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Abstract 

Human emissions of CO2 through the burning of fossil fuel, cement production, and land use 
change have increased the atmospheric CO2 concentration by 39 % since 1750.  Without the 
large uptake of anthropogenic CO2 by the ocean and land the atmospheric CO2 increase 
would have been much larger.  The focus of this thesis is the ocean carbon sink in the North 
Atlantic and the Nordic Seas, and how this responds to transport of carbon.   

PAPER I deals with transport of carbon through the atmosphere and ocean boundary layer.  
Using the eddy covariance method, fluxes of CO2 were measured in the Greenland Sea, and 
this flux data set was used to test and verify a recently published correction method for the 
CO2-H2O crosstalk problems.  After successful correction the average flux was in accord 
with calculations using parameterizations of the transfer velocity, showing that directly 
measuring correct CO2 fluxes over the ocean is possible. 

PAPER II presents a large-scale study of the distribution of the CO2 fugacity (fCO2) within 
the North Atlantic surface ocean, and its relationship with sea surface temperature and 
surface ocean circulation.  The key finding is that the circulation variations driven by the 
North Atlantic Oscillation (NAO) impacts the large-scale distribution of fCO2, and that in 
most regions of the North Atlantic this can explain the recent decreasing trend in the carbon 
sink.  The link between NAO and fCO2 also provides some evidence of reversibility of the 
recent changes in the North Atlantic carbon sink.   

PAPERS III and IV focus on the transport of carbon below the surface ocean.  PAPER IV 
presents a carbon budget for the Nordic Seas, using the mean state of volume and carbon 
fluxes into and out of this region.  PAPER III uses the carbon tracer C* to study the 
processes of vertical mixing and water mass transformations in the Nordic Seas and North 
Atlantic Subpolar Gyre.  C* is found to be a particularly good tracer for Nordic Seas’ 
overflow water.  PAPERS III and IV present results that have impact on how we understand 
the global ocean carbon uptake.  

Combined, the four papers in this thesis increase our understanding of the recent trends in 
the North Atlantic carbon sink, as well as the variability of this carbon sink.  In addition, 
these papers are a contribution to our understanding of the possible future feedbacks on the 
global ocean carbon sink. 



8



9

List of papers 

PAPER I: 

Lauvset, S.K., W.R McGillis, L. Bariteau, C.W. Fairall, T. Johannessen, A. Olsen, C.J. 
Zappa. Direct Measurements of CO2 flux in the Greenland Sea. Submitted to 
Geophysical Research Letters 

PAPER II: 

Lauvset, S.K., A. Olsen, R. Wanninkhof, T. Takahashi, A.V. Borges, I. Skjelvan, X.A. 
Padin, F.F. Perez, A.F. Rios, W.-J. Cai, N. Lefèvre, M. Gonzalez Davila, J.M. 
Santana-Casiano, T. Steinhoff, T. Johannessen, D. Pierrot, U. Schuster. North 
Atlantic Relationships between Surface fCO2 and Hydrography. Submitted to Deep 
Sea Research – Part I 

PAPER III: 

Lauvset, S.K., E. Jeansson, K. Assmann, A. Olsen. C* as a water mass tracer: The Nordic 
Seas overflow waters. Submitted to Geophysical Research Letters

PAPER IV: 

Jeansson, E., A. Olsen, T. Eldevik, I. Skjelvan, A.M. Omar, S. Lauvset, J.E.Ø. Nilsen, R.G.J. 
Bellerby, T. Johannessen, E. Falck. The Nordic Seas carbon budget: Sources, sinks 
and uncertainties. Submitted to Global Biogeochemical Cycles 



10



11

Contents 

ACKNOWLEDGEMENTS ...............................................................................5 

ABSTRACT.......................................................................................................7 

LIST OF PAPERS..............................................................................................9 

1. INTRODUCTION AND MOTIVATION ...............................................13 

1.1 TRANSPORT THROUGH THE OCEAN SURFACE .......................................17 

1.2 TRANSPORT WITHIN THE OCEAN SURFACE ...........................................19 

1.3 TRANSPORT BELOW THE OCEAN SURFACE............................................22 

2. DISCUSSION AND WIDER IMPLICATIONS .....................................25 

2.1 TRANSPORT THROUGH THE OCEAN SURFACE .......................................25 

2.2 TRANSPORT WITHIN THE OCEAN SURFACE ...........................................26 

2.3 TRANSPORT BELOW THE OCEAN SURFACE............................................27 

3. FUTURE WORK .....................................................................................29 

REFERENCES.................................................................................................31 

PAPER I 

PAPER II 

PAPER III 

PAPER IV 



12



13

1. Introduction and motivation 

CO2 emissions from burning of fossil fuels, cement production and land use changes 

have increased the atmospheric CO2 concentration by on average ~1.5 μatm yr-1 since 

