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procedures in the analysis of experimental and ex post facto

data has reibly brought forth that AVOVA (analysis of varlance)
n addition to boing a strong infercnce-maling device is5 also a

powerful correlational technique, applicable to deta not mecuting

the weguirements of variables in tradltlopa_ partial, semipartial,

and multiple correlation.

However, for the research worker the prolific exploration of
ANOVA as a variance-accounting metihod accompanied by ambiguoucly
vague guidance in the use of it, has probably at present resulted
in sone coxnfusion as to which variance raiio to chooszse for various
types of data and different research problems. There is a genvine-
ly Telt need, I think, for further and deeper peﬁdm ation into
the nature and informative velue of constructs 1like eta-squared,
epzilon-squared, omega-squared, and ratios of variance components,
Along with this should go a more systematic étudy of the previoue
literature to make it clear to what exsent se;m1 ngly new con--
structs in this field to day are rediscoveries of constructe
already conceived some 50 or 60 years ago (see, for example,

, Pearson 1923, Wishart 1932).
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The discussion presented in this paper is a report cn a project
in which the author is presently engaged with the purpose of
collecting and integrating, historically and systematically,tne

scattered and piecemeanl treatments of the different topics and
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issues concerning the variance-accounting aspects of ANOVA,

As I see iv, information on'"variation accounted for'"in ANCVA
designs can be extracted from three levels: the level of sum of
squares, the level of mean squares, and the level of variance
cerponents which is the deep, latent structure of mean sguares.
There should be general agreement that the ratic eta-squared is
) . 4\
a sums of squares ratio, that epsilon~-squared and omega-squared'’
are ratios on the meau#quares level, and that intraclass types

of correlation are variance components ratios.

1) No distinction will be made in the present paper between
epgilon~squared and omega-squared. They are in principle
identical measures of association (see Glass and Halkstian 1963),
the distinguishing feature being a slight difference in the
definition of total variance.The author's personal preference
is for epsilon-squared.

Now, in a very gencral sense sums of squares ratios, mean
square ratios, and components ratios are structurally alike. They
all give the proportion of variation accounted for. Thus, Hays
(1963),325 maintains that "the index omega-sgquared &uz) is almost
identical tc two other indices,...the intraclass correlation and
the correlation ratio" (the last one called eta or eta-squared
in this paper). Haggard(1958),6 says, "The coerfficient of intra-
class correlation is the measure of the relative hcmogeneity of
the scores within the classes in relation to the total variation
among all the scores in the table"..."liore specifically, we may
wish to know to what extent the variation of scores within classcs
(perscns, traits, ete.) is less than the variation of scores
5etween classes" (p7). Haggard's description of the intraclass
correlation is so general and therefore so vague that it applies
as well to the other ANOVA measures of association, like eta-

squared and epsilon-squared.
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To me it now seems important to put an emphasis to what may
be said to be the distinguishing features between eta, epsilon,
an alpha (an alternative name for intraclass correlation or
components ratios) in order that one should be able to see what
can be considered a sound and differentiated application of the

various measures of association.

According to my own conception a fundamental distinction
should be made between eta and epsilon on the one hand and alpha
(intraclass correlation) on the other. Vhile eta and epsilon are
ratios of manifest, observed measures of variation, alphsa is a
ratio of inferred measures of variation, implying a theoretical

structure of the measures.

In the subzequent discussion no further attention will be
paid to the construction of alpha as distinct from the construc-
tion of eta and epsilon. Rather, the emphasis will be put on an
argunent for the convincing reason why the research worker should
choose epsilon-squared before eta-squared as a general recommen-

dation when intraclass correlation is Judged out of guestion.

Uneasiness about the application of eta-squared.

Recent treatments of eta-squared (see, for example, Cohen 1968,
Overall and Spiegel 1969, Kennedy 1970, Eikeland 1971, Cohen 1973)
have been mostly concerned with describing the neat formal

Implicitly so to speak
properties of a general eta construct./according to these treat-
ments, the research worker in substantive fields may feel free

to an almost unrestricted use of ecta-squared, since warnings for

not using eta-squared are almosqlacking.
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In my own thinking and in the role as a consultant to research
workers in different fields I have become somevhat uneasy about
an unreserved application of eta-squared, and some dramatic
experiences with spuriously high ratics for no good reason have
Torced me to seek for a more definite answer to why artificial
results so easily obtain., The vague feeling that it had something
to do with degrees of freedom made me more disquict than quiet

not

as long as an intuitive understanding of what was at work could [/

w

be provided.

