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Preface 
This work considers improved and better use of real-time data measured from wells with 
permanently installed gauges. An increasing number of oil and gas wells are today equipped 
with such gauges. However, often the engineers have such a heavy workload that they do not 
have the time to analyse all measured signals from these gauges. Important information within 
the signal measurements might remain unnoticed and it is thus believed that additional 
information will be available if utilizing automatic analysis. In such a case the engineers will 
not spend time on routine analysis but will get a notification only if the automatic analysis 
gives unexpected results. We have in this work developed three automatic modules for use 
with continuously measured pressure and rate signals from oil and gas wells. The first module 
is automatic signal filtering of pressure and rate signals. The second module is process 
monitoring for detection of changes and events in the measured pressure and rate signals. The 
signal filtering and process monitoring modules can be used for automatic data preparation to 
analysis modules such as well-test analysis. The third module is hence automatic well-test 
analysis. The goal in the automatic analysis is to get the same information as from an analysis 
performed manually, but with only a fraction of the effort for the engineers.   
 
This thesis is divided into two main parts, one theory part and one result part. In the first part 
of the thesis, the theory behind this work is explained. We start by introducing the real-time 
reservoir management concept in chapter 2.  Improved and better use of data from wells with 
permanent installed gauges is an important part of the real-time reservoir management 
concept. In chapter 3, the theory for well-test analysis is presented. We provide the basic 
theory and develop the equations required for performing well-test analysis. The theory 
required for the signal filtering and process monitoring module is described in chapter 4. In 
the second part of the thesis, the results from this work are presented. The aim of this work 
has been to obtain modules and recommendations for automatic signal filtering, automatic 
process monitoring and automatic well-test analysis. In chapter 5, the proposed methodology 
and results from the signal filtering module is presented. Chapter 6 contains the proposed 
methodology and results from the process monitoring module while chapter 7 describes the 
methodology and the results from the proposed automatic well-test analysis. Finally, a 
summary is provided in chapter 8 while further work is discussed in chapter 9.    
 
This work has been performed during my stay with Epsis AS and at the University of Bergen. 
Contributions to this work have been by Dr. Jan-Erik Nordtvedt. This work has been the basis 
for three different SPE papers presented at SPE conferences(1; 2; 3).  
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Purpose and Scope 
 

1.1 Introduction 
Improved and better use of real-time data from permanent downhole gauges has been a major 
concern in the oil and gas industry for some time now. As an increasing number of oil and gas 
wells are equipped with downhole and topside gauges for measurements of pressure, 
temperature and rate, information about wells and reservoirs can be retrieved more frequently 
and accurately than before. For engineers with limited time available, efficient tools for 
extraction of this information are critical. This will help the engineer spending time on 
analysis evaluation and decision making and not with data preparation and routine analysis.  

 
To minimize the engineering time associated with data preparation, process 

monitoring and data analysis of a large numbers of measurements, an automatic approach is 
desirable. This is not an attempt to claim that automatic data preparation, process monitoring 
and data analysis will outperform a manual approach; it is simply an attempt to investigate if 
we can obtain some of the same information in an automatic approach as in a manual 
approach. By a manual approach we mean a sequence of operations performed on the 
measured signals where each step in the sequence is manually inspected by the user. In this 
context, an operation might be any data preparation or analysis performed with the measured 
signals, as for instance to remove some of the measurements, find the signal trend, estimate 
the average signal value and so on. The next step in the sequence of operations is performed if 
and only if the user has validated the results at the current step. By an automatic approach, 
we mean a sequence of operations performed without any user interaction. However, the user 
is required to go through a setup procedure where the specifications for the process 
considered will be chosen. In the setup procedure, the user might specify alarm settings for 
the results obtained, and will thus only need to inspect the results if alarms are triggered. The 
input for one operation might or might not depend upon the output from the previous 
operation. In Figure 1.1, a manual approach with three operations, compared to an automatic 
approach, is shown. Only three operations are illustrated, although any number of operations 
can be considered. In a manual approach, the user decides when a new loop of operations 
should be initiated. This might for instance be on a daily/weekly/monthly basis or after the 
occurrence of some particular events. In an automatic approach, the run frequency and the 
events triggering a new loop of operations is again specified in the setup. This means that the 
sequence of operations is performed repeatedly without user interaction and the user is only 
notified if alarms are triggered.  

 
The goal in this work is to develop tools for improved utilization of continuously 

measured signals obtained from permanently installed gauges by the use of automatic 
approaches. To accomplish this, we need to determine which operations to perform and how 
to perform them. How to perform the operations will be specified in the user setup and is 
referred to as the run specifications. A set of operations required for one specific task, as for 
instance signal filtering, will be referred to as a module. In this work we will attempt to 
develop modules for automatic signal filtering, process monitoring and well-test analysis. 
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Figure 1.1: Manual analysis compared to automatic analysis.  

 
 
Signal filtering will be the common phrase for three different sets of operations that 

can be performed on the signal measurements; namely outlier removal, de-noising and data 
reduction. Date reduction is referred to as a set of operations used to reduce the number of 
signal measurements where the aim of any good method for data reduction is to remove those 
measurements with little information content and keep the rest. De-noising means the removal 
of rapid and random fluctuations in the signal measurements caused by interference at the 
signal measurements and not from changes in the process state itself. These random 
fluctuations are normally assumed to have some known distribution and in most cases, also in 
this work, this is assumed to be a normal distribution. If the random noise fluctuations during 
some small limited time period are very large compared to the rest of the noise fluctuations, in 
fact that they are so large that they cannot be described adequately by the distribution 
imposed on the rest of the fluctuations, they are referred to as outliers and the removal of 
these measurements, single or multiple, is simply referred to as outlier removal. We will in 
this work develop a module for automatic signal filtering for use with typical signal 
encountered in the E&P industry as pressure and rate signals. The module will mainly be 
based upon wavelet analysis.  

 
Wavelet analysis has proved valuable for de-noising and is in particular well suited for 

de-noising of signals from non-stationary processes. Such a process is here regarded as a 
process where the long term statistics (as for instance mean value) changes with time. Such 
signals are common in the E&P industry and some applications of wavelet analysis have 
already been published to deal with this. The use of wavelet analysis for analyzing data from 
permanent downhole gauges in the E&P industry was first introduced by Kikani et. al.(4). 
Athichanagorn  et al. (5) further introduced a seven step procedure for processing data from 
downhole gauges including outlier removal, de-noising and data reduction. Several papers 
have in addition been published (6; 7; 8; 9; 10; 11; 12; 13; 14; 15) and a summary of wavelet analysis in 
the E&P industry has been published by Guan et al. (16). However, it is outside the E&P 
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industry that most applications of wavelet analysis are found and among these is an extensive 
investigation of the performance of wavelet de-noising on different kinds of signals by 
Antoniadis(17). It was shown that the performance of wavelet de-noising would depend upon 
the selections made (e.g. choosing different wavelets as is discussed later) Different selections 
are designed to take into account different signal characteristics and the performance of 
wavelet de-noising will depend critically upon the selections made. Little attention has been 
paid to this in the E&P industry. We will do a performance analysis to determine the “best” 
selections for use in wavelet de-noising for typical signals encountered in the E&P industry 
as pressure and rate signals. By determination of the “best” selections for use in wavelet 
analysis for the signals considered, this holds the promises for automatic signal filtering. 
(What is meant by “best” will be discussed later.) In addition we will describe methods for 
automatic outlier removal and data reduction. We propose to remove outliers by a median 
filter while the data reduction is formulated as a minimization problem. However, they will 
both rely upon elements from wavelet analysis. As for de-noising, the proposed methods for 
outlier removal and data reduction require no user input and hold the promise for automatic 
outlier removal and data reduction. Automatic signal filtering will be discussed in chapter 5 in 
this work, and the results are based upon the work by Olsen et al. (1)   

 

Process monitoring refers to direct surveillance of signals to determine process and 
measurement characteristics that can be assessed directly from the signal measurements 
without explicit consideration of a process model. This includes continuous noise estimation, 
detection of abrupt signal changes and assessment of trends. In process monitoring, we need 
to consider a given number of the most recent measurements for computational efficiency.  
This window size will determine how fast and accurate changes in the signal measurements 
can be detected. A small window will result in fast detection of possible changes, but might in 
turn result in a higher frequency of “false” detections. On the other hand, a large window size 
will be better for an accurate detection of changes but might also result in a slower detection. 
Detection of abrupt signal changes, referred to as transients when caused by a change in the 
process state, will be a key element in process monitoring. If for instance an oil or gas well is 
shut-in or starts to flow, the pressure in the well will change as a result of this and a pressure 
transient will develop. Transient detection in pressure signals has been considered by several 
authors in the E&P industry(5; 6; 8; 11; 18; 19; 20). For reasons that will be discussed later, we 
propose a new method for automatic transient detection based upon pattern recognition. In 
addition we propose a module for automatic process monitoring. Automatic process 
monitoring and pressure transient detection is discussed in chapter 6 in this work, and the 
results are based upon work by Olsen et al.(2) 
 

The goal of the proposed signal filtering and process monitoring modules is to process 
a large number of signal measurements in a computationally efficient manner, continuously 
and without user interactions. The module for automatic signal filtering and process 
monitoring can be used for data preparation in different kinds of analysis. If high resolution 
signals are used directly in these analyses, the analyses might be too computationally 
expensive, and tools to reduce the number of signal measurements will be critical. One such 
analysis is well-test analysis. 
 

Well-testing is an important tool for determination of reservoir and well properties. In 
well-testing we measure the pressure response to rate changes. Based upon the pressure 
response, we obtain an estimate of important well and reservoir properties such as skin factor 
and permeability. These properties are important for determination of the fluid flow properties 
of the well and reservoir and will help us to describe the recovery of oil and gas from the 
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reservoir considered. Traditionally, well-testing has been both time consuming and costly to 
perform. Tools for pressure and rate measurements had to be lowered into the well each time 
a well-test should be performed. This was an expensive operation and in addition resulted in 
lost production. The introduction of computers made the processing of the measured pressure 
and rate signals easier and well-test analysis was both improved and accelerated. In the recent 
years, the increased utilization of permanent gauges for continuously measurements has made 
the task of obtaining measurements for well-test analysis nearly straightforward. Well-tests 
can now be performed continuously with the measured pressure and rate signals. This gives 
us a unique opportunity to obtain additional information about the considered well and 
reservoir in a more cost efficient and frequent way than before.  

 
The use of continuously measured signals for use in well-testing has previously been 

done using a time window approach by Athichanagorn et al.(5)  and Khong(6). The aim is to 
estimate the unknown parameters in each time window to obtain time series of the unknown 
parameters. Hence possible changes in the unknown parameters with time can be identified. 
The main problem with this approach is that the estimated parameters will be highly 
dependent upon the window size and maybe more important, the estimated parameters will in 
general show unrealistically large oscillations in estimated values. It is frequently believed 
that the estimation of parameters like permeability and skin factor from flow periods should 
be avoided (21), and the results from Athichanagorn et al. and Khong in our opinion confirms 
that this also applies to the window approach. Lee (22)  used a predefined function for the 
estimation of skin and permeability. Although this approach seems to be more promising and 
avoids large oscillations in the estimated parameters, it requires a function to be defined to 
describe the change in permeability and skin factor with time. This will in general require 
some prior knowledge about the parameters regarding which function to choose. Thus an 
approach only involving the analysis of the shut-in periods seems to be sounder.  When the 
shut-ins originate from arbitrary shut-in periods in continuously measured signals, they are 
referred by some authors to as “free well tests” (23). In the paper by Airlie et al.(23), they 
describe a process for automatically loading data into PanSystem (24) (well-test software) for 
performing well-tests on arbitrary shut-ins. Automatic regression analysis is then performed 
on the detected shut-ins in order to determine permeability, skin factor and reservoir pressure, 
and thus time series of these parameters are obtained. Airlie et al. finally states that the results 
need to be validated by an engineer at the end of the analysis. 

 
Coludrovich et al. (25) performed continuous estimation of skin factor and permeability 

from arbitrary shut-ins. They applied downhole flow meters for accurate and continuous rate 
measurements along with downhole gauges for pressure measurements. They typically 
detected 1-6 shut-ins for a well each month and based upon the well-tests analysis for each 
detected shut-in, they created time series of skin factors and permeabilities. The well-tests 
were performed manually on a monthly basis as a part of the overall production optimization 
strategy.  

 
As described above, the use of continuous measured data for well-test analysis has to 

some extend already been published in the E&P industry. However, work still needs to be 
done for better and more efficient well-test analysis utilizing the large number of 
measurements available from wells with permanent downhole gauges. In particular, 
improvements are desired with respect to automatic data preparation and automatic result 
evaluation to minimize the engineering time associated with repeatedly performing well-test 
analysis. Instead of spending time on such repeated “routine” tasks, the engineering effort 
should be directed towards the well-tests providing new information about the well and 
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reservoir, i.e. the well-tests where the results differ from previous well-tests. Automatic well-
test analysis will be discussed in chapter 7 in this work, and the results are based upon work 
by Olsen et al.(3).  
 