1960 (IPCC, 2007) .  Moreover, since the emissions are continuing to rise – from 

6.4±0.4 GtC yr-1 between 1990 and 2000 to 7.7±0.5 GtC yr-1 between 2000 and 2008 

(Le Quéré, 2010) – the rate of change in the atmospheric CO2 concentration is also 

increasing and was 1.9 μatm yr-1 over the past decade (Global Carbon Project, 2010).  

The total increase since the beginning of the industrial revolution is 39 %, from ~280 

ppm to 387 ppm in December 2010 (Global Carbon Project, 2010).   

Figure 1.  This schematic shows the total CO2 emissions (black) from fossil fuel burning, 
cement production, and land use change after 1958, with uncertainties in grey shading.  In 
blue is shown the atmospheric CO2 content and the increase and variability of this since 
1958.  For details on data and uncertainties see the Global Carbon Project (2010). 

If all of the CO2 emitted from human activities were accumulated in the atmosphere 

the increase of the atmospheric CO2 concentration would have been much larger than 

what is observed today (Fig. 1).  This discrepancy is due to the natural carbon sinks, 

which act to remove carbon from the atmosphere.  The two major, short-term (i.e.

within a thousand years), natural carbon sinks are the land biosphere and the oceans 

(Fig. 2).  Between the Industrial Revolution and 2008 the ocean accumulated 140±25 
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Gt anthropogenic carbon (Khatiwala et al., 2009), and after 1958 the ocean and land 

sinks have taken up 57 % of the emissions (Global Carbon Project, 2010).  Without 

these two sinks the current atmospheric CO2 level would be ~500 ppm instead of the 

observed 387 ppm (Friedlingstein and Prentice, 2010; IPCC, 2007).  The natural 

sinks have thus substantially reduced the effect of human CO2 emissions on global 

climate.     

Figure 2.  This schematic shows all the major sources and sinks of CO2 and their 
development after 1850.  The fossil fuel emissions make up the largest source, and though 
there is large interannual variability in the airborne fraction (atmospheric CO2), the land and 
ocean sinks have remained approximately about equal in size.  The land sink is here 
estimated as the residual from the balance of the other sources and sinks.  For quantitative 
size estimates of the source and sinks see the Carbon Budget 2009 (Global Carbon Project, 
2010). 

The most recent global carbon budget from the Global Carbon Project (2010) is 

calculated using both observations and models, and show that the ocean and land 

sinks are about equal in size.  In Fig. 2 the ocean sink is an average based on the 

results of five different models, and the results show that currently the ocean takes up 

about 25 %, or 2.3±0.4 GtC yr-1, of the emissions (Le Quéré et al., 2010).  The land 

carbon sink can be estimated by terrestrial biogeochemical models, but the Fig. 2 

estimate is the residual from total emissions minus the ocean and atmosphere sinks 
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(Global Carbon Project, 2010).  The ocean sink has also been calculated using 

observational methods (Khatiwala et al., 2009; Takahashi et al., 2009) with very 

similar results as the model estimates.  There are still uncertainties attached to the 

quantification of today’s ocean carbon sink, but the largest unknowns are related to 

the future efficiency of the ocean carbon sink as it is responding to changes in carbon 

chemistry, climate change, and ocean circulation changes (Friedlingstein et al., 2006; 

Le Quéré et al., 2010).  Moreover, since the equilibration of CO2 between the surface 

and deep ocean takes several hundred to a thousand of years (Broecker and Peng, 

1982), it will take a long time to bring the carbon system back to a new equilibrium.