©

Most dramatically I experienced how deceptive and untrust-
worthy eta-squared can be in analyzing a methods experiment one
of my consultees made, using a repeated measures design with 48
subjects and 2 replications (pre- and posttest). What struck me
as unreasonable was that the eta-squared for differences between
subjects across replications was so unexpectedly large., I there-
fore decided to perform a random experiment with the 96 actual
scores gained from the methods experiment. From the pool of 96
scores I randomly picked observations to put in the 48 by 2 cells.
in the Jdesign ‘table. Certainly, the logical expectation of eta-

squared for subjects should be zero, However, I got qzz 0.52.

The expectation of eta-sguared in random experiments.

When a null condition exists in a data matrix,variation of
scores within groups should be equal to variation of scores be~
tween groups. Irom elementary sampling statistics one knows that
the expected standard deviation of group means based on random
samples of equal size drewn from the same population is a

function of the population standard deviation and sample size.
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For gaining an intuvitive understanding of how to find the ex-
pected eta-squared under null condition, the standard error of
the mean and its basic meaning should prove an advantageous point
of departure,

Recalling that for a simple ANOVA design cta-squared can be
defined as the ratio of between groups sum of sgquares to total
sum of sguares, the expected eta-sguared can be derived the

following way:

E(q?')..: ::.\ =

AR K1 {
= == { 1 )

in which E(qz) is expected eta-squared, E(SSB) the expected sum
of squares for groups, E(SST) expected total sum of squares, n
number of observations within groups, ¢ the population standard
deviation, k the number cf groups, an N ‘btotal number of obser-

vations.

In deriving (k-1)/(N-1) as the expected eta-squared under
null conditicn som;explanation in the development of formula (1)
is in order. To obtain the expected MSp in ANOVA from the stan-
dard deviation in the population one needs tc multiply the
.variance of the means, dg/n, by n because in ANOVA the MSy is
the veriance of the Im scores when the respective group means
have been substituted for cbserved scores. Thus, ndz/h is the

E(MSB), and multiplying by (k-1) gives E(SSB). Further, one



shovuld note that E(SST/(H~1)) can be substituted for 62. In
manipulating the expression it reduces to (it~1)/(17=1): The ex-
pecfed eta-squared under null condition is the ratio of degreces
of frceden for between groups to degrees of freedom Tor the total
population o¥f the sample., Of course, the total sample as a popu-

~

lation should be thought of as extremely large.

It is thought that the derivation performed above should have
an intuitive appeal and thaet it is approximately  correct,
statistically viewed. For those who are well versed in the legic
of the variance estimates in ANCVA it would even be meaningful
to derive expected eta-sgquared more directly by just rultiplying
62 vy (k=1) %o obtain E(S5;) and ¢° by (N-1) to obtain Z(SS,) and

taking the ratic of the two. Thus,

2, . E(SS3) ) 62 (%.-1) _ k=1
E(SSp)  6°(1-1) N1

E(q

Expected eta-squared under null condition has been derived
on a strictly mathematical basis by Pearson (1923) and VWishart
(1932). Vishart's result is the same as obtained in the present
derivation, but in Wishart's derivation there is not much in-
tuitive logic to be discerned for the mathematically uninitiated,
Kelley (19%5) and Peters and Van Voorhis (1940) both mention
that expected eta-squared is (k-1)/(F-1) when the population
eta-squared is zero. But their derivations are indirect fThrough

the derivation of epsilon-squared.



How_ 1o understand the spuriousness in eta-souared.

Even with a proof that expected eta-squared under null con-
dition is a function of degrees of freedom, it is somewhat dif-
ficult to grasp what kind of artificisl effect is at work. An
insight into the seeming mysteries of why spurious ratios obtain
can be provided by becoming aware of the fact thét the between
groups variance can be shown to be equal to the covariance be-
tween observed and predicted scores (Eikeland 1971). Now, the
hazard herc is that each observed score participates in its own
prediction as the predicted score is the mean of the defined
group's scores, There is thus an inherent contaminstion in the
covariance between observed and predicted scores. The magnitude
of the spuriousness is é question of the influence an observed
score has in its ovm prediction. The less the number of obser-
vations within groups, the more contamination will arise. Vith
only two observations per group as a basis for prediction the
expected eté-squared under null condition will have 0,50 as a
limit whern the nunmber of groups increases. In locking at ratios
of sums of squares this way, my own dramatic experience of an
extremely high eta-squared coefficient when a zero one was
expected, can be explained by the fact that inr obtaining the
eta-squared for differences between 48 persons I had only 2
observed scores for estimating the predicted score for the self-
gsame 2 observed scores. It goes withcut saying that the conta-
‘-mination must be appreciable, In fact, I had to expect an eta-
squared cocfficient of magnitude (k-1)/(N-1) = (48-1)/(96-1) =
0.49. Recalling that my random experiment generated an eta-squared
of 0,52, the result can be considered a probable event from a

