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Chapter 1

Introduction

1.1 Asymptotic Properties of Codes
Let n be a positive integer and q a prime power. A q-ary code C of length n is a nonempty sub-
set of Fnq with at least two elements. The elements of C will be called codewords. The distance
between two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) is d(x, y) := |{i ∈ {1, . . . , n} |xi 6=
yi}|. The weight of a vector x is wt(x) := d(x, 0). The minimum distance of C is the smallest
positive integer d ≤ n such that there exist two elements x, y ∈ C satisfying d(x, y) = d.
The dimension of C is k := logq(|C|). A q-ary code of length n, dimension k, and minimum
distance d is called an [n, k, d]q code. If it is an Fq-linear subspace of Fnq , we say that C is an
[n, k, d]q-linear code. Note that in that case, the minimum distance of C is the same as the
minimum weight among the nonzero codewords.

We furthermore de�ne the relative minimum distance δ := d/n and the coderate R := k/n.
In this thesis we will be interested in in�nite sequences (Ci)∞i=1 of codes where the length

approaches in�nity. Given δ ∈ [0, 1], we are interested in �nding an in�nite sequence (Ci)∞i=1

of [ni, ki, di]q codes Ci with δ = lim infi→∞ di/ni such that R = lim infi→∞ ki/ni is nonzero.
If the code sequence satis�es lim infi→∞ di/ni 6= 0 and lim infi→∞ ki/ni 6= 0, we say that it is
asymptotically good.

We de�ne Uq := {(δ,R) | there exists an in�nite sequence of [ni, ki, di]q codes (Ci)∞i=1 with
ni →∞ such that di/ni → δ and ki/ni → R}. It is well-known that there exists a continuous
function αq(δ) such that

Uq = {(δ,R) | 0 ≤ R ≤ αq(δ)}.
To this date, we only know some upper and lower bounds for this function, but not the exact
values of it, except for the points (0, 1) and (δ, 0) for (q−1)/q ≤ δ ≤ 1. The subject of �nding
new bounds for αq(δ) has been the issue of some considerable research throughout the years.

In 1950, the Gilbert�Varshamov bound was found. It states that

αq(δ) ≥ RGV := 1−Hq(δ),

where
Hq(δ) = δ logq(q − 1)− δ logq(δ)− (1− δ) logq(1− δ)

is the q-ary entropy function. For δ close to 0 and close to (q − 1)/q, this is still the best
bound known to this date. The bound was not improved until 1982.
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8 Introduction

The 1982 improvement�known as the Tsfasman�Vl�aduµ�Zink bound�was due to the
discovery of algebraic-geometric codes de�ned in 1981 by V.D. Goppa. LetX be a nonsingular,
projective curve de�ned over Fq, and let n be a positive integer less than or equal to the
number of Fq-rational points on X. Let P1, . . . , Pn be Fq-rational points on X, and let G be
an Fq-rational divisor with support disjoint from {P1, . . . , Pn}. De�ne the mapping

ψ : L(G) −→ Fnq
f 7−→ (f(P1), . . . , f(Pn)).

We call the image of this mapping a Goppa code. The 1982 improvement used an in�nite
sequence of curves with a large number of Fq-rational points, and a Goppa code was de�ned
on each curve. The length of the code was equal to the number of Fq-rational points on the
curve in question. This resulted in the bound

αq(δ) ≥ RTVZ := 1− δ − 1√
q − 1

,

given that q is a square prime power. For q ≥ 49, this became an improvement of the Gilbert�
Varshamov bound for δ close to q/(2(q−1)). For larger values of q, the interval of improvement
increases.

To my knowledge, the Tsfasman�Vl�aduµ�Zink bound wasn't improved until 2001, when
Chaoping Xing found good divisors G on X which increased the minimum distance of the
Goppa codes around the areas where RTVZ and RGV intersect. In 2003, Xing found a fur-
ther improvement using nonlinear codes de�ned over algebraic curves, which was a linear
improvement of the Tsfasman�Vl�aduµ�Zink bound. That same year, Elkies found another
linear improvement, which to this date is still the best one. It is given by

αq(δ) ≥ 1− δ − 1√
q − 1

+ logq

(
1 +

1
q3

)

for square prime powers q.
In this thesis, I have given a presentation of how all these results have been found. I

open with the classical bounds, such as the upper Plotkin bound and the Gilbert�Varshamov
bound. All this is in Chapter 2. The following chapter presents theory about algebraic curves
over �nite �elds which is used throughout the entire rest of this thesis. Chapter 3 concludes
with the Riemann�Roch theorem for curves over �nite �elds.

Chapter 4 presents the construction of Goppa codes and closes with a code sequence
found by Chaoping Xing in 2005 that shows that Goppa codes attain the asymptotic Gilbert�
Varshamov bound. In Chapter 5 we get to see how these codes can be used to �nd the
Tsfasman�Vl�aduµ�Zink bound. In Chapter 6 I present the two improvements found in 2003.

Before presenting my own work and results, I also touch three other subjects concerning
special kinds of codes. Stichtenoth discovered in 2005 that transitive codes meet Elkies's 2003
bound. A natural question to ask is then whether transitive codes are as asymptotically good
as codes in general, which today is still unanswered. An outline of Stichtenoth's construction
is presented in Chapter 7.

The second subject I touch is the asymptotic properties of frameproof codes, which Chaop-
ing Xing found a new lower bound for in 2002. The reason why I have included a chapter of
frameproof codes in this thesis, is that any linear code is also a frameproof code, and so it
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follows that all asymptotic results we have obtained for linear codes so far in my thesis also
apply for frameproof codes. All of this we �nd in Chapter 8.

Finally, I present some other possible constructions of codes from algebraic geometry,
found by Xing, Niederreiter, and Lam. Such work has been important when it comes to
improvements of the Tsfasman�Vl�aduµ�Zink bound, since both 2003 improvements were made
by codes di�erent from Goppa codes. However, some constructions have proved to give the
same codes as the Goppa construction gives us. In Chapter 9 I give two cases where the codes
turn out to be Goppa codes and one case where they don't, which I take a closer look at in
the last two chapters.

1.2 Generalised Algebraic-Geometric Codes
The code construction presented in the end of Chapter 9 de�nes a generalisation of the Goppa
codes and was found in 1999 by Xing, Niederreiter, and Lam. In short, with notations as be-
fore, it involves evaluating the functions of L(G) in closed points of higher degree on the curve
X. If s is a positive integer and P1, . . . , Ps are closed points of degree k1, . . . , ks, respectively, let
C1, . . . , Cs be [ni, ki, di]q-linear codes, respectively, where n1, . . . , ns are positive integers. Let
G be an Fq-rational divisor with support disjoint from {P1, . . . , Ps}. If f ∈ L(G), then f(Pi)
is an element in Fqki , 0 ≤ i ≤ s. De�ne isomorphisms φi : Fqki −→ Ci. Let n = n1 + · · ·+ ns.
De�ne the mapping

φ : L(G) −→ Fnq
f 7−→ (φ1(f(P1)), . . . , φs(f(Ps))).

We call the image of φ a generalised algebraic-geometric code.
It is obvious that this is a generalisation of the Goppa codes. A natural question to

ask is whether constructions involving Goppa codes can be generalised to involve generalised
algebraic-geometric codes. I have made two attempts of this in Chapter 10. The �rst con-
struction, presented in Section 10.1, involves using all points of degree 1 and 2 on the curves of
an in�nite curve sequence with many Fq2-rational points. The codes C1, . . . , Cs are all [1, 1, 1]q
and [2, 2, 1]q codes. This has given the rather pleasing result

R ≥ R1 := 1− 2δ − 1
q − 1

,

for any prime power q. This is not a good bound for large values of δ, but for small values,
this comes very close to the Gilbert�Varshamov bound.

Another idea I have tried out, is letting C1, . . . , Cs be asymptotically good codes, the
lengths of which approach in�nity as the length of C approaches in�nity. Such a construction
is given in Section 10.3. It appears that this also gives us an asymptotically good code
sequence, but not as good as R1 except for large values of δ.

For the sake of completeness, I have also included a construction made by Antonino Spera,
presented as R2 in Section 10.2, which is interesting because it doesn't demand a curve se-
quence, but only one single curve.

Improvements made on Goppa codes should also be possible to make on generalised
algebraic-geometric codes. Xing's 2001 improvement using good divisors G was a natural
start, since it improves the codes for small values of δ, and it was very tempting to try and
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improve R1 around the areas where it is closest to the Gilbert�Varshamov bound. The at-
tempt produced a successful result, although the improvement is not enough to reach the
Gilbert�Varshamov bound. It is all presented in Section 11.1.

It is an open question whether other improvements made on Goppa codes can also be
made on generalised algebraic-geometric codes. One such question is presented in the end of
Chapter 11.



Chapter 2

Bounds on Codes

In this chapter I present the classical upper and lower bounds on codes, concluding with the
1950 Gilbert�Varshamov bound. I begin by introducing some notation and important facts.

Throughout this chapter, when we are given a code C and nothing else is mentioned, the
minimum distance of C will be assumed to be d, the dimension will be k, the code length n,
the relative minimum distance δ, and the number of codewords M .

Most of this material is taken from [10], pp. 25�37.

De�nition 2.1. Let q be a prime power. We de�ne Vq := {(δ,R) ∈ [0, 1]2 | there exists an
[n, k, d]q-code with d

n = δ and k
n = R}. Uq is the set of points (δ,R) such that there exists an

in�nite sequence of codes (Ci)∞i=1 with minimum distance di, dimension ki, and length ni such
that ni →∞ and

lim
i→∞

(di/ni, ki/ni) = (δ,R).

If δ,R > 0, then we say that the code sequence is asymptotically good.

Proposition 2.2. Let q be a prime power. There exists a continuous function αq(δ), δ ∈ [0, 1],
such that

Uq = {(δ,R) | 0 ≤ R ≤ αq(δ)}.
Moreover, αq(0) = 1, and αq(δ) = 0 for q−1

q ≤ δ ≤ 1. We also have that αq(δ) decreases in
the interval [0, q−1

q ].

Proof. See Theorem 1.3.1 in [13].

Note that this function is of the form αq(δ) = sup{R | (δ,R) ∈ Uq}. This proposition is
also valid if we restrict Uq to only apply for linear codes. We then denote the function by
αlin
q (δ).

Theorem 2.3 (the Singleton Bound). Let q be a prime power and n, k, d positive integers.
If C is an [n, k, d]q code, then

k ≤ n− d+ 1.

Proof. Suppose C has minimum distance d. For each codeword (x1, . . . , xn), delete the last
d− 1 elements xn−d+2, . . . , xn such that we are left with (x1, . . . , xn−d+1). Then all the words
are still di�erent from one another, or else the minimum distance would be strictly less than
d. Now we have a code C ′ of length n − d + 1 and the same number of words as in C. We
have qk = |C| = |C ′| ≤ qn−d+1, so k ≤ n− d+ 1.

11



12 Bounds on Codes

Corollary 2.4 (the Asymptotic Singleton Bound). Let q be a prime power. We have
that

αq(δ) ≤ 1− δ.
Proof. Since k ≤ n− d+ 1, dividing by n on both sides yields R ≤ 1− δ+ 1

n . Letting n→∞,
we get αq(δ) ≤ 1− δ.
Theorem 2.5 (the Plotkin Bound, 1960). Let q be a prime power. For any [n, k, d]q-code,
we have

d ≤ nqk(q − 1)
(qk − 1)q

.

Proof. The average distance of all pairs of codewords can't be less than the minimum distance
d. Let M = qk, the number of codewords in C. The number of all ordered pairs of codewords
is M(M − 1). Then

d ≤ 1
M(M − 1)

∑

x,y∈C
d(x, y).

If x is in C, denote it by (x1, . . . , xn). Set mi,a = |{x ∈ C |xi = a}|. It is clear that
∑

a∈Fq
mi,a = M

for any i ∈ {1, . . . , n}. Let δa,b = 1 if a = b and δa,b = 0 if a 6= b. We have

M(M − 1)d ≤
∑

x,y∈C
d(x, y) =

n∑

i=1

∑

x,y∈C
(1− δxi,yi)

=
n∑

i=1

∑

a,b∈Fq
(1− δa,b)mi,ami,b =

n∑

i=1




∑

a∈Fq
mi,a




2

−
∑

a∈Fq
m2
i,a




=
n∑

i=1


M2 −

∑

a∈Fq
m2
i,a


 ≤

n∑

i=1


M2 − 1

q


∑

a∈Fq
mi,a




2


= n
q − 1
q

M2.

The last inequality follows from the Cauchy�Schwartz inequality: In general,

∑

a∈Fq
xaya




2

≤

∑

a∈Fq
x2
a




∑

a∈Fq
y2
a


 .

The results in the calculations follow when we put each ya = 1 and each xa = mi,a. This
completes the proof.

Corollary 2.6 (the Asymptotic Plotkin Bound). Let q be a prime power. We have

αq(δ) = 0 for q − 1
q

< δ ≤ 1

and
αq(δ) ≤ RP (δ) := 1− q

q − 1
δ for 0 ≤ δ ≤ q − 1

q
.
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Proof. When d > n q−1
q , then Theorem 2.5 gives us

d ≤ nqk(q − 1)
q(qk − 1)

qkn(q − 1) ≥ dqqk − dq
qk(n(q − 1)− dq) ≥ −dq
qk(dq − n(q − 1)) ≤ dq

M = qk ≤ dq

dq − n(q − 1)
=

d

d− n q−1
q

. (2.1)

Now, if we �x δ = d
n , the expression on the right remains constant for varying n. If we take

logarithms on both sides, divide by n on both sides, and let n→∞, we get 0 on the right-hand
side, and so k

n = R goes to 0 as well, proving the �rst part of the corollary.
In order to prove the second part, we must construct a code C ′ of length n′ small enough

so that d > n′ q−1
q . Assume 0 ≤ δ ≤ q−1

q and de�ne

n′ =
⌊

(d− 1)q
q − 1

⌋
.

Then n′ < n, since ⌊
(d− 1)q
q − 1

⌋
≤ (d− 1)q

q − 1
≤ d− 1

δ
< n.

Also, it is clear that d > n′ q−1
q , since

n′ · q − 1
q

=
⌊

(d− 1)q
q − 1

⌋
· q − 1

q
≤ (d− 1)q

q − 1
· q − 1

q
= d− 1 < d.

So given a code C ′ with word length n′ and minimum distance d, we are allowed to apply
(2.1).

We de�ne C ′ the following way: Consider the n − n′ last symbols of the codewords of C
and consider the di�erent subsets of words ending in the same n − n′ symbols. Then one of
these subsets has M ′ elements where

M ′ ≥ M

qn−n′
= qn

′−n+k,

or else we would have M < qn
′−n+k · qn−n′ = qk, a contradiction. We let C ′ consist of these

M ′ words. We have from (2.1) that

M

qn−n′
≤M ′ ≤ d

d− n′ q−1
q

≤ d. (2.2)

The last inequality follows because

d− n′ q − 1
q
≥ d− (d− 1)q

q − 1
· q − 1

q
= d− (d− 1) = 1.

Rewrite (2.2) as qn′−nM ≤M ′ ≤ d.
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Let d = bδnc and n >> 0. Then we have

qn
′−n+k ≤ bδnc⌊

(d− 1)q
q − 1

⌋
− n+ k ≤ logqbδnc

k ≤ n−
⌊

(d− 1)q
q − 1

⌋
+ logqbδnc < n− (d− 1)q

q − 1
+ 1 + logqbδnc

k < n− bδncq
q − 1

+
q

q − 1
+ 1 + logqbδnc

k < n− (δn− 1)q
q − 1

+
q

q − 1
+ 1 + logqbδnc

R < 1− δq

q − 1
+

2q
n(q − 1)

+
1
n

+
logqbδnc

n

αq(δ) ≤ 1− δq

q − 1
.

This �nishes the proof.

Lemma 2.7. Let q be a prime power, n, d positive integers, and C a code of length n over Fq,
and suppose that any word with distance at least d to all words in C is also in C. Then

|C|
d−1∑

i=0

(
n

i

)
(q − 1)i ≥ qn.

Proof. Suppose that

|C|
d−1∑

i=0

(
n

i

)
(q − 1)i < qn.

That means that when we take a d−1 ball around each codeword, there is some word x in Fnq
that is not covered. Then x has distance at least d to all codewords in C, a contradiction.

Theorem 2.8 (the Gilbert�Varshamov Bound, 1950). Let q be a prime power, n, k, d
positive integers. If

qn−k+1 >
d−1∑

i=0

(
n

i

)
(q − 1)i,

then there exists an [n, k, d]q-linear code over Fq.

Proof. We induct on k. For k = 1, the theorem is trivial, since it is possible to make a 1-
dimensional code with any minimum distance d ∈ {1, . . . , n}. Suppose the inequality holds
for n, k− 1, d, that there exists an [n, k− 1, d]q-linear code C over Fq, and that the inequality
also holds for n, k, d. We shall try to construct an [n, k, d]q-linear code from C. We rewrite
the inequality as

qn > qk−1
d−1∑

i=0

(
n

i

)
(q − 1)i.

Then, according to the previous lemma, there exists a word x′ /∈ C with distance at least d to
each word in C. We want to show that if we expand C with x′, then all words in the code will
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still have weight at least d. It will then follow that the minimum distance is still d. Suppose
x ∈ C and α ∈ Fq \ {0}. Then

wt(x+ αx′) = wt(α−1x+ x′) = d(−α−1x, x′) ≥ d.

This completes the proof.

Before �nding the asymptotic Gilbert�Varshamov bound, we will need some results con-
cerning the entropy function, which will also be used a lot throughout this thesis.

De�nition 2.9 (the q-ary Entropy Function). Let q be a positive integer and δ a real
number satisfying 0 < δ ≤ q−1

q . Then we have

Hq(δ) := δ logq(q − 1)− δ logq(δ)− (1− δ) logq(1− δ), Hq(0) := 0.

Theorem 2.10 (Stirling's Formula). Let q, n be positive integers. Then

logq(n!) = n logq(n)− n+O(logq n).

Lemma 2.11. If q, n are positive integers and t is a nonnegative integer such that 0 ≤ t ≤
(q−1)n

q , then the last term in
t∑

i=0

(
n

i

)
(q − 1)i

is the largest.

Proof. Let θ ≤ (q−1)n
q . We then have

n!
θ!(n− θ)! (q − 1)θ − n!

(θ − 1)!(n− θ + 1)!
(q − 1)θ−1 ≥ 0

m
n!(q − 1)θ(n− θ + 1)− n!(q − 1)θ−1θ

θ!(n− θ + 1)!
≥ 0

m
n!(q − 1)θ−1((q − 1)(n− θ + 1)− θ) ≥ 0

m
(q − 1)(n− θ + 1) ≥ θ

m
q(n+ 1)− n− 1 ≥ θq

m
θ ≤ q(n+ 1)− n− 1

q

m
θ ≤ (q − 1)n+ q − 1

q
,

which is true.
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Lemma 2.12. Let q, n be positive integers, t a nonnegative integer satisfying 0 ≤ t ≤ (q−1)n
q .

Then

n−1 logq

(
t∑

i=0

(
n

i

)
(q − 1)i

)
= Hq

(
t

n

)
+ o(1).

Note that this is equivalent with stating that

lim
n→∞n

−1 logq

(
t∑

i=0

(
n

i

)
(q − 1)i

)
= lim

n→∞Hq

(
t

n

)
.

Proof. From Lemma 2.11, we know that since t ≤ (q−1)n
q , then the last term in

t∑

i=0

(
n

i

)
(q − 1)i

is the largest. That means that when we multiply that term with the number of terms in the
sum, we get a larger number than the sum gives us:

(
n

t

)
(q − 1)t ≤

t∑

i=0

(
n

i

)
(q − 1)i ≤ (t+ 1)

(
n

t

)
(q − 1)t.

The left-hand side of this inequality gives us

n−1 logq

(
t∑

i=0

(
n

i

)
(q − 1)i

)
≥ n−1 logq

(
n

t

)
+ n−1 logq(q − 1)t

= n−1 logq

(
n!

t!(n− t)!
)

+ n−1 logq(q − 1)t

= n−1
(
logq(n!)− logq(t!)− logq(n− t)!

)

+n−1 logq(q − 1)t

= n−1
(
n logq(n)− n+O(logq(n))

− t logq(t) + t−O(logq(t))

− (n− t) logq(n− t) + (n− t)−O(logq(n− t))
)

+ n−1 logq(q − 1)t

=
t

n
logq(q − 1) + logq(n)− t

n
logq(t)

−
(

1− t

n

)
logq

(
n

(
1− t

n

))
+ o(1)

=
t

n
logq(q − 1)− t

n
logq(t) +

t

n
logq(n)

−
(

1− t

n

)
logq

(
1− t

n

)
+ o(1)
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=
t

n
logq(q − 1)− t

n
logq

(
t

n

)

−
(

1− t

n

)
logq

(
1− t

n

)
+ o(1)

= Hq

(
t

n

)
+ o(1).

The right-hand side of the inequality gives us

n−1 logq

(
t∑

i=0

(
n

i

)
(q − 1)i

)
≤ n−1 logq(t+ 1) + n−1 logq

(
n

t

)
+ n−1 logq(q − 1)t.

The �rst term is o(1), and the rest of the expression is the same as when we took logarithms
of the left-hand side of the inequality and divided by n. Equality follows.

Corollary 2.13 (the Asymptotic Gilbert�Varshamov Bound). Let q be a prime power.
We then have

αlin
q (δ) ≥ RGV(δ) := 1−Hq(δ).

Proof. Suppose we have positive integers n, k, d satisfying

|C| ·
d−1∑

i=0

(
n

i

)
(q − 1)i > qn.

Then, according to Theorem 2.8, there exists an [n, k, d]q-linear code. Taking logarithms on
both sides and dividing by n, we obtain

R+ n−1 logq
d−1∑

i=0

(
n

i

)
(q − 1)i > 1.

Letting n→∞, we get

αlin
q (δ) ≥ 1− lim

n→∞

(
n−1

d−1∑

i=0

(
n

i

)
(q − 1)i

)
= 1−Hq(δ).

The last equality follows from Lemma 2.12.
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Chapter 3

Curves over Finite Fields

Before presenting the de�nition of Goppa codes and the Tsfasman�Vl�aduµ�Zink bound, we
will need some results from algebraic curves de�ned over �nite �elds, which I present in this
chapter. We start by de�ning what is meant by a curve de�ned over Fq for q a prime power,
and what is meant by Fq-rational points and Fq-rational divisors. I conclude this chapter by
proving that the Riemann�Roch theorem is valid for curves over �nite �elds.

The entire material is taken from [10], pages 103�109, except for Proposition 3.8, which is
taken from Proposition 2.3.4, page 173 in [13].

Throughout this chapter, k = Fq will denote a �nite �eld, and k′ will denote the closure of
k. X will be assumed to be a non-singular, projective curve de�ned over k, i.e. its prime ideal
p(X) has a basis {F1, . . . , Fr} where each Fi has coe�cients in k. A point x = (x0, . . . , xn) ∈
Pnk′ will be called k-rational if for all i, xi 6= 0 ⇒ xj/xi ∈ k, j = 0, . . . , r. The Galois group of
k′ over k will be denoted by Gal(k′/k). The element σ ∈ Gal(k′/k) we de�ne as σ(xi) := xqi , the
Frobenius automorphism of X. If x = (x0, . . . , xn), then we de�ne σ(x) := (σ(x0), . . . , σ(xn)).

Let Γk(X) be the coordinate ring of X over k. Then f = F/G ∈ k′(X) will be de�ned to
be k-rational if F,G ∈ Γk(X) and G 6= 0 in Γk(X). The �eld k(X) will denote the set of all
k-rational functions in k′(X). Div′(X) denotes the set of all divisors on X. Pic′(X) denotes
the set of all equivalence classes of divisors on X. If D ∈ Div′(X), then we let D denote the
corresponding equivalence class. A closed point on X over k will be assumed to be a pair
(Ov,mv), where v is a discrete valuation of k(X) and Ov is the associated DVR over k with
maximal ideal mv.

If x = (x0, . . . , xn) is a point on X such that xi = 1 for some i = 0, . . . , n, then k(x) will
denote the �eld extension of k generated by the coordinates of x.

De�nition 3.1. Let D ∈ Div′(X), D =
∑
nxx. Let σ(D) :=

∑
nxσ(x). Then D is de�ned to

be k-rational if σ(D) = D. We denote the set of all such divisors by Div(X). An equivalence
class D ∈ Pic′(X) is de�ned to be k-rational if it contains at least one k-rational divisor. The
set of such equivalence classes is denoted by Pic(X).

Proposition 3.2. Suppose x is a point on X over k′. Suppose k(x) = Fqν for some positive
integer ν. Then x, σ(x), . . . , σν−1(x) are all distinct and σν(x) = x.

Proof. We can assume that x = (1, x1, . . . , xn) by �rst making a change of coordinates if
necessary. If σi(x) = σj(x) for 0 ≤ i < j ≤ ν − 1, then σj−i(xs) = xs for s = 1, . . . , n. Then
x1, x2, . . . , xn ∈ Fqj−i . Since x1, . . . , xn were also assumed to generate Fqν from Fq, it follows
that Fqν ⊆ Fqj−i , a contradiction.
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σν(x) = x follows directly from the fact that each element x1, . . . , xn is in Fqν and the
de�nition σ(xi) = xqi .