Figure 3.  A) This panel shows a pulse in CO2 emissions peaking in 2100 and decreasing 
linearly to a total of 4000 GtC by 2400.  B) These panels show the atmospheric response to 
the emission scenario shown in A).  The total invasion in the ocean, shown in white, is the 
immediate response, which is followed by dissolution of CaCO3 deposits on the sea floor, 
shown in light grey, which begins to dominate the CO2 removal ~1000-1500 years after the 
peak in emissions.  At the same time the more gradual, and longer lasting, neutralization of 
CO2 by terrestrial weathering vs. burial of CaCO3, shown in dark grey, also remove carbon 
from the atmosphere.  For details on the model and method see Ridgwell and Hargreaves 
(2007).  Note that this figure shows results without a climate feedback on the ocean carbon 
sink. 

On long time scales the ocean sink seems to dominate over the land sink (Sabine et 

al., 2004), and eventually the ocean will remove almost all anthropogenic carbon 

from the atmosphere.  The long-term effect of the anthropogenic CO2 emissions will 
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however also involve the long-term carbon sinks: dissolution of calcium carbonate 

(CaCO3) deposits on the ocean floor; and burial of CaCO3 in the ocean versus 

weathering of CaCO3 on land.  On even longer timescales the weathering of silicate 

becomes an important sink (Walker et al., 1981).  Fig. 3 shows the results of a model 

study which describe a pulse of carbon emissions totaling 4000 GtC, which is the 

estimated total fossil fuel reserve, and the effect of this on atmospheric CO2

(Ridgwell and Hargreaves, 2007).  The first process to remove CO2 from the 

atmosphere is the ocean uptake.  The oceans require ~1000 years to fully renew the 

deep ocean water masses (Broecker and Peng, 1982), thus the ocean uptake reaches 

its equilibrium ~1000 years after the peak in CO2 emissions.  The second process is 

the dissolution of CaCO3 in the ocean sediments, and the third process is the 

neutralization of atmospheric CO2 by the balance between terrestrial weathering and 

oceanic burial of CaCO3 (Fig. 3) (Ridgwell and Hargreaves, 2007).  This model study 

was run for 50,000 years, and even after this new steady state is reached the 

atmospheric CO2 concentration is significantly higher than it was in the pre-industrial 

era (Archer et al., 2009; Ridgwell and Hargreaves, 2007).   

How long the peak in atmospheric CO2 concentration lasts (i.e. how wide the peak 

becomes) is directly related to how long it will take the ocean carbon uptake to 

significantly reduce the atmospheric CO2.  Ocean uptake depends on the transport of 

carbon in the ocean in the form of fluxes through the ocean surface, advection within 

the ocean surface, and deep vertical transport below the ocean surface.  This thesis 

focuses on the North Atlantic Ocean and studies all these transports and the processes 

that drive them. 

The carbon uptake from air-sea flux through the ocean surface is controlled by 

turbulence in the atmosphere-ocean boundary layer (Section 1.1) and the CO2

saturation state in the surface ocean (Section 1.2).  Turbulence is caused by local 

forces, while the CO2 saturation state depends on biological activity and on transport 

of carbon within the surface ocean.  The surface transport of carbon is important for 

the variability in ocean carbon uptake on a regional scale.  The carbon uptake from 

deep vertical transport below the ocean surface is controlled by the meridional 
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overturning circulation (Section 1.3).  Without vertical transport the surface ocean 

would fill up with carbon within a year, so this transport into the deep ocean is 

necessary to maintain the carbon sink on the global and long term scale.   

In sum, this thesis provides a novel and comprehensive view of both the current state 

of the ocean carbon cycle in the North Atlantic and its recent changes.   

1.1 Transport through the ocean surface 

The surface ocean continuously exchanges gas with the atmosphere, and since this is 

an equilibrium process gas is transferred both to and from the atmosphere.  The flux 

of CO2 can be directly measured using micrometeorological techniques and 

knowledge of boundary layer turbulence in the atmosphere, and this is commonly 

done over land (e.g. Järvi et al., 2009).  However, a major problem the past 30 years 

or more has been the difficulty in making such direct measurements over the ocean 