 
 

1.2 Scope of Work 
The scope of this thesis is to introduce methods for better and more efficient use of real-time 
data in the E&P industry. We will propose a methodology for automatic signal filtering and 
process monitoring of typical signals encountered in the E&P industry such as pressure and 
rate signals. Secondly, we will investigate whether well-test analysis can be performed 
automatically and without any user interaction to continuously obtain information from the 
measured pressure and rate signals. We will present a methodology for this as well.  
 

More specifically we will design a method utilizing wavelet analysis to improve data 
analysis for typical signals encountered in the E&P industry. For applications of wavelets in 
signal analysis, particular signal characteristics need to be taken into consideration in the 
design of the methods utilized. A number of specifications must be made in the different 
methods and the efficiency of wavelet analysis will depend critically upon these choices. 
Little attention has been paid to this in the publications found in the E&P industry. It would 
thus be very important to do such a study to determine what are the “best” selections for use 
in wavelet analysis of typical signals encountered in the E&P industry. The determination of 
these best selections holds the promise for automatic de-noising. Further methods for 
automatic outlier removal and data reduction are proposed. These methods will not be based 
upon wavelet analysis, but both proposed methods require an accurate estimate of the noise 
level in the signal measurements. This noise estimate will be obtained from wavelet analysis. 
The method for outlier removal is based upon a median filter while the method for data 
reduction is formulated as a minimization problem. 

 
A module for real-time signal filtering and process monitoring will be developed for 

continuously measured signals. For such signals, a window approach is required to handle a 
large number of signal measurements in a computationally efficient way. In process 
monitoring, the window size will in addition be important for how fast and accurate changes 
in the signal characteristics can be detected. Real-time process monitoring in this work 
includes real-time noise estimation, real-time trend estimation, real-time signal filtering and 
real-time transient detection. For transient detection, an approach based upon pattern 
recognition is proposed. 

 
We will design a method for automatic well-testing utilizing continuously measured 

pressure and rate signals. The signal filtering and process monitoring module will be used for 
data preparation. As Airlie, we choose to only consider well-tests from arbitrary shut-in 
periods. We believe that these shut-ins will occur frequently enough to provide us with time-
series of parameters typically found from well-test analysis such as skin factor and 
permeability. In well-test analysis, we propose a statistical evaluation of the results where the 
main objective is to detect changes in the estimated time series of parameters. If changes are 
detected in the estimated parameters, alarms are triggered and a notification will be sent to the 
engineer. On the other hand, if no changes are detected, this will support our initial parameter 
estimates. By the use of such a method, all arbitrary shut-ins in oil and gas wells will be used 
for well-test analysis, and additional information about the well and the reservoir might be 
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obtained. Thus the engineering effort can be directed towards those well-tests where changes 
are detected.  
 

We will provide several cases to illustrate the application of such a system. Detailed 
description and utilization of these modules will be given in this work as outlined in the next 
section.  

 
 

1.3 Outline 
In chapter 2, we give an introduction to the real-time reservoir management concept. An 
important element in real-time reservoir management is improved and better use of real-time 
data. Tools for better use of data continuously measured in oil and gas wells can for instance 
be automatic signal filtering, process monitoring and well-test analysis as will be described in 
this work.  
 

In chapter 3 we introduce well-test analysis. We describe the mathematical model and 
provide the equation for the homogenous infinite reservoir. The equation is more easily 
solved in Laplace space, and we explain this method. The solution is inverted back to time 
space by a method for numerical inverse Laplace transforms referred to as the Stehfest routine 

(26). Then we introduce important concepts in well-test analysis such as wellbore storage and 
skin. The superposition principle is introduced to take into account a well with changing rates. 
Finally, we explain the concepts of modern well-test analysis including model identification 
by derivative plots, data preparation and non-linear regression analysis. In non-linear 
regression we seek to minimize the difference between the measured pressures and the 
pressures estimated from a mathematical model assumed to adequately describe the reservoir 
and well considered.  We further explain how to obtain confidence intervals for the estimated 
parameters. Since we have chosen a gradient based regression method, function derivatives 
with respect to the unknown parameters are required. We have chosen to use analytical 
derivatives as these usually are more accurately estimated than numerical derivatives.   We 
finally present the analytical derivatives for the parameters usually considered as unknowns 
for the homogenous infinite and homogenous finite reservoir model.  
 

In chapter 4 we describe the basic theory behind wavelet analysis.  We give an 
introduction to the mathematics and background for wavelet analysis. All important aspects of 
wavelet analysis such as scaling functions, wavelet functions, wavelet transform and inverse 
wavelet transform are explained. De-noising based on wavelets in the Waveshrink method is 
described next. In Waveshrink a number of selections need to be made. We need to determine 
which wavelet, shrinkage rule, threshold estimator, noise estimator and primary resolution 
level to apply. All the different selections considered in this work are described in this 
chapter. 
  

In Chapter 5 we determine how to filter the kind of signals we consider in this work. 
This means to determine how to accomplish automatic outlier removal, de-noising and data 
reduction. However, we will first describe how the synthetic signals considered in this work 
are generated.  Next we will describe the proposed method for automatic outlier removal. We 
will further determine the “best” de-noising method for the signals we have considered 
starting with the definition of “best” in this context. We will also discuss what to do in 
wavelet analysis in the case of unequally spaced signal measurements. Finally, a method for 
automatic data reduction is presented.  
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Chapter 6 describes real-time signal filtering and process monitoring. The application 

of wavelet transform and wavelet filtering in real-time is discussed and a computational 
optimized method for signal de-noising in real-time is suggested. A new method for automatic 
transient detection based upon pattern recognition is described next. In the context of real-
time process monitoring we further discuss; continuous noise estimation, continuous signal 
filtering, continuous transient detection and continuous trend detection. When signal filtering 
and process monitoring is applied with signal measured in real-time, a window approach is 
required, i.e. we need to consider a given number of the most recent signal measurements. 
Recommendations for which window size to apply will be discussed for each of the elements 
in process monitoring; noise estimation, signal filtering, transient detection and trend 
detection. 

 
Chapter 7 describes the proposed method for automatic well-test analysis. The 

proposed method consists of four main steps. The first step is the setup used for initialization 
of the proposed automatic analyses. The second step is signal filtering and process 
monitoring, while the third step is the non-linear well-test regression analysis. The third step 
also includes automatic evaluation of the results from the non-linear regression analysis by 
the use of hypothesis testing. The forth and final step is possible user interaction if alarms are 
triggered. Next, four cases illustrating the application of the proposed method for automatic 
well-test analysis are described. The four cases considered include two cases with synthetic 
data and two cases with data from a North Sea gas/condensate reservoir.  

 
In Chapter 8 the conclusions from this work is given while further work is discussed in 

chapter 9. 
 
 In appendix A, we describe the Bessel functions. All mathematical equations for well-
test analysis considered in this work contain Bessel functions. A fast and accurate numerical 
calculation of Bessel functions is critical in order to have fast and accurate solutions of the 
equations considered in well-test analysis. The accuracy and performance of the numerical 
implementations for Bessel functions found in the literature is discussed and improvements 
are suggested. Some of the actual numerical implementation in C++ is given as well. 
 
 Appendix B contains some of the wavelet implementation in C++. This includes 
wavelet and scaling coefficients for all wavelets considered in this work.  
 
 The reader familiar with well-test analysis and wavelet analysis should read chapter 
2 and continue from chapter 5. The reader, who would like to get some additional 
information on well-test analysis and/or wavelet analysis, should read chapter 3 and/or 
chapter 4 as well. 
 
 





 

9 
 

Part 1: Theory and Background 
 

2 Real-time Reservoir Management 
A lot of effort is put into the development of real-time reservoir management. Some oil 
companies again refer to this as the digital oil field, the Field of the Future (BP), SmartFields 
(Shell), i-field (Chevron), e-field and integrated operation (Statoil) only to mention a few. 
Real-time reservoir management is gaining acceptance in the E&P industry and most E&P 
companies have the real-time reservoir management development as one of their main R&D 
activities and significant effort is put into this development. As seismic interpretation, 
wireline logging, offshore drilling, directional drilling and intelligent well completion in the 
last decades significantly contributed to the increase in recovery and reduction in costs, it is 
by many oil companies believed that real-time reservoir management will be the next 
technology contributing to this.  
 

The motivation for companies to implement real-time reservoir management is to 
make better and faster decisions, and to be able to act upon these decisions. Making faster 
decisions with higher quality is believed to result in increased production, increased recovery, 
reduced capital expenses (capex), reduced operational expenses (opex) and improved HSE 
(health, safety, environment).(27) It is all about reducing the costs while increasing the output 
from the asset leading to an overall better and more optimized asset management. This might 
in particular be important for mature fields, development of marginal assets and when 
working in harsh environments as in the arctic. In these cases, the implementation of real-time 
reservoir management might be critical to whether or not an asset will actually be developed 
at all.    

 
Real-time reservoir management has been enabled by new digitally technologies.  This 

includes new sensors providing high quality data, the ability to transfer (fiber optics) and store 
large amounts of data and finally high quality video conference equipment. The initial step in 
the development of real-time reservoir management was mainly technology driven. The next 
step in real-time reservoir management was to create computer software to analyze and handle 
these large amounts of measured data. However, it was soon realized that real-time reservoir 
management should include a lot more than some specific technology or IT-system. People 
would not use the new technology simply because it was available. Thus real-time reservoir 
management is about implementing a continuously improved set of new technologies and 
work processes for continuously improved and optimized asset management. This is 
sometime referred to as “changing the way we operate the asset.”(28)  This also includes 
changing the way we share information and the way we are working. It has also been realized 
that proper training of staff is important to realize the full potential of real-time reservoir 
management. In summary, real-time reservoir management is about proper trained 
multidisciplinary teams working together in a common environment in real-time utilizing 
innovative software solutions to continuously improve and optimize asset management.  

 
A common environment is a place where people from various discipline can come 

together to do the analysis, identify problems and discuss solutions. In this common 
environment, also referred to as collaboration centres or decision environments, the latest 
measurements and analyses will be available to the asset team in real-time. The collaboration 
centre might be a physical operation room, a virtual environment or a combination of these. 
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Most E&P companies have built numerous such environments. Chevron, through their i-field 
program, has by 2008 build 20 collaboration centres. (29) Chevron refers to collaboration 
centres as Asset Decision Environments and was in 2008 planning to build 30 more of these. 
An illustration of a collaboration centre as envisioned by Chevron is shown in Figure 2.1. 

 

 
Figure 2.1: Illustration of a collaboration centre as envisioned by Chevron(29) 

 
 
When we talk about real-time, it should be clarified that this does not necessarily refer 

to a second by second optimization of the asset, but to perform the optimization with as little 
time delay as possible. Instead we can use the concept of relevant time or right time (28). The 
operator optimization loop will focus on increasing safety and minimizing downtime. This 
time loop range from minutes to hours. The production optimization time loop includes well 
work-over and reservoir surveillance and has a time loop of hours or weeks. Field 
optimization involves optimization of drainage area and injection wells and has a time loop 
from week to month. The slowest time loop involves optimization as secondary recovery and 
has a time loop of years.  This is illustrated in Figure 2.2. 

 

 
Figure 2.2: Improved monitoring by optimizing the time loop from Unneland et al.  (28) 

 
 
To perform the optimization with as little time delay as possible is referred to as 

closed loop control and is illustrated in Figure 2.3. The first step in the closed loop control is 
to increase the flow of information being available to the asset teams by measurements of 
data. Traditionally the gathering of information from the wells and reservoirs has been 
difficult, time consuming and costly. During the last decade there has been an increase in the 
availability of sensors for permanent monitoring. These sensors installed downhole or topside 
are providing the asset team with continuous high quality and high resolution data. As well as 
providing the asset team with useful information, the cost of these sensor are continuously 
dropping in price and they have a continuously increased reliability. The second step in the 
closed loop control will be to extract useful information from the measured data. As an 
increasing number of measurements is available, efficient tools are required in order to gather 
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the data, subsequently prepare the data for the analysis and finally to perform the analysis 
itself.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.3: Closed loop control. 
 
 
  Once the result from the analysis is available, decisions can be made to improve the 
recovery and/or reduce the cost. This is the third step for the closed loop control. The final 
step in closing the loop is to implement the decisions made trough required or recommended 
actions. Once the actions have been completed, new measured data will be available and 
ready for analysis. Thus the effects of the implemented actions can be evaluated and new 
decisions made, illustrating the concept of the closed control loop. Typical actions for a well 
can be to adjust the choke size in order to optimize the production of oil and gas. For instance, 
this might be important in a gas well to avoid liquid drop-out, while in other wells the 
motivation can be to minimize sand production (21). With zone controlling equipment or 
intelligent completion systems it is possible to close zones with high water cut in order to 
optimize the production of oil and gas.  

 
The first step in the closed loop control (Figure 2.3) is to measure data and obtain 

information about the asset. Even though a lot of data is being measured, non-integrated tools 
make the information flow around the asset slow and inefficient. The traditional way of 
sharing information has been by e-mails, phone calls and meetings. Efficient tools to improve 
this situation will be to use distributed software for sharing information, data and analysis 
results. Thus all relevant information and experience can be synchronized and shared among 
the assets teams.  

