
Building Trust in

Remote Internet Voting

Thesis for the degree Master of Science

Lars Hopland Nest̊as

University of Bergen

Department of Informatics

June 2010

ii

NoWires Research Group

www.nowires.org

iv

Preface

During the past decades, a lot of research has been done to create voting
protocols and election systems that facilitate voting via the Internet. Many
universities and private organizations are now using such systems for refer-
endums, or to elect individuals for its leading positions. Several countries are
also moving towards electronic voting over the Internet for legally binding
elections.

Cryptographers and system designers have until now mainly focused on
the mathematical and the technical aspects of electronic voting systems. How
to build trust in these systems have not been considered in any depth (as
far as the author has been able to establish). Whenever there is a change
in election procedures, voters’, candidates’, and election officials’ trust in
the election system may be challenged. In this thesis, we focus on different
aspects of how to build and preserve trust in remote electronic voting systems.

The intended audience for this thesis is first and foremost students and
IT professionals interested in remote electronic voting systems. However,
the first two chapters, and several parts of Chapter 3 and Chapter 4, are not
very technical oriented. Readers with some basic IT knowledge, and who are
interested in the topic, are encouraged to continue reading.

v

vi

Acknowledgements

I am grateful to many people who helped me make this thesis possible. First
of all I would like to thank my supervisors Kjell Jørgen Hole and H̊avard
Raddum for excellent and enthusiastic help and guidance throughout the
work on this thesis. I am also especially grateful for our joint work on the
Encap paper, and the two e-voting chronicles. It has been a privilege to be
a member of the NoWires Research Group.

A special thanks goes to Vidar. I have really appreciated your creative
ideas on how to develop new attacks targeting various computer systems.
Thank you Olav Arthur, for being the very local Apple support.

I would also thank my brother Eirik and my future college Lars-Helge for
giving me constructive and useful feedback on this thesis.

Finally I would like to thank my family—especially my beloved wife In-
geborg. You have not only given me your unconditional support during the
work on this thesis, but also provided valuable advices in how to structure
my work.

vii

viii

Contents

Preface v

Acknowledgements vii

1 Introduction 1

1.1 Trusting the electoral process 2

1.2 Is trust important? . 4
1.3 E-voting affects the voters’ trust 5

1.4 Scope . 6
1.5 Structure of thesis . 6

2 Requirements and Analysis Technique for E-voting Systems 9

2.1 Requirements for a free and fair e-voting system 9

2.1.1 Requirements . 10
2.1.2 Selecting requirements 11

2.1.3 Further requirement engineering 11
2.2 Requirements as a means for building trust 11

2.2.1 System requirements for the Norwegian E-vote 2011
project . 12

2.3 Analysis technique for e-voting systems 13

2.3.1 Three step analysis technique 14
2.3.2 Recommendations . 16

3 Analysis of the Rectorial Election at UiB in 2009 17

3.1 System overview . 17

3.1.1 Voter registration . 18
3.1.2 Authentication and authorization 19
3.1.3 Ballot definition . 19

ix

3.1.4 Voting . 21
3.1.5 Data storage . 21
3.1.6 Tabulation . 21

3.2 Vulnerabilities in the election module 22
3.2.1 Voter registration . 22
3.2.2 Authentication and authorization 23
3.2.3 Ballot definition . 23
3.2.4 Voting . 24
3.2.5 Data storage . 26
3.2.6 Tabulation . 28

3.3 Aftermath of the rectorial election 28
3.3.1 Motivation for analyzing UiB’s election system 29
3.3.2 Reactions to our analysis 30
3.3.3 Is My Space suitable as election system? 32

4 Election Forensics—Rebuilding Lost Trust 33

4.1 Investigation of the rectorial election at UiB in 2009 34
4.1.1 Findings . 34
4.1.2 Conclusions about election integrity 36

4.2 Preparing for election forensics 36
4.3 When shall an investigation be initiated? 37

4.3.1 Establishing indicators showing possible violations of
election requirements 37

4.4 Protecting the integrity of collected information 44
4.4.1 Digital signing of documents 44
4.4.2 Immutable audit logs 46
4.4.3 Design considerations for immutable audit logs 47

4.5 Dealing with reports of irregularities 48

5 Trust by User Involvement 49

5.1 Is disclosure of source code a key factor for free and fair elections? 49
5.1.1 Analyzing the source code 50
5.1.2 Which code is actually running? 51
5.1.3 Transparency builds trust 51

5.2 Code voting . 51
5.2.1 Verification codes . 52
5.2.2 Code generating and distribution 53
5.2.3 Counting code votes 53
5.2.4 Analysis of proposed verification code protocol for the

Norwegian e-voting project 54
5.2.5 Code voting and trust 57

5.3 End-to-end verification . 57
5.3.1 Desired properties for ballot receipts 58
5.3.2 Novel receipt protocol 58

5.4 Does end-to-end verification increase the voters’ level of trust? 61
5.4.1 Complex election systems 62

6 Summary and Conclusions 63

6.1 Summary . 63
6.2 Conclusions . 64
6.3 Further Work . 65

A Evidence Gathering in an E-voting System 67

A.1 Data to collect before the election 67
A.2 Data to collect during the election 69
A.3 Data to collect after the election 70

B Security Analysis of Mobile Phones Used as OTP Generators 73

Bibliography 86

xii

List of Tables

3.1 A vote cast by the author in the 2009 rectorial election at
UiB. Response to question has three possible values: 176758
is a blank vote, 176756 is a vote for Team Grønmo and Rokne,
and 176757 is a vote for Team Reed and Nordtveit. 21

4.1 The table shows total number of votes cast via the Internet,
the number of voters who canceled their e-votes by casting a
p-vote, and the number of voters who cast multiple votes via
the Internet, in four recent Estonian elections. 40

4.2 Benford’s Law frequencies for the first and the second digit. . 42

xiii

xiv

List of Figures

1.1 Trust is situational, and varies over time. In area A the truster
trusts the trustee enough to cooperate. In area B, the truster
will act against the trustee, because the truster is convinced
that the trustee will do the same. 3

2.1 Generic model of the electoral process. 15

3.1 Overview of the voting and tabulation phases in UiB’s election
system. 18

3.2 Ballot in the 2009 rectorial election at UiB. The button “Send
svar” submits the form. 20

3.3 Administrative tool in My Space for defining candidates. A
reordering of candidates during the voting phase will inter-
change all previous cast ballots between candidates. 29

4.1 Number of e-votes received each hour during the e-voting phase
of two different elections in Estonia in 2009. 39

4.2 Frequency of paired numbers in the Norwegian parliamentary
election in 2009. 45

5.1 Example of voting cards. 52

5.2 Overview of proposed verification code protocol. In step B the
VC uses the voter’s verification codes, the MS’s public key, and
the vote encrypted with the MS’s public key as input to the
function f1 to compute a list of randomly ordered ciptetexts r.
Furthermore, the VC sends r to the MS. In step C the MS uses
his private key and r as input to the function f2 to compute
the correct verification code for the vote, which is sent to the
voter’s mobile phone. 55

xv

5.3 Overview of the receipt generation and tabulation phases. All
received votes, stored in list T are re-encrypted and divided
into the two lists R and S. List R contains the votes that shall
be counted. Each voter receives a copy of his re-encrypted
vote, stored in R. The re-encrypted votes in R are sent through
a Mix-net before they tabulated on the TS. 60

Chapter 1
Introduction

Distrust and caution are the parents of security.
Benjamin Franklin

“Free and fair” elections are often referred to as the foundation for a
democracy. OSCE’s Charter of Paris for a New Europe [1] states:

“Democratic government is based on the will of the people, ex-
pressed regularly through free and fair elections. [E]veryone also
has the right [. . .] to participate in free and fair elections.”

Elklit and Svensson [2] clarify and differentiate between the terms “free”
and “fair”. Freedom entails the right and opportunity to choose one thing
over another, and at the same time, certain choices should not have nega-
tive consequences for one’s own or one’s family’s safety, welfare, or dignity.
Fairness means impartiality, i.e., no individuals are given unreasonable ad-
vantages.

During the past centuries, the introduction of technical equipment has
radically changed the way many elections are organized [3, Ch. 1]. Pre-
printed paper ballots—technical equipment in its simplest form—were intro-
duced to improve accuracy. Similarly, the introduction of envelopes improved
the voters’ privacy. Later, electronic equipment have been widely used to cast
and count votes in countries like the U.S., the Netherlands, Germany, France,
and Austria [3, Ch. 1].

The term electronic voting (or e-voting) denotes different means of cast-
ing and counting votes electronically. A remote electronic voting system
gives the voter the opportunity to cast his vote outside a controlled environ-

1

Chapter 1. Introduction

ment.1 Several countries are now moving towards remote electronic voting
over the Internet. Regardless of the technology used to organize elections,
the principles of free and fair elections are the same.

1.1 Trusting the electoral process

In Norway, the Ministry of Local Government and Regional Development
runs the E-vote 2011 project2 to establish and implement routines for e-
voting that ensure a correct result and build trust. According to the project
directive [4], the project shall work to achieve acceptance for e-voting as
a secure and reliable solution amongst both policy makers and the general
population. These goals are important, but often overlooked. According to
Schneier [5, p. 114], voting is as much a perception issue as it is a technological
issue. He states that:

“It is not enough for the result to be mathematically accurate;
every citizen must also be confident that it is correct.”

In other words, it is not enough for election observers to declare an election
free and fair—the public must have some level of trust in the electoral process
to give the winner legitimacy to govern. Usually, people do not protest simply
because their candidate lost the election, but they do if they believe that their
candidate lost unfairly. It is therefore often said that the main purpose of
election fairness is to convince the loser (and his supporters) that he lost the
election fair and square [6]. If trust is low, or lacking, this is a very hard
task.

It is difficult to give a precise and universal definition of trust. Because of
the large variety of definitions (e.g. see [7]), it seems reasonable to conclude
that trust must be considered in light of its context. In this thesis we will,
thus, use Marsh and Dibben’s definition of trust [7]:

“Trust concerns a positive expectation regarding the behavior of
somebody or something (the trustee) in a situation that entails
risk to the trusting party (the truster).”

Marsh and Dibben observe that the level of trust must be above a certain
threshold, denoted the cooperation threshold, to make the decision to trust
someone [8]. If the level of trust is below the cooperation threshold they call

1Note that all further usage of the term ‘e-voting’ in this thesis refers to remote elec-
tronic voting on the Internet, unless something else is specified.

2http://www.e-valg.dep.no/

2

1.1. Trusting the electoral process

this untrust or distrust (see Figure 1.1). Untrust is a measure of how little
the trustee is actually trusted, and distrust is a measure of how much the
truster believes that the trustee will actively work against him or her in a
given situation.

To further clarify the differences between untrust and distrust, we intro-
duce a second threshold, namely the uncooperation threshold. If the truster’s
level of trust is below the uncooperation threshold, the truster believes that
the trustee deliberately acts against him. For example, if a voter has a high
degree of distrust, he may strongly believe that the election officials in charge
of an election, controls the outcome—the election officials are acting unco-
operative. Likewise, if election officials choose to ignore strong evidence of
election fraud, many voters are likely to object because they distrust the
election—the voters are acting uncooperative.

Trust Levels

D
is

tr
u

s
t

U
n

tr
u

s
t

T
ru

s
t

Cooperation
Threshold

Time

Uncooperation
Threshold

A

B

An individual’s development
of trust over time

Figure 1.1: Trust is situational, and varies over time. In area A the truster

trusts the trustee enough to cooperate. In area B, the truster will act against the

trustee, because the truster is convinced that the trustee will do the same.

In between the cooperation threshold and the uncooperation threshold
we find the area untrust. Marsh and Dibben give an example of how to
understand the term untrust [8]:

3

Chapter 1. Introduction

“—I trust you, but not enough to believe you’ll be of any help in
this situation if a push comes to shove.”

Similarly, a voter may trust the election officials’ intentions to organize
a free and fair election, but the voter is uncertain about the election offi-
cials’ capability to detect an attack on the election, and thereby ensure the
election’s integrity.

1.2 Is trust important?

The public’s confidence in an electronic election system can be fragile. One
relatively small incident can lead to dramatic changes in the public’s con-
fidence. The 2006 municipal election in the Netherlands exemplifies this
problem. A suspicion of fraud was raised when a candidate got 181 prefer-
ential votes at one particular polling station, but only obtained a total of 11
votes elsewhere [9]. Moreover, the suspicion of fraud was further raised by
the fact that the candidate was a polling worker at the polling place where
he obtained the unexpected large number of votes. Because it was impossible
to perform a meaningful recount, due to the design of the voting machines,
voters were asked to come back to cast their vote once more. During this
election the suspected candidate only got a handful number of votes. As a
result of this shadow election and testimonials given by voters, the candidate
was convicted of election fraud.

An action group named “we don’t trust voting computers” was founded
after this election.3 The group managed to get access to voting machines from
one of the major vendors and found several serious vulnerabilities [10]. The
Dutch government was, thus, forced to initiate further investigations of the
voting machines [11]. On October 1st, 2007, the District Court of Amsterdam
decertified all voting machines in use. Finally, the Dutch returned to paper
based voting for the 2009 European Parliament election and all work on
remote Internet voting was put on hold.

The level of public confidence in Norwegian elections is deemed to be very
high [12, 13]. This does not mean that the Norwegian election system is—and
has always been—perfect. For example, election observers during the 2005
parliamentary election were rather critical to the tabulation process. They
pointed out that there were no official specifications on how to use electronic
equipment to process votes. In particular, detailed counting procedures were
lacking. The election observers concluded [13]:

3http://www.wijvertrouwenstemcomputersniet.nl/English

4

1.3. E-voting affects the voters’ trust

“Again, such a system, which would appear rather vulnerable
and open to abuse in other circumstances, does not appear to
create any problems in Norway, where there is a strong tradition
of accountability and the level of public confidence in the honesty
and integrity of the election administration is very high.”

Trust is a well-established topic in the areas of psychology and the social
sciences. Trust has also gotten more attention in the areas of information
science and technology with the growth of the Internet and, in particular,
e-commerce. Trust is essential for e-commerce: with trust people will buy
things in an online store, without they will not [14]. If the level of trust is
low, a customer has several opportunities. Either he will purchase the goods
in a competitor’s online store, which he is likely to trust more, or he will
buy the goods in a traditional store. Trust regarding e-voting systems is not
quite as simple. A voter may choose not to trust an e-voting system for many
reasons. If privacy concerns are the main reason for the voter’s untrust or
distrust, he can cast a paper ballot if this is an option. In a situation where
no alternative exists, the voter is left with the option not to participate in
the election. Moreover, if the integrity of the election result is the voter’s
main concern, it will not help to use a different “channel” to cast the vote. A
voter that does not trust the integrity of one part of the tally, will obviously
not trust the complete tally. The voter is again left with the option of not
voting. If the voter decides not to participate in the election, we can say that
his level of trust is below the cooperation threshold.

1.3 E-voting affects the voters’ trust

In this thesis we will argue that there are some general properties of elec-
tronic voting that can affect the voters’ level of trust in a negative direction
towards distrust. For example, introduction of a new electronic election sys-
tem may change known and trusted procedures radically. The voters have
to develop new internal trust models. It is also clear that election observers
are struggling to find a reasonable way to observe remote electronic elections
[15], and likewise, auditors find it difficult to verify the integrity of the elec-
tion result. These problems are related to the fact that a remote e-voting
system reduces the number of laymen involved in the election process in fa-
vor of a smaller group of IT professionals [16, Ch. 9]. Finally, there is a
growing concern about the ongoing “privatization of the democracy” [17].
Commercial entities are in greater extent delivering critical components to
the election process, components that may have an impact on the election
outcome. Examples are electronic voting machines, optical ballot scanners,

5

Chapter 1. Introduction

and electronic electoral rolls. Information about these systems is very often
not available to the public, or even to the election management board. Such
lack of transparency may decrease the overall trust level.

1.4 Scope

The main goal of this thesis is to explore how different design properties of
remote Internet e-voting systems influence the voters’ level of trust. We will
also discuss how behaviors of election officials have an impact on voters’ trust
in an election result.

Cryptography is often used to ensure election integrity and voter privacy.
In this thesis we will present some cryptographic properties for building trust
in e-voting systems.

Legal issues, like whether a remote e-voting systems violates the United
Nations’ Universal Declaration of Human Rights, will not be considered in
this thesis.4 Our focus is how to build trust in the technical and organiza-
tional parts of an e-voting system, after a decision about implementing such
a system has been made.

1.5 Structure of thesis

Chapter 2

Chapter 2 presents commonly accepted requirements for e-voting systems,
and discusses the importance of specifying requirements in order to build
trust. The chapter also outlines an analysis technique for e-voting systems
based on the requirements.

Chapter 3

With an analysis technique in place, the third chapter presents an analysis of
the e-voting system utilized during the 2009 rectorial election at the Univer-
sity of Bergen (UiB). The chapter concludes with some considerations about
performing security tests on a live system.

Chapter 4

Election fraud, or even suspicion of election fraud, can undermine public
confidence in the outcome of an election. This chapter discusses which in-

4http://www.un.org/en/documents/udhr/

6

1.5. Structure of thesis

formation election officials must gather in order to support later audits, re-
counts, and forensic analysis. This chapter also explores some techniques for
detecting election fraud and other irregularities in e-voting systems.

Chapter 5

Verifying the correctness of an election is important to avoid untrust and
distrust. Different ways of verifying election results will be explored in the
chapter. In particular, the chapter discusses how an enhanced level of voter
interaction throughout the voting procedure can help to increase the publics’
level of trust in the electoral process.

Chapter 6

Chapter 6 presents a short summary, and concludes this thesis. Finally,
some suggestions for further work within the field trust and remote electronic
election systems is given.

7

8

Chapter 2
Requirements and Analysis Technique

for E-voting Systems

Defining problems accurately lays the foundations for solving them.
Trust Matters, S. Bibb & J. Kourdi

Different aspects of the electoral process must be considered to declare
an election “free and fair”. In this chapter we define a set of security and
privacy requirements especially relevant to e-voting systems. Furthermore,
we discuss how to utilize these requirements in order to build trust among the
public. Finally, the chapter outlines a simple analysis technique for e-voting
systems based on the requirements. The reader interested in other election
criteria/requirements, not directly related to the e-voting system itself, is
referred to the Declaration on criteria for free and fair elections [18], and
Elklit and Svensson [2, Table 1].

2.1 Requirements for a free and fair e-voting

system

It is common to use the general terms confidentiality, integrity, and avail-
ability when considering security and privacy requirements in information
systems. Confidentiality is the protection against unauthorized disclosure
of data, integrity refers to protection against unauthorized modification of
data, and availability is the ability to use a resource as desired [19].

For complex systems, like an e-voting system, it may be better to use a
set of requirements especially tailored to the domain of the system. A list of

9

Chapter 2. Requirements and Analysis Technique for E-voting Systems

eleven high-level, non-functional requirements for e-voting systems follows.
This list is based on commonly accepted requirements found in the research
literature [6, 15, 20, 21].

2.1.1 Requirements

Eligibility All eligible voters are accurately identified and registered, and
an authentication procedure ensures that only registered voters can vote.

Uniqueness Only one vote per voter. If a voter is allowed to vote multiple
times, then only the last vote counts.

Accuracy All valid votes are counted correctly. It is not possible for anyone
to alter, delete, invalidate, or copy any vote.

Soundness Invalid votes, for example votes with invalid format or content,
are not counted.

Privacy All cast votes are kept secret during the election and it is never
possible to link any vote to the voter.

Fairness No early results, in particular no partial tally, can be obtained
by anyone during the election period.

Transparency Information about the e-voting system itself and the infor-
mation it publishes must be available to all stakeholders.

Robustness No reasonably sized coalition of stakeholders is able to disrupt
or influence the voting process during the voting period, or manipulate the
final tally in any way.

Uncoercibility A coercer cannot be sure he vas able to force a voter to
cast a particular vote later tallied by the system.

Receipt-freeness To prevent vote buying and selling, no voter can obtain
or construct a receipt to prove the content of a vote to a third party during
the election or after the election.

10

2.2. Requirements as a means for building trust

Verifiability Each voter can check that his vote was correctly received by
the central infrastructure (voter verifiability), and anyone can count the votes
(universal verifiability).

2.1.2 Selecting requirements

Understanding the context in which an e-voting system will be deployed is
important when selecting its requirements. The collection of requirements
defining an e-voting system for private elections at universities will not be
equal to the collection of requirements associated with a system for govern-
mental elections. Deciding upon a set of requirements for an e-voting system
must be seen in the light of which threats the system is likely to face.

