-bounded by a threshold T iff

ΔEA,E∪F + ΔEB,D∪E + ΔEC,D∪F + |C|+ |F| − |B| − |E| ≤ T. (10)

This case covers all instances of depth-2 WB-ELC where the edges are at
distance one apart.

Proof. As in the case for distance 2, we will begin by defining the search
space. There are four possible choices of two edges at a distance of one
apart; these are shown in Fig. 7, where the upper edge is referred to
as the first edge (for ELC). The case in Fig. 7(d) is a degenerate case,
in that the second egde is removed by the first ELC, so this case is not
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(a) (b) (c) (d)

Fig. 7: Figs. 7(a) - 7(c) represent special cases of ELC equivalences [26], where the first
ELC is on the upper edge and the second ELC is on the bottom edge. In Fig. 7(a),
this edge results from the first ELC. In the same way, Fig. 7(d) shows where
double ELC is not possible (the second edge is removed by the first ELC).

� �

� �

Fig. 8: Proof of Theorem 6.
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possible. We show in Fig. 8 that the three possible cases of double ELC
within distance 1 reduce to the case in Fig. 7(a). Note that, in this case,
the second edge results from the first ELC.

Consider the case in Fig. 7(a). We denote the first edge (u, v) and
the second (u′, v′), giving the sequence {(u, v), (u′, v′)}. This illustrates
therefore the case where u′ and v′ belong to N v

u ∪ N u
v , and where

(u′, v′) /∈ G. This case is shown in the left column of Fig. 8.
Since ELC on {(u, v), (u′, v′)} gives the same graph as ELC on

{(u′, v), (u, v′)} [26], this covers the case illustrated in Fig. 7(b). This
case is shown in the middle column of Fig. 8, and the equivalence is
shown in the upper and lower rows.

In the same way, as ELC on {(u, v), (u′, v′)} gives the same graph as
ELC on {(u, v′), (u′, v)} [26], this covers the case illustrated in Fig. 7(c).
This case is shown in the right column of Fig. 8, and the equivalence is
shown in the upper and lower rows.

Thus, without loss of generality, we may focus on the case in the left
column of Fig. 8. The effect of ELC on {(u, v), (u′, v′)}, as illustrated in
the leftmost column of Fig. 8, is to complement (u, v), (u′, v′), A ∼ E,
A ∼ F, B ∼ D, B ∼ E, C ∼ D, and C ∼ F. In addition, node u (node v
in the initial graph, before the swap) is now connected to C instead of
A, v (i.e., u) is connected to F instead of D. In the same way, v′ (i.e., u′)
is connected to D instead of E, and u′ (v′) to A instead of B. This all
amounts to

ΔE = 1− 1 + ΔEA,E∪F + ΔEB,D∪E + ΔEC,D∪F +
|C| − |A|+ |F| − |D|+ |D| − |E|+ |A| − |B|, (11)

where 1− 1 is included to emphasize that the edge (u, v) is removed
and the edge (u′, v′) is created, for a zero contribution to the weight
difference. Note that all sets are pairwise disjoint. This gives the desired
formula.

We have shown that, for T ≥ -1, the depth-2 WB-ELC cases must
occur on pairs of edges spaced by distance at most two. Let us now, for
completeness, consider the case where T < -1.

Proposition 4. Let T < -1. In this case a pair of edges at a distance of more
than two may give depth-2 WB-ELC that does not reduce to (neither a single
nor a double instance of) depth-1 WB-ELC.

Proof. Let T < -1. Consider again the disjoint edges, {(u, v), (u′, v′)},
i.e., at distance greater than two. Say ELC on (u, v) reduces the weight
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by ΔEu,v, while ELC on (u′, v′) gives a further reduction of ΔEu′ ,v′ .
Since we have T < -1, it can happen that ΔEu,v and ΔEu′ ,v′ are both
greater than T, while ΔEu,v + ΔEu′ ,v′ ≤ T. In this case, the individual
ELC operations would not be found as depth-1 WB-ELC, so this is a
special case of depth-2 WB-ELC which can not be restricted to a local
subgraph.

4 CO M P L E X I T Y A N D EN U M E R A T I O N O F WB-ELC

The main results discussed in this work are those on the generalization
of isomorphic ELC operations to WB-ELC operations. Most importantly,
the locality argument of ELC is maintained as the search space of (depth-
1 and 2) WB-ELC is restricted to edges spaced by at most distance 2;
that we need only consider single edges, and pairs of edges no more
than two edges apart, in order to enumerate all WB-ELC operations
for a given graph and threshold, T ≥ -1. We now discuss a selection of
applications based on WB-ELC operations, based on an enumeration
algorithm.

For this work, we consider various strong classical codes of practical
blocklengths, which all qualify as HDPC codes. The [15, 5, 7] BCH
code and the [24, 12, 8] EQR code (commonly referred to as the ex-
tended Golay code) serve a special purpose due to their extremely
small orbit (see Examples 4 and 5). Correspondingly, as discussed for
ELC-preserved codes, Aut(C) is large for these small codes; |Aut(C)|
is 20 160 and 244 823 040, respectively. At a slightly larger blocklength,
we have chosen two extremal (in terms of minimum distance) self-dual
[36, 18, 8] (called “R2”) and [38, 19, 8] (“C38,2”) codes from [28], and
an extremal double circulant self-dual [68, 34, 12] code (“C68,1”) from
[29]. For these codes, Aut(C) is small (|Aut(C)| ≈ n); 32, 1 (trivial), and
68, respectively. We also consider the [48, 24, 12] EQR code, as a next
step from the extended Golay code, but for which the orbit size is large.
Correspondingly, Aut(C) is small compared to the extended Golay code,
containing “only” 51 888 permutations. These codes (except BCH15) are
all even or doubly even; all codewords have Hamming weight divisible
by 2 or 4, respectively.

4 .1 EN U M E R A T I O N AL G O R I T H M

As Theorems 3 - 6 cover all possible single and double applications of
ELC where the weight change is upper-bounded by some threshold
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Fig. 9: Illustration of Alg. 2, where X := N u
v , Y := N v

u , and W := N v
u′ . Note that the

edge (u′, v′) will result from the first ELC on (u, v). The curved line indicates
the possibility of an edge (u′, v′′).

T ≥ -1, we propose an enumeration algorithm to identify all (depth-1
and 2) WB-ELC operations on G. The search space defined by The-
orem 4 suggests an implementation. For each edge (u, v) ∈ G, after
checking Theorem 3 (depth-1), we want to check Theorem 6 on every
(u′, v′) ∈ Eu,v. Then, for each such choice of u′ and v′, we check The-
orem 5 on every (u′′, v′′) ∈ Eu′ ,v′ , see Fig. 9. The commutativity and
isomorphisms discussed in Section 3 require additional measures to
be taken in order to avoid duplicate WB-ELC sequences (giving the
exact same Tanner graph). This corresponds to pruning of the search
space, giving a complexity benefit. For Theorem 5, it suffices to ensure
that the edges of the search space are considered in one direction only.
For Theorem 6, it is possible to handle both cases (isomorphisms) by
slight modifications to the sets of nodes from which the candidate
edges are picked. Since (u′, v′) ∈ Eu,v, we automatically avoid the two
isomorphic cases described in the proof of Theorem 6. Furthermore,
by restricting u′ ∈ A = N u

v \ N u
v′ we avoid the degenerate case where

{(u, v), (u′, v′)} forms a 4-cycle since v′ is not adjacent to A (by defini-
tion). Further details on a practical and efficient implementation are
given in Appendix B

The most straight-forward implementation is to enumerate the search
space, apply ELC to all candidate edges of G (as identified by Theo-
rems 3 - 6), and check the weight of the resulting graphs, G′. If the
weight is upper-bounded by T, i.e., |G′| ≤ |G|+ T, then the correspond-
ing ELC sequence is a (depth-1 or 2) WB-ELC operation. In order to
enumerate all WB-ELC operations, such an implementation may apply
ELC to the next candidate edge after undoing (i.e., repeating) the most
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Algorithm 2 WB_ELC(a)(G, T), to enumerate all WB-ELC sequences
given G and threshold T.

1: κ := 0 // complexity counter (#edges)
2: for ∀ u ∈ U , v ∈ V : (u, v) ∈ G do

3: X := N u
v , Y := N v

u , S := ∅
4: if |X||Y| − 2|EX,Y| − T ≤ 0 then

5: ELC(u, v) is T WB-ELC // Theorem 3
6: end if

7: κ++
8: for ∀ v′ ∈ Y do

9: Z := N u
v′ , B := X ∩ Z, A := X \ B, C := Z \ B

10: for ∀ u′ ∈ A do

11: W := N v
u′ , E := Y ∩W, D := Y \ E, F := W \ E

12: if ΔEA,E∪F + ΔEB,D∪E + ΔEC,D∪F + 2|C|+ 2|F| − T ≤ 0 then

13: ELC{(u, v), (u′, v′)} is T WB-ELC // Theorem 6
14: end if

15: κ++
16: end for

17: for ∀ u′′ ∈ C : u′′ > u do

18: W ′ := Nu′′
19: for ∀ v′′ ∈ W ′ \Y : (u′′, v′′) /∈ S do

20: S := S ∪ {(u′′, v′′)}
21: X′ := N u′′

v′′ , Q := W ′ ∩Y, Q′ := X ∩ X′
22: if Q, Q′ �= ∅ then

23: if ΔEu,v + ΔEX′ ,W ′ − 2ΔEQ,Q′ + |X′| − T ≤ 0 then

24: ELC{(u, v), (u′′, v′′)} is T WB-ELC // Theorem 5
25: end if

26: end if

27: κ++
28: end for

29: end for

30: end for

31: end for
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recent ELC operation. For some purposes, however, it may be desirable
to avoid unnecessary modifications of the graph, so an alternative im-
plementation is to use the counting formulas (8) - (10) of the WB-ELC
theorems to determine whether a set of (one or two) candidate edges is
indeed a WB-ELC operation, without explicitly performing any ELC
operations. The complexity of computing the sets and set operations
required by the counting formulas is proportional to that of doing
(and undoing) the corresponding ELC operations, so the preferred ap-
proach may be decided according to application requirements other
than complexity.

For the following discussions, we assume the approach using count-
ing formulas, with an implementation given in Alg. 2. This algorithm,
referred to as WB_ELC(a), will serve as the framework for other algo-
rithms discussed in this work. Let L(G, T) denote the set of WB-ELC
sequences for G, given T. As described, the search is rooted in the
depth-1 candidate edge, (u, v), and works its way out to distance 1 and
2 (depth-2). As such, there will be a large overlap of the sets of nodes
and edges required by the WB-ELC theorems. An intuitive approach is
to reuse as many of these sets as possible by carefully nesting the theo-
rems. To facilitate this, the counting formulas of Theorems 5 and 6 are
modified as detailed in Appendix B Recall from (3) that G = (U ∪ V , E)
is an (n− k, k)-bipartite simple graph, with average column and row
weights γ̄ and ρ̄, respectively.

Defining complexity, χ, in terms of the number of candidate edges
checked to enumerate WB-ELC sequences, an analysis of the loop
structure of WB_ELC(a) gives

χ = |G|
(

1 + |Y||A|+ min
{
|Y| |C|

2
|W ′ \Y|, |G| − |Ω|

})
(12)

where we assume that, on average, half of the elements in C satisfy
u′′ > u in line 17, and note that each edge of the graph can only satisfy
(u′′, v′′) �∈ S in line 19 once, and further that edges with endpoints in
Nu or Nv, which we denote Ω = {(a, b) ∈ G | a ∈ Nu ∪Nv}, will never
be considered as candidate edges (u′′, v′′) for checking Theorem 5 in
line 24. Hence |G| − |Ω|, the number of edges at distance ≥ 2 from
(u, v), is an upper bound on the number of times line 24 is executed. The
minimization in (12) is necessary as the first argument, |Y| |C|2 |W ′ \Y|,
an upper bound on the number of times line 24 is executed derived
from analysing the loop structure, will be higher than |G| − |Ω| except
for very small γ̄.
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Fig. 10: Complexity simulations for WB_ELC(a) compared against the bound of (13)
(dashed lines). Each code is simulated over its entire weight range, from the
minimum weight to the maximum weight encountered by ELC (which is
around 50% weight), so the complexity of WB_ELC(a) is completely described.

To obtain an estimate of the complexity of WB_ELC(a), we assume
that G = (U ∪ V , E) is a (k, k)-bipartite graph where every vertex has
degree γ. Moreover, we assume that every pair of vertices from the
same partition have λ common neighbors.

Proposition 5.

λ =
γ(γ− 1)

k− 1
.

Proof. Consider a vertex u ∈ U . This vertex has γ neighbors, each of
which have γ− 1 neighbors in U \ {u}. Hence the number of edges
between Nu and U \ {u} is γ(γ− 1). There are k− 1 vertices in U \ {u}
and each of these have λ neighbors in common with u. Hence the
number of edges between Nu and U \ {u} is (k− 1)λ. We then have
that γ(γ− 1) = (k− 1)λ, and the result follows.
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Proposition 6.

|Ω| = 2γ2 − γ3

k
.

Proof. Each of the 2γ vertices in Nu ∪Nv have γ neighbors, so clearly
|Ω| ≤ 2γ2. However, this counts edges (x, y) where x ∈ Nu and y ∈ Nv
twice. Assuming that all edges are equally likely, we have that the
probability that there is an edge between x and an arbitrary node

z ∈ U is γ
k . Then the number of edges from x to Nv is, on average, γ2

k .
It follows that the total number of edges between Nu and Nv is, on

average, γ3

k . Subtracting the edges that have been doubly counted, we

get that |Ω| = 2γ2 − γ3

k .

By our assumptions, we then have that |G| = kγ, |Y| = γ− 1, and
|A| = |C| = |W ′ \ Y| = γ− λ = γ(k−γ)

k−1 . By substituting into (12), we
obtain

χ= kγ

(
1+

γ(γ− 1)(k− γ)
k− 1

+min
{

γ2(γ− 1)(k− γ)2

2(k− 1)2 ,
γ(k− γ)2

k

})
.

(13)

In the extreme cases, for very sparse and dense graphs, we have
lim
γ→1

χ = k and lim
γ→k

χ = k2. In the intermediate case, for instance for

γ = k
2 , we have complexity O(k4).

This bound is verified by simulations on various graphs (codes),
i.e., running WB_ELC(a) and counting the number of candidate edges
checked by an implementation of Theorems 3 - 6, whether it uses recur-
sive ELC or computes the counting formulas (we assume the overhead
is the same). Note the counter, κ, in Alg. 2. Given a graph, G, represent-
ing a code, the simulation consists of counting the number of candidate
edges considered to produce L(G, T). The specific threshold, T, is not
important for this simulation, as it does not affect the complexity in
enumerating all WB-ELC sequences (when we count complexity in
number of edges considered), so we use T = 0. This count is added to
position |G| of a vector, c, denoted by c(|G|). The number of distinct
graphs of weight |G| is counted in a similar vector, d. In this work, we
focus on self-dual codes which are also even or doubly even. Since H
consists of codewords of the dual code, the weight of G also increases
in steps of 2 or 4, respectively.

Random WB-ELC is then applied until a new (i.e., distinct) graph
is found, and the process is repeated until all entries of d are greater
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than some minimum number, g (we used g = 10).5 Let Gmax denote
a graph of “weight 50%” (6), corresponding to random ELC, beyond
which we no longer think of the weight as bounded. Fig. 10 shows
the simulated average complexity of Alg. 2 on the codes described
previously, plotted against average column weight, γ̄(G) = |G|/k, in the
interval [γ̄(|G|min), γ̄(|G|max)]. This interval completely describes the
encountered graphs found by ELC for the given code. These simulations
are compared against the bound of (13) for the same values.

A related set of data from the same simulations is the relative fraction
of WB-ELC sequences in L(G, T) attributed to Theorems 3, 5, and 6,
and how this distribution varies with |G|. Let G′ = e(G) for some
e ∈ L(G, T). Recall that the simulations produced L(G, 0), so the WB-
ELC sequences found must give |G|min ≤ |G′| ≤ |G|. Define the matrix
W by expanding the array c by a dimension of length 3. By grouping
the WB-ELC sequences in L(G, T) by theorem, W(|G|, t) counts the
number of WB-ELC sequences corresponding to distance t = 0, 1, 2
(Theorems 3, 5, and 6, respectively). The total number of WB-ELC
sequences for a weight class is ∑t W(|G|, t). Fig. 11 shows this data
plotted as stacked histograms, where the height of each segment gives
the relative fraction (percentage of ∑t W(|G|, t)) of the corresponding
theorem for that weight class. These show a trend, which holds for
various codes, that the fraction of depth-1 WB-ELC sequences decreases
for increasing weight, before stabilizing at a small but constant fraction.
As |G| increases, it must necessarily become easier to find edges for
which ELC will preserve the weight, culminating at |G|max. Accordingly,
it must be even easier to bound the weight even more by using double
ELC (depth-2 WB-ELC). Furthermore, we note a dominance of Theo-
rem 6 over Theorem 5, which validates our implementation checking
Theorem 5 last (nested in the innermost loop).

Also shown is the average total number of WB-ELC operations found
for each weight class, normalized by ν = max

W
∑

t
W(|G|, t)/d(|G|) (the

largest observation) to produce a percentage (i.e., to fit in the same
plot), ν-1 ∑t

W(|G|,t)
d(|G|) , for each position in c (weight class).

For enumeration purposes, it may also be interesting to enumerate
only those WB-ELC operations involving a specific node, v�. By re-
stricting the operation of Alg. 2 to v� only, rather than V , the single

5The distribution of |G| usually resembles a normal distribution, so g is to ensure a
minimum number of observations are achieved at the tails (high and low ends). The
total number of graphs, ∑ d(|G|), is much greater than 10 (|G|max − |G|min).
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(c) [68, 34, 18] code, “C68,1.”