 
The efficiency of implementing improved systems for data analysis and decision 

making can easily be identified by looking at a traditional way of performing an analysis. It is 
often stated that in order to perform a given analysis, the engineer spends 60-80% of the time 
looking for and preparing data.(28) Sometimes the analysis itself is even performed using a 
simple spreadsheet. If specialized analysis software were linked into a distributed system 
where all measurements were stored in a common database, the engineer could spend most of 
the time on the analysis itself. This would in addition remove sources of error as to whether 
the measured data were exported in the correct format or in the correct units. In addition, the 
final results from the analysis would be stored in the same distributed system making the 

Data 

Actions 
Information 

Decision 
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result available to everyone, everywhere, anytime. By using integrated software solutions, 
faster and better solutions in real-time is believed to be the result. Faster decisions will reduce 
the cost by being more proactive, while better decisions will result from a better 
understanding of the reservoir and recovery process.  

 
The task of designing a system for improved data analysis and decision making is 

usually in the hands of IT professionals. However, the petroleum engineer is the end user and 
she/he must play a key role in designing such a system. This requires a petroleum engineer 
with significant IT knowledge to communicate with the IT professionals. Special training of 
petroleum engineers in IT related subjects and decision making is required to make the digital 
petroleum engineer(30) a reality. This includes both training students at universities and 
professionals in the industry. For instance, an experimental program has since 2004 been 
available at The University of Southern California for training of the digital petroleum 
engineer(30).  

 
From being purely a vision a decade ago, several assets have now implemented real-

time reservoir management projects with measurable value. This includes e.g. Troll (31), 
Huldra (32), Brage (33),  San Ardo (33) Agbami(34) Nelson(35), Ekofisk(36), Statfjord (37), Valhall 
and Ula(38). The real-time reservoir management implementation in these fields includes data 
validation, data filtering, advanced monitoring, smart wells, optimization and visualization 
techniques. Several companies have reported that substantial values have been created from 
their implementation of real-time reservoir management. Shell has for the last decade 
developed a real-time reservoir management program (SmartFields) and has gained great 
value from this. The estimated value is approximately $5 bln. based upon the assessment of 
50 assets for the period 2002-2009 (27). This includes both new fields and retrofits in existing 
fields. Initially Shell screens the asset and then applies the correct level of smartness. The 
greatest contribution is from increased production and reduced capital expenses (capex). The 
technology that has contributed the most is advanced real-time monitoring, 4D seismic, 
visualization and integrated technology. Statoil, the largest operator at Norwegian Continental 
Shelf (NCS), reports to have gained $1.5 bln. in 2006 from real-time reservoir management 
(39).  
 

Even though great values have been reported from real-time reservoir management, 
there are many hurdles along the road from the vision to the actual implementation, and 
additional work is still required to extend the full potential of real-time reservoir management. 
A study performed by OLF in 2007 valued the real-time reservoir management potential on 
the NCS to 295 bln. NOK.(40) Innovative software solution converting the large amount of 
measured data into useful information to optimize the overall asset management is a key 
component in the real-time reservoir management concept. We will in this work design a 
system for automatic signal filtering and process monitoring which subsequently will be used 
for automatic well-test analysis. Such a system will be an important component in the real-
time reservoir management concept. It will allow the engineers to faster and more efficiently 
transform the measurements into information. When information is made available earlier, 
faster and better decisions can be made and actions can be taken based upon these decisions. 
Based upon the implemented actions, new measurements will be available and new 
information will be obtained. Hence, the system described here will optimize the time loop, 
believed to result in a better and more optimized asset management. As a consequence new 
information will be available to the asset team with little time delay.  
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The work described here will mainly be based upon wavelet analysis and well-test 
analysis. We will thus start by describing the theory required to understand well-test analysis 
followed by the theory required to understand signal de-noising based upon wavelet analysis. 
This will be described in chapter 3 and 4. The results from the implemented software modules 
will be discussed in chapter 5, 6 and 7.  
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3 Well-Test Analysis 
Historically well-test analysis has been an important tool for reservoir and well evaluation. 
Well-tests have provided the engineers with valuable information about well and reservoir 
properties based upon analysis of measured pressures and rates (oil, gas and water). Typical 
information required for description and understanding of the flow properties of the reservoir 
(e.g. permeability) and the flow properties of the well (e.g. skin factor) has been obtained 
from well-tests. In addition, it is also possible to obtain an estimate of the drainage area size 
along with the average pressure of this drainage area. For heterogeneous reservoirs as layered 
reservoirs, fractures reservoirs and dual porosity reservoirs, to mention a few, additional well 
and reservoir properties might be obtained. All this information is valuable for the engineers 
for increased understanding of the oil and gas recovery process, and will ultimately help the 
engineers to develop an optimized production strategy for how much and how fast, oil and gas 
that can be produced from the well and reservoir considered.  
 

In well-testing we measure the pressure response to rate changes. We will only consider 
the case where the pressure measurements and the rate changes occur in one specific well. 
Different part of the measured pressure response will be dominated by different wellbore, 
reservoir and boundary properties, i.e. the initial flow will be dominated by well properties. 
After a while, the pressure response will be dominated by reservoir properties, and finally, the 
pressure response is dominated by different boundary properties. This is because the oil and 
gas produced initially will origin from the well or close to the well, while the latter oil and gas 
produced, will have its origin further away from the well. A mathematical model, assumed to 
adequately describe the pressure response in the well to rate changes, needs to be selected. 
Given the input (rate changes) and the output (measured pressures) from the model together 
with the model assumptions, characteristic reservoir properties might be calculated explicitly 
from the mathematical model. This is illustrated in Figure 3.1. This is often referred to as an 
inverse problem. A typical difficulty is that several mathematical models might explain the 
pressure response from the rate changes. However, by combining the results from the well-
test analysis with information from logs and geology, it is possible to remove some of the 
ambiguity. 
 
 
  
 
 
 
 
 
  
 
 
 
 
Figure 3.1: A mathematical model is used to describe the reservoir mechanics. 
 
 
Parameters typically estimated in well-test analysis are; 

 Permeability. 

Reservoir 
mechanism Perturbation Response 

Mathematical 
model Input Output 
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 Reservoir heterogeneities like dual porosity, multiple layers, composite reservoir etc. 
 Well properties like skin factor. 
 Reservoir geometry and reservoir size. 
 Initial pressure and average drainage area pressure.  
 (Porosity)  

 
Porosity is placed in parenthesis since it is usually assumed known from logs and core 

samples. All these parameters will provide us with valuable information about the wellbore, 
reservoir and boundary conditions in the well and reservoir we consider. It should however be 
noticed that in many cases, as will be discussed later, only a limited number of the above 
parameters might be estimated from an actual well-test. 

 
In the case where many wells are present within the boundaries of one reservoir, each 

well will have its own drainage area, i.e. the area of the reservoir where the oil and gas flows 
towards one distinct well. In these cases, the results from the well-test will provide 
information about the drainage area of this specific well and not the entire reservoir (which 
might contain numerous wells).  

 
The first well-tests were performed by graphical methods referred to as Horner plot, 

MDH plot etc.(21; 41). (Horner plot is a plot of 
t

tlog=p t and MDH plot is a plot of   

t)log(=p t)( . P is the pressure while Δt is the duration of the well-test).   In the graphical 
methods (initially made by hand), it was possible to obtain estimates of different wellbore, 
reservoir or boundary properties (21). A problem by applying these graphical techniques is that 
they are normally quite time consuming. The graphical techniques will also limit the number 
of properties that can be estimated for each well, i.e. it is limited how many model properties 
that can be identified from the different specialized plots(42). The estimation will in addition 
be user dependent because of the requirement for the user to make a number of choices in the 
estimation of parameters from the specialized plots. Hence, improvements in well-testing 
techniques were desired, and a computer-based approach was introduced. 

 
The introduction of computers first resulted in the opportunity to process a larger 

number of data and the graphical techniques were now accomplished with the help of 
computers. However, this only included a very small potential of what computers could offer, 
and soon multi-rate tests, non-linear regression analysis and derivative plots combined with a 
large number of available mathematical models resulted in faster and more accurate 
interpretation of well-tests (multi-rate tests, non-linear regression analysis and derivative plots 
will all be explained in more details later). The use of non-linear regression analysis in 
addition had the huge advantage of providing the estimated model parameters with a 
confidence interval, i.e. an estimate of the uncertainty in the estimated. These computer 
assisted methods are often referred to as modern well-test analysis. 

 
 In this chapter we will start by developing the mathematical model used to describe 
the radial flow towards a well in a homogenous reservoir. We next introduce dimensionless 
variables and rewrite the model equation using dimensionless variables. The equation we 
obtain is more easily solved in Laplace space than in time space, and next we show how to 
solve the equation for a homogenous infinite reservoir in Laplace space.  Two important 
properties, the skin factor and the wellbore storage constant, used to accurately describe the 
early time fluid flow in the well, are explained next. The model equation is solved with the 



Well-Test Analysis 

16 
 

assumption that the flow rate into the well is constant. However, this is seldom the case, and 
superposition is introduced to take into account a well with variable flow rates. Next, we 
describe the concepts of modern well-test analysis and we introduce data preparation, model 
identification, non-linear regression analysis and confidence interval estimation. In this 
chapter, only a homogenous reservoir is described. However, numerous models are proposed 
in the literature to take into account different reservoir heterogeneities, wellbore conditions 
and different kinds of boundaries but that will not be in the scope of this work as only the 
homogenous reservoir model is applied.  
   
 

3.1 Mathematical Model 
There are several assumptions associated with well-testing in order to keep the equations 
simple enough to be solved easily. These assumptions usually are homogenous porosity and 
permeability, ideal horizontal flow, no gravitational effect, constant reservoir height, well 
perforated along the entire reservoir, constant viscosity and production at small pressure drop 
(c P << 1 where c is the compressibility and P is the pressure drop). Even though these 
assumptions will put limitations on the number of reservoirs adequately described by the 
mathematical model, some important pieces of information can usually be extracted. 
Nevertheless, before we start explaining the actual model itself, we need to define some basic 
reservoir properties. The porosity is defined as; 
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The porosity describes the relationship between the volume that might be occupied by fluids 
and the total volume element considered. Vp is the pore volume, Vb is the bulk volume and Vt 
is the total volume. We continue by defining the density as; 
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Here m is the mass and V is the volume. Further, we have the isothermal compressibility 
given as; 
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To find the basic flow equations describing the flow through a porous medium, we start by 
considering the fluid flow through a volume element as shown below in Figure 3.2. Only 
fluid flow in the x-direction is shown, but the same applies to the y and z direction too. 
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Figure 3.2: Volume flow through a volume element. 
 
 
The mass conservation principle states that; 
 
mass flow in – mass flow out = rate of change of mass in volume element 
 
or by using mathematical terms for a compressible fluid through the volume element as; 
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From Darcy’s law for a single fluid flow we have that; 
 

(3.5) .pkv pk  

 
Here v is the Darcy velocity, k is the permeability,  is the fluid viscosity and p is the 
pressure gradient. Combining Darcy’s law with the mass conservation principle will provide 
us with the following equation for fluid flow in a porous medium; 
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In well-testing, it is more practical to consider the flow in the radial direction towards the well 
and thus it is common to rewrite(21) the equation in radial coordinates as;  
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This equation is a second order non-linear differential equation since , , , k and c all are 
functions of the pressure. However, the coefficients are frequently considered constant with 
the exception of  which will be a function of pressure in the case of compressible fluids. As a 
final step, the equation above can be simplified if p/ r is considered small and can then be 
rewritten as; 
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This equation is known as the radial diffusion equation. This equation can further be 
solved for various reservoir, well, boundary and initial conditions. Before we illustrate how 
this equation can be solved, we will introduce another important concept in well-testing 
referred to as dimensionless variables. 

  
 

3.2 Dimensionless Variables 
The use of dimensionless variables in well-testing provides us with easy and general 
equations. They simplify the equations by embodying well and reservoir parameters. The 
solutions obtained by using dimensionless variables will be independent of any particular 
system and provide is with “model” solutions. Note that while all equations until this point 
have been given in SI units, they will from now on be given in field units only. The variables 
used for a homogenous reservoir (as described above) in well-testing are in field units given 
as; 
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In these equations, r is the radius at where the pressure is measured (ft), rw   is the well radius 
(ft.), k is the permeability (md), t  is the time (hours), μ is the viscosity (cp),   is the porosity 
(fraction), c  is the total compressibility (1/psi), q is the fluid flow rate (std/d), B  is the B-
factor (rtb/stb), pi is the initial reservoir pressure (psi), pwf  is the well flow pressure (psi), h is 
the reservoir height (ft). By the use of dimensionless variables, eq. (3.8) can be rewritten as; 
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We will now illustrate how this equation can be solved in Laplace space in the case of a 
homogenous infinite reservoir.   
 

3.3 Homogenous Infinite Reservoir 
By a homogenous reservoir is meant a reservoir where the reservoir properties, such as 
permeability and porosity, are assumed uniform throughout the entire reservoir. The reservoir 
is in addition considered infinite, i.e. the well is assumed to produce from an infinite large 
reservoir. We need to define initial and boundary conditions for such a reservoir to solve the 
differential equation given by eq.  (3.12). 
 

