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Scientific environment  

The work presented in this dissertation was carried out during my Ph.D. study in the 

period of January 2007 to June 2010 at the Department of Earth Science (DES) 

University of Bergen (UiB). This project has also been a part of the Carbonate 

Reservoir Geomodel at the International Research Institute of Stavanger (IRIS) and 

counts for four papers. The project was financed by the Norwegian Research Council 

Petromax Program under contract 163316. The supervisor of this project has been 

Professor Tor Arne Johansen with co-supervisor of Professor Mike R. Talbot both at 

DES.  

This dissertation comprises two complementary parts. The first part gives a general 

description of the encountered problems in carbonate reservoir characterization along 

with the strategies that has been applied during this thesis to overcome these 

problems. During this part, I will try to illuminate the thread between the four papers 

which deal with different aspects of carbonate seismic reservoir characterization. The 

second part, which is the main outcome of my study, is a collection of four research 

papers. The papers will be referred to numerically as 1-4 and are submitted to 

different journals. Therefore, they follow different styles and formats in accordance 

with the journals requirements.  

The preliminarily results of paper 1 was presented at the 70th EAGE conference in 

Rome 2008, and is published in ‘Petroleum Geoscience’, volume 15 (4), pp. 355-365, 

2009. The preliminarily results of paper 2 was presented at the 78th SEG conference 

in Las Vegas 2008, and is accepted for publication in the ‘Open Geology Journal’. 

Other presentations regarding rock physics modelling of chalks were held at the chalk 

workshop in Stavanger 2008, and in Gargano, Italy 2008. Paper 3 is under revision for 

publication in ‘Geophysics’, while preliminarily results of paper 4 were presented in 

the ‘Sound of Geology’ workshop in Bergen 2009 and is in preparation for 

submission to ‘Geophysical Prospecting’.  
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Introduction 

Carbonate rocks constitute as much as 19-22% of the sedimentary rock records while 

they account for approximately 50% of oil and gas production worldwide. They may 

form from biological, biochemical, and/or inorganic precipitation of CaCO3 from sea 

water and can appear as reservoir rocks, intermediate layers or even reservoir seals. 

However, carbonates are characterized by their heterogeneous rock properties which 

make the seismic responses more ambiguous than in siliciclastic rocks. Thus, there 

are more seismic challenges with carbonate rocks exploration and developments for 

hydrocarbon recovery than with siliciclastic rocks.  

The main reason for such ambiguities in the carbonate elastic behaviors can be related 

to their tendency for having highly variable and complicated pore systems (e.g. Wang 

1997; Anselmetti and Eberli 1999; Assefa et al. 2003; Adam et al. 2006; Baechle et 

al. 2009) which is a result of their processes of formation. Depositional environments 

define depositional textures of the sediments, while subsequent diagenetic alterations 

modify these textures and create complex rock properties such as porosity and pore 

types (Anselmetti and Eberli 1997). Therefore, constraining and calibrating seismic 

data with geological information may help with a better characterization of reservoir 

properties in carbonates.  

The objective of this Ph.D. thesis is to increase understanding of the interplay 

between geological processes and seismic rock properties in carbonates. This involves 

the study of geological processes in carbonates, and then the development of some 

strategies for incorporating these geological processes into rock physics models and 

seismic characterization methods. Therefore, it requires an integrated study with a 

detailed insight in carbonate formation processes, rock physics models and seismic 

characterization methods. To achieve this goal two different datasets from the western 

equatorial Pacific (Ontong Java Plateau) (paper 1 and 2) and the Barents Sea 

(Finnmark Platform) (paper 3 and 4) have been made available during the study.  
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Paper 1 of this Ph.D. thesis concerns the depositional and post-depositional 

(diagenetic) effects on velocity modelling of chalks. Chalks are deep-water pelagic 

sediments consisting largely of stable low-magnesium calcite (e.g. Hamilton et al.