De�nition 3.3. Let x be a point on X over k′. A k-rational divisor P is de�ned to be prime
if it is of the form

P = Px =
ν∑

i=1

σi−1(x),

where ν is the degree of x over k. The points σi−1(x) are called the components of P .

Proposition 3.4. A divisor D ∈ Div′(X) is k-rational if and only if it can be written as
D =

∑
P aPP , where all the P are prime divisors, aP ∈ Z, and aP 6= 0 for only a �nite

number of P .

Proof. Suppose D =
∑

P aPP , where all the P are prime divisors, aP ∈ Z, and aP 6= 0 for
only a �nite number of P . Then clearly, σ(D) = σ (

∑
aPP ) =

∑
aPσ(P ) =

∑
aPP .

Conversely, if D =
∑

x axx is k-rational, let ν be a common multiple for the degrees of all
the components x. Then σν(x) = x for all x andD = σ(D) = σ2(D) = · · · = σν−1(D). Now, if
we put in the expression for D in this equation, we get

∑
x axx = σ (

∑
x axx) = σ2 (

∑
x axx) =

· · · = σν−1 (
∑

x axx) ⇒ ∑
x axx =

∑
x axσ(x) =

∑
x axσ

2(x) = · · · =
∑

x axσ
ν−1(x).

This shows that for any given x, the coe�cient of x, σ(x), . . . , σν−1(x) are the same. Since
[k(x) : k] divides ν, we can put x+σ(x) + · · ·+σν−1(x) = bxPx, where bx is an integer and Px
is the prime divisor associated with x, and so D =

∑
Px
axbxPx =

∑
P cPP , as desired.

De�nition 3.5. De�ne two points x and y to be equivalent if y = σs(x) for some nonnegative
integer s. We denote the equivalence class of x by x.

Proposition 3.6. Let f ∈ k′(X). Then div(f) is k-rational if and only if f ∈ k(X), up to
multiplication by constants.

Proof. Suppose f ∈ k(X) and let div(f) =
∑

x vx(f) · x, where vx(f) is the valuation of f in
x. Now, if x is a point and σi(x) = y, then since f is k-rational, we have that vx(f) = vy(f).
It follows that

div(f) =
∑

x

vx(f) · (x+ σ(x) + · · ·+ σνx−1(x))

=
∑

x

vx(f) · Px,

where νx = [k(x) : k]. It follows by Proposition 3.4 that div(f) is k-rational.
Conversely, suppose div(f) =

∑
x vx(f) ·x is a k-rational divisor, f = F/G ∈ k′(X), G 6= 0

in Γk′(X). Since div(f) is k-rational, then if the point x is a zero in F , then σi(x) is also a
zero. Proposition 3.4 gives that the zeros have the same multiplicity. The same goes for G.
It follows that F,G ∈ Γk(X), and so f ∈ k(X).

De�nition 3.7. Let L′(D) = {f ∈ k′(X) \ {0} | div(f) + D � 0} ∪ {0}. Then we de�ne
L(D) := L′(D) ∩ k(X). The dimension of L′(D) as a vector space over k′ is l′(D), and l(D)
is the dimension of L(D) as a vector space over k.

Proposition 3.8. Let D be a k-rational divisor on X. Then L(D) and L′(D) have a common
basis. In particular, l(D) = l′(D).
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Proof. Let

L′(D) =
m⊕

i=1

fi · k′.

Let k′′ be a �nite extension of k so that f1, . . . , fm ∈ k′′(X). Let {α1, . . . , αν} be a basis for
k′′ as a vector space over k. Then the Galois group Gal(k′′/k) consists of ν elements with the
Frobenius homomorphism as generator, and we have from Proposition 3.2 that Gal(k′′/k) =
{σ, . . . , σν}.

De�ne
gi,j =

ν∑

s=1

σs(αj · fi) =
ν∑

s=1

σs(αj) · σs(fi).

We show that g1,1, . . . , g1,ν , . . . , gm,ν ∈ k(X) and generate L′(D). Then an m-subset of these
will be a basis for L′(D), and they will hence also be a basis for L(D).

First of all, if β ∈ k′′, it follows that σ(β) + · · · + σν(β) ∈ k. (Proof: σ, . . . , σν take the
element β1 to all of its (not necessarily distinct) conjugates β2, . . . , βν . So β1 + · · · + βν =
σ(β1) + · · · + σν(β1). Also, there exists a polynomial with coe�cients in k that factors as
(x− β1)(x− β2) · · · (x− βν). The coe�cient of xν−1 in this polynomial is β1 + β2 + · · ·+ βν ,
but since the polynomial has coe�cients in k, then β1 +β2 + · · ·+βν must be in k.) It follows
that given an element f ∈ k′′(X), then σ(f) + · · ·+ σν(f) ∈ k(X).

To prove that g1,1, . . . , g1,ν , . . . , gm,ν generate L′(D), note that the matrix

G =




σ(α1) σ2(α1) . . . σν(α1)
σ(α2) σ2(α2) . . . σν(α2)

... ... . . . ...
σ(αν) σ2(αν) . . . σν(αν)




by standard Galois theory has nonzero determinant, so the elements
∑

s σ
s(α1 ·f1),

∑
s σ

s(α2 ·
f1), . . . ,

∑
s σ

s(αν · f1) are linearly independent for each fi. Also, for each αj , we get linearly
independent elements if we vary the fi. So we only need to show that each div(gi,j) +D � 0.

To show this, it su�ces to show that f ∈ L′(D) ⇒ σ(f) ∈ L′(D), since then gi,j will be
nothing more than a linear combination of elements from L′(D). We will here use the property
that D is a k-rational divisor. But �rst we show that σ(div(f)) = div(σ(f)).

Note that for a point x, we have that σ is a ringhomomorphism from Ox to Oσ(x). If
ordx(f) = n ≥ 0 and mx is the maximal ideal in the associated DVR Ox, then f ∈ mn

x/m
n+1
x .

If h is an element that generates mx, then this means that hn is the highest power of h that
divides f in Ox. We write f = hn · f ′, where f ′ is a unit in Ox. Then σ(f) = σ(h)n · σ(f ′).
We have h(x) = 0. Taking σ(h) and evaluating it in σ(x) gives σ(h(x)) = σ(0) = 0. It is
clear that σ(f ′) is a unit, since σ(f ′−1) is its inverse. Then σ(h) generates the maximal ideal
mσ(x) in the DVR Oσ(x), and it follows that ordσ(x)(σ(f)) = n. A similar argument applies
for negative orders. It follows that σ(div(f)) = div(σ(f)).

Suppose now that div(fi) + D � 0. Then σ(div(fi)) + σ(D) � 0. Since σ(D) = D, the
above result gives us div(σ(fi)) +D � 0, as desired.

Proposition 3.9. Let K be a canonical divisor. Then K contains a k-rational element.

Proof. Choose an f ∈ k(X) such that df 6= 0. Then df will also have coe�cients in k. The
rest of the proof is now identical of the proof in Proposition 3.6.
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Corollary 3.10. Let K be a k-rational canonical divisor. Then l(K) = l′(K).

Corollary 3.11 (the Riemann�Roch Theorem). Let D be a k-rational divisor, K a
rational canonical divisor. Then

l(D) = deg(D) + 1− g + l(K −D).



Chapter 4

Goppa Codes

In this chapter I present the construction of Goppa codes. This construction was discovered
by V.D. Goppa in 1981 and is based on curves over �nite �elds. It is this construction that
Tsfasman, Vl�aduµ, and Zink used when they managed to improve the asymptotic Gilbert�
Varshamov bound in 1982.

I begin this chapter by giving the basic de�nitions and results concerning Goppa codes.
I will then give two examples of how to construct such codes. I conclude this chapter by
presenting an in�nite sequence of Goppa codes that attains the Gilbert�Varshamov bound,
made by Chaoping Xing in 2005.

The material in Section 4.1 of this chapter is taken from [14]. The example of the Hermite
curve in Section 4.2 can be found on page 62 of [14]. Section 4.3 is a presentation of [18].

Throughout this chapter, X will always be assumed to be a non-singular projective curve
de�ned over Fq. The divisors D,G,G∗; constants d, k, n, d∗, k∗; and maps α, α∗, β∗ will always
be assumed to be as de�ned in De�nition 4.1, Proposition 4.2, De�nition 4.6, and De�ni-
tion 4.13, unless speci�ed otherwise. The genus of the curve X shall always be denoted by
g. The �eld of rational functions on X with coe�cients in Fq will be denoted by Fq(X). The
set of Fq-rational points on X will be denoted by X(Fq), and its cardinality by |X(Fq)|. The
discrete valuation ring over Fq at the closed point P will be denoted by OP .

All divisors and closed points will in this chapter be assumed to be Fq-rational unless
stated otherwise.

4.1 De�nitions
De�nition 4.1. Let P1, . . . , Pn be distinct points of X of degree 1 over Fq and let D =
P1 + · · ·+ Pn be a divisor. Let G be a divisor satisfying Supp(G) ∩ Supp(D) = ∅. De�ne the
linear map α : L(G) −→ Fnq by

f 7−→ (f(P1), . . . , f(Pn)).

Then the image of the map de�nes a linear code C(D,G) called a Goppa code.

Proposition 4.2. For a Goppa code C(D,G), we have dimension k = l(G) − l(G −D) and
minimum distance d ≥ n− deg(G).

Proof. We have C(D,G) ∼= L(G)/ ker(α), so we must show that ker(α) = L(G−D). Suppose
f ∈ ker(α). Then f(Pi) = 0, i = 1, . . . , n, so div(f) � D. Thus, f ∈ L(G −D). Conversely,
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suppose f ∈ L(G − D). Then div(f) � D since Pi ⊀ G, i = 1, . . . , n. It follows that
f(Pi) = 0, i = 1, . . . , n.

To show that d ≥ n−deg(G), suppose the Hamming weight of α(f) is d. This means that
f(Pi) = 0 for n−d points among the Pi, say Pi1 , . . . , Pin−d . Then f ∈ L(G−Pi1−· · ·−Pin−d),
and div(f) + G − Pi1 − · · · − Pin−d � 0. Taking degrees on both sides and noting that
deg(div(f)) = 0, we get deg(G)− (n− d) ≥ 0, so d ≥ n− deg(G).

Remark 4.3. The last part of this proposition is only useful if n − deg(G) ≥ 2, since d ≥ 1
always.

Corollary 4.4. If deg(G) < n, then α is an injection and k = l(G).

De�nition 4.5. Let E be a divisor. Then we de�ne the vector space Ω(E) as follows.

Ω(E) = {ω |ω is a rational di�erential form with div(ω) � E} ∪ {0}.

De�nition 4.6. De�ne the linear map α∗ : Ω(G−D) −→ Fnq by

η 7−→ (resP1(η), . . . , resPn(η)).

Then the image of the map de�nes a linear code C∗(D,G) of length n.

Proposition 4.7. Let ω be a rational di�erential form, div(ω) = K. De�ne a map β∗ :
L(K +D −G) −→ Fnq by

f 7−→ (resP1(fω), . . . , resPn(fω)).

Then the image of β∗ is the same as the image of α∗.

Proof. Suppose (resP1(η), . . . , resPn(η)) ∈ C∗(D,G). Since η is a rational di�erential form, we
can write it as fω for some f ∈ Fq(X). We then have fω ∈ Ω(G−D), so div(f) + div(ω) =
div(f) +K � G−D. That is equivalent with div(f) ∈ L(K +D −G).

Proposition 4.8. For a code C∗(D,G), we have dimension k∗ = l(K +D −G)− l(K −G)
and minimum distance d∗ ≥ deg(G) + 2− 2g.

Proof. Let f, ω be as in Proposition 4.7. We �rst show that fω can't have order ≤ −2 in any
Pi, i = 1, . . . , n. This follows from Proposition 4.7, as fω = η for some η ∈ Ω(G−D). Since
Supp(G) ∩ Supp(D) = ∅, we have that η can only have poles of order 1 in each Pi.

We now �nd the dimension k∗ by proving that ker(β∗) = L(K − G). The formula for k∗
then follows from the fact that C∗(D,G) ∼= L(K +D −G)/ ker(β∗).

Suppose η ∈ Ω(G−D) and resPi(η) = 0, i = 1, . . . , n. Then η ∈ Ω(G). Let fω = η. Then
div(fω) � G. So div(f) +K −G � 0, which is the same as saying f ∈ L(K −G).

Conversely, suppose f ∈ L(K−G). Then div(f)+K � G. Since Supp(G)∩{P1, . . . , Pn} =
∅, then fω has order at least 0 in each Pi.

To prove that d∗ ≥ deg(G) + 2− 2g, suppose we have resPi(fω) = 0 for n− d∗ points Pi,
say Pi1 , . . . , Pin−d∗ . We want to show that f ∈ L(K + D − Pi1 − · · · − Pin−d∗ − G), because
then 2g − 2 + n− (n− d∗)− deg(G) ≥ 0.

Now, since fω has nonnegative order in Pi1 , . . . , Pin−d∗ , then fω ∈ Ω(G−D+ Pi1 + · · ·+
Pin−d∗ ). So div(f) + K � G − D + Pi1 + · · · + Pin−d∗ . It follows that f ∈ L(K − G + D −
Pi1 − · · · − Pin−d∗ ), as desired.
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Proposition 4.9. C(D,G) and C∗(D,G) are dual to each other.

Proof. We must show that the scalar product of any element from C(D,G) with any element
from C∗(D,G) is 0, and that k∗ = n− k.

Let f ∈ L(G) and η ∈ Ω(G−D). The dot product of the corresponding codewords is

α(f) · α∗(η) =
(
f(P1), . . . , f(Pn)

) · (resP1(η), . . . , resPn(η)
)

=
n∑

i=1

f(Pi) · resPi(η).

Now consider one such Pi. Let ti be a generator for the maximal ideal of OPi . For s >> 0,
let

f = a0 + a1ti + a2t
2
i + · · ·+ as−1t

s−1
i + gst

s
i ,

where vPi(aj) = 0 for all nonzero aj and gs ∈ OPi , and

η =
(
b−1

ti
+ b0 + b1ti + b2t

2
i + · · ·+ bs−1t

s−1
i + hst

s
i

)
dti,

where vPi(bj) = 0 for all nonzero bj and hs ∈ OPi . It follows that

fη =
(
a0b−1

ti
+ (a0b0 + a1b−1) + (a0b1 + a1b0 + a2b−1)t+ · · ·+ gshst

2s
i

)
dti.

Therefore, f(Pi) · resPi(η) = a0b−1 = resPi(fη) for all i.
Also, since f ∈ L(G) and η ∈ Ω(G−D), then div(fη) = div(f) + div(η) � −G+G−D =

−D. So fη has no other possible residues other than in the points P1, . . . , Pn. We have
n∑

i=1

resPi(fη) =
∑

P∈X
resP (fη) = 0,

according to the residue theorem. (See e.g. Theorem 4.24, page 89 in [10].)
To show that k∗ = n − k, the Riemann�Roch theorem gives us k + k∗ = l(G) − l(G −

D) + l(K + D − G) − l(K − G) =
(
l(G) − l(K − G)

) − (l(G − D) − l(K − (G − D))
)

=(
deg(G) + 1− g)− (deg(G−D) + 1− g) = deg(D) = n, as desired.

Lemma 4.10. Let n ≥ 2 be an integer and q ≥ 2 be a prime power. Given points P1, . . . , Pn ∈
X, there exists a rational di�erential form ω with simple poles in P1, . . . , Pn and no poles
elsewhere. In particular, resP1(ω), . . . , resPn(ω) are all nonzero.

Proof. Let ω be a rational di�erential form, div(ω) = K. Since all rational di�erential forms
can be written as fω for some f ∈ Fq(X), we shall show that fω ful�lls the claim in the
lemma for some f ∈ Fq(X).

Such an f must be an element of L(K + P1 + P2 + · · ·+ Pn), since this is equivalent with
div(fω) = div(f) +K � −P1 − P2 − · · · − Pn.

Let Ui = L(K + P1 + P2 + · · ·+ Pn − Pi). We must show that

L(K + P1 + P2 + · · ·+ Pn−1 + Pn) 6=
n⋃

i=1

Ui. (4.1)

We will prove this by calculating the dimension on the left- and right-hand side of the inequal-
ity, using Riemann�Roch.
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First of all, we have

l(K) = g,

l(K + P1) = g,

l(K + P1 + P2) = g + 1,
l(K + P1 + P2 + P3) = g + 2,

...
l(K + P1 + P2 + · · ·+ Pn−1) = g + n− 2,
l(K + P1 + P2 + · · ·+ Pn) = g + n− 1.

From this we see that the left-hand side of (4.1) has dimension g + n − 1, while each Ui has
dimension g + n − 2. If we were working over an in�nite �eld, the proof would already be
done, since a �nite union of vector spaces of dimension < g+ n− 1 can't �ll a vector space of
dimension g + n− 1. However, for �nite �elds, this isn't necessarily true.

If A is a set, let |A| denote the number of elements in A. Since X is a curve over the �eld
Fq, we have

|L(K + P1 + P2 + · · ·+ Pn)| = qg+n−1,

|U1 ∪ U2 ∪ · · · ∪ Un| =
n∑

i=1

|Ui| −
∑

i<j

|Ui ∩ Uj |+
∑

i<j<k

|Ui ∩ Uj ∩ Uk|

+ · · ·+ (−1)n−2
∑

i1<···<in−1

|Ui1 ∩ · · · ∩ Uin−1 |

+ (−1)n−1|U1 ∩ · · · ∩ Un|
=

(
n

1

)
qg+n−2 −

(
n

2

)
qg+n−3 +

(
n

3

)
qg+n−4

+ · · ·+ (−1)n−2

(
n

n− 1

)
qg + (−1)n−1

(
n

n

)
qg

= −
(
n

0

)
qg+n−1 +

(
n

1

)
qg+n−2 −

(
n

2

)
qg+n−3

+
(
n

3

)
qg+n−4 + · · ·+ (−1)n−2

(
n

n− 1

)
qg

+ (−1)n−1

(
n

n

)
qg−1 + qg+n−1

+ (−1)nqg−1 + (−1)n−1qg

= −qg−1(q − 1)n + qg+n−1 + (−1)n−1qg−1(q − 1)
= qg−1

(
qn − (q − 1)n + (−1)n−1(q − 1)

)
.

We want this last expression to be strictly smaller than qg+n−1, i.e. that qn − (q − 1)n +
(−1)n−1(q − 1) < qn. This is equivalent to (q − 1)n − (−1)n−1(q − 1) > 0, which we rewrite
as (q − 1)n > (−1)n−1(q − 1). Since q ≥ 2, this last bit is clear for n ≥ 2.

Proposition 4.11. Let ω be as in Lemma 4.10, div(ω) = K. Then the codes C(D,K+D−G)
and C∗(D,G) are equivalent. In particular, C(D,K + D − G) and C∗(D,G) have the same
dimension k and minimum distance d.
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Proof. We show that we obtain all codewords in C∗(D,G) when we direct-multiply each
element in C(D,K+D−G) with the vector (resP1(ω), . . . , resPn(ω)), thus showing by de�nition
that the codes are equivalent since each resPi(ω) is nonzero.

A codeword in C(D,K + D − G) is of the form (f(P1), . . . , f(Pn)), f ∈ L(K + D − G).
Since vPi(K) = −1 for each Pi, then f has no poles in Pi, i = 1, . . . , n. So f is of the form
f = a0 + a1ti + a2t

2
i + · · · + gst

s
i , where ti is a generator for the maximal ideal of OPi , and

where vPi(aj) = 0 for all nonzero aj and gs ∈ OPi .
We now direct-multiply the codeword with (resP1(ω), . . . , resPn(ω)), use the same reasoning

as in the proof of Proposition 4.9, and get (resP1(fω), . . . , resPn(fω)). For all f ∈ L(D,K +
D −G), this yields the image of β∗, and by Proposition 4.7, this is the same as the image of
α∗, and so we have the entire code C∗(D,G).

Remark 4.12. From this proposition it follows that whenever we speak of a code C∗(D,G), it
su�ces to regard C(D,K+D−G). Proposition 4.8 then follows easily from Proposition 4.11.

De�nition 4.13. Let ω be as in Lemma 4.10, div(ω) = K. We will denote K + D − G by
G∗.

De�nition 4.14. A strongly algebraic-geometric code, SAG-code, is a code C(D,G) satisfying
n > deg(G) > 2g − 2.

Recall from Corollary 4.4 that if n > deg(G), then α is an injection and k = l(G). In
particular, this is satis�ed if the code is SAG.

Proposition 4.15. C(D,G) is a SAG-code if and only if C∗(D,G) is a SAG-code.

Proof. Because of Proposition 4.11, it su�ces to show that C(D,G) is a SAG-code if and only
if C(D,G∗) is a SAG-code.

Suppose C(D,G) is a SAG-code. We have deg(G∗) = 2g − 2 + n − deg(G), where n >
deg(G) > 2g − 2. The �rst inequality yields deg(G∗) > 2g − 2, and the second inequality
yields deg(G∗) < n. From this, the converse follows trivially.

4.2 Some Examples
Example 4.16. Let X = P1 over the �eld Fq, q ≥ 2. Choose a positive integer n ≤ q, n ≥ 2,
and let Pi = (ai, 1) for i = 1, . . . , n so that all the ai are distinct. Choose a positive integer
m < n and denote the point (1, 0) =: P∞. Let G = mP∞ and D = P1 + · · ·+ Pn.

It is clear that l(G) = m+ 1− g = m+ 1 and

L(G) =
{
b0x

m + b1x
m−1y + · · ·+ bmy

m

ym

∣∣∣∣ b0, . . . , bm ∈ Fq
}
,

where x, y are homogeneous coordinates for P1. We then get as basis for L(G) the elements
(xy )m, (xy )m−1, . . . , xy , 1. Note that this �ts in with the fact that l(G) = m+ 1.

Let (xy )s =: fs, so that the basis for L(G) is f0, . . . , fm. The Goppa-code C(D,G) is
de�ned by

L(G) −→ (Fq)n,
f 7−→ (f(P1), . . . , f(Pn)).
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It follows that a generator matrix for C(D,G) is

G =




f0(P1) . . . f0(Pn)
f1(P1) . . . f1(Pn)

... . . . ...
fm(P1) . . . fm(Pn)


 =




1 1 . . . 1
a1 a2 . . . an
... ... . . . ...
am1 am2 . . . amn


 .

Note that C(D,G) satis�es 2g−2 < m < n, since the genus is 0. By De�nition 4.14, C(D,G)
is a SAG-code. It follows that k = m+1−g = m+1 and d ≥ n−m = n− (k−1) = n−k+1,
which we call the Goppa bound. According to the Singleton bound, d ≤ n− k + 1. Equality
follows, and so the code is MDS.

From the above, we conclude that C∗(D,G) is also MDS (see Corollary 15.7, page 195 in
[5]). We then have from general coding theory that k∗ = n − k = n −m − 1, and so, using
that C∗ is MDS, d∗ = n− k∗ + 1 = n− (n−m− 1) + 1 = m+ 2, which is the Goppa bound
(see Proposition 4.8).

Let's �nd the rank of G . We know that d∗ equals the minimal number of linear dependent
columns in G (see Theorem 8.4, page 85 in [5]). We found that number to be d∗ = m + 2 =
(k − 1) + 2 = k + 1. It follows that the rank of G is k, and so all submatrices of G have a
nonzero determinant, and that �ts in well with the fact that G is van der Monde, from which
the same conclusion can be drawn and the argument reversed.
Example 4.17. A Hermite curve X is a curve over Fq2 given by

yqz + yzq = xq+1.

Its genus is
g =

1
2
(
q2 − q) .

According to the Hasse�Weil bound (see Theorem 5.2), the number of Fq2-rational points on
this curve is

|X(Fq2)| ≤ q2 + 1 + 2g
√
q2 = q3 + 1.

We shall show that we obtain equality with this curve.
If z = 0, we get x = 0, and so the only point at in�nity is H∞ = (0, 1, 0).
If z = 1, we get the equation yq + y = xq+1. If x = 0, we get yq + y = 0. This equation

has q solutions, and with some calculations we �nd that they are all in Fq2 . That gives us q
points. If x = x0 6= 0, then we get the equation yq + y = xq+1

0 . For each x0, we �nd q values
for y, and they are all found in Fq2 . That gives us (q2 − 1)q new points.

It follows that X has 1 + q+ (q2−1)q = q3 + 1 points. This shows that the Hermite curve,
as desired, is maximal with respect to the Hasse�Weil bound.

The most usual way to make SAG-codes on X is to choose 2g − 2 < m < n, let {Pi}q
3

i=1

be the set of all Fq-rational points di�erent from H∞, and let

Gm = mP∞, D =
q3∑

i=1

Pi.

We then get the parameters

2g− 2 = q2− q− 2 < m < n = q3, k = m+ 1− g = m+ 1− q2 − q
2

, d ≥ n−m = q3−m.
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4.3 A Lower Bound on Goppa Codes
In 2005, Xing showed in [18] that Goppa codes achieve the Gilbert�Varshamov bound (see
Corollary 2.13). The main idea of Xing's proof is to choose good divisors G such that the
minimum distance d increases compared to deg(G). He furthermore shows that such a divisor
exists provided that Mt,l(D) < h(X) (see de�nitions later in this section). It follows that the
code attains the Gilbert�Varshamov bound. Xing's idea is based on an earlier paper that he
published (see [15]), where he �nds su�cient conditions for Mt,l(D) < h(X) by �nding an
upper bound on Mt,l(D). However, the upper bound that he �nds here is much better. This
is actually the whole di�erence between [15] and [18]. I here only give an outline of the main
results of Xing's paper, but in the proof of Theorem 4.23 I have �lled in calculations that Xing
in his article left to the reader.