sampling point of view,
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In rescarch where multivariable designs are used with rela-—
tively small samples it should by now be clear that eta-squares
can be a quite treacherous measure of strength of association
between independent classificatory variables and a dependent
guantitative dopendent variable. By knmowing that spurious resulis
is dependent on the relation of number of groups to lotal number
of observations,one can compare observed eta-squared with its
expectation under null condition and take account of this in the
interpretation. It is of course a much better situation than
being naive and ignorant in this respect. But thers is an even

better solution.

=

nsilon-sauzred and its exvectation under null condition.

Fortunately, there is another choice for a meazsure of strength
of association which will correct for the dependency of eta-
squared on degrees cf freedom. Kelley (1935) was aware of +the
bias in eta-squared and developed its unbiased companion,epsilon-
squared,@?, where sums of sgueres were substituted for mean

squares,

MS,, SSy/ (N-k) SSy, (7 g
&2 = 1 - Y - 1 - \J — 1 - Vi g_l (2)
NS ssT/ (N-1) ssT(H-k)

where k is the number of groups and N total number of observations.

Formula (2) can easily be manipulated into another form by

-writing SSW/SSm as its complementary value, i.e.(1 = 42),

2 =1~ (1 -2 (3)
N-k

which shows that epsilon-squared has just the same form as



the shrinkage forxrmula in traditional multiple correlation.This
can be found in Peters and Van Voorhis(1940),Cchen(1965 )and(1968)
Cureton (1966),Glass and Hekstlan(1969)and ilcNemar(1969).
WVhat is of considerable interest in our context is the ex-
f‘)
pectation of ¢" under null condition. By substituting (k-1)/(N-1)

for qz in {3) we get,

7 ety N1
1w (1 = (—=Ly=L
€ ( (N-‘l »(N..k>

Ne -1y N1 U=k -
1~ NEEY =1 - FEEL) =1 -1 =0 (4)
N--1 N-k -

Thus, epsilon-squared has a chance value of zero when zero
association erists in the population between the independent
and tne dependent variable, which shows that we are vetter off
with epsilon-squared than with eta-squared.

In applying (3} to my own dramatic example, the spuricusl
high eta-squared cf 0,52 will be corrected to 0.05, which under
the null condition (random experiment) is quite a plausible

result for a measure of association.

Partial, semipartial, and multiple eta-souared snd evsilcon-

sguared.

The demonstrations precented above have all been for the
one--way ANOVA design. Most likely, in practical research work
the more fruitful application of measures of strength of relation-
ship will prove to be with multivariable designs, i.e. with more

than one independent variable. Generalizing to more complex
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designs will not be too difficult, In the multivariable case

one should be careful to recognize the options the resecarcher
has in choosing variants of measures of association. Fggnértho-
gonal multiways ANOVA designs, i.e, wﬁere a correlation exists
between the independent variables, the relation between
independent variables and the dependent variabié can be explored

by way of four types of association which for conceptual purposes

should be distinguished as principally different.

a) The relationship between one independent variable,uninfluenced
s
by other independent variable/in the design, and the intact de-

pendent variable.

b) The relationship between one independent variable, uninfluenced
bv other independent variables in the dezig and a reduced de-

[ Pa gn,

pendent variable where the other independent variables have also

been partialled out,

c¢) The relationship between a combination of orthogonalized in-

dependent variables and the intact dependent variable.

d) The relationship between a combination of orthogonalized in-
dependent variables and a rcduced dependent variable wnere the
independent variables nov included in the combination are parti-

alled out.