Fig. 11: The percentage of depth-1 (Theorem 3) and depth-2 (Theorems 5 and 6) WB-
ELC found by WB_ELC(a), for increasing weights, |G|. Also shown (in red) is
the (normalized) total count of WB-ELC sequences, and the plot in logarithmic
scale (orange).
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iteration of the outer loop returns the subset of operations which in-
clude v�. Due to the locality argument (Theorem 4), this does indeed
find the entire subset of L(G, T) rooted in v�, i.e., of the form (u, v�) or
{(u, v�), (u′, v′)}.

4 .2 RE D U C E WE I G H T I N IP-F O R M

The WB-ELC algorithm can be used to reduce the weight of a bipartite
graph. By definition (3), the parity-check matrix related to G is in
systematic form. The purpose of reducing the weight of a systematic
matrix may be motivated by the SPA-WBELC algorithm described in
Section 5, but is in itself an interesting special (and more difficult)
instance of the often encountered problem of finding a reduced-weight
basis for a (dual) code, which has been shown to be very hard [12].

We define instance (b) of Alg. 2, denoted WB_ELC(b), as one which
terminates upon the first encountered WB-ELC operation to satisfy
the threshold, T. The returned WB-ELC operations should ideally be
uniform samples of L(G, T). To improve the uniformity of the sampling,
all sets in Alg. 2 are permuted randomly before being traversed in the
(for) loops. This modification does not affect the ability to enumerate
all WB-ELC operations (if the stopping criterion mentioned above is
removed) only the order in which these are encountered, as is now
desired. As long as the current graph, G, is of weight |G|min ≤ |G| ≤
|G|min + T, and L(G, T′) �= ∅, where T′ = |G|min + T− |G|, WB_ELC(b)
will find a WB-ELC operation, e.

A simple algorithm is proposed, called Alg. minIP (listing omit-
ted), which repeatedly invokes WB_ELC(b)(G, -1) to determine a ran-
dom WB-ELC sequence, e, such that |e(G)| < |G|. We refer to this
as Alg. minIP. Eventually, a graph is reached from which it is not
possible to further reduce the weight, such that WB_ELC(b) returns
e = ∅. At this point, the proposed algorithm proceeds by random
(unbounded) ELC until the weight is increased and the reduction may
resume. Alternatively, WB_ELC(b) may be modified to return the oper-
ation encountered which gives the smallest weight increase. Both these
heuristics are referred to as a kick.

Table 3 compares the performance of Alg. minIP against other algo-
rithms to reduce weight. Recall the codes selected for this work. The
corresponding parity-check matrices are optimized on weight, both in
nonsystematic form, as well as systematic form. The weight of the initial
matrix, H0, e.g., as produced by Magma, is denoted by |H0| (where (4)
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Fig. 12: The percentage of depth-1 (Theorem 3) and depth-2 (Theorems 5 and 6) re-
turned (picked) by WB_ELC(b), for increasing weight, |G|. The fraction of
kicks is also shown, corresponding to when Alg. minIP gives a new graph, G,
for which L(G, 0) = ∅.

gives the weight of G). Alg. IP is a recursive, deterministic depth-first
algorithm to traverse the orbit of a code, by means of ELC operations
on G. Unless the orbit of the code is impractically large, this approach
will determine the minimum-weight systematic matrix. However, for
most codes, the search space is exponential in n. The corresponding
column in Table 3 shows the lowest weight systematic matrix found.
For “R2” and “C38,2,” we were able to compute the entire ELC orbit
of the codes, to find optimal-weight matrices in systematic form. For
“C68,1,” the orbit is infeasibly large, yet, using WB-ELC preprocessing,
we were able to find a systematic matrix of weight 488. For nonsystem-
atic form, Alg. nonIP takes random combinations of minimum-weight
codewords of the dual code (to generate the parity-check matrix), and
attempts to find combinations of n− k linearly independent rows. Gen-
erally, this algorithm succeeded in finding minimum-weight matrices
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Table 3: Reduced-weight matrices. Results of Alg. minIP compared to other algo-
rithms. Column |H0| specifies the weight of the initial parity-check matrix, H0,
(e.g., as constructed by Magma). The bound does not assume a systematic
form matrix.

Code |H0| Bound (2) minIP IP nonIP

BCH15 [15, 5, 7]† 42 40 40 1 40 40 4

Ext. Golay [24, 12, 8] 96 96 96 1 96 96 4

R2 [36, 18, 8] 188 � 144 156 156 2 152

C38,2 [38, 19, 8] 240 � 152 166 166 2 154

EQR48 [48, 24, 12] 320 288 288 1 288 288 4

C68,1 [68, 34, 12] 612 � 408 488 492 410 3

† Only code which is not self-dual, and dmin(C⊥) = 4.
� Initial matrix described in [28, 29] (not generated by Magma).
1 Lower bound (2) on matrix minimum weight achieved.
2 Entire orbit enumerated, so these weights are optimum for systematic matrices.
3 Minimum-weight matrix possible to construct using 33 minimum-weight
(dual) codewords, and one of weight 14.
4 Optimal weight in nonsystematic form, |H| = (n− k)dmin(C⊥).

of weight (n− k)dmin(C⊥), or at least coming quite close. In terms of
search time, only the largest code required more than a few seconds to
find the reported matrices, using a standard desktop computer (Alg. IP
and Alg. nonIP ran for ∼ 1 day, while Alg. minIP used ∼ 3 days).

Fig. 12 shows the response of WB_ELC(b) in terms of which theorem
is returned from the randomized algorithm with T = 0, for increas-
ing weight, |G|. As discussed previously, the fraction of all WB-ELC
sequences (i.e., when considering the entire L(G, T)) corresponding
to depth-1 is small but constant (Fig. 11), but comes to dominate the
response of WB_ELC(b) simply because it is natural and convenient to
check Theorem 3 first. Similarily, the fraction corresponding to depth-2
reflects the position of these theorems in Alg. 2, based on the results of
Fig. 11. As in Fig. 11, random WB-ELC sequences are used to find the
next distinct Tanner graph, G′. Then, WB_ELC(b) with T = 0 is used
to choose a random WB-ELC for G′, and the corresponding theorem
is added to the counter for the weight class |G′|. In order to increase
the observations (number of distinct Tanner graphs) at the low-weight
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weight classes, Alg. minIP (i.e., T = -1) is used to find the next distinct
Tanner graph, G′. This simulation illustrates the relative occurrence of
Theorems 3, 5, and 6 (and kicks) for a graph of a given weight, when
T = 0. This response can give an indication on which theorem occurs
more frequently as a function of |G|.

It should be emphasized, however, that WB_ELC(b), if run in succes-
sion with T ≥ 0, does not get stuck unless L(G, T) = ∅ for the starting
graph, G. The overall trend for the various codes simulated is that the
number of kicks (for T = 0) decreases for increasing graph weight –
which makes sense, as finding a WB-ELC sequence is, intuitively, more
difficult for sparser graphs. Figs. 15(a), 16(a), and 17(a) show the perfor-
mance of WB_ELC(b) in terms of number of candidate edges considered
on average in order to find a random WB-ELC sequence, for increasing
T – see Section 5 for a discussion.

4 .3 BO U N D E D-WE I G H T SU B-OR B I T

The orbit of a code is the set of distinct (nonisomorphic) graphs one
finds by any sequence of ELC operations. Specializing this to WB-
ELC operations, the same procedure gives a bounded-weight sub-orbit
of the code in which all graphs are of weight |G′| ≤ |G0| + T. The
size of this sub-orbit depends on G0, and, obviously, T. Using T =
|G|max − |G0|, corresponding to unbounded weight (i.e., random ELC),
we enumerate the entire orbit of the code. Otherwise, another (disjoint)
bounded-weight sub-orbit may be found “around” a graph G′, where
|G′| ≤ |G0|+ T, which is not already in some previously enumerated
bounded-weight sub-orbit.

For increasing values of T, certain sub-orbits which are disjoint for
lower T may become linked to form supercomponents, as shown figu-
ratively in Fig. 13. For the “EQR48” code, the minimum weight is 288.
Using data from a random search, we found 110 distinct minimum
weight structures (all connected in either pairs or triples), and, within
T = 4, the largest supercomponent found contains 371 structures of
weight 288 and 292. Including also T = 8, the resulting sub-orbit con-
tains only one supercomponent, connecting all ∼ 70 000 graphs found
in our random search. In contrast, a brute force (recursive) attempt
to enumerate the orbit of this code, only found 30 minimum weight
graphs before running out of memory on a standard desktop computer.
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Fig. 13: Sub-orbits of “EQR48” code, for which |G0| = 288. Nodes represent distinct
graphs of the indicated weight, and edges represent a WB-ELC operation
connecting two graphs. Curved edges mean arbitrary WB-ELC operations may
exist. Between weight classes, this is indicated by dashed lines. The components
within the same weight class are disjoint (if we do not cross dashed lines).

5 GE N E R A L I Z E D SISO HDPC DE C O D E R

For this work, the most important application is the use of WB-ELC
operations during SISO HDPC decoding, where the aim is to have
increased diversity (i.e., more parity-check matrices for the same code)
which are all well-suited for use in iterative decoding. Several parame-
ters of a parity-check matrix affect its suitability for decoding, where
one of these is the weight, or density, of the matrix. Let the received
noisy channel vector be y = (-1)x + n, where x is a codeword and n

is AWGN. In the log-likelihood ratio (LLR) domain, the initial LLR
at position v is Lv

0 � 2
η2 yv, where η is the standard deviation of the

AWGN.

5.1 ED G E-LO C A L DA M P I N G RU L E

The generalized SISO HDPC decoder, Alg. 3, gives a common frame-
work for iterative decoding of HDPC codes, where different opera-

135



On Iterative Decoding of HDPC Codes Using ELC

Algorithm 3 SISO-HDPC(p, I1, I2, I3, α0, OP, DR)
1: α = α0
2: for I3 times do

3: Restart decoder from channel vector
4: for I2 times do

5: Stop if syndrome check is satisfied
6: Apply damping rule, DR, with coefficient α
7: Apply at random p operations, OP
8: for I1 times do

9: Apply SPA iteration (‘flooding’ scheduling)
10: end for

11: end for

12: Increment damping coefficient, α := α0 + (1− α0)
I3

I3−1
13: end for

tions can be used to give diversity during decoding. The framework is
based on the SPA-PD algorithm [13], and centers around applying a
damping routine [12] to SPA iterations interspersed with operations to
give increased diversity during decoding. Three nested loops control
the dynamic damping scheme. The maximum number of iterations
is τ = I1 I2 I3, and for every I1 iterations a diversity stage is executed,
in which the extrinsic contribution of the LLRs, Γv

j , of each variable
node, v, is scaled down by a damping coefficient, α, 0 < α < 1, and
accumulated on the input to the next iteration according to

Lv
j+1 = Lv

j + αΓv
j . (14)

The extrinsic contribution to variable node v (the sum of all incoming
messages, μv←u

j ) in iteration j is

Γv
j = ∑

u∈Nv

μv←u
j (15)

where we define Γv
0 � 0. The damping coefficient may be viewed as

a measure of trust in the information produced by the Tanner graph,
which is scaled down, as opposed to the information received from the
channel, which is never damped. Each time we increment α, “the contri-
bution from the Tanner graph” is strengthened, so the outer loop is an
implementation of I3 independent serial decoders of the received chan-
nel vector, for varying values of α (allowing a parallel implementation).

136



Random ELC With Applications to Iterative Decoding of HDPC Codes

The rationale behind damping originates from gradient algorithms,
where α is the step width, which is varied in order to prevent the algo-
rihm (in our case, the convergence of the iterative decoding process, in
terms of negative sum of soft syndromes) from getting stuck at pseudo-
equilibrium points (local minima) [12, 30]. The contribution from the
received noisy channel vector is never damped, which is obvious if we
rewrite (14) as Lv

j+1 = Lv
0 + αΣj

j′=1 Γv
j′ . These new, damped LLRs are

then used to re-initialize the decoder. So, after resetting all messages to
neutral LLRs,

μv←u
j := 0, ∀ (u, v) ∈ G (16)

iteration j + 1 begins by, in effect, forwarding the new, damped input
towards the check nodes. This global reset stage is necessary when
the operation used in the SISO HDPC decoder acts on the variable
node level, e.g., as in SPA-PD which permutes L [13]. After this, the
relationship (15) between extrinsic information (on edges) and LLRs
(in nodes) does not hold. The global stage of (14) and (16), followed by
re-initializing all edges, is referred to as global damping (GD).

In contrast to GD, we have previously proposed edge-local damping
schemes more suited for the edge-local action of ELC [15, 22]. The
damping rule (14) can be generalized to include and take advantage
of extrinsic information on an edge. Formulated for the edge-local
perspective (damping each edge separately), the damping rule (14)
becomes

μv→u
j+1 = Lv

j + α(Γv
j − μv←u

j ) (17)

where the extrinsic contribution μv←u
j is subtracted, to adhere to the

extrinsic principle of the SPA.
ELC on (u′, v′) complements the edges of Eu′ ,v′ . By defining a flood-

ing SPA iteration as the update of all check nodes followed by all
variable nodes (this is usually done in the opposite order, at no general
significance), we ensure that all soft information on edges which are
removed from any v ∈ N v′

u′ is contained (summed) in Γv. Thus, we need
only focus on edges inserted by ELC, i.e., precisely (u, v) ∈ Eu′ ,v′ after
ELC. Fig. 14 shows an example situation, using the mapping from
Tanner graph to simple graph where a check node is grouped with
its systematic variable node. The figure shows the situation after ELC
on (u′, v′), where the solid lines are the inserted edges. These new
edges must be initialized with some outgoing message, μv→u

j+1 , before
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��� ���

Fig. 14: Description of LD, affecting all edges inserted by ELC on (u′, v′). These new
edges (solid lines), (u, v) ∀ v ∈ N v′

u′ , are initialized for the next iteration with
μv→u

j+1 = Lv
j + α(Γv

j − μv←u
j ) = Lv

j + αΓv
j , since μv←u

j = 0.

the next SPA iteration (iteration j + 1, which begins with check nodes),
so (17) implements a damping-and-initialization rule. However, since
μv←u

j = 0 for new edges, (17) reduces to (14). We emphasize that the
edges connected to Nv \ Nv′ , i.e., those unaffected by ELC on (u′, v′),
are not damped and retain their extrinsic messages for the next iter-
ation. Restricting damping to the edges affected by ELC is referred
to as edge-local damping (LD) [15]. There is still some loss of extrinsic
information due to ELC, since only the sum of adjacent messages is
stored in a variable node, yet the loss is significantly smaller than that
resulting from the reset stage involved in GD. We also propose a more
advanced local damping rule in [22], which was not found effective for
the codes used in this work.

Every I1 I2 iterations, α is incremented towards 1, and the decoder
is restarted (I3 times) from the received noisy channel vector. This
constitutes, in effect, the starting of a new, serial decoder, only with a
new and increased (i.e., reduced effect) damping coefficient.

5 .2 RE A L-TI M E WB-ELC AL G O R I T H M

In a decoding setting, where the Tanner graph to be modified contains
soft information on the edges, it is natural to focus on the approach of
using the counting formulas to minimize loss of soft information in the
WB-ELC stage. The aim is to produce a random set of reduced-weight
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Fig. 15: Code “R2.”
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Tanner graphs for C, at minimum (search) overhead. As before, the
weight of each graph should be upper-bounded, |H| ≤ |H0|+ T, and
we determine the local threshold

T′ = |H0|+ T − |H| (18)

based on the weight |H| of the current graph, H. The WB-ELC stage
is to be done during decoding, in between SPA iterations, so efficiency
is a key concern. Based on WB_ELC(b), we now consider a set of fur-
ther modifications to give a real-time version, which we refer to as
WB_ELC(c). By increasing the coarseness of the search, a random WB-
ELC sequence may be found at a decreased average complexity, in terms
of number of candidate edges considered. Rather than exhaustively
traversing the entire local subgraphs induced (entire sets A, C, etc.) by
the theorems around the root edge, (u, v), the search may be confined to
checking the depth-2 theorems for only one, random choice of (u′, v′),
and one for (u′′, v′′) – see Fig. 9. This way, Theorem 3 is checked while
producing the subsets required for Theorems 5 and 6, and WB_ELC(c)
applies this coarse search using all edges (u, v) ∈ G as root edge. In
this sense, depth-1 has a natural precedence over depth-2, (single ELC
is half the complexity of double ELC). As shown in Fig. 11, the per-
centage of depth-2 WB-ELC sequences constitute a large fraction of the
total sequences output by WB_ELC(a) (they are relatively easy to find),
validating the heuristic of only checking Theorems 5 and 6 on a subset
of the candidate edges.

Figs. 15(a), 16(a), and 17(a) compare the complexity of WB_ELC(c)
to WB_ELC(b). The complexity shows the average number of edges
checked to find the first random WB-ELC operation on a graph of
weight |G|, and for T = 0. As before, each weight class is simulated
independently, and new graphs are found using Alg. minIP. We also
compare a variant of WB_ELC(c) which only considers depth-1 WB-
ELC, denoted by WB_ELC(c,1). The reduced search space gives a further
improvement in number of candidate edges checked. From a decod-
ing perspective, it makes sense to compare this ELC complexity to the
adaptive belief propagation (ABP) algorithm, which uses a GE stage in
between SPA iterations [10, 22]. Implemented in terms of ELC opera-
tions, the complexity of a GE stage is n− k, which is included as the
red reference line.