Recall that X(Fq) denotes the set of Fq-rational points on X.

De�nition 4.18. For any integer l and any e�ective divisor D with deg(D) ≥ l, let
Al(D) := {G | deg(G) = l, 0 ≺ G ≺ D}.

Furthermore, let t be a nonnegative integer and

Mt,l(D) := {H +G | deg(H) = t, H � 0, G ∈ Al(D)},
and let Mt,l(D) denote the cardinality of Mt,l(D).

Before presenting the following lemma, note that for a curve X and any integer s, the
number of divisor classes of degree s is always h(X). I.e., the number of divisor classes of a
certain degree s does not depend on s. (Proof: Let A1, . . . , Ah be all the divisor classes of
degree 0, and let B be a divisor class of degree s. Then I claim that B +A1, . . . , B +Ah are
all the divisor classes of degree s. To prove the claim, suppose B′ is a divisor class of degree
s not among the ones listed. Then B′ − (B + Ai) 6≡ 0 for i = 1, . . . , h. Including 0, we then
have h+ 1 distinct divisor classes of degree 0, a contradiction.)

Lemma 4.19. Suppose there is at least one Fq-rational point on the curve X, and let h(X)
be the number of divisor classes of a certain degree. Let s ≥ g be a positive integer and let S
be a set of Fq-rational divisors of degree s such that |S| < h(X). Then there exists an e�ective
divisor H of degree s such that H isn't equivalent to any divisor in S.

Proof. It is clear that there exists a divisorH ′ (not necessarily e�ective) such that deg(H ′) = s
and H ′ is not equivalent to any divisor in S. According to Riemann�Roch, l(H ′) ≥ deg(H ′) +
1 − g ≥ 1. So we have at least q functions f such that H ′ + div(f) � 0. Choose such an f
and put H := H ′ + div(f). Since H ≡ H ′, then H isn't equivalent to any element in S, as
desired.

In the following proposition we �nd su�cient conditions for the existence of good divi-
sors G that increase the minimum distance of Goppa codes. Here we will use the Strong
Approximation Theorem, which is Theorem I.6.4 on page 31 of [11].

Theorem 4.20 (Strong Approximation Theorem). Let S be a proper subset of the
set of all closed points on X of degree 1, 2, 3, . . . . Choose points P1, . . . , Pr ∈ S, functions
x1, . . . , xr ∈ Fq(X), and integers n1, . . . , nr. Then there exists a function x ∈ Fq(X) such that
vPi(x− xi) = ni for all i ∈ {1, . . . , r} and vP (x) ≥ 0 for all P ∈ S \ {P1, . . . , Pr}.
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Proposition 4.21. Let P1, . . . , Pn be the set of Fq-rational points on X and D = P1+· · ·+Pn.
Let l, t be nonnegative integers satisfying l ≤ n and t+ l ≥ g. Suppose Mt,l(D) < h(X). Then
there exists a divisor G of degree t + l such that Supp(G) ∩ Supp(D) = ∅ and C(D,G) is an
[n, k, d]q-linear code with

k = l(G) ≥ deg(G)− g + 1 = t+ l − g + 1 and d ≥ n− l + 1.

If deg(G) ≥ 2g − 1, then k = deg(G)− g + 1.
Note that according to the theory of standard Goppa codes, d ≥ n− deg(G) = n− l − t.

Proof. According to Lemma 4.19,Mt,l(D) < h(X) implies that there exists an e�ective divisor
H of degree t + l such that H isn't equivalent to any divisor in Mt,l(D). I now claim that
L(H −∑P∈I P ) = {0} for any subset I ⊆ Supp(D) with |I| = l.

Suppose the claim is false. Then there exists an I0 ⊆ Supp(D) with |I0| = l such that
L(H −∑P∈I0 P ) 6= {0}. Choose a nontrivial f ∈ L(H −∑P∈I0 P ). Then div(f) + H −∑

P∈I0 P � 0. Put L = div(f)+H−∑P∈I0 P . Then H ≡ L+
∑

P∈I0 P . The e�ective divisor
L is of degree t. We have

∑
P∈I0 P ≺ D and of degree l. So L +

∑
P∈I0 P ∈ Mt,l and H is

equivalent to an element in Mt,l, a contradiction.
Since n is less than the number of closed points of X, we can apply the Strong Approxi-

mation Theorem�Theorem 4.20�to choose functions zi ∈ Fq(X), i ∈ {1, . . . , n} such that

vPj (zi) = vPj (zi − 0) = 0, j 6= i,
vPi(zi) = vPi(zi − 0) = 1.

Let
G := H + div

(
n∏

i=1

z
−vPi (H)

i

)
.

Then G ≡ H, and we have that Supp(G) ∩ Supp(D) = ∅, since whenever a point Pi has
nonzero coe�cient in H, then the order of the pole of z−vPi (H)

i at Pi is the same. Since
L(H −∑P∈I P ) = {0} for any I ⊆ Supp(D) such that |I| = l, the same applies for G. I.e.,
L(G−∑P∈I P ) = {0} for any I ⊆ Supp(D) such that |I| = l.

Choose a nontrivial f ∈ L(G) and let r = wt(f(P1), . . . , f(Pn)). Then f ∈ L(G−∑P∈J P )
for some J ⊆ Supp(D) with |J | = n − r, since Supp(G) ∩ Supp(D) = ∅. It is clear that
n − r = |J | < l, and so r ≥ n − l + 1. Since we put in the conditions that l ≤ n, we have
r ≥ 1, and so ker(φ) = {0}. It follows that φ is injective, the number of codewords is L(G),
and the dimension is k = l(G).

To �nd out when Mt,l(D) < h(X), Xing �nds a good upper bound for Mt,l. I here only
give an outline of how this is done. He �rst shows that

Mt,l(D) =
t∑

i=0

(
n

l + i

)
A

(n−l−i)
t−i ,

where, if S is a set of Fq-rational points of cardinality 0 ≤ s ≤ |X(Fq)|, then A(s)
i is the number

of e�ective divisors with support disjoint from S. So if he can �nd a good upper bound for
each A(n−l−i)

t−i , he is done. He uses the s-zeta-function to do that. We have

Z(s)(X,T ) :=
∞∑

i=0

A
(s)
i T i = exp

( ∞∑

i=1

|X(Fqi)| − s
i

T i

)
= Z(X,T )(1− T )s, 0 ≤ s ≤ |X(Fq)|,



4.3 A Lower Bound on Goppa Codes 31

where
Z(X,T ) :=

∞∑

i=0

AiT
i = exp

( ∞∑

i=1

|X(Fqi)|
i

T i

)
.

He uses this to show that A(s)
i = h(X) · (q − 1)s−1qi−g−s+1 for i ≥ 2g + s− 1.

Using the fact that

2g+s−2∑

i=0

A
(s)
i T i = Z(X,T )(1− T )s −

∞∑

i=2g+s−1

A
(s)
i T i

and putting T = 1/q, he �nds that

A
(s)
i ≤

(2g(
√
q + 1) + 2n)h
qq−i

(
1− 1

q

)s−1

.

And so we have

Mt,l(D)
h

≤ 2g(
√
q + 1) + 2n

qg+n−t−l−1

t∑

i=0

(
n

l + i

)
(q − 1)n−l−i−1. (4.2)

We can now rephrase the above proposition with the following:

Proposition 4.22. Let l ≤ n and t+ l ≥ 1. Suppose

2g(
√
q + 1) + 2n

qg+n−t−l−1

t∑

i=0

(
n

l + i

)
(q − 1)n−l−i−1 < 1.

Then there exists an [n, k, d]q-linear code with k = l(G) and d ≥ n− l + 1.

We now show that these conditions are su�cient to achieve the Gilbert�Varshamov bound.

Theorem 4.23. Goppa codes achieve the asymptotic Gilbert�Varshamov bound for any δ ∈
(0, 1− 1

q ).

Proof. The idea of the proof is to start o� with the Gilbert�Varshamov bound, �nd the
necessary parameters, and use Proposition 4.22 to show that there exists a code satisfying
these conditions.

Choose a sequence of curves (Xi)∞i=1 with genus g(Xi) de�ned over Fq such that

lim
i→∞

|Xi(Fq)|
g(Xi)

= a > 0.

Choose a small ε > 0 and a pair (δ,R) with 0 < δ < 1− 1
q and 0 < R < 1 such that

1−Hq(δ)− ε < R < 1−Hq(δ).

Choose positive integers {ni := |Xi(Fq)|}∞i=1, {ki}∞i=1, and {di}∞i=1 such that

lim
i→∞

ki
ni

= R and lim
i→∞

di
ni

= δ.
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We will show that there exist Goppa codes Ci with these parameters. For simplicity, I will
drop the i-indices.

The following inequality deserves a little argumentation:

Hq(δ) = lim
n→∞

logq
(
4gn(k + d+ g − n+ 1)

(
n
d

)
(q − 1)d−1

)

n
< 1−R = lim

n→∞
n− k − 1

n
. (4.3)

To prove the left-hand side equality of (4.3), we have

1
n

logq

(
4gn(k + d+ g − n+ 1)

(
n

d

)
(q − 1)d−1

)

=
1
n

(
logq (4gn(k + d+ g − n+ 1)) + logq

(
n

d

)
+ logq(q − 1)d − logq(q − 1)

)

→ lim
n→∞

1
n

logq

((
n

d

)
(q − 1)d

)

= lim
n→∞

1
n

logq

(
(d+ 1)

(
n

d

)
(q − 1)d

)
.

And in between these two last expressions we have according to Lemma 2.11

lim
n→∞

1
n

logq

(
d∑

i=0

(
n

i

)
(q − 1)i

)
,

which according to Lemma 2.12 equals Hq(δ).
To return to (4.3), the inequality Hq(δ) < 1−R follows from the choice of R. The equality

1−R = limn→∞(n− k − 1)/n follows from the de�nition of R and the fact that 1
n → 0.

The choice of 0 < δ < 1 − 1
q implies that d < (q − 1)n/q for su�ciently large n. We also

have the inequality

4gn(k + d+ g − n+ 1)
(
n

d

)
(q − 1)d−1 < qn−k−1, n >> 0.

Using a similar argument as in the proof of Lemma 2.11, it can be shown that
(

n

n− d+ i

)
(q − 1)d−i−1 (4.4)

decreases for 0 ≤ i < (q−1)n/q. Recall that d < (q−1)n/q and note that if we de�ne
(
c
d

)
= 0

for d > c, then (4.4) is 0 for i > d. It follows that

4gn
qn−k−1

k+d+g−n∑

i=0

(
n

n− d+ i

)
(q − 1)d−i−1 ≤ 4gn

qn−k−1
(k + d+ g − n+ 1)

(
n

d

)
(q − 1)d−1 < 1.

Putting t = k + d+ g − n and l = n− d, we get

4gn
qg+n−t−l−1

t∑

i=0

(
n

l + i

)
(q − 1)n−l−i−1 < 1.
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Our aim was to get

2g(
√
q + 1) + 2n

qg+n−t−l−1

t∑

i=0

(
n

l + i

)
(q − 1)n−l−i−1 < 1,

which has now been satis�ed since we have for su�ciently large n (demanding that g 6= 0,
which is OK), 2g(

√
q + 1) + 2n ≤ 2gn+ 2n ≤ 2gn+ 2gn = 4gn.

Remark 4.24. In order to construct a code that has a code rate close to the Gilbert�
Varshamov bound, we need a large length n of the codewords. To get an idea of this, we
can choose Fq3 with q = 5, and δ = 3

4 . We then get RGV(δ) = 1−Hq(δ) = 0.1347815102 . . . .
Put R = 0.1347. In [1] a tower of function �elds has been constructed over Fq3 with
|Xi(Fq3)| ≥ qi(q+ 1) and g(Xi) = 1

2(q−1)(qi+1 + 2qi−2q(i+2)/2−2qi/2 + q)− i
4 · q(i−2)/2 · (q+ 1)

if i ≡ 0 (mod 4). It is given by F1 = Fq3(x1) and for i ≥ 1, Fi+1 = Fi(xi+1) with

1− xi+1

xqi+1

=
xqi + xi − 1

xi

and satis�es limi→∞ |Xi(Fq3)|/gi = 2·(q2−1)
q+2 > 0. Put ni = 5i · 6 and de�ne ki = bRnic and

di = bδnic. We want to have

2gi(
√
q + 1) + 2ni

qgi+ni−ti−li−1

ti∑

j=0

(
ni

li + j

)
(q − 1)ni−li−j−1 < 1, (4.5)

where ti = ki + di + gi − ni and li = ni − di, which we know will be satis�ed for large
enough i. For i = 4, (4.5) is not satis�ed. For i = 8, we have n8 = 2343750, g8 = 339360,
k8 = 315894, d8 = 1757812, l8 = 585938, t8 = 69316, and deg(G8) = t8 + l8 = 655254.
Computational problems arise when we try to �nd the binomial coe�cients, so we don't know
if these parameters satisfy (4.5).

However, we know that for i >> 0 we have (4.5). When we �nd such an i, we know that
Mti,li(Di) < h(Xi). We then choose ni distinct points that de�ne the divisor Di, and we know
according to the proof of Proposition 4.21 that there exists an e�ective divisor Hi such that
L(Hi −

∑
P∈I P ) = {0} for any li-subset I of Supp(Di). We �nd that divisor and calculate

Gi as was done in the proposition. Then C(Di, Gi) will have dimension ki = b0.1347nic and
minimum distance at least b3

4nic.
In Chapter 8, we will see that linear codes are frameproof codes and that this δ will

correspond to s = 4 in s-frameproof codes. See Remark 8.6.
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Chapter 5

The Tsfasman�Vl�aduµ�Zink Bound

In 1982, about one year after the Goppa codes were discovered, Tsfasman, Vl�aduµ, and Zink
published an asymptotic improvement of the Gilbert�Varshamov bound. This improvement
used standard Goppa codes together with an in�nite sequence of curves with an optimal
number of Fq-rational points. In this chapter I start by presenting some results concerning
how many Fq-rational points a nonsingular projective curve de�ned over Fq can have. I
conclude this chapter by presenting the proof of the Tsfasman�Vl�aduµ�Zink bound.

The zeta-function of a curve can be found on pages 111�120 in [10]. The Drinfeld�Vl�aduµ
theorem is taken from page 162 of [10].

5.1 The Drinfeld�Vl�aduµ Bound
Theorem 5.1 (Drinfeld�Vl�aduµ). Given an in�nite sequence of non-singular projective
curves (Xi)∞i=1 with genus g(Xi) and |Xi(Fq)| Fq-rational points such that limi→∞ |Xi(Fq)| →
∞, we have

lim
i→∞

|Xi(Fq)|
g(Xi)

≤ √q − 1.

To prove this, we need some facts about the number |X(Fq)| for a non-singular projective
curve X, but to do that, we must �rst study the zeta-function of X.

The zeta-function is de�ned as

ζ(X, s) =
∑

D

(N(D))−s, Re(s) > 1,

where the sum is taken over all e�ective Fq-rational divisors on X and N(D) = qdeg(D). The
function converges for all Re(s) > 1.

The zeta-function can be written as

ζ(X, s) =
∏

P

1
1− (N(P ))−s

, Re(s) > 1,

where the product is taken over all prime Fq-rational divisors P on X. The product is abso-
lutely convergent. The function converges to

ζ(X, s) =
P (q−s)

(1− q−s)(1− q1−s)
, where P (q−s) =

2g∑

j=0

σjq
−js,

35
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where σj are real constants. By putting q−s =: t, we de�ne the function Z(X, t) := ζ(X, s).
Hence, Z(X, t) = P (t)

(1−t)(1−qt) . If |X(Fqν )| is the number of Fqν -rational points on X, then

Z(X, t) = exp

( ∞∑

ν=1

|X(Fqν )|
ν

tν

)
.

This is used to show that if P (q−s) = P (t) factors as

P (t) =
2g∏

j=1

(1− ωjt),

then

|X(Fqν )| = qν + 1−
2g∑

j=1

ωνj . (5.1)

Furthermore, each ωj satis�es |ωj | = √q.
A consequence of this is that a curve of genus 0 has q + 1 Fq-rational points, as expected.
Before proving the theorem of Drinfeld and Vl�aduµ, we include an important bound that

is immediate from (5.1).
Theorem 5.2 (the Hasse�Weil Bound). The number |X(Fqν )| of Fqν -rational points on a
non-singular projective curve X satis�es

|X(Fqν )| ≤ qν + 1 + 2g
√
qν .

Remark 5.3. A curve X of genus g satisfying |X(Fq)| = q + 1 + 2g
√
q is called a maximal

curve. As we see from Theorem 5.1, we are not able to �nd maximal curves of arbitrarily large
genus g.

Another simple proof of that fact follows from the resently published article [21]. In
the article, it is shown that for any maximal curve X over q2 with genus g(X), we can
improve the Goppa code parameter k + d by approximately g(X) when q is large. If we now
assume that q >> 0 and that there exists a maximal curve X over q2 for arbitrarily large
genus g(X), we can construct a sequence of Goppa codes (Ci(Di, Gi))∞i=1 with parameters
ki + di ≥ deg(Gi)− g(Xi) + 1 + ni − deg(Gi) + g(Xi)− ε(q) = 1 + ni − ε(q), where ε(q) ≥ 0
and ε(q) → 0 as q → ∞. By dividing with ni on both sides and letting ni → ∞, we obtain
the bound R ≥ 1− δ, which exceeds the asymptotic Plotkin bound, an upper bound for αq(δ)
which we proved in Corollary 2.6, a contradiction to the original assumption that there exists
a maximal curve of arbitrarily large genus.

We now prove the theorem of Drinfeld and Vl�aduµ.

Proof of Theorem 5.1. Let X have genus g and let

Z(t) =

∏2g
j=1(1− ωjt)

(1− t)(1− qt) .

Let αj = ωj/
√
q. Then |αj | = 1. If ν ≥ 1, we have

|X(Fq)| · q−ν/2 ≤ |X(Fqν )| · q−ν/2 =


qν + 1−

2g∑

j=1

ωνj


 q−ν/2 = qν/2 + q−ν/2 −

2g∑

j=1

ανj .
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Rearranging, we get
2g∑

j=1

ανj ≤ qν/2 + q−ν/2 − |X(Fq)| · q−ν/2. (5.2)

Now, we have for any positive integer n,

0 ≤
∣∣∣∣∣
n∑

ν=1

ανj

∣∣∣∣∣
2

=
n∑

ν=1

ανj ·
n∑

ν=1

ανj =
n∑

ν=1

ανj ·
n∑

ν=1

αj
ν ,

where ξ denotes the complex conjugate of the complex number ξ. If we pick an ανj from the
�rst sum and an αjτ from the second sum, then ανj · αjτ = |ατj |2 · αν−τj . And since |αj | = 1,
then this simply becomes αν−τj . Hence,

n∑

ν=1

ανj ·
n∑

ν=1

αj
ν =

n∑

ν,τ=1

αν−τj .

We divide the sum into two parts: When ν = τ , we have α0
j = 1 n times, so the total

contribution is n. When ν 6= τ , note that ν− τ takes all nonzero values between −(n−1) and
n − 1. We pick a positive integer κ ≤ n − 1 and count the possibilities for when ν − τ = κ.
(The same will apply for negative κ.) If τ = 1, then ν = κ+ 1. If ν = n, then τ = n− κ. So
we have n− κ possibilities. We get

n∑

ν,τ=1

αν−τj = n+
n−1∑

κ=1

(n− κ)(ακj + α−κj ).

We sum this expression over j = 1, . . . , 2g and get

0 ≤ 2gn+
2g∑

j=1

n∑

κ=1

(n− κ)(ακj + α−κj ) = 2gn+
n∑

κ=1

(n− κ)
2g∑

j=1

(ακj + α−κj ).

Now note that since |ακj | = 1, we have ακj ·ακj = 1, and so the complex conjugate of ακj is α−κj .
It follows that for each j, ακj + α−κj = 2Re(ακj ). The sum

∑2g
j=1 α

κ
j is a real number, since∑2g

j=1 ω
ν
j is the only complex part of the formula for |X(Fqν )|, so Re

∑2g
j=1 α

κ
j =

∑2g
j=1 α

κ
j . We

therefore get

0 ≤ 2gn+
n∑

κ=1

(n− κ)
2g∑

j=1

(ακj + α−κj ) = 2gn+ 2
n∑

κ=1

(n− κ)
2g∑

j=1

ακj .

Using (5.2), we get

0 ≤ 2gn+ 2
n∑

κ=1

(n− κ)
2g∑

j=1

ακj ≤ 2gn+ 2
n∑

κ=1

(n− κ)(qκ/2 + q−κ/2 − |X(Fq)| · q−κ/2).

Rearranging and dividing by 2gn, this becomes

|X(Fq)|
g

n∑

κ=1

n− κ
n
· q−κ/2 ≤ 1 +

1
g

n∑

κ=1

n− κ
n

(qκ/2 + q−κ/2).
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We let g, n→∞ such that n/ logq(g)→ 0. Then, for any ε > 0,

lim
g→∞

|X(Fq)|
g

·
∞∑

κ=1

q−κ/2 ≤ 1 + ε.

Since the in�nite sum starts at κ = 1 instead of 0, it becomes

1
1− q−1/2

− 1 =
1√
q − 1

.

This proves the theorem.

5.2 Attaining the Drinfeld�Vl�aduµ Bound
Using towers of function �elds, it is possible to �nd a sequence of nonsingular projective curves
that attains the Drinfeld�Vl�aduµ bound. I here brie�y present a construction found in [3].

Let (Xi)∞i=1 be a sequence of nonsingular projective curves de�ned over Fq2 with genus
g(Xi) such that |Xi(Fq2)| → ∞. We know from the Drinfeld�Vl�aduµ bound that

lim
i→∞

|Xi(Fq2)|
g(Xi)

≤ q − 1.

This means that is su�ces to �nd a tower of function �elds such that

lim
i→∞

|Xi(Fq2)|
g(Xi)

≥ q − 1.

To obtain that inequality, we need a large number of Fq2-rational points, and we must have
control over the genuses of the curves. I here present a tower of function �elds that meet this
demand.

For the de�nition of rami�ed points and di�erent exponents, see pages 130�138 in [10].

De�nition 5.4. Let F1 := Fq2(x1). For n ≥ 1, let Fn+1 := Fn(zn+1), where zqn+1 + zn+1 =
xq+1
n , and where for n ≥ 2 we have xn := zn/xn−1.

We must �nd the number of Fq2-rational points of Fn and the genus gn. The genus is
found by recursive usage of Hurwitz's genus formula,

2gn − 2 = [Fn : Fn−1](2gn−1 − 2) + deg Diff(Fn/Fn−1).

The degree of Diff(Fn/Fn−1) is the sum of all the di�erent exponents d(P ′/P ) taken over
all prime divisors P of Fn−1 and prime divisors P ′ of Fn lying over those P . The following
proposition is part of proposition 1.1 in [3] and is also presented as Proposition 5.33 on page
138 of [10]:

Proposition 5.5. Let P be a prime divisor of Fn−1 in the tower as de�ned above, and suppose
P is totally rami�ed. Then

d(P ′/P ) = (q − 1)
(
−vP

(
xq+1
n−1

)
+ 1
)
.
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So here it will be a good idea to study the rami�cation index of the prime divisors of Fn−1.
I will call prime divisors for points from now on, but will consider them as DVRs of the

function �elds we consider. In the article, it is shown that there is a unique common zero Qn
for x1, z2, . . . , zn in Fn, and that Qn splits into q distinct points of Fn+1, one of them being
Qn+1. The following de�nition involves points lying over Qn.
De�nition 5.6. Let Qn be the unique point of Fn that is a common zero of x1, z2, . . . , zn.

• For n ≥ 2, let S(n)
0 := {points P of Fn such that P ∩ Fn−1 = Qn−1 and P 6= Qn}.

• For 1 ≤ i ≤ b(n− 3)/2c, let S(n)
i := {points P of Fn such that P ∩ Fn−1 ∈ S(n−1)

i−1 }.
• Let P∞ denote the pole of x1 in F1. Let S(1) := {P∞} and S(2) := {points P of F2 such
that P ∈ S(2)

0 or P ∩ F1 ∈ S(1)}.
• For n odd, n ≥ 3, let S(n) := {points P of Fn such that P ∩Fn−1 ∈ S(n−1)}. For n even,
n ≥ 4, let S(n) := {points P of Fn such that P ∩ Fn−1 ∈ S(n−1) ∪ S(n−1)

(n−4)/2}.

S
(n)
0 consists of q − 1 points, since Qn−1 splits into q distinct points of Fn. S(n)

i consists
of all points of Fn lying over Qn−i−1. The set S(2) consists of points of F2 that are either a
pole of x1 or a point 6= Q2 lying over Q1. If n ≥ 5, then S(n) consists of points lying over
the pole of x1 and points 6= Q(n−1)−(n−4)/2 lying over Q(n−1)−(n−4)/2−1 if n is even and points
6= Q(n−2)−(n−5)/2 lying over Q(n−2)−(n−5)/2−1 if n is odd. The union of these sets consists of
all points lying over P∞, Q1, . . . , Qn.

Garcia and Stichtenoth show that the rami�ed points of Fn for the extension Fn+1/Fn are
exactly the points in S(n), and that they are totally rami�ed. Thus, we can use Proposition 5.5,
and for each of the rami�ed points P of Fn, we have

d(P ′/P ) = (q − 1)(−vP (xq+1
n ) + 1).