It is important to notice that we distinguish between the terms vulnerabil-
ity and threat. A vulnerability in an e-voting system is a (security relevant)
design flaw or an implementation bug, while a threat is a person or a group
that has the needed capabilities to exploit a vulnerability either intentionally
or accidentally [22, Ch. 4]. Malicious software developers, hackers, criminal
organizations, protest groups, malicious election officials, and rouge system
operators are examples of threats deliberately exploiting vulnerabilities to
misuse e-voting systems. Legitimate voters and benevolent operators are ex-
amples of threats inadvertently exploiting vulnerabilities due to carelessness
or bad usability.

2.1.3 Further requirement engineering

The selected list of high-level, non-functional security and privacy require-
ments is vital in the further process of requirements engineering. Every new
low-level functional requirement suggested for the system should be held up
against the list of non-functional security and privacy requirements. If it is
not compliant, it should be discarded.

2.2 Requirements as a means for building trust

The process of developing (non-functional) security and privacy requirements
can be used to increase the level of public trust in a forthcoming e-voting
system. Presenting well-formulated requirements may show insight, and if
done right, the requirements can be seen as an expression of will to consider
important security and privacy aspects of e-voting in the further development
process. Choosing not to announce security and privacy requirements, may
cause suspicions and untrust, and in worst case distrust. If it is not possible

11

Chapter 2. Requirements and Analysis Technique for E-voting Systems

to achieve public acceptance for the non-functional requirements early in the
development process, it is more likely that the process will fail later.

Stakeholders often present the expectations they have to a system in a
natural language. Without a common basis for communication, statements
are likely to be misinterpreted. Defining a list of easy to understand, and well-
defined requirements makes it easier to have an enlightened debate whether
or not an e-voting system is suitable for a particular type of election.

2.2.1 System requirements for the Norwegian E-vote

2011 project

The Norwegian E-vote 2011 project chose a different approach then ours
when selecting requirements for their system. Requirements for the e-voting
system were first and foremost a result of their acquisition form: competitive
dialogue. In a competitive dialogue, several tenderers are invited to compete
for the delivery of a final system. During the competition phase, the tenderers
submit several partial deliveries. The contractor forms specifications for the
next deliveries based on the partial deliveries. In this way the tenderers
are participating in the process of developing the final requirements for the
system.

In the Norwegian E-vote 2011 project, a set of system requirements was
finalized two and a half weeks before the tenderers submitted their final
proposal for an e-voting system [23]. At the same time the requirements
were made publicly available. However, regular voters were not among the
intended audience for the requirement documents. It may seem that the
project management did not encourage a public debate on the system’s non-
functional requirements since the requirements were inaccessible almost until
a full system solution was described.

One of the greatest challenges when introducing a remote Internet e-
voting system is to overcome the bad reputation of e-voting in general. The
Norwegian E-vote 2011 project has already experienced this. The Ministry
of Local Government and Regional Development invited fifty-six municipal-
ities to apply for participation in a limited e-election in 2011. Only limited
information about the project was available at the time the politicians had
to make a decision about participation. Twenty-one municipalities decided
not to apply to the Government. Some of the municipalities declined mainly
because they were concerned about the voters’ privacy [24, 25].1

1Other municipalities declined mainly because of the unclear costs associated with the
participation in the e-election trial.

12

2.3. Analysis technique for e-voting systems

The E-vote 2011 project’s privacy requirements are actually very strin-
gent [23, pp. 32, 33]. So why did the politicians have doubts about the
privacy? Were they not convinced that the Ministry would be able to pro-
vide an e-voting system that would meet the project’s security and privacy
requirements? There is no easy answer to these questions. But clearly, some
of the politicians did not have enough (or any) knowledge about the system’s
privacy requirements and based their decision on their own perceptions about
the system.

2.3 Analysis technique for e-voting systems

Inspired by Hubbard’s critical evaluation of risk analysis methods [26] and
other methods for discovering security weaknesses [27, 28], this section out-
lines a technique for deciding if an e-voting system is in compliance with a
set of requirements. The technique’s main focus is to discover technology
oriented attacks. It is useful for individuals with knowledge of information
security, but not necessarily much experience with security evaluation of e-
voting systems. Our analysis technique is not an alternative to formal meth-
ods for evaluating the security of a system design, but rather a supplement
that is especially useful when evaluating prototypes and fully implemented
systems.

It is possible to rate a system’s compliance with a requirement using, e.g.,
the three levels low, medium, and high. One motivation for introducing levels
is to make it easier for a team of executives to address the most critical prob-
lems first [29, Ch. 6]. Unfortunately, the introduction of levels of compliance
makes it more likely that different groups of analysts will come to different
conclusions [26, Ch. 7].

We will rather try to determine requirements not satisfied by an e-voting
system. A requirement is said to be broken, or violated, if we can find a
practical attack, else the requirement is assumed to be satisfied. Note that
we define an attack as the combination of a vulnerability and a threat. An
attack is said to be practical if it can be carried out by one or more threats.
The practicality of an attack is best demonstrated by developing a proof of
concept-attack.

The main advantage of this approach is that once the requirements have
been selected and accepted by the stakeholders, it is hard to argue that an
e-voting system is suitable for real elections when practical attacks violating
one, or several of the requirements, are discovered.

13

Chapter 2. Requirements and Analysis Technique for E-voting Systems

2.3.1 Three step analysis technique

Step 1 – Develop system models

To analyze an e-voting system it must first be modeled. A model is an
abstraction of the system that focuses on interesting aspects an ignores ir-
relevant details [30]. The purpose of modeling is to deal with complexity. It
may be useful to develop several models, each focusing on different aspects
and parts of the system.

First, it is necessary to get a general overview of the electoral processes
that the e-voting system is a part of. A generic model of the electoral process,
presented in Figure 2.1, can be used as a starting point. The figure is based
on [6, Ch. 1], where supplementary descriptions of the different phases in the
process can be found.

An e-voting system’s most valuable assets are the values of the cast votes.
To outline the entire electoral process it may be useful to describe:

• The information that is available at each phase of the election.

• In what form the information is stored.

• The actors (people and components) with access to the information.

• How the actors interact with the information.

• How the information flows within each phase.

• How the information flows between each phase.

Even if a system description is available from the system provider, the
analysts should (as closely as possible) try to verify that the description is
correct.

Step 2 – Determine practical attacks violating the requirements

In this step the analysts should look for threats exploiting vulnerabilities in
each phase of the electoral process. The rich literature describing attacks on
web based e-voting systems and web applications in general, (see e.g. [28, 31,
32, 33]) may be of great help during this step. Most of the practical attacks
described in Chapter 3 were discovered using the methodology presented in
[28, Ch. 20].

14

2.3. Analysis technique for e-voting systems

Voter Registration

Precinct Definitions

Ballot Definitions

Voter Authentication Ballot Provisioning

Absentee Voting Early Voting Precinct Voting

Initial Tabulation

Final Tabulation

Recounts "On-Demand" Auditing

Settlement

Voting

Figure 2.1: Generic model of the electoral process.

Step 3 – Document attacks and identify violated requirements

It is important do document all practical attacks for several reasons. First,
claiming that a requirement is violated may be met with objections from
different stakeholders. Providing detailed documentation makes it easier for
others to verify the results of a completed analysis. Second, well-formed
documentation makes it easier for developers (if possible) to deploy counter-
measures. Finally, it is important to document all attacks to simplify the
next round of analysis.

15

Chapter 2. Requirements and Analysis Technique for E-voting Systems

2.3.2 Recommendations

The outlined analysis technique can never prove that a requirement holds for
a real system. It is therefore preferable to use multiple groups of analysts with
diverse skill sets, looking at the systems from different angles, to minimize
the likelihood of overlooking serious vulnerabilities.

Analysts should begin to scrutinize the system early in the development
process. Since new vulnerabilities and threats may appear over time, the
e-voting system should be repeatedly analyzed during its lifetime, and not
only when system updates are deployed.

One should remember that discovering vulnerabilities, and presenting
practical attacks might influence the public’s level of trust. Voters, electoral
candidates, and politicians are likely to lose trust in e-voting systems yield-
ing to attacks, even though the attacks may be relatively limited in nature.
Hence, it is of major importance that system owners are prepared to deal
with discoveries of system vulnerabilities. A system owner who decides not
to scrutinize his system properly, or ignores reported vulnerabilities, runs a
greater risk. Regarding trust, nothing seems worse than reports of successful
attacks during, or after an election.

The final question system owners must answer, is whether known vulner-
abilities shall be publicly disclosed. This is not a new problem, and it was
already discussed in Locks and Safes: The Construction of Locks, published
in 1853 [34]:

“Rogues knew a good deal about lock-picking long before lock-
smiths discussed it among themselves, as they have lately done.
If a lock, let it have been made in whatever country, or by what-
ever maker, is not so inviolable as it has hitherto been deemed to
be, surely it is to the interest of honest persons to know this fact,
because the dishonest are tolerably certain to apply the knowl-
edge practically; and the spread of the knowledge is necessary to
give fair play to those who might suffer by ignorance.”

In [32], Jones discusses this question in the context of e-voting. He argues
that compared to the short-term benefits of not discussing vulnerabilities
in e-voting systems openly, suppressing such information may lead to an
uninformed electorate making uniformed decisions.

16

Chapter 3
Analysis of the Rectorial Election at

UiB in 2009

As long as I count the votes, what are you going to do about it?
—William Marcy ”Boss” Tweed, 1871

The University of Bergen (UiB) has long elected individuals for its leading
positions through democratic elections. In 2005, there was a major change
in the election procedure—the university introduced remote electronic voting
over the Internet for most of its elections. Despite this major change in the
procedure, UiB’s electronic election system did not get much attention until
the rectorial election in 2009. In that election, 9 irregular votes were rejected
[35] and several serious vulnerabilities in the system were discovered [36].

This chapter gives an overview of the election system used, and the vul-
nerabilities discovered in the system.

3.1 System overview

My Space (“Mi side” in Norwegian) is UiB’s intranet for students.1 The sys-
tem is an implementation of .LRN (Learn, Research, Network),2 which is an
open source e-learning system originally developed at Massachusetts Institute
of Technology (MIT). In My Space, students can join different community
and course groups. Groups of students at the department level are examples
of community groups. The course groups often provide information about
classes, such as schedules, lecture notes, discussion boards, and assignments.

1http://myspace.uib.no/
2http://dotlrn.org

17

Chapter 3. Analysis of the Rectorial Election at UiB in 2009

The .LRN framework consists of several modules. The focus in this chap-
ter is on the survey module. Group administrators can create polls, usually
for evaluating courses or administer tests, using the survey module. UiB uti-
lized the survey module to arrange elections through My Space. Figure 3.1
shows an overview of the important voting and tabulation phases in UiB’s
election system. A more detailed description of the system, based on all
phases of the 2009 rectorial election, follows.

Web server

Database server

2. The web server
stores the votes
in My Space's
database

3. Cast votes are
requested
through

the web server

Election board's secretary

My Space

Central Infrastructure

Voter

1. The voters cast
their votes through
 My Space's web site

4. The secretary
collects all cast
votes before
tabulation

Election board

5. All cast votes are
sent to the election
board for manually

tabulation

UiB's Election System

Election result

6. The election
board publishes
the election result

Figure 3.1: Overview of the voting and tabulation phases in UiB’s election sys-

tem.

3.1.1 Voter registration

The official electoral roll at UiB was maintained outside My Space. For the
rectorial election two separate web pages, one for staff3 and one for students,4

3http://www.uib.no/ansatt/manntall/
4http://www.uib.no/info/student/manntall/

18

3.1. System overview

were set up for voters to check if they were correctly registered and allowed
to vote.

Voters in the rectorial election were divided into four groups. The votes
from the different groups were weighted (weight in parenthesis). Group A:
permanent academic staff (29,5 %); Group B: temporary academic staff (29,5
%); Group C: technical and administrative staff (16 %); and Group D: stu-
dents (25 %). Before the election started, the voters within the official elec-
toral roll were divided into different subgroups in the UiB community group
at My Space.

3.1.2 Authentication and authorization

Access to the voting page at My Space is protected by a voter’s username
and password. Usernames and passwords are managed by the central user
administration system at UiB called SEBRA. Password requirements are
given in UiB’s password policy [37]. User rights are managed within My
Space.

3.1.3 Ballot definition

Two pairs of candidates, Team Grønmo and Rokne and Team Reed and
Nordtveit, ran for election as rector and prorector in the rectorial election.
The election administrator was responsible for setting up the voting page.
The ballot (Figure 3.2) was presented as an HTML form with one visible field
(containing the parameters Response to question and Question id) and three
hidden fields (Survey id, Section id and New response id). All parameter
values in the HTML form were numeric values. These values, together with
user id and creation id, formed an electronic vote.

Table 3.1 gives an example of values for each parameter in the 2009 recto-
rial election at UiB. In the following, we give a description of each parameter.

Survey id

Responses to the same survey, or votes in the same election, always have the
same value for Survey id.

Section id

In a survey with multiple questions, it is possible to group the questions into
sections. Every section has its own Section id. The rectorial election only
had one question, and therefore only one Section id.

19

Chapter 3. Analysis of the Rectorial Election at UiB in 2009

Figure 3.2: Ballot in the 2009 rectorial election at UiB. The button “Send svar”

submits the form.

New response id

New response id is a unique value for each response to a survey, or each ballot
in an election. This value is the primary key when a response is stored in
My Space’s database.5

Question id

Each question in a survey gets its own value. In the rectorial election there
was only one question.

Response to question

A voter had the opportunity to either cast a blank vote, or to vote for one of
the candidate pairs. Radio buttons were used in the HTML form to ensure
that a voter only chose one out of the three options. Each option had its
own value.

User id

A voter’s User id was obtained from a cookie and attached to the vote.

5The value of a primary key is unique, and can therefore be used to identify each tuple
in a relation (or a vote in this context) [38].

20

3.1. System overview

Example ballot

Parameter Value

Survey id 55492801
Section id 55492802
Question id 55492803
Response to question 176758
New response id 55566305
User id 18880680
Creation id 129.177.123.4

Table 3.1: A vote cast by the author in the 2009 rectorial election at UiB. Re-

sponse to question has three possible values: 176758 is a blank vote, 176756 is

a vote for Team Grønmo and Rokne, and 176757 is a vote for Team Reed and

Nordtveit.

Creation id

The voter’s IP address (Creation id) were also stored together with the votes.

3.1.4 Voting

A voter could choose between two different procedures to access the voting
page in the rectorial election. Either he could log in to My Space and choose
the hyperlink “Rektorvalg /Rectorial election 2009” on the front page, or he
could use a hyperlink received in an e-mail from the election board secretary.
The hyperlink pointed directly to the voting page in My Space. If the voter
was not logged in to My Space when clicking on the link, My Space would
first direct the voter to the login page, and then redirect the voter to the
voting page after a successful login.

3.1.5 Data storage

My Space stores its data in an Oracle database [39]. Election data, such as
the electoral roll, election settings, and votes, are stored together with other
data from My Space. The votes are stored unencrypted [40].

3.1.6 Tabulation

Results from a survey can either be read directly from the survey’s adminis-
tration web page, or be exported to a file as comma separated values (CSV

21

Chapter 3. Analysis of the Rectorial Election at UiB in 2009

file). This could be done at any time during the rectorial election period [41].

To simplify the tally, the rectorial election was organized as four separate
surveys within different community groups at My Space. My Space’s survey
module does not contain any functionality for merging results from different
surveys or functionality for handling weighted votes. As a consequence, the
election board did the calculation of the final results in the rectorial election
manually.

3.2 Vulnerabilities in the election module

We evaluated UiB’s election system twice. First, we performed some lim-
ited tests during the rectorial election. Later, a second and more systematic
evaluation was carried out on behalf of the IT Department at UiB. We com-
pleted our evaluation on May 20th 2009, and reported our findings to the
IT Department the same day. The IT Department has since deployed coun-
termeasures for some of the vulnerabilities. We have not evaluated the new
countermeasures.

This section presents practical attacks exploiting the vulnerabilities found
during the two evaluations, and explains how the election system violated the
security and privacy requirements listed in Chapter 2.

3.2.1 Voter registration

Tampering with the electoral roll

It was possible for external threats to trick the election administrator into
changing the electoral roll in My Space during the voting period. Changes
could be initiated by sending HTTP requests (POST or GET) via the survey
administration page. If the election administrator visited a malicious web
page containing the code from Example 1, the code would first delete a voter
with user ID 18880680, and then add a voter with user ID 13881433 to the
electoral roll. This is a classical example of a Cross-Site Request Forgery
(CSRF) attack. Note that the administrator had to be logged into My Space
while he visited the malicious web page.

Using the survey module as an election system violated the eligibility
requirement because it was possible for threats to deny eligible voters the
right to cast a vote by deleting them from the electoral roll. We can also
conclude that the system violated the uniqueness requirement for the rectorial
election because a threat could cast four votes in the election by adding
himself as a voter in the four different groups (A to D).

22

3.2. Vulnerabilities in the election module

Example 1 Code deleting and adding voters to the electoral roll
<html>

<body>

</body>

</html>

3.2.2 Authentication and authorization

Privilege escalation

A modified version of the previous CSRF attack could give any user of My
Space administrator rights to a survey. In Example 2, the argument role type
is added to the add-member request. An execution of this request would give
the targeted user administrator rights to the survey.

Example 2 Code adding an administrator to a survey

<html>

<body>

<img src="https://studentportal.uib.no/[...]/add-member?target_user_id=13881433&

role_type=dotlrn_cadmin_rel[...]" />

</body>

</html>

The opportunity for a threat to become administrator of an election vio-
lates several of the basic requirements. First, it violates of the eligibility and
uniqueness requirements, because an adversary with administrator rights can
add several unqualified (or fictitious) voters to the electoral roll. Second, ad-
ministrators are able to read early election results, which violates the fairness
requirement.

3.2.3 Ballot definition

Voting for a fictitious candidate

During the initial evaluation of the rectorial election, Vidar Drageide and the
author submitted a vote for two fictitious candidates. To cast a vote for one
of the official candidates, the voter submitted the Response to question value
assigned to that particular candidate. Casting a vote for a fictive candidate
needed some preparation. First of all, a new survey in My Space had to
be created. The new survey was a so-called “deactivated survey”, created
within any group in My Space. A deactivated survey is only visible to the
administrators of the My Space group the survey belongs to. In this survey,

23

Chapter 3. Analysis of the Rectorial Election at UiB in 2009

the name of the fictive candidate was set as one of the predefined answers
to a question. As a result, an identifier (Response to question) for the fictive
candidate was stored in the My Space database. Next, when submitting a
fictitious vote to the server, the value for Response to question was replaced
with the fictitious candidate’s value. When the central server performed the
tally, the votes for the fictive candidates were presented together with the
votes for the real candidates.

We might argue that the system violated the soundness requirement be-
cause it accepted votes for fictitious candidates, even though the votes were
manually removed during the tabulation in the rectorial election.

3.2.4 Voting

Casting multiple votes

A voter in the rectorial election should only be able to cast a single vote. To
cast multiple votes, a voter could submit one vote using the regular procedure
and at the same time use a proxy based tool to capture the request. However,
submitting exactly the same request once more failed because a vote with
the same New response id was already stored in the database. Instead, if the
voter manually increased the value of New response id (or at random picked
a value not used before), then the server accepted this second vote. By
repeating this last step, and picking new unused values for New response id,
a voter could cast an unlimited number of votes.

A less technical method, using only a web browser, could also be used
to cast multiple votes. The first step was to open multiple copies of the
voting page in one web browser, before submitting any vote. Each copy of
the voting page got its own unique value for New response id. Going through
each page in succession, and casting one vote per page, generated multiple
votes accepted by the survey module.6 Once again we have showed that the
system violated the uniqueness requirement.

The major flaw in the design of My Space’s survey module, which made
these attacks possible, was the lack of input validation. When delivering a
vote, the server did not check if the voter already had cast a vote, it only
controlled the voter’s permission against the electoral roll.

6Two students cast multiple votes in the rectorial election, probably unintentionally
using this method.

24

3.2. Vulnerabilities in the election module

Casting votes on behalf of other voters

A CSRF based attack could be used to cast votes on behalf of other voters.
This attack succeeded even if the voter already had voted. Multiple votes
could be cast. The first step of the attack was to set up a malicious web
page that automatically generated a new value for New response id and then
submitted the vote to the election server. The second step was to trick voters,
logged in to My Space, to visit the malicious web page.