The initial pressure at t=0 is assumed equal the initial pressure pi throughout the 
reservoir. This can be mathematically stated in dimensionless variables as; 
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We choose to have a constant rate solution, i.e. we choose the rate in the well to be 

constant. This can be mathematically expressed by Darcy’s law (we assume that Darcy’s law 
is valid in the wellbore) in dimensionless variables as; 
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The pressure at large distances away from the well, i.e. when r , is assumed equal 

the initial pressure at any time and can be expressed in dimensionless variables as; 
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 We would like to solve eq. (3.12) by the use of the Laplace transform and with the 
initial and boundary conditions as given above. In the Laplace transform, the equations are 
transformed to the Laplace space and solved more easily than in the time space. After solving 
the equations in the Laplace space, the solutions are inverted back to the time space by an 
inverse Laplace transform. The inverse Laplace transform needs to be done numerically since 
the solutions obtained in Laplace space will be too complicated to solve analytically. They 
can however efficiently and accurately be inverted numerically to the time domain through 
the Stehfest routine(26) described later in this chapter. This solution is preferred by most 
authors (us included) due to the combination of speed and accuracy offered by the Stehfest 
algorithm. If the equations instead were solved in the time domain, they would either be 
approximations or given as integral solutions. The use of approximations would result in 
inaccurate solutions while the integral solutions would result in computationally expensive 
(and thus slow) solutions. However, by solving the equations in the Laplace space and 
inverting the solutions to the time domain, we obtain a more accurate solution than from the 
time domain approximations and we obtain a faster solution than from the integral solutions 
in the time domain. 
 

Hence we seek to solve the partial differential equation given by eq. (3.12) and the initial 
and boundary conditions above by a Laplace transform. Let  
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where L is the Laplace transform and z the Laplace variable. By Laplace transforming eq. 
(3.12), it can be rewritten as; 
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Conditions 1 to 3 can also be rewritten in the Laplace domain as; 
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Applying condition 1 with eq. (3.14) allows us the rewrite the equation as;  
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The solution of this differential equation is available in many calculus books(43) and given as; 
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where I0 and K0 are zero order Bessel functions of first and second kind. We further utilize 
conditions 2 and 3 to determine A and B in the above equation. If we start with condition 2, 
we first need to determine the derivatives of the two Bessel functions; 
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By inserting the initial and boundary conditions, given by conditions 2 and 3, into eq. (3.16), 
we obtain;  
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These two equations are solved simultaneous to obtain the expressions for A and B. For large 
function arguments, K0 approaches zero (rD→∞) while I0 approaches infinite for large 
arguments (rD→∞). Hence, the only way to solve eq. (3.20) is by letting A=0. We can next 
determine B from eq. (3.19) (since A=0) as;  
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Substituting B into eq. (3.16) gives us the solution in dimensionless variables for a 
homogenous infinite acting reservoir with radial flow towards the well as; 
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In practice, the pressure response in any reservoir, sooner or later will be influenced by 

the reservoir boundaries. In this case we need to change the above boundary conditions to 
take into account the effect of boundaries at the pressure response. However as the model 
with finite boundaries is not utilized in the later well-test analysis, further description will not 
be required in the scope of this work. 
 
 The equation for the infinite reservoir was given in Laplace space. This means that we 
need to convert the equations back to the time domain to have the pressure as a function of 
time. This is commonly accomplished by the use of the Stehfest algorithm explained next.  
 

3.4 Laplace Inversion 
To get the pressure response in the time domain from Laplace equations such as eq. (3.22), an 
inversion scheme is required to convert the pressure response in the Laplace domain to the 
pressure response in the time domain. Converting these equations by analytical methods will 
in most cases not be possible due to the complex nature of the model equations. Because of 
this, it is common to apply a numerical Laplace inversion scheme.  
 

There are many methods available for numerical Laplace inversion, but perhaps the 
most common and popular algorithm for inversion of equations in Laplace space, is the 
Stehfest algorithm (26). The Stehfest algorithm applies a linear convergence scheme for a series 
approaching the inverse. This scheme is given as follow; 
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where zi and Vi are given as; 
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N is the number of terms used in the inversion scheme and is chosen based upon the required 
precision in the inversion. It is in addition required to be chosen as an even number. There are 
many possible choices for N. A good choice suggested by Ozcan et. al. (44)  is N equal 16. The 
choice of N equal 10 is also commonly found in the literature. If N is chosen large, the 
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accuracy of the inversion will improve, however the magnitude of N will in most cases be 
limited by computer precision.  
 

In the previous sections, the general equation for description of a homogenous reservoir 
was given. However, we further need to include skin factor and wellbore storage in this 
equation. This is well or near well effects that will dominate the pressure response for early 
time fluid flow in the well considered. 
 

3.5 Skin Factor 
The invasion of mud filtrate during drilling can cause the reservoir to be damaged with a 
smaller permeability in the near well area. It is also possible that the formation has been 
fractured during drilling, causing an increase in the permeability close to the well. This extra 
pressure drop or extra pressure increase can be modelled by a skin factor given as; 
  

(3.26) .2.1412 skinp
qB

khS sp2
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This can be illustrated from Figure 3.3 below, where the pressure as a function of the radius is 
shown. The extra pressure drop/increase close to the well is shown with the red lines. Usually 
the skin factor will be in the range from -5 for a fractured well and up to 20 for a heavily 
damaged well.  
 
 
 
 
 
 T1  
 
 
 
 
 
 
 
Figure 3.3: Extra pressure drop/increase due to skin factor. 
 
 

3.6 Wellbore storage  
Wellbore storage is also referred to as after flow, after production, after injection, wellbore 
loading or wellbore unloading. The wellbore storage effect is caused by opening and closing 
the well at the top. While closing the well at the top, fluid will for a short period continue to 
flow from the reservoir and into the wellbore, hence compressing the fluid in the wellbore. 
While opening the well, the initial fluid flow will then not be from the reservoir itself, but 
from the expansion of the fluid stored in the wellbore. If the well is completed without 
downhole packers between the tubing and the casing, one might in addition have a rising or 
falling fluid level in the wellbore when closing or opening the well. This is shown in Figure 
3.4. 
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Figure 3.4: Wellbore storage effects. 
 
 

The wellbore storage constant C (std/psi), is used to describe volume changes of fluid in 
the wellbore caused by a pressure increase/decrease. The dimensionless wellbore storage 
constant is given as; 
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One of the huge advantages of providing the equations in Laplace space is that this allows us 
to easily add wellbore storage and skin effects to the model solutions as(45); 
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In this equation, PD can be the solution for the homogenous infinite reservoir given by eq. 
(3.22) or the solution for other kinds of wells and reservoirs considered, such as layered 
reservoirs or fractured wells.  
 
 

3.7 Superposition Principle 
The superposition principle is a powerful and useful tool that helps us to model the pressure 
response in cases with changing well rates. Assume that a well is producing at a constant rate. 
After a while, the rate is increased and/or decreased in a series of actions. A way to look at 
this is by imagining that a new well starts producing the increased/reduced amount (q2-q1) at a 
time t1 at the exact same location as the initial well. Then a third well starts producing the 
increased/reduced amount (q3-q2) at time t2, again in the exact same location as the previous 
two wells. This is done for each new rate change. In this way, n different rates can be 

Q 

q 

 qw 
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modelled by n wells producing with rates equal the rate changes at times in the exact same 
location, starting at times t1,….,tn. This can be mathematically stated as; 
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and where PwD  in the time domain is found from the inverse Laplace transformation of eq. 
(3.28). The above equation describes the pressure response pwfn from the n’th rate change in 
the well considered.  
 

In theory, a well-test can be performed with any changes of rate that takes place in the 
well by the use of eq. (3.29), and we analyze the pressure response during this n’th rate 
change in a well-test analysis. The well might be closed and then starts to produce or the well 
might have been producing and is being closed. This is referred to as drawdown tests and 
build-up tests respectively and is illustrated in Figure 3.5a and Figure 3.5b. The actual well-
test is performed with the pressure measurements taken after the last rate change. However it 
is important to notice that even if the pressure is measured only after the last rate change, all 
rate changes must be taken into account in eq.(3.29).  

 
If the pressure is measured during several rate changes, we can analyze the pressure 

response during this period in what is referred to as a multi-rate well-test. A multi-rate test is 
illustrated in Figure 3.5c. Due to operational difficulties it is very difficult (if not impossible) 
to keep the rate constant during production (such as a drawdown test) and this is what makes 
multi-rate well-test analysis a valuable tool to obtain longer well-tests in time. The advantage 
of performing long well-tests is that the results from the well-tests will provide us with 
information from a larger part of the reservoir, i.e. the pressure response will reflect the 
reservoir properties of a larger area and possible reservoir boundaries.  
 
 

 
Figure 3.5: Different types of well-tests illustrated. 
 
 

Even if one in theory can consider any series of rate changes in well-testing, build-up 
tests are normally the well-tests considered, also in this work. Inaccurate rate measurements 
make it very difficult to analyse the pressure response from wells where the rate is different 
from zero, as in drawdown and multi-rate well-tests. In general, the results from those well-

(a)      (b)                                       (c) 

Start well-test     Start well-test Start well-test 
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Build-up test                            Drawdown test                    Multi-rate test 
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tests will be poor. If the well is closed as in a build-up test, the rate is easily kept constant 
(equal zero). The amount of lost production and consequently the amount of money lost, often 
limits the time the well can be closed for well-test purposes. A build-up test is illustrated in 
Figure 3.6.   
 
 

 

Figure 3.6: Pressure response during a build-up test. 
 
 

We have in the previous sections described some of the basic concepts in well-testing 
and we will continue by describing data preparation, model identification, non-linear 
regression analysis and confidence intervals, all important elements in modern well-tests 
analysis. 
 

3.8 Modern Well-Test Analysis 
In modern well-test analysis, a sequence of step is required. We will first provide a brief 
overview of all the steps in this section, and then provide a more detailed description of the 
individual steps in the subsequent sections. The first step is; 
 

 Data preparation 
 
With high resolution gauges the number of measurements available for well-testing can be 
tremendous. In addition outliers and noise might be present in the measurements. This step is 
a challenging step and is often more time consuming than the analysis itself.   
 

 Model identification 
 
Model identification is required to determine which mathematical model to apply with the 
observed pressure response, i.e. is the reservoir we consider homogenous, composite, layered 
etc. Model identification involves identification of characteristics in the measured pressure 
response. These characteristics are more easily identified by the use of derivative plots, where 
the pressure derivative is plotted along with the pressure.   
 

t 

q 

p 

t 

q 

p 

Typical Output 

 
 Permeability 
 Skin Factor 
 Average 

Reservoir 
Pressure 

 Reservoir 
Boundaries 

 
Build-up test 



Well-Test Analysis 

26 
 

 Non-linear regression 
 
In non-linear regression the model parameters are tuned in order to minimize the difference 
between the estimated pressures, described by some chosen mathematical model, and the 
measured pressures. For this to work properly, it is critical that the correct mathematical 
model has been chosen in the previous step.  
 

 Confidence interval estimation 
 
In order to evaluate the goodness of the fit, confidence intervals are a valuable tool. If the 
confidence intervals are larger than some given predefined limits, little confidence can be 
given to the results obtained from the well-test analysis.  
 
In the next sections, each of the above mentioned steps will be described in more details. 
 

3.8.1 Data Preparation 
In well-testing, a mathematical model is used to obtain an estimate of well and reservoir 
properties based upon the measured pressure response caused by rate changes. However, the 
measurements might be influenced by noise and outliers which makes the analysis more 
troublesome and in the worst case, gives erroneous results. In particular, the results from non-
linear regression analysis might be influenced by outliers, while model identification 
(described in the next section) is more difficult to accomplish from noisy measurements.  
 

Ideally, we would like to use all measurements directly together with the assumed 
mathematical model to estimate well and reservoir properties. However, even if modern well-
testing is accomplished by the use of powerful computers, often the large number of 
measurements available would result in a too long computational time. Thus we usually chose 
to reduce the number of measurement to reduce the computational time of the analysis by data 
reduction. Signal de-noising, outlier removal and data reduction will be referred to as signal 
filtering and is described in chapter 5.  
 
 Next, if pressure and rate measurements taken at the same time, for some reasons 
should get different time stamps, this needs to be corrected for.  There are many reasons why 
this can happen. The pressure transducer might need some time to stabilize, thus causing a 
delay in the pressure measurements, or it might take some time to change the flow rate (by 
changing the choke size), causing a delay in the rate measurements. This is referred to as 
datum shifting effects and might be necessary to correct for in a well-test if too large, more 
specifically, if it is in order of minutes. In addition, the pressure might not have been 
measured exactly at the beginning of a well-test. Thus the true start of the well-test is 
somewhere between the last pressure measurement before the well-test and the first 
measurement after the well-test. This is usually corrected for along with datum shifting 
effects. 
 