1982; Morse and Mackenzie 1990). Progressive diagenesis makes changes in their 

depositional pore geometry (e.g. Kim and Manghnani 1992) and reduces their initial 

porosity (e.g. Fabricius et al. 2007). The pore structure changes are modelled in this 

paper using an inclusion model based on the self-consistent approach, and by using 

chalks formation processes (ooze, chalk and limestone). Modelling results indicate 

that mechanical compaction and cementation decrease porosity as a function of depth, 

but may increase the velocity by different rates as one process can soften, and another 

stiffen, pore-models, respectively. In this paper, we present a strategy to model 

diagenetic history of chalk velocities using inclusion based models, and considering 

chalks depositional textures.  

The strategy introduced in paper 1 for pore-model construction is applied in paper 2 

to build a background velocity model based on information about the lithologies and 

the velocity data from some reference wells. Furthermore, this approach is used to 

obtain a gridded velocity model of a reservoir sequence and to predict velocities at 

some so-called blind wells. The applicability of one of the pore-model attributes, 

namely the pore-model stiffness (PMS value) is examined for velocity prediction. The 

good match between predicted velocity using the PMS value and measured velocity 

proposes a useful parameter for seismic characterization studies. The rock formation 

history, elastic behavior and porosity information all are incorporated in this 

parameter ( 1000 ≤< PMS ) which controls both P- and S-wave velocities and (Vp/Vs) 

ratio and as a result Poisson’s ratio of the rock. Moreover, this parameter can be 

incorporated into the reservoir gridded model along with other reservoir properties 

(e.g. porosity, permeability) for reservoir characterization purposes.  

Quantifying the effects of pore fluid on reflection seismic by considering variability 

in the elastic behaviour of carbonate rocks is the theme of paper 3. This paper deals 

with reevaluation of the frequently used fluid display attribute in siliciclastics called 
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fluid factor, for carbonate rocks. We modify the fluid factor equation for a better 

linearized background relationship by using Vp
2 vs VpVs crossplots instead of Vp vs 

Vs crossplots. Furthermore, the modified fluid factor equation, along with other fluid 

factor equations, is used to extract fluid factor images from a seismic section along a 

line between two wells which covers a possible partially gas-saturated carbonate layer 

embedded within a water-saturated carbonate sequence of the Barents Sea. It can be 

seen that the modified fluid factor displays the gas-saturation brighter than other 

alternatives, although, in this case, all the studied indicators perform well and 

consistently. The results are also confirmed by the well logs at the end points of the 

seismic line.  

Paper 4 focuses on the fluid substitution problem in carbonates using Gassmann’s 

(1951) relations. Laboratory measurements of 23 carbonate core plugs from two 

exploration wells in the Barents Sea were used during this study. The velocity-

porosity trends for different depositional environments along with the ‘velocity 

deviation’ term (Anselmetti and Eberi 1999) are proposed for defining a kind of 

geology dependent pore-model to be used in an inclusion model based on the self-

consistent approach (SCA). Furthermore, these pore-models should be adjusted to 

achieve a consistency between SCA, the simplified Gassmann equation (e.g. Mavko 

and Mukerji 1995; Han and Batzle 2004; Rasolofosaon and Zinszner 2004) and a 

similar relationship for the shear modulus when pore fluid bulk modulus is altered. 

Our results confirm that rocks containing microporosity and cracks (weak pores) are 

prone to give wrong velocity predictions when altering the pore fluid bulk modulus 

(Adam et al. 2006; Baechle et al. 2009). A linearization procedure is proposed to 

modify a pore-model for fluid substitution. This procedure increases the number of 

pore aspect ratios (ellipsoids) in the pore-model, which provides a better pore 

structure description of rocks with complex pore geometry.  
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1. Carbonate geology 

The wide variability observed in the porosity-permeability crossplots of core-analysis 

data indicates a high degree of petrophysical heterogeneity in carbonate reservoirs 

(Lucia et al. 2003). These extreme petrophysical heterogeneities in porosity and 

permeability are caused by the high degree of the carbonate geological heterogeneity 

which comes from their process of formation (Jardine and Wilshart 1987). Such 

heterogeneities will make the elastic behavior of carbonates more complex than that 

of siliciclastics (Anselmetti and Eberli 2001). Hence, resolving carbonate geological 

heterogeneities which comes from the variety in their processes of formation may 

help with a better understanding of their ambiguous elastic behaviors.   