Phishing

One of the most common techniques used to trick people into visiting mali-
cious web pages is phishing. There are three reasons why the rectorial election
was particularly vulnerable to phishing attacks. First, several e-mails with
voting instructions were sent to all voters. A threat that wanted to carry out
a phishing attack could simply reuse one of the official e-mails and spoof the
sender address. Second, the hyperlinks in the official e-mails were created
using UiB’s service for making short aliases for redirections of long URLs.7

A voter would not be able to control if the shortened URL pointed to a ma-
licious server or the legitimate voting page in My Space. Third, My space
has a built-in redirection functionality. If a user asks for a subpage of My
Space before he has logged in, My Space first redirects the user to the login
page. After a successful authentication, My Space directs the user back to
the requested subpage. In a phishing attack, this subpage would be the page
for delivering a pre-completed ballot made by the threat (using CSRF based
techniques).

In summary, the phishing attack violates the uniqueness requirement and
eligibility requirement. It also violates the soundness requirement because
votes submitted from other web page’s than My Space (using CSRF based
techniques) are counted.

Coercion

Two features of My Space violate the uncoercibility requirement. First, a
coercer may stand behind the voter’s back and watch the voting. The coerced
voter is not able to recast his vote. Second, a receipt of the cast vote is
available on My Space throughout the election period.

7http://link.uib.no/

25

Chapter 3. Analysis of the Rectorial Election at UiB in 2009

3.2.5 Data storage

My Space’s survey module states that the rectorial election at UiB in 2009
is anonymous (see Figure 3.2, where the survey type is set to anonymous).
Except for the first section in §7 of UiB’s election regulations [42], there is
no other references to the voters’ anonymity. This section states that the
election board must ensure that the electoral system takes care of anonymity
and security in a paper based election. It is natural to put a question mark
behind the anonymity statement in My Space, especially since every voter
could read the content of his cast vote on My Space throughout the voting
period. This ability indicates that there is a strong link between the voter
and his vote when it is stored in the central database.

Access to anonymized data

A respondent can edit his answers in retrospect if a survey is set to be
“editable”. To edit a submitted response, the user enters a web page in
My Space. This web page uses the parameter response id (which is set in
the URL) to look up the requested response. The server does not validate
that the user is the legitimate owner of the previous submitted response. It
only checks that the user is a member of the group the survey belongs to.
If a threat (also member of the same My Space group) iterates through a
sequence of response ids, all answers to a given survey are revealed. (We
remark that My Space did not disclose any information about the user IDs
connected to the various responses.)

A threat can abuse this functionality for two purposes. First, he can
produce a partial tally. Second, when looking at a response, it was also
possible to edit the given answer and resubmit it.

The rectorial election was set to “non-editable”, but it was possible to
make a survey editable through a CSRF attack. Hence, a threat could pro-
duce a partial tally and change votes, thus, breaking the fairness requirement
and accuracy requirement, respectively.

Access to non-anonymized election data

My Space has an e-mail notification service. Typically, a user can ask for
e-mail notification whenever a new message occurs on a bulletin board or in
a forum.

Administrators can ask for e-mail notifications for public surveys (oppo-
site of anonymous surveys). Whenever a user responds to the survey, the
administrator receives an e-mail containing the respondents name and all
responses to the questions in the survey. An administrator should not be

26

3.2. Vulnerabilities in the election module

able to ask for e-mail notifications for anonymous surveys like the rectorial
election. However, there is a flaw in the system that can be exploited when
a public survey is converted into an anonymous survey. A malicious admin-
istrator could initially set up a public survey, activate the e-mail notification
service for that particular survey, and finally make the survey anonymous.
The administrator would still get e-mail notifications for every response to
the survey.

Furthermore, our tests revealed that any user of My Space could sign-up
for e-mail notifications for surveys. Signing up for e-mail notifications is a
post-request to a web page.8 This service is typically used by a user who
wants to receive an e-mail notification when a new posting occurs on a bul-
letin board or in a discussion forum. The two parameters in the notification
request, type id and object id, are essential. Type id refers to different mod-
ules in My Space. The survey modules type id is 672. Object id corresponds
to the earlier described Survey id. This attack could be executed by sub-
mitting a regular notification request for a bulletin board, and changing the
values for type id and object id into the surveys values.

We did not test this e-mail notification attack on the rectorial election.
Our e-mail notification attack did only target surveys created on My Space
for testing purposes. When we found this vulnerability the IT Department
was notified at once. They corrected the problem and asked for a new test. It
is therefore likely that this attack also would have succeeded in the rectorial
election.

The e-mail notification functionality obviously violates the privacy re-
quirement.

Deleting responses

A malicious administrator can delete all responses to a survey. Deleting a
question, and then creating the same question once more, will remove all pre-
vious responses to that particular question. Hence, the accuracy requirement
was violated.

Deleting a survey

It is possible to delete an entire survey through the survey’s administration
web page. Moreover, deleting a survey can be done via a CSRF attack (see
Example 3). According to warnings given on the web page, deleting a survey
includes deleting all registered responses to the survey. This violates the

8https://studentportal.uib.no/notifications/request-new

27

Chapter 3. Analysis of the Rectorial Election at UiB in 2009

accuracy requirement. The attack can also be seen as a Denial-of-Service
(DoS) attack, and a violation of the robustness requirement.

Example 3 Code deleting a survey.
<html>

<body>

<img src="https://studentportal.uib.no/[...]/survey-delete?survey_id=55492801&

confirmation=t[...]" />

</body>

</html>

3.2.6 Tabulation

Partial tally

The election administrator at UiB accessed preliminary election results for
the rectorial election every day during the election [41]. A system that facil-
itates such activity clearly violates the fairness requirement.

Swapping votes between candidates

Candidates to an election are defined in one single text field in the admin-
istration tool in My Space (see Figure 3.3). Each candidate is separated
by a line break. Recall that in a survey each candidate is represented by a
numerical value assigned to the parameter Response to question. A candi-
date’s value for Response to question depends on his position in the list of
candidates. In practice, a reordering of the list of candidates will affect the
candidates’ value for Response to question. A user with administrator rights
can edit the list of candidates at any time during the voting phase. Thus,
interchanging two candidates’ values for the parameter Response to question
during the voting phase, will interchange all previous recorded votes for the
two candidates. This is a violation of the accuracy requirement.

3.3 Aftermath of the rectorial election

Scrutinizing an online system in use, without asking for permission or notify-
ing the system owners, is not unproblematic. In the aftermath of the election,
the election board’s chairman described our analysis of the system as sab-
otage and a violation of the university democracy [43]. Linda H. Lamone,
administrator of elections in the State of Maryland, had a similar reaction
when Professor Aviel D. Rubin and his research group at Johns Hopkins

28

3.3. Aftermath of the rectorial election

Figure 3.3: Administrative tool in My Space for defining candidates. A reordering

of candidates during the voting phase will interchange all previous cast ballots

between candidates.

University reported that some of the voting machines in several states in the
U.S. had serious vulnerabilities. With a clear reference to Rubin’s group she
stated:

“Computer Scientists who question the security of electronic vot-
ing machines are undermining our democracy [44, p. 216].”

A clarification about what we did during the voting period, and why we
did it follows.

3.3.1 Motivation for analyzing UiB’s election system

We wanted to collect public available information about the election system,
and learn about how the system behaved during the voting period. Early
in our information gathering, it became clear that the voting procedure was
vulnerable to CSRF attacks. To test and document a possible CSRF attack,

29

Chapter 3. Analysis of the Rectorial Election at UiB in 2009

a web page that automatically submitted a blank vote was created on a local
web server. Initially, the plan was to only cast one vote (on behalf of one
voter) using this method—and thereby not violate the election regulations.
For this reason, neither the IT Department nor the election committee were
notified ahead of the tests. It came as a complete surprise to us that by
simply reloading the web page implementing the CSRF “attack”, we could
cast an unlimited number of votes. Using this method, the author cast a total
of four blank votes, and Vidar Drageide cast one blank vote. It is important
to notice that we made no attempts to penetrate any of the election servers.
Nor did we try to get unauthorized access to any information, or try to
manipulate the election result.9

During the voting period the author and Vidar Drageide also cast one
vote for two fictitious candidates. In retrospect, we see that it may be naive
to argue that voting for fictitious candidates in an electronic election is simi-
lar to writing the name of a fictitious candidate on a paper ballot. All other
vulnerabilities presented in this chapter were discovered during a second eval-
uation, carried out on behalf of the IT Department.

We decided not to notify the system owners about our findings before
the election had come to an end. It is reasonable to ask why. First, based
on the principle that information about the votes and the election result
should be unknown until the voting period has ended (cf. the privacy and
fairness requirements in Chapter 2), we strongly believed that we had some
more time to analyze our findings. Second, we concluded that there was a
low risk that a threat would exploit the discovered vulnerabilities. We felt
that it would be irresponsible to inform the system owners without taking
the time to analyze our findings. Taking hasty decisions based on too little
information can be damaging; and we would not force the system owners to
do so. Thus, we thought it would be best to not disrupt the ongoing voting,
but rather try to initiate a responsible disclosure process after the election.

3.3.2 Reactions to our analysis

Our assumptions turned out to be wrong. As mentioned earlier in this chap-
ter, much to our surprise the election administrator at UiB looked at pre-
liminary election results every day. Consequently, the vote for the fictitious
candidates was detected, and an investigation was initiated. During the in-
vestigation, two employees at the IT Department were able to link the four
blank votes and the vote for the fictitious candidates back to the author.

9In theory, it is possible that four blank votes (weighted 25 %) can affect the election
outcome in the rectorial election at UiB. If no candidate pair gets majority, a second
election round is held.

30

3.3. Aftermath of the rectorial election

It was also during this investigation that the two students that had voted
multiple times by accident were discovered.

The election board’s chairman and the election board’s secretary seemed
not to be interested in our suggested responsible disclosure process. Shortly
after we confirmed the factual circumstances regarding the five blank votes in
a meeting with the election board’s chairman, the election board’s secretary,
and the IT director, the chairman and the secretary publicly announced that
nine irregular votes had been rejected from the final tally [41]. At this point
we had not revealed any technical details about the vulnerabilities we had
found, but agreed to have a new meeting with the IT Department to discuss
the details of our findings.

In [41], the election board’s chairman and secretary ensure the voters that
the election system works as intended, despite the fact that nine “irregular”
votes were rejected in the rectorial election. Moreover, they argue that in
order to verify the election’s integrity, it is necessary to have the opportunity
to link votes to the voters. But they ensure that only two “super users” at
the IT Department are able to perform this kind of surveillance and trace
votes to voters.

The candidates who lost the election did find the reports on “irregular”
votes and election surveillance somewhat disquieting, and asked for an exter-
nal investigation of the rectorial election. Ernst & Young was hired by the
University Director to perform the investigation.10

Even though the rectorial election was subject to an external investi-
gation, UiB employees made several statements about the integrity of the
rectorial election and My Space’s suitability as election system. For exam-
ple, one week before Ernst & Young was supposed to deliver their report,
the election board’s secretary stated that the rectorial election was absolutely
anonymous, and that the election result was correct [45]. Similarly, the elec-
tion board’s chairman points out that the election board, after consulting
with the IT Department and the Division of Academic Affairs at UiB, did
not find any system errors or threats indicating that UiB will obtain invalid or
fraudulent election results by continued usage of My Space’s survey module
[46, 47].11 As the rectorial election got more publicity [48, 49], the election
board’s chairman finally conceded that My Space’s survey module does not
provide adequate security for election purposes [43].

10Ernst & Young’s investigation and reports will be discussed in Chapter 4.
11The Division of Academic Affairs is the system owner of My Space which the survey

module is a part of.

31

Chapter 3. Analysis of the Rectorial Election at UiB in 2009

3.3.3 Is My Space suitable as election system?

It is difficult to draw general conclusions about how the discovered vulner-
abilities and irregularities in the 2009 rectorial election affected the voters’
level of trust. However, the fact that the candidates who lost the election filed
a complaint and asked for an external investigation expresses some degree of
untrusts.

Evidently, My Space’s survey module violates at least eight of the re-
quirements for e-voting systems listed in Chapter 2. The survey module was
not originally designed for election purposes, and consequently important
security and privacy requirements for elections were not considered during
the development phase. This example demonstrates how important it is to
analyze the security and privacy of an e-voting system before it is deployed.

Finally, UiB’s IT director announced that My Space’s survey module
probably will be replaced with a new election system [50]. During the 2009
student parliament election, UiB used the University of Oslo’s e-voting sys-
tem to organize the election.12

12https://valg.uio.no/

32

Chapter 4
Election Forensics—Rebuilding Lost

Trust

Smart election security not only tries to prevent vote
hacking—it prepares for recovery after an election has been hacked.

—Bruce Schneier

In the aftermath of an election, the election result can be put into doubt.
Reasons can be suspicion of misfeasance that may have affected the election
outcome (for example reports of lost ballots), or suspicion of outright election
fraud. Merly suspicion of an improper election result may be enough to
undermine the public’s trust.

Election forensics is important in order to rebuild lost trust. One aspect
of election forensics is to gather evidence proving that the election result
is correct—trust is rebuilt due to proof of correctness. Another aspect of
election forensics is to detect evidence of misfeasance, misuse, and attacks
on the election system, as well as technical problems that may have affected
the election outcome [51]. If such evidence is found, making the necessary
decisions—like announcing a new election round—can rebuild trust.

Election forensics is not only important for verifying the integrity of an
election outcome; it can also be used to correct the election result. For
example, if a technical problem during the voting phase corrupted some of
the cast votes, an investigation may recover the lost votes [51]. Finally,
election forensics can help us to understand why problems occur, and how to
proceed in order to prevent similar problems in the future.

The first part of this chapter describes the investigation of the rectorial
election at UiB in 2009. Based on experiences from that investigation, the

33

Chapter 4. Election Forensics—Rebuilding Lost Trust

next sections focus on the information that must be gathered during an
election in order to support later investigations, and how to detect indications
of irregularities. Finally, different techniques for protecting the integrity of
gathered information are presented.

4.1 Investigation of the rectorial election at

UiB in 2009

As a consequence of the reported abnormalities in the rectorial election at
UiB in 2009 (rejection of votes, suspicion of election surveillance, and partial
tallies during the voting period), the candidates who lost the election filed
a complaint and asked for an independent investigation of the election [52].
The University selected Ernst & Young to do an investigation, focusing on
the following questions:

• Who have had the opportunity to access election data during the elec-
tion?

• Who have actually been reading election data during the election?

• What security mechanisms were added to the system to ensure that no
unauthorized individual can access the system?

• Is it possible to trace user activity in the election system?

4.1.1 Findings

Ernst & Young documented the results of their investigation in two different
reports—one which UiB made publically available [40], and one that UiB
chose not to disclose to the public [53].1 The reports are based on inter-
views and an investigation of the election servers’ electronic logs. The most
important findings from the two reports follow.

Access to election data during the election

In the reports, Ernst & Young distinguishes between anonymous election
data and non-anonymous election data. For data that are not anonymous, it
is possible to make a link between a voter and his vote, whereas anonymous
election data only give information about the content of each vote.

1UiB has given the author access to a copy of the private report, in which named
individuals have been anonymized.

34

4.1. Investigation of the rectorial election at UiB in 2009

Recall that the election board’s chairman and secretary stated that only
two “super users” at UiB were able to read non-anonymous election data (see
Section 3.3.2). Ernst & Young found that a total of twenty individuals, all
employees at the IT Department and the Division of Academic Affairs, were
able to read non-anonymous election data. Furthermore, eight individuals
could act on behalf of the voters in My Space, and consequently read the
content of their cast votes. These eight individuals could also cast votes on
behalf of the voters.

Eleven individuals at the IT Department had access to My Space’s data-
base and the possibility to read, alter, and delete non-anonymous election
data during the election period.2 Two individuals had access to non-anonym-
ous election data via backups. One person, the election board’s secretary,
had access to anonymous election data.

Finally, Ernst & Young found that one individual, without any relation-
ship to the IT Department, or the Division of Academic Affairs, was regis-
tered as “administrator” in one of the voting groups in My Space. A test
revealed that this user did not gain access to any kind of election data as a
result of his user role. However, Ernst & Yong notes that this user’s further
permissions and rights are unknown.

Reading election data during the election

When the election board’s secretary discovered the vote for the fictitious
candidates, UiB initiated their own investigation. This investigation was
started during the election. Based on interviews and electronic logs, Ernst &
Young found that two individuals (including the secretary) had read anony-
mous election data during UiB’s investigation. Furthermore, two individuals
at the IT-Department had read non-anonymous election data during this
investigation, in order to identify irregular votes.

Ernst & Young did not find any other individuals admitting that they
had misused their rights in the system. Ernst & Young was unable to con-
firm many of these statements for two reasons. First, among the twenty
individuals with access to non-anonymous election data, several individu-
als shared user credentials. Second, user activities in the election system
were only partly written to the log. Especially, most queries to the database
containing the election data were not logged during the election.

The only thing Ernst & Young could confirm based on the log files (assum-
ing that the integrity of the logs are correct), was that the eight individuals
with the opportunity to act on behalf of other voters, had not done so.

2One individual among the eight who could act on behalf of other voters is also among
the eleven individuals at the IT Department with access to My Space’s database.

35

Chapter 4. Election Forensics—Rebuilding Lost Trust

Security mechanisms to prohibit unauthorized access

According to the reports from Ernst & Young, UiB has neither developed any
formal list of requirements for their election system, nor formally specified the
individuals with legitimate access to election data. Moreover, votes stored
in My Space’s database are not encrypted, and there exists no mechanism
ensuring the integrity of stored votes. Finally, the reports state that UiB
has not performed any kind of formal risk assessment of My Space’s survey
module, or My Space as a system.

Other observations

During the election, the election board’s secretary made an overview pre-
senting voter turnout for different periods of the voting phase. In one period
there is a decrease in overall turnout, compared to the previous period. The
secretary explains that this decrease was caused by typing errors when mak-
ing the overview. Ernst & Young was unable to verify this claim.

In order to make the survey module in My Space more “suitable” for
election purposes, the IT Department has deployed several changes to the
survey module’s source code. My Space’s system owner, the Division of Aca-
demic Affairs, has not always been involved in this process. Ernst & Young
recommends that deployment of changes should be made more formally, and
involving the system owner.

4.1.2 Conclusions about election integrity

It was difficult to find evidence either proving or disproving the election re-
sult’s integrity because user activities in the election system were only partly
logged, and the lack of security mechanisms ensuring integrity of election
data. Hence, the reports from Ernst & Young do not draw any conclusions
about the correctness of the election result.

Because no evidence existed to prove that the election result was incorrect,
the election board concluded that the election result was correct [52].

4.2 Preparing for election forensics

Usually, it is the election board and the election officials that have the “bur-
den of proof” when an election outcome is put into doubt. As exemplified in
the previous section describing Ernst & Young’s investigation of the rectorial
election at UiB, gathering necessary documentation and information for use

36

4.3. When shall an investigation be initiated?

in a possibly forthcoming investigation is an important part of the election
process. Oppliger and Rytz [54] state:

“[E]vidence gathering focuses on collecting evidence before an
event occurs, whereas forensics focuses on collecting evidence
after an event. Nevertheless, evidence gathering and forensics
should go hand in hand and complement each other to provide
the most significant digital evidence possible.”

When it comes to e-voting systems, it is not always easy to determine
which information to collect. Too much information gathered may violate
the voters’ privacy. In [6, pp. 76–78], a list of data to collect is presented. This
list is especially tailored to elections using e-voting machines in controlled
environments. Based on Ernst & Young’s investigation of the rectorial elec-
tion, and the overviews in [6] and [51], Appendix A presents some examples
of data to collect that are more relevant for remote e-voting systems.

4.3 When shall an investigation be initiated?

Bishop et al. [51] suggest that election forensics is initiated when suspicion
exists that one or several basic election requirements are violated. Basic
election requirements may for example be the non-functional requirements
presented in Chapter 2. Information gathered during the election (see Ap-
pendix A) can be used to evaluate indicators, established ahead of the elec-
tion, to determine possible violations of requirements. In e-voting systems,
some indicators can be realized by the election system’s software itself.

4.3.1 Establishing indicators showing possible viola-

tions of election requirements

Bishop et al. [51] lists several indicators, especially tailored to voting ma-
chines used in controlled environments. Some of the indicators hold for re-
mote e-voting systems as well. Based on [51], this section presents examples
of indicators relevant for remote e-voting systems.

Abnormal system behavior

Abnormal system behavior, like repeated system failures, or undocumented
error messages from software or hardware components, may indicate the
need for an investigation. In a remote e-voting system, abnormal system
behavior does not necessarily occur on the server side. Voters may experience

37

Chapter 4. Election Forensics—Rebuilding Lost Trust

abnormal behavior on their computers. Election officials depend upon reports
form the voters to detect abnormal behavior on the voting clients. Because
voters’ technical skills are likely to vary, it may be wise to announce some
information about what voters can expect as normal system behavior, as well
as abnormal system behavior on the voting clients. All feedback from voters
must be systematically categorized.