Figs. 15(b), 16(b), and 17(b) illustrate the graph weights resulting from
the previous simulations. For WB_ELC(b), a (horizontal) histogram is
plotted for each weight class |G|, showing the distribution of the weights
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of the graphs, G′, found when the search starts from G. This distribu-
tion is over |G0| ≤ |G′| ≤ |G|, with an average around |G|, until |G|
reaches the average weight resulting from random (i.e., unbounded)
ELC, beyond which the distributions begin forming a normal distri-
bution centered on the average weight described in (6). The average
weight due to repeated random (unbounded) ELC is slightly higher
than the “50% weight.” The fraction of repeated Tanner graphs (as
in row-equivalent matrices) encountered is indicated by the red bar
below the histograms. Only at the low-weight end of the scale, when
|G| is near |G0|, are such repetitions encountered, which indicates that,
generally, a very high degree of diversity results from using random
WB-ELC operations during decoding. Some fraction of the encountered
graph weights in the histograms is above the maximum weight of the
class, |G′| > |G| (recall that we simulate T = 0). This indicates the
fraction of graphs for which the weight can not be upper-bounded
by T = 0, resulting in a kick to a higher weight. Any such kicks are
a result of Alg. minIP giving a new graph, G′, for which |G′| < |G|
(using T = -1), such that WB_ELC(b)(G′, 0) = ∅. However, this occurs
only at the low-weight end of the scale and we may conclude that the
search is, in fact, able to maintain the desired weight-bounding. The
average weight plots for WB_ELC(c) and WB_ELC(c,1) show only a
slight increase in average weight at the low-weight end, which indicates
the number of kicks resulting from the reduced-complexity search. This
indicates a complexity reduction with negligible performance penalty.
Furthermore, we verify the above assumption that the weight can be
bounded by depth-1 WB-ELC alone, by noting that WB_ELC(c,1) also
succeeds in bounding the weight.

Fig. 18 shows a similar experiment which focuses on the performance
of WB-ELC in a decoding setting. Starting from a reduced-weight graph,
G0, we simulate the average performance of keeping |G| upper-bounded
by |G0|+ T. Reflecting the intended usage, e = WB_ELC(b)(G, T′) (or
(c) or (c,1)) is used (rather than Alg. minIP) to find the next WB-ELC
operation, where T′ = |G0|+ T− |G| using (18). This is then repeated
for G′ = e(G) until 1 000 graphs are simulated for this T. Then, the
experiment proceeds the same way for the next value of T. Again,
we compare the complexity against a GE stage. Let TGE denote the
threshold for which the complexity of WB_ELC intersects this measure.
For thresholds T > TGE the average complexity of a WB-ELC stage
is lower than that of a GE stage, while still giving a weight-bounding
effect (as compared to random ELC).
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Table 4: Decoding algorithms simulated in this work, and the corresponding configu-
rations of Alg. 3

Decoding Algorithm Configuration

SPA(τ) SISO-HDPC(0, 1, τ, 1, 1,−,−)

SPA-PD(I1, I2, I3, α0) SISO-HDPC(1, I1, I2, I3, α0, PD, GD)

SPA-ELC(p, I1,I2,I3, α0) SISO-HDPC(p, I1,I2,I3,α0,ELC, LD)

SPA-WBELC(p, I1, I2, I3, α0, T)

SISO-HDPC(p, I1, I2, I3, α0, WB_ELC(b)(G, T), LD)

5.3 ER R O R-RA T E OB S E R V A T I O N S

The SPA-ELC decoding algorithm, which uses random ELC operations
in between SPA iterations to gain diversity, has previously been shown
effective [15]. The simulation results in Fig. 19 compare the proposed
SPA-ELC decoder against various decoding algorithms, where we en-
sure that τ = I1 I2 I3 is fixed. The algorithms are all implemented using
the SISO HDPC framework, with the configurations summarized in
Table 4. The parameter p specifies the number of ELC operations to
employ every I1 iterations. The values of p, I1, I2, and I3 are chosen
empirically, based on frame error-rate (FER) simulations. In Fig. 20,
using code “R2,” we fix one of the loop constants (and fix τ = 600),
and determine the second for varying values of I1 which we know to
have the greatest influence on performance. The nearly identical data
obtained for fixed I2 and fixed I3 verifies that the performance is domi-
nated by I1, and that the best performance is found for low values of I1,
specifically for I1 = 1. This is verified also for the “EQR48” code. The
value of p is then selected based on data shown in Fig. 22, where we
find an optimal value at reasonably low values of p. This value is only
slightly sensitive to SNR. The initial damping coefficient, α0 = 0.08, is
borrowed from [12].

The drawback of SPA-ELC is an increase in matrix weight, so un-
less the orbit of the code contains only “low” weight (i.e., near |G|min)
graphs (e.g., the BCH15 and the extended Golay code, for which the
orbit contains only two graphs), the performance of the SPA is neg-
atively affected by increased weight. Not only does this increase the
complexity of computing the SPA update rules, but there is also a well-
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(b) Ext. Golay = [24, 12, 8], with |Aut(C)| = 244 823 040
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(d) C38,2 = [38, 19, 8], with |Aut(C)| = 1
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(f) C68,1 = [68, 34, 12], with |Aut(C)| = 68

Fig. 19: Simulation results. Each SNR point is simulated until at least 100 frame-error
events were observed (otherwise, error bars indicate a 95% confidence interval
[31]). The union bound is calculated based on the full weight enumerator of
the code.
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known adverse effect on convergence due to short cycles in the Tanner
graph. The aim of the SPA-WBELC decoder is to use WB-ELC to give
structurally distinct matrices of bounded weight. We will show that the
SPA-WBELC decoder outperforms SPA-PD [13] when Aut(C) is small.
For SPA-WBELC, the operation is WB-ELC, which amounts to either
one or two ELC operations. For a similar degree of diversity, a budget
of p ELC operations per I1 iterations is allocated for the SPA-WBELC
decoder, which is decremented by |e|. (This means the SPA-WBELC
decoder may use p + 1 ELC operations per ELC stage, but the average
is very close to p, so we ignore this.) As for SPA-ELC, optimal values of
parameters are determined empirically, as shown in Fig. 23.

In Fig. 19, the performance of SPA-ELC and SPA-WBELC is simulated
for various codes of different blocklength when signalling over the
AWGN channel. The graphs used for decoding were optimized on
weight in a preprocessing stage, as reported in Table 3. For SPA and
SPA-PD, the same graph is used throughout the decoding process, and
this graph is also used in a nonsystematic form for these decoders.6 For
the ELC-based decoders, the initial (preprocessed) TG(H) is restored
at the beginning of each frame (codeword simulated). For SPA-PD [13],
the operation is permutation from Aut(C), selected at random by taking
random combinations of generators of Aut(C) [32]. As a reference, the
performance of the optimal maximum-likelihood decoder (MLD) is
simulated where this is feasible, and is otherwise approximated by a
union bound using the full weight enumerator of the code.

A simple scheme running SPA on seven distinct minimum-weight
matrices for the extended Golay code gives an improvement over SPA
[33]. We observe a performance gain of ∼ 0.5dB at bit-error rate 10-4

over this scheme (we still observe a gain of ∼ 0.25dB when we limit
SPA-ELC to τ = 200 iterations). We also observe an improvement in
error-rate on this code over the more advanced multiple-bases belief
propagation (MBBP) algorithm, which uses 15 n× n matrices (based
on cyclic shifts of minimum-weight codewords in C⊥) in a parallel (i.e.,
list) decoding scheme [17]. At FER 3 · 10-3 we observe a gain of ∼ 0.2dB
when using τ = 600 iterations. In addition to this improvement in
performance, we also achieve a significant reduction in complexity, by
avoiding parallelism, using fewer iterations (they use a maximum of
1 050 iterations), and avoiding redundant parity-check matrices.

6We have also simulated SPA and SPA-PD on systematic matrices (not shown), to verify
that FER performance is not significantly sensitive to this.

149



On Iterative Decoding of HDPC Codes Using ELC

 1
 2

 3
 4

 5  1
 2

 3
 4

 5
 6

 7
 8

 9
 10

10-3

10-2

10-1

FE
R

3.5 dB
4.0 dB
4.5 dB

p
I1

FE
R

(a) I3 = 20 fixed, and I2 = τ/(I1 I3).

 1
 2

 3
 4

 5  1
 2

 3
 4

 5
 6

 7
 8

 9
 10

10-3

10-2

10-1

FE
R

3.5 dB
4.0 dB
4.5 dB

p
I1

FE
R

(b) I2 = 30 fixed, and I3 = τ/(I1 I2).

Fig. 20: Simultaneous determination of parameters p and I1 for SPA-ELC decoding on
code “R2.” The minimum FER is for low I1 and p ≈ 2.
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Fig. 21: Similar response for SPA-ELC on code “EQR48” (I3 = 20 fixed and I2 =
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The overall observation is that SPA-ELC outperforms SPA for all
codes, with a significant gain (over 1dB) which increases with block-
length. Most interestingly, we observe that the flooring effect of SPA on
the “C68,1” code (occurring already at FER 10−4) is avoided by adding
random ELC operations to the decoding process. For the smaller-size
codes, BCH15 and the extended Golay code, the performance of SPA-
ELC coincides with that of the SPA-PD decoder. This is an interesting
observation, as the SPA-PD is regarded among the state-of-the-art itera-
tive SISO decoders for HDPC codes. However, the overhead of generat-
ing elements from Aut(C) is not trivial, which may make the random,
graph-local SPA-ELC decoder an interesting alternative. For the larger
codes, it is apparent that SPA-ELC cannot keep up with SPA-PD. This
results from the weight increase due to random ELC, which is the main
motivation for this work. When the weight is not bounded, random
ELC will give graphs sampled from the orbit of the code, which is
generally extremely large. However, rare exceptions exist, including
the ELC-preserved codes, as well as “BCH15” and the extended Golay
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Fig. 22: Details for SPA-ELC with I1 = 1, I2 = 30, and I3 = 20. Here, p = 0
denotes SPA decoding (with no damping). p may be increased to slightly
reduce flooring effect.

code for which the orbit is of size 2. This follows from the fact that
the orbits of these codes are well behaved for ELC decoding; they con-
tain only “low” weight graphs – see Examples 4 and 5. Thus, these
codes are nearly ELC-preserved, such that any sequence of random ELC
operations will preserve the structure of two, rather than one, graphs.
SPA-ELC on these codes can be thought of as SPA-PD, but now using
two distinct graphs; in a sense, a combination of SPA-PD and MBBP.

Consider next the R2 code, for which Aut(C) is small, and even more
importantly the “C38,2” code, for which Aut(C) is trivial. These codes
are included to report the performance of SPA-PD on codes which are
arguably not the optimal choice for this algorithm. For these codes, it
is seen that SPA-ELC has a gain over SPA-PD, especially in terms of
a removing a floor-effect on “R2.” The “C38,2” code is a propos of an
important class of codes, for which the structure is not so strong as to
facilitate a nontrivial Aut(C). Although not considered in this work,
for most random codes (such as LDPC codes) it may be expected that
Aut(C) is trivial, in which case SPA-PD “reduces” to SPA (conceptually,
only applying the identity permutation), giving further meaning to the
aforementioned gain of SPA-ELC over SPA. To emphasize; SPA-ELC
can improve SPA decoding on codes where SPA-PD cannot.

For the larger “EQR48” and “C68,1” codes, however, |Aut(C)| and the
orbit size are both large (in fact, the actual size of the orbit appears
to be impractical to compute), so additional measures are required
to maintain the gain of ELC-based decoding. Using WB-ELC, it is
possible to bound the weight due to ELC, and the simulations verify
the assumption that the performance of iterative SISO decoding is
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Fig. 23: Simultaneous determination of parameters p and I1 for SPA-WBELC decoding
on code “R2.” Here, I3 = 20 and I2 = τ/(I1 I3).

sensitive to increased graph weight; SPA-WBELC shows a consistent
gain over SPA and SPA-ELC for all codes considered, closing the gap
to SPA-PD also for these largest codes. For the special “BCH15” and
extended Golay code, we verify that the performance of SPA-ELC and
SPA-WBELC is the same.

The choice of parameters has a large impact on SPA-WBELC per-
formance. As discussed, a preprocessing stage is required not only to
obtain a reduced-weight initial graph H0, but also to check that the
“low” weight sub-orbit of this graph (within |H0|+ T) is sufficiently
large to provide the required amount of diversity during decoding.
The SPA-WBELC decoder uses the exhaustive algorithm WB_ELC(b) to
determine random WB-ELC operations, rather than one of the real-time
versions. This algorithm does not employ heuristics (i.e., kicks), so it
is important to choose an initial graph for which a sufficiently large
sub-orbit is “available” during decoding. Assuming T ≥ 0, it is always
possible to go back to the previous graph by undoing the previous WB-
ELC operation. The SPA-WBELC decoder will perform pI3 I2 = pτ/I1
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WB-ELC operations during decoding, so a sufficient amount of diversity
is, arguably, ∼ pτ/I1 distinct Tanner graphs. Alternatively, a speed-up
could be achieved by using WB_ELC(c) (or even WB_ELC(c,1)), but
then at a small penalty in FER due to the number of kicks required by
these real-time implementations. As the aim of this work is to report
the benefits of bounding the weight due to ELC, we have not gone
into detail on this and do not include a dedicated set of simulations.
Using Alg. minIP, we are able to reach (or, at least closely approach)
the minimum-weight bound from (2), producing a set of candidate
bounded-weight graphs. The procedure outlined in Section 4.3 gives an
indication on whether the number of distinct Tanner graphs reachable
via WB-ELC within threshold T is sufficient. This way, the initial graph
H0 is chosen, and the parameter T is set. In summary, using T = 4 or
8, diversity and weight-bounding is achieved for “R2” and “EQR48.”
All codes were simulated using WB_ELC(b), so, for “C68,1,” the thresh-
old used in simulations was increased to T = 56 in order to reduce
simulations time for this code.

The FER performance of SPA-WBELC has a deterministic response
to increase in T. As shown in the simulations, by increasing T, a gain
is found in the low-SNR range. Yet, for increasing SNR, the FER per-
formance “breaks off” at some point, approaching that of SPA-ELC.
As such, this should not be considered a floor-effect (as the FER re-
sumes its initial slope), but rather an indication that the distinction
between SPA-WBELC and SPA-ELC is stronger at low SNR. This may
be explained by considering the general performance of SPA; at low
SNR (high noise), the number of iterations is, generally, higher than
that at high SNR. Thus, the number of operations (in this sense, ELC
operations) is greater per frame simulated at low SNR. At high SNR,
as the average number of iterations per frame approaches 1 (an initial
syndrome check is not used in this work, which would otherwise give
an average of 0 iterations), the result of ELC and WB-ELC is to a large
extent the same, as the weight increase of SPA-ELC is limited to at most
one stage consisting of p ELC operations.

5 .4 CO M P L E X I T Y OB S E R V A T I O N S

We also report simulations data on the average complexity of the vari-
ous decoding algorithms. Since the SPA-ELC and SPA-WBELC decoders
use a systematic matrix and modify the corresponding graph during
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decoding, whereas the SPA and SPA-PD decoders use a static, nonsys-
tematic matrix, the complexity cannot be reported simply in terms of
average number of iterations per codeword. However, the complexity of
all stages of SPA decoding and the ELC operation is proportional to the
number of edges involved, so decoding complexity may be measured
in average number of SPA messages [14, 34], counted as

χD =
1
F ∑

F

J≤τ

∑
j=1
|Hj| (19)

where J is the number of iterations used for a frame (which varies with
SNR and the specific noise pattern), and F is the total number of frames
simulated per SNR point. In terms of messages (edges processed), the
complexity of one (flooding) SPA iteration is 2(|G|+ n− k) = 2(kγ̄ +
n− k). For the following argument, we assume again that k = n− k.
At the expected “50% weight” the complexity of one SPA iteration is
2k(γ̄ + 1) = 2k(k/2 + 1) = k2 + 2k, which is significantly higher (by
at least a factor of 4) than the ELC complexity, k2/4− k + 1, from (5).
As such, we do not take the overhead of applying ELC operations into
account in the comparisons – especially when SPA iterations are in the
log-likelihood domain, where the check node update rule involves use
of the computationally heavy hyperbolic tangent rule (this is not taken
into account in the analysis above).

For complexity, as defined in (19), we observe the desired effect of
bounding the weight increase due to ELC. For SPA-ELC, the average
weight of H quickly settles around “50% weight,” i.e., k(k + 2)/2 fol-
lowing from (6), whereas for SPA-WBELC, the average weight is around
|H0|+ T – as shown by the histograms in Figs. 15(b), 16(b), and 17(b).
The inset plots, comparing number of SPA messages, in Fig. 19 indicate
a general trend where the SPA-PD decoder has the lowest complexity,
while the SPA is the most complex decoder. As these two algorithms
use the exact same graph (for a given code), any difference must be
entirely in terms of number of iterations used per codeword. In other
words, this shows how the SPA-PD is a very important benchmark, as
it gives an improvement in both FER and complexity. Similarily, our
proposed SPA-WBELC algorithm also has an improvement in com-
plexity (in terms of average number of SPA messages), over SPA and
SPA-ELC, and is not far from the benchmark complexity of SPA-PD.
The complexity improvement (over SPA-ELC) is a direct benefit from
bounding the weight. However, as we have discussed, there is a sig-
nificant search overhead incurred by the SPA-WBELC decoder. This is

155



On Iterative Decoding of HDPC Codes Using ELC

highly implementation-dependant, and more efficient implementations
(perhaps even tailored to the specific code used) may be possible.