After data preparation is completed, model identification is the next step. This is commonly 
accomplished by the use of derivative plots. 
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3.8.2 Model Identification 
In well-testing, numerous models have been proposed to describe the pressure response in a 
well caused by different wellbore, reservoir and boundary properties. Many commercial well-
test software have implemented between 10 and 30 different models (24; 46), while significantly 
more models are available in the literature. The obvious question is, how do we determine the 
model that adequately describes the pressure response in the well we consider? This is 
facilitated by the use of derivative plots, today a standard tool in well-test analysis.   
 

Derivative plots were first introduced by Bourdet(47) and works in the way that they 
emphasize the characteristic model pressure response by a simultaneous presentation of log 

p vs. log t and log (t dp/dt) vs. log t. The pressure derivatives need to be estimated 
numerically from the pressure measurements as; 
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Calculations of numerical derivatives from the equation above will be heavily influenced by 
noise and outliers. The noise can be suppressed by the introduction of the differentiation 
interval(46; 42). Instead of choosing measurements next to each other (e.q. t1 and t2), the 
derivatives are calculated using measurements apart from each other (e.q. t1 and t5).  We will 
later show that de-noising and outlier removal, as will be described in chapter 4 and 5, further 
can improve the calculation of derivative plots.  
 
 A typical derivative plot is shown in the Figure 3.7. If we consider a build-up test, the 
Δp is the pressure change since the time of the shut-in while Δt is the elapsed time since the 
shut-in. Typically the initial flow is dominated by wellbore effects as wellbore storage and 
skin. If present, wellbore effects can be identified as a unit slope line at early times (and 
illustrated as the red line to the left in Figure 3.7). Next there will be a transition period when 
the fluid flow starts to originate from the reservoir instead of the wellbore. If the reservoir is 
homogenous and the flow towards the well is radial, the derivative plot (lower line in Figure 
3.7) will have a zero slope line (and illustrated as the red line to the right in Figure 3.7). 
During this period, the reservoir behaves as it is infinite in the sense that the pressure response 
is not influenced by boundaries.  
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Figure 3.7: Pressure derivative plot for a homogenous infinite reservoir. 
 
 

If the pressure response is influenced by boundary effects, the pressure derivative will 
increase at late time. In the case where the reservoir is closed i.e. the well produces from a 
defined and limited reservoir, a unit slope line at late time is seen (and illustrated as the red 
line to the right in Figure 3.8) 
 

 
Figure 3.8: Pressure derivative plot for a homogenous closed reservoir. 
 
 
 Many of the model characteristics visible from the pressure derivative, is difficult (if 
not impossible) to identify from plots of the pressure itself. Thus in order to select the correct 
model for use in well-test analysis, derivative plots is a valuable tool. In most books and well-
tests software, extensive libraries of pressure derivative plots are available to help facilitate 
model identification.  
 

It should be noted that the model pressure response shown in these libraries are 
considered as typical derivative plots for a given model. Noise, long transition periods, large 
wellbore effect, fractures, boundaries close to the well etc. might mask some of the model 
characteristics. This needs to be taken into consideration when performing model 
identification. 
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 Once we have identified a model believed to adequately describe the pressure 
response, model parameters such as permeability and skin factor, can be tuned in order to 
obtain the best possible match between the measured pressures and the pressures estimated 
from the mathematical model. This is accomplished by non-linear regression analysis and will 
be described next.  

 
 

3.8.3 Non-Linear Regression Analysis 
An important and valuable tool in the interpretation of well-test analysis is non-linear 
regression analysis. In non-linear regression analysis we seek to minimize the difference 
between the measured pressure and the estimated pressure, where the estimated pressure is 
obtained from a mathematical model assumed to adequately describe the well and reservoir 
considered. The minimization is performed by adjusting some selected model parameters, 
assumed to be unknowns, such as the permeability and/or the skin factor.  Many different 
methods are available for performing this minimization and we have in this work chosen to 
use a method called Levenberg- Marquardt (48). 
 

The Levenberg- Marquardt method is a gradient based optimization routine, i.e. it uses 
the function derivatives with respect to the unknown parameters for fast convergence towards 
the parameter values minimizing the square difference between estimated pressures and 
measured pressures. Numerical derivatives could be used, but this would be slower and less 
accurate compared to the use of analytical derivatives. Hence we will in this work prefer to 
apply analytical derivatives.  
 

Frequently encountered in non-linear regression analysis is convergence failure, i.e. 
we do not find the parameters that minimize the difference between the model pressure 
response and the estimated pressure response. If we encounter convergence failure, we 
usually converge toward a local minimum and not the global minimum. A good initial 
estimate of the unknown parameters will in general improve the convergence. In well-testing, 
a good initial estimate of the parameters might be obtained from previous well-tests or from 
graphical analyses like Horner plot etc.  
 

One of the main advantages of applying non-linear regression analysis in well-testing, 
is to obtain confidence intervals for the estimated parameters. This will provide us with an 
estimate of the uncertainty in the analysis. It should be noted that even if the visual match in 
some cases can appear to be good, the uncertainty in the analysis can be large.  A well proven 
way to obtain an estimate of the uncertainties in the analysis is by the estimation of 
confidence intervals (46).  
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In non-linear regression analysis we seek to adjust the model parameters in order to 
minimize the difference between measured data from a process and estimated data from an 
assumed known process model where the process state is described by the parameter vector v. 
In our case, we will be working with discrete measured signals and the problem can thus be 
written as; 
 

(3.31) ,)),(()(min 2YvtfvJ
v

Y(
v

      

 
where Y is the measurements of some process state, and v is a vector of model parameters of 
size m. f(t,v) is the estimated values from the process model at the same times as the process 
measurements. J(v) is the objective function to minimize. 
 

Many different methods exist to accomplish this minimization. Mainly one can 
distinguish between those methods that make use of function derivatives or those that do not. 
The methods not using derivatives can be useful for problems that are highly non-linear 
and/or with several discontinuities.  The methods that use derivatives are advantageous if the 
first order derivative is continuous. They are referred to as gradient based-methods. We have 
considered a gradient-based method in this work. 

 
An approximation f(v,t)*

 of the function f(v,t) can be written as a truncated Taylor 
series up to the quadratic term as; 
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The condition for the parameter vector v being at a minimum is given by; 
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The method described above, is called the Newton method, and requires the 

calculation of the second order derivative matrix. This can be avoided in a modified method 
ignoring the second order derivative which is referred to as the Gauss-Newton method. A 
difficulty in the Gauss-Newton method might be ill-conditioning in the first order derivative 
matrix g in eq. (3.34), and modification was proposed by Levenberg and Marquardt(48). The 
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modified Gauss-Newton method is referred to as the Levenberg-Marquardt method. This 
method works by adding a constant to the diagonal elements of g to increase the magnitude of 
the eigenvalues. One of the most popular implementation of this method can be found in 
Netlib (49) by Burton et. al. (50)  

 
The global minimum, i.e. the parameter vector giving the minimum value of the 

objective function J(v), might often be difficult to find. Often only a parameter vector 
corresponding to a local minimum of the J(v) is found if the initial parameter estimates are 
chosen away from the parameter vector that will result in the global minimum of J(v). This is 
illustrated in Figure 3.9 for the case where the parameter vector contains one element. With 
several elements in the parameter vector, high correlation between the different elements of 
the parameter vector will make this even harder. The magnitude of the correlation between the 
different parameters can be found from the covariance matrix. The covariance matrix will be 
introduced in the next section when we address confidence intervals. 

 

 
Figure 3.9: Global minimum and local minimums for a parameter vector with one element, 
v1. 
 
 

3.8.4 Confidence Intervals 
To get an idea of the uncertainty in the estimated parameters, confidence intervals can be 
included. In order to obtain confidence intervals from regression analysis, we need to make 
the following assumptions; To start with, the mathematical model used in the well-test 
analysis must be correct. Secondly, the model is assumed to be linear in the region close to 
where the global minimum is found, and finally, the error in the variance is a result of 
measurement errors. If we rewrite eq. (3.31) using matrix notation, the objective function to 
minimize is given as; 
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where v is the parameter vector with m elements and n is the number of measurements. If we 
assume that we have chosen the correct model for f(t,v), the measurements y from the process 
model can be given as; 
 

(3.38) ,),( vtfY     
 
where the measurement error ε is assumed to have a normal distribution with zero mean and 
variance σ2. The expected error is given as; 
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where Σ is the covariance matrix. If the model is assumed linear around the global minimum, 
a Taylor expansion with the first two terms of the objective function around the true 
parameter vector v is given as; 
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We will try to minimize the objective function around the true parameters and differentiate 
with respect to the parameter vector v as; 
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By differentiating the original objective function and by performing some calculations, we 
can obtain the covariance matrix of the parameters estimate (51) as; 
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where the sensitivity matrix A is given as; 
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Further, we can introduce the confidence level, where an estimate of the confidence interval 
for each parameter vi is given as; 
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cii is the diagonal elements of the covariance matrix Cmxm  and the mnt m  is a t-distribution 
found from look-up tables with a given risk level θ. This is also referred to as a Student t-test 
(51; 52). The ± in the expression above is used to obtain the upper and lower limit of the 
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confidence interval. If for instance the assumption of model linearity close to the minimum is 
wrong, the estimate of the confidence intervals will be to optimistic. 
 

As mentioned in the previous section, the covariance matrix can be used to investigate 
the correlation between the different parameters. If the only non-zero elements in the matrix 
are along the diagonal, we do not have any correlation between the parameters. On the other 
hand, many non-zero and large elements outside the matrix diagonal will indicate high 
correlation between the parameters.  

 
We have in the previous section provided the general framework required for 

understanding non-linear regression analysis. We have chosen to apply a non-linear gradient 
based method. Hence we need to provide the derivatives for the unknown parameters for the 
models we consider. We will start by providing the general derivatives related to the 
superposition equation given by eq. (3.29).  

 
 

3.9 Model Derivatives 
We will start by considering the superposition equation given in chapter 3.7 as; 
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where pwfn is the pressure in the well at time tn influenced by the (n-1) previously  rate 
changes. PwD can in this equation be any model equation describing any reservoir, well or 
boundary conditions. tD and CD  were given as; 
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The superposition equation is common for all reservoir models considered since it only takes 
into consideration rate changes in a single well. All model specific properties reside inside the 
PwD in eq. (3.29). Hence we will start by providing the pressure derivatives of the above 
equations with respect to the parameters commonly considered as unknowns before we 
continue with model specific pressure derivatives. In general, we considered the following 
parameters as unknowns for all models considered in well-testing; 
 

 Skin factor 
 Permeability  
 Wellbore storage  
 Initial pressure 
 (Porosity) 
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Recall that the porosity is placed in parentheses, since the porosity usually is considered 
known from either logs or core samples. Hence we need to find the pressure derivatives with 
respect to the parameters listed above for the superposition equation. 
 

The analytical derivative of eq. (3.29) with respect to some parameter u (such as 
permeability k, skin factor S etc.) is given as; 
 

(3.45) ,
)(

2.141
)(

1

)1.(1
11

1.
n

j

D

D

jDDnwDwfn

u
u

u
ttP

q
kh
B

u
tp B  

 
where uD is the dimensionless expression of the parameter u. The pressure derivative with 
respect to permeability, porosity, skin, wellbore storage, and initial pressure in eq. (3.29) are 
with analytical derivatives respectively given for the pressure at time tn as;  
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The dimensionless time derivatives with respect to permeability and porosity, are respectively 
given as; 
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The dimensionless wellbore storage derivative with respect to wellbore storage is given as; 
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As mentioned previously in chapter 3.3, there are several benefits of solving the 

equations in the Laplace space. We mentioned that the equations could be fast and accurately 
inverted to the time domain by the use of the Stehfest inversion scheme. Secondly, we 
showed in chapter 3.7 that skin factor and wellbore storage easily could be added to any 
model solution through eq. (3.28). Now we will show that by providing the equations in 
Laplace space, this in addition gives us very simple derivatives for PwD with respect to tD. The 
relationship between the derivatives in time space and in Laplace space can be written as; 
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where L-1 is the inverse Laplace transform and uD is the parameter that the derivation is 
performed with respect to. Derivation in Laplace space with respect to the Laplace variable z, 
is straightforward and given as; 
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Hence we can perform the derivation of the model specific PwD function with respect to time 
tD by multiplying PwD with the Laplace variable z and subsequently perform the inverse 
Laplace transformation. This approach can be utilized for parameters such as permeability and 
porosity which reside inside the time variable tD. The derivative of dimensionless pressure 
with respect to the permeability is given as; 
  

(3.56) .)()()()( 11

k
tzPL

k
t

z
zPL

k
t

t
tP

k
tP D

S
DDD

D

DDwD

k
tDL

k
tD

z
PDPPL

k
tD

tD

PDPP
k

PwPP 1L1L   

      
The expression is similar for the derivative of dimensionless pressure with respect to porosity 
and given as; 
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These equations are then used with eq. (3.46)  and eq. (3.47) to get the pressure derivative 
with respect to time for a well with changing rates. These results are very advantageous with 
respect to computational speed and easy implementation. We do not have to develop specific 
equations for calculations of pressure derivatives with respect to permeability and porosity for 
each model considered.  
 