Abnormal voter turnout

An expected number of votes in each precinct can be estimated before the
election. If the total number of votes, or the number of votes in a precinct, is
obviously too small (or negative), or obvious too large, it is natural to raise
a question about accuracy. For example, in the presidential election in the
U.S. in 2000 Al Gore got a negative count of −16022 votes in Volusia County
in Florida [5, Ch. 6]!

Abnormal voter behavior

Empirical data from previous, or similar elections, can be used to predict
the voters’ behavior. Abnormal—or unexpected—voter behavior may indi-
cate the need for further investigation. Figure 4.1 shows the distribution of
received e-votes over time in two different elections in Estonia [55]. By com-
paring the two elections we see several similarities in voter behavior. During
the voting phase, almost every day has a local peak of received votes around 9
AM and 21 PM. Moreover, in both elections the number of cast votes peaks
during the last hour of the voting phase. An unexpected large number of
votes cast within a limited time frame at an unexpected point of time, may
indicate irregularities.

To mitigate coercion and vote selling, the voters in Estonia are able to
vote multiple times via the Internet. Only the last vote cast will be included
in the final tally. Furthermore, voters who have voted via the Internet can
also cast a paper vote (p-vote) on election day. A p-vote will cancel all
previous e-votes cast by the voter. The Norwegian E-vote 2011 project will
use a similar arrangement for the 2011 municipality election.3

Table 4.1 shows the number of voters who cast multiple e-votes, and the
number of voters who canceled their e-votes by casting a paper vote, in four
recent Estonian elections. A high number of cancelled votes may indicate
that coercion is a serious problem, but there may exist other explanations as
well. For example, a political event during the voting phase may lead voters
to change their mind and cast a new vote. There is also the possibility that

3http://www.e-valg.dep.no/

38

4.3. When shall an investigation be initiated?

2500

2000

1500

1000

500

0

5000

4000

3000

1000

0

2000

May 28
9.00 am

May 29
9.00 am

May 30
9.00 am

May 31
9.00 am

June 1
9.00 am

June 2
9.00 am

June 3
9.00 am

Oct. 8
9.00 am

Oct. 9
9.00 am

Oct. 10
9.00 am

Oct. 11
9.00 am

Oct. 12
9.00 am

Oct. 13
9.00 am

Oct. 14
9.00 am

European Parliament Election 2009

Local Election 2009

Figure 4.1: Number of e-votes received each hour during the e-voting phase of

two different elections in Estonia in 2009.

there exists some malware, installed on the voters’ computers, resubmitting
votes on behalf of the voters. (Note that only a few cancelled votes do not
necessary imply that the problem of coercion is non-existing. It may be the
case that the countermeasures are ineffective.)

Abnormal ballot corrections

In many elections, the voters are allowed to make corrections on the ballots,
for example, adding write-inn candidates to the ballot, or make a reordering
of the listed candidates. An unexpected high (or low) number of corrected
ballots should be investigated. It is conceivable that a special political situa-
tion, or usability issues on the voting client can affect the number of corrected

39

Chapter 4. Election Forensics—Rebuilding Lost Trust

Statistics about Internet Voting in Estonia

Internet E-votes Multiple
Voters Cancelled Internet

by P-votes Votes
Local Election 2005 9 317 30 364
Parliamentary Election 2007 30 275 32 789
European Parliament Election 2009 58 669 55 910
Local Election 2009 104 413 100 2 373

Table 4.1: The table shows total number of votes cast via the Internet, the number

of voters who canceled their e-votes by casting a p-vote, and the number of voters

who cast multiple votes via the Internet, in four recent Estonian elections.

ballots in an election. However, it may also be the case that a threat is manip-
ulating the voters’ ballots, for example using some sort of malware installed
on voters’ computers.

Votes cast from the same computer

A large number of votes cast from the same computer should be investigated.
For example, the majority of Estonian voters only cast one e-vote (see Table
4.1). Voters within the same household may use the same computer to cast
their votes, thus, one should at most expect a handful of votes cast from
each computer. The exception here is computers placed in public places like
libraries, schools, and Internet cafés.

Prediction of election results

Social scientists have shown that many elections are highly predictable, es-
pecially presidential elections in the USA. Alvarez and Katz [56] suggest
that prediction of election results can be used to indicate irregularities and
election fraud.

In the 2002 general election in the USA, the State of Georgia intro-
duced touch-screen based voting machines produced by Diebold. Because of
Diebold’s strong connections to the White House and the Republican Party,
there was a widespread concern—especially among Democrats—that the vot-
ing machines might be tampered with in favor of the Republicans [57]. In
order to try out the hypothesis of using election predication as a method for
detecting election fraud, Alvarez and Katz made predictions of the election
results for all 159 counties in Georgia. Their predictions included both the

40

4.3. When shall an investigation be initiated?

senate election and the gubernatorial election. For each county, Alvarez and
Katz compared the actual election result to a 95 percent confidence interval
of the predicted result. The election results were outside the confidence in-
tervals in 35 counties in the gubernatorial election, and in 34 counties in the
senate election. Because the republicans did better than predicted in all 35
counties of the gubernatorial election, and the democrats did better in all
34 counties of the senate election, Alvarez and Katz find it unlikely that the
voting machines had been systematically fixed. They argue that if someone
had systematically tampered with the voting machines, they would in that
case have rigged the machines in favor of the Republicans in the gubernato-
rial election, and in favor of the Democrats in the senate election. Alvarez
and Katz find this unlikely, and conclude that the unexpected election results
can be explained due to poor tactical political choices.

This may be a reasonable explanation. However, it may also be the case
that the forecast model was wrong. Alvarez and Katz based their forecast
model on two variables: results from the previous races for governor and
senate, and the percentage of the county population that is non-white. In this
analysis, Alvarez and Katz were not interested in getting a “true” prediction,
only a good forecast. It is not unlikely that using other variables, like rate
of economic growth or inflation, would have produced a different forecast.

Another method for predicting election results is the use of a prediction
market (also know as information market or election stock market). In a
prediction market, a group of individuals is used to predict the final election
result [58]. The group members are not asked what they are going to vote on
election day, but what they think the final election result will be. The basic
idea is that every individual possesses some relevant information about the
election and the political landscape. By aggregating all individuals’ informa-
tion it is possible to make a good prediction of the final result. Prediction
markets have proven to be a good method for predicting election results. Ar-
nesen [58] conducted an experiment with prediction markets before the 2009
Norwegian parliamentary election.4 Compared to contemporaneous polls,
the prediction markets were closer to the final election result in 88 % of the
comparisons [58].

Prediction of an election result, either using a prediction market or a
variable based forecast model, may be used as an indicator for detecting
irregularities. The main benefit of using election predications as an indicator
is that it can be realized by the administrative part of the e-voting software.
Because of the uncertainty of election prediction in general, this indicator
should be used in addition to other indicators.

4http://past2009.uib.no/info/about.php

41

Chapter 4. Election Forensics—Rebuilding Lost Trust

Benford’s Law Frequencies

Digit First digit Second digit
0 - .120
1 .301 .114
2 .176 .109
3 .125 .104
4 .097 .100
5 .079 .097
6 .067 .093
7 .058 .090
8 .051 .088
9 .046 .085

Table 4.2: Benford’s Law frequencies for the first and the second digit.

Test based on Benford’s Law

Recently, some research has been done to find other statistical methods—
not depending upon (subjective) assumptions about the election result—
detecting indications of election irregularities. Benford’s law (also called the
first digit law) states that in many sets of statistical data, the value of the
first digit and the second digit follows a specific distribution. Hill describes
the phenomenon of Benford’s law in [59]. For example, the digit one will
occur as the first digit with a probability of 30.1%, meanwhile the digit nine
will occur as the fist digit with a probability of only 4.6%. The frequencies of
first and second digits according to Benford’s Law are presented in Table 4.2.

Benford’s Law has been found to have many “real-world applications”.
For example, several occurrences of financial fraud have been detected us-
ing Benford’s Law [59, 60]. Benford’s Law can also be used to test new
mathematical models [59].

The most important question in this setting is whether Benford’s Law
applies to vote counts, and can be used to indicate irregularities. This is a
controversial topic (see [61, 62] and [63, pp. 132–134]).

It is quite clear that vote counts at the precinct level often don’t follow
the distribution of Benford’s Law when looking at the at the first digit. The
reason for this may be that precincts often are designed to be of equal size,
including the same amount of voters. From this observation we see that if
a candidate or a party gets roughly the same percentage of votes in each
precinct some digits will be overrepresented [61]. Taking this into account,

42

4.3. When shall an investigation be initiated?

Mebane [61] chooses to focus on the second digit when looking at election
results.

According to Hill [59] the phenomenon of Benford’s Law often occurs
when (random) samples of data from different distributions are combined.
Mebane [61] claims that vote counts on precinct level can be seen as a mixture
of different statistical distributions. He explains this by arguing that voters
have to make several decisions, like when and where to vote, and for which
party or candidate to vote for, before they cast their vote. Furthermore, it is
expected that a small proportion of voters will make “mistakes” when they
vote. Mebane states that [64]:

“Differences in partisanship, economic class, mobilization cam-
paigns, administrative rules, and other details cause the propor-
tion of voters who intend to choose each candidate or ballot ques-
tion to vary across precincts. If such variations are combined
with small and also varying probabilities of ‘mistakes’ in making
or recording each choice, then the resulting precinct vote counts
will often follow the 2BL [second digit Benford’s Law] distribu-
tion.”

Mebane argues that systematically manipulations of election results, es-
pecially in tied races, will be reflected by a 2BL test [64]. However, he also
notes that the 2BL test is not sensitive to all kinds of manipulations. If
the amount of manipulation is small and distributed randomly among the
precincts, the 2BL test will probably not detect the fraud. Similarly, a vote
count that diverges from Benford’s Law does not necessarily indicate irregu-
larities like election fraud. Mebane suggest that a Benford’s Law test should
be used as a supplement to other indicators.

Several elections have been tested against Benford’s Law. For example,
the presidential elections in the U.S. in 2000, 2004 [64], and 2008 [62], the
presidential election in Iran in 2009 [65, 66], and the presidential election in
Mexico in 2006 [61]. Because of the uncertainty of the results from these
analyses, and the controversies regarding use of Benford’s Law in election
forensics, more research has to be done before we can say that this is a solid
indicator.

The main benefit of a Benford’s law test (assuming that precinct level
vote counts follows a Benford’s Law distribution) is that it does not depend
upon predictions of election results, or assumptions of voters’ behavior. Fur-
thermore, given vote counts on precinct level, the test is easy and efficient
to compute. Thus, this second-digit test can easily be implemented in the
administrative software in e-voting systems.

43

Chapter 4. Election Forensics—Rebuilding Lost Trust

Last-two digits distribution

A quite different approach than Benford’s Law has been used to look for non-
random patterns in vote counts. To analyze Venezuelan elections between
2006 and 2009, Levin et al. [67] looked at the two last digits in vote counts.
Individuals tend to avoid paired numbers (like 11, 22, 33 etc.) if they are
asked to write down a random sequence of numbers. If the distribution of the
two last digits in a vote count is not uniformly distributed (i.e. paired num-
bers occur less frequently than one tenth of the time), further investigation
should be initiated.

To exemplify this indicator, we analyzed the 2009 Norwegian parliamen-
tary election.5 Here we looked at the last-two digits in vote counts for every
precinct in the four largest cities in Norway (Oslo, Bergen, Stavanger, and
Trondheim). By summarizing the occurrence of paired numbers in the two
last digits, we found that paired numbers had an average frequency of 0.110,
close to the expectation of 0.1. Figure 4.2 shows the frequency of paired
numbers for the seven largest parties.

The distribution of the last two digits is not sensitive to all kinds of
election fraud. However, the test of the distribution is easy to implement in
an electronic voting system, and is likely to detect fake election results made
by individuals.

4.4 Protecting the integrity of collected in-

formation

Collected information, intended for use as evidence in an investigation pro-
cess, must be shown to be trustworthy. The main weakness of electronic
evidence is that it is easy to manipulate, and the fact that it has been ma-
nipulated can be difficult to detect or prove. Different techniques can be
used to make manipulation of data more difficult, and possible manipulation
easier to detect. This section presents two different approaches to increase
the trustworthiness of collected information.

4.4.1 Digital signing of documents

Documents can be signed digitally if a Public Key Infrastructure (PKI) is
available. The purpose of signing a document digitally is to prove that the
document has not been changed after it was signed. The signature will

5http://www.regjeringen.no/krd/html/valg2009/

44

4.4. Protecting the integrity of collected information

!"!!!#

!"!$!#

!"!%!#

!"!&!#

!"!'!#

!"(!!#

!"($!#

!"(%!#

!"(&!#

!"('!#

)# *+# *,# -./# +# 0# /.,#

,12345#678943#:34;746<=#:>3#41<?#@13A=#

)B431C4#

Norwegian parliamentary election 2009
(four largest cities)

Figure 4.2: Frequency of paired numbers in the Norwegian parliamentary election

in 2009.

also point to the entity (i.e. an individual or a computer) that signed the
document.

In practice, signing a document digitally is a three-step process. First,
the signer hashes the document, using a one-way hash-function. Second, the
signer makes the “signature” by encrypting the hash-value with his private
key. Third, the signature is attached to the document.

Verifying a document’s signature is a similar process. First, the verifier
hashes the document by using the same hash-function. Second, the verifier
decrypts the “signature”, using the signer’s public key. The signature is valid
if the result of the decrypted signature equals the document’s hash-value (see
[68, Ch. 2 and 13] for more information about digital signatures).

As pointed out by Oppliger and Rytz in [54], the trustworthiness of a
digitally signed document depends on several security assumptions. First,
we must assume that that the private key—used to sign a document—is not
compromised. Second, we must assume that the cryptographic hash function
works as intended. Third, we must assume that a document’s hash value is
unaltered when it reaches the signing device.

45

Chapter 4. Election Forensics—Rebuilding Lost Trust

4.4.2 Immutable audit logs

User interactions with the election system and communications between sys-
tem components are typically stored in electronic logs. The main purpose of
logging and auditing is to identify policy violations and unwanted behavior
in systems. An extensive use of logging and well-established policies for doc-
umenting important procedures may also have a preventive effect. Potential
adversaries may find it less attractive to try to violate the election system if
they are aware of the fact that all interactions are under surveillance.

A well-known problem with regular logging is that an adversary can take
control over the log and hide his attacks on the system. To protect the
integrity of an audit log, one must deny adversaries the ability to delete,
alter, or reorder existing log entries, as well as inserting fake log entries. The
term immutable audit logs (also known as tamper-resistant logs) denotes
technical approaches to make logs more reliable.

Schneier and Kelsey [69] presented a method for creating secure logs to
support computer forensics. Their method has been used as a foundation
for many subsequently proposed secure logging systems. In this section, we
present some of the main concepts in Schneier and Kelsey’s logging scheme
to give an idea of what a secure logging systems may look like.6

The Schneier-Kelsey scheme takes place between an untrusted logging
machine U and a trusted remote server T . Before U opens a new audit log,
it establishes a shared secret key A0 with T . New secret keys are regenerated
for every new log entry Li by using a one-way hash function: Ai+1 = H(Ai).
Once a secret key Ai is used, U computes Ai+1, and deletes its copy of Ai.
Each log entry Li contains three parts:

1. Log entry data, denoted Mi, i = 0, 1, 2, 3, . . .

2. A chained hash Yi where:

Yi = H(Mi‖Yi−1) and Y0 = H(M0).

3. A message authentication code (MAC) denoted as Zi, computed over
Yi with the current secret key Ai:

Zi = MACAi
(Yi).

To close the log file, U writes a special final-record message Df and deletes
Af . In Schneier and Kelsey’s complete version of the scheme, the data field

6This simplified version of the Schneier-Kelsey scheme is based on Ma and Tsudik’s
presentation of the scheme in [70].

46

4.4. Protecting the integrity of collected information

in every log entry is encrypted. The possibility to encrypt the data field is
especially useful if sensitive data are logged (see [69] for further details).

Due to this scheme, it is possible for T to verify the hash chain by going
through Y0 up to Yf . Because T knows A0, T is able to calculate Af by
hashing A0 f times. In order to verify the correctness of Zf , T can calculate
Zf = MACAf

(Yf).
Schneier and Kelsey note that their system does not prevent all possible

manipulations of the audit log. However, the scheme will detect most ma-
nipulations, like deletions of log entries. In other words, the purpose of the
system is to detect manipulations after the fact. Based on this observation
they suggest that the log can be written to a “write-only” media, for example
a CD-ROM or a paper trail. Furthermore, if U is likely to be compromised,
U can send its log entries to T continuously.

Note that one can never guarantee that a logging mechanism will gather
all intended information. Developers may have created “back doors” in the
system—either deliberately or accidental—where user activity may omit log-
ging [71].

4.4.3 Design considerations for immutable audit logs

When implementing audit logs, several important design considerations must
be made [71]. An e-voting system is likely to have a large group of users (vot-
ers, election officials, and system operators). Logging all users’ interactions
with the system, all information exchanges between system components, and
all activity within each system component, will create an enormous amount
of data. Hence, system owners must carefully consider what to log to fulfill
the auditors’ requirements.

Furthermore, if we consider the time complexity of generating each log
entry, and the additional information added to each log entry in order to en-
sure integrity, immutable audit logs create some more “overhead” compared
to regular logs. Extensive logging may decrease overall system performance.
Thus, deciding what to log in regular logs, and what to log in immutable
audit logs are important.

One should also be aware of the fact that aggregation of data from dif-
ferent logs may potentially violate users’ privacy. All collected data must
therefore be considered as a whole.

Finally, in order to make an audit system functional, necessary tools to
read the audit log must be provided. For example, in 1996 Anderson [72,
pp. 384–385] found that Sun’s operating system Solaris did not provide tools
to read audit data. Nor was the audit format documented. Anderson states
that:

47

Chapter 4. Election Forensics—Rebuilding Lost Trust

“The audit facility seemed to have been installed to satisfy the for-
mal checklist requirements of government system buyers, rather
than to perform any useful function.”

4.5 Dealing with reports of irregularities

According to [6, p. 63], many election officials prefer to avoid careful scrutiny
of the election process because the likelihood of irregularities being exposed
increases. Such an attitude is somewhat dubious. Even though election
officials often have limited resources, it is important that both voters and
candidates can trust election officials to do everything within their power to
ensure that irregularities and election fraud are detected. If evidence exists
suggesting that election officials have neglected indications of irregularities,
or not collected the necessary information to prove the correctness of an
election, the public’s trust in the election will decrease.

An electronic election is an irreproducible event [54]. In other words, it
is impossible to reconstruct what exactly happened when each ballot were
cast. This makes it often difficult to determine the impact of discovered
irregularities in e-voting systems. Most attacks on paper-based elections do
not scale very well—in electronic elections they do [73].

Examples of irregularities with unknown impact may be reports of mal-
ware on voters’ computers changing the voters’ ballots, or discovering an
anonymous web site buying votes. It is difficult to determine how widespread
the malware is, and it may be impossible to determine if vote buyers man-
aged to influence the election result. There is no easy answer on how to react
to irregularities like this. However, it is important to consider such scenarios
before deploying an e-voting system.

48

Chapter 5
Trust by User Involvement

Trust but verify.
Ronald Reagan

In most traditional paper-based elections the voters cast their votes and
hope the votes will be included—unaltered—in the final tally. Trust in paper-
based election systems is often based on layman control, independent election
observers, and the fact that the election procedure is relatively transparent
and easy to understand. This is not the situation for most e-voting systems.
An e-voting system is often too complicated to understand for a regular
voter, and layman control becomes difficult. This Chapter presents some
techniques and protocols that can be used to verify critical parts of the
voting and tabulation phases in an e-voting system.

5.1 Is disclosure of source code a key factor

for free and fair elections?

Election systems where source code for the computer systems used to cast,
receive, process, and tabulate the votes are not disclosed, are often referred to
as black box voting systems. Adida [74] states that it is an important principle
to not count votes in secret. He argues that using proprietary software, with
undisclosed source code, means counting votes in secret.