1.1 Carbonate depositional and post-depositional environments 

Depositional environments determine the starting conditions for carbonate sediments 

to undergo diagenetic alterations and control the intrinsic parameters of carbonate 

rocks, such as porosity, pore type, density and mineralogy (Anselmetti and Eberli 

1997). The depositional texture and composition of carbonate rocks are very sensitive 

to changes in oceanographic conditions which includes several factors such as water 

temperature, salinity and nutrients, water depth etc. (Hamilton et al. 1982) and differ 

from place to place (Jardine and Wilshart 1987). Thus, the depositional texture and 

composition of carbonates, which determine carbonate reservoir properties, varies in 

different depositional environments based on their oceanographic conditions. 

Dunham (1962) used depositional textures along with the amount of matrix 

surrounding the grains at the time of deposition to define a classification for thin 

section description. Moreover, Wilson (1975) defined a standard facies model for a 

rimmed platform based on depositional condition. These depositional based 

classifications can provide a good basis for characterizing carbonate rocks in terms of 

their complex depositional conditions and textures.  
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 Furthermore, these depositional textures are modified by diagenesis. Diagenesis 

commonly begins as soon as carbonate sediments are formed (Mcllreath and Morrow 

1990) and includes all changes in the sediments that take place after deposition. 

Tucker and Wright (1990) define these changes through three major diagenetic 

environments: marine, near-surface meteoric and burial environments. Marine 

diagenesis takes place on the sea floor and just below, and on tidal flats and beaches. 

Meteoric diagenesis can affect sediments soon after deposition, while the burial 

environment is from below the zone affected by surface processes, tens to hundreds of 

meters depth, down to several thousands of meter or more, where the zone of 

metamorphic dehydration reactions is reached. In the shallow subsurface, at the 

interface between marine and meteoric waters, Tucker and Wright (1990) defined the 

forth diagenetic environment as the mixing zone. However, carbonate sediments may 

pass from one of these environments to another with time of deposition and burial, 

sea-level changes and/or vertical tectonic movements. 

1.2 Carbonate porosity and pore systems 

The porosity of carbonate sediments shortly after deposition is very high (50%-80%) 

(Tucker 2001). This primary depositional porosity is progressively modified during 

burial through a number of interrelated diagenetic processes. The porosity is lost 

through cementation and compaction and gained through dissolution, dolomitization, 

and fracturing. Therefore, porosity can be divided into two main types in carbonates: 

primary (depositional) and secondary (post-depositional). Primary porosity is any 

porosity present in a sediment or rock at the termination of depositional processes and 

can be determined form depositional texture. Secondary porosity is developed at any 

time after final deposition and is predictable based on primary mineralogical 

composition, texture and diagenetic history. In brief we may say that both types of 

porosities are commonly facies controlled, and facies are controlled by depositional 

environments (Moore 2001).  

Pore systems in carbonates are also much more complicated than in siliciclastics 

(Lucia 1995). This complexity is a result of their biological origin and their high 
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susceptibility to chemical reactivity (Moore 2001). Chemical reactivity actually 

results in the common development of secondary porosity due to the pervasive 

diagenetic process, such as solution and dolomitization. Therefore, pore systems can 

either be of primary or of secondary origin. The most important and frequently 

observed pore types of primary origin porosities are interparticle, intraparticle, 

intercrystalline and fenestral porosities, while for secondary origin moldic pores, 

vugs, channel and fracture porosities are the most important ones.  