 Now recall from chapter 3.7 that one might add skin and wellbore storage to obtain 
PwD from PD for any model considered by the equation; 
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where PwD is the pressure response in the well taking into account wellbore storage and skin 
effects. We can further find the derivatives with respect to skin factor and wellbore storage 
from eq. (3.28) as; 
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and 
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Again, the huge advantage is that the above equations are general. They can be applied with 
any well-test model specified by a PD(z) function. The expression above are substituted back 
into eq. (3.48) and eq. (3.49) to take into account a well with changing rates.  
 

The derivatives of the model equation have until now been general without assuming 
any particular reservoir, wellbore or boundary models in PD. For further calculations of 
derivatives for application in non-linear regression analysis, we need to include specific well, 
reservoir and boundary models described by the PD(z) function. In this work the following 
models have been implemented; 
 
Well models: 

 Partial perforated well 
 Fractured well – Infinite conductivity fracture. 
 Fractured well – Finite conductivity fracture. 
 Fractured well – Uniform flux fracture. 

 
Reservoir Models: 

 Homogenous Reservoir 
 Layered Reservoir 
 Composite Reservoir 
 Dual Porosity Reservoir 

 
Boundary Models: 

 Infinite Reservoir 
 Finite Circular Reservoir 

 
Although all models above have been implemented as a part of this work, only the 
homogenous model in an infinite reservoir is actually utilized. Thus any further description of 
the other implemented models is not required.  

For the homogenous infinite model, usually the permeability, skin factor, wellbore 
storage and initial pressure are considered as unknowns. They are all given by the general 
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equations in this section. Hence we do not need to provide any additional equations for the 
derivatives in this case. Thus by substituting the expression for the dimensionless pressure in 
a homogenous model given by; 
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into eq. (3.56), eq. (3.57) eq.  (3.58) and eq. (3.59), we obtain the derivatives of PwD with 
respect to permeability, porosity, skin factor and wellbore storage respectively. These 
equations are then substituted into eq. (3.46), eq.  (3.47) eq. (3.48) and eq. (3.49) to take into 
account a well with changing rates. The derivative with respect to the initial pressure is given 
by eq. (3.50).   
 
 

3.10  Summary 
We have in this chapter provided the equation required to describe a reservoir assumed to be 
homogenous with respect to reservoir properties such as permeability and porosity and where 
the reservoir has infinite extension. The equation was converted to Laplace space and solved 
by the Stehfest scheme. This provided us with both a fast and an accurate solution for the 
pressure response in the well and reservoir considered. Another benefit by solving the 
equation in Laplace space was that we easily could add the effects of wellbore storage and 
skin to the model equation. The solution assumed a constant flow rate into the well, however, 
the use of the superposition principle made us capable of taking into account a well with 
changing rates. The concepts of modern well-test analysis were described next including data 
preparation, model identification, non-linear regression analysis and estimation of confidence 
intervals. The non-linear regression method chosen in this work is called the Levenberg-
Marquardt method. This method minimizes the square difference between the measured 
pressures and the pressures estimated from a mathematical model assumed to adequately 
describe the well and reservoir considered. In non-linear regression analysis, we obtain an 
estimate of the parameters considered as unknown along with their confidence intervals which 
gives us an estimate of the uncertainty in the estimated parameters. We have chosen to use a 
gradient based optimization routine which requires the pressure derivatives with respect to the 
parameters considered as unknown. For the homogenous infinite model, the derivatives for 
the parameters commonly considered as unknown were given. This included permeability, 
skin factor, wellbore storage constant and initial pressure. In some cases, also the porosity can 
be considered an unknown, and the derivative of the pressure with respect to porosity was 
given as well. We have in this chapter only provided the derivatives for the homogenous 
infinite reservoir. Additional models have been implemented, but they are not utilized in this 
work and are thus left out. 
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4 Wavelet Analysis 
In this chapter, we will develop the ideas and theory behind wavelet analysis. Wavelet 
analysis has been shown to be in particular useful for signal de-noising(53; 54; 55). Consequently 
we have in this work chosen to use wavelet analysis as a building block in a system for 
automatic signal filtering. Recall that signal filtering includes outlier removal, de-noising and 
data reduction. To show why wavelet analysis is so useful in signal de-noising, we need to 
carefully develop the theory behind wavelet analysis and wavelet de-noising, which will be 
the scope of this chapter. The results from our applications of wavelet analysis and wavelet 
de-noising will be given in chapter 5. 

 
In wavelet analysis we choose to approximate the signal by the use of basis functions. 

We would like to determine one or more states of process which may be represented as a 
function of time. We set out to measure those states, typically discretely. The measured signal 
represents the combination of the desired state and the noise. Essentially, we want to estimate 
the process state from the measured signal. To do so, we are going to represent the process 
state as a continuous function. In fact, we will represent the process state as a linear 
combination of basis functions. A basis function is an element of a particular basis in a 
function space and any function within this function space can be represented as a linear 
combination of basis functions. Our estimate of the function is provided by the specification 
of the basis functions and corresponding weighting coefficients. 

 
We can translate and dilate these basis functions in time to approximate different part of 

the signal with different resolutions. Hence a sum of basis functions is required for the 
approximation. It can be envisioned that by choosing different sets of basis functions, either 
with small or with large support, we can approximate the signal with different resolutions. 
The support of a function determines where the function is non-zero. We can obtain a fine 
approximation of the signal by applying narrow basis functions, or we can obtain a coarse 
approximation of the signal by applying broad basis functions. Actually we will develop a 
framework whereby some parts of the signal are approximated with narrow basis functions 
while other parts of the signal are approximated with coarse basis functions. This is what 
makes the wavelet analysis so suitable for analyzing signals from non-stationary processes 
and it will in addition be shown to be particularly valuable for applications such as de-noising.  
In wavelet analysis we can use many different basis functions for signal approximation. This 
provides us with a great flexibility since different function approximations might adapt well 
to different kinds of signals. Finally, the applications of wavelet analysis are well suited to be 
performed by a computer. All together this makes the wavelet analysis particularly well suited 
for investigating and describing non-stationary signals that typically occur in the oil industry, 
such as pressure, production and temperature.  

 
The early work on wavelet analysis was performed by Morlet(56), Grossman(57), 

Meyer(56) and Mallat(58). However, it was the work by Daubechies(59) that really caught the 
attention to wavelet analysis. Daubechies developed a type of wavelets with wide applications 
and these wavelets are perhaps the most widely used wavelets today. Donoho and Johnstone 
(53; 54; 55) developed new methods for signal de-noising and compression based upon wavelet 
analysis. The wavelets by Daubechies and the wavelet de-noising by Donoho and Johnstone 
will both be described later in this chapter. 
 

In this chapter, we will first describe signals and signal approximations. A signal can be 
represented by an approximation made by a set of basis functions. In wavelet theory these are 
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called scaling functions and are introduced in the first section. However, often it is more 
convenient to have another set of basis functions that represent the difference between two 
signal approximations. These are called wavelet functions and will be explained next. The 
wavelet and scaling functions can be utilized together to better describe or represent a signal 
where the scaling function will give the approximation at some chosen resolution level while 
the wavelet function will provide the differences between this approximation and all finer 
signal approximations.  How to obtain this function approximation of wavelet and scaling 
functions will be explained next by the use of the wavelet transform. In some cases, it might 
be useful to not only apply one basis in the function representation but two bases. This is 
called the bi-orthogonal wavelet system and allows a larger class of signals to be well 
represented by wavelets. All theory about wavelets will be given on sampled signals, although 
we in practice can sample the signal an infinite number of times. However, in the case where 
the signals are sampled a finite number of time on a finite interval, what is referred to as 
boundary problems might occur and is described next. It has been shown that the function 
representation obtained by the wavelet transform is well suited for de-noising signals in a 
method referred to as Waveshrink and we will continue by describing this method. Finally, it 
will be explained how to improve the de-noising properties by the introduction of slightly 
modified wavelet transform called the stationary wavelet transform.  

 

4.1 Signals  
The observations of a process state as a function of time are referred to as a signal. State 
variables are the primary objects used in modelling to describe the state of processes, such as 
temperature, pressure, etc. The process state might change with time and we need to 
continuously measure the process to adequately model and describe it. To represent the 
signals by the use of a computer, the signals can be monitored with some time interval T. 
When N samples at an interval T are obtained from a signal S(t), it is said that the signal is 
discretized or sampled, and this is referred to as si where i is an integer index. We will in this 
chapter assume that all samples will be equally spaced. However unequally spaced signal 
measurements, which in reality often might encountered, will be discussed in chapter 5. 
 

 Even if the signal is sampled, it is still possible to have a continuous representation of the 
signal in the computers by the use of a function approximation to better describe the 
underlying signal process. Thus we can use the discrete signal measurements si at intervals T 
to obtain a signal approximation f(t) that can describe the signal at any time t . An 
important feature of these approximations when applied in wavelet analysis is that they are 
required to be a part of a function space denoted 2Lf . This function space consists of all 
functions with a bounded square integral as; 
 

(4.1) .|)(| 2|| dttf        

    
Hence the functions applied in the signal approximation are all required to be in the function 
space as described above.  
 
       All the theory about wavelet analysis in the next sections will be developed for 
continuously sampled signals, i.e. in theory the signals will be sampled an infinite number of 
times at an infinite domain. In practice, however, when the wavelet analysis is applied with a 
computer, the number of samples will be finite and sampled on a finite domain. The only 
adjustments in the wavelet analysis required to apply it with finite sampled signals on finite 
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domains are provided in chapter 4.6, where solutions to what is referred to as boundary 
problems of finite sampled signals will be discussed.  
 

We will first start with describing how a signal approximation can be obtained using 
scaling functions. 
 

4.2 Scaling Function 
We represent a signal approximation f(t) by the use of building blocks of a function 

2L  as; 
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where c(k) is called the expansion coefficients, )(, tkj ,kj  is chosen to be a set of basis functions 
called the expansion set, k is an integer index and Z denotes the set of all integers. The index j 
is a resolution index describing how broad or narrow the support of the basis functions chosen 
in the current function approximation is. If the functions are supposed to be a basis, the set of 
functions will be required to be independent and to span the vector space Vj as; 
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If the kjt ,)(t(  is a basis and spans the vector space Vj, this means that the set of 

expansion coefficients in eq. (4.3) will be unique for any particular f(t) considered. In the 
wavelet terminology these basis function )(t(t   are called scaling functions. The larger the 
expansion set is, the greater the flexibility available in the function approximation, and a 
larger class of signals can adequately be approximated. A two dimensional family of scaling 
functions can be generated from the basic scaling function by scaling and integer translation 
as; 
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By increasing j the scaling function will be broadened and by increasing k the scaling 

function will be moved along the x-axis.  This means that by decreasing j, a finer 
approximation will be obtained, while increasing j will give a coarser approximation. If the 
functions are made very broad, most signal information will be lost. On the other hand, as the 
scaling functions are made narrower and approach zero, the function approximation will 
approach the signal itself.  
 
The simplest of these scaling functions is the Haar basis where the basic scaling function is 
given as; 
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The basic scaling function is referred to as the scaling function where one chooses k=0 and 
j=0 in eq. (4.4). Three dilated and translated versions of the Haar scaling function are shown 
in Figure 4.1, where the relation between the basic scaling function defined in eq. (4.5) and 
the dilated and translated scaling functions, are given by eq. (4.4). 
 

The use of scaling functions to approximate a signal at different resolution levels can 
be more formally explained by the introduction of a multiresolution framework. In the 
multiresolution framework, the different scaling functions with different resolutions will span 
different subspaces by eq. (4.3). It can further be shown(60) that all information about the 
signal inside one subspace Vj+1 will reside inside the subspace spanned by the scaling 
functions in subspace Vj;  
 

(4.6) .1 jj VV V1                
   

The relationship between all various subspaces spanned by scaling functions at various 
function resolutions will be related as; 
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 As j approach infinity all information about the signal is lost, while as j approaches minus 
infinity, any function can be represented adequately within the vector space considered, 

2Lf . 
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(4.9) 2LV LV         
    

 

 
Figure 4.1: Scaling function dilated and translated along the x-axis. 
 
Since each subspace spanned by the vectors kjt ,1)( ,1t(  in Vj+1  are contained within a subspace 
with higher resolution spanned by the vectors kjt ,)(t(  in Vj, this allows us to express one 
scaling function as weighted sum of shifted scaling function as; 

            )(1,0 t1,0                             )(3,1 t,11                         )(4,1 t4,1                  

 1         2                  3               4  5                  6     
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where h are called the scaling coefficients and relates one scaling function to another set of 
narrower scaling functions. n is an integer index. 2  is used to maintain the norm of the 
scaling function within the scale of two. This is a choice commonly made in wavelet theory, 
and other choices can be made as well (60).  Eq. (4.10) relates scaling functions at different 
resolutions to each other. Again as an example, we can relate the expression above to the 
simplest scaling function Haar, where we have that the scaling functions at two successive 
scales can be related as; 
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This is also illustrated below in Figure 4.2. Thus by increasing the number of scaling 
functions, a higher resolution approximation can be obtained, and by eq. (4.10), we see how 
this finer approximation is related to a coarser approximation by the use of scaling 
coefficients. 
 