It is also shown that P is a simple pole of xn, and that the number of elements in S(n) is
qbn/2c. The degree of each �eld extension is q, and so Hurwitz's genus formula gives us

2gn+1 − 2 = q(2gn − 2) + qbn/2c(q + 2)(q − 1),

with the initial condition g1 = 0. We then get the following proposition:
Proposition 5.7. The genus gn of Fn is

gn =
{
qn + qn−1 − q(n+1)/2 − 2q(n−1)/2 + 1 if n is odd,
qn + qn−1 − 1

2q
n/2+1 − 3

2q
n/2 − qn/2−1 + 1 if n is even.

Proof. We induct on n. For n = 1, we have q + 1 − q − 2 + 1 = 0. For n = 2, Hurwitz's
genus formula gives us 2g2 − 2 = −2q + (q + 2)(q − 1) = q2 − q − 2. The proposition gives us
g2 = q2 + q − 1

2q
2 − 3

2q − 1 + 1 = 1
2q

2 − 1
2q.

Now suppose n is even and the proposition is valid for n. Then Hurwitz's genus formula
gives us

2gn+1 − 2 = q

(
2
(
qn + qn−1 − 1

2
qn/2+1 − 3

2
qn/2 − qn/2−1 + 1

)
− 2
)

+ qn/2(q + 2)(q − 1)
= 2qn+1 + 2qn − 2qn/2+1 − 4qn/2,
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which agrees with the proposition. Now suppose n is odd and the proposition is valid for n.
Then the recursion formula gives us

2gn+1 − 2 = q(2(qn + qn−1 − q(n+1)/2 − 2q(n−1)/2 + 1)− 2)
+ q(n−1)/2(q + 2)(q − 1)

= 2qn+1 + 2qn − q(n+3)/2 − 3q(n+1)/2 − 2q(n−1)/2,

as desired.

Now that the genus of each Fn has been calculated, it remains to �nd the number of points
of degree 1. Some of those points are:
• all points of Fn lying over a point in {points P of F1 such that P is a zero of x1 − α,

0 6= α ∈ Fq2}
• all points of Fn lying over a point in S(2)

• all points S(n)
0 ∪ {Qn}

It is shown that a zero of x1 − α, α 6= 0 in F1 splits completely in Fn. Then we have a total
of (q2 − 1) · qn−1 points of the �rst type. To determine the number of points of the second
type, remember that points in S(n) are totally rami�ed. This means that the number of points
lying over a point in S(2) equals the number of elements in S(2), and there are q of those. The
number of points of the third type is the number of points of Fn lying over Qn−1, which is q.

It follows that the number of points of degree 1 of Fn is
Nn ≥ (q2 − 1) · qn−1 + 2q.

We then get

lim
n→∞

gn
Nn

≤ lim
n→∞

qn + qn−1

(q2 − 1) · qn−1 + 2q

=
1 + q−1

q − q−1
=

1 + q−1

q(1− q−2)
=

1 + q−1

q(1 + q−1)(1− q−1)
=

1
q − 1

.

We have now reached the desired conclusion.
Theorem 5.8. There exists a sequence of nonsingular projective curves (Xi)∞i=1 over Fq, q =
p2s, p prime, with genus g(Xi), |Xi(Fq)| the number of Fq-rational points, such that |Xi(Fq)| →
∞ and

lim
i→∞

|Xi(Fq)|
g(Xi)

=
√
q − 1.

Corollary 5.9 (the Tsfasman�Vl�aduµ�Zink Theorem). Suppose

0 ≤ R0 ≤ 1− 1√
q − 1

.

Then there exists a sequence of linear codes over Fq, q = p2s, p prime, such that ni →∞ and

R0 ≥ 1− lim
i→∞

δi − 1√
q − 1

and lim
i→∞

Ri = R0.

Equivalently,
lim
i→∞

δi ≥ 1−R0 − 1√
q − 1

and lim
i→∞

Ri = R0.
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Proof. Let R0 be as in the theorem and de�ne

µ0 := R0 +
1√
q − 1

.

Let (Xi)∞i=1 be an in�nite sequence of nonsingular projective curves with genus g(Xi) de�ned
over Fq such that |Xi(Fq)| → ∞ and limi→∞ |Xi(Fq)|/g(Xi) =

√
q − 1. For each i, choose an

Fq-rational point Pi on Xi and let
Di =

∑

P 6=Pi
P,

where the sum is taken over all Fq-rational points on Xi. Let ni = deg(Di). Choose a
nonnegative integer mi such that

lim
i→∞

mi

ni
= µ0.

This can be done by e.g. letting mi = bµ0nic + µ′ where µ′ is a constant. We can then
ensure�possibly by putting µ′ = −1�that mi < ni. Let Gi = miPi. We have that the
dimension ki = l(Gi) ≥ mi + 1− g(Xi).

We have now de�ned a Goppa code C(Di, Gi). If ki > mi+1−g(Xi), then choose a linear
subset of C(Di, Gi) of dimension k′i such that k′i = mi + 1− g(Xi). Otherwise, de�ne k′i := ki.

We get
Ri =

k′i
ni

=
mi

ni
+

1
ni
− g(Xi)

ni
→ µ0 + 0− 1√

q − 1
= R0.

Since k′i = mi + 1 − g(Xi) and di ≥ ni −mi, we have k′i ≥ ni − di + 1 − g(Xi). Dividing
on both sides by ni, we get

Ri ≥ 1− δi +
1
ni
− g(Xi)

ni
.

If we let i→∞, then also ni →∞, and so we have

R0 = lim
i→∞

Ri ≥ 1− lim
i→∞

δi − lim
i→∞

g(Xi)
ni

= 1− lim
i→∞

δi − 1√
q − 1

,

as desired.

Corollary 5.10. Let q = p2s, p prime. If

0 ≤ δ ≤ 1− 1√
q − 1

,

then
αlin
q (δ) ≥ 1− δ − 1√

q − 1
.

Proof. Choose any δ0 such that

0 ≤ δ0 ≤ 1− 1√
q − 1

,

and put
R0 := 1− δ0 − 1√

q − 1
.
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According to the above theorem, there exists a point (δ1, R0) in Uq (see De�nition 2.1) such
that δ0 ≤ δ1. For that given δ1, it is clear that αlin

q (δ1) ≥ R0, since (δ1, R0) ∈ Uq. According to
Proposition 2.2�which also applies for the class of linear codes�αlin

q is decreasing wherever
αlin
q is positive, so αlin

q (δ0) ≥ αlin
q (δ1) ≥ R0, which we de�ned to be

1− δ0 − 1√
q − 1

.

Remark 5.11. For any prime power q and any nonnegative integer g, put

Nq(g) := max{|X(Fq)|},

where the maximum is taken over all nonsingular projective curves of genus g de�ned over Fq.
De�ne

A(q) = lim sup
g→∞

Nq(g)
g

.

It then follows that
αq(δ) ≥ 1− δ − 1

A(q)
.

The Tsfasman�Vl�aduµ�Zink theorem is a consequence of this when q is a square.



Chapter 6

Improvements of the
Tsfasman�Vl�aduµ�Zink Bound

To my knowledge, the Tsfasman�Vl�aduµ�Zink bound wasn't improved until after the turn of
the century. In this chapter I present two of the improvements that have been made, both
�rst published in 2003. However, when it comes to the improvement of Elkies, I use a proof by
Xing and Stichtenoth that was published in 2005. To this date, I have not found any bounds
that have improved the one of Elkies.

There is one earlier improvement of the Tsfasman�Vl�aduµ�Zink bound that I know of,
which Xing published in 2001 and is found in [15]. Although I don't present it here, I have
used his method on a generalised version of the Goppa codes in Chapter 11.

6.1 Xing's 2003 Improvement
The following construction is found in [17] by Chaoping Xing. I have put in calculations that
Xing in his article left for the reader.

The improvement is given by

αq(δ) ≥ 1− δ − 1
A(q)

+
∞∑

i=2

logq

(
1 +

q − 1
q2i

)
,

where A(q) = lim supg→∞
Nq(g)
g and Nq(g) is the maximal number of Fq-rational points on a

nonsingular projective curve of genus g de�ned over Fq. If q is a square, then A(q) =
√
q − 1.

Let X be a nonsingular projective curve de�ned over Fq and let tP be a generator for
the maximal ideal of the DVR associated with the point P on X. Let P1, . . . , Pn be Fq-
rational points on X and let G be a divisor on X such that Supp(G) ∩ {P1, . . . , Pn} = ∅. Let
P ∈ {P1, . . . , Pn} and t := tP . Suppose f ∈ L(G). The following can easily be shown by
induction on s: For an integer s > 0, we have f = a0 + a1t+ a2t

2 + · · ·+ gst
s, where gs ∈ OP

and vPi(ai) = 0 for all nonzero ai. Now let s >> 0 and de�ne recursively f (0)(P ) := f(P ) and

f (m)(P ) =
f − f (0)(P )− f (1)(P )t− f (2)(P )t2 − · · · − f (m−1)(P )tm−1

tm
(P )

for all integers m ≥ 1. In other words, let f (m)(P ) be the function am + am+1t + am+2t
2 +

· · · + gst
s evaluated in P . It then follows that if vP (f) ≥ m, then a0 = · · · = am−1 = 0, and

43
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so f (0)(P ) = · · · = f (m−1)(P ) = 0. On the other hand, if f (0)(P ) = · · · = f (m−1)(P ) = 0,
then a0 = · · · = am−1 = 0, and so f = amt

m + am+1t
m+1 + · · · + gst

s, and it follows that
vP (f) ≥ m.

For each i = 0, 1, 2, . . . , de�ne the map

φi : L(G) −→ Fnq
f 7−→ (f (i)(P1), . . . , f (i)(Pn)),

and for each φi de�ne a radius ri, 0 < ri < n such that ri is an integer.

Lemma 6.1. Fix a nonnegative integer i. Let φi, the divisor G, and ri be de�ned as above.
For each element c ∈ Fnq , de�ne Mri(c;G) := {f ∈ L(G) |φi(f) ∈ Sri(c)}, where Sri(c) is the
sphere of radius ri with centre c. Then there exists an element ci ∈ Fnq such that Mri(ci;G)
has cardinality at least

|L(G)| ·



ri∑

j=0

(q − 1)j
(
n

j

)


qn
.

Proof. Sri(c) has
ri∑

j=0

(q − 1)j
(
n

j

)

elements. Therefore, for any f , the point φi(f) lies in exactly
∑ri

j=0(q − 1)j
(
n
j

)
such spheres.

Now, assume the cardinality of every Mri(c;G) is strictly less than

|L(G)| ·



ri∑

j=0

(q − 1)j
(
n

j

)


qn

and let ci be chosen such that Mri(ci;G) is maximal. Then

∑

c∈Fnq
|Mri(c;G)| ≤ qn · |Mri(ci;G)| < |L(G)| ·




ri∑

j=0

(q − 1)j
(
n

j

)
 .

Since each φi(f) is in exactly
∑ri

j=0(q − 1)j
(
n
j

)
spheres, the above inequality gives us

∣∣∣∣∣∣
⋃

c∈Fnq
Mri(c;G)

∣∣∣∣∣∣
< |L(G)|,

but
⋃

c∈Fnq Mri(c;G) = L(G), a contradiction.

For some c0, . . . , cm−1, de�ne

Mm :=
m−1⋂

i=0

Mri(ci;G) = {f ∈ L(G) |φi(f) ∈ Sri(ci), i = 0, 1, . . . ,m− 1}.
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Lemma 6.2. There exist c0, . . . , cm−1 such that

|Mm| ≥ |L(G)| ·
m−1∏

i=0


 1
qn

ri∑

j=0

(q − 1)j
(
n

j

)
 .

Proof. We induct on m. If m = 1, this is simply Lemma 6.1. Suppose now that m ≥ 2 and
that

|Mm−1| ≥ |L(G)| ·
m−2∏

i=0


 1
qn

ri∑

j=0

(q − 1)j
(
n

j

)
 .

Then it follows from the proof of Lemma 6.1 (using Mm−1 instead of L(G)) that there exists
some cm−1 such that the number of elements f ∈ Mm−1 satisfying φm−1(f) ∈ Srm−1(cm−1)
is at least

|Mm−1| ·


rm−1∑

j=0

(q − 1)j
(
n

j

)


qn
.

We are now ready to de�ne the desired code. Let

πm : Mm −→ Fnq ,

f 7−→ (f (m)(P1), . . . , f (m)(Pn))

and let the code Cm := im(πm).

Proposition 6.3. Let

deg(G) < (m+ 1)n−
m−1∑

i=0

2(m+ 1− i)ri.

Then Cm is a q-ary (n,Mm, dm) code with

Mm = |Mm| and dm ≥ (m+ 1)n− deg(G)−
m−1∑

i=0

2(m+ 1− i)ri.

Proof. Let f, h ∈Mm, f 6= h. We prove that

wt(πm(f)− πm(h)) ≥ (m+ 1)n− deg(G)−
m−1∑

i=0

2(m+ 1− i)ri,

which is strictly positive since we assumed that deg(G) < (m + 1)n −∑m−1
i=0 2(m + 1 − i)ri.

It then follows that πm is injective so that Mm = |Mm|.
Since f, h ∈Mm, then φi(f), φi(h) ∈ Sri(ci), i = 0, 1, . . . ,m−1, and so wt(φi(f)−φi(h)) ≤

2ri. Let Ii ⊆ {1, 2, . . . , n} such that (f − h)(i)(Pj) = 0 ⇔ j ∈ Ii. Then

|Ii| = n− wt(φi(f − h)) ≥ n− 2ri, i = 0, 1, . . . ,m− 1. (6.1)
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Let w := wt(πm(f)− πm(h)) = wt(πm(f − h)). Then

|Im| = n− wt(φm(f − h)) = n− wt(πm(f − h)) = n− w, (6.2)

since πm is simply φm restricted to Mm.
For k, 0 ≤ k ≤ m, we have

j ∈
k⋂

i=0

Ii ⇒ (f − h)(0)(Pj) = · · · = (f − h)(k)(Pj) = 0.

This is equivalent with vPj (f − h) ≥ k + 1, and so

f − h ∈ L

G−

m∑

k=0

∑

j∈Tki=0 Ii

Pj


 .

(We see that a point Pj with j ∈ I0 ∩ · · · ∩ Il is counted once for k = 0, k = 1, . . . , k = l, i.e.
l + 1 times.) Since f and h are distinct, then f − h 6= 0, so

l


G−

m∑

k=0

∑

j∈Tki=0 Ii

Pj


 ≥ 0.

It follows that

deg(G) ≥ deg
m∑

k=0

∑

j∈Tki=0 Ii

Pj =
m∑

k=0

∣∣∣∣∣
k⋂

i=0

Ii

∣∣∣∣∣ .

Now, ∣∣∣∣∣
k⋂

i=0

Ii

∣∣∣∣∣ ≥ n−
k∑

i=0

2ri, 0 ≤ k ≤ m− 1

because of (6.1), and ∣∣∣∣∣
m⋂

i=0

Ii

∣∣∣∣∣ ≥ n− w −
m−1∑

i=0

2ri

because of (6.2). Then

deg(G) ≥
m∑

k=0

∣∣∣∣∣
m⋂

i=0

Ii

∣∣∣∣∣ ≥
m−1∑

k=0

(
n−

k∑

i=0

2ri

)
+ n− w −

m−1∑

i=0

2ri.

So

w ≥ (m+ 1)n− deg(G)−
m−1∑

i=0

2ri(m+ 1− i),

as desired.

Lemma 6.4. Let
σi :=

q − 1
q2(m+1−i) + q − 1

.

Then
Hq(σm+1−i)− 2iσm+1−i = logq

(
1 +

q − 1
q2i

)
.
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Proof.

Hq(σm+1−i) =
q − 1

q2(m+1−m−1+i) + q − 1
· logq(q − 1)− q − 1

q2i + q − 1
· logq

(
q − 1

q2i + q − 1

)

−
(

1− q − 1
q2i + q − 1

)
· logq

(
1− q − 1

q2i + q − 1

)

=
(q − 1) logq(q − 1)

q2i + q − 1
− (q − 1) logq(q − 1)

q2i + q − 1
+

(q − 1) logq(q2i + q − 1)
q2i + q − 1

−
(

1− q − 1
q2i + q − 1

)
logq

(
q2i + q − 1− q + 1

q2i + q − 1

)

=
(q − 1) logq(q2i + q − 1)

q2i + q − 1
− (q − 1) logq(q2i + q − 1)

q2i + q − 1

− logq

(
q2i

q2i + q − 1

)
+

(q − 1) logq(q2i)
q2i + q − 1

= logq

(
q2i + q − 1

q2i

)
+

2i(q − 1)
q2i + q − 1

= logq

(
1 +

q − 1
q2i

)
+ 2iσm+1−i.

Theorem 6.5. Let q be a prime power. Then there exists a sequence of codes (Ci)∞i=1 over Fq
with length ni, code rate Ri, and relative minimum distance δi such that ni →∞ and

R0 ≥ 1− δ0 − 1
A(q)

+
∞∑

i=2

logq

(
1 +

q − 1
q2i

)
,

where Ri → R0 and δi → δ0 as i→∞.

Proof. Let (Xi)∞i=1 be a sequence of nonsingular projective curves de�ned over Fq with growing
genus g(Xi) and number of rational points |Xi(Fq)| such that |Xi(Fq)| → ∞ and

lim
i→∞

|Xi(Fq)|
g(Xi)

= A(q).

From now on I will skip the indices i and consider X to be some X ∈ {Xi}∞i=1.
Let m be a positive integer, n := |X(Fq)| − 1, and rj := bσjnc with

σj :=
q − 1

q2(m+1−j) + q − 1
,

and pick an Fq-rational divisor G such that Proposition 6.3 is satis�ed. Call the code we have
just made for Cm, and let the number of codewords be Mm. Proposition 6.3 and Riemann�
Roch then give us

logqMm

n
+
d

n
≥ deg(G)− g + 1

n
+
m−1∑

k=0

1
n

logq

(
rk∑

i=0

(q − 1)i
(
n

i

))
− m · logq qn

n

+ (m+ 1)− deg(G)
n

− 1
n

m−1∑

i=0

2(m+ 1− i)ri.
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We now let n→∞ and get

R+ δ ≥ −A(q) + lim
n→∞

m−1∑

k=0

1
n

logq

(
rk∑

i=0

(q − 1)i
(
n

i

))
+ 1−

m−1∑

i=0

2(m+ 1− i)σi.

Using Lemma 2.12 on limn→∞ 1
n logq

(∑rk
i=0(q − 1)i

(
n
i

))
, we �nd that the right-hand side of

the above inequality is

= 1− 1
A(q)

−
m−1∑

i=0

2(m+ 1− i)σi + lim
n→∞

m−1∑

k=0

Hq

(rk
n

)

= 1− 1
A(q)

−
m−1∑

i=0

2(m+ 1− i)σi +
m−1∑

k=0

Hq(σk)

= 1− 1
A(q)

+
m−1∑

i=0

(Hq(σi)− 2(m+ 1− i)σi)

= 1− 1
A(q)

+
m+1∑

i=2

(Hq(σm+1−i) + 2iσm+1−i)

= 1− 1
A(q)

+
m+1∑

i=2

logq

(
1 +

q − 1
q2i

)
,

according to Lemma 6.4. Letting m→∞, we get the desired result.

The following was in [17] presented with proof as in our proof of Theorem 6.5. I here
present it as a corollary instead.

Corollary 6.6. For any prime power q and δ ∈ [0, 1− (A(q))−1 +
∑∞

i=2 logq(q+ q−2i(q−1))],
we have

αq(δ) ≥ 1− δ − 1
A(q)

+
∞∑

i=2

logq

(
1 +

q − 1
q2i

)
.

Proof. Since αq(δ) is continuous and decreasing in the interval [0, q−1
q ], it su�ces to show that

given any R0 ∈ [0, 1− (A(q))−1 +
∑∞

i=2 logq(q+ q−2i(q− 1))], we can �nd a sequence of codes
(Ci)∞i=1 such that Ri → R0, where the sequence of codes is de�ned as in Theorem 6.5 and Ri
denotes the code rate of Ci.

It is clear that we can make Ri → 0 simply by choosing divisors Gi so that deg(Gi) = 0.
Then, since the number of words in each code Ci is Mi ≤ |L(G)|, we will never have more
than q words in each code. Then

0 ≤ Ri ≤
logq(q)
ni

→ 0.

On the other hand, it is clear that given a curve X, the greater deg(G) is, the greater the
code rate of Cm is. Because of the condition that deg(G) < (m+1)n−∑m−1

i=0 2(m+1−i)ri, we
can �nd out how big we can make R by putting deg(G) = (m+1)n−∑m−1

i=0 2(m+1− i)ri−1.
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We then get the following calculation:

1
n

logqMm ≥ 1
n

logq


|L(G)| ·

m−1∏

i=0


 1
qn




ri∑

j=0

(q − 1)j
(
n

j

)






=
1
n
l(G) +

1
n

m−1∑

i=0


logq

ri∑

j=0

(q − 1)j
(
n

j

)
− n




Letting n→∞, Riemann�Roch and Lemma 2.12 give us

R ≥ lim
n→∞

1
n

(deg(G) + 1− g) + lim
n→∞

m−1∑

i=0

Hq

(ri
n

)
−m

Substituting (m+ 1)n−
m−1∑

i=0

2(m+ 1− i)ri − 1 for deg(G), we get

= lim
n→∞

1
n

(
(m+ 1)n−

m−1∑

i=0

2(m+ 1− i)ri − 1 + 1− g
)

+
m−1∑

i=0

Hq(σi)−m

= m+ 1− lim
n→∞

1
n

m−1∑

i=0

2(m+ 1− i)ri − 1
A(q)

+
m−1∑

i=0

Hq(σi)−m

= 1−
m−1∑

i=0

2(m+ 1− i)σi − 1
A(q)

+
m−1∑

i=0

Hq(σi)

We now have the same expression as in the middle of the proof of
Theorem 6.5, which gave us

= 1− 1
A(q)

+
m+1∑

i=2

logq

(
1 +

q − 1
q2i

)
,

and, again as in the proof of Theorem 6.5, we obtain the desired result by letting m→∞.
Now we know that we can make R(Ci) approach 0 as well as 1− (A(q))−1 +

∑∞
i=2 logq(q+

q−2i(q − 1)). Now let R0 ∈ [0, 1− (A(q))−1 +
∑∞

i=2 logq(q + q−2i(q − 1))]. We want to �nd a
sequence of codes (Ci)∞i=1 such that Ri → R0.

In the previous calculations we found that

lim
n→∞

logqMm

n
≥ lim

n→∞
l(G)
n

+
m−1∑

i=0

Hq(σi)−m.

That followed from the fact that

Mm ≥ |L(G)| ·
m−1∏

i=0


 1
qn




ri∑

j=0

(q − 1)j
(
n

j

)


 .

Now, since the codes Cm are not necessarily linear, we can remove codewords from Cm (if
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necessary) and obtain equality for Mm. It then follows that

lim
n→∞

logqMm

n
= lim

n→∞
l(G)
n

+
m−1∑

i=0

Hq(σi)−m.

Recall that for each positive integer n, we are considering a code Cm on one of the curves
X ∈ {Xi}∞i=1 for a positive integer m. Let

S :=
m−1∑

i=0

Hq(σi)−m.

I now claim that we can choose G such that

l(G) = b(R0 − S) · nc .
It will then follow that

lim
n→∞

logqMm

n
→ R0.

To prove the claim that we can choose such a G, it su�ces to use Proposition 8.3 page
192�193 in [2] (the proposition is meant for characteristic 0, but the proof is valid for all
characteristics) and induction. If deg(G) = 0, then l(G) = 1 or 0. Suppose l(G) ≥ 0 and
choose G′ such that G′ � G and deg(G′) = deg(G) + 1. Then it follows from the proposition
that l(G′) = l(G) + 1 or l(G′) = l(G). As soon as deg(G) ≥ 2g − 1, then l(G′) = l(G) + 1
always.

It follows that given any nonnegative integer, we can choose G such that l(G) equals that
integer. From the argument in the beginning of this proof, it also follows that deg(G) won't
exceed the bound in Proposition 6.3.

The proof of this bound is nonconstructive, since the code Cm that was de�ned uses vectors
c ∈ Fnq such that Mr has big cardinality. But Xing never shows how to pick these vectors.

6.2 An Explicit Construction
In [8] it is shown that the codes de�ned in the previous chapter can be constructed explic-
itly. The main idea is to prove that given certain conditions, Lemma 6.2 is ful�lled for any
c0, . . . , cm−1. This makes it possible to choose such vectors explicitly. The drawback is that
the choices of δ (or R) will be limited compared to the codes of the previous chapter.

For a nonsingular projective curve X de�ned over Fq with at least one Fq-rational point,
a nonnegative integer i, and a function f ∈ Fq(X), let f (i)(P ) be de�ned as in Section 6.1.
Let m be a positive integer, G an Fq-rational divisor, and let P1, . . . , Pn be Fq-rational points
such that P1, . . . , Pn /∈ Supp(G). Furthermore, let Matm×n(Fq) be the Fq-vector space of all
m× n matrices over Fq. De�ne

νm : L(G) −→ Matl×n(Fq)

f 7−→




f (0)(P1) f (0)(P2) . . . f (0)(Pn)
f (1)(P1) f (1)(P2) . . . f (1)(Pn)

... ... . . . ...
f (m−1)(P1) f (m−1)(P2) . . . f (m−1)(Pn)


 .
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For given nonnegative integers r0, . . . , rm−1, we want to consider all functions in L(G)
such that each row i of the above matrix is a vector in Bri(0). (In the previous section,
we considered functions such that each row i was a vector in Bri(ci) for some vector ci,
i = 0, . . . ,m− 1.) We denote that set by Ỹ (r0, . . . , rm−1), i.e.