CO N C L U S I O N

In this work, we have presented a mapping from a Tanner graph to a
simple, bipartite graph such as to facilitate the use of a graph operation
known as ELC during iterative, graph-based decoding. It is known that
ELC modifies locally the structure (i.e., the edges) of a graph, without
changing the associated code. We have identified and described how the
ELC operation – or more generally a sequence of ELC operations – may
induce a graph isomorphism, and how this is linked to code automor-
phism, i.e. to Aut(C). From the code perspective, we have also defined
a notion of Tanner graph isomorphism (row-equivalence of matrices),
and shown the relationship to the corresponding trivial (in terms of
decoding) subgroup of Aut(C). This gives a natural relationship with a
state-of-the-art decoding algorithm for classical (HDPC) codes, SPA-PD,
which improves decoding by employing random permutations from
Aut(C) during decoding.

The concept of isomorphic ELC operations has been generalized to a
weight-bounding application of ELC, WB-ELC, for which the effect of
ELC on the weight of the graph is upper-bounded by a threshold. All
possible instances of WB-ELC due to single and double application of
ELC on a graph are classified, where we show that all double instances
occur on adjacent edges. In this sense, WB-ELC adheres to the locality
of ELC and SPA, which, in turn, simplifies the implementation and
complexity of an algorithm to enumerate all WB-ELC operations on a
graph, within a threshold value. The complexity of such an algorithm is
analyzed theoretically, and verified empirically by simulations on a set
of different graphs (corresponding to typical HDPC codes of different
blocklength).

Several applications of WB-ELC are suggested, which all relate to
the context of graph-based decoding on a Tanner graph of a HDPC
code. First of all, a set of reduced-weight (Tanner) graphs may be
produced using WB-ELC with a negative threshold, from which a graph
suitable for decoding is chosen in terms of having a large bounded-
weight sub-orbit, to within some threshold. To facilitate the use in
decoding, various heuristics are proposed to devise a real-time, reduced-
complexity version of the enumeration algorithm. Again, simulations
are used to assess the benefits of these heuristics on the same set of
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graphs (HDPC codes). The resulting operation is finally used to describe
a SPA-WBELC decoder.

A generalized framework for SISO decoding of HDPC codes is pro-
posed, based on the SPA-PD algorithm. By abstracting the operation
used to gain diversity in between SPA iterations, various decoding algo-
rithms may be implemented in this common framework. This ensures
a fair comparison in simulations results, which are presented both in
terms of FER and complexity (in terms of number of SPA messages
computed per codeword). In this context, we also describe a novel
edge-local damping rule, which is suitable in the local context of ELC-
based decoding. In total, extensive simulations data show a consistent
gain of SPA-ELC and SPA-WBELC over SPA, and where SPA-WBELC
approaches closely the performance of SPA-PD. Furthermore, we em-
phasize types of graphs (or, codes) well-suited for SPA-WBELC, but for
which SPA-PD can not be used.
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AP P E N D I X

A PR O O F O F LE M M A 2, ELC O N AD J A C E N T ED G E S

Proof. Let A �∼ B denote the complementation of the edges between
nodes in A and B, where double complementation cancels out: A � �∼ B =
A ∼ B. Define the sets A = N u

v \ N u
v′ , B = N u

v ∩ N u
v′ , C = N u

v′ \ N u
v ,

and D = N v,v′
u . ELC on two adjacent edges, {(u, v), (v, v′)} gives the

same graph as ELC directly on (u, v′). Consider the initial graph, G,
consisting of the following components

G = (u, v), (u, v′), (u, D), (v, A ∪ B), (v′, B ∪ C), (A ∪ B ∪ C) ∼ D.

We may then denote the graph after ELC on (u, v) as G(u,v), for any
edge

G(u,v) = (v, u), (v, v′), (v, D), (u, A ∪ B), (v′, A ∪ C), (A ∪ B) �∼ D, C ∼ D

and

G{(u,v),(v,v′)} = (v′, u), (v′, v), (v′, D), (u, B ∪ C), (v, A ∪ C), A � �∼ D, (B ∪ C) �∼ D
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where double complementation cancels out, e.g., A � �∼ D = A ∼ D. It is
then readily seen that

G(u,v′) = (v′, v), (v′, u), (v′, D), (v, A ∪ C), (u, B ∪ C), A ∼ D, (B ∪ C) �∼ D

= G{(u,v),(v,v′)}.

Note that, due to the swap in the first ELC on (u, v), we have that (v, v′)
and (u, v′) refer to the same edge, before and after ELC on (u, v). See
also Fig. 4.

This proof can be extended to nonbipartite graphs, although this is
outside the scope of this paper.

B IM P L E M E N T A T I O N NO T E S F O R WB-ELC AL G O R I T H M

To facilitate an efficient reuse of sets, slight modifications are made to
the counting formulas. Theorem 6 considers pairs of edges adjacent at
distance one, so, given (u, v) from Theorem 3, we can reuse the sets N u

v
and N v

u and |Eu,v| for all depth-2 instances rooted in the edge (u, v).
For Theorem 6, v′ is picked from N v

u . Then, for all possibilities of
u′ ∈ A = N u

v \ N u
v′ , it is possible to reuse the left-hand sets A, B, and

C for all instances of Theorem 6. By choosing u′ ∈ A rather than N u
v ,

we know that (u′, v′) /∈ G. Thus, we know that Theorem 6 applies, and,
since A ⊆ N u

v , we generally save some search time. With W = E ∪ F =
N v

u′ , we get the following modifications to (10)

u′ ∈ A ⊂ X = N u
v ⇒ |A| → |A| − 1, |EA,E∪F| → |EA,W | − |W|

v′ ∈ D ⊂ Y = N v
u ⇒ |D| → |D| − 1, |EB,D∪E| → |EB,Y| − |B|

|EC,D∪F| → |EC,D∪F| − |C|.
From Theorem 4 we know that u′′ must be selected among nodes

within distance 2 from v, which gives a significant reduction in search
space. This means that, for Theorem 5, we choose u′′ ∈ C = N u

v′ \ N u
v ,

since the node must be at distance two from (u, v). By choosing v′′ ∈
Nu′′ \N v

u , we can reuse W ′ = Nu′′ . We also reuse the sets corresponding
to the root edge, (u, v) (namely, Y and X). For all valid choices of v′′,
W ′ = N v′′

u′′ ∪ {v′′}. This means that |N v′′
u′′ | = |W ′| − 1 is invariant (does

not need to be recomputed). Furthermore, as v′′ ∈ W ′ is connected to
X′ = N u′′

v′′ , we have that |EX′ ,N u′′
v′′
| = |EX′ ,W ′ | − |X′|.

For Theorem 5, we need to do a little more bookkeeping to avoid rep-
etitions. First of all, a simple check, u′′ > u, is to avoid combinations of
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ELC that give the same graph, i.e., {(u, v), (u′′, v′′)} = {(u′′, v′′), (u, v)}.
However, additional steps need to be taken to avoid repetitions. Con-
sider the situation when we arrive at Theorem 5: The edge (u, v) is
reused from Theorem 3, and v′ is reused from Theorem 6 (indirectly,
in the use of C). Now we can check Theorem 5, {(u, v)(u′′, v′′)}, for all
possibilities of u′′, v′′. However, for different choices of v′, there may be
an overlap in the resulting sets C, resulting in repeated enumeration
of WB-ELC according to Theorem 5. Such challenges arise as a conse-
quence of nested evaluation of the theorems, and a quick solution to
the problem is to simply keep track of the ‘used’ edges (u′′, v′′) in a set
S, and avoid checking these repeatedly.
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The notation in this chapter has been edited to make it consistent with
the thesis. A misprint has been corrected in formula (3).





I M P R O V E D A D A P T I V E B E L I E F

P R O P A G A T I O N D E C O D I N G U S I N G

E D G E - L O C A L C O M P L E M E N T A T I O N

Joakim Grahl Knudsen Constanza Riera

Lars Eirik Danielsen Matthew G. Parker

Eirik Rosnes

This work is an extension of our previous work on an
iterative soft-decision decoder for high-density parity-check
codes, using a graph-local operation known as edge-local
complementation (ELC). Inferred least reliable codeword po-
sitions are targeted by an ELC stage in between sum-product
algorithm iterations. A gain is shown over related iterative
decoding algorithms – mainly due to an improved heuristic
to determine optimum ELC locations in the Tanner graph
– both in error-rate performance, as well as complexity in
terms of a significant reduction in the required number of
ELC operations. We also present a novel damping opera-
tion, generalized to the graph-local setting where extrinsic
information remains on edges not affected by ELC.

1 IN T R O D U C T I O N

Iterative soft-input soft-output (SISO) decoding of graph-based codes
has been shown to give near-optimum results, when the sum-product
algorithm (SPA) is used on low-density parity-check codes. Recently,
these results have been extended to high-density parity-check (HDPC)
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codes, in order to facilitate the use of well-known strong families of
codes, such as Bose-Chaudhuri-Hocquenghem [1, 2], quadratic residue
(QR) [3], and Reed-Solomon (RS) codes [4–6]. Constructions of these
types have strong structural properties (most importantly, non-trivial
automorphism group and large minimum distance), as well as conve-
nient algebraic descriptions to simplify hardware implementation. We
have previously described a graph-local operation known as edge-local
complementation (ELC) and its applications to improve the perfor-
mance of SPA decoding by providing diversity during decoding. In
addition to random application of a small number of ELC operations
[3], we have considered the controlled application of ELC such as to
preserve graph isomorphism, or to maintain a bound on graph weight
[7]. We have previously compared against iterative permutation decod-
ing (SPA-PD), in which permutations from the automorphism group of
the code are used to gain diversity [1]. This work is an extension of our
work on ELC-based SISO HDPC decoding, where the aim is now to
target inferred error positions during decoding. In addition to improved
diversity, the structural effects of ELC on the Tanner graph are such that
affected positions are set in a listening state (degree-1 nodes), such that
they may continue to converge without influencing other nodes (e.g.,
via cycles). The adaptive belief propagation decoder from [5], denoted
by ABP, uses Gaussian elimination (GE) on the (n− k)× n parity-check
matrix H, in an attempt to reduce the columns corresponding to the
n− k inferred least reliable parity positions to an identity matrix. We
will show how the ELC operation is related to GE. The novelty of the
proposed ABP-ELC decoder lies in the significant reduction in the num-
ber of positions (columns of H) affected by the adaptive stage, while
simultaneously achieving a gain in error-rate performance over SPA-PD
and ABP. We also maintain the locality argument of the ELC operation
[3], which leads to several modifications to improve the performance of
the ABP-ELC heuristic (i.e., where to apply the ELC operations).

We use boldface notation for vectors, and italics uppercase for ma-
trices. A binary linear code C of length n, dimension k, and minimum
distance dmin is denoted by [n, k, dmin]. H is said to be systematic if the
columns can be reordered into the form [I P], where I is the identity
matrix of size n− k. The corresponding codeword positions comprise
a parity set P and an information set I , respectively, referring to the
k× n generator matrix [PT I]. The single non-zero entry of a system-
atic column is referred to as a pivotal. Unless stated otherwise, codes
discussed in this paper are represented by H in systematic form. The
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Fig. 1: ELC on edge (u, v) of a (systematic) Tanner graph, where vu is the systematic
node for node u. Straight links between two sets mean that these are completely
connected, while curved links mean arbitrary connections. Dashed lines indicate
non-edges. Doubly slashed links are complemented (edges are replaced by non-
edges, and vice versa) resulting in v and vu swapping connections. This graph
may be a subgraph of a larger graph.

local neighborhood of a node v is the set of nodes adjacent to v, and is
denoted byNv, whileN u

v is shorthand forNv \ {u}. We refer to variable
node vi as simply v when the index is obvious from the context, and
use the shorthand notation v ∈ P for a node vi where i ∈ P .

2 ELC O N A TA N N E R G R A P H

ELC is defined on a simple graph, G =
(

0 P
PT 0

)
, corresponding to

a parity-check matrix H = [I | P], or, equivalently, a Tanner graph

TG(H) =
(

0 H
HT 0

)
. We have previously described ELC on TG(H) by

going via G [3]. We now discuss the implementation of ELC as directly
applied to TG(H). ELC requires that H is systematic, and since it
is natural to assume there are no repeated columns, each row u has
a unique pivotal. Let this single node adjacent to u be denoted by
vu ∈ P . The implementation of ELC on an edge (u, v) ∈ TG(H) is to
complement the edges connecting Nu and N u

v , as shown in Fig. 1. By
definition, v is adjacent to all nodes in Nv, whereas the systematic node
vu ∈ Nu is not connected to N u

v . Thus, the complementation entails
the effect of swapping the connections of these nodes, or, equally, the
corresponding two columns in H. Since vu ∈ P and v ∈ I , positions v
and vu are swapped between I and P , changing the bipartition. Note
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���

Fig. 2: The SPA update of a systematic variable node v.

that ELC on (u, vu) has no effect, as N u
vu = ∅. A maximum of n− k

independent ELC operations may be applied to TG(H), one per row
(see cancellation issues in Section 3). It is readily verified that ELC is
a graph implementation of the row-additions performed to reduce a
column to systematic form during GE. As such, we may define GE (on
a systematic matrix) as a sequence of n− k ELC operations. In fact, it
has been shown that all information sets of the code are found via ELC
[8].

3 AD A P T I V E BE L I E F PR O P A G A T I O N

The idea of incorporating the inferring and moving of errors into
solvable positions as part of a decoding algorithm, was suggested by
MacWilliams and Sloane for their algebraic permutation decoder (PD)
[9]. PD has recently been extended to an iterative algorithm [1], SPA-PD,
so as to further benefit from SISO decoding. In a similar fashion, ABP
attempts to produce an identity submatrix in the columns correspond-
ing to error positions, by means of GE on H [5]. The GE operation
affects individual columns independently, and can be targeted directly
to the desired n− k positions, whereas a permutation generally affects
all n positions of the codeword.

Over an additive white Gaussian noise (AWGN) channel, the error
positions are obviously unknown to the receiver. However, simple
heuristics exist to infer the reliability at a codeword position. The
received noisy vector is y = (−1)x + e, where x is a codeword and e

is AWGN. In the log-likelihood ratio (LLR) domain, the initial LLR
at position v is Lv

0 � 2
η2 yv, where η is the standard deviation of the

AWGN. The magnitude |Lv
j | of the LLR Lv

j in iteration j (see (1)) serves
as a measure on the reliability of position v. The ABP algorithm begins
by sorting the n codeword positions according to increasing reliability
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(we assume an unique ordering always exists, since the output alphabet
of the AWGN channel has infinite support). Let the corresponding
permutation be σ, such that σj = i, 0 ≤ j, i < n, if i is the jth least
reliable position, and initialize a counter δ = 0. Then, for each row
0 ≤ j− δ < n− k of H, a pivotal is attempted made in column hσj at
row index j− δ. The (row) coordinate of a pivotal in a column is not
important for SPA decoding, yet an important aspect of ABP is to avoid
cancellations where a second pivotal is made in the same row, thus
replacing the initial pivotal. As σ is processed from left to right, any
such cancellation must have a counter-productive effect on performance
(this is easily verified by simulations). To avoid this, ABP processes
the rows in an ordered fashion. If hσj is zero in row entry j− δ, then
let j′ > j − δ be the first non-zero row entry (if any) in hσj . Row j′
is then added onto row j− δ, such that a pivotal may now be made
here. As such, the GE stage performs redundant work when position
σj is already in P . Only when hσj is zero in all coordinates j′ ≥ j− δ
will ABP skip to the next position, σj+1, and increase δ by 1. The GE
stage ends after j− δ = n− k pivotals have been made, which is always
possible since H is of full rank.

3 .1 IS O L A T I N G WE A K PO S I T I O N S

The presence of weight-1 columns in H has a significant impact on
the flow of messages in SPA decoding. As illustrated in Fig. 2, the
Tanner graph equivalent of a weight-1 column is a variable node of
degree 1, not counting the Forney-style input half-edge, L0. This node
is minimally connected to TG(H), and is not part of any cycles. The
SPA update rules adhere to an extrinsic principle, in which the message
passed out on any edge is independent of the incoming message along
that same edge. One iteration of the flooding schedule consists of the
execution of an SPA rule for all variable nodes, followed by executing
all check nodes. The SPA rule for a check node is the parity function
(XOR) of its incoming messages, which we denote by f (Θ). Thus, the
message to v is f (Θ \ v), providing v with updated information from
the rest of the graph. For a variable node in the LLR domain, the
update rule is summation. When v is systematic, the updated soft value
is L = f (Θ \ v) + L0, and the node can only relay its input message, the
channel value L− f (Θ \ v) = L0, to its single adjacent check node. As
such, v may be said to be in a listening or passive state. If this position is
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unreliable, it will not disturb the rest of the graph, while still receiving
information such that L may converge.

Still, the gain of ABP can not be accredited to this isolation effect
alone. Specifically, it is known that modifying the structure of TG(H)
during SPA decoding may, in itself, improve performance [1–7, 10, 11].
Such diversity will change the structure of cycles and node-degree
distributions, and, generally, alter the flow of messages during SPA
decoding. After the GE stage, the new TG(H) is initialized for the next
SPA iteration, by damping each variable node. Damping involves scal-
ing down the extrinsic contribution to the LLR by a damping coefficient,
0 < α < 1. This is then accumulated on the input to the next iteration,

Lv
j+1 = Lv

j + αΓv
j , (1)

where Γv
j = Σu∈Nv μv←u

j is the extrinsic contribution to variable node

v (the sum of all incoming messages, μv←u
j ) in iteration j, and Γv

0 � 0.
The global damping stage (GD) applies (1) to all variable nodes in
TG(H), followed by discarding all current extrinsic information; setting
μv←u

j = 0 for all v ∈ TG(H). The next flooding iteration is initialized
based on Lj+1 only. This slightly complicates the argument of isolating
a variable node, as the input to v is no longer fixed to the channel
value, Lv

0. Still, as ABP uses a constant damping coefficient for each
iteration, the accumulation may be expressed as Lv

j+1 = Lv
0 + αΣj

j′=1 Γv
j′ .