Many leading e-voting suppliers do not share much information about how
their system works [75]. Especially, they do not disclose their source code
[44]. The Norwegian E-vote 2011 project has made an important decision
by demanding that the software vendor delivering the e-voting system must

49

Chapter 5. Trust by User Involvement

make the source code publicly available.1 Disclosing source code sends an
important signal about openness and transparency. However, most voters do
not have the necessary skills to make a qualified opinion about the system’s
suitability as an election system by looking at the source code. It is therefore
important to ensure that groups of competent people make an effort to verify
the quality of the source code.

According to Arce [76, p. 10], the CTO of Core Security Technologies:

“Reliable software does what it is supposed to do. Secure software
does what it is supposed to do, and nothing else.”

It is crucial that an electronic election system does what it is supposed
to do, and nothing else. Even though all source code for the election system
is made publicly available for inspection, we still have two major challenges
to overcome before we can conclude that the software is secure enough to be
used for election purposes. First, how does one proceed in order to verify
that the software “does what it is supposed to do, and nothing else”? Second,
how can one verify that the software in the different election components are
based on the source code that is made publicly available?

5.1.1 Analyzing the source code

Reviewing source code is a difficult task. It can be done automaticly, or man-
ually. One example of automatic code reviews is static code analysis. Static
code analysis reviews the source code based on predefined rules [76]. Doing
static code analysis is important, but this is first and foremost an approach
to find bugs and to some degree security flaws—not to detect malicious code
that is added to the source deliberately.

A manual code review can be done in an effort to detect malicious code
or unwanted system behavior. This requires that the source code is easy to
read and well documented. Manual code review of complex systems, like an
e-voting system, is likely to be very time-consuming and hard. According to
Rubin, a manual code review is hard or almost infeasible [44, p. 240]:

“If a graduate student in computer science can hide bugs in five-
line programs that can fool ten other grad students and two senior
researchers, imagine what professional programmers can hide in
fifty thousand lines of code.”

1Note that this demand does not apply to the software used to scan paper ballots, nor
the authentication mechanism used to authenticate the voters.

50

5.2. Code voting

5.1.2 Which code is actually running?

A suggested solution to the second challenge—how to decide whether or not
the software in use on the election server differs from the source code that
is made publicly available—is to compute a hash of the compiled code once
it is verified and approved [44]. By generating a new hash of the installed
compiled code at a later point in time, election officials and election observers
can compare the new hash to the one created at the point of approval. If the
hashes are equal, they can conclude that it is the approved compiled code
that is actually running on the election server. This sounds like a reasonable
solution, but have some practical disadvantages. First, the voters are not
able to verify the hashes because they do not have access to the compiled
code running on the server. Hence, the voters must trust the election official
and the election observers. Second, in an remote e-voting system most voters
are not capable of verifying the integrity of the voting client.

5.1.3 Transparency builds trust

Making the source code for e-voting systems publicly available, and inviting
voters, candidates, and researchers to inspect the code, is first and foremost
an important means for building trust. Kitcat [75] argues that disclosing
source code does not solve (what he calls) “the fundamental challenges that
e-voting presents”. Adida [77] argues that verification of election integrity is
more important than disclosure of source code. If the software vendor can
prove that the election result is correct, then it is subordinate if they used
proprietary software to calculate the result.

5.2 Code voting

So far, this thesis has mainly focused on voters’ trust in election officials
and the e-voting system. Voting in an uncontrolled environment (via per-
sonal computers at home) brings in another important trust aspect—can the
voters trust their own computer as a voting client? Malware (like viruses
and trojans) infect many computers. It is not unlikely that some adversaries
create malware that can affect the voting process. This unwanted program
snippet does not disturb the voter, but when the voter casts his vote the mal-
ware changes the content of the ballot into something else. The voter gets
no indications that something is wrong, but the vote recoded on the server
is not in accordance with the voter’s intention. At worst, such malware can
change the outcome of an election. Furthermore, key loggers, or malware
capturing the voters’ computer screen, may infringe privacy.

51

Chapter 5. Trust by User Involvement

A technique called code voting (or pre-encrypted ballots), is a counter-
measure against unsecure voting clients [78, 79]. Ahead of the election, voting
cards are distributed to the voters. On the voting cards, each voting option
(i.e. each political party or candidate) is assigned a random code (see Figure
5.1). All voters will receive a set of personal codes. For example, the code
corresponding to “Party A” will be different for two different voters.

Voting Card - Alice

Party Voting Code

Party A 874926

Party B 936584

Party C 147647

Party D 594743

... ...

Voting Card - Bob

Party Voting Code

Party A 484205

Party B 583352

Party C 915293

Party D 226934

... ...

Figure 5.1: Example of voting cards.

In order to cast a vote, the voter submits a code from the voting card
corresponding to the party or the candidate the voter wants to vote for.
An eavesdropper will not be able to determine the voter’s choice, unless the
eavesdropper has a copy of the voter’s voting card.

5.2.1 Verification codes

Even if an adversary is unable to determine the content of a voter’s ballot,
the adversary still has the opportunity (via malware or by acting as a man-
in-the middle) to delete the vote before it reaches the election server. A
countermeasure against this kind of DoS attack is to extend the code voting
protocol to also include a set of verification codes. Once the election server
receives a vote, the server sends a verification code back to the voter. The
voter checks that the verification code he received from the election server
matches the verification code printed on his voting card. The reception of
a wrong verification code indicates that the vote has been changed during
transfer to the election server. If no verification code is received, the voter
can assume that the vote did not reach the election server at all.

In [80], Ansper et al. discuss different approaches for delivering verification
codes to the voters. They suggest using an out-of-band channel like mobile
phones and SMSs for sending out verification codes. Studies have shown
that SMS is not a perfectly reliable channel [81], and SMS is vulnerable

52

5.2. Code voting

to a wide range of different attacks like spoofing attacks, and DoS-attacks
[82]. Appendix B presents an evaluation of Encap, a system developed for
transmitting codes (for example one-time passwords) to a user’s mobile phone
in a secure way. The evaluation was published in [83].

5.2.2 Code generating and distribution

Generation and distribution of voting cards is one of the critical parts of the
code voting protocol. First, the codes must have a sufficient length to ensure
that an adversary is unlikely to guess the correct code for a party. Oppliger
[79] concludes that a four decimal digit code is enough to both make the
code hard to guess, and add some redundancy (i.e. a checksum) to the code
in order to detect errors. Second, the voting cards must be generated in a
“secure environment”. It must be infeasible for an adversary to reconstruct a
voter’s voting codes, or obtain a copy of the voters’ voting cards. Finally, it
is recommended that voting cards are distributed to the voters via a trusted
“out-of-band” channel, for example via postal mail. If the set of voting codes
is distributed directly to the voters’ computers, malicious software can obtain
the codes, and both determine and change the content of the voters’ votes
before they are sent to the election server.

Oppliger [79] suggests that a keyed one-way hash function, also known as
a message authentication code (MAC), can be used to generate the voting
codes. Inputs to the hash function are the string M (a concatenation of the
reference number for the vote and the voting card’s ID), and the candidate (or
party) Ci. For example, the voting code V Ci for candidate Ci, is computed
by the following hash, truncated to 10 bits,

V Ci = (MACk(M ‖ Ci))10,

where ‖ denotes concatenation. The encryption key k for the MAC func-
tion is kept secret (for example inside a tamper-resistant hardware module),
such that only the election server has access to the key.

5.2.3 Counting code votes

How the votes are tallied in a code voting system depends much upon on how
the codes are generated. In order to count the votes from Oppliger’s protocol,
the tabulation server re-computes the possible voting codes for each voter and
compares the voter’s values with the code in the received vote. Due to this
scheme, protecting the correlation between the voters and their voting cards
is tremendously important. Malicious election officials may compromise the

53

Chapter 5. Trust by User Involvement

voters’ privacy if they manage to trace the voting card reference back to the
voter, and at the same time get access to the encryption key.

5.2.4 Analysis of proposed verification code protocol

for the Norwegian e-voting project

Unsecure voting clients is a major concern for the Norwegian E-vote 2011
project. A code voting based solution was discarded early in the acquiring
process due to bad usability. However, all tenderers were urged to imple-
ment solutions that included some sort of verification codes. A “verification-
only” solution gives the voters the opportunity to verify that their votes have
reached the election server unaltered. Thus, malware capturing the voters’
computer screens can only compromise the voters’ privacy.

In this section we will discuss some aspects of a verification code scheme,
proposed by the Estonian company Cybernetica AS in collaboration with the
Norwegian company Computas AS [84].2

The voting protocol takes place between the voter, and three servers: the
vote collector server (VC), the messenger server (MS), and the tabulation
server (TS). Ahead of the election, each voter receives a voting card with a
set of verification codes. In addition, two pairs of asymmetric cryptographic
keys are established: one for MS and one for TS. The protocol assumes
that all voters are members of an existing Public Key Infrastructure (PKI),
and are able to encrypt and digitally sign their ballots. The main steps of
the protocol are summarized in Figure 5.2. Here follows a more detailed
explanation:

1. The voter encrypts two copies of his vote, one encrypted with the MS’s
public key and one encrypted with the TS’s public key.

2. The voter generates a non-interactive zero-knowledge (NIZK) proof,
proving that the two encrypted votes correspond to the same candidate,
and that the encrypted votes correspond to a valid candidate.

3. Finally, the voter digitally signs the encrypted votes and the NIZK
proof, and sends the signed votes and the NIZK proof to the VC.

4. When the VC receives the votes from the voter, it verifies the signatures
and the NIZK proof. If the verification succeeds, the VC stores the vote
encrypted with the TS’s public key, and initiates a proxy oblivious
transfer (POT) protocol with the MS

2The tabulation process is not described in [84] and will not be considered here.

54

5.2. Code voting

A

Internet

Voter Vote Collector
ServerVote (e) encrypted with

the TS's public key

Vote (e') encrypted with
the MS's public key

e'

e

D

Cast vote

Verification code
recived on SMS

Voter's voting card with
verification codes

Voter

B

Messenger
ServerMS's public key

Voter's
verification codes

e'

r

Randomly ordered
ciphertexts (r)

Vote Collector Server

Function f1

C

Messenger Server

Voter

MS's private key

Verification code
sent via SMS

r

Randomly ordered
ciphertexts Discarded

numerical
values

Function f2

Verification Code Protocol

Voter compares
the verification

codes

?

Figure 5.2: Overview of proposed verification code protocol. In step B the VC uses

the voter’s verification codes, the MS’s public key, and the vote encrypted with the

MS’s public key as input to the function f1 to compute a list of randomly ordered

ciptetexts r. Furthermore, the VC sends r to the MS. In step C the MS uses his

private key and r as input to the function f2 to compute the correct verification

code for the vote, which is sent to the voter’s mobile phone.

55

Chapter 5. Trust by User Involvement

5. The purpose of using POT is to make the MS able to calculate the
correct verification code, and send it to the voter, without decrypting
the voter’s ballot. The VC knows the set of verification codes that is
given to each voter but is unable to determine which code to return to
the voter, because the VC cannot decrypt the votes.

In the first step of POT, the VC computes a list of randomly ordered
ciphertexts r. The function f1, which is used to generate r, takes the
received vote encrypted with the MS’s public key, the voter’s set of
verification codes, and the MS’s public key as input. The VC sends r

to the MS. See [84] for further details regarding the POT protocol.

6. The MS uses r and the MS’s private key as input to the function f2.
The output from f2 is a list of numerical values. One of the numerical
values in the output differs from the rest by being very small. This
smallest value is the verification code for the vote. The MS sends
the verification code to the voter, e.g., via an out-of-band channel like
SMS. Note that the MS does not receive neither the encrypted votes,
nor information that makes it possible for the MS to determine which
verification code that belongs to which candidate.

7. Finally the VC signs all received votes encrypted with the TS’ public
key, and sends them to the TS for tabulation.

This protocol seems to be robust against threats (for example insiders)
with access to only a limited part of the system, like one of the central
servers. On the other hand, if a threat is able to take control over a number of
important system components, several attacks become possible. For example,
if a threat controls both the VC and the MS (i.e. the threat has access to the
encrypted votes and the MS’s private key), or a threat in control of the MS’s
private key is able to eavesdrop on the communication between the voters
and the VC, the threat can decrypt the voters’ ballots. Similarly, if a threat
controls both the voting client and the service sending out the verification
codes, he can insert a forged ballot on behalf of the voter, and discard the
verification code. Because the verification code for the forged ballot never
reaches the voter, the voter will not notice anything. A version of this attack
is described by Gjøsteen in [85, Section 2].

The Norwegian e-vote 2011 project will use a different voting protocol
with similar properties to the ones described here [85]. Instead of using a
POT protocol, the Norwegian system will share the election’s private key
between the different election servers. The TS gets the key a1, the VC gets
a2, and the MS gets a3. The keys are related as a1 + a2 ≡ a3 (mod q),

56

5.3. End-to-end verification

where q is a big prime number. Details about how the verification codes are
generated can be found in [85].

A threat with access to both the VC’s and the MS’s private key, will be
able to reconstruct the TS’s private key, and decrypt voters’ ballots. To mit-
igate this possible attack, the Norwegian e-voting project plans to physically
separate the MS and the VC. Furthermore, the two servers will be operated
by different sets of individuals, and no single individual can access any of the
servers alone.

5.2.5 Code voting and trust

The main advantage of an election system based on code voting is that voters
can use untrusted computers to cast their votes. On the other hand, if
the voters’ main untrust (or distrust) is directed against election officials in
charge of the election servers, code voting is not the right way to go.

5.3 End-to-end verification

In an end-to-end verification voting system two different properties are im-
portant: personal verifiability and universal verifiability (first introduced in
Section 2.1.1). Personal verifiability is achieved when every voter can verify
that his vote was recorded and counted in accordance with his intention. In
an election system that supports universal verifiability, everyone can verify
that all cast votes were properly counted.

A standard code voting protocol with verification codes satisfies these
properties to some extent. The verification codes allows the voter to verify
that the vote was recorded as intended, but he is unable to verify that the
vote was included in the tally. Universal verifiability is not offered in any of
the code voting protocols described above.

A lot of research on end-to-end verifiable e-voting systems have been done
during the past decade, and several voting protocols and voting systems have
been proposed (see for example [86, 87, 88, 89, 90]).

Common for all these different voting protocols is that every voter gets
some sort of receipt after he has cast his vote. When the election is closed
and the tabulation phase over, the election officials publish information about
the tabulation process. First, information proving that all cast ballots have
been properly counted is published. Second, some information about each
counted ballot is published. By publishing information about each ballot,
the voters can use their receipt to verify that their ballot is included in the
tabulation.

57

Chapter 5. Trust by User Involvement

The main problem with end-to-end verification is how to protect against
coercion and vote selling. If a voter can use his receipt to verify that his
vote was included in the tally, so can the coercer. For this reason, Adida
concludes that Helios, an e-voting system offering end-to-end verification,
is suitable only for “low-coercion elections” like student governments, local
clubs, and online groups [89].

5.3.1 Desired properties for ballot receipts

First of all, the receipt should give the voter confidence that his vote was
counted. Besides cryptography, usability must be carefully considered when
designing the receipts in order to fulfill this property. If the procedure for
checking the receipts is badly designed, voters may become uncertain whether
or not their votes were counted. Second, the voter should not be able to use
the receipt to prove which party he voted for. Third, voters should not be
able to generate fake receipts. If it is possible for a voter to present a fake
receipt, and then claim that his vote was not included in the tally, he may
be able to cast doubt on the entire election result.

5.3.2 Novel receipt protocol

Recently, Raddum [91] has proposed a novel end-to-end voting protocol. The
protocol’s main goal is to fulfill the properties for ballot receipts listed in the
previous section, i.e., offer a high degree of personal verifiability and universal
verifiability. The protocol uses the ElGamal public key cryptosystem [92] to
encrypt the ballots.

In ElGamal, a multiplicative group G of prime order q generated by g

is constructed. A secret key x ∈ Z∗

q is chosen at random. The public key
k = gx is published together with g and q. To encrypt a plaintext m into
the ciphertext (a, b), a random parameter r is chosen. Encryption is done by
calculating (a, b) = (mkr, gr). Decryption is done by calculating m = ab−x.

One of the properties of ElGamal is that a given ciphertext (a, b) =
(mkr, gr) can be re-encrypted into (a′, b′) by generating (a′, b′) = (aks, bgs) =
(mkr+s, gr+s). Decryption can still be done in one step, and anyone knowing s

can prove that (a′, b′) is a re-encryption of (a, b) by running a zero-knowledge
proof.

Raddum’s protocol takes place between the voter, a vote collector server
(VC), and a tabulation server (TS). The protocol assumes that all voters are
members of an existing PKI, and are able to encrypt and digitally sign their
ballots. The main steps of the protocol are summarized below. The receipt
generation and the tabulation phases is depicted in Figure 5.3.

58

5.3. End-to-end verification

1. The voter, with voter ID VID, encrypts his ballot b by using ElGamal
and the election’s public key (p, g, k) :

Ek(b) = (bkr, gr)

2. The voter generates a timestamp t, or preferably, receives a timestamp
from a trusted server.

3. Finally, the voter cast his vote by sending the encrypted ballot, the
timestamp, his voter ID, and a signature of the encrypted ballot and
the timestamp, to the VC: Ek(b), t, VID, SigID(Ek(b) ‖ t). Voters are
allowed to cast multiple votes by repeating these three steps, but only
the last vote cast will be counted.

4. The VC stores all received votes in a table T .

5. When the voting phase is over, the VC sorts and re-encrypts all received
votes. During this process the last received vote form every voter is re-
encrypted and stored in a table R. All other votes are re-encrypted
and stored in a table S.

6. The VC publishes the set of encrypted ballots in T and the re-encrypted
ballots in R and S. Voter IDs, signatures, and timestamps for the
encrypted and the re-encrypted ballots are not published.

7. The re-encrypted ballots listed in R act as receipts. For each voter,
the VC sends a digitally signed copy of the voter’s re-encrypted ballot
stored in R to the voter. E-mail or SMS can be used to distribute the
receipts.

8. When the voter receives the receipt, he can check that his receipt is
listed in R.

9. Finally, the re-encrypted ballots stored in R are sent to the TS. Because
the VC knows which re-encrypted ballot belongs to which voter, the
ballots are sent through a mix-net before they are decrypted. The
mix-net removes any correlation between the voters and the ballots.

Coercion resistance and verifiability

Note that in the protocol described above, the voters do not receive their
receipts before the voting phase is over. The purpose of sending a receipt to
a voter, is to give the voter confidence that one of his cast votes is listed in

59

Chapter 5. Trust by User Involvement

B

A

Web Server

Vote Collector Server

Receipt Generation and Tabulation

MIX-net

MIX-net

R

S

T
Sorting and

re-encryption
service

All received
votes

Votes for counting

Tabulation
Server

MIX Server 1 MIX Server 2 MIX Server n

Re-encrypted
votes

All encrypted and
re-encrypted votes

are published
without voter IDs

Internet Voter

The re-encrypted vote
is sent to the voter

as a receipt

E
k
(b), t, VID, Sig

ID
(E

k
(b) || t)

Votes for
counting

Figure 5.3: Overview of the receipt generation and tabulation phases. All received

votes, stored in list T are re-encrypted and divided into the two lists R and S. List

R contains the votes that shall be counted. Each voter receives a copy of his re-

encrypted vote, stored in R. The re-encrypted votes in R are sent through a Mix-net

before they tabulated on the TS.

R. A coercer cannot check whether the voter has cast a new vote after being
coerced, because the receipt does not reveal any information about which
vote from T VC has included in R.

However, a dishonest VC can cheat in many different ways. VC can for
example put all votes from one voter in S, or put a vote that is not the most
recent one in R. So how can a voter be sure that his receipt is a re-encryption
of his most recently cast vote? A solution is to use a set of trusted auditors
to verify that VC behaves correctly. Based on timestamps, signatures and
voter IDs, the auditors can identify the votes in T that should be placed in R.

60

5.4. Does end-to-end verification increase the voters’ level of trust?

All mixing nodes in the mix-net between R and TS can produce universally
verifiable proofs of correctness. Thus, if the voters trust the auditors, the
remaining part of the mixing and decryption procedure can be verified and
trusted. Readers interested in verifiable mix-nets are referred to [93, 94, 95].

Because the voters have to trust the auditors, Raddum’s protocol is a
trade-off between coercion resistance and universal verifiability. However, the
protocol defines clearly what the auditors must control to verify the elections
integrity. And the protocol is rather easy to explain—which is important to
build trust.

Suggested improvements

As mentioned earlier in this Chapter, usability must be considered when
designing a voting protocol with receipts. The main usability drawback of
Raddum’s protocol is that the receipts (i.e. a re-encrypted ballot represented
as a hexadecimal value) are sent back to the voters via e-mail or SMS. First,
e-mail and SMS are not perfectly reliable channels. It is likely that some
voters will not receive their receipts. Second, the process of checking that a
specific hexadecimal value is stored in R may be too complicated for many
voters.