The categories of relationship listed above correspond to
descriptive, statistical constructs well kncwn from more %Hradi-
tional correlational analysis. In ANOVA designs the resulting

be
measures of association could appropriately Aamed,

a) semipartial, bivariate eta-squared or epsilon-squared

b) partial, bivaeriate eta-squared or epsilon-squared
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¢) semipartial, multiple ete-squared or epsilon-squared
d) partial, multiple eta-squared or eosilon-squared

Semipartial correlation (see, for example,lummally 1967) is here
used as a synonym for the more commonly used part correlation

(see, Tor example, McNemar 1959).

Which type c¢f measure of association to choosc is for the
research worker to decide depending only on the research problem
he seceks an answer to. Thus, there can be no general recommen-
dation that either a partial or a semipartial approach should

be a best procedure (cfr. Kenredy 1970 and Cohen 1573).

It proves almost prohibitive to work out a set of formulas
to be applicable tc any kind cof complex AWOVA designs when these
measures of association are scught for. llechanical rules will
not do. Insightful thinking is necessary to be able to construct
a
what Cghen (1973),111 calls/"custom-tailored partizl qz". In the
systeg/categories presented above one would like to say "custom-

partial and o "
tailored/semipartial n~ or £,

In order to be more concrete and specific as {to what the
different measures of association (a - d above) mean and how
they can be worked out and interpreted, a set cf hypothetical
data is presented in the matrix of Table 1. An experiment is
performed to assess the effect of IQ group membership and socioc-
econom%ﬁ group membership, SE, separately for each variable, in-

the
-cludedJ/interaction, and also in combination, on school achieve-
ment., IQ group membership is obtained by having teachers rate

pupils as above or below median intelligence, and two socio-

economi.c sub-populations are deliberately chosen so as to possibly



maximize hypothesized effects. Let us assume proportionate,

stratified random sampiing, and a total sample of N = 20,

Table 1. Hypothetical data matrix.

SElow (31) SEhigh (BZ)
] 28
26
24 24
Qs gy () 22 | 22 22,0
20 20
18
16
22
20
18 22
10y o (850 16 20 17,2
14 18
12
10
17,8 ’ 21,4 19,6

As can be seen from the data matrix the design is made non-
orthogonal. There is a correlation between I0Q and SE, or between
A anda B, but the interaction AB is uncorrelated with both A and
B. (This is a deliberate simplification in order not to coﬁpli—

cate matters too much in the analytic procedure.)

In reading the ANOVA table, Table 2, one should note that
the sums of squares in column S5, are not additive, i.e. they
do not sum to SST’ the total sum of squares., Vnile the observed
SSs for A, B, and AB add to 196,8, the correct SS for combined

groups is 148,8. This discrepancy 1is a consequence of the corre-



lation between A and B.
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In ecolumn 52, the infiuence of intel..

- ligence on socloeconomic groups has been partialled out, and

Table 2. ANOVA table for hypothetical data,

Source af SS1 «'SSQ'_ SS3
A (1IQ) 1 115,2 115,2 67,2
B (SE) 1 64,8 16,8 64,8
AB 1 16,8 16,8 16,8
Within cells 16 240,0 240,0 240,0
Total 19 388, 8 388, 8 388,8

in column SS3 the influence of SI on IQ has been partialled out.

The partialized SSs will be symbolized as SS for column 832

jus]

A
and ssﬁ 3 for columm SSB' By the vartializiang procedure columns
-

882 and. SS3 have been made additive. This is accomplished for

colum SS,, for exampls, by sudbtracting A's and AB's contributions
from  8S for combined groups which is 148,8. Thus, S5 4 =

G = 554 ~ S9p
convribution indecpendent of both A's and AB's contributions to

SS = 148,8 - 115,2 - 16,8 = 16,8 which is B's

the grouvp variation.

Now, let us see how the four categeries of measures of associ-
ation related o complex ANOVA designs, the a-d categories pp.1C-
11 above, can be applied in our example. Say thatv the research
problem concerns the effect of SE on school achievement with the

influence of IQ controlled.

a) If the intention is to asses the strength of association be-
tween SE with 1Q partialled out and the intact scores on school
achievement, i.e, when all other systematic variables are parti-

alled out of the independent variable of concerm but not out of
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the dependent variable, then a semipartial eta-squared or

epsilon--squared is called for,

First, the semipartial, bivariate eta-squared will be symbo-
lized, defined,and computed. The research problem as posed here
will be concerned with column S5, in Teble 2 because it is a
question of controlling IQ. Thus,