Thus, damping never affects the channel value, and we see that the
accumulation is negligible when α is small, such that the isolation
argument still holds.

4 ABP-ELC

Let us initially describe the proposed ABP-ELC algorithm as SPA
iterations interspersed with a novel ELC stage acting on a number
0 < p ≤ n − k of the least reliable information positions. From the
graph-local ELC perspective, however, certain distinctions from the
ABP algorithm arise naturally.

The first distinction is that SPA-ELC decoding has been shown to
be effective for p � n − k [3], meaning a reduction in complexity –
the major concern with ABP. Some further distinctions arise from the
description of ELC. ELC requires that H is in systematic form, just as
the GE stage of ABP will immediately reduce any H to systematic form.
As ELC on a systematic position has no effect, we may immediately
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Example 1 (ELC stage). Consider the extended Hamming [8, 4, 4] code,
H, and some decoder state (vector of LLRs), L. The actual values are not
important for an example, so we focus directly on the resulting permutation
σ. The bipartition is indicated (in σ) by underlining the indices of positions
in I . The current position (column) to consider for ELC is indicated by a star
symbol over H. This ELC stage ends after two ELC operations.

�
0 1 2 3 4 5 6 7

H =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 1 1 1 0

0 1 0 0 1 1 0 1

0 0 1 0 1 0 1 1

0 0 0 1 0 1 1 1

⎤
⎥⎥⎥⎥⎥⎦

σ =
(

5 1 4 3 0 7 2 6
)

Initial matrix gives u� = u0.

�
0 1 2 3 4 5 6 7

H =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 1 1 1 0

1 1 0 0 0 0 1 1

0 0 1 0 1 0 1 1

1 0 0 1 1 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

σ =
(

5 1 4 3 0 7 2 6
)

After ELC(u0, v5), we get u� = u2.Note that v1 ∈ P is skipped.

�
0 1 2 3 4 5 6 7

H =

⎡
⎢⎢⎢⎢⎢⎣

1 0 1 0 0 1 0 1

1 1 0 0 0 0 1 1

0 0 1 0 1 0 1 1

1 0 1 1 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎦

σ =
(

5 1 4 3 0 7 2 6
)

After ELC(u2, v4), u� = ∅, and the procedure ends.
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skip any position already in P while processing σ. The cancellation
problem is handled by flagging the check node, u, as used, such that it
will not be considered again in this ELC stage.

4 .1 IM P R O V E D HE U R I S T I C T O SE L E C T ELC PO S I T I O N S

Consider the implicit swap effect involved in ELC on TG(H). Extending
the argument made for ABP – namely, to move (isolate) the least reliable
positions into P – it is equally reasonable to ensure also the converse;
that the positions moved into I are the most reliable positions. The
procedure is simple and graph-local. Given a position v, rather than
choosing arbitrarily among the unused adjacent check nodes u ∈ Nv,
the ELC stage chooses the check node u� ∈ Nv for which the swap is
with the most reliable position in P adjacent to any u ∈ Nv, i.e.,

u� = arg max
u∈Nv , |vu |>|v|

|vu|, (2)

where |v| is shorthand for |Lv|. The ABP-ELC(p) algorithm processes
the p first information positions in σ, applying (2) to determine the
ELC locations. In the event where u� = ∅, no ELC is possible for
this position, and ABP-ELC moves on to the next-worst information
position. No additional measures are needed to avoid the cancellation
problem. The algorithm simply works from both ends of σ, pairing the
weakest information position with the strongest parity position. The
resulting ELC induces a swap of the corresponding columns across the
bipartition, and requires that we keep track of the bipartition.

Proposition 1. Although variable nodes share the same check nodes, the
proposed heuristic will never repeatedly choose the same check node u� within
an ELC stage.

Proof. Consider two positions, v and w, which are both adjacent to u.
Without loss of generality, say |v| < |w|, so we first consider v. Then,
assume (2) gives u� = u, and we perform ELC on (u, v) such that vu
becomes non-systematic, and the systematic node of u is now v. When
we later consider w, choosing the same u� = u would entail a swap
of w and v across the bipartition, thus cancelling the previous swap.
However, this choice of u� is not possible since |v| < |w|.

Example 1 shows a case, where v = v5 and w = v4, both adjacent to
u = u0 (row 0). When considering v4, we can not choose again u� = u0,
since vu0 = v5 and |v5| < |v4|.
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As a final issue, consider the situation when we reach a position vu�

which has already been involved in a previous swap with some other
position v. This means that vu� has been moved from P to I within
this ELC stage. The proposed scheme will never do a second ELC on
an edge adjacent to this node, which would cancel the previous swap.

Proposition 2. A position swapped from P to I will not be subject to any
subsequent ELC, within the same ELC stage.

Proof. Say the previous ELC was on (u, v), which swapped vu into
I . If the heuristic later reaches this same w = vu (before exhausting
p), no subsequent ELC is possible for this position, according to (2).
In the initial ELC, vu was the most reliable parity position adjacent
to any ũ ∈ Nv such that |vũ| > |v|. However, this now means that
|w| > |vu′ | ∀ u′ ∈ Nw, since w = vu, and (2) yields ∅.

Again, Example 1 shows a case in the last stage, when v = v0 which
was swapped in the first stage. We have now covered all the possible
cancellation issues, without any extra bookkeeping or complexity in
the ABP-ELC heuristic (apart from keeping track of the bipartition).

4 .2 LO C A L-NE I G H B O R H O O D DA M P I N G

We have previously described a simplified, edge-local damping opera-
tion (LD), whose action is restricted to the local subgraph affected by
ELC [3]. We now generalize LD to include the incoming message μv←u

j
on an edge (u, v), producing a new outbound message,

μv→u
j+1 = Lv

j + α(Γv
j − μv←u

j ). (3)

Edges inserted by ELC contain no information, μv↔u
j � 0, so these are

initialized using (3), in accordance with [3]. With LD, edges unaffected
by ELC are left unchanged, so the reasoning for accumulating on the
input no longer applies (L remains the channel vector for the entire
frame). We define local-neighborhood damping (ND) as (3) applied to
all edges (not just new edges) adjacent to all variable nodes affected
by ELC on an edge (u′, v′), namely v ∈ Nu′ . Since all edges adjacent
to every v ∈ Nu′ are damped, it is advantageous to also accumulate,
according to (1), on the input of each v ∈ Nu′ . Hence, ND is a step
towards GD, in that it operates on a node rather than edge level, while
taking advantage of any extrinsic information on edges unaffected by
ELC.
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Algorithm 1 SISO-HDPC(p, I1, I2, I3, α0, OP, D). Stages A and C may
only apply when implementing the ABP or ABP-ELC algorithm

1: α := α0
2: for I3 times do

3: Restart decoder from channel vector
4: for I2 times do

5: (C) HDD stage. RS code only
6: Stop if syndrome check is satisfied
7: Apply damping rule, D, with coefficient α
8: Apply at random p operations, OP
9: (A) Random row additions (avoid weight-1 columns)

10: for I1 times do

11: Apply SPA iteration (flooding scheduling)
12: end for

13: end for

14: Increment α towards 1
15: end for

5 RE S U L T S

The frame error-rate (FER) performance of ABP-ELC is simulated on
the [31, 25, 7] RS code over GF(25) (we use a binary [155, 125] image),
and the [48, 24, 12] extended QR code. Various decoding algorithms are
implemented using our generalized SISO HDPC decoder, Algorithm 1
[3], with the configurations specified in Table 1. For all decoders, the
maximum number of iterations is τ = I1 I2 I3. For ABP-ELC, the damp-
ing rule, D, is LD or ND. When I2 = τ and I1 = I3 = 1, damping
is constant (α = α0 for the entire frame), while damping is disabled
by configuring α0 = 1. For comparison with other decoders, the same
parameters were used for our simulations; most importantly, α0 and
τ. For ABP, we use “Variation A” (avoid weight-1 columns), whereas
we do not use “Variation B” (list decoding) [5]. For SPA and SPA-PD
we use a non-systematic matrix optimized on weight. For ABP and
ABP-ELC, the initial matrix weight is less important, due to the effects
of the GE or ELC stages [7].

It is interesting to note that ABP-ELC outperforms SPA-PD for the
QR code, which has a very large automorphism group [3]. For both
codes, Figs. 3(a) and 4(a) show that the ABP-ELC decoder also has a
gain over the successful ABP algorithm, even when ABP uses “Variation
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Table 1: Decoding algorithms simulated in this work, and the corresponding configu-
rations of Algorithm 1

Decoding Algorithm Configuration

SPA(τ) SISO-HDPC(0, 1, τ, 1, 1,−,−)

ABP(τ, 1, α) SISO-HDPC(1, 1, τ, 1, α, GE, GD)

SPA-PD(I1, I2, I3, α0) SISO-HDPC(1, I1, I2, I3, α0, PD, GD)

SPA-ELC(p, I1,I2,I3, α0) SISO-HDPC(p, I1,I2,I3,α0,ELC, LD)

ABP-ELC(p, τ, α, D) SISO-HDPC(1, 1, τ, 1, α, ABP−ELC(p), D)

C,” a symbol level hard-decision list decoding (HDD) stage for the RS
code (denoted ABP & HDD). This gain is attributed mainly to our
improved ABP-ELC heuristic, but we also observe a gain due to the
modified damping. For both codes, the performance of ABP-ELC shows
an improvement over ABP, and even over ABP & HDD until a FER of
10−4. With ABP-ELC & HDD, an additional constant gain in FER is
achieved, most importantly in terms of a reduced flooring effect at high
signal-to-noise ratios (SNRs). Even without the HDD stage on the RS
code, ABP-ELC is only about 0.07 dB away from ABP-ELC & HDD,
until a FER of 10−4. For the QR code, ABP-ELC approaches the union
bound (based on the full weight enumerator of the code) within 0.3 dB
at a FER of 10−5. To examine the benefit of reducing p, we simulate
ABP-ELC over SNRs 3.5, 4.5, and 5.0 dB for 0 < p ≤ n− k, Figs. 3(b)
and 4(b). The performance of ABP at the corresponding SNR points is
indicated by the horizontal grey lines. We observe that the performance
of ABP-ELC improves with increasing p only initially, before flattening
out at an optimal value, p� � n− k, of approximately 7 and 10 for the
QR and RS code, respectively. For the QR code, the performance of ABP
is matched (intersecting the grey lines) for p ≈ 3. We also see that the
optimal type of damping (LD or ND) depends on the code, and can
have a significant impact on performance, as shown in Fig. 4(b).

We now focus on the reduction in decoding complexity, measured
in terms of average total number of SPA iterations. The HDD stage
is implemented using a “genie-aided stopping criterion” correcting
up to

⌊
dmin−1

2

⌋
= 3 symbol errors, and may stop early [5]. An actual

implementation, e.g. using the Berlekamp-Massey algorithm, would
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require a list implementation. Since the number of iterations would
always be τ, the complexity in terms of SPA iterations is not included.

We also consider the complexity in terms of average number of ELC
operations per GE or ELC stage. Due to cancellation effects, an ELC
stage may perform less than p ELC operations. Define a function, p̄(p),
to give the average number of ELC operations performed per ELC
stage, for a given p. Figs. 3(c) and 4(c) compare p̄(p) against the lin-
ear (possibly redundant) ELC complexity of ABP. As stated also in
[6], a reduction can be achieved by simply improving the implementa-
tion of the GE stage to do no work whenever an unreliable position is
already in P . The plots verify that ABP performs n− k− p̄(n− k) redun-
dant operations (pivotals). Even comparing against such an improved,
reduced-complexity GE stage, we see that p̄(p) grows linearily before
flattening out at p′ � 2p�. Thus, we may achieve a further reduction in
ELC complexity (over an improved GE stage) of p̄(n− k)− p̄(p�).

6 CO N C L U S I O N A N D FU T U R E WO R K

We have described an ABP-ELC decoder to target the least reliable
positions (inferred error positions) during decoding, as well as a gener-
alized, local-neighborhood damping rule. An improvement is shown over
related algorithms, both in terms of FER performance and complexity,
which is ascribed mainly to an improved heuristic to apply the ELC
operations. Simultaneously, the amount of ELC operations can be re-
duced significantly, compared to a GE stage, for an improvement also
in complexity. Extensive simulation data is presented for an extended
QR code and an RS code. Future work is concerned with further ex-
tensions of the ABP-ELC heuristic, and using a non-systematic variant
of ELC to avoid degree-1 nodes. We are also working on a distributed
implementation of the sorting stage, where each check node sorts its
adjacent variable nodes.
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Fig. 4: For the binary image of the [31, 25, 7] RS code over GF(25), the gain is greater
using ND. The performance using LD is indicated by the curved lines in
Fig. 4(b). Maximum τ = 20 iterations.

178



Improved Adaptive Belief Propagation Decoding Using ELC

[3] Knudsen, J. G., Riera, C., Danielsen, L. E., Parker, M. G.,
Rosnes, E.: Iterative decoding on multiple Tanner graphs using
random edge local complementation. In Proc. IEEE Int. Symp.
Inform. Theory, pp. 899–903. Seoul, Korea, Jun./Jul. 2009.

[4] Jiang, J., Narayanan, K. R.: Iterative soft decoding of Reed-
Solomon codes. IEEE Commun. Lett. 8(4), 244–246, Apr. 2004.

[5] Jiang, J., Narayanan, K. R.: Iterative soft-input soft-output
decoding of Reed-Solomon codes by adapting the parity-check
matrix. IEEE Trans. Inform. Theory 52(8), 3746–3756, Aug. 2006.

[6] El-Khamy, M., McEliece, R. J.: Iterative algebraic soft-decision
list decoding of Reed-Solomon codes. IEEE J. Sel. Areas Commun.
24(3), 481–490, Mar. 2006.

[7] Knudsen, J. G., Riera, C., Danielsen, L. E., Parker, M. G.,
Rosnes, E.: On iterative decoding of HDPC codes using weight-
bounding graph operations. In Proc. Int. Zürich Seminar on Com-
mun., pp. 98–101. Zürich, Switzerland, Mar. 2010.

[8] Danielsen, L. E., Parker, M. G.: Edge local complementation
and equivalence of binary linear codes. Des. Codes Cryptogr. 49(1-3),
161–170, Dec. 2008.

[9] MacWilliams, F. J., Sloane, N. J. A.: The Theory of Error-
Correcting Codes. North Holland, 1977.

[10] Kothiyal, A., Takeshita, O. Y.: A comparison of adaptive
belief propagation and the best graph algorithm for the decoding
of linear block codes. In Proc. IEEE Int. Symp. Inform. Theory, pp.
724–728. Adelaide, Australia, Sep. 2005.

[11] Hehn, T., Huber, J. B., Laendner, S., Milenkovic, O.:
Multiple-bases belief-propagation for decoding of short block
codes. In Proc. IEEE Int. Symp. Inform. Theory, pp. 311–315. Nice,
France, Jun. 2007.

179





PAPER V
ON GRAPHS AND CODES

PRESERVED BY EDGE LOCAL

COMPLEMENTAT ION ∗

Lars Eirik Danielsen Matthew G. Parker

Constanza Riera Joakim Grahl Knudsen

∗Danielsen, L. E., Parker, M. G., Riera, C., Knudsen, J. G.: On graphs
and codes preserved by edge local complementation, 2010. arXiv:1006.5802.

This paper was presented at the 10th Nordic Combinatorial Conference
(NORCOM 2010), Reykjavik, Iceland, May 2010.





O N G R A P H S A N D C O D E S

P R E S E R V E D B Y E D G E L O C A L

C O M P L E M E N T A T I O N

Lars Eirik Danielsen Matthew G. Parker

Constanza Riera Joakim Grahl Knudsen

Orbits of graphs under local complementation (LC) and
edge local complementation (ELC) have been studied in sev-
eral different contexts. For instance, there are connections
between orbits of graphs and error-correcting codes. We
define a new graph class, ELC-preserved graphs, compris-
ing all graphs that have an ELC orbit of size one. Through
an exhaustive search, we find all ELC-preserved graphs of
order up to 12 and all ELC-preserved bipartite graphs of
order up to 16. We provide general recursive constructions
for infinite families of ELC-preserved graphs, and show that
all known ELC-preserved graphs arise from these construc-
tions or can be obtained from Hamming codes. We also
prove that certain pairs of ELC-preserved graphs are LC
equivalent. We define ELC-preserved codes as binary linear
codes corresponding to bipartite ELC-preserved graphs, and
study the parameters of such codes.

1 IN T R O D U C T I O N

1.1 GR A P H S

A graph is a pair G = (V, E) where V is a set of vertices, and E ⊆ V ×V
is a set of edges. The order of G is n = |V|. A graph with n vertices can be
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21

3 4
(a) The Graph G

21

3 4
(b) The Graph G ∗ 1

Fig. 1: Example of local complementation

represented by an n× n adjacency matrix Γ, where Γi,j = 1 if {i, j} ∈ E,
and Γi,j = 0 otherwise. We will only consider simple undirected graphs,
whose adjacency matrices are symmetric with all diagonal elements
being 0, i.e., all edges are bidirectional and no vertex can be adjacent
to itself. The neighborhood of v ∈ V, denoted Nv ⊂ V, is the set of
vertices connected to v by an edge. The number of vertices adjacent
to v is called the degree of v. The induced subgraph of G on W ⊆ V
contains vertices W and all edges from E whose endpoints are both in
W. The complement of G is found by replacing E with V ×V − E, i.e.,
the edges in E are changed to non-edges, and the non-edges to edges.
Two graphs G = (V, E) and G′ = (V, E′) are isomorphic if and only if
there exists a permutation π on V such that {u, v} ∈ E if and only if
{π(u), π(v)} ∈ E′. A path is a sequence of vertices, (v1, v2, . . . , vi), such
that {v1, v2}, {v2, v3}, . . . , {vi−1, vi} ∈ E. A graph is connected if there
is a path from any vertex to any other vertex in the graph. A graph is
bipartite if its set of vertices can be decomposed into two disjoint sets
such that no two vertices within the same set are adjacent. We call the
graph (a, b)-bipartite if these sets are of size a and b, respectively.