A simple improvement is to assign a reference number to each re-encrypted
ballot, and send both the re-encrypted ballot and the reference number to
the voter. The voter can then easily search for the reference number in R

and compare the re-encrypted ballot published in R to the copy he received.
A better solution is to post the voters’ IDs next to the re-encrypted

ballots in R, and not send a re-encrypted copy of the voter’s ballot back to
the voter. A voter who wants to check that one of his cast ballots is listed
in R, can search for his voter ID. Moreover, by using this solution, every
voter can verify that the re-encrypted ballots stored in R is assigned with
different voter IDs. The encrypted and re-encrypted ballots stored in T and
S will still be published without voter IDs. Voters have to keep their voter
IDs secret if they do not want to disclose whether they have voted in the
election.

5.4 Does end-to-end verification increase the

voters’ level of trust?

Election systems offering end-to-end verification are not widely used today.
In 2009 the Université catholique de Louvain elected its president using the
e-voting system Helios [96], and Princeton University used Helios for their

61

Chapter 5. Trust by User Involvement

undergrad government election in 2009. In November 2009, the voters in
Takoma Park in Maryland,3 elected mayor and city council with a system
called ScantegrityII [97].4

The main focus in these elections has been on technical details—like prov-
ing the correctness’ of the election results. Thus, more research have to be
done before we can draw any conclusions about how end-to-end verifiable
elections influence the voters’ level of trust.

5.4.1 Complex election systems

Several verifiable voting protocols publish all decrypted ballots after the elec-
tion [90]. Making the ballots publicly available seems fine for elections where
the voters chooses one out of n possible options. In some elections, publish-
ing all ballots may be impossible due to the problem of coercion and vote
selling [98]. For example, in Norwegian municipality elections, a voter can
add candidates form other party lists to his ballot [99]. The voter is also able
to reorder the listed candidates on the ballot. If a vote buyer, or a coercer,
dictates a special combination of write-in candidates and a special reordering
of candidates, it will be possible identify the voter’s ballot after the election.
Further research has to be done in designing user-friendly end-to-end verifi-
able e-voting systems for these complex election systems.

3http://www.scantegrity.org/takoma/
4ScantegrityII is a paper-based voting system offering end-to-end verification.

62

Chapter 6
Summary and Conclusions

The ignorance of one voter in a democracy impairs the security of all
—John F. Kennedy

6.1 Summary

A necessary requirement for free and fair elections is that voters, candidates,
and election officials trust the e-voting system in use. As pointed out in
Chapter 1, trust is situational and varies over time. Building and preserving
trust in an e-voting system must therefore be a continually ongoing process.
Roughly, this process can be divided into two phases. Phase one is building
trust in the e-voting system before it is deployed, and phase two consists of
building (or preserving) trust in the system (and the election result) during
and after an election. In this thesis, we have studied both phases in depth.

Chapter 2 focused on the importance of stating high-level, non-functional
security and privacy requirements during the first phase. The purpose of
these non-functional requirements is twofold. First, emphasizing security
and privacy requirements especially relevant for e-voting systems is impor-
tant for building trust in a system. We argued that it is crucial to achieve
public acceptance of the selected non-functional requirements early in the
development process. If this is not possible, it is more likely that the process
of developing an e-voting system will fail at a later stage. Second, stating
well-defined requirements makes it easier for stakeholders to discuss and de-
velop low-level, technical requirements for a particular implementation of an
e-voting system.

63

Chapter 6. Summary and Conclusions

Furthermore, Chapter 2 also presented a technique for analyzing an e-
voting system based on the selected security and privacy requirements. Chap-
ter 3 then applied this analysis technique to the e-voting system used during
the 2009 rectorial election at the University of Bergen (UiB). The results of
the analysis clearly shows why it is important to analyze an e-voting system
before it is deployed.

Both Chapters 3 and 4, describing how UiB’s election board handled the
situation when an entire election system was put into doubt, illustrate the
importance of maintaining trust during phase two. Suspicion of an improper
election result is likely to decrease the voters’ level of trust. Chapter 4
discussed the importance of gathering necessary information to support a
forensic analysis of an election. It is also important that election officials and
system operators are capable of detecting fraud and irregularities themselves.
Different techniques for detecting indications of fraud and other irregularities
in an e-voting system were also explored in Chapter 4.

Using proprietary software with undisclosed source code to cast and count
votes is a controversial topic. Chapter 5 discussed the importance of disclos-
ing source code for an e-voting system to build trust.

Usually, a voter’s role in an election is completed once the ballot is cast.
Chapter 5 presented some e-voting protocols where the voters can verify that
their ballots are included in the tabulation phase. Especially, a novel coercion
resistant voting protocol was described in Section 5.3.2. This new voting
protocol makes it possible for voters to verify that their votes are included in
the tabulation phase, and election auditors can verify the correctness of the
election result. Finally, some usability improvements to the protocol were
suggested.

6.2 Conclusions

While it is impossible to build a 100 % secure computer system [5], it is pos-
sible to build a system that can be highly trusted by most stakeholders. The
most important discovery made while working on this thesis is that building
trust in an e-voting system is not only a matter of building a good e-voting
system with a well designed user interface and reliable voting protocols—it
is first and foremost a matter of providing trustworthy information to all
stakeholders about the election system and its behavior before, during, and
after an election.

Providing trustworthy information is especially important if irregularities
or abnormal situations occur. Information must be gathered in order to make
it possible to explain why a problem occurred, and determine the dimension

64

6.3. Further Work

of the problem. Because an election is an irreproducible event, such infor-
mation must be gathered throughout the entire election phase. Starting to
gather the information needed for an investigation after the fact is usually
too late.

6.3 Further Work

We believe that voters are likely to have a high degree of trust in an election
result if they are involved in the later phases of the election, as in the case
for the protocols described in Chapter 5. So far these voting protocols are
not widely used. It is therefore difficult to determine the effect these voting
protocols will have on voters’ level of trust in different types of elections. A
topic for further research could therefore be to explore this assumption. Fur-
thermore, researches have until now mainly focused on the technical details
of these protocols. Improving the usability of end-to-end verifiable e-voting
protocols has yet to be done.

Researchers working with e-voting systems that facilitates voting in an
uncontrolled environment should try to develop new countermeasures against
coercion and vote selling. The ability to re-vote electronically or re-vote on
paper, such as in the Norwegian and the Estonian e-voting systems, are not
suitable for all elections. This countermeasure may also weaken over time,
especially if the popularity of e-voting cause a reduction of polling stations
where voters can cast their paper ballots.

Finally, the E-vote 2011 project in Norway may potentially give research-
ers an unique opportunity to study different aspects of e-voting in an un-
controlled environment. According to the project’s work schedule, three
non-binding Internet elections are about to be held in three different mu-
nicipalities in 2010.1 Here, it would be interesting to study how voters and
election officials behave if they are exposed to attacks during an election.
Based on results from such research, election officials could be trained to
better handle real attacks and irregularities in the system.

1http://www.regjeringen.no/upload/KRD/Prosjekter/e-valg/Tidslinje evalg.pdf

65

66

Appendix A
Evidence Gathering in an E-voting

System

An electronic election is an irreproducible event [54]. To support audits and
forensics, evidence must be gathered before, during, and after the election.
This appendix suggests which data to collect for remote e-voting systems.
The list of data was motivated by Ernst & Young’s investigation of the rec-
torial election at UiB and the overviews in [6] and [51].

A.1 Data to collect before the election

System description

Any e-voting system should have a detailed system description. This will
make it possible for auditors to verify that the e-voting system in use complies
with its description.

Record of all e-voting personnel

One should maintain a record of all individuals with access to any part of
the e-voting system. This includes both individuals with physical access to
hardware, and individuals with access to software and databases. The record
must keep track of when and where each individual had access to the system,
which parts of the system the individual had access to and why such access
was given.

67

Appendix A

Logging of system activity

Logs recording system activity, before, during, and after the election must
be established.

Physical security

How election equipments are physically secured, and how policies for access
control are being enforced, should be documented.

Inventory of all hardware

All hardware equipments included in the e-voting system should be described
with name of the vendor, serial number, time and date of purchase, and
source of delivery.

Inventory of all software

All election specific software, as well as operating systems and other software
installed on the election systems’ hardware, should be specified. The inven-
tory should be as detailed as possible, specifying vendors, build numbers,
and version numbers.

Configuration settings

When new hardware and software are installed, all initial configuration set-
tings should be recorded. All succeeding changes in configuration settings
should be documented and explained.

Hardware and software updates

Log all updates, replacements, and changes to hardware equipment and soft-
ware after the point of installation. This applies to both election specific
software, as well as for operating systems and other software installed on
the hardware in use. One should also document which individuals deployed
the update, and which individuals requested the update. Preferably, the
motivation for all updates should be explained.

Test results

All parts of the election system should be tested for accuracy and usability
before the election. Every test should be documented. The documentation

68

Appendix A

should include a description of which parts of the system that are tested,
the type of tests carried out, a description of test data used, and problems
observed during testing.

Training sessions

It is recommended that all training of election personnel is logged and docu-
mented. If a problem classified as misfeasance occurs during the election, it
may be useful to check if improper training caused the problem.

Changes to the electoral roll

Tampering with the electoral roll is a potential source for election fraud.
For example, by adding fake identities to the electoral roll, an adversary
may vote multiple times. Thus, all changes to the electoral roll (before and
during the election) should be logged. The log must contain information
about the individuals who requested and performed the change, as well as
documentation justifying the change.

Generating encryption keys

Most e-voting protocols use some kind of encryption scheme to encrypt the
votes. Routines for generating encryption (and decryption) keys, and the
actual process of generating these keys, should be documented.

A.2 Data to collect during the election

Opening and closing of the voting phase

Necessary information to verify that the voting phase was opened and closed
in accordance with predefined routines should be collected.

Voter behavior

Different statistics about voters’ behavior during the election may be col-
lected. However, it is extremely important that the collected information do
not violate the voters’ privacy. It is natural record the time and date of each
cast vote. It is also a good idea to log the number of votes cast from the
same computer.

An overview showing the number of voters who voted multiple times can
be created, if the election systems allow voters to cast multiple votes. On

69

Appendix A

the other hand, publicly disclosing which voters voted multiple times, is not
recommended. A coercer can use such information to verify that voters voted
in accordance with his intensions.

System performance

All hardware and software failures during the election must be documented
with exact time and date, and preferably a description of the system’s state.
Especially, undocumented system behavior or error messages should be re-
corded, even if they occur only once. All unexpected decreases in system
performance during the election, as well as system components acting unre-
sponsive, must be documented. Preferably, election systems should not be
patched during the voting phase. However, deployment of system changes,
in order to correct any problems, should be well documented.

A.3 Data to collect after the election

Tabulation procedure

The tabulation process is a critical phase in all elections. Detailed informa-
tion must be recorded to make auditors able to verify that the tabulation
process was conducted in accordance with predefined procedures.

Some voting protocols produce mathematical proofs that can be used to
verify the integrity of the tabulation process. Examples of such protocols are
presented in Chapter 5.

Failures during the tabulation

Discrepancy in vote totals, or failures in equipment used for counting the
votes should be documented.

Election results

Overviews of election results should distinguish between early votes, absen-
tee votes, and votes cast on election day. An overview should also provide
detailed statistics about ballot corrections. In other words, all numbers used
to calculate the final result must be made available.

70

Appendix A

Invalid ballots

A well-designed user interface in the voting client should manage to prevent
voters from casting invalid ballots. However, invalid ballots may occur due
to technical problems, or hacking attempts, and must be documented.

Test results

It is recommended that the election system is tested for accuracy after the
election. Documentation of post-election tests must be made in accordance
with pre-election tests in order to simplify comparison.

71

72

Appendix B
Security Analysis of Mobile Phones

Used as OTP Generators

The Norwegian company Encap has developed protocols enabling individuals
to use their mobile phones as one-time password (OTP) generators. The
following paper presents an analysis of three of Encap’s protocols, and a
system-level test of an online bank utilizing Encap’s solution. The paper
suggests some countermeasures to thwart the vulnerabilities discovered in
the analyses.

A short-version of this paper was presented at the Workshop in Infor-
mation Security Theory and Practices (WISTP 10), Passau, Germany, April
12-14 [83].

73

Appendix B

Security Analysis of Mobile Phones Used as OTP Generators

H̊avard Raddum, Lars Hopland Nest̊as, and Kjell Jørgen Hole

Department of Informatics

University of Bergen

(Havard.Raddum@ii.uib.no, lma029@student.uib.no, Kjell.Hole@ii.uib.no)

Abstract

The Norwegian company Encap has developed protocols enabling individuals to use their
mobile phones as one-time password (OTP) generators. An initial analysis of the protocols
reveals minor security flaws. System-level testing of an online bank utilizing Encap’s solution
then shows that several attacks allow a malicious individual to turn his own mobile phone into an
OTP generator for another individual’s bank account. Some of the suggested countermeasures
to thwart the attacks are already incorporated in an updated version of the online banking
system.

1 Introduction

There are many services on the Internet needing strong user authentication. Examples are online
banks and e-government services, in particular public health services containing sensitive medical
information. User authentication is often achieved utilizing a two-factor authentication technique
based on something the user knows, i.e. a static password, and something the user has, i.e. a one-
time password (OTP) generator or a list of OTPs. The static password is usually typed into a login
page or used to turn on a hardware-based OTP generator.

The Norwegian company Encap has developed a system enabling an individual to use his mobile
phone as an OTP generator when authenticating to a web-based service. The phone runs a Java
MIDlet, which communicates with a server to generate OTPs. This paper describes the three main
protocols utilized by Encap’s system in 2009 and analyze their security.

Perhaps because the protocols were analyzed earlier [1], the authors’ initial analysis only revealed
two minor flaws in the protocol designs. We found that a cryptographic key generation should be
upgraded in accordance with “best practice,” and a few steps in the protocol specifications could
be simplified without losing any security benefits.

Early in 2009, an online bank deployed Encap’s solution as part of their customer authentication.
System-level testing revealed that malicious software, or malware, on a customer’s PC can steal
sensitive information when a customer activates his mobile phone as an OTP generator. An attacker
can then use this information to turn his own mobile phone into an OTP generator for the customer’s
account.

Further testing revealed that a modified version of the malware attack can be directed against
all customers of the online bank, including those who do not wish to use their mobile phones as
OTP generators. We also found that a similar attack can be instigated using social engineering and
a malicious proxy. Because the discussed attacks allow an attacker to use his own mobile phone to
generate OTPs for a customer’s account, the attacker can access the account whenever he wants
until it is closed by the bank. We present countermeasures to thwart the described attacks.

Current authentication solutions do not protect against attacks modifying transactions or in-
jecting false transactions into an established session between a client and a server [2, 3]. We outline
how a possible new control feature can be added to Encap’s solution to stop these attacks.

The rest of the paper is organized as follows. Section 2 presents the protocols, Section 3 analyses
the protocol designs, Section 4 describes attacks on an online bank utilizing the protocols, Section

74

Appendix B

5 presents the new control feature, and Section 6 concludes the paper.

2 Protocols enabling phones to generate OTPs

This section describes the three main protocols used by Encap’s system during 2009. Initially, the
user runs a protocol to download the Encap client (Java MIDlet) to his mobile phone. Then, the
Encap client executes a protocol to register with both Encap’s server and a service provider utilizing
Encap’s system for user authentication. After successful execution of the download and activation
protocols, the user can run the authentication protocol an unlimited number of times.

2.1 General assumptions

Before describing the individual protocols, we make a few general assumptions. A protocol is
aborted if a protocol step fails, e.g. to verify data. All communication channels between the parties
of the protocols are protected with SSL/TLS, except for the communications between the user and
his PC and mobile phone, as well as an SMS starting the Encap client on the phone. An Encap
white paper [1] discusses the secure deletion of secret information on a phone after it has displayed
a new OTP. We assume that both the secure deletion and the Java platform on the phone work as
intended.

2.2 The download protocol

The first step a user takes to turn his mobile phone into an OTP generator is to download the Java
MIDlet to the phone. This process is specified in a download protocol, although in practice this
protocol seems to be embedded in the activation protocol (see next section). For clarity, we describe
the download protocol separately.

The download protocol takes place between four parties: the user, the user’s mobile phone,
the user’s PC, and the Encap server (ES). The complete protocol is depicted in Figure 1. In the
following, we describe the main steps of the protocol.

1. The user enters the number of his mobile phone in a web page on the PC, and sends a request
to ES to download the client software to the phone.

2. ES connects to the phone, asking for a user agent describing the phone’s capabilities.

3. When ES receives the user agent from the mobile phone, it responds with a Java Application
Descriptor (JAD) file and a URL to download the client software appropriate for the particular
phone.

4. The phone downloads the MIDlet and lets the user install it.

There are very few security considerations for the download protocol. If a user is allowed to
download Encap’s client without authenticating to the download server, then an attacker can more
easily fool the user into installing a rogue client on his phone. The rogue client can behave exactly
like the real client, except that it covertly sends cryptographic keys or other secret information back
to a server controlled by the attacker. At the time of writing, the online bank utilizing Encap’s
solution authenticates all users before they can download the client. However, the security risk will
increase if it becomes possible to download the client from many service providers without any form
of authentication.

2.3 The activation protocol

After the user has downloaded the client software onto his mobile phone, he must activate the phone
as an OTP generator before it can be used for authentication to a web-based service. The activation
protocol takes place between five parties: the user, the user’s mobile phone, the user’s PC, the ES,

75

Appendix B

Figure 1: The download protocol.

and the service provider (SP). Figure 2 shows the complete activation protocol. We remark that
the depicted session ID, IDs, is not considered in this paper, but included to provide a complete
presentation of the protocol. The main steps of the protocol are summarized below.

1. The user authenticates himself to SP using credentials already known to SP. (The authenti-
cation procedure may involve a ‘traditional’ hardware-based OTP generator.)

2. When the user asks to activate his mobile phone as an OTP generator, SP redirects the user’s
browser to ES with a URL that contains an activation request and a Secure Object.1

3. ES verifies that the Secure Object comes from SP, and gets the user’s phone number.

4. ES sends an activation code to the user’s PC and an SMS message to the user’s phone asking
it to start the client software.

5. The mobile phone asks the user to enter the activation code, available on his PC, and transmits
the code to ES.

6. ES verifies that the activation code is the same as the one sent to the PC, and sends a challenge
to the mobile phone together with an encryption key K0. (The role of K0 is explained in
Section 2.5.)

7. The user chooses a personal identification number (PIN) and enters it on the mobile phone,
which generates a security code and a response. The response is the encryption of the challenge
using the security code as key. The security code and response are sent to ES, and ES stores
the security code.

1The exact content of the Secure Object in the URL redirecting the user’s PC to ES is not known to us, but we

assume it contains information enabling strong authentication of the SP to ES, and we know it contains information

to identify the user.

76

Appendix B

8. ES verifies that the response and the security code correspond to the challenge, and if so, the
user has activated the mobile phone as an OTP generator for use with SP.

The activation protocol’s main goal is to ensure that only the legitimate user’s mobile phone
is activated as the OTP generator for the SP. The protocol contains several steps to achieve this
goal. First, the user must authenticate himself to the SP using an already trusted authentication
mechanism. Second, the Secure Object authenticates the SP to ES. Third, the activation code sent
by ES to the user’s PC is sent back to ES from the user’s mobile phone.

These steps should ensure that the PC and the mobile phone are in the same location, or at
least that there exists a communication link between the person using the PC and the holder of the
phone. Since the person using the PC is authenticated and has transferred the activation code to
the phone, we can assume that this person really wants to activate the mobile phone as an OTP
generator.

2.4 The authentication protocol

The OTP-based authentication protocol takes place between five parties: the user, the user’s mobile
phone, the user’s PC, the ES, and SP. The complete authentication protocol is depicted in Figure
3. The main steps of the protocol are described below.

1. The user enters the identity he shares with SP on its login page.

2. SP asks the user for an OTP, and sends a request to ES to generate an OTP for the user.

3. ES first sends an SMS to the user’s mobile phone to start the client software. It then sends
a challenge to the phone together with two encryption keys Ki and Ki+1, whose role will be
explained in Section 2.5.

4. The user enters his PIN on the phone, and the phone computes the same security code
generated at the time of activation. The phone then encrypts the challenge with the security
code as key and sends the ciphertext as a response to ES.

5. ES verifies that the response from the mobile phone corresponds to the challenge, and sends
an OTP to the phone.

6. The user enters the OTP on the SP’s login page, and SP contacts ES to verify that the OTP
is indeed the correct one for this user.