SS A [ ] -
2 _ B,AAB _ 16,8 :
Ny (B.4,AD) = = = 0.0432 (%)

SSp 388, 8

In (%) the subscript to eta~sgquared should be noted. It signifies
that eta-squared is between intact ¥ (dependent variable) and B
controlled for A and AB. In our example it is unnccessary to
control B for AB since B and AB are uncorrelated already by
design. However, for the purpose of covering the more general
case of nonorthogonal design, AB is included as if contrclied for
statistically.[&he result in (5) is commonly described as the
correlation beftween Y and B.A,AB which is the square of 0.0432,
i.,e. 0,208, There is not much gained by sticking to *this conven-
vention since the squared coefficient lends itselr so nuch mere

easily to a meaningful interpretation,

0f even more interest in our context is to develop the
degrees-of-freedom~corrected eta-squared of (5). Formula (2)
with a slight modification will be used. In stead of SSW we now
had better change to SSR, meaning sum of squares for residual.
By SSR we shall mean the lelt-over 5SS when SS Tor the systematic
source of interest is subtracted from the defined total 5SS, which
can be either the unreduced total S8, S5y, OT & reduced SS total,

53 . In effect, SS
Tl ?

. I 4 . .
B will be a new error term including a
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genuine error term SSW +s8ystematic sources., lMNore in keeping
with the logic of semipartial,bivariate ecta-squared or epsilon-
sguared would be, I think, to regard the systematic variation
not included in the systematic variation of interest as ignored
variation. By taking one s&tematic source of variation at a
time, ignoring the other systematic sources, one behaves as if
no more information were at hand than that contained in the
source of particular interest right now. Therefore, the ignored
systematic variation will ftemporarily go to the noise category
of variation end in a way reduce the signal by signal + noise
ratio, (Notice, this will not happen when paxrtial eta-squared or
epsilon-squared are used.) After this, 2 more general definition
of epsilon-squared for the semipartial, bivariaste category can

g e

be writien,

&7(3.4,48) = 1 - SSRS\?:T% (6
e X,A Ssrl|((1 R
Ay ds
=g - 2020903y _ 4 1 1,009925 = —0,009945
588,8 18

Epsilon-squarcd of (6) applied %o our hypothetical data
has a value of zero.This means that there is no association
between school achievement and SE when the SE effect is taken
as an average ecross the two IQ groups, and when the general
IQ effect on school achievement across the twwe SE groups has
. for the two 1Q group:
been controlled for. (A possible differential S effect/on
school achievement,with general IQ effect controlled for, has
to do with the strength of association between the AB interaction

and Y, school achievement. )



Formula (6) can be manipulated into another form, yielding

82 - SSB.A,AB - (B~1)MEE
T(B.A,AB) = o -
i

vvhere B-1 is degrees of Ifreedom for B.

b) If one is interested in the relationship between SE,uninfiu-

enced by IQ and the SE/IQ interaction, and schocl achievement,
alsc wninfluenced by IQ and the SE/IQ interaction, then a partial,

biveriate eta-squarcd or epsilon-~squared is called Tor.

. _ SSyaam SSpoaoam

YB.ALAB T 3 e < | (8)
SSp.a,a8 * S5y 531
) 16,8 - 5,0654

16,8 + 240,0

Partial epsilon-squared, by adapting formula (5) to the

present coudition, will become,

> _ g e
Cymoaan = 1 g 7 ) (9)
po Ay

1 - 280,047, 0,0070
256,8 16

A particular attention should be paid to the nwuber of
degrees of freedom going with rartisl epsilon-sguared, In the
present case, two sources have been partialled out, each with
df = 1. Thus, dfT' will be 2 less than dfp, end df, will be 1
less than dfT, since the systematic source of interest in the

measure of asscciation has df=1. The alternative form %o (9)

will be,

 SSp aam - (B-1)18y,

> \
€yB,4,4B = - (10)
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It should be noted thai M3, in 1) and NS, in (10) are not the

same definitions of the residual variation (seen 14,bottom).

Formula (10) can be shown to be identical to formula (1886)
in Peters and Van Voorhis (1940),p.354, with a slight modifi.

vation rnade for the case of intercorrelated independent variablss

in our formula (10).