(Broecker et al., 1986; Wanninkhof et al., 2009).  Over the ocean the measurements 

are often inaccurate and too high (Broecker et al., 1986; Kondo and Tsukamoto, 

2007; Prytherch et al., 2010), and there are a number of reasons for this: the net flux 

is usually small; the corrections needed to account for the movement of the platform 

at sea are often large; there is a correlation between CO2 and H2O measurements due 

to density changes (Webb et al., 1980); and there is a cross-sensitivity between CO2

flux and fluctuations in water vapor (Prytherch et al., 2010).  Because of these 

difficulties with direct flux measurements parameterizations of the CO2 flux are 

necessary.  These are of the form  

F = kSΔfCO2           (1) 

where ΔfCO2 is the difference in fugacity of CO2 (fCO2) between ocean and 

atmosphere, S is the solubility of CO2 in sea water, and k is the transfer velocity.  In 

The term k is usually parameterized as a function of wind speed (U), but k is really a 

function of turbulence in the atmospheric and oceanic boundary layers for which 

wind speed is only one forcing (Wanninkhof et al., 2009).  Other important forcing 

processes for k (Fig. 4) include energy dissipation (Zappa et al., 2007), bubble 
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entrainment (Asher and Wanninkhof, 1998), fetch (Woolf, 2005), and atmospheric 

stability (Erickson, 1993).  Wind speed is used since it has a dominant effect on k, 

and it is also theoretically sound since wind speed is closely related to the friction 

velocity, u* (Wanninkhof et al., 2009). 

 Over the past decades several k-U parameterizations have been experimentally 

derived using a variety of methods: radiocarbon invasion (Naegler et al., 2006; 

Sweeney et al., 2007; Wanninkhof, 1992); dual tracer release experiments (Ho et al., 

2006; Liss and Merlivat, 1986; Nightingale et al., 2000); wind-wave tank 

experiments (Liss and Merlivat, 1986); and micrometeorological techniques 

(McGillis et al., 2001; Wanninkhof and McGillis, 1999).  There are several 

limitations to these k-U parameterizations (Wanninkhof et al., 2009) and recently 

efforts have been made to find parameterizations that do not depend on U.  One of the 

most promising of these approaches is the mean square surface slope, which is an 

estimate for surface roughness and can be determined through remote sensing (Frew

et al., 2007). 

Figure 4.  This schematic shows many of the different variables and forcing processes that 
control air-sea gas exchange of CO2.  From Wanninkhof et al. (2009). 
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As discussed above much research has gone into furthering our understanding of k, 

and improving our ability both to measure and to parameterize k.  Regardless, when 

comparing even the most recent studies (Naegler et al., 2006; Sweeney et al., 2007) 

they have quite a large span in k, which leads to a significant uncertainty on the 

estimates of CO2 flux.  Successful direct measurements are therefore very valuable 

and there would be much to gain if the direct measurement techniques were perfected 

and could be used to reduce this uncertainty.  The past couple of decades new 

methods have been developed to help solve the issues of platform motion and 

correction for this (e.g. Edson et al., 1998; Griessbaum et al., 2010), and much effort 

is also going into further improvements of the correction for flow distortions around 

moving platforms (e.g. Yelland et al., 2009) and the CO2-H2O crosstalk (Prytherch et 

al., 2010).  PAPER I adds to the efforts of the latter by using a new data set from the 

Greenland Sea in summer 2006 in an independent test and verification of the 

Prytherch et al. (2010) method.  

1.2 Transport within the ocean surface 

The surface ocean CO2 saturation varies regionally, and generally the tropics have 

high fCO2 and the high-latitude regions have low fCO2 (Fig. 5).  The saturation state 

of CO2 in the surface ocean is controlled by the combined forces of solubility, which 

is lower in warm water than in cold water, and biological activity.  The effects of 

biology are related to photosynthesis and respiration as well as formation and 

dissolution of CaCO3, but these processes are beyond the scope of this thesis and will 

not be further discussed.  The surface circulation is a major force for both the heat 

(Joyce and Zhang, 2010) and the carbon (Anderson and Olsen, 2002) transport in the 

ocean, and therefore also a major force for the regional differences in the oceanic 

carbon uptake.  In the North Atlantic there is large variability in the surface 

circulation, particularly linked to variability in the North Atlantic Oscillation (NAO) 

(Bersch, 2002; Flatau et al., 2003; Hátún et al., 2005).  Model studies indicate that 

these variations also affect the North Atlantic carbon sink (Thomas et al., 2008; 

Ullman et al., 2009). 
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Figure 5.  This map shows the ΔpCO2 (i.e. difference between atmosphere and surface ocean 
partial pressure of CO2) in the world oceans in 2000.  Positive values mean release of CO2 to 
the atmosphere while negative values mean uptake of CO2 by the ocean.  From Takahashi et 
al. (2009). 