The authentication protocol’s main goal is to ensure that only the legitimate user can obtain
an OTP from ES. The goal is achieved mainly because the phone’s response to ES’ challenge is
the encryption of the challenge using the key (security code) made during activation. The correct
generation of this key requires the correct PIN, which only the person who activated the mobile
phone is supposed to know. This person was in turn authenticated at the time of activation, hence
we can be confident that he is the legitimate user.

2.5 Generation of security code and responses

The hash function SHA-1 and the encryption algorithm AES with a 16-byte key are used to generate
the security code and the responses. Hashing is denoted by H(·) and encryption with key K is
denoted by EK(·).

The security code, SC, is computed by the following hash, truncated to 16 bytes,

SC = H(PIN ||IMEI||CR||SPID)16 , (1)

where || denotes concatenation of the following strings:

• PIN is a secret number with at least four digits entered by the user.

77

Appendix B

Figure 2: Activation protocol. Black channels are protected by SSL/TLS, gray channels are not.

78

Appendix B

Figure 3: OTP-based authentication protocol. Black channels are protected by SSL/TLS, gray
channels are not.

79

Appendix B

• IMEI is a 14 digit code uniquely identifying the mobile phone where the Encap client is
installed.

• CR, or client reference, is a 40-byte random string generated on the mobile phone during the
activation protocol.

• SPID is a public value identifying the SP to whom the user wishes to authenticate.

The client reference (CR) needs to be stored on the mobile phone for later use. It is only stored
in encrypted form. During the activation protocol it is encrypted using AES with the key K0 which
is sent by ES together with the challenge.

When the client reference is needed in the authentication protocol it is first decrypted using Ki,
and when it goes back into storage it is encrypted using Ki+1. The keys Ki and Ki+1 are sent from
ES together with the challenge in the authentication protocol.

The generation of a 16-byte response, R, to a challenge, C, is defined by the expression

R = ESC(C) ,

where SC is the 16-byte security code defined by (1) and C is a 16-byte challenge received from ES.

3 Possible improvements to the protocol designs

Our analysis of the protocol designs suggested two minor changes. The generation of the secu-
rity code should be upgraded in accordance with “best practice,” and a few steps in the protocol
specifications could be simplified without losing any security benefits.

3.1 Improved security code generation

The security code defined by (1) is generated in the activation protocol. The code is used as a
shared secret key between the ES and the client on the mobile phone. Currently, the security code
is generated by the client alone and then transferred to ES. When generating a shared secret key
between two parties, it is preferable that no single party can control the value of the key. Instead, it
is suggested to use an established key exchange protocol, for instance Diffie-Hellman key exchange
[4].

The following changes are needed to implement Diffie-Hellman in the existing activation protocol:
The ES first picks a random value a, and when ES sends the challenge it includes ga mod p, g,
and p, where p is a large prime and g is a generator of a large subgroup of Z∗

p . Next, the client
computes the SHA-1 hash as before, but the hash digest is treated as a “random” number b by the
client (instead of a security code). The client then computes the security code as ga∗b mod p, and
sends the response together with gb mod p to ES. Finally, the ES computes the security code as
gb∗a mod p and verifies the response. The ES must store the value a together with the security
code in order to allow the client to generate the exact same security code in future executions of
the authentication protocol.

3.2 Encryption of client reference

The expression (1) for the security code contains a random 40-byte client reference (denoted CR).
The purpose of the client reference seems to be to increase the entropy of the input to the hash
function in (1). The client reference needs to be stored on the mobile phone for future use. It is
specified that the client reference should only be stored in encrypted form, with keys to encrypt
and decrypt supplied by ES.

At first there seems to be some added protection from this encryption: An attacker who gets
hold of a user’s mobile phone can determine the IMEI number of the phone and read the memory
where the client reference is stored. The SPID is publicly known. If the client reference was stored
in cleartext, then the attacker could record these values, and exhaustively try all different PINs to

80

Appendix B

generate the set of possible security codes. Determining the correct security code would then be no
harder than guessing the user’s PIN. However, this approach is not available to the attacker since
the client reference is encrypted before it is stored. Thus, the attacker needs the decryption key
before being able to generate the (relatively small) set of possible security codes.

Unfortunately, the ES supplies the needed decryption key before any authentication takes place.
If an attacker gets hold of a user’s mobile phone and is able to read the encrypted client reference,
all he needs to do is to follow the authentication protocol to get the decryption key from ES. Hence,
the encryption of the client reference does not add to the security of the scheme.

According to Encap, another reason for introducing pairs of keys Ki, Ki+1 to repeatedly decrypt
and re-encrypt the client reference is to ensure that no two phones can obtain the same sequence of
OTPs from the Encap server. If an attacker can guess the PIN and copy the IMEI, client reference,
and SPID from a legitimate user’s phone to his own phone, then the attacker can try to obtain the
same sequence of OTPs as the legitimate user.

If two phones encrypt the same client reference with the same key Ki+1, then when they later
ask the Encap server for Ki+1 to decrypt the client reference, as well as Ki+2 to re-encrypt the
client reference, only one of the phones will receive Ki+1 and Ki+2. (The other phone will receive
Ki+2 and Ki+3.) Hence, only one of the phones will be able complete the authentication protocol
because decryption fails in the other. However, there is no need to apply AES to achieve this goal.
Since the keys Ki are random bit strings, they could simply be XOR-ed with the client reference.
The use of XOR instead of AES simplifies the activation and authentication protocols.

4 Attacks on the phone activation in an online bank

While we can continue to study the the protocol designs to determine attacks, system-level analysis
and testing, preferably on a real-world implementation, make it easier to ascertain the practicality
and impact of suggested attacks. This is particularly true when it is possible to develop proof
of concepts. Early in 2009, an online bank deployed Encap’s solution as part of their customer
authentication procedure. One of the authors opened an account with the bank and used his own
PC together with browser-based tools to study authentication related messages. (No attempt was
made to penetrate the bank’s central infrastructure.)

We discuss malware on PCs in general, before describing how tailored malware can give an
attacker control over customers’ bank accounts when the customers activate their mobile phones
as OTP generators. It is then shown how a modified version of this attack can be directed against
customers who never planned to use their mobile phones to generate OTPs. The essentially same
attack can also be instigated using e-mail phishing and a Man-in-the-Middle (MitM) proxy. Finally,
we introduce countermeasures to stop the attacks.

4.1 The danger of malware

If an attacker is able to introduce malware on a user’s PC, then the attacker can, e.g., steal sensitive
information, display bogus web pages, and redirect or spoof internet traffic. The attacker can
essentially take control over the user’s PC. Having a PC infected with malware is indeed a real
risk [5, 6]. In particular, typical banking trojans steal usernames, passwords, and OTPs using
techniques such as form grabbing, screenshots and video capturing, key logging, and traffic sniffing.
The Haxdoor.KI trojan attacked Nordea’s Swedish bank customers in 2006 and caused financial
losses of at least 8 million SEK [7, 8].

4.2 Malware-based replay attack on customers activating mobile phones

The goal of the followingmalware-based replay attack is to collect a victim’s username and password,
and to generate the victim’s OTPs on a mobile phone of the attacker’s choice. An attacker can
modify existing malware similar to the trojan Haxdoor.KI to carry out this attack.

81

Appendix B

First, the malware captures the victims’ username and password when he logs on to his online
bank. Second, when the victim starts the implemented activation protocol, the malware captures
the URL containing the Secure Object. The activation procedure is not secured against replay
attacks occurring inside a time window of a few minutes, nor is it tied to one particular IP address
or SSL session. Consequently, the malware need not disrupt the user’s activation process, but can
just wait until the user has completed the activation and then transmit the URL to the attacker’s
PC. The attacker enters the URL, containing the Secure Object, into a browser. Finally, the attacker
submits his own phone number to download, install, and activate the Encap MIDlet on his mobile
phone.

This attack was tested on an online bank account belonging to one of the authors (we did not
try it on other customers’ accounts). We found that an attacker’s activation of a mobile phone as
an OTP generator automatically overrides any previous activation made by the user. The attacker
then has an OTP generator that enables him to log into the user’s account. Moreover, the user is
not able to log in anymore since his OTP generator is no longer accepted by the Encap system.2

4.3 Malware attack on all customers

The malware-based replay attack can be modified to obtain a malware-based impersonation attack
targeting any customer in an online bank utilizing Encap’s solution—assuming that all customers
have the option to activate their mobile phones as OTP generators. In this case, the malware just
waits for a customer to log on to the online bank. The malware then sends a request to activate
a mobile phone as an OTP generator without the customer realizing what is going on. When the
URL with the Secure Object is returned, it is forwarded to the attacker’s PC instead of redirecting
the user’s browser to ES. The attacker utilizes the URL to activate his own mobile phone as OTP
generator for the user’s account. This attack is deemed practical, especially since there already
exist malware that steals information and manipulate client-server communication, e.g. see [9].

After an attack is completed, the malware can delete itself to make it more difficult for the
bank to determine how an attacker is able to remove money from the customer’s account. In fact,
the customer may initially get the blame since the bank server receives the correct username, fixed
password, and OTP each time the attacker logs on to the customer’s account.

4.4 Phishing attack on all customers

An attack similar to the malware-based impersonation attack can be carried out without client-
side malware. The SSL protocol is supposed to provide strong server authentication in client-server
systems. While the cryptography in SSL is strong, poor usability still results in weak authentication
in practice. Because SSL cannot thwart phishing attacks, i.e. combinations of social engineering
and MitM attacks, customers can be tricked into connecting to proxy servers under the control of
attackers [10, 11]. This can happen because customers are unable (or unwilling) to verify server-side
public-key certificates used by SSL.

To initiate an attack, an attacker can generate phishing e-mails asking customers to log on to
a MitM proxy masquerading as the customers’ online bank. There is ample evidence showing that
many individuals receiving phishing e-mails enter their login credentials at fake web sites [11].

Once a customer has connected to the MitM proxy, it forwards messages in both directions
between the customer’s PC and the bank’s central infrastructure. The attacker has complete control
of the communication because the proxy can read all messages, change their contents, and create
fake messages. In particular, the proxy records the username and password transmitted by the
tricked customer. The proxy can then generate a fake request to activate a mobile phone as an
OTP generator and records the returned URL. The URL is used by the attacker to activate his own
phone as an OTP generator for the tricked customer’s account.

2We remark that a similar replay attack can be instigated using e-mail phishing to trick a customer into accessing

a MitM proxy. A more general phishing attack is described later in this section.

82

Appendix B

4.5 Attack comparisons

The reader should note that while the malware-based replay attack can only occur when a cus-
tomer activates his phone, the impersonation attacks simply require that the customer logs on to
his account. We also remark that real-time MitM attacks have been used to bypass ‘traditional’
hardware-based OTP generators by forwarding user generated OTPs to online banks [12]. These
attacks give access to an account only once. Our attacks are different because they let an attacker
generate as many OTPs as he wants on his own phone. He can therefore access an account whenever
he desires until the account is closed by the bank.

4.6 Countermeasures

We suggest three countermeasures to thwart the described attacks. To protect against the malware-
based replay attack, the activation process needs to be secured against the replay of old requests.
The ES must therefore ensure that each Secure Object is only used once. Also, it should not be
possible to just activate another mobile phone as OTP generator for an account, if there already
exists a mobile phone activated for that account. A manual process should be introduced to handle
this situation.

To also protect against the malware-based impersonation attack and the similar phishing attack,
there is a need for a tighter control over the transition from an old OTP generator to a new phone-
based OTP generator. At the time of writing, an attacker who gets hold of a valid URL containing
a Secure Object need not have an old OTP generator for the account under attack to make his own
mobile phone become an OTP generator for the account. A solution here is to let the user enter an
OTP from the old OTP generator into the mobile phone, instead of the activation code provided
by the activation protocol. The ES must then verify this OTP with the SP. This additional step
ties the holder of an existing OTP generator to the mobile phone that is about to be activated.

It should be noted that it is difficult to completely defend against the impersonation attacks
since an attacker can create a fake web page to ask a customer for the extra OTP required by the
suggested countermeasure [12]. The same technique will not work for the replay attack, since the
ES now rejects any earlier received activation request.

5 An enhanced solution

While we have introduced countermeasures to thwart malware and phishing attacks aiming to move
the OTP generation from a customer’s phone to an attacker’s phone, the current Encap solution
still does not protect against more ‘traditional’ phishing and malware attacks modifying or spoofing
transaction requests from a client to an online bank’s central infrastructure. In this section, we
outline how Encap’s solution can be augmented to help thwart these attacks, using an online bank
as an example.

5.1 Added malware and phishing protection

An online bank may use the mobile phone channel provided by Encap’s system to ask a customer
to confirm a transaction request sent by his PC. The transaction is then executed only if the bank
receives a confirmation from the customer via the phone channel. This extra control feature need
not be used for all transactions. A possible solution is to only activate the control feature for
outgoing payments over a certain limit selected by the customer or set by the bank. It should of
course not be possible for client-side malware to change the value of this limit.

As long as the customer’s mobile phone and PC are different devices communicating with the
bank server over separate channels, no malware on the PC can modify information in the phone
channel or on the phone itself. The malware can still harvest information about the customer’s
account and transactions, but it cannot manipulate or send fake transaction requests to the bank
without the customer being able to notice the malicious activity thanks to the confirmation requests

83

Appendix B

sent to his phone. Of course, if the customer ignores a confirmation request, or the attacker is able
to install malware on both the phone and the PC, then the control feature fails.

While confirmation requests can be sent to a phone in cleartext via SMSs, it is preferable to
use a more secure SSL connection. The client portion of the control feature can be included in the
existing MIDlet or implemented separately.

6 Summary

The Norwegian company Encap has developed a system allowing individuals to use their mobile
phones as OTP generators. We suggested two minor changes to Encap’s protocol designs, one to
bring the activation protocol’s key generation in line with “best practice,” and one to simplify the
designs without reducing the security.

A third party was responsible for integrating Encap’s product into the evaluated online bank.
The integration enables several practical attacks. The described client-side malware and phish-
ing attacks on the customer authentication in the online bank are possible because the defense
against replay of old activation requests is insufficient, and because the link between the previously
used OTP generator and the new phone-based OTP generator is too weak. Encap received an
early version of this paper with recommendations to implement the suggested countermeasures to
thwart possible future attacks. The authors have since been informed that Encap and the third
party have implemented some of the described countermeasures. The details of the implemented
countermeasures are not known to us.

The seriousness of the attacks shows how important a system-level analysis and testing can be
to determine the level of security provided by protocols in a real system. Since the Encap solution is
new, it should be further scrutinized for weaknesses. The authors believe it is particularly important
to study how the Encap solution should be integrated into existing web-based services. It may also
be interesting to further study our suggestion on how to use the mobile phone to detect modification
or spoofing of transaction requests from a customer’s PC.

Acknowledgements

The authors would like to thank Encap for providing us with information about their system and
for answering all our questions. Thank you also to Vidar Drageide for assistance during the testing
of the attack scenarios.

References

[1] A. M. Hagalisletto and A. Riiber, “Using the Mobile Phone in Two-Factor Authentication,”
Encap white paper;
www.encap.no/admin/userfiles/file/iwssi2007-05.pdf

[2] B. Schneier, The Failure of Two-Factor Authentication, blog entry, March 15, 2005;
www.schneier.com/blog/archives/2005/03/the failure of.html.

[3] B. Schneier, More on Two-Factor Authentication, blog entry, April 12, 2005;
www.schneier.com/blog/archives/2005/04/more on twofact.html

[4] RFC 2631, Diffie–Hellman Key Agreement Method, June 1999;
tools.ietf.org/html/rfc2631.

[5] M. St̊ahlberg. “The Trojan Money Spinner,” presented at the Virus Bulletin Conference, Vi-
enna, Austria, September 2007;
www.f-secure.com/weblog/archives/VB2007 TheTrojanMoneySpinner.pdf.

[6] Finjan Malicious Code Research Center, Cybercrime Intelligence Report, no. 3, 2009;

84

Appendix B

[7] F-Secure Virus Descriptions; www.f-secure.com/v-descs/haxdoor ki.shtml.

[8] T. Espiner, Swedish Bank Hit by ‘Biggest Ever’ Online Heist, ZD Net UK, January 19, 2007;
news.zdnet.co.uk/security/0,1000000189,39285547,00.htm.

[9] L. O. Murchu, Banking in Silence, January 14, 2008;
www.symantec.com/connect/blogs/banking-silence.

[10] A. Jøsang, B. AlFayyadh, T. Grandison, M. AlZomai, and J. McNamara, “Security Usability
Principles for Vulnerability Analysis and Risk Assessment,” presented at the Twenty-Third
Annual Computer Security Applications Conference (ACSAC), Miami Beach, FL, USA, Dec.
10–14, 2007; www.acsac.org/2007/papers/45.pdf.

[11] R. Dhamija, J. D. Tygar, and M. Hearst, “Why Phishing Works,” CHI 2006, Montral, Qubec,
Canada, April 22–27, 2006;
people.seas.harvard.edu/∼rachna/papers/why phishing works.pdf.

[12] K. J. Hole, A. N. Klingsheim, L.-H. Netland, Y. Espelid, T. Tjstheim, and V. Moen, “Risk
Assessment of a National Security Infrastructure,” IEEE Security & Privacy, January/February
2009; www.nowires.org/Papers-PDF/RiskEvaluation.pdf.

85

86

Bibliography

[1] OSCE, “Charter of Paris for a New Europe,” 1990, URL http://www.

osce.org/documents/mcs/1990/11/4045_en.pdf.

[2] J. Elklit and P. Svensson, “What Makes Elections Free and Fair?” Jour-
nal of Democracy, 8(3):pp. 32–46, July 1997.

[3] M. Volkamer, Evaluation of Electronic Voting: Requirements and Evalu-
ation Procedures to Support Responsible Election Authorities, Springer-
Verlag, October 2009.

[4] Komunal- og Regionaldepartementet, “Prosjektdirektiv for e-valg 2011,”
February 2009.

[5] B. Schneier, Schneier on Security, Wiley Publishing, Inc., 2008.

[6] R. Celeste, D. Thornburgh, and H. Lin, Asking the Right Questions
About Electronic Voting, National Academies Press, March 2006.

[7] S. Marsh and M. R. Dibben, “The Role of Trust in Information Science
and Technology,” Annual Review of Information Science and Technol-
ogy, 37(1):pp. 465–498, 2003.

[8] S. Marsh and M. R. Dibben, Trust, Untrust, Distrust and Mistrust -
An Exploration of the Dark(er) Side, volume 3477 of Lecture Notes in
Computer Science, pp. 17–33, Springer-Verlag, May 2005.

[9] L. Loeber, “E-Voting in the Netherlands; from General Acceptance to
General Doubt in Two Years,” in R. Krimmer and R. Grimm, editors,
Electronic Voting, volume 131 of Lecture Notes in Informatics, pp. 21–
30, GI, 2008.

87

http://www.osce.org/documents/mcs/1990/11/4045_en.pdf
http://www.osce.org/documents/mcs/1990/11/4045_en.pdf

Bibliography

[10] R. Gonggrijp, W.-J. Hengeveld, A. Bogk, D. Engling, H. Mehnert,
F. Rieger, P. Scheffers, and B. Wels, “Nedap/Groenendaal ES3B Vot-
ing Computer – A Security Analysis,” Technical report, The “We do
not trust voting computers” foundation, October 2006, URL http://

wijvertrouwenstemcomputersniet.nl/other/es3b-en.pdf.

[11] OSCE/ODIHR, “Final Report on the 22 November 2006 Parliamentary
Elections in The Netherlands,” 2006.

[12] OSCE/ODIHR, “Needs Assessment Mission Report on the 14 Septem-
ber 2009 Parliamentary Elections in Norway,” 2009.

[13] “Final Report: International Election Observation Mission on the Nor-
wegian Parliamentary election of September 12, 2005,” 2005.

[14] A. S. Patrick, P. Briggs, and S. Marsh, “Designing Systems that People
Will Trust,” in L. F. Cranor and S. Garfinkel, editors, Security and
Usability, chapter 5, pp. 75–99, O’Reilly, 2005.

[15] K. Vollan, “Observing Electronic Voting,” Report 15, NORDEM, 2005.

[16] Ministry of Local Government and Regional Development, “Electronic
Voting – Challenges and Opportunities,” February 2006.

[17] J. Nou, “Privatizing Democracy: Promoting Election Integrity through
Procurement Contracts,” Yale Law Journal, 2009.