Definition 1 ([1–3]). Given a graph G = (V, E) and a vertex v ∈ V,
let Nv ⊂ V be the neighborhood of v. Local complementation (LC) on v
transforms G into G ∗ v by replacing the induced subgraph of G on Nv by its
complement. (Fig. 1)

Definition 2 ([2]). Given a graph G = (V, E) and an edge {u, v} ∈ E,
edge local complementation (ELC) on {u, v} transforms G into G(u,v) =
G ∗ u ∗ v ∗ u = G ∗ v ∗ u ∗ v.

Definition 3 ([2]). ELC on {u, v} can equivalently be defined as follows.
Decompose V \ {u, v} into the following four disjoint sets, as visualized in
Fig. 2.
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u v

D

A B

C

Fig. 2: Visualization of the ELC operation

A Vertices adjacent to u, but not to v.

B Vertices adjacent to v, but not to u.

C Vertices adjacent to both u and v.

D Vertices adjacent to neither u nor v.

To obtain G(u,v), perform the following procedure. For any pair of vertices
{x, y}, where x belongs to class A, B, or C, and y belongs to a different class
A, B, or C, “toggle” the pair {x, y}, i.e., if {x, y} ∈ E, delete the edge, and
if {x, y} �∈ E, add the edge {x, y} to E. Finally, swap the labels of vertices u
and v.

Definition 4. The graphs G and G′ are LC-equivalent (resp. ELC-equivalent)
if a graph isomorphic to G′ can be obtained by applying a finite sequence of
LC (resp. ELC) operations to G. The LC orbit (resp. ELC orbit) of G is the
set of all non-isomorphic graphs that can be obtained by performing any finite
sequence of LC (resp. ELC) operations on G.

The LC operation was first defined by de Fraysseix [3], and later
studied by Fon-der-Flaas [1] and Bouchet [2]. Bouchet defined ELC as
“complementation along an edge” [2], but this operation is also known
as pivoting on a graph. LC orbits of graphs have been used to study
quantum graph states [4, 5], which are equivalent to self-dual additive codes
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over F4 [6]. We have previously used LC orbits to classify such codes [7].
There are also connections between graph orbits and properties of
Boolean functions [8, 9]. Interlace polynomials of graphs have been defined
with respect to both ELC [10] and LC [11]. These polynomials encode
certain properties of the graph orbits, and were originally used to
study a problem related to DNA sequencing [12]. We have previously
studied connections between interlace polynomials and error-correcting
codes [13]. Bouchet [14] proved that a graph is a circle graph if and only
if certain subgraphs, or obstructions, do not appear anywhere in its LC
orbit. Similarly, circle graph obstructions under ELC were described by
Geelen and Oum [15]. As we will see later, bipartite graphs correspond
to binary linear error-correcting codes. ELC can be used to generate
orbits of equivalent codes, which has been used to classify codes [16].
ELC also has applications in iterative decoding of codes [17–20].

For bipartite graphs, we can simplify the ELC operation, since the
set C in Fig. 2 must be empty. Given a bipartite graph G = (V, E)
and an edge {u, v} ∈ E, G(u,v) can be obtained by “toggling” all edges
between the sets Nu \ {v} and Nv \ {u}, followed by a swapping of
vertices u and v. Moreover, if G is an (a, b)-bipartite graph, then, for any
edge {u, v} ∈ E, G(u,v) must also be (a, b)-bipartite [8]. Note that LC
does not, in general, preserve bipartiteness. It follows from Definition 2
that every LC orbit can be partitioned into one or more ELC orbits. If
G = (V, E) is a connected graph, then, for any vertex v ∈ V, G ∗ v must
also be connected. Likewise, for any edge {u, v} ∈ E, G(u,v) must be
connected.

Definition 5. A graph G = (V, E) is called ELC-preserved if for any edge
{u, v} ∈ E, G(u,v) is isomorphic to G. In other words, G is ELC-preserved if
and only if the ELC orbit of G contains only G itself.

We only consider connected graphs, since a disconnected graph
is ELC-preserved if and only if its connected components are ELC-
preserved. Trivially, empty graphs are ELC-preserved. We could also
define an LC-preserved graph as a graph where LC on any vertex pre-
serves the graph, up to isomorphism. A search of all connected graphs
of order up to 12 reveals that only the unique connected graph of order
two has this property.
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1.2 CO D E S

A binary linear code, C, is a linear subspace of Fn
2 of dimension k. The 2k

elements of C are called codewords. The Hamming weight of a codeword
is the number of nonzero components. The minimum distance of C is
equal to the smallest nonzero weight of any codeword in C. A code
with minimum distance d is called an [n, k, d] code. Two codes are
equivalent if one can be obtained from the other by a permutation of
the coordinates. A permutation that maps a code to itself is called an
automorphism. All automorphisms of C make up its automorphism group.
We define the dual code of C with respect to the standard inner product,
C⊥ = {u ∈ Fn

2 | u · c = 0 for all c ∈ C}. C is called self-dual if C = C⊥,
and isodual if C is equivalent to C⊥. The code C can be defined by a
k× n generator matrix, C, whose rows span C. By column permutations
and elementary row operations C can be transformed into a matrix of
the form C′ = (I | P), where I is a k× k identity matrix, and P is some
k× (n− k) matrix. The matrix C′, which is said to be of standard form,
generates a code which is equivalent to C. The matrix H′ = (PT | I),
where I is an (n− k)× (n− k) identity matrix is the generator matrix
of C′⊥ and is called the parity check matrix of C′.
Definition 6 ([21, 22]). Let C be a binary linear [n, k] code with generator
matrix C = (I | P). Then the code C corresponds to the (k, n− k)-bipartite
graph on n vertices with adjacency matrix

Γ =

⎛
⎝0k×k P

PT 0(n−k)×(n−k)

⎞
⎠ ,

where 0 denotes all-zero matrices of the specified dimensions.

Theorem 1 ([16]). Applying any sequence of ELC operations to a graph
corresponding to a code C will produce a graph corresponding to a code equiv-
alent to C. Moreover, graphs corresponding to equivalent codes will always
belong to the same ELC orbit.

Note that, up to isomorphism, one bipartite graph corresponds to
both the code C generated by (I | P), and the code C⊥ generated by
(PT | I). When C is isodual, the ELC-orbit of the associated graph
correspond to a single equivalence class of codes. Otherwise, the ELC-
orbit correspond to two equivalence classes, that of C and that of C⊥ [16].

Definition 7. An ELC-preserved code is a binary linear code corresponding
to an ELC-preserved bipartite graph.
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It follows from Theorem 1 that ELC allows us to jump between all
standard form generator matrices of a code. Hence an ELC-preserved
code is a code that has only one standard form generator matrix, up to
column permutations.

Theorem 2 ([16]). The minimum distance of an [n, k, d] binary linear code
C is d = δ + 1, where δ is the smallest vertex degree of any vertex in a fixed
partition of size k over all graphs in the associated ELC orbit. The minimum
vertex degree in the other partition over the ELC orbit gives the minimum
distance of C⊥.

For an ELC-preserved graph, Theorem 2 means that the minimum
distance of the associated code, and its dual code, can be found simply
by finding the minimum vertex degree in each partition of the graph.

It has been shown that ELC can improve the performance of iterative
decoding [17–20]. This technique, which will not be described in detail
here, involves applying ELC operations to a bipartite graph between it-
erations of a sum-product algorithm which attempts to decode a received
noisy vector to the nearest codeword in the the corresponding code.
In this application, labeled graphs are used, so that ELC is equivalent
to row additions on an initial generator matrix of the form (I | P),
which means that the corresponding code is preserved. (It is the parity
check matrix of the code that is actually used in iterative decoding,
but we have already seen that, up to isomorphism, the bipartite graph
corresponding to the generator matrix and parity check matrix of a
code is the same.) For an ELC-preserved code, all generator matrices
must be column permutations of one unique generator matrix, and
hence these permutations must all be automorphisms of the code. It
follows that iterative decoding with ELC on an ELC-preserved code is
equivalent to a variant of permutation decoding [17, 23].

1 .3 OU T L I N E

In Section 2, we show that there do exist non-trivial bipartite and non-
bipartite ELC-preserved graphs. We find all ELC-preserved graphs of
order up to 12 and all ELC-preserved bipartite graphs of order up to
16. In Section 3, we show that star graphs and complete graphs as well
as graphs corresponding to Hamming codes and extended Hamming codes
are ELC-preserved. We then prove that more ELC-preserved graphs can
be obtained from four recursive constructions. Given a bipartite ELC-
preserved graph, a larger bipartite ELC-preserved graph is constructed
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by star expansion. Similarly, clique expansion produces non-bipartite ELC-
preserved graphs. Hamming expansion and the related Hamming clique
expansion use a special graph of order seven, corresponding to a Ham-
ming code, to obtain new ELC-preserved graphs. In Section 4, we show
that all ELC-preserved graphs of order up to 12, and all ELC-preserved
bipartite graphs of order up to 16, are obtained from these construc-
tions. We also prove that certain pairs of ELC-preserved graphs are LC
equivalent. In particular, from extended Hamming codes, we obtain
new non-bipartite ELC-preserved graphs via LC. The properties of ELC-
preserved codes obtained from star expansion and Hamming expansion
are described in Section 5. In particular, we enumerate and construct
new self-dual ELC-preserved codes. In Section 6 we briefly consider
the generalization from ELC-preserved graphs to graphs with orbits of
size two, and study the corresponding codes. Finally, in Section 7, we
conclude with some ideas for future research.

2 EN U M E R A T I O N

From previous classifications [7, 16], we know the ELC orbit size for
all graphs of order n ≤ 12, and all bipartite graphs of order n ≤ 15. (A
database of ELC orbits is available on-line at ��������������	�
����
�������������.) We find that a small number of ELC orbits of size one
exist for each order n. Despite the much smaller number of bipartite
graphs, there are approximately the same number of ELC-preserved
bipartite and non-bipartite graphs for n ≤ 12. The numbers of ELC-
preserved graphs, together with the total numbers of ELC orbits, are
given in Table 1. Note that all numbers are for connected graphs.

By using an extension technique we were also able to generate all
ELC-preserved bipartite graphs of order n = 16. Given the 1,156,716
ELC orbit representatives for n = 15, we extend each (a, b)-bipartite
graph in 2a + 2b − 2 ways, by adding a new vertex and connecting
it to all possible combinations of at least one of the old vertices. The
complete set of extended graphs is significantly smaller than that set of
all bipartite connected graphs of order 16, but it must contain at least
one representative from each ELC orbit. To see that this is true, consider
a connected bipartite graph G of order 16. The induced subgraph on
any 15 vertices of G must be ELC-equivalent to one of the graphs
that were extended to form the extended set, and hence there must
be at least one graph in the extended set that is ELC-equivalent to G.
We check each member of the extended set, and find that there are 6
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Table 1: Number of non-bipartite ELC orbits (nbn), non-bipartite ELC-preserved
graphs (nbpn), bipartite ELC orbits (bn), and bipartite ELC-preserved graphs
(bpn)

n nbn nbpn bn bpn

2 - - 1 1

3 1 1 1 1

4 2 1 2 1

5 7 1 3 1

6 27 2 8 2

7 119 1 15 2

8 734 2 43 3

9 6,592 3 110 2

10 104,455 3 370 2

11 3,369,057 2 1,260 1

12 231,551,924 6 5,366 5

13 25,684 1

14 154,104 5

15 1,156,716 4

16 ? 6

connected bipartite ELC-preserved graphs of order 16. Note that this is
the same extension technique that was used to classify ELC orbits [16],
but checking if a graph is ELC-preserved is much faster than generating
its entire ELC orbit, since we only need to consider ELC on each edge
of the graph, and can stop and reject the graph as soon as a second
orbit member is discovered.

3 CO N S T R U C T I O N S

For all n ≥ 2, there is a bipartite ELC-preserved graph of order n,
namely the star graph, denoted sn. This graph has one vertex, v, of
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degree n− 1 and n− 1 vertices, u1, u2, . . . , un−1, of degree 1. Clearly the
graph is ELC-preserved, since for all edges {ui, v}, Nui \ {v} = ∅. The
construction given in Theorem 3 gives us more bipartite ELC-preserved
graphs. For brevity, we will denote Nu

v = Nv \ (Nu ∪ {u}). Let en denote
the empty graph on n vertices, i.e., a graph with no edges.

Definition 8 ([10, 24]). Given a graph G = (V, E), a vertex v ∈ V, and
another graph H = (V′, E′), where V ∩ V′ = ∅, by substituting v with
H, we obtain the graph G′ = (V \ {v} ∪ V′, E′′), where E′′ is obtained by
taking the union of E and E′, removing all edges incident on v, and joining
all vertices in V′ to w whenever {v, w} ∈ E.

Definition 9 ([25]). Given a graph G = (V, E), and a vertex v ∈ V, we add
a pendant at v by adding a new vertex w to V and a new edge {v, w} to E.

Theorem 3 (Star expansion). Given an ELC-preserved bipartite graph G =
(V, E) on k vertices and an integer m > 1, we obtain an ELC-preserved
bipartite graph Sm(G) on n = km vertices by substituting all vertices in one
partition of G with em and adding m− 1 pendants to all vertices in the other
partition.

Proof. Let {u, v} ∈ E. Without loss of generality, assume that u is
substituted by u1, . . . , um, all incident on v. Moreover, pendant ver-
tices w1, . . . , wm−1 are added, with v as their only neighbor. Clearly
ELC on {v, wi} is ELC-preserving. Due to symmetries, it only re-
mains to show that ELC on an edge {ui, v} preserves Sm(G). In the
graph G, let A = Nv

u and B = Nu
v . In the graph Sm(G), Nv

ui
= A,

and Nui
v = (B1 ∪ · · · ∪ Bm) ∪ C ∪ D, where C = {w1, . . . , wm−1} and

D = {u1, . . . , um} \ {ui}. The subgraph induced on A ∪ Bj in Sm(G),
for 1 ≤ j ≤ m, is isomorphic to the subgraph induced on A ∪ B in G.
ELC on {ui, v} means that we toggle all pairs of vertices between Nv

ui

and Nui
v . Toggling pairs between A and Bj, for 1 ≤ j ≤ m, preserves

Sm(G), since toggling pairs between A and B preserves G. (The fact
that all vertices in A have m− 1 added pendants has no effect on this.)
Finally, in addition to swapping ui and v, ELC has the effect of toggling
pairs of vertices between A and C, and between A and D. In Sm(G), all
vertices in A are connected to all vertices in D, and no vertex in A is con-
nected to any vertex in C. The sets C and D are both of size m− 1, the
vertices in C have no other neighbors than v, and the vertices in D have
no other neighbors than A ∪ {v}. Hence ELC on {ui, v} simply swaps
the vertices in C with the vertices in D. This means that Sm(G)(ui ,v)

is isomorphic to Sm(G), and it follows that Sm(G) is ELC-preserved.
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(a) The graph S2−(s3) (b) The graph S2−(S2−(s3))

Fig. 3: Examples of star expansion

Furthermore, Sm(G) must be bipartite, since substituting vertices by
empty graphs and adding pendants cannot make a bipartite graph
non-bipartite.

Examples of graphs obtained by star expansion are shown in Fig. 3.
From Theorem 3 we can obtain two different graphs, by choosing in
which partition of G we substitute vertices with em. In our examples,
when the partitions of G are of unequal size, we write Sm

+(G) when
we substitute the vertices in the largest partition, and Sm−(G) when we
substitute the vertices in the smallest partition. In the cases where the
partitions are of equal size, Sm(G) will give the same graph for both par-
titions in all examples in this paper. If G is an (r, k− r)-bipartite graph,
then Sm(G) will be (r + k(m− 1), k− r)-bipartite. Since its output is al-
ways bipartite, the star expansion construction can be iterated to obtain
new ELC-preserved graphs, such as the graph S2−(S2−(s3)) of order 12,
shown in Fig. 3(b). However, some of these iterated constructions can
be simplified. For instance, it is easy to verify that Sm

+(sk) = skm and
Sm2

+ (Sm1− (sk)) = Sm1m2− (sk).
For all n ≥ 3, there is a non-bipartite ELC-preserved graph on n

vertices, namely the complete graph, denoted cn. This graph has n vertices,
v1, v2, . . . , vn, of degree n− 1. Clearly the graph is ELC-preserved, since
for all edges {vi, vj}, Nvi = Nvj , and hence the sets A and B in Fig. 2
are empty. The following more general construction gives us more
non-bipartite ELC-preserved graphs.