1.3 Carbonate porosity classifications 

Two major carbonate porosity classifications have been developed to characterize 

complex carbonate pore systems (Moore 2001): Choquette and Pray (1970) and Lucia 

(1995) classifications. Choquette and Pray (1970) emphasis is on the relationship of 

primary rock fabric to porosity and timing of porosity development. This 

classification is good for geologist and is particularly well suited to geological models 

that integrate the depositional system with early to late diagenetic process in order to 

determine porosity evolution through time. On the other hand, Lucia (1995) porosity 

classification incorporates both rock fabric, which can be related to depositional 

environments, and the petrophysical characteristics necessary for a viable engineering 

model. Therefore, it is more suitable for petroleum engineers and petrophysicist 

(Moore 2001).  

In terms of seismic velocities, Wang (1997) classified porosity based on pore types 

into six categories: intercrystalline and interparticle, moldic and intraparticle, vug 

porosity, channel porosity, fenestral porosity and fracture and breccia porosity. 

Interparticle and intercrystalline porosities with primary origin (Choquette and Pray 

1970) are usually irregular and angular in shape and easy to deform. They give low 

velocities and are sensitive to pressure changes (Wang 1997). Intraparticle porosity 

which forms mainly within individual particles and grains (primary origin) or even by 

solution and biological boring (secondary origin), gives high velocity and low 

pressure dependency like moldic porosity (Wang 1997) with secondary origin 

(Choquette and Pray 1970). Most vugs are equant in size from 1/16mm to 256mm by 
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solution of moulds (Choquette and Pray 1970) and give high velocity and low 

pressure dependency. If the pores are elongated or openings in the rocks are irregular 

and elongated, they are defined as channel porosities (Choquette and Pray 1970). 

Channel porosity is easy to deform and gives low velocity and high pressure 

sensitivity. Fenestral porosity is developed in algal mats by evolution of gas where 

there is a gap in the rock framework larger than the normal grain-supported pore 

spaces (Choquette and Pray 1970). They can be round, lenticular or more irregular in 

shape and can give high to low velocity in accordance with their shape. Finally, 

fracture porosity might have the largest effect on velocity and forms through tectonic 

pressures and collapse of brecciation in carbonate rocks. They are very sensitive to 

pressure changes and give low velocities.   

In general, it is known that velocity and pressure dependency at a given porosity 

depend mainly on the pore space compressibility. Sometimes high velocity with high 

porosity is possible if pore compressibility is low. Such a stiff frame is normally 

found in rocks with vugs or molds porosity but it can also occur in rocks with 

interparticle and intercrystalline porosity, if for instance, contact cementation exist. 

The processes that form frame stiffening include cement at grain contacts, like 

meniscus cements or micritic bridging cements in the marine realm, or even 

interlocking of dolomite crystals (Eberli 2009). However, the complex geological 

processes in carbonate rocks may produce pore space compressibility which differ 

from the ones assumed in the Wang (1997) classification. Paper 1 modifies Wang 

(1997) porosity classification for chalks as deep basin carbonates in terms of their 

depositional textural and burial effects. The concept of the new classification is based 

on foraminifera content and pore aspect ratio transformation according to diagenetic 

alteration. This paper indicates that discrimination between sediment stiffness and 

pore structure stiffness enables us to justify low velocity for indurated sediments and 

high velocity for soft sediments. Furthermore, our results indicate the relevance of the 

pore structure to velocity interpretation in chalks because some variations in velocity 

data may result from pore structure differences rather than changes in fluid or 

porosity. 
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2. Velocity of carbonate rocks 

Carbonate velocity show a positive correlation with density and a negative correlation 

with porosity, but deviations can be significant at a given porosity (e.g. Anselmetti 

and Eberli 1997; Rick and Schuelke 2003). Eberli et al. (2003) showed that these 

deviations in P-wave velocity for a given porosity can be as large as 2500 m/s, 

particularly at high porosities (Fig. 1). Figure 1 shows that different pore types are 

responsible for such a large scatter in P-wave velocity. The results of Assefa et al.