[18] Inter-Parliamentary Council, “Declaration on Criteria for Free and Fair
Elections,” Paris, March 26, 1994, URL http://www.ipu.org/Cnl-e/

154-free.htm.

[19] M. Bishop, Introduction to Computer Security, Addison-Wesley Profes-
sional, 2004.

[20] G. Røsland, Remote Electronic Voting, Master’s thesis, University of
Bergen, 2004.

[21] A. R. Olsson, “E-röstning – En lägesrapport,” Technical Report
35/2001, IT-kommissionens observatorium för IT, demokrati, och med-
borgarskap, 2001.

[22] A. Jones and D. Ashenden, Risk Management for Computer Secu-
rity: Protecting Your Network & Information Assets, Butterworth-
Heinemann, 2005.

88

http://wijvertrouwenstemcomputersniet.nl/other/es3b-en.pdf
http://wijvertrouwenstemcomputersniet.nl/other/es3b-en.pdf
http://www.ipu.org/Cnl-e/154-free.htm
http://www.ipu.org/Cnl-e/154-free.htm

Bibliography

[23] Ministry of Local Government and Regional Development, “E-vote 2011,
System Requirements Specification,” October 2009.

[24] Bergens Tidende, “Nei til nettvalg,” November 16, 2009, URL http://

www.bt.no/nyheter/lokalt/Nei-til-nettvalg-966575.html.

[25] Asker og Bærums Budstikke, “Ikke nettvalg i Bærum,” November 4,
2009, URL http://www.budstikka.no/sec_nyheter/article270703.

ece.

[26] D. Hubbard, The Failure of Risk Management, John Wiley & Sons, Inc.,
2009.

[27] S. Hernan, S. Lambert, T. Ostwald, and A. Shostack, “Uncover Se-
curity Design Flaws Using The STRIDE Approach,” MSDN Maga-
zine, (November), 2006, URL http://msdn.microsoft.com/en-us/

magazine/cc163519.aspx.

[28] D. Stuttard and M. Pinto, Web Application Hacker’s Handbook: Dis-
covering and Exploiting Security Flaws, John Wiley & Sons, Inc., 2007.

[29] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann,
and P. Sommerlad, Security Patterns : Integrating Security and Systems
Engineering (Wiley Software Patterns Series), John Wiley & Sons, Inc.,
March 2006.

[30] B. Bruegge and A. H. Dutoit, Object-Oriented Software Engineering:
Using UML, Patterns and Java, Second Edition, Prentice-Hall, Inc.,
2003.

[31] T. Tjøstheim, T. Peacock, and P. Y. A. Ryan, “A Model for System-
Based Analysis of Voting Systems,” presented at the Fifteenth Interna-
tional Workshop on Security Protocols, April 2007.

[32] D. W. Jones, “Threats to Voting Systems,” A position paper for the
NIST workshop on Threats to Voting Systems, October 2005.

[33] D. Jefferson, A. D. Rubin, B. Simons, and D. Wagner, “A Security
Analysis of the Secure Electronic Registration and Voting Experiment
(SERVE),” January 2004, URL http://www.servesecurityreport.

org/.

[34] A. C. Hobbs, Locks and Safes: The Construction of Locks, Virtue & Co.
1853.

89

http://www.bt.no/nyheter/lokalt/Nei-til-nettvalg-966575.html
http://www.bt.no/nyheter/lokalt/Nei-til-nettvalg-966575.html
http://www.budstikka.no/sec_nyheter/article270703.ece
http://www.budstikka.no/sec_nyheter/article270703.ece
http://msdn.microsoft.com/en-us/magazine/cc163519.aspx
http://msdn.microsoft.com/en-us/magazine/cc163519.aspx
http://www.servesecurityreport.org/
http://www.servesecurityreport.org/

Bibliography

[35] Det sentrale valgstyret ved Universitetet i Bergen, “Rektorvalget 2009.
Protokoll,” April 2009.

[36] K. J. Hole, “Alvorlige svakheter ved e-valgsystemet til UiB,” May
15, 2009, URL http://nyheter.uib.no/?modus=vis_leserbrev&

id=43736.

[37] “Passwords,” February 2009, URL http://it.uib.no/?mode=show_

page&link_id=157720&sublink_id=157721.

[38] R. Elmasri and S. B. Navathe, Fundamentals of Database Systems (5th
Edition), Addison-Wesley Longman Publishing Co., Inc., 2006.

[39] T. Evensen, “Valgdata ved rektorvalget UiB 2009,” May 2009, URL
http://www.uib.no/filearchive/notat.pdf.

[40] Ernst & Young, “Rapport fra gjennomgang av valgavvikling,” May 2009.

[41] P̊a Høyden, “Ni stemmer forkasta ved valet,” April 3, 2009, URL
http://nyheter.uib.no/?modus=vis_nyhet&id=43404.

[42] “Valgreglement for Universitetet i Bergen,” URL http://regler.uib.

no/regelsamling/show.do?id=184.

[43] G. Grendstad, “Usikker prosedyre, sikkert resultat,” Bergens Tidende,
May 16, 2009.

[44] A. D. Rubin, Brave New Ballot: The Battle to Safeguard Democracy in
the Age of Electronic Voting, Morgan Road Books, September 2006.

[45] P̊a Høyden, “Eksternrapport klar i løpet av veka,” May 12, 2009, URL
http://nyheter.uib.no/?modus=vis_nyhet&id=43688.

[46] G. Grendstad, “Universitetsvalgene,” May 8, 2009, URL http://

nyheter.uib.no/?modus=vis_leserbrev&id=43670.

[47] T. Tungodden and G. Grendstad, “Uriktige p̊astander om ulovlig UiB-
valg,” May 11, 2009, URL http://www.uib.no/adm/nyheter/2009/

05/uriktige-paastander-om-ulovlig-uib-valg.

[48] Bergens Tidende, “IT-studenter ble rektorkandidater,” May 15, 2009.

[49] P̊a Høyden, “Testa hol i systemet,” May 15, 2009, URL http://

nyheter.uib.no/?modus=vis_nyhet&id=43747.

90

http://nyheter.uib.no/?modus=vis_leserbrev&id=43736
http://nyheter.uib.no/?modus=vis_leserbrev&id=43736
http://it.uib.no/?mode=show_page&link_id=157720&sublink_id=157721
http://it.uib.no/?mode=show_page&link_id=157720&sublink_id=157721
http://www.uib.no/filearchive/notat.pdf
http://nyheter.uib.no/?modus=vis_nyhet&id=43404
http://regler.uib.no/regelsamling/show.do?id=184
http://regler.uib.no/regelsamling/show.do?id=184
http://nyheter.uib.no/?modus=vis_nyhet&id=43688
http://nyheter.uib.no/?modus=vis_leserbrev&id=43670
http://nyheter.uib.no/?modus=vis_leserbrev&id=43670
http://www.uib.no/adm/nyheter/2009/05/uriktige-paastander-om-ulovlig-uib-valg
http://www.uib.no/adm/nyheter/2009/05/uriktige-paastander-om-ulovlig-uib-valg
http://nyheter.uib.no/?modus=vis_nyhet&id=43747
http://nyheter.uib.no/?modus=vis_nyhet&id=43747

Bibliography

[50] P̊a Høyden, “Rektorvalget er gyldig,” May 19, 2009, URL http://

nyheter.uib.no/?modus=vis_nyhet&id=43771.

[51] M. Bishop, S. Peisert, C. Hoke, M. Graff, and D. Jefferson, “E-Voting
and Forensics: Prying Open the Black Box,” in Proceedings of the
2009 Electronic Voting Technology Workshop/Workshop on Trustwor-
thy Computing (EVT/WOTE ’09), August 2009.

[52] Det sentrale valgstyret ved Universitetet i Bergen, “Klage over Rektor-
valget 2009,” May 2009.

[53] Ernst & Young, “Tillegg til ‘Rapport fra gjennomgang av val-
gavvikling’,” May 2009.

[54] R. Oppliger and R. Rytz, “Digital Evidence: Dream and Reality,” IEEE
Security and Privacy, 1(5):pp. 44–48, 2003.

[55] Estonian National Electoral Committee, “Elektroonilise hääletamise
statistika,” URL http://www.vvk.ee/index.php?id=10610.

[56] R. M. Alvarez and J. N. Katz, “The Case of the 2002 General Election,”
in R. M. Alvarez, T. E. Hall, and S. D. Hyde, editors, Election Fraud,
chapter 9, pp. 149–161, Brookings Institution Press, 2008.

[57] K. Zetter, “Did E-Vote Firm Patch Election?” October 2003, URL
http://www.wired.com/politics/law/news/2003/10/60563.

[58] S. Arnesen, “Informasjon, motivasjon, prediksjon –Eit forsøk med
prediksjonsmarknad før Stortingsvalet 2009,” Presented at Norsk
statsvitskapleg fagkonferanse, January 2009.

[59] T. Hill, “The First Digit Phenomenon,” American Scientist, 86(4):pp.
358–363, Jul-Aug 1998.

[60] M. J. Nigrini, “I’ve got your Number,” Journal of Accountancy, pp.
79–83, May 1999.

[61] W. R. Mebane, “Election Forensics: Vote Counts and Benford’s Law,”
Prepared for presentation at the 2006 Summer Meeting of the Political
Methodology Society, July 2006.

[62] J. Deckert, M. Myagkov, and P. C. Ordeshook, “The Irrelevance of Ben-
ford’s Law for Detecting Fraud in Elections,” 2010, URL http://www.

vote.caltech.edu/drupal/node/327.

91

http://nyheter.uib.no/?modus=vis_nyhet&id=43771
http://nyheter.uib.no/?modus=vis_nyhet&id=43771
http://www.vvk.ee/index.php?id=10610
http://www.wired.com/politics/law/news/2003/10/60563
http://www.vote.caltech.edu/drupal/node/327
http://www.vote.caltech.edu/drupal/node/327

Bibliography

[63] The Carter Center, “The Venezuela Presidential Recall Referendum:
Comprehensive Reports,” 2005.

[64] W. R. Mebane, “The Second-Digit Benford’s Law Test and Recent
American Presidential Elections,” in R. M. Alvarez, T. E. Hall, and
S. D. Hyde, editors, Election Fraud, chapter 10, pp. 162–181, Brookings
Institution Press, 2008.

[65] W. R. Mebane, “Note on the Presidential Election in Iran,” June 2009.

[66] B. F. Roukema, “Benford’s Law Anomalies in the 2009 Iranian Presi-
dential Election,” Submitted to the Annals of Applied Statistics, 2009.

[67] I. Levin, G. A. Cohn, P. C. Ordeshook, and R. M. Alvarez, “Detecting
Voter Fraud in an Electronic Voting Context: An Analysis of the Un-
limited Reelection Vote in Venezuela,” in Proceedings of the 2009 Elec-
tronic Voting Technology Workshop/Workshop on Trustworthy Comput-
ing (EVT/WOTE ’09), August 2009.

[68] C. Adams and S. Lloyd, Understanding PKI: Concepts, Standards, and
Deployment Considerations, Addison-Wesley Longman Publishing Co.,
Inc., 2002.

[69] B. Schneier and J. Kelsey, “Secure Audit Logs to Support Computer
Forensics,” ACM Trans. Inf. Syst. Secur., 2(2):pp. 159–176, 1999.

[70] D. Ma and G. Tsudik, “A New Approach to Secure Logging,” Trans.
Storage, 5(1):pp. 1–21, 2009.

[71] “Implementing a Trusted Information Sharing Environment. Using Im-
mutable Audit Logs to Increase Security, Trust, and Accountability,”
Technical report, Markle Foundation, 2006.

[72] R. J. Anderson, Security Engineering: A Guide to Building Dependable
Distributed Systems, John Wiley & Sons, Inc., 2001.

[73] D. S. Wallach, “Voting System Risk Assessment Via Computational
Complexity Analysis,” William & Mary Bill of Rights Journal, 17:pp.
325–249, December 2008.

[74] B. Adida, “Source Code and Voting: What’s Really on that Ma-
chine,” October 2009, URL http://benlog.com/articles/2009/10/

29/source-code-and-voting-whats-really-on-that-machine/.

92

http://benlog.com/articles/2009/10/29/source-code-and-voting-whats-really-on-that-machine/
http://benlog.com/articles/2009/10/29/source-code-and-voting-whats-really-on-that-machine/

Bibliography

[75] J. Kitcat, “Source Availability and E-Voting: an Advocate Recants,”
Commun. ACM, 47(10):pp. 65–67, 2004.

[76] B. Chess and J. West, Secure Programming with Static Analysis,
Addison-Wesley Professional, 2007.

[77] B. Adida, “Theory and Practice of Cryptography, Google Tech
Talks,” December 2007, URL http://www.youtube.com/watch?

v=ZDnShu5V99s.

[78] D. Chaum, “SureVote: Technical Overview,” in Proceedings of the
Workshop on Trustworthy Elections (WOTE’01), August 2001.

[79] R. Oppliger, “Addressing the Secure Platform Problem for Remote In-
ternet Voting in Geneva,” May 2002, URL http://www.geneve.ch/

evoting/english/doc/rapports/rapport_oppliger_en.pdf.

[80] A. Ansper, S. Heiberg, H. Lipmaa, T. A. Øverland, and F. Laenen,
“Security and Trust for the Norwegian E-Voting Pilot Project E-valg
2011,” in NordSec ’09: Proceedings of the 14th Nordic Conference on
Secure IT Systems, pp. 207–222, Springer-Verlag, 2009.

[81] X. Meng, P. Zerfos, V. Samanta, S. Wong, and S. Lu, “Analysis of
the Reliability of a Nationwide Short Message Service,” in INFOCOM
2007. 26th IEEE International Conference on Computer Communica-
tions. IEEE, pp. 1811 –1819, May 2007.

[82] W. Enck, P. Traynor, P. McDaniel, and T. La Porta, “Exploiting Open
Functionality in SMS-Capable Cellular Networks,” in CCS ’05: Pro-
ceedings of the 12th ACM conference on Computer and communications
security, pp. 393–404, ACM, 2005.

[83] H. Raddum, L. H. Nest̊as, and K. J. Hole, “Security Analysis of Mobile
Phones Used as OTP Generators,” in WISTP, volume 6033 of Lecture
Notes in Computer Science, pp. 324–331, Springer-Verlag, 2010.

[84] S. Heiberg, H. Lipmaa, and F. V. Laenen, “On E-Vote Integrity in the
Case of Malicious Voter Computers,” Cryptology ePrint Archive, Report
2010/195, 2010.

[85] K. Gjøsteen, “Analysis of an Internet Voting Protocol,” March
2010, URL http://www.regjeringen.no/upload/KRD/Kampanjer/

valgportal/e-valg/Nyheter/core.pdf.

93

http://www.youtube.com/watch?v=ZDnShu5V99s
http://www.youtube.com/watch?v=ZDnShu5V99s
http://www.geneve.ch/evoting/english/doc/rapports/rapport_oppliger_en.pdf
http://www.geneve.ch/evoting/english/doc/rapports/rapport_oppliger_en.pdf
http://www.regjeringen.no/upload/KRD/Kampanjer/valgportal/e-valg/Nyheter/core.pdf
http://www.regjeringen.no/upload/KRD/Kampanjer/valgportal/e-valg/Nyheter/core.pdf

Bibliography

[86] A. C. Yao, “Protocols for Secure Computations,” in Proceedings of the
23rd Annual Symposium on Foundations of Computer Science, pp. 160–
164, IEEE Computer Society, 1982.

[87] D. Chaum, “Elections with Unconditionally – Secret Ballots and Dis-
ruption Equivalent to Breaking RSA,” in Lecture Notes in Computer
Science on Advances in Cryptology (EUROCRYPT’88), pp. 177–182,
Springer-Verlag, 1988.

[88] J. Benaloh, “Simple Verifiable Elections,” in Proceedings of the
USENIX/Accurate Electronic Voting Technology Workshop 2006 on
Electronic Voting Technology Workshop (EVT’06), USENIX Associa-
tion, 2006.

[89] B. Adida, “Helios: Web-Based Open-Audit Voting,” in Proceedings of
the 17th conference on Security symposium, pp. 335–348, USENIX As-
sociation, 2008.

[90] Z. Golebiewski, M. Kutylowski, and F. Zagorski, “Verifiable Internet
Voting State of the Art,” April 2004.

[91] H. Raddum, “Coercion-Resistant Receipts in Electronic Elections,” Un-
published report, April 2010.

[92] T. El Gamal, “A Public Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms,” in Proceedings of CRYPTO 84 on Ad-
vances in Cryptology, pp. 10–18, Springer-Verlag, 1985.

[93] D. Chaum, “Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms,” Commun. ACM, 24(2):pp. 84–90, 1981.

[94] J. Groth, “A Verifiable Secret Shuffle of Homomorphic Encryptions,” in
Proceedings of PKC ’03, Lecture Notes in Computer Science Series, pp.
145–160, Springer-Verlag, 2005.

[95] C. A. Neff, “A Verifiable Secret Chuffle and its Application to E-Voting,”
in Proceedings of the 8th ACM conference on Computer and Communi-
cations Security, CCS ’01, pp. 116–125, ACM, 2001.

[96] B. Adida, O. Pereira, O. D. Marneffe, and J. jacques Quisquater, “Elect-
ing a University President using Open-Audit Voting: Analysis of Real-
Eorld use of Helios,” in In Electronic Voting Technology/Workshop on
Trustworthy Elections (EVT’09), USENIX Association, 2009.

94

Bibliography

[97] D. Chaum, R. T. Carback, J. Clark, A. Essex, S. Popoveniuc, R. L.
Rivest, P. Y. A. Ryan, E. Shen, A. T. Sherman, and P. L. Vora, “Scant-
egrity II: End-to-End Verifiability by Voters of Optical Scan Elections
through Confirmation Codes,” Trans. Info. For. Sec., 4:pp. 611–627,
December 2009.

[98] J. Benaloh, “Administrative and Public Verifiability: Can We Have
Both?” in Proceedings of the conference on Electronic voting technology
(EVT’08), pp. 1–10, USENIX Association, 2008.

[99] Ministry of Local Government and Regional Development, “The
Main Features of the Norwegian Electoral System,” URL http://

www.regjeringen.no/en/dep/krd/kampanjer/election_portal/

the-norwegian-electoral-system.html.

95

http://www.regjeringen.no/en/dep/krd/kampanjer/election_portal/the-norwegian-electoral-system.html
http://www.regjeringen.no/en/dep/krd/kampanjer/election_portal/the-norwegian-electoral-system.html
http://www.regjeringen.no/en/dep/krd/kampanjer/election_portal/the-norwegian-electoral-system.html

	Preface
	Acknowledgements
	Introduction
	Trusting the electoral process
	Is trust important?
	E-voting affects the voters' trust
	Scope
	Structure of thesis

	Requirements and Analysis Technique for E-voting Systems
	Requirements for a free and fair e-voting system
	Requirements
	Selecting requirements
	Further requirement engineering

	Requirements as a means for building trust
	System requirements for the Norwegian E-vote 2011 project

	Analysis technique for e-voting systems
	Three step analysis technique
	Recommendations

	Analysis of the Rectorial Election at UiB in 2009
	System overview
	Voter registration
	Authentication and authorization
	Ballot definition
	Voting
	Data storage
	Tabulation

	Vulnerabilities in the election module
	Voter registration
	Authentication and authorization
	Ballot definition
	Voting
	Data storage
	Tabulation

	Aftermath of the rectorial election
	Motivation for analyzing UiB’s election system
	Reactions to our analysis
	Is My Space suitable as election system?

	Election Forensics—Rebuilding Lost Trust
	Investigation of the rectorial election at UiB in 2009
	Findings
	Conclusions about election integrity

	Preparing for election forensics
	When shall an investigation be initiated?
	Establishing indicators showing possible violations of election requirements

	Protecting the integrity of collected information
	Digital signing of documents
	Immutable audit logs
	Design considerations for immutable audit logs

	Dealing with reports of irregularities

	Trust by User Involvement
	Is disclosure of source code a key factor for free and fair elections?
	Analyzing the source code
	Which code is actually running?
	Transparency builds trust

	Code voting
	Verification codes
	Code generating and distribution
	Counting code votes
	Analysis of proposed verification code protocol for the Norwegian e-voting project
	Code voting and trust

	End-to-end verification
	Desired properties for ballot receipts
	Novel receipt protocol

	Does end-to-end verification increase the voters’ level of trust?
	Complex election systems

	Summary and Conclusions
	Summary
	Conclusions
	Further Work

	Evidence Gathering in an E-voting System
	Data to collect before the election
	Data to collect during the election
	Data to collect after the election

	Security Analysis of Mobile Phones Used as OTP Generators
	Bibliography