¢) Imltiple ceorrelation 1is the correlation between a combination
of orthogonalized independent variables with a criterion. It is
bhased on a semipartial correlation procedure in that an indepen~
dent variable is partialled cut of another independent variable
but not out oI the dependent variable. In our case the mulitiple
etg~sguared is given by taking the ratio of the between groups
sum of squares, which is 148,8, and %otal sum of sguares, which
is 588,8, By this procedure maximum variation accounted for is
taken out. No rcdundancy will occur even if the independent

variables are correlated. Thus,

2 _ 1 _ SS'\H _ SSB _ 14838 - O 3(}697 /41)
1Y (A+B.4+4B. A, B) Sy, s (1

The parallel tc the shrunken multiple correlation squared in
traditional multiple correlation procedures is multiple epsilon-

squared. By using formula (2),

S8,
2 . = pes .__.‘.11. Iq_':.l\-: 1 - 24'0 _Q_ _1_9_ - *6’70 1r~,
%Y(A—&-B,A*-AB.A,B) =1 SST(N_k/- . *-4388,8(16) = 0,2670 (12)

The estimabe of the biag in mulitiple eba-squared is obtained by
taking the (k-1)/(¥-1) ratin, i.e, 3/12 = 0.1579, which is the

expectation of (11) wher no substantive association exists in data



The alternative formuls, adapted for the case of multiple

epgilon-sguared, will have the Tollowing form,

aa X 7Y
L)bG - (G'“1 )Im‘)v-!

2 ) )
&y (A+B.A+AD.A,B) T ” (13)
T
- 148,8 = (4-1)15.0 _ ¢.067¢
368, 8 '

Qt 5 J. \ A AP 3 o H 3
where 35, is the sum of sguares for the four groups in the data

i

G
matrix of Table 1 and G total number of groups in the design.

d) In c¢) above where multiple eta-sguared and epsilon-squered
were decribed, all three independent variables, A, E, and AB,

were used ag predictors. By so doing, the influence of IQ together
with SE and the SE/IQ interaction was observed. Now, returning %o
the research problem as sketched previocusly (see p. 13), we might
be interested in seeing to what extent a combined general and
differential SI effect influences achievement szores when intel-
ligence is controlled for both in the independent variables and

hown it there is

ct
[N
0]
9]

the dependent variable.Thc general SE effect
a difference in average achieé;ent score foxr the two 3E groups
across the two IQ groups. A differential SE efifect is present
if the difference in achievement beiween the SE groups is dif-
ferent for the two intelligence groups. The problem szt forith
here asks for a partial, multiple eta-~squared or epsilon-squared

which can be oblained the following way, first eta-squared,

5SS + S8

B,A ABDJA,B (14)

2
qY(B‘{".A.B.B\QA o &) fadal
SUB.A + SQAB.A,B + S8g/

i 16,8416,8 33,6 _ o qo08

16,8+16,8+240,0  273,6

(63




Next, cpsilon-sgquared for the same problem,

58, af,
2 g Sy 240,018 :
&% (Bean.n).a = 1 - (=) = 1 - 222008y o 0132 (9)
Y (B+AB.B) oA S5g, a1, pTertr ,

The Torm of the parfial, multiple epsilon-~squared as given
above is equal to formula (9) but the content ié somewhat dif-
ferent, as can be secen by comparing (8) and (14). In using (9),
it should be clear that the problem posed defines SS8q, and 555

(9).

The alternative FTorm to the partial, multiple epsilon-squarsd

will be,

poa tSSyp 4 p - (Afp + df

2 _
€y (B+ap.B).4 = SS

2)“*
A5 (15)
Tl

The custom-tailored forms given to eta~squared and epsilon-
squared above for specific questions put to data should be a
reminder to the reseaxrch worker that it is difficult to give
quite general formulas for complex designs because SO many pos--
sibilities exist for specific problems to seek ar ansver to.
The presentation above is thought %o be of considerable help
in showing that a conceptualization of the problem is necessary
in order for the research worker to be able to find a solution

to how to generate the ceorrect measures of sgssociation.

The presentation also has shovm that for every eta-squared

there has been a companion epsilon-squared at hand.
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The reasor vhy ensilon-squared should be preferred.

Kelley (1935) in describing the properties of epsilon-
squared did not make o very strong case for generally preferring
epsilon-squared to eta-~squared, Peters and Ven Voorhis (1940)
seem more intent on the use of epgilon-sguared thaa any other
some 35 to 40 years age, but later on the interéét in both
measures dwindled, and they were almost fergotten. Bolles and
Messick (1958), Gaito(1958), and Diamond (1959) d4id not succeed
in raising a new interest.