Ỹ (r0, . . . , rm−1) := {f ∈ L(G) |wt((f (i)(P1), . . . , f (i)(Pn))) ≤ ri, i = 0, . . . ,m− 1}.
Now, the crucial bit of the proof of the bound in the previous chapter was that we had enough
functions in the subset of L(G) that we considered. Our goal is to show that given certain
conditions,

|Ỹ (r0, . . . , rm−1)| ≥ |L(G)| ·
m−1∏

i=0


 1
qn




ri∑

j=0

(q − 1)j
(
n

j

)


 .

It will appear that a su�cient condition is deg(G) ≥ mn+2g−1, as the following proposition
shows.
Proposition 6.7. If deg(G) ≥ mn+ 2g − 1, then

|Ỹ (r0, . . . , rm−1)| = |L(G)| ·
m−1∏

i=0


 1
qn




ri∑

j=0

(q − 1)j
(
n

j

)


 .

Proof. Note that if J is the set of all matrices satisfying that row i is an element in Bri(0),
i = 0, . . . ,m− 1, then Ỹ (r0, . . . , rm−1) = ν−1

m (J). Since the number of elements in J is

|J | =
m−1∏

i=0




ri∑

j=0

(q − 1)j
(
n

j

)
 ,

we only need to show that given any matrix T ∈ Matm×n(Fq), we have |ν−1
m (T )| = |L(G)|/qmn.

Now, before proceeding, note that the condition deg(G) ≥ mn+ 2g − 1 and the fact that
mn ≥ 0 imply that l(G) = deg(G)− g + 1, and so |L(G)| = qdeg(G)−g+1.

We start the proof by showing that νm is surjective. Then, since νm is linear, we have that
|ν−1
m (0)| = |ν−1

m (T )|, and so it su�ces to �nd the kernel of νm.
We show that νm is surjective by �nding |L(G)|/| ker(νm)|. The kernel is

ker(νm) = L(G−mD),

where D = P1 + · · ·+ Pn. This follows from the discussion of f (i)(P ) in the previous section,
where we concluded that f (0)(P ) = · · · = f (m−1)(P ) = 0 if and only if P is a zero of order
≥ m of f . Since deg(G) ≥ mn+ 2g − 1, then |L(G−mD)| = qdeg(G)−mn−g+1, and it follows
that

|νm(L(G))| = |L(G)|/| ker(νm)| = qdeg(G)−g+1−deg(G)+mn+g−1 = qmn,

which is exactly the number of possible m× n matrices. So this proves that νm is surjective.
It follows that ν−1

m (T )=| ker(νm)| = qdeg(G)−mn−g+1 = |L(G)|/qmn, as desired.
The rest of the construction is the same as in the previous section. A calculation similar

to the calculation in Corollary 6.6 reveals that these codes can be constructed for any

δ ∈
[
0, 1− 2

A(q)
− 2(q3 + q2 − 1)

(q + 1)2(q − 1)(q2 + q − 1)

]
.
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6.3 Another Way to Reach Xing's Bound
In Section IV of [8] another construction has been made which reaches the same bound. I will
here only show a special case involving the bound we get when we put m = 1 in the previous
two sections.

The following construction involves a standard Goppa code and some of its cosets. This
will make the minimum distance smaller, but the code rate will be much larger. Note that the
code will no longer be linear, since a coset C ′ of C doesn't contain 0 and hence itself won't be
linear. I �rst present the construction and next show that this code will be the same as the
code presented in the previous section with m = 1.

Let (Xi)∞i=1 be the curve sequence from the last two sections, let X ∈ {Xi}∞i=1, let n =
|X(Fq)| − 1, and let r be a nonnegative integer such that n − 4r ≥ 1. This r will serve
the same role as r0 did in the two previous sections. Let the Goppa code be C(D,G) with
D = P1 + · · ·+Pn and deg(G) < n− 4r. Let e1, . . . , en be functions in Fq(X) such that ei has
a simple pole in Pi and vPi(ej) ≥ 0 if i 6= j, i, j = 1, . . . , n. Let ϕ : Fq(X) −→ Fq(X)/L(G)
be the canonical homomorphism and put

S(r) := ϕ−1

({∑

i∈I
aiei + L(G) | I ⊂ {1, . . . , n}, 0 ≤ |I| ≤ r and ai ∈ F×q , i ∈ I

})
,

where for I = ∅ we put∑i∈I aiei := 0. Note that S(r) contains L(G) as a subset. Now de�ne
µ : S(r) −→ Fnq where µ maps f to (µ1(f), . . . , µn(f)), where µi maps f to its free coe�cient
in the Pi-adic power series expansion as described in Section 6.1, but where we choose a single
t such that vPi(t) = 1 for i = 1, . . . , n. (Such a t exists according to the Strong Approximation
Theorem, Theorem 4.20.) Note that the free coe�cient in a P -adic power series expansion
can be 0 even though f has a pole in P .

We de�ne the code C ′r(D,G) to be

C ′r(D,G) := µ(S(r)).

The Goppa code C(D,G) is a subset of C ′r(D,G). Furthermore, whenever there exists
a function f with poles in some of the Pi, then f + L(G) maps to a coset of C(D,G) (not
necessarily unequal to C(D,G) itself) because of the linearity of µ. The coset representative
of least weight always has weight of at most r. It is explicitly proved in [8] that this code
reaches the Xing bound. (It is in that proof that we use the condition that deg(G) < n− 4r.)
Here I will show how Cr from the previous section is equal to such a code.

Suppose G′ is a divisor such that Pi /∈ Supp(G′), i = 1, . . . , n. De�ne the map

π : L(G′) −→ Fnq ,
f 7−→ (

f (1)(P1), . . . , f (1)(Pn)
)
.

Note that this is the special case of Xing's codes where m = 1, and in the previous section
we showed that if deg(G′) ≥ 1 · n + 2g − 1, then we could reach Xing's bound for m = 1
by de�ning the code Cr(D,G′) := π

(
φ−1
G′ (Br(0))

)
, where φG′ : L(G′) −→ Fnq is de�ned by

f 7−→ (f(P1), . . . , f(Pn)).
Now, with t de�ned as above, rede�ne G to be G := G′−D+div(t). It then clearly follows

that Supp(G) ∩ Supp(D) = ∅. Since G′ = G+D − div(t), we have

ker(φG′) = L(G′ −D) = L(G− div(t)).
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De�ne an isomorphism L(G) '−→ L(G − div(t)) by f 7−→ tf and note that π(tf) = φ(f).
From this, we obtain that

π(ker(φG′)) = π(L(G− div(t))) = im(φG) = C(D,G).

Because of linearity, it follows that Cr is a union of cosets of C(D,G).
The author also presents a way to �nd the elements e1, . . . , en in polynomial time.

6.4 Elkies's 2003 Improvement
I here present a construction that improves Xing's 2003 bound. The bound we obtain here is
given by

αq(δ) ≥ 1− δ − 1
A(q)

+ logq

(
1 +

1
q3

)
.

The bound was originally found by Elkies in 2003 for square prime powers q and by H. Nieder-
reiter and F. Özbudak in 2004 for any prime power q. However, the following construction
is due to Stichtenoth and Xing in 2005. In this section I give a proof of the main results of
Stichtenoth and Xing. In the end of this section I have made a proof that this bound is indeed
better than Xing's 2003 bound.
N will here denote the set of positive integers {1, 2, 3, . . . }. I de�ne N0 := {0, 1, 2, . . . }.
We shall here construct a map from a certain subset J of L(mP0 +G) such that we always

have at least t zeros in any codeword. This gives us very good control over the minimum
distance d. With a proper choice of m and G, the map becomes an injection, and so we get a
high amount of codewords. If we take the union of all L(mP0 +G) where we vary G, then the
minimum distance is not very much a�ected, but the code rate increases so that we obtain
the desired bound.

I will here skip the proofs of the lemmas and the �rst proposition and rather focus on the
construction of the code sequence.

Lemma 6.8. Let n, s, t be integers such that n ≥ t > 0 and s ≥ 0. Let

B(n, t, s) =

∣∣∣∣∣{(m1, . . . ,mn) ∈ Nn0 |wt(m1, . . . ,mn) = t and
n∑

i=1

mi = s}
∣∣∣∣∣ .

Then
B(n, t, s) =

(
n

t

)(
s− 1
t− 1

)
.

Lemma 6.9. Let q be a positive integer and (ni)∞i=1 and (ti)∞i=1 be sequences of positive integers
such that ni → ∞ and ti/ni → σ as i → ∞, where σ is a real number satisfying 0 < σ < 1.
Then

logq
(
ni
ti

)

ni
→ −σ logq(σ)− (1− σ) logq(1− σ).

Proposition 6.10. Let X be a nonsingular projective curve de�ned over Fq with function �eld
F and at least two Fq-rational points, let D be a divisor with support consisting of Fq-rational
points and such that deg(D) ≥ 2g− 1, and let P1, . . . , Pt be Fq-rational points on X such that
Pi /∈ Supp(D), i = 1, . . . , t. Let G =

∑t
i=1miPi where m1, . . . ,mt are positive integers. Let

FD(G) := {f ∈ L(D +G) | vPi(f) = −mi, i = 1, . . . , t}.
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Then

|FD(G)| = qm+s−g+1

(
1− 1

q

)t
, where m = deg(D), s =

t∑

i=1

mi = deg(G).

We now start de�ning the desired code. Let the curve X have function �eld F and genus
g. Let P0, P1, . . . , Pn be distinct Fq-rational points on X. De�ne

S = S(mP0;P1, . . . , Pn; s, t) :=
⋃

G

FmP0(G), m, t, s ∈ N, t ≤ n, t ≤ s,

where G runs over all divisors of the form

G =
t∑

j=1

mijPij , 1 ≤ ij ≤ n, mij ∈ N, deg(G) = s.

In other words, S consists of all elements f in all vector spaces L(mP0 + G) such that f
has poles in the entire support of G and of the same order for each point, and where Supp(G)
consists of exactly t points among P1, . . . , Pn and G is of degree s.

It is clear that G1 6= G2 ⇒ FmP0(G1) ∩ FmP0(G2) = ∅, since the elements in FmP0(G1)
must have poles in all points P ∈ Supp(G1) and of exactly the same order as those points.
The following map is therefore well-de�ned. Let

φ : S −→ Fnq

such that f ∈ FmP0(G) ⇒ φ(f) = (x1, . . . , xn) with

xi =
{
f(Pi) if Pi /∈ Supp(G),
0 if Pi ∈ Supp(G).

An immediate consequence of this de�nition is that any element in im(φ) will have Hamming
weight at most n− t, since any divisor G has t points in its support.

De�nition 6.11. We de�ne the non-linear code

C = C(mP0;P1, . . . , Pn; s, t) := φ(S) ⊆ Fnq .

Proposition 6.12. Let m, s, t ∈ N such that

m ≥ 2g − 1, s ≥ t, n−m− 2s− 2t ≥ 1.

Then C is a q-ary (n,M, d) code with

M = qm+s+1−g
(

1− 1
q

)t(n
t

)(
s− 1
t− 1

)

and
d ≥ n−m− 2s− 2t.
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Proof. Each G gives us |FmP0(G)| = qm+s+1−g(1− q−1)t elements in S. The number of ways
to change the divisor G is the same as the number of ways to give P1, . . . , Pn nonnegative coef-
�cients such that the sum of the coe�cients is s and the weight is t. According to Lemma 6.8,
there are

(
n
t

) · (s−1
t−1

)
ways to do that.

We now show that given f, h ∈ S, then wt(φ(f) − φ(h)) ≥ n − m − 2s − 2t, which we
assumed was at least 1.

Suppose
f ∈ FmP0(G1), h ∈ FmP0(G2), f 6= h.

Since f − h can't have poles of higher order than either f or h has, we have that f − h ∈
L(mP0 +G1 +G2). Now de�ne

Z := {Pi |Pi /∈ Supp(G1) ∪ Supp(G2), f(Pi) = h(Pi), i = 1, . . . , n}.
Then (f − h)(Pi) = 0 whenever Pi ∈ Z, and so

f − h ∈ L
(
mP0 +G1 +G2 −

∑

P∈Z
P

)
.

Since f − h 6= 0, the above vector space is nontrivial, and so

deg

(
mP0 +G1 +G2 −

∑

P∈Z
P

)
= m+ 2s− |Z| ≥ 0.

To determine the weight of φ(f)− φ(h), remember that wt(φ(f)) ≤ n− t, and the same with
wt(φ(h)). It follows that

wt(φ(f)− φ(h)) ≥ n− |Z| − 2t.

We have from above that −|Z| ≥ −m− 2s, and so

wt(φ(f)− φ(h)) ≥ n−m− 2s− 2t,

as desired.

Theorem 6.13. Let q be a prime power and let

0 ≤ δ ≤ 1− 2
A(q)

− 4q − 2
(q − 1)(q3 + 1)

.

Then
αq(δ) ≥ 1− δ − 1

A(q)
+ logq

(
1 +

1
q3

)
.

Proof. Since αq(δ) is continuous, we assume that

0 < δ < 1− 2
A(q)

− 4q − 2
(q − 1)(q3 + 1)

.

Let (Xi)∞i=1 be a sequence of nonsingular projective curves de�ned over Fq with genus g(Xi)
such that g(Xi)→∞ and |Xi(Fq)|g(Xi)

→ A(q). Put

ni = |Xi(Fq)| − 1, si =
⌊

qni
(q − 1)(q3 + 1)

⌋
, ti =

⌊
ni

q3 + 1

⌋
, mi = ni − bδinic − 2si − 2ti.
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For simplicity, I drop the i-indices, but always assume that the curves in question are elements
in {Xi}∞i=1.

Because of the upper bound we put on δ, we have that

lim
n→∞

m

n
= 1− δ − 4q − 2

(q − 1)(q3 + 1)
>

2
A(q)

= lim
n→∞

2g
n
.

Multiplying with n on both sides, we have m > 2g, or rather m ≥ 2g + 1. Also, note that
s without the �oor-function is t without the �oor-function multiplied with q

q−1 . So s ≥ t. It
follows that for big enough n, we have from the previous proposition that there exists a q-ary
(n,M, d′) code where d′ ≥ d and

M = qm+s+1−g
(

1− 1
q

)t(n
t

)(
s− 1
t− 1

)
, d = n−m− 2s− 2t.

Since we de�ned m = n− bδnc − 2s− 2t, it follows that for n >> 0,

d = bδnc and lim
n→∞

d

n
= δ.

This brings us to

logq(M)
n

+
d

n
=

1
n

(
m+ s+ 1− g + logq

(
1− 1

q

)t
+ logq

((
n

t

)(
s− 1
t− 1

))
+ d

)

We replace m with n− d− 2s− 2t, we note that(
1− 1

q

)t
=

(q − 1)t

qt
, and get:

=
1
n

(
n− d− 2s− 2t+ s+ 1− g + t logq(q − 1)− t

+ logq

((
n

t

)(
s− 1
t− 1

))
+ d

)

=
1
n

(
n− g − s− 3t+ 1 + t logq(q − 1) + logq

(
n

t

)
+ logq

(
s− 1
t− 1

))
.

We now let n→∞ and apply Lemma 6.9 on the two last logarithms. On the last logarithm
we note that (s − 1)/s → 1 as n → ∞, and similarly with t. We then let s act as n does in
the lemma and note that

lim
n→∞

1
n

logq

(
s

t

)
= lim

n→∞
s

n
· 1
s

logq

(
s

t

)
= lim

n→∞
q

(q − 1)(q3 + 1)
· 1
s

logq

(
s

t

)
.

We get:

logq(M)
n

+
d

n
→ 1− 1

A(q)
− q

(q − 1)(q3 + 1)
− 3
q3 + 1

+
logq(q − 1)
q3 + 1

−
(

1
q3 + 1

logq

(
1

q3 + 1

)
+
(

1− 1
q3 + 1

)
logq

(
1− 1

q3 + 1

))

− q

(q − 1)(q3 + 1)
·
(
q − 1
q

logq

(
q − 1
q

)
+

1
q

logq

(
1
q

))
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= 1− 1
A(q)

− q

(q − 1)(q3 + 1)
− 3
q3 + 1

+
logq(q − 1)
q3 + 1

+
logq(q3 + 1)
q3 + 1

− logq(q
3) + logq(q

3 + 1) +
logq(q3)
q3 + 1

− logq(q3 + 1)
q3 + 1

− q(q − 1) logq(q − 1)
q(q − 1)(q3 + 1)

+
q(q − 1)

q(q − 1)(q3 + 1)
+

q

q(q − 1)(q3 + 1)

= 1− 1
A(q)

− q

(q − 1)(q3 + 1)
− 3
q3 + 1

+
logq(q − 1)
q3 + 1

+
logq(q3 + 1)
q3 + 1

− 3 + logq(q
3 + 1) +

3
q3 + 1

− logq(q3 + 1)
q3 + 1

− logq(q − 1)
q3 + 1

+
1

q3 + 1
+

1
(q − 1)(q3 + 1)

= 1− 1
A(q)

+ logq

(
1 +

1
q3

)
.

Since d′ ≥ d, the theorem follows.

Remark 6.14. The following calculations show that Elkies's bound is better than Xing's
bound for q ≥ 2. Let q be a prime power.

logq

(
1 +

1
q3

)
≥

∞∑

i=2

logq

(
1 +

1
q2i

)

m

1 +
1
q3
≥

∞∏

i=2

(
1 +

1
q2i

)
= 1 +

1
q4

+
1
q6

+
1
q8

+ 2 · 1
q10

+ 2 · 1
q12

+ · · ·

m
1
q3
≥ 1

q4
+
∞∑

i=3

⌊
i− 1

2

⌋
· 1
q2i

The last expression follows because of the number of ways we can multiply together distinct
pairs of 1, q4, q6, . . . , q2bi/2c, . . . , q2i to get q2i. Before continuing, remember that if |x| < 1, we
have

1 + x+ x2 + x3 + · · · = 1
1− x.

If we di�erentiate on both sides and multiply with x, we get

x+ 2x2 + 3x3 + · · · = x

(1− x)2
.

Note that the sum in our expression begins with i = 3 instead of i = 0. We now have

1
q4

+
∞∑

i=3

⌊
i− 1

2

⌋
· 1
q2i

<
1
q4

+
1
2

∞∑

i=3

i− 1
q2i

=
1
q4

+
1
2

( ∞∑

i=3

i · (q−2)i −
∞∑

i=3

(q−2)i
)
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=
1
q4

+
1
2

(
q−2

(1− q−2)2
− q−2 − 2q−4

−
(

1
1− q−2

− 1− q−2 − q−4

))

=
1
q4

+
1
2

(
1

(q − q−1)2
− q−2 − 2q−4

−q
2(1− q−2)
(q − q−1)2

+
(q − q−1)2

(q − q−1)2
+ q−2 + q−4

)

=
1
2
· 1− q2 + 1 + (q − q−1)2

(q − q−1)2
+

1
2q4

=
1
2
· (2− q2 + q2 − 2 + q−2) · q2

(q − q−1)2 · q2
+

1
2q4

=
1
2
· (q2 · q−2)

(q2 − 1)2
+

1
2q4

=
1
2
· 1
q4 − 2q2 + 1

+
1

2q4

≤ 1
2 · (1/2)q4

+
1

2q4

=
3

2q4

≤ 1
q3

when q ≥ 2, as desired.



Chapter 7

Transitive Codes

An important question that has arisen in connection with �nding new bounds for αq(δ) and
αlin
q (δ), is whether special kinds of codes have as good asymptotic properties as codes in

general. An unsolved question is whether or not cyclic codes are asymptotically good at all.
In February this year, a new article (see [6]) proved that several classes of cyclic codes are
asymptotically bad. However, if we losen up on our restrictions a bit and consider the more
general class of transitive codes, they actually reach the bound that we found in Section 6.4.
This was proved by Stichtenoth in [12]. The idea of Stichtenoth was to let the Galois group
of the function �eld over the rational function �eld de�ne the permutations of each codeword.
I will here go through the main parts of the proof.

Stichtenoth �rst proves that the class of transitive codes meets the Tsfasman�Vl�aduµ�Zink
bound. With q = l2, l a prime power, he de�nes a tower of function �elds F0 ⊂ F1 ⊂ F2 ⊂ · · ·
by F0 := Fq(x0), the rational function �eld, and for all i ≥ 0, Fi+1 := Fi(xi+1) where
xli+1 + xi+1 = xli/(x

l−1
i + 1). Furthermore, he lets w := xl0 + x0 and z := wl−1 and de�nes

a new tower E0 ⊂ E1 ⊂ E2 ⊂ · · · where E0 := Fq(z) is the rational function �eld and
for all i ≥ 1, Ei is the Galois closure of the �eld extension Fi−1/E0. This tower meets the
Drinfeld�Vl�aduµ bound.

Given an n, we de�ne the divisors G0 and D on En in the following way: We let G0 be the
sum of all points of En lying over the pole of z in Fq(z), and we let D be the sum of all points
of En lying over the zero of z − 1 in Fq(z). It is shown that z − 1 splits completely in the
extension En/Fq(z). De�ne N := [En : Fq(z)]. It follows that deg(D) = N . Given a number
δ between 0 and 1, we next choose a nonnegative integer r such that the relative minimum
distance of C(D, rG0) is at least δ. Stichtenoth then shows that N grows quickly enough to
ensure that the code rate can be placed arbitrarily near 1− δ − 1/(l − 1).

We now show that each C(D, rG0) is transitive. Since P1, . . . , PN are all the points lying
over the zero of z−1, we have that Gal(En/E0) acts transitively on P1, . . . , PN . Since Supp(G0)
are all the points lying over the pole of z, we have that rG0 will remain invariant under the
action of any σ ∈ Gal(En/E0). So if f ∈ L(G0), then also σ(f) ∈ L(G0). This means that
if (f(P1), . . . , f(PN )) ∈ C(D, rG0), then also (σ(f(P1)), . . . , σ(f(PN ))) ∈ C(D, rG0). But
(σ(f(P1)), . . . , σ(f(PN ))) = (f(σP1), . . . , f(σPN )), which is a permutation of the codeword
(f(P1), . . . , f(PN )). This proves that C(D,G0) is transitive.

The choice of the divisors G0 and D also works in Section 6.4. We let rG0 , r ≥ 0 from this
chapter substitute mP0 from Section 6.4 and let the support of D from this chapter substitute
the points P1, . . . , Pn from Section 6.4.
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Stichtenoth's proof is not valid for cyclic codes, since this would demand a tower of function
�elds E0 ⊂ E1 ⊂ E2 ⊂ · · · where each Gal(En/E0) is cyclic, and it has been proved that any
such tower of function �elds satis�es

lim
i→∞

N(Ei)/g(Ei) = 0,

where N(Ei) is the number of Fq-rational points of Ei and g(Ei) is the genus of Ei. With this
limit, we would get the trivial bound on R.



Chapter 8

Separating and Frameproof Codes

Another kind of codes that are asymptotically good are separating and frameproof codes. In
this chapter I present a new bound on frameproof codes presented by Chaoping Xing in 2002.
Details can be found in [16].

An (s, t)-separating code is a code C ⊆ Fnq (or more generally, vectors over a set S with
|S| = q elements) such that whenever disjoint subsets A ⊂ C and B ⊂ C satisfy |A| = s and
|B| = t, then there exists a positive integer i ∈ {1, . . . , n} such that any (a1, . . . , an) ∈ A and
(b1, . . . , bn) ∈ B satisfy ai 6= bi. Separating codes are useful in constructions of hash functions
and authenticating ownership claims. If we put t = 1, the code is said to be s-frameproof.
We say that the code is an FPCs(n, qk)-code, where n is the length of the code and qk is the
number of codewords. As the name suggests, frameproof codes are used to prevent framing,
such as when the set of codewords is a set of di�erent �ngerprints and we want to prevent
people from forging other people's �ngerprints.

From the above de�nitions, it follows that an FPCs(n,M)-code has the property that for
any A ⊂ C satisfying |A| ≤ s, and for any element (x1, . . . , xn) ∈ C \ A, there exists an
i ∈ {1, . . . , n} such that for all (y1, . . . , yn) ∈ A, we have yi 6= xi.

From this, it is clear that any code C is 1-frameproof. It also immediately follows that for
a q-ary code C to be q-frameproof, it is necessary that any q-subset of C has two codewords
that have a coordinate in common. We see here that the parameter s in an s-frameproof
code has put an upper bound on the minimum distance d. It can in fact be shown that an
[n, k, d]q-linear code C is an s-frameproof code where s = b(n − 1)/(n − d)c. It follows that
all bounds that apply for linear codes also apply for frameproof codes.

Now suppose we have a projective nonsingular curve X de�ned over Fq, two positive
integers n ≥ 1 and s ≥ 2, and Fq-rational points P1, . . . , Pn. Let P1 + · · · + Pn = D.
Suppose an Fq-rational, e�ective divisor G can be chosen so that L(sG−D) = {0}. For each
i = 1, . . . , n, let ti be a local parameter at Pi and let vi = vPi(G). (These are all nonnegative
since G is e�ective.) De�ne

φ : L(G) −→ Fnq ,
f 7−→ ((tv1

1 f)(P1), . . . , (tvnn f)(Pn)).