Theorem 4 (Clique expansion). Given an ELC-preserved graph G on k
vertices and an integer m > 1, we obtain an ELC-preserved non-bipartite
graph Cm(G) on n = km vertices by substituting all vertices of G with cm.
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(a) The graph C2(s3) (b) The graph C2(S2−(s3))

Fig. 4: Examples of clique expansion

Proof. Let {u, v} ∈ E. Let u be substituted by u1, . . . , um, and let v
be substituted by v1, . . . , vm. ELC on any edge within a substituted
subgraph, such as {ui, uj}, must preserve Cm(G), since Nui = Nuj .
Due to symmetries, it only remains to show that ELC on an edge
{ui, vj} preserves Cm(G). In the graph G, let A = Nv

u , B = Nu
v , and C =

Nu ∩Nv. In the graph Cm(G), N
vj
ui = A1 ∪ · · · ∪ Am, Nui

vj = B1 ∪ · · · ∪ Bm,
and Nui ∩ Nvj = (C1 ∪ · · · ∪ Cm) ∪U ∪ V, where U = {u1, . . . , um} \
{ui} and V = {v1, . . . , vm} \ {vj}. Let X, Y ∈ {A, B, C}, X �= Y. All
subgraphs in Cm(G) induced on Xr are isomorphic to subgraphs in
G induced on X. A vertex xr ∈ Xr is connected to a vertex ys ∈ Ys in
Cm(G), for 1 ≤ r, s ≤ m if and only if x ∈ X is connected to y ∈ Y in
G. Hence, toggling pairs between Xr and Ys, for 1 ≤ r, s ≤ m, preserves
Cm(G) since toggling pairs between X and Y preserves G. (The fact
that edges have been added between Xr and Xt, for 1 ≤ r, t ≤ m, by
the clique substitution, has no effect on this, since the subgraphs in
Cm(G) induced on Xr ∪ Xt are isomorphic for all 1 ≤ r, t ≤ m.) The
final effect of ELC on {ui, vj} is to toggle all pairs between U ∪V and
A1 ∪ · · · ∪ Am, and all pairs between U ∪V and B1 ∪ · · · ∪ Bm. But, since
we also swap ui and vj, the total effect is equivalent to swapping ur and

vr for all 1 ≤ r ≤ m. It follows that Cm(G)(ui ,vj) is isomorphic to Cm(G),
and hence that Cm(G) is ELC-preserved.

Examples of graphs obtained by clique expansion are shown in Fig. 4.
The output of a clique expansion will always be a non-bipartite graph,
except for the trivial case C2(e1) = s2. However, the input can be a
bipartite graph, and hence the construction can be combined with star
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expansion to obtain new ELC-preserved graphs, such as the graph
C2(S2−(s3)) of order 12, shown in Fig. 4(b). Iterating clique expansion
on its own does not produce new graphs, since, trivially, Cm(ck) = cmk

and Cm2(Cm1(G)) = Cm1m2(G).

Theorem 5. The graph hr, for r ≥ 3, is an ELC-preserved (r, 2r − r − 1)-
bipartite graph on n = 2r − 1 vertices. To obtain hr, let one partition, U,
consist of r vertices, and the other partition, W, be divided into r− 1 disjoint
subsets, Wi, for 2 ≤ i ≤ r, where Wi contains (r

i) vertices. Let each vertex in
Wi be connected to i vertices in U, such that Na �= Nb for all a, b ∈ W. The
graph hr corresponds to the [2r − 1, 2r − r− 1, 3] Hamming code.

Proof. From the construction of the graph hr, we see that it corresponds
to a code with parity check matrix (I | P), where the columns are
all vectors from Fr

2, which is the parity check matrix of a Hamming
code [26]. We know from Theorem 1 that any ELC operation on hr

must give a graph that corresponds to an equivalent code. Since the
distance of the code is greater than two, all columns of the parity
check matrix must be distinct. It follows that all parity check matrices
of equivalent codes must contain all vectors from Fr

2, in some order.
Hence the corresponding graphs are isomorphic, and hr must be ELC-
preserved.

Definition 10. A graph is called Eulerian if all its vertices have even degree,
and anti-Eulerian if all its vertices have odd degree.

An anti-Eulerian graph must have even order, and is always the
complement of an Eulerian graph. Anti-Eulerian graphs have been
shown to correspond to Type II self-dual additive codes over F4 [7].

Lemma 1. Let G = (V, E) be an anti-Eulerian graph. After performing any
LC or ELC operation on G, we obtain a graph G′ which is also anti-Eulerian.

Proof. Let v ∈ V and w ∈ Nv. LC on v transforms Nw into N′w = (Nw ∪
Nv) \ (Nw ∩ Nv) \ {w}, where |N′w| = |Nw|+ |Nv| − (2 |Nw ∩ Nv|+ 1).
Since G is anti-Eulerian, |Nw| and |Nv| must be odd. We then see
that |N′w| is the sum of three odd numbers, and must therefore be
odd. The same argument holds for all neighbors of v, so G ∗ v is anti-
Eulerian. That ELC also preserves anti-Eulerianicity then follows from
Definition 2.

Theorem 6. The graph hr
e, for r ≥ 3, is an ELC-preserved (r + 1, 2r− r− 1)-

bipartite graph on n = 2r vertices. To obtain hr
e, first construct hr, as in
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w3

w5

w6

w4

w0

w1

w2

Fig. 5: The graph h3

Theorem 5, and then add a new vertex which is connected by edges to all
existing vertices of even degree. The graph hr

e corresponds to the [2r, 2r − r−
1, 4] extended Hamming code.

Proof. hr
e must be bipartite, since all vertices of hr in the partition of

size r have degree ∑r
i=2 (r

i)
i
r = 2r−1 − 1, which is odd. The new vertex

added to hr also has odd degree, since the number of vertices in hr of

even degree is ∑
 r

2 �
i=1 ( r

2i) = 2r−1 − 1. Hence hr
e is anti-Eulerian. It follows

from the construction that hr
e corresponds to a code with parity check

matrix (I | P), where the columns are all odd weight vectors from Fr+1
2 ,

which is the parity check matrix of an extended Hamming code [26].
We know from Theorem 1 that any ELC operation on hr

e must give a
graph that corresponds to an equivalent code. Since the distance of the
code is greater than two, all columns of the parity check matrix must
be distinct. The graph hr

e is anti-Eulerian, and must remain so after
ELC, according to Lemma 1. It follows that all parity check matrices
of equivalent codes must contain all odd weight vectors from Fr+1

2 , in
some order. Hence the corresponding graphs are isomorphic, and hr

e
must be ELC-preserved.

For n = 7, we obtain from Theorem 5 the bipartite ELC-preserved
graph h3, shown in Fig. 5, corresponding to the Hamming code of
length 7. This is an important graph, as it forms the basis for the
general constructions given by Theorems 7 and 8.

Theorem 7 (Hamming expansion). Given an ELC-preserved graph G =
(V, E) on k vertices, we obtain an ELC-preserved graph H(G) on n = 7k ver-
tices. For all vertices vi ∈ V, 0 ≤ i < k, we replace vi with the subgraph hi =
({w7i, . . . , w7i+6}, {{w7i, w7i+3}, {w7i, w7i+4}, {w7i+1, w7i+3}, {w7i+1, w7i+5},
{w7i+2, w7i+4}, {w7i+2, w7i+5}, {w7i+3, w7i+6}, {w7i+4, w7i+6}, {w7i+5, w7i+6}}).
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(Note that hi is a specific labeling of the graph h3. The labeled graph h0 is de-
picted in Fig. 5.) If {vi, vj} ∈ E, we connect each of the vertices w7i, w7i+1,
and w7i+2 to all the vertices w7j, w7j+1, and w7j+2. (Note that this differs
from the graph substitution in Definition 8.)

Proof. Let a = w6, b = w3, and c = w0. If k > 1, let d = w7, and assume
(without loss of generality) that there is an edge {v0, v1} ∈ E. Due
to the symmetry of H(G) and ELC-preservation of G, we only need
to consider ELC on the three edges {a, b}, {b, c}, and {c, d} to prove
the ELC-preservation of H(G). That h0 is ELC-preserved, and hence
that {a, b} preserves H(G) is easily verified by hand. We then consider
the edge {b, c}. Note that Nc

b = {a, c′ = w1}, where c′ has exactly the
same neighbors as c outside h0, and a has no common neighbors with
c outside h0. Since we know that the subgraph h0 is ELC-preserved,
the effect of ELC on {b, c} is simply to swap a and c′. The edge {c, d}
corresponds to the edge {v0, v1} ∈ E. In the graph G, let A = Nv1

v0 ,
B = Nv0

v1 , and C = Nv0 ∩ Nv1 . In the graph H(G), c is connected to
three copies of A, d is connected to three copies of B, and both c and d
are connected to three copies of C. Since ELC on {v0, v1} preserves G,
toggling pairs between these multiplied neighborhoods must preserve
H(G), as in Theorem 4. There are only eight remaining vertices to
consider: c is connected to D = {w3, w4} and E = {w8, w9}, and d is
connected to F = {w10, w11} and G = {w1, w2}. The vertices in D has
no neighbors outside h0, and the vertices in F have no neighbors outside
h1. The vertices in E share the same neighbors as d outside h1, and the
vertices in G share the same neighbors as c outside h0. The effect of
ELC on {c, d} is to swap D with E and F with G. Hence H(G) must be
preserved, except for the local structure of h0 and h1, which it remains
to check. ELC on {c, d} has the effect of toggling pairs between D and
G and between E and F. Finally we swap u and v. The result is that the
structure of h0 and h1 is preserved, as illustrated in Fig. 6 and Fig. 7. It
follows that H(G) is ELC-preserved.

Theorem 8 (Hamming clique expansion). For k ≥ 1 and m ≥ 1, we
obtain an ELC-preserved graph Hm

k on n = 7k + m vertices by taking the
union of G = H(ck) and K = cm. We add edges from each vertex in K to
all the 3k vertices in G labeled (as in Theorem 7) w7i, w7i+1, and w7i+2, for
0 ≤ i < k. (Note that H1

1 = h3
e .)

Proof. Without loss of generality, let a = w6, b = w3, c = w0, d = w7,
and let e and f be two distinct vertices in K. (For k = 1, ignore d, and for
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Fig. 6: The graph H(s2)
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Fig. 7: The graph H(s2)(w0,w7)
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m = 1, ignore f .) Due to the symmetry of Hm
k , we only need to consider

ELC on the five edges {a, b}, {b, c}, {c, d}, {c, e}, and {e, f } to prove
the ELC-preservation of Hm

k . The proof for {a, b}, {b, c}, and {c, d} are
the same as in Theorem 7. (The proof still works with K = cm added to
Nc and Nd.) The edge {e, f } is trivial, since Ne = Nf . It only remains
to show that ELC on {c, e} preserves Hm

k . Observe that Ne
c = {w3, w4}

and Nc
e = {w1, w2}. All other neighbors of c and e are in Nc ∩ Ne, since

the underlying graph of G = H(ck) is a complete graph. Furthermore,
w1 and w2 are connected to all vertices in Nc ∩ Ne, and w3 and w4 are
not connected to any vertex in Nc ∩ Ne. The effect of ELC is to swap
the vertices in Ne

c with the vertices in Nc
e . h0 is preserved as before. It

follows that Hm
k is ELC-preserved.

Proposition 1. H(G) is bipartite when G = (V, E) is bipartite. Hm
k is

bipartite only in the trivial case where k = m = 1.

Proof. Let V = {v0, . . . vk−1}. In H(G), each vi is replaced by a bipartite
subgraph, hi, and edges are added between these subgraphs, such that
the induced subgraph on {w7i, w7i+1, w7i+2, w7j, w7j+1, w7j+2} in H(G)
is a complete bipartite graph if there is an edge {vi, vj} ∈ E and an
empty graph otherwise. It follows that H(G) is bipartite whenever
G is bipartite. (The trivial case H(e1) = h3 is clearly also bipartite.)
Hm

k is clearly non-bipartite if k > 2 or m > 2, since it contains a 3-
clique. It is easily checked that for the remaining cases, only H1

1 = h3
e is

bipartite.

4 CL A S S I F I C A T I O N

Tables 2 and 3 shows how all bipartite ELC-preserved graphs of order
n ≤ 16, and all non-bipartite ELC-preserved graphs of order n ≤ 12
arise from the constructions described in the previous section.

We observe that certain pairs of ELC-preserved graphs are LC-
equivalent. It is easy to verify that cn and sn form a complete LC
orbit, for all n ≥ 3. The following theorem explains all the remain-
ing pairs of LC-equivalent ELC-preserved graphs for n ≤ 12, namely
{S2−(s4), C2(s4)}, {S2−(s6), C2(s6)}, {S3−(s4), C3(s4)}, and {S2−(S2−(s3)), C2(S2−(s3))}.
(Note that all these pairs of graphs are part of larger LC orbits whose
other members are not ELC-preserved.)

Theorem 9. Let G = (U ∪W, E) be a (r, n− r)-bipartite graph with parti-
tions U = {u1, . . . , ur} and W = {w1, . . . , wn−r}. Let Sm(G) be the graph
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Table 2: Classification of bipartite ELC-preserved graphs

n

2 s2

3 s3

4 s4

5 s5

6 s6, S2−(s3)

7 s7, h3

8 s8, S2−(s4), h3
e

9 s9, S3−(s3)

10 s10, S2−(s5)

11 s11

12 s12, S2−(s6), S3−(s4), S4−(s3), S2−(S2−(s3))

13 s13

14 s14, S2−(s7), S2−(h3), S2
+(h3), H(s2)

15 s15, S3−(s5), S5−(s3), h4

16 s16, S2−(s8), S4−(s4), S2−(S2−(s4)), S2(h3
e ), h4

e
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Table 3: Classification of non-bipartite ELC-preserved graphs

n

3 c3

4 c4

5 c5

6 c6, C2(s3)

7 c7

8 c8, C2(s4)

9 c9, C3(s3), H2
1

10 c10, C2(s5), H3
1

11 c11, H4
1

12 c12, C2(s6), C3(s4), C4(s3), C2(S2−(s3)), H5
1

where the vertices in U are substituted with em. If all vertices in U have odd
degree, and all pairs of vertices from U have an even number of (or zero)
common neighbors, then Cm(G) = Sm(G) ∗w1 ∗ · · · ∗wn−r, i.e., we can get
from Sm(G) to Cm(G) by performing LC on all vertices in W. (The order of
the LC operations is not important.)

Proof. Consider performing LC on a vertex wi in Sm(G). This vertex
will be connected to the set X of m− 1 pendant vertices, and to km other
vertices, where k is the degree of wi in G. Let u be a neighbor of wi in G,
and let Y be the set of m vertices that u is replaced with in Sm(G). The
subgraph induced on Y is em. After LC on wi, the induced subgraph
on Y will be cm. Moreover, the induced subgraph on X ∪ {wi} will also
be cm, and all vertices in Y will be connected to all vertices of X ∪ {wi}.
Subsequent LC on another vertex wj, where wj is also connected to u
in G, will change the subgraph induced on Y back to em. To ensure that
the induced subgraph on Y is cm in the final graph, we must require
u to have odd degree in G. If wi is also connected to another vertex
u′ in G, which is replaced by Y′ in Sm(G), LC on wi will connect all
vertices in Y to all vertices in Y′. Since we require that u and u′ share
an even number of neighbors, none of these edges will remain in the
final graph. With these considerations, it follows that after performing
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LC on all vertices in W, we obtain a graph where every vertex of G is
substituted by cm, which is the definition of Cm(G).

New non-bipartite ELC-preserved graphs, hr∗, of order n = 2r for
r ≥ 4, can be obtained from the following theorem, by applying specific
LC operations to ELC-preserved bipartite graphs corresponding to
extended Hamming codes, hr

e. (Note that h3∗ = h3
e . For r ≥ 4, hr∗ is a

non-bipartite ELC-preserved graph that cannot be obtained from any
of our other constructions.)

Theorem 10. Given the bipartite ELC-preserved graph hr
e, defined in Theo-

rem 6, LC operations applied, in any order, to all vertices in the partition of
size 2r − r− 1 preserves the graph, while LC operations applied, in any order,
to all vertices in the partition of size r + 1 gives an ELC-preserved graph hr∗
which is non-bipartite when r ≥ 4.

Proof. Let U denote the set of vertices in the partition of size r + 1,
and W denote the set of vertices in the partition of size 2r − r − 1.
After performing LC on all vertices in W, two vertices u, v ∈ U will be
connected by an edge if and only if u and v have an odd number of
common neighbors in W. To show that LC on all vertices in W preserves
hr

e, we must show that all pairs of vertices from U have an even number
of common neighbors. Let ue be the extension vertex that was added to
hr to form hr

e, as described in Theorem 6, and let ui and uj be two other
vertices in U. The number of neighbors common between ue and ui is

∑
 r

2 �
i=1 ( r

2i)
2i
r = 2r−2. The number of neighbors common between ui and

uj is ∑r
i=2 (r−2

i−2) = 2r−2.
We will now show that LC on all vertices in U transforms hr

e into
the ELC-preserved graph hr∗. The adjacency matrix of hr

e can be written

Γ =

⎛
⎝0r×r P

PT 0(n−r)×(n−r)

⎞
⎠, where (I | P) is the parity check matrix of C,

an extended Hamming code. LC on a vertex u ∈ U can be implemented
on Γ by adding row u to all rows in Nu and then changing the diagonal
elements Γv,v, for all v ∈ Nu, from 1 to 0. After performing LC on

all vertices in U, the adjacency matrix of hr∗ is M =

⎛
⎝ 0 P

PT X

⎞
⎠. Since

each vertex in W has an odd number of neighbors in U, each row
of X is the linear combinations of an odd number of rows from P,
except that all diagonal elements of X have been changed from 1 to
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0. Moreover, the nonzero coordinates of row i of PT indicates which
rows of P were added to form row i of X. It follows that the rows of the

matrix

⎛
⎝ I P

PT X + I

⎞
⎠ are the 2r codewords of C⊥ formed by taking all

linear combination of an odd number of rows from (I | P), since (I | P)
contains all odd weight columns from Fr+1

2 . After performing ELC
on an edge {u, v} in hr∗, where u ∈ U and v ∈ W, and then swapping

vertices u and v, we obtain an adjacency matrix M′ =

⎛
⎝ 0 P′

P′T X′

⎞
⎠. After

ELC on an edge {u, v} where u, v ∈ W, the vertices in U will no longer
be an independent set, but by permuting vertices from U with vertices
from Nu or Nv, we can obtain the form M′. We need to show that the
rows of M′ + I are 2r codewords of a code equivalent to C⊥ formed
by taking linear combinations of an odd number of rows from (I | P′).
Since, according to Theorem 6, the extended Hamming code only has
one parity check matrix, up to column permutations, this implies that
hr∗ is ELC-preserved. ELC on {u, v} is the same as LC on u, followed by
LC on v, followed by LC on u again. We have seen that LC corresponds
to row additions and flipping diagonal elements. We only need to show
that all diagonal elements of M are flipped from 1 to 0 an even number
of times to ensure that all rows of M′ + I are the codewords described
above. If we swap vertices u and v after performing ELC, it follows from
the definition of ELC that rows u and v of M′ must be the same as in M.
As for the other rows, LC on u flips Mi,i for i ∈ Nu \ {v} , LC on v then
flips Mi,i for i ∈ (Nv ∪ Nu) \ (Nv ∩ Nu), and finally, LC on u flips Mi,i
for i ∈ Nv \ {v}. In total, this means that for each i ∈ Nu ∪ Nv \ {u, v},
the diagonal element Mi,i has been flipped from 1 to 0 two times.