Since the North Atlantic is a large oceanic carbon sink, different aspects of this sink – 

e.g. changes, variability, and sensitivity – have been extensively studied using both 

observations (e.g. Corbière et al., 2007; Schuster and Watson, 2007; Telszewski et 

al., 2009; Watson et al., 2009) and models (e.g. Sarmiento et al., 2000; Thomas et al., 

2008; Ullman et al., 2009).  Observations of the ocean carbon system in the North 

Atlantic have revealed clear interannual variations in sea surface fCO2 (Corbière et 

al., 2007; Lefèvre et al., 2004; Omar and Olsen, 2006; Schuster and Watson, 2007; 

Schuster et al., 2009; Skjelvan et al., 2008), which are different from the rise 

expected of a surface ocean carbon system that changes in pace with the atmospheric 

fCO2 (Fig. 6).  There are many different suggestions as to the forces and mechanisms 

behind these changes in the surface ocean, e.g. an increase in sea surface temperature 

(Corbière et al., 2007), advection of water with high anthropogenic carbon content 

from the equatorial Atlantic (Omar and Olsen, 2006) and the associated changes in 

the buffer capacity (Olsen et al., 2006), decreased biological activity (Lefèvre et al., 
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2004), changes in ocean mixing and ventilation (Schuster and Watson, 2007), or a 

combination of the above.   

Figure 6.  The map on the left hand side shows the study area of six different publications 
reporting on changing trends in oceanic fCO2.  On the right hand side the results are shown, 
and it is seen that the carbon sink (i.e. the air-to-sea CO2 flux) has decreased in four of the 
six studies.  For more details see Schuster and Watson (2007). 

The efficiency of the carbon sink in the North Atlantic appears to be decreasing 

(Corbière et al., 2007; Lüger et al., 2006; Schuster and Watson, 2007), but most 

observations are made after 1995 which gives us a trend over less than two decades.  

There are still great uncertainties about whether the sink efficiency will continue to 

decrease (Gruber, 2009), but models predict a significant decrease in the sink 

efficiency in the future (Friedlingstein et al., 2006; Friedlingstein and Prentice, 2010; 

Le Quéré, 2010; Le Quéré et al., 2010).  In this thesis the focus is on the distribution 

of fCO2 in the surface ocean and how this distribution is related to the different water 

masses in the surface ocean.  Using this method the reversibility in the North Atlantic 

carbon sink is investigated.   
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One problem with all the observational studies above is the lack of a sufficiently 

large-scale scope, especially concerning the spatial variability of fCO2.  PAPER II 

changes this by looking specifically at the large-scale spatial distribution of fCO2 in 

the North Atlantic, and its relationship to water masses.  A significant decrease in the 

efficiency of the North Atlantic carbon sink has serious implications for our future 

climate, but PAPER II implies some reversibility to the recent changes, as transport 

of carbon is found to be directly linked to the variability in the North Atlantic carbon 

sink.  

1.3 Transport below the ocean surface 

While the transport within the ocean surface lead to regional variability in carbon 

uptake, the vertical transport below the ocean surface and the transport in the deep 

ocean leads not only to regional change but is also a controlling factor in the global 

carbon uptake (Sabine et al., 2004).  Without vertical transport there would be no 

significant ocean carbon sink and the long-term magnitude of the carbon sink (Fig. 3) 

is therefore dependent on how quickly carbon can be transported from the surface to 

the deep ocean.  The reason for the large inventory of anthropogenic carbon in the 

North Atlantic (Sabine et al., 2004) is therefore its link to the Atlantic Meridional 

Overturning Circulation (Fig. 7).  The high ventilation rates in this region infuse the 

entire water column with anthropogenic carbon.  