De�ne the code C(D,G) := im(φ).

Proposition 8.1. Let D, G, n, and s be as above. Then C(D,G) is an FPCs(n, ql(G))-code.
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Proof. If ((tv1
1 f)(P1), . . . , (tvnn f)(Pn)) = 0, then vPi(f) ≥ −vi + 1, i = 1, . . . , n. It follows that

f ∈ L(sG−D), and so f = 0. Hence, φ is injective, and the number of codewords is ql(G).
We want to make sure that for any r-subset A of C(D,G) with 1 ≤ r ≤ s, any codeword

(b1, . . . , bn) /∈ A has a coordinate bi satisfying bi 6= ai for any codeword (a1, . . . , an) ∈ A. For
any f ∈ L(G), let cf denote ((tv1

1 f)(P1), . . . , (tvnn f)(Pn)). Let A = {cf1 , . . . , cfr}. Suppose
cg ∈ C(D,G), and suppose that for any i = 1, . . . , n, the ith coordinate (tvii g)(Pi) of cg is
equal to the ith coordinate (tvii fj)(Pi) of the word cfj for some j ∈ {1, . . . , r}. We want to
prove that cg ∈ A, i.e. that g = fl for some l ∈ {1, . . . , r}.

For i ∈ {1, . . . , n}, let πi : Fnq −→ Fq, (a1, . . . , an) 7−→ ai, be the ith projection map. Now,
with cg de�ned as above, we have

0 =
r∏

j=1

πi(cfj − cg) =
r∏

j=1

(tvii fj − tvii g)(Pi).

It follows that

vPi




r∏

j=1

(tvii fj − tvii g)


 ≥ 1.

Since trvii is a factor in the above product, we �nd that

vPi




r∏

j=1

(fj − g)


 ≥ −rvi + 1.

Now recall that vi = vPi(G). Since i was randomly chosen, it then follows that
r∏

j=1

(fj − g) ∈ L (rG−D) ⊆ L (sG−D) = {0}.

So fl = g for some l ∈ {1, . . . , r}, as desired.
We prove here that sequences of such codes have good asymptotic bounds. In his article,

Xing has found the existence of divisors G of large degree that meet the conditions of the
proposition. The proof of the following lemma can be found in [16].

Lemma 8.2. Let g be the genus of X, and let m, n, and s be nonnegative integers such that
s ≥ 2 and g ≤ m ≤ n < sm. Let D be any e�ective divisor of degree n. If we have

sm− n ≤ g(1− 2 logq s)− 1− logq
(3
√
q − 1)g

(q − 1)(
√
q − 1)

,

then there exists an e�ective divisor G of degree m such that L(sG−D) = {0}.
In the following theorem we �x m and show that these conditions hold. We then have the

code from the previous proposition and use that to �nd the asymptotic bound.
Let Rq(s) := lim supn→∞

1
n logqMq(n, s), where Mq(n, s) := max{M | there exists a q-ary

frameproof code FPCs(n,M)}. In the following theorem, we let A(q) = lim supg→∞Nq(g)/g,
where Nq(g) = max{|X(Fq)|} where the maximum is taken over all nonsingular projective
curves of genus g. For q a square prime power, we have A(q) =

√
q − 1. For all other prime

powers q, we have A(q) ≤ √q − 1 from the Drinfeld�Vl�aduµ bound.
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Theorem 8.3. Let q be a prime power and suppose s is an integer such that 2 ≤ s ≤ A(q).
Then

Rq(s) ≥ 1
s
− 1
A(q)

+
1− 2 logq s
sA(q)

.

Proof. Let (Xi)∞i=1 be a sequence of nonsingular projective curves de�ned over Fq with genus
g(Xi) such that |Xi(Fq)| → ∞ and |Xi(Fq)|/g(Xi) → A(q), and put |Xi(Fq)| = ni. Let
P1, . . . , Pni be all points on Xi and put P1 + · · · + Pni = Di. We shall here de�ne an mi

and show that s and mi meet the conditions of Lemma 8.2. We then know that there exists
a divisor Gi of degree mi that satis�es L(sGi − Di) = {0}. It follows from Proposition 8.1
that there exists a frameproof code C(Di, Gi), and, letting i→∞, we shall see that this code
sequence gives us the desired result.

Let 0 < ε < 1− 2 logq s. This is possible since A(q) ≤ √q − 1 gives us s ≤ √q − 1, and so
logq s <

1
2 . Now put

mi :=
⌊
ni + (1− 2 logq s− ε)g(Xi)

s

⌋
.

We show that the conditions in Lemma 8.2 are satis�ed for i >> 0. We have

lim
i→∞

mi

g(Xi)
=
A(q) + 1− 2 logq s− ε

s
>
A(q)
s
≥ 1

from the assumption that s ≤ A(q), and since we have assumed that A(q) ≥ 2 and s ≥ 2, we
have

lim
i→∞

mi

ni
=
A(q) + 1− 2 logq s− ε

sA(q)
<
A(q) + 1
sA(q)

<
2A(q)
sA(q)

≤ 1.

It is clear that
lim
i→∞

smi

ni
= 1 +

1− 2 logq s− ε
A(q)

> 1

and that
lim
i→∞

smi − ni − (1− 2 logq s)g(Xi)
g(Xi)

= −ε < 0. (8.1)

We conclude that for i >> 0, we have g(Xi) < mi < ni < smi, and so almost all the conditions
from Lemma 8.2 are satis�ed. For the �nal bit, we have from (8.1) the following inequality
(8.2). We see that this must be true for i >> 0 by dividing by g(Xi) on both sides of (8.2)
and letting i → ∞. (Recall that g(Xi) → ∞, so logq(g(Xi))/g(Xi) → 0.) Thus, for i >> 0,
we have

smi − ni ≤ g(Xi)(1− 2 logq s)− 1− logq
(3
√
q − 1)g(Xi)

(q − 1)(
√
q − 1)

. (8.2)

So for i >> 0, there is a divisor Gi of degree mi such that L(sGi − Di) = {0}, and so the
proposition gives us that there exists a code C(Di, Gi) for i >> 0. From the de�nition of mi

together with Riemann�Roch, we have

Rq(s) ≥ lim
i→∞

logq ql(Gi)

ni
≥ lim

i→∞
mi − g(Xi) + 1

ni
=

1
s

+
1− 2 logq s
sA(q)

− ε

sA(q)
− 1
A(q)

.

Letting ε→ 0, we get the desired result.
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Remark 8.4. It could be tempting to substitute s = 1/(1− δ) and get

αq(δ) ≥ 1− δ − 1
A(q)

+
(1− δ)(1 + 2 logq(1− δ))

A(q)
,

1
2
≤ δ ≤ 1− 1

A(q)
,

which for square q would be a much better bound than the one found in Section 6.4. The
problem with such an approach is that even though an [n, k, d]q-linear code is an s-frameproof
code with s = b(n − 1)/(n − d)c, we don't know if an s-frameproof code in general will give
us a good minimum distance d. For the code sequence of the last theorem, we only found a
value for s independent of what the minimum distance was.

Remark 8.5. It is possible to get a bound for (s, t)-separating codes using the construction
from this section. Generalising the proof of Proposition 8.1, we can show that if L(stG−D) =
{0}, then the code C(D,G) is an (s, t)-separating code. Let A and B be as in the beginning
of this chapter. We simply suppose that for any index i, there exist a pair of codewords a ∈ A
and b ∈ B such that a and b are equal in the ith coordinate. We then get a product as in the
proof of Proposition 8.1, and we see that the condition L(stG−D) = {0} gives us a = b.

However, there are constructions for separating codes that give us much better bounds
than the one we get with this approach.

Remark 8.6. In Section 4.3, we saw that Goppa codes attain the Gilbert�Varshamov bound.
Since any [n, k, d]q-linear code is an s-frameproof code with s = b(n − 1)/(n − d)c, it im-
mediately follows that Rq(s) ≥ 1 − Hq(1 − 1/s), where Hq(δ) is the q-ary entropy function.
Some numbers were given as an example in Remark 4.24, where δ was set to be 3/4. This
corresponds to s = 4.



Chapter 9

Other Codes from Algebraic Curves

The improvements of the Tsfasman�Vl�aduµ�Zink bound that were presented in Chapter 6
were mostly based on constructions of codes di�erent from Goppa codes. It seems that an
important part of the work to �nd new bounds for αq(δ) is to �nd new ways to de�ne codes
from algebraic curves.

A few articles have been published since the turn of the century where new constructions of
codes from algebraic curves have been attempted. I will here mention three constructions made
by Xing, Niederreiter, and Lam in 1999. In chapters 10 and 11 I will study the asymptotic
properties of the third of these classes of codes.

9.1 Two Constructions
One challenge that presents itself when it comes to de�ning new ways to construct codes is to
�nd constructions that don't give codes that are equivalent to already existing ones. I here
present two constructions that are equivalent to Goppa codes. The constructions were made
by Xing, Niederreiter, and Lam in [19], and the proof that they are equivalent to Goppa codes
were made by Özbudak and Stichtenoth in [7]. I have �lled in the calculations that Özbudak
and Stichtenoth left to the reader in [7].

9.1.1 The Construction of CI

I here present the �rst construction, which I call CI.
Let q be a prime power and let X be a nonsingular projective curve de�ned over Fq with

at least two Fq-rational points. Let g be the genus of X. Choose n + 1 distinct points
P∞, P1, . . . , Pn of degree 1 and an e�ective divisor E of degree 2g with P∞ /∈ Supp(E). Then
l(E) = g + 1. Note that l(E − P∞) = g. This means that there exists a basis element w0 for
L(E) such that vP∞(w0) = 0. (There are actually q such elements to choose from.) Similarly,
there exists an integer n1 such that l(E − n1P∞) = g while l(E − (n1 + 1)P∞) = g − 1, so
that there exists a second basis element w1 for L(E) such that vP∞(w1) = n1. Continue in
that manner until we have g + 1 basis elements

w0, . . . , wg with vP∞(wi) = ni, n0 = 0.

It is clear that 0 = n0 < n1 < · · · < ng ≤ 2g. The last inequality follows because l(E −
2gP∞) ≤ 1.

65
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Since E is nonspecial, we can for each i ∈ {1, . . . , n} choose an

fi ∈ L(E + Pi) \ L(E).

We then have that w0, . . . , wg, f1, . . . , fn are linearly independent and a basis for L(E + P1 +
· · ·+ Pn).

Let t be a local parameter at P∞. Let

tr :=
{
tr for r /∈ {n0, . . . , ng},
wl for r = nl ∈ {n0, . . . , ng}.

In other words, if r = ni = vP∞(wi) for some i ∈ {0, . . . , g}, then we set tr = tni = wi. Let s
be a positive integer. Since no fi has a pole in P∞, then any fi can be written as

fi =
s∑

r=0

ar,itr + hs+1,its+1, i = 1, . . . , n,

where ar,i ∈ Fq and hs+1,i ∈ OP∞ . We will assume that s is large enough for the rest of the
construction to make sense.

Let m be an integer with g ≤ m < n, and (supposing for a moment that ng 6= m+ g) let

ci = (ân0,i, a1,i, . . . , ân1,i, . . . , ânl,i, . . . , am+g,j), i = 1, . . . , n.

Here, x̂ means that the element x has been deleted. This means that we have m+g+1− (g+
1) = m entries in ci. Simplify this vector as ci = (c1,i, . . . , cm,i). Let H be the m× n matrix

H = (cT
1 , . . . , c

T
n ).

We de�ne
CI := C(P∞, P1, . . . , Pn;E;m)

as the code with parity-check matrix H.

9.1.2 The Construction of CII

The second construction of Xing, Niederreiter, and Lam I call CII. Let q, g, and X be as
before and let D � 0 be a nonspecial divisor with deg(D) = g. (See [19] for details on how
to prove that such a divisor exists.) Then l(D) = 1. Let P∞, P1, . . . , Pn be distinct points of
degree 1. For 1 ≤ i ≤ n, choose

gi ∈ L(D + Pi) \ L(D).

Since l(D) = 1, we have that L(D) consists of all constant functions. From this it follows that
1, g1, . . . , gn is a basis for L(D +

∑n
i=1 Pi).

Let t be a local parameter at P∞ and put v = vP∞(D). We have v ≥ 0 since D is e�ective
and v ≤ g since deg(D) = g. Let s be a positive integer. For each i ∈ {1, . . . , n}, we can write

gi = t−v ·
(

s∑

r=0

br,it
r + ks+1,it

s+1

)
,
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where each br,i ∈ Fq and ks+1,i ∈ OP∞ . Assume s is large enough for the rest of the construction
to make sense. For i = 1, . . . , n, de�ne

cr,i :=
{
br−1,i for 1 ≤ r ≤ v,
br,i for r ≥ v + 1.

So cr,i runs through all non-free coe�cients in the power-series expansion of gi. Let m be a
positive integer such that g ≤ m < n. For i = 1, . . . , n, put

ci = (c1,i, . . . , cm,i) ∈ Fmq .

De�ne the m× n matrix
H = (cT

1 , . . . , c
T
n ).

The code
CII = C(P∞, P1, . . . , Pn;D;m)

is de�ned to be the code with parity-check matrix H.

9.1.3 Proof that the Codes Are Goppa Codes
To prove that the codes in [19] are Goppa codes, Özbudak and Stichtenoth make another
construction, which I call CIII. Next, they prove that CI and CII are special cases of CIII.
Finally, they prove that CIII is a special case of the Goppa codes.

To construct CIII, let q, g, and X be as before, let B be a non-special divisor, and let
P1, . . . , Pn be points of degree 1. Then l(B + Pi) = l(B) + 1 for i = 1, . . . , n. Let

fi ∈ L(B + Pi) \ L(B)

for i = 1, . . . , n. Then any f ∈ L(B +
∑n

i=1 Pi) can be uniquely written as

f =
n∑

i=1

cifi + w (9.1)

where each ci is in Fq and w ∈ L(B). We see easily that the map

α : L(B +
n∑

i=1

Pi) −→ Fnq

de�ned by f 7−→ (c1, . . . , cn), with c1, . . . , cn de�ned by (9.1), is surjective with ker(α) = L(B).
Choose A � 0 with Supp(A) ∩ {P1, . . . , Pn} = ∅. We then de�ne

CIII := C(B;P1, . . . , Pn;A) = α

(
L

(
B +

n∑

i=1

Pi −A
))

.

Proposition 9.1. CI is a special case of CIII.
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Proof. We show that CI = C(E;P1, . . . , Pn; (m + g + 1)P∞). We use notations from the
construction of CI.

The proof is in two parts. We �rst prove that (λ1, . . . , λn) ∈ Fnq is in CI if and only if
λ1f1 + · · ·+ λnfn = w+ u for some w ∈ L(E) and u satisfying vP∞(u) ≥ m+ g + 1. Next we
show that such vectors are exactly the codewords in C(E;P1, . . . , Pn; (m+ g + 1)P∞).

Suppose (λ1, . . . , λn) ∈ CI. Then λ1ci,1 + λ2ci,2 + · · · + λnci,n = 0 for i = 1, . . . ,m. Let
k1, . . . , km be such that ci = (ak1,i, . . . , akm,i) (i.e. ki are all of the indices among a0, . . . , am+g

that are not equal to any nj). Recall that

fi =
s∑

r=0

ar,itr + hs+1,its+1.

We have for all 1 ≤ i ≤ m that

λ1aki,1 + λ2aki,2 + · · ·+ λnaki,n = 0 ⇒ (λ1aki,1 + · · ·+ λnaki,n)tki = 0.

If we do that for i = 1, . . . , n and add the expressions together, we get

(λ1ak1,1 + · · ·+ λnak1,n)tk1 + · · ·+ (λ1akm,1 + · · ·+ λnakm,n)tkm = 0.

Now add similar expressions for all the other ti that we haven't included here, and note that
ti = wi if i = nl for some l ∈ {0, . . . , g}. We get

(λ1a0,1 + · · ·+ λna0,n)t0 + · · ·+ (λ1am+g,1 + · · ·+ λnam+g,n)tm+g

= (λ1an0,1 + · · ·+ λnan0,n)w0 + · · ·+ (λ1ang ,1 + · · ·+ λnang ,n)wg.

Remember that w0, . . . , wg is a basis for L(E), so the element on the right-hand side of the
equation sign is in L(E). Denote it by w. We reorganise the expression on the left-hand side
and get

λ1(a0,1t0 + a1,1t1 + · · ·+ am+g,1tm+g) + · · ·+ λn(a0,nt0 + a1,nt1 + · · ·+ am+g,ntm+g) = w.

Now, since

fi =
s∑

r=0

ar,itr + hs+1,its+1,

where we let s ≥ m+ g + 1, we have

λ1(f1 − f ′1) + · · ·+ λn(fn − f ′n) = w,

where each f ′i =
∑s

r=m+g+1 ar,itr+hs+1,its+1. Note that f ′1, . . . , f ′n have order at leastm+g+1
in P∞. It follows that

λ1f1 + · · ·+ λnfn = w + λ1f
′
1 + · · ·+ λnf

′
n = w + u,

where u has order at least m+ g + 1 in P∞, as desired. This shows that if (λ1, . . . , λn) ∈ CI,
then λ1f1 + · · ·+ λnfn = w + u where w ∈ L(E) and u satis�es vP∞(u) ≥ m+ g + 1.

Now suppose
λ1f1 + · · ·+ λnfn = w + u
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where w ∈ L(E) and u satis�es vP∞(u) ≥ m + g + 1. We want to show that λ1aki,1 + · · · +
λnaki,n = 0 for i = 1, . . . ,m. We have that

λ1

(
s∑

r=0

ar,1tr + hs+1ts+1

)
+ · · ·+ λn

(
s∑

r=0

ar,ntr + as+1,nts+1

)
= w + u.

We want the right-hand side to have the tki-coe�cients equal to 0 (because then the same
applies for the left-hand side).

Since each ki ≤ m+g and vP∞(u) ≥ m+g+1, the coe�cient of tki in u is 0. Furthermore, w
can be written as a unique linear combination of w0, . . . , wg, and those are exactly tn0 , . . . , tng ,
which are the elements not among tk1 , . . . , tkm . This shows that if λ1f1 + · · ·+ λnfn = w+ u,
then λ1aki,1 + · · ·+ λnaki,n = 0 for i = 1, . . . ,m.

We now prove that λ1f1 + · · ·+ λnfn = w + u with w ∈ L(E) and vP∞(u) ≥ m+ g + 1 if
and only if (λ1, . . . , λn) ∈ C(E;P1, . . . , Pn; (m + g + 1)P∞). We know from the construction
of CIII that

(c1, . . . , cn) ∈ C(E;P1, . . . , Pn; (m+ g + 1)P∞)

⇔ c1f1 + · · ·+ cnfn + w′ ∈ L
(
E +

n∑

i=1

Pi − (m+ g + 1)P∞

)
,

where w′ ∈ L(E). Recall from the construction of CI that P∞ /∈ Supp(E).
Suppose λ1f1+· · ·+λnfn = w+u with w ∈ L(E) and vP∞(u) ≥ m+g+1. Then u is a linear

combination of f1, . . . , fn modulo L(E), so vPi(u) ≥ −1 for each i = 1, . . . , n because of how
we chose f1, . . . , fn. It follows that λ1f1+· · ·+λnfn−w = u ∈ L(E+

∑n
i=1 Pi−(m+g+1)P∞).

Since −w ∈ L(E), this shows that (λ1, . . . , λn) ∈ C(E;P1, . . . , Pn; (m+ g + 1)P∞).
Suppose (λ1, . . . , λn) ∈ C(E;P1, . . . , Pn; (m+ g + 1)P∞). Then λ1f1 + · · ·+ λnfn + w′ ∈

L(E+
∑n

i=1 Pi−(m+g+1)P∞), where w′ ∈ L(E). We then have that λ1f1+· · ·+λnfn+w′ = u
with vP∞(u) ≥ m+ g + 1, as desired.

Proposition 9.2. CII is a special case of CIII.

Proof. We use notations from the construction of CII. We �rst prove that (λ1, . . . , λn) ∈
CII ⇔ λ1g1 + · · · + λngn = b + w with b ∈ L(D) and vP∞(w) ≥ m − v + 1. Recall from the
construction of CII that l(D) = 1, and so L(D) = Fq. Recall also that v ≤ g ≤ m.

Let γ1, . . . , γm be the m �rst nonzero exponents of t in the power series expansion of the
gi. (E.g. if v = 2, then γ1 = −2, γ2 = −1, γ3 = 1.) We have

(λ1, . . . , λn) ∈ CII

⇒





λ1c1,1 + λ2c1,2 + · · ·+ λnc1,n = 0
...
λ1cm,1 + λ2cm,2 + · · ·+ λncm,n = 0

⇒ (λ1c1,1 + λ2c1,2 + · · ·+ λnc1,n)tγ1 + · · ·+ (λ1cm,1 + · · ·+ λncm,n)tγm = 0
⇒ λ1(g1 − b0,1 − g′1) + · · ·+ λn(gn − b0,n − g′n) = 0
⇒ λ1g1 + · · ·+ λngn = b+ w,

where vP∞(g′i) ≥ m− v + 1 for i = 1, . . . , n, the element w is a combination of the g′i (which
means that also vP∞(w) ≥ m− v + 1), and b ∈ Fq = L(D).
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Suppose now that λ1g1 + · · ·+λngn = b+w where b ∈ Fq = L(D) and vP∞(w) ≥ m−v+1.
We then have

λ1t
−v
(

s∑

r=0

br,1t
r + bs+1,1t

s+1

)
+ · · ·+ λnt

−v
(

s∑

r=0

br,nt
r + bs+1,nt

s+1

)
= b+ w.

Since the right-hand side of this expression doesn't have negative order at P∞, the sum of the
coe�cients on the left-hand side for negative powers of t will be 0. If m = v, we are done. If
m > v, then since b is a constant function and vP∞(w) ≥ m− v + 1, we will also get 0 when
we sum the coe�cients of tr for 1 ≤ r ≤ m− v.

We now show that λ1f1 + · · ·+ λnfn = b+ w for some b ∈ Fq and vP∞(w) ≥ m− v + 1 if
and only if (λ1, . . . , λn) ∈ C(D;P1, . . . , Pn; (m + 1)P∞). If λ1f1 + · · · + λnfn = b + w, then
λ1f1 + · · · + λnfn − b = w ∈ L(D +

∑n
i=1 Pi − (m + 1)P∞), as desired. (Remember that

v = vP∞(D).) If λ1f1 + · · · + λnfn − b ∈ L(D +
∑n

i=1 Pi − (m + 1)P∞) for some b ∈ L(D),
then λ1f1 + · · ·+ λnfn − b = w with vP∞(w) ≥ m− v + 1.

This gives us C(D;P1, . . . , Pn; (m − v + 1)P∞) where l(D) = 1 and D is non-special.
(m− v + 1)P∞ is e�ective because m ≥ g ≥ v. This �nishes the proof.

The last step of Özbudak and Stichtenoth in [7] is to prove that CIII is a special case
of standard Goppa codes. The notations are the same as in the construction of CIII. The
existence of z in the following theorem follows from the Strong Approximation Theorem,
Theorem 4.20. The code C(D,G) denotes the code from the Goppa construction presented in
Section 4.1.

Theorem 9.3. Let z ∈ Fq(X) so that vPi(zfi) = 0 and (zfi)(Pi) = 1, i = 1, . . . , n. Then
CIII = C(D,G) with D = P1 + · · ·+ Pn and G = B +

∑n
i=1 Pi −A− div(z).

Proof. Since fi ∈ L(B + Pi) \ L(B), i = 1, . . . , n, we have vPi(G) = vPi(B) + 1 − vPi(z) =
−vPi(fi)− vPi(z) = 0, and so Supp(G) ∩ {P1, . . . , Pn} = ∅. De�ne the map

β : L(G) −→ Fnq

by h 7−→ (h(P1), . . . , h(Pn)) and the map

φ : L(B +
n∑

i=1

Pi −A) −→ L(G)

by f 7−→ zf . The map φ is an isomorphism. Let α be as de�ned in the construction of CIII.
We have the following diagram:

L(B +
∑n

i=1 Pi −A)
φ //

α

))TTTTTTTTTTTTTTTTTTT
L(G)

β
��
Fnq

We want the image of β to be the same as the image of α. Let f ∈ L(B+
∑n

i=1 Pi−A). Then
f =

∑n
i=1 cifi + w for some c1, . . . , cn ∈ Fq and w ∈ L(B), and so α(f) = (c1, . . . , cn).
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Recall that (zfi)(Pi) = 1, i = 1, . . . , n. We have φ(f) = zf =
∑n

i=1 cizfi + zw, and

β(φ(f)) = ((zf)(P1), . . . , (zf)(Pn))

=

((
n∑

i=1

cizfi + zw

)
(P1), . . . ,

(
n∑

i=1

cizfi + zw

)
(Pn)

)

=

(
c1 +

(
n∑

i=2

cizfi + zw

)
(P1), . . . , cn +

(
n−1∑

i=1

cizfi + zw

)
(Pn)

)
.

Now note that since vPi(zfi) = 0, we have vPi(z) = vPi(B) + 1. Also recall that vPi(fj) ≥
−vPi(B), i 6= j, i, j = 1, . . . , n. This means that the above expression becomes (c1, . . . , cn), as
desired.

9.2 A Generalisation of Goppa Codes
The fourth construction that Özbudak and Stichtenoth comment on is found in [20] and is
a generalised version of the third construction in their article, which Xing, Niederreiter, and
Lam made a bit earlier the same year. I here only present the fourth construction.