At this point we have shown how these scaling functions can give us different function 
approximations with different resolutions. However, it appears that it in many cases might be 
useful to introduce a second function, called a wavelet function, to represent the difference 
between two function approximations. 
 

 
Figure 4.2: The scaling function at one resolution level can be created as a sum of weighted 
scaling function at one finer resolution level. 
 

4.3 Wavelet Function 
In the same manner as for the scaling function, translated and dilated wavelet functions can be 
created from translation and dilation of the basis wavelet function 2)( Lt(t  as; 
 

     1     2        t       1 2                      t    
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By increasing j the wavelet can be broadened and by increasing k the wavelet can be moved 
along the x-axis.  Again the simplest of the wavelet functions is the Haar function given as; 
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Translation and dilation of the Haar wavelet basis is shown in Figure 4.3.  
 
 

 
Figure 4.3: Wavelet function translated and dilated along x-axis. 
 
 
We now require the wavelet and the scaling function to be orthogonal, i.e. their inner-
product(60) is required to be equal zero as; 
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By using to such closely related function we can now represent a signal, not by the scaling 
functions alone, but by both wavelet and scaling functions. To illustrate the use of the wavelet 
functions together with the scaling function, lets now consider two successive signal 
approximations at different resolutions fj and fj+1. What we would like to do is to express the 
difference between these two approximations. Any function approximation at resolution j can 
be written as the sum of the approximation at one coarser resolution level j+1 and the 
difference between these two levels can be represented by the wavelet functions as; 
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where Ψj+1 is all the wavelet functions at resolution level j+1.  Then successive 
approximations of the function, if we start at any arbitrarily chosen resolution level as, for 
instance resolution level 0, can be written as; 
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By requiring the wavelet and the scaling function to be orthogonal, this will in addition allow 
us to more formally explain the relationship between the different subspaces spanned by the 
scaling and the wavelet function by the multiresolution framework. Besides, as will be shown 
in the next section, this will allow a simple calculation of the expansion coefficients for use in 
the function approximation. 
 

In the multiresolution framework, the differences between two successive subspaces 
will be spanned by the wavelet function and thus; 
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In general by the use of the wavelet function (again if j is chosen equal to 0), the signal can 
now be described by; 
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where  denotes an orthogonal sum of two subspaces. As with the scaling function, the 
wavelet function at one resolution level can be expressed as a weighted sum of shifted 
wavelet functions as; 
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where h1

 is the wavelet coefficients. The wavelet coefficients are used to relate the wavelet 
functions at one resolution level to the next finer resolution level. Any signal can now be 
approximated, not by increasing the scale of the subspace spanned by the scaling function, but 
by using the wavelet function to span the difference between the spaces spanned by the 
scaling functions at different scales. 
 
Since the wavelet functions and the scaling functions are chosen to be orthogonal it can then 
be shown(60) that the wavelet coefficients and the scaling coefficients are required to have the 
following relationship; 
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In the literature, often only the scaling coefficients will be provided since the wavelet 
coefficients can be obtained from the scaling coefficients. It should however be noted that 
great confusion appears to exists and unfortunately these coefficients are often mixed.  
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By the use of eq. (4.18) from the multiresolution framework, a general expression for how to 
represent a function by series of scaling and wavelet functions can now be written as; 
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where k is a finite or infinite integer index. This coarsest resolution level is often referred to as 
the primary resolution level and denoted as j0, and the equations above, eq. (4.18) and eq. 
(4.21) thus becomes; 
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Before we continue it might be enlightening to emphasize some of the advantages of 

representing a signal like this. The wavelet function was in Figure 4.3 illustrated as an 
oscillating function that in general is well localized in time, i.e. it has local support meaning 
that the function is non-zero only on a finite interval. It can be shown (60) that all wavelets will 
have an oscillating behaviour where the square wave in Figure 4.3 simply is one of the 
possible implementations. The wavelet can be shown to have many types of “wave shape” as 
long as it satisfies; 
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The wavelet being such an oscillating function will have importance for why we choose to 
use the signal approximation in eq. (4.23). Recall that the difference between the finest signal 
approximations are represented with narrow wavelet function and this can be interpreted as 
representing the difference in the function approximations with fast oscillating or high 
frequency waves (wavelets). The difference between coarse function approximations will be 
given by broad wavelet functions and this can be interpreted as providing the difference 
between coarse function approximations by the use of slow oscillating of low frequency 
waves. In this context, since any signal can be represented by a large number of different 
wavelets where the different wavelets all are localized in time and in frequency, the 
representation of a signal like this is referred to as a time-frequency representation. The 
coefficients dj(k) in this representation (eq. (4.23)) will provide the “strength” of the time-
frequency localized wavelets in the different scales and locations.  
 

We have argued above that the wavelet functions at different resolution levels might 
be envisioned to represent different frequencies in the signal since because of their oscillating 
behaviour. The strength of the coefficients in this representation can tell us where different 
frequencies are found within the signal approximation. Thus we do not only know if changes 
(in frequency) occur in the signal, but also when they occur. This is what makes the wavelet 
and scaling function representation of signals so useful when they are from non-stationary 
processes. In many cases, some or perhaps most of the wavelet coefficients in this signal 
approximation will be zero or close to zero. This is what makes this representation ideal for 
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compression or de-noising of signals, i.e. we can represent the signal well by only a few large 
coefficients in eq. (4.23). 
 

When representing a signal as explained above, it remains to explain how to obtain the 
coefficients for the scaling function and the wavelet function used in the signal 
approximation. This can be accomplished through the wavelet transform. 
 

4.4 Wavelet Transform 
The wavelet transform provides a process for obtaining the coefficients ( )(kd j  and )(

0
kc j ) in 

the function representation in eq. (4.23). To obtain these coefficients, first recall that in 
section 4.2, we chose our function representation to be a set of basis functions. In the previous 
section we required these functions to be orthogonal. Consequently by choosing the scaling 
function and the wavelet function to be an orthogonal basis, we can (see Mallat (58) ) use the 
inner product to calculate the detail coefficients in eq. (4.23) as;  
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and the approximate coefficients in eq. (4.23) from; 
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where S(t) is the signal considered. The detail and approximate coefficients in this wavelet 
transform are called the wavelet expansion and the process of obtaining them is often referred 
to as decomposition.   
 

However, often we do not have any explicit expression for the wavelet and scaling 
function as we did in the case of the Haar basis. This will make it difficult for us to obtain the 
wavelet and the scaling coefficient through eq. (4.25) and eq. (4.26). However, if we do know 
the wavelet and the scaling coefficients, we can still obtain the detail and approximate 
coefficients by a slightly different approach. Accordingly it will be desirable to be able to 
calculate the detail and the approximate coefficients by utilizing the wavelet and scaling 
coefficients. It is possible to show(60) that by combining equation eq. (4.19) with eq. (4.23) we 
obtain; 
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where m = 2k+n, and where n and k is some finite or infinite integer indexes. Thus we can see 
that the detail coefficients at level resolution j+1 can be calculated by convoluting the 
approximate coefficients at level j. Similar as for the detail coefficients we can for the 
approximate coefficients combine eq. (4.10) with eq. (4.23) to obtain; 
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where m = 2k+n, and where n and k is some finite or infinite integer indexes. The 
approximate coefficients at resolution level j+1 are found in the same way as the detail 
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coefficients by convoluting the approximate coefficient at level j, but this time with the 
scaling coefficients.  
 

In addition, the number of approximate and detail coefficients at each coarser 
resolution level is halved. This is simply because we at the next coarser resolution level only 
applies half the number of scaling function in the signal approximation which can be 
represented by half the number of approximate coefficients.  This removal of coefficients is 
referred to as down-sampling and denoted (↓), and in the case where every second sample is 
removed as in eq. (4.27) and eq. (4.28), the down sampling is denoted (↓2). This can be 
illustrated as shown below in Figure 4.4. The wavelet transform with up and down-sampling 
is referred to as the dyadic wavelet transform. 
 

 
Figure 4.4: Wavelet transform with down-sampling. 
 
 

When removing half of the approximate coefficients information about the signal will 
be lost in the signal approximation. However, all this information is stored within the wavelet 
coefficients. It can be shown (60) that it is possible to have what is referred to as a perfect 
reconstruction where the signal approximation at a finer level j can perfectly be reconstructed 
from the detail and approximate coefficients at level j+1 as; 
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where m = 2k+n, n and k is some finite or infinite integer index. Thus by convolution of the 
detail and approximate coefficients with the wavelet and scaling coefficients respectively, the 
approximation at one finer resolution level j with double the number of approximate 
coefficients is obtained. This doubling of the approximate coefficients at resolution level j 
compared to j+1 is referred to as up-sampling and denoted (↑2). The scaling and the wavelet 
coefficients used in the reconstruction of the function approximations are the inverse of those 
used in the decomposition, and are thus often denoted g and g1. This to avoid mixing the 
wavelet and scaling coefficients utilized in the decomposition and reconstruction and we will 
from now on choose to denote h(n) as g(n) and h1(n) as g1(n) in the reconstruction in 
eq.(4.29). (Note that k-2m was used as scaling coefficient index in eq. (4.29) in the 
reconstruction, while m-2k was used for the scaling coefficient index in eq. (4.28) in 
decomposition) g(n) and g1(n) are related to each other in the same manner as h(n) and h1(n) 
in eq. (4.20).  The reconstruction of the function approximation at level j-1 is illustrated below 
in Figure 4.5. 
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Figure 4.5: Inverse wavelet transform with up-sampling.  
 
 

Although the advantage of using orthogonal basis in the wavelet analysis is clear, there 
are some cases where it might be preferred to not use an orthogonal system (60). The next 
section will develop the bi-orthogonal wavelet system applying a non-orthogonal basis. This 
will provide us with a greater flexibility in the wavelet design and allows a greater class of 
signals to be well approximated by the wavelet and scaling functions. 
 

4.5 Bi-orthogonal and Non-orthogonal Wavelets 
Previously, we have stated that the relationship between the wavelet and the scaling 
coefficient (h(n) and h1(n)) where given by eq.(4.20). In this section we will develop the bi-
orthogonal wavelet system where these restrictions can be relaxed. We now choose to use two 
different basis in the wavelet system, one for the wavelet function and one for the scaling 
function. However, to still have the perfect reconstruction as given by eq.(4.29), it can be 
shown (60) that the scaling and the wavelet coefficient in the decomposition (eq. (4.27) and 
eq.(4.28)) and in the reconstruction eq. (4.29) of a bi-orthogonal wavelet system must satisfy 
the following relations; 
 

(4.30) )1()1()(~ nhng n n)1(  
 
and 
 

(4.31) .)1(~)1()( nhng n n)1(  
 
We have chosen to use the notation )(~ nh  and )(~ ng  instead of h1(n) and g1(n) to avoid mixing 
the orthogonal and the bi-orthogonal wavelet coefficients since there for the bi-orthogonal 
wavelet system, as opposed to the orthogonal, are no relationship between )(~ nh  and h(n). In 
the case of orthogonal wavelet, h(n) and h1(n) were orthogonal to each other. In fact, it is 
possible to show the h(n) will be orthogonal even to translations of itself. Now we require a 
dual basis whose elements are not orthogonal to each other, but to the corresponding element 
in the expansion set, i.e. h~  is orthogonal to h. Hence we have the name bi-orthogonal.  
 

In the case of orthogonal wavelets, the number of scaling and wavelets coefficients in 
h(n), h1(n), g(n) and g1(n) will be equal. Further it will be required that the number of 
coefficients is even. In the case of bi-orthogonal wavelet system, these restrictions are greatly 
relaxed. The number of scaling and wavelet coefficients might be either even or odd. 
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However, it is required that the difference in the number of scaling coefficient between h~  and 
h is even.  
 
 Further we will simply repeat some of the theory described previously in this chapter 
in the case where bi-orthogonal wavelets are used instead of the orthogonal ones. In addition 
to eq. (4.4) relating the translation and the dilation of the scaling function, we will in addition 
for bi-orthogonal wavelet systems have that; 
  

(4.32) nntnht
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where ~  in addition to  from eq. (4.4),  are the two dual basis used for the scaling functions 
in the signal approximation. Similar the translation and dilation for the wavelet function in the 
case of orthogonal case was given by eq. (4.12). For bi-orthogonal wavelet system we in 
addition have that; 
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where ~  in addition to   from eq. (4.12), are the two dual basis used for the wavelet 
functions in the signal approximation. The multi-resolution framework described in section 
5.2 and 5.3 can further be revised as; 
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and where 
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For the orthogonal case we had that Wj where orthogonal to Vj, although the dual basis will in 
the case of bi-orthogonal wavelet system have much the same role. Hence we have four 
different basis that is used to form two hierarchies to span )(2 )(L .  
 