(2003) study on limestones confirm velocity differences at equal porosities not only 

for P-wave but also for S-wave velocities. However, many authors express that these 

deviations can be explained by the occurrence of different pore types (e.g. Anselmetti 

and Eberli 1993; Assefa et al. 2003; Eberli et al. 2003) which can be assigned to 

specific diagenetic processes and/or their depositional environments (Anselmetti and 

Eberli 1997). In general, we can say that pore types in carbonates have almost equally 

importance in the elastic behavior and resultant sonic velocities as porosity (Eberli et 

al. 2003). 

2.1  Carbonates elastic behaviors 

A number of carbonate core-plug studies have already confirmed the evidence for 

different pore types by showing that velocity will increase when effective pressure 

increases (e.g. Nur and Simmons 1960; Wang 1997; Adam et al. 2006). The 

compliant pores and cracks will close by increasing effective pressure, causing the 

velocities to increase. This pressure dependency behavior of carbonates indicates the 

existence of different pore space compressibilities as a result of different pore types 

(Agersborg 2007). Therefore, highly variable pore geometries are normally 

considered the reason for the complexity in the elastic behaviors of carbonates such as 

shear weakening or strengthening and modulus dispersion (frequency dependent 

elastic moduli). 
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Shear weakening or strengthening is an important phenomenon that is observed in 

carbonates when exposed to a fluid. Shear weakening or strengthening can be defined 

as the saturated shear modulus being lower or higher than the dry shear modulus, 

respectively. Cardona et al. (2001) show that sets of aligned open fractures in a rock 

(anisotropic rock) make variations in the velocity of vertically propagating shear 

waves due to fluid changes. Adam et al. (2006) relate shear weakening to the 

reduction in surface energy and crack growth while local or global flow produce 

modulus dispersion and as a result shear strengthening at high frequencies. Baechle et 

al. (2005) consider pore types responsible for such effects. However, the high 

chemical reactivity of carbonates should have an important role as the chemical 

interaction between the matrix and pore fluid can either soften or stiffen the rock by 

altering the porosity and pore types through dissolution and/or cementation. 

Figure 1 P-wave velocity (Vp) versus porosity for different pore types of carbonate rocks at 8 

MPa effective pressures (after Eberli et al. 2003).

When comparing ultrasonic with seismic measurements, we have to consider modulus 

dispersion. Velocity dispersion and attenuation in rocks appears when acoustic waves 
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propagate at different frequencies. The velocity (and modulus), generally increases 

with frequency and many physical mechanisms have been proposed to explain this 

phenomenon in rocks (Mavko et al. 1998). Among them is wave-induced fluid flow 

mechanism (local or squirt flow) which can be more prominent in the presence of 

cracks and compliant pores. Therefore, dispersion effects should be more dominant in 

carbonates as they are prone to have different pore types (often consisting of cracks 

and compliant pores). Furthermore, rocks with fractures and very large compliant 

pores can make this phenomenon to occur even at seismic frequencies (Agersborg 

2007). 

2.2 Pore structure model 

One of the major challenges in carbonate seismic characterization is establishing a 

quantitative link between pore geometry and elastic properties. Anselmetti et al.

(1998) introduced a quantitative method for pore space evaluation based on thin-

section analysis to quantify and characterize carbonate micro-porosity. But pore type 

interpretation from thin sections only gives a non-unique subjective (interpreter 

dependent) description of the pore space and, therefore, can not be related 

consistently with variations in elastic properties (Colpaert 2007). This is also 

supported by the Agersborg et al. (2009) results which indicate different velocity 

behavior for pores with micro- or meso-scale connectivity. On the other hand, 

inversion of seismic velocities or well-log data for pore structure model (e.g. Cheng 

and Toksöz 1979; Sun and Goldberg 1997; Yan et al. 2002), are purely mathematical 

and difficult to link with the complex geological and reservoir properties observed in 

carbonate reservoirs. Therefore, fixed values of aspect ratios are often used for 

carbonate velocity modelling. But the study by Yan et al. (2002) shows that elastic 

moduli have non-linear behavior with respect to the changes in pore aspect ratios 

(Fig. 2). This indicates the limitation of using fixed pore aspect ratios for small depth 

intervals over which lithology may be regarded as uniform. 