The Nordic Seas (i.e. the Norwegian, Greenland, and Iceland Seas) is a deep water 

formation region (Fig. 7), where in the Greenland Sea surface water becomes dense 

enough to sink to ~1000-1500 m depth (Karstensen et al., 2005).  In the global carbon 

budget calculations (e.g. Gruber et al., 2009; Le Quéré et al., 2009) the Nordic Seas 

is a very small region, but the dense water production here is an important part of 

AMOC (Hansen and Østerhus, 2000), and the gross transport of carbon associated 

with this Nordic Seas’ dense water overflowing the Greenland-Scotland Ridge is 

estimated to ~3 % of the global ocean carbon uptake (Olsen et al., 2010).  The 

relatively large carbon flux, considering that the Nordic Seas make up only 0.3 % of 

the world ocean volume, found by Olsen et al. (2010) means that the Nordic Seas is 
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important for the global carbon budget.  Still, only one dedicated carbon mass 

balance budget for the Nordic Seas has been published (Lundberg and Haugan, 

1996).  That study had a very limited data set, and PAPER IV is an updated carbon 

mass budget for the Nordic Seas only, which use much more comprehensive carbon 

data and volume flux estimates.       

Figure 7.  A map of the northern North Atlantic Ocean, with the northernmost part of the 
Atlantic Meridional Overturning Circulation (AMOC) schematically shown.  The surface 
currents are shown as solid arrows while deep currents are shown as dashed arrows.  From 
Curry and Mauritzen (2005). 

Calculating the mean state of the carbon uptake in the Nordic Seas using mass 

balance is important, but of equal interest are the processes of mixing and water mass 

transformation in the interior ocean, and how these affect the long-term variability of 

the carbon uptake.  Observations agree that the volume of dense water from the 

Nordic Seas that overflows the Greenland-Scotland Ridge is ~30 % of the total North 

Atlantic Deep Water (NADW) volume (Hansen et al., 2004; Voet and Quadfasel, 

2010).  However, both the mechanisms of formation of the Nordic Seas’ overflow 
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water and the entrainment of ambient water into the overflow plumes south of the 

Greenland-Scotland Ridge are questions of many years of research and debate 

(Dickson and Brown, 1994; Eldevik et al., 2009; Fogelqvist et al., 2003; Jeansson et 

al., 2008; Tanhua et al., 2005; Voet and Quadfasel, 2010).  PAPER III is a new 

contribution to this research, which uses a quasi-conservative carbon tracer C* 

(Gruber et al., 1996), to estimate both the entrainment south of the Greenland-

Scotland Ridge and the mixing processes within the Nordic Seas which form the 

overflow.  Both these processes are important for understanding the long-term 

distribution of CO2 in the world’s oceans. 
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2. Discussion and wider implications 

2.1 Transport through the ocean surface 

In PAPER I a new data set from the Greenland Sea in summer 2006 was successfully 

used in an independent verification of the PKT correction method for the CO2–H2O 

crosstalk (Prytherch et al., 2010).  This is an important result as improved correction 

methods for direct measurements of CO2 flux will be valuable in constraining 

accurate values for the gas transfer velocity (k, Section 1.1).  Using direct flux 

measurements to find k still has its limitations, not least the requirement for large 

ocean CO2 undersaturation during measurements, but the PKT method and this 

verification of it helps resolve one of the most difficult issues, and as such presents a 

step in the right direction.  

In addition we now have a data set of observed CO2 flux in the Greenland Sea, and 

given the general lack of direct observations the importance of this data set is obvious 

as the Greenland Sea is considered a strong carbon sink.  However, the CO2 flux in 

the Greenland Sea in the summer of 2006 is small—0.72x10-2 mol m-2 day-1 into the 

ocean—despite the significant undersaturation (>100 μatm) that points to a large 

potential for air-sea carbon uptake.  This unused potential, and its effect on estimates 

of carbon uptake in the Greenland Sea, should be carefully considered as changes in 

the CO2 saturation state not necessarily will lead to changes in the CO2 flux.  The 

small flux is due to the low wind speeds in the Greenland Sea in the summertime and 

thus highlights a seasonal bias.  It is therefore important to keep in mind that single 

season measurements of CO2 flux are not enough to resolve the annual carbon uptake 

in this region. 

The results in PAPER I point to the possibility of future measurements and 

quantifications of the CO2 flux.  This implies that we will have the means of 

quantitatively comparing the estimated Greenland Sea mass balance carbon uptake 

(e.g. PAPER IV) to direct observations of the CO2 fluxes.  This will lead the way to a 
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full synthesis and comparison of the different methods used to measure and calculate 

the carbon uptake in the Nordic Seas. 