Let X be a nonsingular projective curve de�ned over Fq with at least one Fq-rational point.
Denote its genus by g. Let P1, . . . , Ps be distinct points with deg(Pi) = ki, and let C1, . . . , Cs
be [ni, ki, di]q-linear codes with isomorphisms πi : Fqki −→ Ci. Note that given a function
f ∈ OPi , then f(Pi) is regarded as f modulo mPiOPi . This is regarded as an element in Fqki .

Let
π : L(G) −→ Fnq

be de�ned by f 7−→ (π1(f(P1)), . . . , πn(f(Pn))).

De�nition 9.4. Let the map π be de�ned as above. We then de�ne the linear algebraic-
geometric code C := C(P1, . . . , Ps;G;C1, . . . , Cs) to be the image of π. We will call C a
generalised AG code.

The length of the code is obviously n := n1 + · · ·+ ns.
Let

Z =

{
S ⊆ {1, . . . , s}

∣∣∣∣∣
∑

i∈S
ki ≤ deg(G)

}
.

De�ne the integer

ν := min

{∑

i/∈S
di

∣∣∣∣∣ S ∈ Z
}
.

Proposition 9.5. Suppose g ≤ deg(G) <
∑s

i=1 ki. Then C(P1, . . . , Ps;G;C1, . . . , Cs) is an
[n, k, d]q-code with parameters

k = l(G) ≥ deg(G) + 1− g and d ≥ ν.

Proof. Note that the code is linear. To show that k = l(G), we must show that π is injective.
Suppose h ∈ L(G) and π(h) = 0. We show that h = 0. We have πi(h(Pi)) = 0 for i = 1, . . . , s.
Since the πi are isomorphisms, we have h(Pi) = 0 for i = 1, . . . , s, and so h ∈ L(G−∑s

i=0 Pi).
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Since deg(Pi) = ki for i = 1, . . . , s, we have deg(G) <
∑s

i=1 ki = deg(
∑s

i=1 Pi), which means
that h = 0.

To �nd the minimum distance, we only need to �nd the non-zero codeword of minimum
weight. Suppose 0 6= f ∈ L(G). Let

S = {i ∈ {1, . . . , s} | f(Pi) = 0}.

We want to show that S ∈ Z, which we de�ned above. Next we will show that the weight
wt((f(P1, . . . , f(Ps)) ≥

∑
i/∈S di.

We have

0 6= f ∈ L
(
G−

∑

i∈S
Pi

)
⇒ deg(G) ≥ deg

(∑

i∈S
Pi

)
=
∑

i∈S
ki.

So S ∈ Z.
Since f(Pi) = 0 ⇔ πi(f(Pi)) = 0, we have i ∈ S ⇔ πi(f(Pi)) = 0. It follows that

wt(π(f)) =
s∑

i=1

wt(πi(f(Pi))) =
∑

i/∈S
wt(πi(f(Pi))) ≥

∑

i/∈S
di ≥ ν.

The second last inequality follows because the codes C1, . . . , Cs are linear. This �nishes the
proof.

Proposition 9.6. Goppa codes are a special case of generalised AG codes.

Proof. Let the cardinality of a set A be denoted by card(A). For i = 1, . . . , s, put ki = 1,
ni = 1, and s = n. Then the map π is exactly the same as the Goppa-code map. Note that the
previous proposition with these parameters gives us Z = {S ⊆ {1, . . . , n} | card(S) ≤ deg(G)}
and ν = min{card({1, . . . , n} − S) |S ∈ Z} = n− deg(G), as expected.

In the rest of this thesis I will study di�erent ways of how we can construct in�nite
sequences of such codes.



Chapter 10

Asymptotic Properties of Generalised
AG Codes

In this chapter I present three ways to construct an in�nite sequence of generalised AG codes.
The �rst involves an in�nite sequence of curves where I use closed points of degree 1 and 2. The
second involves letting the degree of the points in question approach in�nity and was found
by Antonino Spera in [9]. The third is a combination of the �rst two constructions. I close
with a graph showing the three bounds compared to the Gilbert�Varshamov and Tsfasman�
Vl�aduµ�Zink bounds.

10.1 The First Construction
This construction involves using the proof of the Tsfasman�Vl�aduµ�Zink (TVZ) bound on
generalised AG codes where C1, . . . , Cs are �xed. I have made several attempts on getting
relatively good asymptotic results for di�erent versions of the Ci. I here present the attempt
that gave the best result. The bound we �nd here comes close to the Gilbert�Varshamov
bound for small values of δ.

Before presenting the construction, we need the following theorem.

Theorem 10.1. For prime powers q, there exists an in�nite sequence of projective nonsingular
curves (Xi)∞i=1 de�ned over Fq such that |Xi(Fq2)| → ∞ and |Xi(Fq2)|/g(Xi)→ q − 1, where
g(X) is the genus of X.

Proof. A desired sequence of curves is presented by Garcia and Stichtenoth in [4] and is given
by Fq2(Xi) := Fq2(x1, . . . , xi), where

xqi+1 + xi+1 =
xqi

xq−1
i + 1

, i = 1, . . . , n− 1.

It is shown there that limi→∞ |Xi(Fq2)|/g(Xi) = q − 1. It is clear that we for each Xi have a
prime ideal with generator polynomials with coe�cients in Fq.

The following proposition will also be important to us.

Proposition 10.2. Let X be a nonsingular projective curve de�ned over Fq. If si is the
number of closed points of degree i on X over Fq, then |X(Fq2)| = s1 + 2s2.

73
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Proof. See page 179 in [13].

Let q be a prime power and let (Xi)∞i=1 be an in�nite sequence of nonsingular projective
curves de�ned over Fq such that limi→∞ |Xi(Fq2)| =∞ and limi→∞ |Xi(Fq2)|/g(Xi) = q − 1,
where g(X) is the genus of the curve X. For some curve X in {Xi}∞i=1, let s1 = |X(Fq)| − 1
and s2 = 1

2(|X(Fq2)| − |X(Fq)|). Then s2 is the number of closed points of degree 2 on X.
Let P1, . . . , Ps1 be all points of degree 1 except for one�say P ′�and let Ps1+1, . . . , Ps1+s2 be
the closed points of degree 2. Let C1, . . . , Cs1 be [1, 1, 1]q-linear codes and Cs1+1, . . . , Cs1+s2

be [2, 2, 1]q-linear codes.
Let m ≥ s1 be an integer with m < s1 + 2s2 and G = mP ′. Say that

deg(G) = s1 + t

for some nonnegative integer t < 2s2. We see that deg(G) <
∑s1+s2

i=1 ki is ful�lled. Note also
that we can assume that g(X) ≤ deg(G) since we are naturally interested in positive values
of deg(G) + 1− g(X). Substituting deg(G)− s1 for t, we have from Proposition 9.5 that

d ≥ s1 + s2 − s1 −
⌊
t

2

⌋
≥ 1

2
s1 + s2 − 1

2
deg(G). (10.1)

This gives us deg(G) ≥ s1 + 2s2 − 2d. The dimension k satis�es k ≥ deg(G) + 1 − g.
By choosing, if necessary, a linear subspace of the code we are constructing, we can say that
k = deg(G)+1−g ≥ s1+2s2−2d+1−g. Since the length of the code is s1+2s2 = |X(Fq2)|−1,
we divide by |X(Fq2)| − 1, let |X(Fq2)| → ∞, and get

R ≥ 1− 2δ − 1
q − 1

.

Theorem 10.3. Let q be a prime power. Then for any δ ∈ [0,
√
q/(2(1 +

√
q))], we can �nd

an in�nite sequence of generalised AG codes (Ci)∞i=1 with minimum distances di, dimensions
ki, and lengths ni such that di/ni → δ and ki/ni → R satisfying

R ≥ R1 := 1− 2δ − 1
q − 1

.

Proof. The only thing left to show is that it is su�cient to put deg(G) ≥ s1 in order to obtain
δ ≤ √q/(2(1+

√
q)) in the above construction, as it is clear that larger deg(G) gives us smaller

δ.
A su�cient way of achieving δ =

√
q/(2(1 +

√
q)), is putting

d =
⌊ √

q

2(1 +
√
q)

(s1 + 2s2)
⌋
.

We want to �nd what deg(G) must be. Using (10.1), we get
⌊ √

q

2(1 +
√
q)

(s1 + 2s2)
⌋
≥ 1

2
s1 + s2 − 1

2
deg(G).

This gives us
deg(G)
s1 + 2s2

≥ 1
1 +
√
q
.
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I now show that deg(G) must be at least s1 in order to satisfy this. We have

s1

s1 + 2s2
=

s1/g(X)
(s1 + 2s2)/g(X)

.

Letting |X(Fq2)| → ∞, we get q−1 in the denominator and at most √q−1 in the numerator.
This gives us

s1/g(X)
(s1 + 2s2)/g(X)

→ a ≤ 1
1 +
√
q
.

as |X(Fq2)| → ∞. So it follows that deg(G) must be at least s1 in order to obtain δ ≥√
q/(2(1 +

√
q)).

Remark 10.4. In Section 11.1 I show that the curve sequence from Theorem 10.1 satis�es
s1/s2 → 0, so the construction from this section could have been simpli�ed by only using the
points of degree 2. In that case, the bound would be valid for all δ ∈ [0, (q − 2)/(2(q − 1))].
However, I have here chosen to hold on to the points of degree 1 so as to show how it can
be done. This is practical for other curve sequences where s1/s2 doesn't approach 0. (In
constructions with other curve sequences we may of course need to change q − 1 for some
other value of limi→∞ |Xi(Fq2)|/g(Xi).) In the next chapter I stick to points of degree 2.

It is easy to verify that this bound is better than the TVZ bound for δ < √q/(q−1) when
q is a square. We also know that the Gilbert�Varshamov bound is better than the TVZ bound
for small δ. One could hope that there were some interval on the δ axis where this new bound
was better than both the TVZ bound and the Gilbert�Varshamov bound. Sadly, as far as I
know, this is not the case.

Lemma 10.5. For prime powers q ≥ 4 and δ =
√
q/(q − 1), we have 1 − 2δ − 1/(q − 1) <

1−Hq(δ).

Note that for q ≤ 3, this value for δ lies outside of the interval where R1 is de�ned.

Proof. We have RGV(
√
q/(q − 1)) > R1(

√
q/(q − 1)) if and only if

1−
√
q

q − 1
logq(q − 1) +

√
q

q − 1
logq

( √
q

q − 1

)
+
q − 1−√q
q − 1

logq

(
q − 1−√q
q − 1

)
> 1− 2

√
q + 1

q − 1

m

√
q logq(q − 1)−√q logq(

√
q) +

√
q logq(q − 1)− (q − 1−√q) logq(q − 1−√q)

+ (q − 1−√q) logq(q − 1) < 2
√
q + 1

m

(q − 1 +
√
q) logq(q − 1)− (q − 1−√q) logq(q − 1−√q)− 1

2
√
q < 2

√
q + 1.

This is correct for q = 4, 5, 7, 8, 9. To show the last statement for larger q, it su�ces to show
that

(q − 1 +
√
q)− (q − 1−√q) logq(q − 1−√q)− 1

2
√
q < 2

√
q + 1.
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If q ≥ 11, this last bit becomes

logq(q − 1−√q) > q − 2− 3
2

√
q

q − 1−√q .

Suppose 1 +
√
q = εq for some ε. It is then clear that ε→ 0 as q →∞. The above expression

becomes
logq(1− ε) + 1 >

(1− 3
2ε)q − 1

2

(1− ε)q .

To ensure this, is it su�cient that

logq(1− ε) + 1 >
1− 3

2ε

1− ε ,

which becomes
logq(1− ε) >

1
2ε

ε− 1
. (10.2)

Note that ε < 1 for all the q we are interested in. Also note that when ε = 0, we have equality
in (10.2). This means that if 1

2ε/(ε − 1) decreases more quickly as a function in ε (with q
constant) between ε = 0 and ε = 1 than logq(1− ε) does, then (10.2) is satis�ed for all q ≥ 11
and all ε between 0 and 1, and then especially for all ε = (

√
q + 1)/q.

For ε = 0, it is easy to check that the slope is steepest on the right-hand side. Since
the derivatives are continuous functions, I put the two derivatives equal to one another and
check that we then can't have 0 ≤ ε < 1, thus proving the lemma. Using the assumption that
q ≥ 11, we have

1
(ε− 1) ln(q)

=
−1

2

(ε− 1)2

m
1

ln(q)
=

−1
2(ε− 1)

m
2(ε− 1) = − ln(q)

m
ε =

− ln(q)
2

+ 1 <
− ln(e2)

2
+ 1 = 0.

This �nishes the proof.

What remains is to show that this is also the case to the left of δ =
√
q/(q − 1), which

is much more di�cult. R1 is worse than RGV for all 0 ≤ δ ≤ √q/(q − 1) for all values
of q I have tested, but I have yet to prove the inequalities for general q, as this involves
solving second-degree logarithmic equations. I will here therefore only present what needs to
be shown.

Let δ′ := √q/(q − 1). Consider the line

f(δ) := 1− 1
q − 1

−
1− 1

q−1 −RGV(δ′)

δ′
δ.
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We see that f(δ′) = RGV(δ′) and that f(0) = R1(0). It follows that if RGV has a steeper
slope than f for every δ ∈ [0, δ′], then RGV will never cross R1 to the left of δ′. However,
RGV doesn't have a steeper slope in δ′. But we know that R1(δ′) < RGV(δ′), and since RGV

has positive second derivative, it is su�cient to show that when R1(δ′′) = RGV(δ′) for some
δ′′ < δ′, then f(δ′′) < RGV(δ′′). This means that RGV has grown more than f has between δ′
and δ′′, and RGV becomes even steeper when we approach 0.

The value for δ′′ is given by the equation

1− 2δ′′ − 1
q − 1

= 1−Hq(δ′),

which becomes
δ′′ =

1
2
Hq(δ′)− 1

2(q − 1)
.

f(δ′′) < RGV(δ′′) is the second-degree logarithmic expression which I have yet to prove.
Another possible approach is to �nd a δ′′′ that doesn't involve logarithms and that lies

between δ′′ and δ′ and show that f(δ′′′) < RGV(δ′′′). However, it has proved di�cult to �nd
such a δ′′′.

10.2 The Second Construction
The second way to make in�nite sequences of generalised AG codes is to use only one curve
and let the degree of the points in question approach in�nity. This is done by Antonino Spera
in [9]. I here only brie�y present what is done.

Let X be a curve and a be a positive integer such that a2 < q. Then it is shown that for
n >> 0, there exist sn := dan√qne points of degree n over Fq. It follows that qn ≥ sn. Let
C1, . . . , Csn be [n, n, 1]q-linear codes and φi : Fqn −→ Ci be isomorphisms. For a given n, let
the desired points of degree n be P1, . . . , Psn and let G be a divisor with support disjoint from
{P1, . . . , Psn}. Let η be an element of order qn − 1 in the group F×qn . Let ψ : Fqn −→ Fnq de
de�ned by ψ : a1 + a2η + · · ·+ anη

n−1 7−→ (a1, a2, . . . , an), and put ξ := ψ(η). Then we have
de�ned a �eld structure on Fnq , and it makes sence multiplying elements with each other in
Fnq .

We now de�ne φ : L(G) −→ F2nsn
q by

f 7−→ (
φ1(f(P1)), φ1(f(P1));φ2(f(P2)), ξφ2(f(P2)); . . . ;φsn(f(Psn)), ξsn−1φsn(f(Psn))

)
.

Note that since qn ≥ sn, each ξi is di�erent in the codewords. This ensures us that
if f(Pi) = f(Pj) for some f and some Pi and Pj , i 6= j, then we are guaranteed that
(φi(f(Pi)), ξi−1φi(f(Pi))) 6= (φj(f(Pj)), ξj−1φj(f(Pj))). Spera uses this fact to �nd a good
bound for the minimum distance. When n→∞, he �nds that for q > 16 and 0 < R < 1

2 , we
have

R ≥ 1
2
− δ.

10.3 The Third Construction
This construction is based on an obvious question: Suppose we have an in�nite sequence of
codes (Ci(P1,i, . . . , Psi,i;Gi;C1,i, . . . , Csi,i))

∞
i=1 such that the lengths of C1,i, . . . , Csi,i approach
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in�nity. If C1,i, . . . , Csi,i have good asymptotic properties, will we obtain good asymptotic
properties for (Ci(P1,i, . . . , Psi,i;Gi;C1,i, . . . , Csi,i))

∞
i=1 as well? To give this a test, I have

considered an in�nite sequence of nonsingular projective curves (Xi)∞i=1 de�ned over Fq which
obtain the Drinfeld�Vl�aduµ bound over Fq, and for each such curve Xi, I have let C1,i, . . . , Csi,i
be codes de�ned in the proof of the TVZ bound, Corollary 5.9. Now, note that for each Xi, we
are given the length nTVZ

i of the codes C1,i, . . . , Csi,i, and that the length approaches in�nity
as i → ∞. When that happens, the dimension kTVZ

i approaches in�nity as well (unless it is
0). The consequence is that we must also let the degree of the points P1,i, . . . , Psi,i approach
in�nity as i→∞.

So suppose q is a square prime power and that we are given a sequence of nonsingular
projective curves (Xi)∞i=1 de�ned over Fq with |Xi(Fq)| → ∞ such that |Xi(Fq)|/g(Xi)→ √q−
1, where g(Xi) is the genus ofXi. For each curveXi, we �rst construct the codes C1,i, . . . , Csi,i.
It is already decided from the construction of these codes in Corollary 5.9 that the length is
to be nTVZ

i = |Xi(Fq)| − 1. There is also de�ned a divisor GTVZ
i = bµTVZnTVZ

i cQTVZ
i , where

QTVZ
i is a point of degree 1 on Xi and µTVZ is a constant satisfying 1/(

√
q − 1) < µTVZ < 1.

Let the divisor
DTVZ
i =

∑

P∈Xi(Fq)\{QTVZ
i }

P.

We have then ensured that Supp(DTVZ
i ) ∩ Supp(GTVZ

i ) = ∅, and so we can de�ne Cj,i =
C(DTVZ

i , GTVZ
i ) for each j. As we did in the proof of the TVZ bound, we let each code Cj,i

have dimension kTVZ
i := deg(GTVZ

i ) + 1 − g(Xi), if necessary by only considering a linear
subspace of the code.

For all i ≥ 1, de�ne si to be the number of points on Xi of degree kTVZ
i , but if kTVZ

i = 1,
let si = |Xi(Fq)|−1 (to ensure that we have a spare point Qi of degree 1 for our �main� divisor
Gi), and let P1,i, . . . , Psi,i be those points. For some µ such that 0 < µ < 1, let Gi = bµnicQi,
where ni is the length of the code Ci(P1,i, . . . , Psi,i;Gi;C1,i, . . . , Csi,i) and Qi is a point of
degree 1 on Xi not among P1,i, . . . , Psi,i, even though they might be of degree 1. It is clear
that ni = sin

TVZ
i .

For the time being, assume that we always have g(Xi) ≤ deg(Gi) < sik
TVZ
i . Then the

conditions in Proposition 9.5 are satis�ed. In the end of this section, I will prove that these
are met.

A code Ci(P1,i, . . . , Psi,i;Gi;C1,i, . . . , Csi,i) has the dimension ki = l(Gi). On the other
hand, we are allowed to choose a linear subspace of the code such that the dimension is

ki := deg(Gi) + 1− g(Xi).

Before continuing, we need a small lemma.

Lemma 10.6. If µTVZ > 1/(
√
q − 1), then

lim
i→∞

g(Xi)
sinTVZ

i

= 0.

Proof. Since limi→∞ g(Xi)/nTVZ
i = 1/(

√
q − 1), we only need to show that limi→∞ si =∞.

From the proof of Lemma 3.1 of [9], we have that if
√
qk

TVZ
i

kTVZ
i

≥ 1 +
2 + 7g(Xi)
kTVZ
i

, (10.3)
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then si ≥ √qkTVZ
i , which will imply that si →∞ since kTVZ

i →∞.
The left-hand side of (10.3) obviously approaches in�nity, so it su�ces to show that the

right-hand side remains constant. We �rst calculate limi→∞ g(Xi)/kTVZ
i :

lim
i→∞

g(Xi)
kTVZ
i

= lim
i→∞

(
deg(GTVZ

i )
g(Xi)

− 1
)−1

=
(
µTVZ(

√
q − 1)− 1

)−1
.

The right-hand side thus approaches

1 +
7

µTVZ(
√
q − 1)− 1

as i → ∞. Since µTVZ was assumed to be strictly greater than 1/(
√
q − 1), this proves the

lemma.

From Proposition 9.5, we have

di ≥ dTVZ
i

(
si −

⌊
deg(Gi)
kTVZ
i

⌋)

= dTVZ
i

(
si −

⌊
deg(Gi)

deg(GTVZ
i ) + 1− g(Xi)

⌋)

≥ dTVZ
i

(
si − deg(Gi)

bµTVZnTVZ
i c+ 1− g(Xi)

)
.

Putting deg(Gi) on the left-hand side of the expression, we get

deg(Gi) ≥
(
dTVZ
i si − di

)(bµTVZnTVZ
i c+ 1− g(Xi)
dTVZ
i

)
. (10.4)

We substitute in the expression for ki and get

ki = deg(Gi) + 1− g(Xi)

≥ si
(bµTVZnTVZ

i c+ 1− g(Xi)
)− di

(bµTVZnTVZ
i c+ 1− g(Xi)
dTVZ
i

)
+ 1− g(Xi)

≥ si
(bµTVZnTVZ

i c+ 1− g(Xi)
)− di

(bµTVZnTVZ
i c+ 1− g(Xi)

nTVZ
i − deg(GTVZ

i )

)
+ 1− g(Xi)

= si
(bµTVZnTVZ

i c+ 1− g(Xi)
)− di

(bµTVZnTVZ
i c+ 1− g(Xi)

nTVZ
i − bµTVZnTVZ

i c

)
+ 1− g(Xi).

The length of Ci(P1,i, . . . , Psi,i;Gi;C1,i, . . . , Csi,i) is sinTVZ
i , so we divide by sinTVZ

i and let
i → ∞. We have that g(Xi)/(sinTVZ

i ) → 0 from Lemma 10.6. The rest of the expression
becomes

R ≥ µTVZ − 1√
q − 1

− δ
(
µTVZ − 1√

q−1

1− µTVZ

)
. (10.5)

Now two obvious questions arise: What values of µTVZ are we allowed to use, and for what
value is R greatest with respect to δ? In the following, I will do things a bit backwards
(making calculations a bit simpler). I will �rst �nd the value for µTVZ that makes R greatest
and afterwards show that this is a �valid� value for µTVZ.
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Lemma 10.7. The value for µTVZ that makes (10.5) the greatest is

µTVZ = 1−
√
δ(
√
q − 2)√
q − 1

.

This function of δ I will denote by ξ.
Proof. I di�erentiate (10.5) with respect to µTVZ and �nd what value of µTVZ makes the
derivative of (10.5) equal to 0.

d
dµTVZ

(
µTVZ − 1√

q − 1
− δ

(
µTVZ − 1√

q−1

1− µTVZ

))

= 1− δ

1 · (1− µTVZ

)−
(
µTVZ − 1√

q−1

)
· (−1)

(1− µTVZ)2


 .

We put the expression on the right-hand side equal to 0 and get:

δ ·
(1− µTVZ) + µTVZ − 1√

q−1

(1− µTVZ)2 = 1

δ ·
√
q − 1− 1(√

q − 1
)

(1− µTVZ)2 = 1

(
√
q − 1)

(
1− µTVZ

)2
= δ (

√
q − 2)

1− µTVZ =

√
δ
(√
q − 2

)
(√
q − 1

) .

There are two things we now have to check. First of all, we need to �nd out for what values
of δ we have ξ ∈ (1/ (√q − 1

)
, 1
)
. Secondly, we must show that the conditions in Proposition

9.5 are kept.
Lemma 10.8. For q ≥ 32 and 0 < δ <

(√
q − 2

)
/
(√
q − 1

)
, we have

1√
q − 1

< ξ < 1.

Proof. It is clear that ξ < 1 for any δ > 0. To �nd out when 1/(
√
q − 1) < ξ, we have

1−
(√

(
√
q − 2)√

(
√
q − 1)

)√
δ − 1√

q − 1
> 0

m(
1− 1√

q−1

)2 (√
q − 1

)
√
q − 2

> δ

m(
1− 2√

q−1 + 1

(√q−1)2

)(√
q − 1

)
(√
q − 2

) > δ
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m(√
q − 1

)2 − 2
(√
q − 1

)
+ 1(√

q − 2
) (√

q − 1
) > δ

m(
q − 4

√
q + 4

)
(√
q − 2

) (√
q − 1

) > δ

m√
q − 2√
q − 1

> δ,

as desired.

Lemma 10.9. Let q ≥ 32 be a prime power. The expression

(1− ξ(δ)− δ)
(
ξ(δ)− 1√

q−1

1− ξ(δ)

)

is strictly decreasing as a function in δ in the interval (0, (
√
q − 2)/(

√
q − 1)).

Proof. This can very quickly be done in Maple. Di�erentiate the function with respect to δ
(with q just a symbol) and note that the derivative is a continuous function in the interval
(0, (
√
q − 2)/(

√
q − 1)). Let δ = 0.1 and �nd out for which q the derivative is negative.