One commonly used assumption for modelling pore structure effects on acoustic 

properties in carbonates is using the ‘velocity deviation’ term defined by Anselmetti 
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and Eberli (1999) (e.g. Saleh and Castagna 2004; Kumar and Han 2005). This term is 

defined as the differences between the measured velocities and the time-average 

equation of Wyllie et al. (1956). This quantitative method highlights intervals with 

frame forming pore types (stiff pores) with strong positive deviations while 

interparticle and micro-porosities (weak pores) make almost zero or negative 

deviations. However, the weak correlation for velocity estimates using porosity and 

digital image parameters for aspect ratios, as been mentioned by Eberli (2009),  

indicating that aspect ratios may not be the only parameter responsible for variations 

in the acoustic velocities. Weger (2006), Colpaert (2007) and Eberli (2009) suggested 

pore size (DOMsize) and complexity of the pores (P/A) as two other parameters that 

can give a better explanation for the observed scattering on the velocity-porosity 

crossplots.  

Figure 2 The relationship between aspect ratio and elastic moduli based on Kuster and 
Toksöz‘s (1974) model (after Yan et al. 2002). 
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DOMsize is the maximum size of pores needed to occupy half of the pore space on a 

given thin section, while P/A is the sum of the pore space perimeter over the sum of 

the pore space area (e.g. Colpaert 2007). Therefore, these two parameters are capable 

to capture the pore system for numerical elastic modelling (Weger 2006; Colpaert 

2007). Colpaert (2007) along with Weger (2006) evaluated the role of these 

parameters on carbonate velocity behavior. They concluded that carbonate rocks with 

large and simple pores behave stiffer and thus faster than rocks with small and 

complex pore systems (Fig. 3).  

Figure 3 Crossplot of two digital image analysis parameters (perimeter over area (P/A) and 
pore dominant size (DOMsize)). It shows that carbonate rocks with large and simple pores 
have higher velocity than those with small and complex pore systems (after Weger 2006 and 
Colpaert 2007). 

Paper 1 introduces the concept of a porosity classification in chalks to define proper 

pore-models at different depth intervals. This concept, furthermore, is applied in 

paper 2 to define a pore-model which reflects lithology, porosity and velocity. The 

approach is to distribute post-depositional state of the sediments at some reference 

wells to the whole area. Using a simple interpolation method, a spatially varying 3D 

cube of the pore-model can be constructed. Moreover, this 3D cube pore-model is 

used to predict velocities at some blind locations. Velocity predictions show a good 



Seismic characterization of carbonates 10

correlation with measured velocities. On the other hand, paper 4 uses the ‘velocity 

deviation’ term (Anselmetti and Eberli 1999) to define a kind of geology dependant 

pore-model using well log data. The prominent geology effects are incorporated into 

the pore-models considering velocity-porosity trends for the relevant depositional 

environments.  
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3. Rock physics modelling  

Rock physics is a bridge between seismic data and the lithology and reservoir 

properties. It allows a reliable prediction and perturbation of seismic response with 

changes in reservoir conditions. Therefore, an appropriate rock physics model should 

be consistent with the available well and core data. Such a consistency can be 

achieved by adjusting parameters such as pore aspect ratio or even critical porosity 

that can be determined empirically from the local data. In general, the rock physics 

models can be divided into three main groups: empirical, heuristic and theoretical 

models (Avseth et al. 2005).  