Ialed

Hays's (1967) introduction of onmega-squared (in fact, a re.
introduction of epsilon-scuared) has caught much attention acd
led to extended use of measures cof strenght of association in

s

ATTOVA contexts. Buv Hays did not cowrpare eta-scuared and omega-

squarcd. Cureton (1966) presented a very interesting and illumi--
nating categorizing of correlatica coefficients where the dig.-
tinguishing feature may be said to be whether the coefficients
were corrected or not corrected for bias bececauss of degrees of
freedom, But he does not take a stand as to applicavion for one
category in preference tc another, To him the choice iz a matter
of personal preférence. The present author (fHikeland 1971) in his
&escription of how general the eta concept was, paid nc attention
to epsilon~squared, The same is the case with Kenmedy (1970),

and Conen's (197%) reply to Kennedy does not point Ho epsilcn-

moxre
squarcd as a/preferable choice than eta-squared.

Thus, research workers in the substantive fields do not seen
t0 have been well guided by methodological papers in the jJournals
to meke what to me now looks as the most reasconable choice,i,e,

applying epsilon-sguared is generally spealking the safest choice.




ne

Iy ovm experience and thinking lzavc no doudt sabout that any

longer, Although in principle eva~sguared and epsilon-~squared

convey the samc information from d=ta, eta-sguared has the
lead to results.

.

built-in bias that happens to  / quite decepiive and misleading /
In using epsilon-squared one need not be too wary about small
samples in research work as no bias is infroduced for that
reason. Certainly, small samples should meke us caulicus in de-
ciding what should be regarded as signal and what as nolsge

bzcause sampling fluctuations will be more predoninant in the

statistice, but this is not bias.

The research worker, being ignorant of the spuriousness in
eta-squared, is likely to be deceived , for example, in éxplora-
tory investigations with a fixed data set and possibilities of
splitting it up in more and more categories, Each new category
will almost cerdtainly seen to account for varietion since eta-
squared most probably will go up by sheer aritificial reasons.
(For an example of this kind of application, see Sclstad 1973.)
In such cases the informed researcher knows thal an automatic
increacse in eta-~squared 1s likely to happen becauvse the nvme-
retor in expected eta~-squared (k-1) goes up waile the denomi-
nator (-=1) remains constant. In this regard epsilon-squared is

safe, and it is a convincing reason Tor recommending 1t to be used

Eta-sguared and epsilon-squared - how meaningful are they?

Some years ago Glass and Hakstian (1969) brought forth what
might seem a devastating argument against the use of measures of
strength of asscciation for fixed ANOVA designs. According to

them one should rather not use, for example, epsilon-squared.
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The heart of the matter, as they see it, is that it is not
meaningful to describe results in terms of a (squared) correlstion
coefficient when the levels of one of the variables (the inde-
pendent one) are arbitrarily or purposely chosen by the inves-
tigator, and more often than not i1ll defined. Certainly, there

are precautions vo observe in this respect, but Glass and Halks-
tian's argument applles as well to the use of a fixed effects

ANOVA model at all as to the use of measures of association.

There can be gocd reasons for not using the term correlation
in this context. Hays (1963) distinguishes between regression
problems end correlation problems (approximately equivalent
to the disctinction between fixed effects and random effects

models in ANOVA), CGlass and Hakstian argue forcefully for an

“egd

B

approach tc problems that fits the random model, i,e., one shoul
be more concerned with drawing levels randomly to¢ achieve
representative designs. Nobody will disagree, but there cen be
no doubt that fixed effects models are needed in seeking answers
to research questions. In Hay's terms, regressicn problems are

relevant.

In my view the measures of strength of association related
to fixed effects ANOVA designs might well be named differcntiation
ratios (see Diamond 1959) to avoid the mixing up with correlation

coefficients in a more narrow sense,

Glass and Hakstian's discussion is a reminder not to interpret
such differentiation ratios in any absolut?sense. But that is
even the case with coefficients in more treditional corre-
lation problems, The interpretation of such ratios will always

have to te made in a comparative and relative context, depending



ny
(BN

onn the chogen levels of the Tixed independent wariables, 1he
sample provided, previous result with the same kind oX problen,
and 50 0.

With such precauvtions in mind I can see no reason not to

make more exuernsive uce of epsilon-sguared.
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