Maple gives the answer q ∈ [0, 1) ∪ (4.46,∞), and in particular all q ≥ 32. Now �nd out
for which δ the derivative is 0. Put that value of δ equal to δ′ and �nd out for which q we
have δ′ ≥ (

√
q − 2)/(

√
q − 1). The answer is q ∈ [0, 1) ∪ (1, 4) ∪ (4,∞), and in particular all

q ≥ 32.

Lemma 10.10. When µTVZ = ξ in (10.5), the conditions in Proposition 9.5 are met for all
δ ∈ (0, (

√
q − 2)/(

√
q − 1)) for large enough i.

Proof. The condition that g(Xi) ≤ deg(Gi) is simply the condition that the dimension of the
code is nonzero, since ki is given by deg(Gi) + 1− g(Xi).

Next we must show that deg(Gi) < sik
TVZ
i when µTVZ = ξ. This is the same as showing

bµsinTVZ
i c < si

(
deg(GTVZ

i ) + 1− g(Xi)
)
,

bµsinTVZ
i c < si

(bξnTVZ
i c+ 1− g(Xi)

)
.

Dividing both sides by sinTVZ
i and letting i→∞, we get

µ < ξ − 1√
q − 1

,

which is what we want to show.
Now consider (10.4). Substitute µsinTVZ

i for deg(Gi), substitute nTVZ
i − deg(GTVZ

i ) for
dTVZ
i , substitute µTVZnTVZ

i for deg(GTVZ
i ), substitute ξ(δ) for µTVZ, divide by sin

TVZ
i on

both sides, and let i→∞. We then obtain the following:

µ ≥ (1− ξ(δ)− δ)
(
ξ(δ)− 1√

q−1

1− ξ(δ)

)
.
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In the previous lemma we showed that the expression on the right-hand side above is strictly
decreasing with respect to δ in the interval (0, (

√
q − 2)/(

√
q − 1)). It is therefore possible to

choose (formally) δ′ ≤ δ such that we get

µ =
(
1− ξ(δ′)− δ′)

(
ξ(δ′)− 1√

q−1

1− ξ(δ′)

)
.

We want to show that
(
1− ξ (δ′)− δ′)

(
ξ (δ′)− 1√

q−1

1− ξ (δ′)

)
< ξ

(
δ′
)− 1√

q − 1
.

We get
(
1− ξ (δ′)− δ′)

(
ξ
(
δ′
)− 1√

q − 1

)
<

(
ξ
(
δ′
)− 1√

q − 1

)(
1− ξ (δ′))

m

− (ξ (δ′))2 +
(

1− δ′ + 1√
q − 1

)
ξ
(
δ′
)

+
(
− 1√

q − 1
+

δ′√
q − 1

)
< − (ξ (δ′))2

+
(

1 +
1√
q − 1

)
ξ
(
δ′
)− 1√

q − 1

m

−δ′ξ (δ′)+
δ′√
q − 1

< 0,

which means that ξ (δ′) > 1/(
√
q − 1) if and only if deg(Gi) < sik

TVZ
i for large enough i and

where δ ≥ δ′, and so the result follows from Lemma 10.8.

This �nishes the proof that all requirements are held in the construction of (10.5) for
µTVZ = ξ, and so we have the following theorem:
Theorem 10.11. For any square prime power q ≥ 32 and 0 < δ < (

√
q − 2)/(

√
q − 1),

there exists an in�nite sequence of generalised AG codes (Ci)∞i=1 with minimum distances di,
dimensions ki, and lengths ni such that di/ni → δ and ki/ni → R satisfying

R ≥ R3 := ξ − 1√
q − 1

− δ
(
ξ − 1√

q−1

1− ξ

)
,

where

ξ = 1−
√
δ
(√
q − 2

)
√
q − 1

.

However, this does not exceed the TVZ bound.
Remark 10.12. There is another formula for the minimum distance di, where we must con-
sider separate cases when dTVZ

i ≤ kTVZ
i and dTVZ

i > kTVZ
i . When dTVZ

i ≤ kTVZ
i , Corollary 3.3

in [20] tells us that di ≥ sid
TVZ
i − deg(Gi). When dTVZ

i > kTVZ
i , we get from Theorem 3.2 in

[20] that di ≥ sikTVZ
i − deg(Gi).

On the next page we have a �gure showing some of the di�erent bounds we have encoun-
tered so far for q = 81.
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Chapter 11

Improvements of R1

In this chapter I attempt to improve R1 around the area where it is closest to the Gilbert�
Varshamov bound. Since the construction of generalised AG codes is done in a similar way
to that of Goppa codes, I will use methods taken from improvements that have been made on
Goppa codes.

In this chapter, all curves will be assumed to be nonsingular projective curves, and all
divisors will be assumed to be Fq-rational divisors. The divisor-class number of a curve X will
be denoted by h(X), and its genus will be denoted by g(X).

11.1 The First Improvement
In [15] Chaoping Xing �nds good divisors G for Goppa codes C(D,G) such that the minimum
distance is improved. The method he uses is the same as in Section 4.3, only that the evaluation
ofMt,l is a bit simpler in [15]. Here he �nds an upper bound ofMt,l (or Ns,m, which it is called
here) and �nds out when it is strictly less than the divisor-class number h(X). He then �nds
an asymptotic improvement of the Tsfasman�Vl�aduµ�Zink and Gilbert�Varshamov bounds.

I here show that the same method can be used to improve R1. In the following con-
struction I will use the curve sequence (Xi)∞i=1 mentioned in Theorem 10.1, which satis�es
limi→∞ |Xi(Fq2)|/g(Xi) = q − 1 and is also de�ned over Fq. Before continuing, we need the
following proposition.

Proposition 11.1. For the curve sequence presented in Theorem 10.1, we have

lim
i→∞

|Xi(Fq)|
g(Xi)

= 0.

Proof. Let the function �eld Fq2(Xi) be denoted by Fq2(x1, . . . , xi), with each xj satisfying

xqj + xj =
xqj−1

xq−1
j−1 + 1

, j ≥ 2.

Let Ω∞ be the set consisting of Fq2-rational points on X1 satisfying xq1 + x1 = 0 and x1 =∞.
In [4] it is shown that for i ≥ 2, the set of points on Xi not lying over the points of Ω∞

has cardinality Ni satisfying limi→∞Ni/g(Xi) = q − 1. Hence, if some of the points on Xi

lying over Ω∞ should have cardinality Mi satisfying limi→∞Mi/g(Xi) = A > 0, the number
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86 Improvements of R1

limi→∞ |Xi(Fq2)|/g(Xi) would exceed the Drinfeld�Vl�aduµ bound, a contradiction. It follows
that limi→∞Mi/g(Xi) = 0.

I now show that for each Fq-rational point (x1, . . . , xi) with xi = a on Xi, there is only
one Fq-rational point (x1, . . . , xi+1) with xi+1 = b on Xi+1 lying over xi = a.

First suppose Fq is of characteristic p 6= 2. Suppose xi+1 = b ∈ Fq and let xi = a ∈ Fq.
We then have

bq + b =
aq

aq−1 + 1
,

which becomes
b+ b =

a

1 + 1
,

which becomes b = a/4. Since a point (x′1, . . . , x
′
i) on Xi is Fq-rational only if each x′j is Fq-

rational, it follows that�disregarding points lying over the elements of Ω∞�there are fewer
Fq-rational points on Xi than the total number of Fq-rational points on X1.

Now suppose Fq is of characteristic 2. Then if x1 = a ∈ Fq, then xq1 + x1 = x1 + x1 = 0,
and so x1 = a belongs to the set Ω∞, and we have previously argued that the points lying
over Ω∞ give no contribution to limi→∞ |Xi(Fq)|/g(Xi).

It follows that there is a maximum of q − 1 Fq-rational points on each Xi that could
possibly give any contribution to limi→∞ |Xi(Fq)|/g(Xi), and since limi→∞ g(Xi) = ∞, we
can conclude that limi→∞ |Xi(Fq)|/g(Xi) = 0, as desired.

Corollary 11.2. Let the curve sequence (Xi)∞i=1 be as in Theorem 10.1. If r(j)
i is the number

of closed points of degree j on Xi over Fq, then

lim
i→∞

r
(1)
i

r
(2)
i

= 0.

Proof. This follows from the previous proposition and Proposition 10.2.

A consequence of this is that we only need to consider points of degree 2 for the rest of
this section.

Lemma 11.3. Let X be a curve over Fq with genus g(X) and at least one Fq-rational point.
Let S be a set of divisors of degree s with s ≥ g(X). If |S| < h(X), then there exists an
e�ective divisor H of degree s such that H is not equivalent to any divisors in S.

Proof. This was proved in Lemma 4.19.

Suppose we have r closed points of degree 2 on X denoted by P1, . . . , Pr. Let s and m be
integers such that s ≥ m and m is even. Denote

Ss,m(P1, . . . , Pr) :=

{∑

P∈I
P +D | I ⊆ {P1, . . . , Pr},

∑

P∈I
deg(P ) = m,

D is an e�ective divisor of degree s−m
}

and Ns,m := |Ss,m|.
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Proposition 11.4. Let X be a projective nonsingular curve with genus g(X), P1, . . . , Pr
de�ned as above, s,m positive integers with m even such that m ≤ min{s, 2r} and s ≥ g(X).
Let C1, . . . , Cr be [2, 2, 1]q-linear codes. If Ns,m < h(X), then there exists a divisor G of degree
s such that Supp(G)∩{P1, . . . , Pr} = ∅ and C(P1, . . . , Pr;G;C1, . . . , Cr) is an [n, k, d]q-linear
code with

k ≥ s− g(X) + 1, d ≥ r − 1
2
m+ 1.

Proof. Since Ns,m < h(X), there exists an e�ective divisor H of degree s such that H is not
equivalent to any divisors in Ss,m. I claim that

L

(
H −

∑

P∈I
P

)
= {0}

for any subset I ⊆ {P1, . . . , Pr} satisfying
∑

P∈I deg(P ) = m.
If 0 6= f ∈ L(H−∑P∈I0 P ) for some I0 satisfying the above, then div(f)+H−∑P∈I0 P �

0. Put D = div(f)+H−∑P∈I0 P . Then D is e�ective of degree s−m, and so H is equivalent
to D +

∑
P∈I0 , a contradiction.

Since {P1, . . . , Pr} is a proper subset of all closed points on X of degree 1, 2, 3, . . . , then
according to the Strong Approximation Theorem, Theorem 4.20, there exists an Fq-rational
function ti for each i = 1, . . . , r such that

vPj (ti) =
{

0 if j 6= i,
1 if j = i.

De�ne
G := H + div

(
r∏

i=1

t
−vPi (H)

i

)
.

We have Supp(G) ∩ {P1, . . . , Pr} = ∅ and G ≡ H, so

L

(
G−

∑

P∈I
P

)
= {0}

for any I ⊆ {P1, . . . , Pr} satisfying
∑

P∈I deg(P ) = m. Suppose 0 6= f ∈ L(G) has zeros in
all the points of a subset {Pi1 , . . . , Pil} ⊆ {P1, . . . , Pr}. Then f ∈ L(G− Pi1 − · · · − Pil), and
so
∑l

j=1 deg(Pij ) ≤ m− 2. (The sum of the degrees can't be m − 1 since they all are even.)
From the conditions we put in this proposition, it follows that l < r, and so the mapping is
injective, in which follows k = l(G) ≥ s− g(X) + 1.

To �nd the minimum distance, de�ne

Z =

{
T ⊆ {1, . . . , r}

∣∣∣∣∣
∑

i∈T
deg(Pi) ≤ m− 2

}

and ν = min{r − card(T ) |T ∈ Z}. For a nonzero f ∈ L(G), let

T = {i ∈ {1, . . . , r} | f(Pi) = 0} .

Since 0 6= f ∈ L(G−∑i∈S Pi), we have
∑

i∈S deg(Pi) ≤ m− 2, so T ∈ Z.
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From the end of the proof of Proposition 9.5, we now have that the minimum distance is
at least ν. This is easily reformulated as

d ≥ r − 1
2
m+ 1,

as desired.

Let Al be the number of e�ective divisors of degree l. An upper bound for Ns,m is then

Ns,m ≤
(

r

m/2

)
As−m. (11.1)

So if we can show that the right-hand side of (11.1) is strictly less than h(X) for some
parameters s,m satisfying m even, m ≤ min{s, 2r}, and s ≥ g(X), then all the conditions of
Proposition 11.4 are satis�ed.

Before presenting the asymptotic results for generalised AG codes satisfying these condi-
tions, we need some lemmas. In the following, I will consider the sequence of curves (Xi)∞i=1

presented in Theorem 10.1. The number of closed points of degree 2 of Xi is denoted by ri.
Recall that limi→∞ |Xi(Fq2)|/g(Xi) = q − 1.

In the following, we will let the binary entropy function be de�ned as

H2(δ) := −δ log2(δ)− (1− δ) log2(1− δ), 0 < δ < 1,

H2(0) := H2(1) := 0.

The following lemma follows from Stirling's formula.

Lemma 11.5. Let n be a positive integer and 0 ≤ δ ≤ 1 a real number such that δn is an
integer. Then (

n

δn

)
≤ 2nH2(δ).

The following result gives an upper bound on (11.1).

Lemma 11.6. For each i, let mi = 2ri − 2di, where di are nonnegative integers such that
di/(2ri)→ δ as i→∞, 0 ≤ δ ≤ 1. Then

lim
i→∞

logq
(

ri
mi/2

)

g(Xi)
≤ q − 1

2
H2(2δ) logq(2).

Proof. Since mi/2 = ri − di, the previous lemma gives us
(

ri
mi/2

)
=
(
ri
di

)
≤ 2riH2(2δ).

Hence,

lim
i→∞

logq
(
ri

mi/2

)

g(Xi)
≤ lim

i→∞
logq

(
2riH2(2δ)

)

g(Xi)
= lim

i→∞
riH2(2δ) logq(2)

g(Xi)
=
q − 1

2
H2(2δ) logq(2).
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Proposition 11.7. Let σ satisfy 0 < σ < 2/(
√
q + 1). Then

lim sup
i→∞

logq
(
Abσg(Xi)c(Xi)

)

g(Xi)
≤ σ

2
+ 2H2

(σ
2

)
logq(2).

Proof. See Poposition 3.4 in [15].

Proposition 11.8. We have

lim inf
i→∞

logq(h(Xi))
g(Xi)

≥ 2 logq (
√
q − 1) .

Proof. This follows easily from Theorem 2.3.15, page 177 in [13].

De�ne the function
fq(x) =

x

2
+ 2H2

(x
2

)
logq(2).

fq is continuous and strictly increasing on [0, 1], so its inverse exists. Since fq(1) = 1/2 +
2 logq(2), then for any real number u ∈ [0, 1/2 + 2 logq(2)], there exists a unique solution to
fq(x) = u.

Note that the positive number 2/(
√
q + 1) < 1/2 + 2 logq(2) for all prime powers q. This

can easily enough be checked for all 2 ≤ q ≤ 8. For q ≥ 9, we see that 2/(
√
q+ 1) ≤ 1/2 while

1/2 + 2 logq(2) > 1/2.
De�ne the function

hq(y) =
{
f−1
q (y) if 0 < y < 2/(

√
q − 1),

0 otherwise.

Note that hq(y) is continuous in the interval (0, 2/(
√
q − 1)). It can easily be shown that

when 0 < y < 2/(
√
q − 1), then also 0 < hq(y) < 2/(

√
q − 1).

Theorem 11.9. Suppose q is a prime power and 0 ≤ δ ≤ (q − 2)/(2(q − 1)). With notations
as above, there exists an in�nite sequence of generalised AG codes (Ci)∞i=1 with minimum
distances di, dimensions ki, and lengths ni such that di/ni → δ and ki/ni → R satisfying

R ≥ R4 := 1− 2δ − 1
q − 1

+
1

q − 1
hq

(
2logq (

√
q − 1)− q − 1

2
H2(2δ) logq(2)

)
.

Proof. Fix δ ∈ [0, (q−2)/(2(q−1))]. If 2logq(
√
q−1)− 1

2(q−1)H2(2δ) logq(2) /∈ (0, 2/(
√
q+1)),

this is the same bound as R1 from Section 10.1. (See Remark 10.4 about for which δ the bound
is valid.)

Now suppose 2logq(
√
q−1)− 1

2(q−1)H2(2δ) logq(2) ∈ (0, 2/(
√
q+1)). Choose ε > 0 small

enough such that 2logq(
√
q − 1)− 1

2(q − 1)H2(2δ) logq(2)− ε ∈ (0, 2/(
√
q + 1)) and choose σ

such that
fq(σ) = 2logq (

√
q − 1)− q − 1

2
H2(2δ) logq(2)− ε.

Then
σ = hq

(
2logq (

√
q − 1)− q − 1

2
H2(2δ) logq(2)− ε

)
.

Since 0 < y < 2/(
√
q − 1) implies that 0 < hq(y) < 2/(

√
q − 1), we now have that 0 < σ <

2/(
√
q−1). Let the sequence of curves (Xi)∞i=1 be as in Theorem 10.1, and let all notations be
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as previously in this section. For each i, put mi = 2ri− 2d′i where the d′i are chosen such that
limi→∞ d′i/(2ri) = δ. Then mi is even and limi→∞mi/(2ri) = 1−2δ. Let si = mi+ bσg(Xi)c.
Then (si −mi)/g(Xi)→ σ.

We want to show that

lim
i→∞

logq(Nsi,mi)
g(Xi)

< lim
i→∞

logq(h(Xi))
g(Xi)

. (11.2)

On the right-hand side, we have according to Proposition 11.8 that a lower bound is

2 logq (
√
q − 1) ≤ lim

i→∞
logq(h(Xi))
g(Xi)

.

On the left-hand side of (11.2), we combine (11.1) with Lemma 11.6 and Proposition 11.7,
using the facts that (si −mi)/g(Xi)→ σ and 0 < σ < 2/(

√
q − 1), and get

lim
i→∞

logq(Nsi,mi)
g(Xi)

≤ q − 1
2

H2(2δ) logq(2) +
σ

2
+ 2H2

(σ
2

)
logq(2).

From the de�nition of fq, we have σ/2 + 2H2(σ/2) logq(2) = fq(σ) = 2logq(
√
q − 1) − 1

2(q −
1)H2(2δ) logq(2)− ε, and so the above becomes

lim
i→∞

logq(Nsi,mi)
g(Xi)

≤ 2 logq (
√
q − 1)− ε.

So Ns,m < h(X) for i >> 0. In addition, we obviously have mi ≤ 2ri and mi ≤ si. It follows
that there exists for each i >> 0 a generalised AG code Ci with parameters

ki ≥ si − g(Xi) + 1, di ≥ ri − 1
2
mi + 1.

The asymptotic parameters are

lim inf
i→∞

di
2ri
≥ lim

i→∞

(
1
2
− 1

2
· mi

2ri

)
= lim

i→∞

(
1
2
− 1

2
· 2ri − 2d′i

2ri

)
= δ

and

lim inf
i→∞

ki
2ri

≥ lim
i→∞

mi − g(Xi) + (si −mi) + 1
2ri

= lim
i→∞

2ri − 2d′i
2ri

− 1
q − 1

+
σ

q − 1

= 1− 2δ − 1
q − 1

+
1

q − 1
hq

(
2logq (

√
q − 1)− q − 1

2
H2(2δ) logq(2)− ε

)
.

Letting ε→ 0, we get the desired result.

The following proposition shows that R4 is an improvement of R1 for some nonempty
subinterval of [0, 1/4] for each prime power q ≥ 5. We use the fact that 2logq(

√
q − 1) −

1
2(q − 1)H2(2δ) logq(2) is continuous and show that when δ varies between 0 and 1/4, then
2logq(

√
q−1)− 1

2(q−1)H2(2δ) logq(2) will vary from something negative to something positive
if q ≥ 5. If q ≥ 8, then we actually get 2logq(

√
q − 1)− 1

2(q − 1)H2(2δ) logq(2) > 2/(
√
q − 1)

for δ = 1/4. It then follows that hq(2logq(
√
q − 1) − 1

2(q − 1)H2(2δ) logq(2)) is nonzero and
positive for some subinterval of [0, 1/4].



11.1 The First Improvement 91

Proposition 11.10. Let q ≥ 5 be a prime power. Then

2logq (
√
q − 1)− q − 1

2
H2

(
2 · 1

4

)
logq(2) < 0 and 2logq (

√
q − 1) > 0.

If q ≥ 8, we have
2logq (

√
q − 1) >

2√
q − 1

.

Proof. The only bit we need to show is that 2logq(
√
q − 1) − 1

2(q − 1)H2(2 · 1
4) logq(2) < 0.

Since H2(1
2) = 1, we must show that 2logq(

√
q − 1)− 1

2(q − 1) logq(2) < 0. For q = 5, this is
true.

Suppose q ≥ 7. It is then su�cient to show that 2 logq(
√
q)− 1

2(q− 1) logq(2) = 1− 1
2(q−

1) logq(2) < 0, i.e. show that
q − 1

2
> log2(q).

For q = 7, this is true. So if we can show that the derivative with respect to q on the left-hand
side is greater than the one on the right-hand side for all q ≥ 7, the proposition is proved.

On the left-hand side we have
d
dq
q − 1

2
=

1
2
.

On the right-hand side we have
d
dq

log2(q) =
1

q ln(2)
,

which is less than 1
2 for all q ≥ 3. This �nishes the proof.

I here show two examples where R4 is better than R1.

Example 11.11. If q = 81, we have for 0 ≤ δ = 0.008 ≤ (q − 2)/(2(q − 1)) that

R1 = 1− 2δ − 1
q − 1

= 0.9715.

Since 0 < 2logq(
√
q − 1)− 1

2(q − 1)H2(2δ) logq(2) < 2/(
√
q + 1), we have hq(2logq(

√
q − 1)−

1
2(q − 1)H2(2δ) logq(2)) = 0.1532, which gives us

R4 = 1− 2δ − 1
q − 1

+
1

q − 1
hq

(
2logq (

√
q − 1)− q − 1

2
H2(2δ) logq(2)

)
= 0.9734.

In comparison, we have RGV = 0.9814.

Example 11.12. If q = 1024, we have for 0 ≤ δ = 0.00086 ≤ (q − 2)/(2(q − 1)) that

R1 = 1− 2δ − 1
q − 1

= 0.99730.

Since 0 < 2logq(
√
q − 1)− 1

2(q − 1)H2(2δ) logq(2) < 2/(
√
q + 1), we have hq(2logq(

√
q − 1)−

1
2(q − 1)H2(2δ) logq(2)) = 0.047439, which gives us

R4 = 1− 2δ − 1
q − 1

+
1

q − 1
hq

(
2logq (

√
q − 1)− q − 1

2
H2(2δ) logq(2)

)
= 0.99735.

In comparison, we have RGV = 0.99814.
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11.2 A Possible Second Improvement
The idea of the previous section was to use Chaoping Xing's ideas of improving the bounds of
Goppa codes by using good divisors and an upper bound for Ns,m. The tools of Xing's article
[15] from 2001 were also used in [18] from 2005. As mentioned in Section 4.3, the di�erence
between the two articles is that the 2005-article �nds a better bound for the number Ns,m.
This bound is so good that it is valid for all values of δ, whereas the 2001-bound is only valid
for two small intervals of δ.

It should be expected that a similar improvement could be made for the bound we found
in the previous section. I will here give a sketch of how the improvement can�possibly�be
made.

The main proposition of the construction is still Proposition 11.4. Let X be a nonsingular
projective curve and let notations be the same as in the previous section. We need to �nd
a good upper bound for Ns,m. Let Ml,m := Nl+m,m and let S be a set of s closed points of
degree 2. De�ne Al to be the set of all e�ective divisors of degree l, and let A

(s)
l be the set of

e�ective divisors of degree l with support disjoint from S. Furthermore, for l even, let P be
the set of all closed points of degree 2, and de�ne Al(P) to be all e�ective divisors D such that
D ≺∑P∈P P and deg(D) = l. For l a nonnegative integer, m a nonnegative even integer, and
0 ≤ i ≤ l/2, let Ml,m,i = {H +D |D ∈ Am+2i(P), H ∈ Al−2i, Supp(H) ∩ (P − Supp(D)) =
∅}. It then follows that Ml,m,i ∩Ml,m,j = ∅ for 0 ≤ i < j ≤ l/2. It follows that

Ml,m =
bl/2c∑

i=0

Ml,m,i.

Furthermore, if we let A(s)
l = |A (s)

l | and r be the number of closed points of degree 2 over Fq
on X, then we have

|Ml,m,i(P)| =
(

r

m/2 + i

)
A

(r−m/2−i)
l−2i .

The �rst thing we need to do is to �nd an estimate for A(s)
l for general l and s. This can be

done by de�ning the s-zeta-function for points of degree 2. De�ne

Z(s)(X,T ) =
∞∑

i=0

A
(s)
i T i.

From Section 5.1, we have that

Z(X,T ) = exp

( ∞∑

i=1

|X(Fqi)|
i

T i

)
.

It then follows that

Z(s)(X,T ) = exp

(
|X(Fq)|T +

∞∑

i=2

|X(Fqi)| − 2s
i

T i

)
.

Taking natural logarithms on both sides, rearranging, and then removing the logarithms again,
it can easily be shown that

Z(s,t)(X,T ) = Z(X,T )(1− T )2se2sT .
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The rest of the calculations are pretty much the same as in Xing's 2005-article, except that
we sometimes must choose upper or lower bounds where the sums are otherwise di�cult to
�nd. It should however be possible to �nd an improvement of R4 with this method.
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