The graph hr∗ is non-bipartite if there is at least one pair of vertices
from W with an odd number of common neighbors in U. For r ≥ 4,
there must be a pair of vertices from W2 ⊂ W, the set of (r

2) vertices of
degree 2 in hr, with no common neighbors in hr and hence one common
neighbor, i.e. the extension vertex, in hr

e.

5 ELC-P R E S E R V E D CO D E S

As we have already shown, the graph h3 corresponds to the [7, 4, 3] Ham-
ming code, and its dual [7, 3, 4] simplex code. The graph h3

e corresponds
to the self-dual [8, 4, 4] extended Hamming code. The star graph sn
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corresponds to the [n, 1, n] repetition code, and its dual [n, n− 1, 2] code.
We can obtain larger ELC-preserved bipartite graphs using Hamming
expansion or star expansion, and the parameters of the corresponding
codes are given by the following theorems.

Theorem 11. H(G), for G a connected ELC-preserved (r, k − r)-bipartite
graph on k ≥ 2 vertices, corresponds to a [7k, 3k + r, 4] code C, and to the
dual [7k, 4k− r, 4] code C⊥.

Proof. From the construction of H(G), we get that C must have length
n = 7k. The codes C and C⊥ have dimension 3k + r and 4k − r, re-
spectively, since H(G) has partitions of size 3k + r and 4k− r when G
has partitions of size r and k− r. That both C and C⊥ have minimum
distance 4 follows from the fact that the minimum vertex degree in both
partitions of H(G) is 3. This is verified by observing that the subgraph
h0, shown in Fig. 5, has one vertex w6 of degree 3, and three vertices w3,
w4, and w5 of degree 3, belonging to different partitions. Moreover, the
degrees of w0, w1, and w2 must be at least 5, since G is connected.

Theorem 12. Let G be a connected ELC-preserved (r, k− r)-bipartite graph
on k ≥ 2 vertices and assume, without loss of generality, that r ≤ k− r. Let
G correspond to a [k, r, d] code and its dual [k, k − r, d′] code. Then Sm

+(G)
corresponds to an [mk, r, md] code and its dual [mk, mk− r, 2] code. Sm−(G)
corresponds to an [mk, k− r, md′] code and its dual [mk, mk− k− r, 2] code.

Proof. From the construction of Sm(G), we get that all the codes must
have length n = mk. In G, the minimum vertex degree in the partition
of size r must be d− 1, and the minimum vertex degree in the other
partition must be d′ − 1. In Sm

+(G), k− r vertices of G have been sub-
stituted by em and m pendants have been added to the other r vertices.
Hence, Sm

+(G) must contain a partition of size r with minimum vertex
degree md− 1, since the vertex of degree d− 1 in G is now connected
to d− 1 copies of em plus m− 1 pendants. The other partition of Sm

+(G)
has size mk− r, and contains pendants, i.e., vertices of degree one. By
similar argument, Sm−(G) has a partition of size k− r with minimum
vertex degree md′ − 1 and a partition of size mk− k− r with minimum
vertex degree one. The dimensions and minimum distances of the
corresponding codes follow.

We observe that the ELC-preserved graphs h3
e and H(s2) correspond

to [8, 4, 4] and [14, 7, 4] self-dual codes. A natural question to ask is
whether there are other ELC-preserved self-dual codes. All self-dual
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Table 4: ELC orbit size of graphs corresponding to self-dual codes

n d Codes ELC-preserved Size two ELC orbits

8 ≥ 4 1 1 -

10 ≥ 4 - - -

12 ≥ 4 1 - 1

14 ≥ 4 1 1 -

16 ≥ 4 2 - 1

18 ≥ 4 2 - -

20 ≥ 4 6 - 1

22 ≥ 4 8 - -

24 ≥ 4 26 - 2

26 ≥ 4 45 - -

28 ≥ 4 148 - 1

30 ≥ 4 457 - -

32 ≥ 4 2523 - 2

34 ≥ 6 938 - -

binary codes of length n ≤ 34 have been classified by Bilous and
van Rees [27, 28]. A database containing one representative from each
equivalence class of codes with n ≤ 32 and d ≥ 4, and one represen-
tative from each equivalence class of codes with n = 34 and d ≥ 6
is available on-line at ������������	�
������������
�����
��. We
have generated the ELC orbits of all the corresponding bipartite graphs,
and found that h3

e and H(s2) are the only ELC-preserved graphs, as
shown in Table 4. However, as the following theorem shows, we can
construct an infinite number of ELC-preserved self-dual codes with
n ≥ 56 by iterated Hamming expansion of h3

e and H(s2).

Theorem 13. Let Hr(G) = H(· · ·H(G)) denote the r-fold Hamming ex-
pansion of G. Then for r ≥ 1, Hr(h3

e ) corresponds to an ELC-preserved self-
dual [8 · 7r, 4 · 7r, 4] code, and Hr+1(s2) corresponds to an ELC-preserved
self-dual [2 · 7r+1, 7r+1, 4] code.
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Proof. The parameters of the codes follows from Theorem 11. It remains
to show that they are self-dual. A code with generator matrix (I | P) is
self-dual if the same code is also generated by (PT | I), i.e., if P−1 = PT.
The codes associated with both h3

e and H(s2) have the property that
P = PT, and Hamming expansion must preserve this symmetry since it
has the same effect on both partitions of the graph. In general, P = PT

only implies that a code is isodual, but we can prove a stronger property
in this case. Note that P corresponding to H(G) will have full rank when
P corresponding to G has full rank, since we know that P corresponding
to H(s2), which is the Hamming expansion of the induced subgraph
on any pair of vertices connected by an edge in G, has full rank. Since
an ELC-preserved code only has one generator matrix, up to column
permutations, and the inverse of a symmetric matrix is symmetric, we
must have that P−1(I | P) = (P | I). Hence the code is self-dual.

6 OR B I T S O F SI Z E TW O

ELC-preserved codes with good properties could have practical applica-
tions in iterative decoding [17–20]. However, there seem to be extremely
few such codes, and, except for the perfect Hamming codes, graphs
arising from the constructions in Section 3 correspond to [n, k, d] codes
with either low minimum distance d or low rate k

n , compared to the
best known codes of the same length. Iterative decoding with ELC
also works for graphs with larger ELC orbits, such as quadratic residue
codes [18], and has performance close to that of iterative permutation
decoding [23] for graphs with small ELC orbits, such as the extended
Golay code [18]. The self-dual [24, 12, 8] extended Golay code corresponds
to a bipartite graph with an ELC orbit of size two. As a generalization of
ELC-preserved graphs, we therefore briefly consider graphs with ELC
orbit of size two. The number of size two orbits are listed in Table 5.
We have also counted LC orbits of size two. Clearly there is an LC
orbit {sn, cn} for all n ≥ 3. The only other size two LC orbit we find for
n ≤ 12 is comprised of the two graphs of order six depicted in Fig. 8
(These two graphs correspond to the self-dual additive Hexacode over
F4 [7].)

We have also looked at the ELC orbits corresponding to self-dual
codes of length n ≤ 34, as seen in Table 4. Except for the [24, 12, 8]
extended Golay code and a [32, 16, 4] code, the remaining self-dual
codes in this table with ELC orbits of size two, all with minimum
distance four, can be constructed by the following theorem. It remains
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Table 5: Number of orbits of size two

n Bipartite ELC Non-bipartite ELC LC

3 - - 1

4 1 1 1

5 2 3 1

6 4 9 2

7 6 10 1

8 9 21 1

9 12 22 1

10 22 43 1

11 22 41 1

12 33 91 1

13 35

14 53

15 48

Fig. 8: LC orbit of size two

206



On Graphs and Codes Preserved by ELC

an open problem to devise a general construction for self-dual codes
with ELC orbits of size two and minimum distance greater than four.

Theorem 14. Let G be a (2m, 2m)-bipartite graph on 4m vertices, where
m ≥ 3. Let the vertices in one partition be labeled v1, v2, . . . , v2m, and the
vertices in the other partition be labeled w1, w2, . . . , w2m. Let there be an edge
{vi, wj} whenever i �= j. Then G has an ELC orbit of size two and corresponds
to a self-dual [4m, 2m, 4] code C.

Proof. The code C has generator matrix (I | P) where P is circulant
with first row (01 · · · 1). It can be verified that P−1 = P = PT when P is
of this form with even dimensions. Hence P−1(I | P) = (PT | I) and C
is self-dual. (An (m, m)-bipartite graph constructed as above for odd
m ≥ 7 would still have an ELC orbit of size two but would correspond
to a non-self-dual [2m, m, 4] code.) Note that m = 1 and m = 2 must
be excluded, since they produce the ELC-preserved graphs s2 and h3

e ,
respectively.

Due to the symmetry of G we only need to consider ELC on one
edge {vi, wj}. This will take us to a graph G′ where the neighborhoods
of vi, vj, wi, wj are unchanged, but where Nvk = {vi, vj, wk} and Nwk =
{wi, wj, vk}, for all k �= i, j. We need to consider ELC on three types
of edges in G′. ELC on {vi, wj} or {vj, wi} will take us back to G.
ELC on an edge {vk, wk} will preserve G′, since it simply removes
edges {vi, wj} and {vj, wi} and adds edges {vi, wi} and {vj, wj}, thus
in effect swapping vertices vi and vj. Finally, ELC on an edge {vi, wk}
also preserves G′, since it swaps the roles of vertices vj and vk. (ELC
on {vk, wi} similarly swaps wj and wk.) This can be seen by noting
that wk has neighbors vj and vk, with vk being connected to wj in Nwk

vi

and vj being connected to all vertices in Nwk
vi except wj. Hence these

relations are reversed after complementation. Furthermore, Nvk \Nwk
vi =

Nvj \ Nwk
vi = {wk, wi}, so isomorphism is preserved. We have shown

that the ELC orbit of G has size two. Since the minimum vertex degree
over the ELC orbit is 3, the minimum distance of C is 4.

7 CO N C L U S I O N S

We have introduced ELC-preserved graphs as a new class of graphs,
found all ELC-preserved graphs of order up to 12 and all ELC-preserved
bipartite graphs of order up to 16, and shown how all these graphs
arise from general constructions. It remains an open problem to prove
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that all ELC-preserved graphs arise from these constructions, or give an
example to the contrary. We therefore pose the question: Is a connected
ELC-preserved graph of order n always either sn, where n is prime, Hm

k ,
where n = 7k + m, hr, where n = 2r − 1, hr

e or hr∗, where n = 2r, or can it
be obtained as Sm

+(G), Sm−(G), or Cm(G), where G is an ELC-preserved
graph of order n

m , or H(G), where G is an ELC-preserved graph of order
n
7 ? (Note that not all star graphs and complete graphs are primitive
ELC-preserved graphs, since most of them can be obtained as follows.
From the graph e1, we can obtain all cn = Cn(e1). From s2 = C2(e1),
we obtain all sn = S

n
2 (s2) where n is even. More generally, for n = pq

a composite number, sn = Sp
+(s

n
q ) = Sq

+(s
n
p ), so only sp with p an odd

prime is a primitive ELC-preserved graph.)
Another challenge is to enumerate or classify ELC-preserved graphs

of order n > 12 and ELC-preserved bipartite graphs of order n >
16. Our classification used a previous complete classification of ELC
orbits [16], and a graph extension technique to obtain all bipartite ELC-
preserved graphs of order 16. Perhaps the complexity of classification
could be reduced by further exploiting restrictions on the structure of
ELC-preserved graphs.

ELC-preserved graphs are an interesting new class of graphs from
a theoretical point of view. As discussed in Section 1, LC and ELC
orbits of graphs show up in many different fields of research, and ELC-
preserved graphs may also be of interest in these contexts. We have seen
that one possible use for bipartite ELC-preserved graphs is in iterative
decoding of error-correcting codes. Hamming codes are perfect, but
for this application we would like codes with rate k

n ≈ 1
2 . Such ELC-

preserved codes obtained from our constructions do not have minimum
distance that can compete with the best known codes of similar length,
except for the optimal [8, 4, 4] code (h3

e ), for which iterative decoding
has been simulated with good results [17], and the optimal [14, 7, 4]
code (H(s2)). Longer codes obtained from Hamming expansion will
always have minimum distance 4, as shown in Theorem 11. Codes that
have a negligible number of low weight codewords can still have good
decoding performance, but the number of weight 4 codewords in these
codes grows linearly with the length, since the number of degree 3
vertices in the corresponding graphs does so, and hence the codes are
not well suited for this application. It is therefore interesting to consider
ELC orbits of size two, one of them corresponding the extended Golay
code of length 24, for which iterative decoding with ELC has been
simulated with good results [18]. For codes of higher length, however,
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this criteria is probably also too restrictive. Graphs with ELC orbits of
bounded size could be more suitable for this application, and would be
interesting to study from a graph theoretical point of view. For some
graphs, ELC on certain edges will preserve the graph, while ELC on
other edges may not. Iterative decoding where only ELC on the subset
of edges that preserve the graph are allowed has been studied [17].
Graphs where ELC on certain edges preserve the number of edges in
the graph, or keep the number of edges within a given bound, have
also been considered in iterative decoding [19]. ELC-preserved graphs
are clearly a subclass of the graphs where all ELC orbit members have
the same number of edges. This class of graphs, and other possible
generalizations of ELC-preserved graphs, would be interesting to study
further.
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6 FU T U R E WO R K

• SPA-PD & MBBP

Preprocess a code (using WB-ELC) so as to obtain several struc-
turally distinct graphs of reduced (or minimum) weight, and run
SPA-PD on each of these in turn, changing graph periodically to
increase diversity. Alternatively, starting from a reduced-weight
graph within a sub-orbit of some size, the decoder can use ran-
dom WB-ELC to change structure, thus alleviating the need for
any stored graphs.

• WB-ELC at depth > 2
How does WB-ELC extend to cases involving edges at a distance
of more than 2? Motivated by the preserved locality of depth
2 WB-ELC (i.e., that the distance is at most 2), and the number
of isomorphic cases (which can be ignored), it seems feasible to
identify all possible cases for higher depths. Such an extension
might help clarify the relationship between distance (locality),
depth and girth of the corresponding graph.

• Generalized ELC

The operation of ELC on a Tanner graph implies its operation on a
bipartite simple graph, associated with a systematic parity-check
matrix. However, as ELC amounts to elementary row additions
on H, there are several possible generalizations of ELC to the
nonsystematic case. We have identified one such generalized ELC
(GELC) operation, which reduces to ELC when H is in systematic
form, and have begun exploring how GELC relates to Aut(C).
For instance, an interesting question is a generalized notion of
triviality to the nonsystematic case (where a permutation can
be implemented by row permutations alone). Our current work
strongly suggests a one-to-one relationship between Aut(C) and
GELC operations (as for ELC), and that D is always a group.
Furthermore, many properties of ELC extend naturally to GELC,
such as GELC-preserved graphs, and a partitioning of K into
subsets according to the minimum length of the corresponding
iso-GELC sequence.

• Truly local WB-ELC

As an alternative to using the WB-ELC algorithm to maintain a
bound on the weight of G, it is possible to determine code-specific
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rules which identify whether an edge will preserve |G|, if subject
to an ELC. Such rules are based on the edges of a specific graph,
and use only locally available information, so this corresponds to
a distributive implementation of WB-ELC for T = 0 (if we ignore
those WB-ELC operations which reduce the weight). For instance,
such rules may be derived for the strongly structured (extended)
Golay code, where the aim is to remain within the iso-orbit of the
lowest-weight graph in the orbit of the code (which contains only
two nonisomorphic graphs). The node initiating the process may
keep an ongoing record of those adjacent edges on which it is
permitted (from a weight-bounding perspective) to perform an ELC
by passing messages to the corresponding incident nodes which
return a description of their neighborhoods. The information in
these messages may also be used to implement the ELC operation
itself – facilitating a truly local implementation of ELC (where a
node only knows its adjacent edges). Tentative data indicate that
the complexity of this message passing approach is of comparable
complexity to that of the WB-ELC algorithms proposed in this
thesis, but is only suited to certain codes which exhibit significant
symmetries.

214