Empirical relationships like Greenberg-Castagna (1992) relations for Vp vs Vs

generally assume some functional form and then determine coefficients by calibrating 

a regression to data (Avseth et al. 2005). On the other hand, a heuristic model like 

time average of Wyllie et al. (1956) defines P velocities only from the volume 

fractions of the various constituents and their velocities. Such a model emphasizes the 

relationship between various parameters in a certain way through intuitive and 

nonrigorous means (Avseth et al. 2005). Knowing the elastic moduli and volume 

fractions only enable us to predict the upper and lower elastic bounds like Reuss 

(1929) and Voigt (1928). If we want to predict the effective elastic properties more 

specifically, where effects of various geometric details of the constituents are 

considered (grains and pores), we need to apply theoretical models. 

Theoretical models are primarily continuum mechanics approximations of the elastic, 

viscoelastic or poroelastic properties of rocks. The elastic models include inclusion 

based theories, contact models, computational models, bound models and 

transformations (Avseth et al. 2005). Among them, inclusion based theories which 

allow incorporating different pore types using different pore aspect ratios seem to be 

more adequate in modelling of carbonates (Agersborg et al. 2009). But they show 

strong dependency on the choice of pore aspect ratios. The non-uniqueness also 

occurs, because a single velocity can be related to different pore aspect ratios. In this 
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thesis, I mainly used inclusion based theories for velocity modelling, and show how to 

constrain the choice of pore aspect ratios using geology and velocity data at well 

locations.  

3.1 Inclusion based theories 

Inclusion based theories model wave velocity and attenuation based on scattering 

theory and approximate the rock as an elastic block of mineral perturbed by holes 

(porosity). They generally require the volume fraction of the constituents and physical 

and geometrical properties of the constituents alone and relative to each other for their 

solution. Various attempts have been made to account for the scattering effect of each 

inclusion. These solutions do not commonly depend on pressure and 

normal/tangential contact stiffness. They may consider just first order scattering term 

or second and higher order terms. 

The first order scattering solution such as Kuster and Toksöz (1974) do not account 

for pore to pore interactions. While this interactions between pores are considered in 

the solutions with second orders or higher scattering terms like Differential Equation 

Medium (DEM) (Nishizawa 1982), self-consistent approximation (SCA) (Berryman 

1980a, b) and T-matrix (Jakobsen et al. 2003a, b). Therefore, first order scattering 

models are restricted to handling a dilute volume fraction of pores (lower porosity 

rocks), and second orders and higher allow for higher porosity rocks.  

The DEM approach utilize the principle of porosity growth to extend the results of the 

first order scattering solution (Kuster and Toksöz 1974) to be valid at high porosities. 

While SCA consider a uniform host material embedded with spherical and ellipsoidal 

inclusions (Berryman 1980a, b). However, both approaches simulate high-frequency 

saturated rock behaviour and, therefore, are appropriate to apply to ultrasonic 

laboratory conditions. Furthermore, the visco-elastic effective medium theory of 

Jakobsen et al. (2003a, b) (T-matrix) also take into account global and local fluid 

flow, attenuation due to wave induced fluid flow, anisotropy and various degree of 

connectivity between pores (Agersborg 2007). Therefore, it can handle modelling 
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with complex situations (e.g. global and local fluid flow effects, different degree of 

pore space connectivity etc.) more accurately. 
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4. Carbonate seismic reservoir characterization 

Seismic reservoir characterization can be defined as the processes of describing 

various reservoir characteristics, such as lithology and porosity using seismic data. 

Seismic signatures change as wave propagates through rocks with varying properties 

like fluid, porosity and pore types and mineralogy. Therefore, the rock properties 

affect the observed acoustic and elastic behaviour of seismic data which are recorded 

by differences in the kinematic (e.g. travel time) and dynamic (e.g. amplitude-versus-

offset, AVO) responses.  

The complexities in the carbonate rock properties make the application of the seismic 

reservoir characterization techniques such as seismic inversion (e.g. porosity maps) 

and amplitude-versus-offset (AVO) analysis uncertain. Hence, procedures and 

calibrations in seismic data processing and interpretation of carbonates need to be 

developed for such complexities (Li et al. 2003). Revisiting Gassmann’s (1951) 

relations and AVO attributes like fluid factor are some aspects of this challenge. 