2.2 Transport within the ocean surface 

The past few years there has been much research on the North Atlantic carbon sink, 

including its trends and variabilities (Section 1.2).  PAPER II focuses on explaining 

the recent changes in oceanic fCO2 (fCO2
sea) in the North Atlantic by using a large-

scale view to determine the mechanisms behind the changes in the carbon sink.  It is 

shown that in the North Atlantic there are strong links between ocean physics and 

ocean chemistry, and the overall transport of carbon within the surface ocean is 

linked to the surface circulation.  This has previously only been shown in model 

studies (e.g. Thomas et al., 2008; Ullman et al., 2009).   

The changes in the North Atlantic carbon sink are driven by two main mechanisms: 

the variability in the circulation forced by the NAO; and the changes in supply of 

carbon enriched subsurface waters due to variations in vertical mixing and 

ventilation.  In the North Atlantic Subpolar Gyre the influence and supply of carbon 

enriched subsurface water is most important, while in the temperate North Atlantic 

circulation changes dominate.  The results show that many, though not all, of the 

observed changes in fCO2
sea are linked to changes in the NAO index, and the 

implication is that many of the changes in the North Atlantic carbon sink observed so 

far are reversible, since the response of the different surface currents to NAO 

variability is reversible.  A possible reversibility of the recent trends in the North 

Atlantic carbon sink is highly relevant for our understanding of the future climate – 

carbon cycle feedback on the global ocean carbon sink.  While short-term and 

regional studies of fCO2
sea changes are valuable, PAPER II clearly show that a more 

large-scale and long-term approach is necessary to resolve the as yet open questions 

about the development of the ocean carbon sink.   

In addition to improving our understanding and interpretation of the observations, the 

more dynamical understanding of fCO2
sea and its distribution and variability could 
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lead to improvements in modeling both present and future oceanic fCO2, and thus the 

overall efficiency of the ocean carbon sink.  Models have so far not been able to 

reproduce the observed trends (see Section 1.2) in the North Atlantic (Le Quéré et al., 

2010; Wetzel et al., 2005), but they are able to reproduce the observed trends in the 

Southern Ocean (Le Quéré et al., 2010).  The results in PAPER II might help resolve 

this mismatch. 

2.3 Transport below the ocean surface 

PAPER IV presents an updated mean state mass balance carbon budget for the 

Nordic Seas, using data from 2002 and 2003.  This data set is both more recent and 

significantly larger than the data set used in the only previous Nordic Seas carbon 

budget (Lundberg and Haugan, 1996).  The Nordic Seas’ overflow waters clearly 

have a climatic importance as they remove CO2 from the atmosphere and surface 

ocean by transporting carbon into the deep North Atlantic ocean.  In this new budget 

the transport of anthropogenic carbon into the deep North Atlantic with the overflow 

water amounts to 4 % of the global ocean carbon uptake, consistent with recent 

estimates using different methods (Olsen et al., 2010).  The budget also estimates the 

present-day CO2 uptake to be 23 % lower than the pre-industrial uptake, giving 

supporting evidence for decreasing carbon sink efficiency (Section 1.2).  The 

uncertainties associated with this decrease highlight the need for observing the 

transport of carbon over many years.  

Carbon transport and carbon uptake in the ocean is inextricably linked to the ocean 

circulation.  There is evidence that the variability in ocean volume fluxes has a large 

impact on the carbon sink.  This is discussed in PAPER IV but our current knowledge 

of the variations in volume fluxes, and especially the variability associated with 

individual water masses, is not good enough to say anything definitive about the 

consequences this has on the carbon uptake.  If ocean circulation changes lead to a 

greater volume transport into the Nordic Seas, then the result will be a greater volume 

transport out of the Nordic Seas.  However, this is not necessarily true for carbon as 

greater carbon transport into the Nordic Seas might lead to greater accumulation of 
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carbon here, and thus changes in surface saturation of carbon, carbon storage within 

the Nordic Seas, and transport of carbon out of the Nordic Seas with the overflow 

water. 

PAPER III links the quasi-conservative carbon tracer C* (Gruber et al., 1996), to the 

Nordic Seas’ overflow waters which have high C* because they are cold and well-

ventilated.  By using C* the Nordic Seas’ overflow waters are tracked to the 

Greenland-Scotland Ridge and into the North Atlantic, and the amount of mixing 

with ambient water masses are calculated.  These results add to our understanding of 

the processes of mixing and entrainment in the Nordic Seas and North Atlantic 

Subpolar Gyre, and also introduce a new tracer specifically for these water masses.  