Paper 3 and 4 discuss these issues using a real carbonate dataset from the Barents Sea.  

4.1 AVO modelling 

Amplitude-versus-offset (AVO) techniques in seismic exploration aim to extract 

information about lithological conditions and pore fluid properties of subsurface 

materials from reflection amplitude variations with offset. These techniques are 

governed by the famous nonlinear equations of Zoeppritz (1919) which gives the 

behaviour of a reflected seismic wave (reflection coefficient) with angle of incidence 

at the boundary between two plane layers. However, approximations of the Zoeppritz 

equations (e.g. Aki and Richard 1980; Wiggins et al. 1983) usually are considered for 

AVO analysis.  

The complex rock properties in carbonates, mainly related to their pore structure 

(Wang, 1997) and multi-scale porosity (Agersborg et al. 2009) make standard AVO 

methods unreliable (Li et al. 2003 and 2007). However, studies of Rafavich et al.
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(1984) and Li and Downton (2000) show significant effects of, e.g., gas on the AVO 

behavior also in carbonate rocks, which again indicates the applicability of AVO to 

detect fluid anomalies within water-saturated carbonate sequences. In paper 3, we 

reevaluate the applicability of one of the AVO attributes, namely the fluid factor for 

fluid detection in a carbonate layer in the Barents Sea. This attribute is normally used 

to generate seismic fluid images for siliciclastics in order to highlight the zones with 

different saturations. Paper 3 modifies the fluid factor equation using a more 

linearized background trend, and investigates its applicability to an assumed partly 

gas-saturated carbonate layer in the Barents Sea. The modified fluid factor equation 

appears less noisy, and also displays the water-gas boundary more continuous 

compared with other fluid factor equations.  

4.2 Fluid substitution 

The low frequency approach of Gassmann (1951) is widely used in calculating 

seismic velocity changes due to pore fluid changes, but several experimental studies 

on limestones and dolomites (e.g. Wang et al. 1991; Nolen-Hoeksema et al. 1995; 

Wang 2000; Røgen et al. 2005; Baechle et al. 2009) do not to the same extent support 

the validity of this model. These laboratory measurements either underestimated or 

overestimated the velocities compared with Gassmann’s theory. On the other hand, 

samples with round pores, vugs and micritic textures were well predicted using 

Gassmann’s relation (Adam et al. 2006). Gassmann’s derivation is based on several 

assumptions for a porous medium like mono-mineralogy, homogeneous and isotropic 

rock with equilibrium pressure between pores (Mavko et al. 1998; Adam et al. 2006) 

which may not be valid for carbonates. Adam et al. (2006), Baechle et al. (2009) and 

Xu and Payne (2009) emphasize particularly the role of the different pore geometries 

and, thus, the pore space compressibility on the elastic parameters when pore fluid is 

altered.  

Pore space compressibility is defined as the ratio of fractional changes in pore volume 

to an increment of applied external hydrostatic stress at constant pore pressure 

(Mavko et al. 1998). This important parameter of a rock provides a robust, model-
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independent descriptor of porosity and pore fluid effects on effective moduli, and 

must be considered in seismic reservoir property modelling. In paper 4 impacts of 

depositional environments and subsequent diagenetic alterations are considered to 

define a kind of geology dependent pore-model on 23 carbonate core-plugs from two 

exploration wells (7128/4-1 and 7128/6-1) in the Barents Sea. Furthermore, pore 

space compressibility is linked to the pore-model characteristics, and a simplified 

Gassmann equation along with a similar relationship for shear moduli were used to 

modify the pore-models for a linear behaviour in their elastic moduli versus fluid bulk 

modulus. Then, the modified pore-models were used in SCA to model fluid 

substitution in the same core-plugs, and results were compared with similar results 

obtained using Gassmann’s (1951) model and data from measurements. This paper 

indicate the role of pore structure on the elastic behaviour of carbonates as pore fluid 

is changed, and gives an approach for adjusting velocities due to compliant pores.  
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