An overall understanding of the processes that modify and form water masses in the 

ocean interior is important for understanding variability and change in the deep ocean 

carbon sink.  Our current understanding of the future of the ocean carbon sink 

(Section 1.3) says that stratification will increase in the future ocean due to rising 

temperatures, and since maintaining the carbon sink requires vertical transport a 

stronger stratification will lower the carbon sink efficiency.  In this context 

understanding the transport of carbon vertically in the ocean today is essential, and 

PAPERS III and IV provide both new knowledge, and new tools for researching these 

processes. 
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3. Future work 

During my work on this thesis several questions and topics have arisen that would be 

worth pursuing in future research.  Related to PAPER I and PAPER IV plans are 

being made to use the data base of fCO2
sea observations in the Nordic Seas and 

Barents Sea to estimate the total carbon uptake.  This would allow for comparison of 

uptake estimates from three different methods: direct air-sea flux measurements; 

mass budget calculations; and ΔfCO2 based estimates.  Do the results from these 

methods agree?  If not what are the reasons for this disagreement and what can be 

done to converge the results? 

In PAPER IV the variability in the volume fluxes is highlighted as a source of 

uncertainty, and there is still much we do not know about this.  The consequences this 

has for the carbon sink should be further investigated. 

Directly related to PAPER I a further analysis of the CO2–H2O crosstalk correction is 

needed.  Specifically for the experiment in PAPER I the influence of that particular 

instrument set-up is interesting, as well as the effect of the added motion bias 

correction.  More generally there are unresolved issues involving the crosstalk 

correction when the latent heat flux is very low.  Also related to the direct flux 

measurements an expansion of the data set is desired.  In 2009 direct flux 

measurements were made in the Nordic Seas over a period of eight weeks.  This data 

set will be analysed, and it covers a larger region as well as a larger range in wind 

speeds than the data presented in PAPER I.  Parts of the 2009 data set cover the same 

region as the 2006 data, so I want to do a comparison analysis of the two years.  

In both 2006 and 2009 full carbon chemistry measurements were made on the same 

cruises that measured CO2 flux.  The 2009 cruise is particularly interesting since it 

covered all the gateways to the Nordic Seas.  Related to the work in PAPERS I and 

IV It would be interesting to see if using the 2009 carbon chemistry and the 2009 flux 

measurements would improve our carbon budgets for the Nordic Seas. 
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It want to expand the work done with C* in PAPER III.  It would be particularly 

interesting to use C* in a full water mass analysis to constrain all the components 

making up Denmark Strait Overflow Water (DSOW) in the Nordic Seas.  C* can also 

be used to do a more detailed analysis of the modification of DSOW in the Irminger 

Sea.  Formation of DSOW is a highly dynamic process and there is still no consensus 

on the formation process, so I want to add C* as a defining parameters and see if this 

can increase our understanding.   

C* is such a good tracer for the Nordic Seas’ overflow water that I want to see how 

far we can track the DSOW/ISOW part of the North Atlantic Deep Water.  The signal 

might become too diluted to track very quickly, but this is yet an unknown and would 

be interesting to look at in more detail. 

Particularly related to PAPER II there are still open questions regarding 

determination of where the high fCO2 in the Subpolar Gyre comes from, and what 

mechanisms are behind the recent trends in this carbon sink.  For this a quantification 

of the effects of air-sea exchange vs. deep mixing and biology will be necessary.  

There are obviously still one or more unknown factors in this region, and maybe in all 

regions of the North Atlantic, and before we know what these are we cannot fully 

understand how the region will behave in the future.  In addition there are some 

interesting implications of the subsurface “nutrient stream” (Williams et al., 2006) 

which is observed beneath the Gulf Stream.  How is this related to the carbon changes 

seen both in the eastern temperate North Atlantic and in the Subpolar Gyre?  Have 

there over the past decades been changes in the “nutrient stream” that might affect the 

surface carbon system? 

In PAPER II I have only looked at wintertime data.  Including all seasons means that 

biological activity needs to be considered, but it would be interesting to find out what 

effect the large-scale seasonal variabilities have on the North Atlantic carbon sink, 

and what part circulation plays in this. 
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