 In general the benefits of bi-orthogonal wavelets are simpler wavelet design and that a 
larger class of signal adequately can be approximated by the scaling and wavelet functions. A 
more detailed explanation of why the bi-orthogonal wavelet system might be favourable for 
some type of signals is outside the scope of this work and details can be found within Burrus 
et.al (60). 
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 Finally note that it is possible to obtain even a third type of wavelet system where the 
restriction on the scaling and wavelet coefficients are even more relaxed, although they must 
satisfy the same dual basis as the bi-orthogonal wavelet system described above. One such 
wavelet systems are based upon the cubic spline; 
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For this wavelet system, ~  is chosen equal , although the wavelet system is constructed in 
such a way that it satisfy eq. (4.27) and eq. (4.28). However, this wavelet system does not 
satisfy eq. (4.27) and eq.(4.28) as the bi-orthogonal wavelet system does. These wavelets are 
referred to as non-orthogonal wavelets and the one we will consider later in this work is 
shown in Figure 4.6. 
 
 

  
Figure 4.6: Spline wavelet used in non-orthogonal wavelet system, wavelet function (left) and 
scaling function (right). 
 
 

The wavelet and the scaling coefficients required in the wavelet transform with eq. 
(4.27) and eq. (4.28), can be obtained through what is referred to as a wavelet design. By the 
wavelet and scaling coefficients obtained in this design process, we can calculate the detail 
and the approximate coefficients through eq. (4.27) and eq. (4.28). Thus we will in fact 
perform the wavelet analysis without any specific knowledge of the scaling and wavelet 
function but only with the knowledge of the wavelet and the scaling coefficients. The next 
section will give a brief introduction on how these coefficients are obtained and some of the 
necessary constrains that must be put on h(n) and h1(n) in the wavelet design process.  

 

4.6 Wavelet and Scaling Coefficients 
Until now we have stated that the scaling and wavelet coefficient, denoted h(n) and h1(n) 
respectively, will depend upon the scaling and wavelet functions considered. Recall that the 
wavelet and scaling coefficients were required in order to relate the wavelet or scaling 
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functions at one resolution level to the wavelet or scaling functions at the next coarser 
resolution level through eq. (4.10) and eq. (4.19). These coefficients should not be confused 
with the detail and the approximate coefficients denoted )(kd j  and )(

0
kc j in eq. (4.23) used in 

the signal representation.  How to determine these wavelet and scaling coefficients for a 
specific wavelet or scaling function has until now not been discussed. This section is hence 
intended to give a simple illustration on how the scaling and wavelet coefficients can be 
obtained in the case of the Haar and the Daubechies wavelets. Some ideas on how to obtain 
wavelet and scaling coefficients in general will also be discussed briefly, however for a 
detailed description on this, refer to Mallat(58) or Gao(61). 
  

If we once more return to the Haar basis, we recall that the Haar basis was given by 
eq. (4.5) and eq. (4.13). We further stated that it would be possible to obtain the scaling or 
wavelet functions at one resolution level as a sum of scaling functions from a finer resolution 
level as given by eq. (4.10) and illustrated by eq. (4.11). However, for the recursion equation 
in eq. (4.10) to be satisfied, we are required to choose the scaling coefficients as 21)0( 1h  
and 21)1( 1h . Thus the Haar scaling coefficient will simply be given as; 
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 and the wavelet coefficients are obtained from eq. (4.20) as; 
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Different wavelet and scaling functions can be specified directly by the wavelet and scaling 
functions )(t(t  and ψ(t) as long they are orthogonal and satisfy eq. (4.4) and eq. (4.12)  (as in 
the case of the Haar wavelet above). Based on the wavelet and scaling functions, we then 
derive the wavelet and scaling coefficients required in the wavelet transform.  
 

In cases where the wavelet and scaling function are not explicit given, which is usually 
the case, it is still possible to determine the wavelet and scaling coefficients through a wavelet 
design. It can be shown that all scaling coefficients must satisfy the following condition(60); 
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and 
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Thus the sums of the scaling coefficients are required to equal the square of two, while the 
norm of the scaling coefficients should equal 1. In the case of the Haar scaling coefficients we 
can easily see that these conditions are satisfied. In the case of more than two scaling 
coefficients, it can be shown(60) that in addition, the individual sum of even and odd elements 
must equal; 
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In a wavelet design, the wavelet and scaling coefficients are determined from eq. 

(4.42), eq. (4.43) and eq. (4.44). First we choose the number of scaling coefficients to use and 
then we choose the individual scaling coefficients such that they satisfy eq. (4.42) - eq. (4.44). 
When utilizing four scaling coefficients or more to relate the scaling functions at one 
resolution level to the next coarser level, there might be some degrees of freedom left on how 
to choose the individual coefficients after the three conditions above are satisfied. In the case 
of the Haar basis, we have no degrees of freedom left, in other words, we do not have any 
flexibility on how to choose the coefficients since they are completely determined by the 
equations above. However, if we choose to use four scaling coefficients (refer to Burton et. al. 
(60)) we will have three equations eq. (4.42)- eq. (4.44) with four unknown scaling 
coefficients; 
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n is chosen to range from -1 to 2. This is simply a selection made and could equally have been 
chosen to range from 0 to 3. The range of n will only affect the actual numerical 
implementation of the wavelet transform. 

 
The remaining scaling coefficient can then be chosen based upon some desired design 

criteria (60). This allows for the design of different scaling and wavelet coefficients, and 
consequently different wavelet and scaling functions, taking into consideration different 
signal properties. Daubechies designed a family of wavelets simply referred to as Daubechies 
wavelets based upon a design criteria that the function approximation should work well with 
polynomials. How this design criterion was specified and how it is related to polynomials, 
will be to extensive to cover in here, but the resulting scaling and wavelet coefficients for a 
Daubechies wavelet with four scaling and wavelet coefficients are given as; 
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The wavelet and the scaling function can in most cases not be represented by any 

explicit function as in the case of the Haar function. This also applies to the Daubechies 
wavelet above. Nevertheless it is still possible to show what the wavelet and the scaling 
function looks like through what is referred to as the cascade algorithm. It is possible to 
perform an iteration of eq. (4.10) as; 
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)(0 t(0 for the first iteration is the scaling coefficients given by eq. (4.46). 2i -1 is the number of 

points used in the i’th iteration for the scaling function representation. The operation above is 
repeated again and again on the output from the previous iteration. If the algorithm converges 
to a fixed point, this will be a solution to eq. (4.10). Four different steps of the iteration with 
eq. (4.48) are shown in Figure 4.7. We clearly see that the scaling function converges towards 
the shape seen in the lower left figure in Figure 4.7. The wavelet function can be visualized in 
the exact same manner by utilizing the wavelet coefficients in a similar iteration process. 
 

 

 
Figure 4.7: Iteration of eq. (4.48) after iteration 1 (upper left), 2 (upper right) , 4(lower left) 
and 6 (lower right). Illustrated for Daubechies wavelet with four scaling coefficients. 
 
 

In theory, an infinite number of wavelet and scaling coefficients can be obtained both 
by utilizing a larger number of scaling coefficients and also by choosing the degrees of 
freedom available in the eq. (4.42) - (4.44) differently. By choosing the degrees of freedom 
available differently, other families of wavelets can be developed. These selections can be 
made in such a way that they approximate different types of signals well, as for instance, 
polynomials in the case of Daubechies. By a wavelet family means a collection of wavelets 
with similar properties but with a different number of scaling and wavelet coefficients. 
However, a more detailed description of various wavelet families will be outside the scope of 
this work. We will simply use the most common wavelets found in the literature to determine 
which wavelets to utilize with the signals we consider in this work. This will be one of the 
main topics in chapter 5. 

 
Since we in practice will deal with a finite number of measurements, we will require 

that the signal representation in eq. (4.23) can be given as an approximation, where the finest 
resolution level will be given by the signal measurements. With a finite number of signal 
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measurements, troubles might also occur in the wavelet transform in eq. (4.27) and eq. (4.28) 
when we are “running out of points”. The next section will thus also give a brief introduction 
to practical aspect of the wavelet transform when dealing with finite sampled signals. 

 
 

4.7 Discrete Wavelet Transform  
When dealing with finite sampled signals, we can not have a signal representation as given by 
eq. (4.23) where the time summation over index k and the scale summation over index j are 
infinite. However, they can both be made finite with very little or no error. Therefore in the 
case of finite sampled signal only, we will have a signal approximation and not a signal 
representation as given by eq. (4.23). The lower limit of j eq. (4.23) is made finite by simply 
choosing some desired resolution level, usually chosen as zero.  The upper limit will be 
limited by the sampling rate. In general, this will provide us with a good approximation if the 
signal samples are dense enough.(58)  
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The coarsest resolution level J, will be limited by the number of signal measurements 

available and given as; 
 

(4.50) ,1)/#(log 2 1lo WCNJ  
 

where N is the number of signal measurements and #WC is the number of wavelet coefficients 
in the wavelet considered. This will allow us to calculate the detail and approximate 
coefficients from eq. (4.27) and eq. (4.28) with 12...,1,0 1,0 jk  and where 1...,1,0 1,0 Jj . The 
finest resolution j=0 is approximated by the signal samples. Thus eq. (4.27) and eq. (4.28) 
can be rewritten with finite indices as; 
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The range of n in the above equations will depend upon the wavelet considered. In the case of 
the Haar wavelet 1,0,0n , while in the case of the Daubechies wavelet with four scaling and 
wavelet coefficients 3,2,1,0,0n . In the same manner, the signal approximation is 
reconstructed from the detail and approximate coefficients applying eq. (4.29) with the same 
finite ranges of k, n and j. 
 

The decomposition in the discrete wavelet transform can be best illustrated with an 
example. If a wavelet with two wavelet and two scaling coefficients is considered with a 
signal sampled 8 times, we could only obtain the signal approximation up to level J=3 as 
given by eq. (4.50). The signal will at this finest resolution level be approximated by the 
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signal samples. At the first decomposition level, we have 4 approximate and 4 detail 
coefficients. At the next decomposition level we will have 2 approximate coefficients and 2 
detail coefficients (+4 detail coefficients from the previous resolution level. At the third 
decomposition level we will have 1 approximate coefficient and 1 detail coefficient (+6 detail 
coefficients from the two previous resolution levels). This is illustrated below in Figure 4.8. It 
is obvious that at level j=3 in the wavelet transform with only one approximate coefficient 
left, we cannot continue adding additional and coarser resolution levels. The signal will at the 
coarsest resolution level be represented by a single approximate coefficient and all the details 
are stored within 7 detail coefficients (4 at level j=1,  2 at level j=2 and 1 at level j=3).  

 
 

 
 

 
 
 
 
 
 
 

 
 

 
Figure 4.8: The approximate and detail coefficients obtained in the wavelet transform at 
different decomposition levels. 
 
 

Often the calculation of the approximate and detail coefficients from eq. (4.27) and eq. 
(4.28) can be more easily envisioned if represented as matrix calculations. The wavelet 
transform at the first decomposition level is performed by convolution between the 
wavelet/scaling coefficients and the discrete signal measurements. The convolution of eight 
signal measurements with two wavelet and two scaling coefficients, can be calculated by the 
matrix calculation as illustrated below in Figure 4.9. h(0) and h(1) denotes the two scaling 
coefficients while h1(0) and h1(1) denotes the two wavelet coefficients. Recall that in the case 
of only two scaling and two wavelet coefficients; this is required to be the Haar scaling and 
wavelet coefficients as given by eq. (4.40) and eq (4.41).  

 
At the next coarser resolution level in the wavelet transform, the approximate 

coefficients obtained from the calculations above, are used instead of the signal measurements 
in the matrix calculations. The inverse wavelet transform by eq. (4.29) can be illustrated in a 
similar manner and is shown in Figure 4.10. We will have a perfect reconstruction and the 
original signal measurements are obtained. 
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Figure 4.9: Matrix illustrations of wavelet transform calculations. 
 
 

 
Figure 4.10: Matrix illustrations of inverse wavelet transform calculations. 
 
 

When calculating the signal approximation f(t) with a finite number of signal samples 
on a finite interval, little information of what happened before the first sample and after the 
last sample will be available. Yet, computing the signal approximation from eq. (4.27) and eq. 
(4.28) might require knowledge of what happens before the first signal sample and beyond the 
last signal sample.  

 
The problem can easily be illustrated by matrix calculations at the first decomposition 

level in the wavelet transform. This time we chose to utilize the Daubechies wavelet with four 
wavelet and four scaling coefficients. Again consider a signal sampled 8 times and where the 
finest resolution level is approximated by the signal measurements. The matrix calculation 
required to compute the approximate coefficients at the first decomposition level is illustrated 
in Figure 4.11. h(0) - h(3) denotes the four scaling coefficients and h1(0) - h1(3) denotes the 
four wavelet coefficients. The index n in eq. (4.27) and eq. (4.28) is hence chosen to be 
integers from 0 to 3. Note that n might equally well be chosen from -1 to 2. This is simply a 
choice we need to make. To calculate the approximate coefficient with index 3 at the first 
decomposition level, the following matrix calculation is required; 

98761 )3()2()1()0()3( shshshshc hhhh . However, the signal measurements s8 or s9 are not 
available. The same problem will occur at every subsequent decomposition level in the 
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wavelet transform.  Thus we need to make some assumption as to which values to utilize in 
the matrix calculation beyond the last available signal measurement.  

 
 

 
Figure 4.11: Matrix illustrations of wavelet transform calculations with boundary problems. 

  
               

The most common and popular method used to deal with boundary problems for finite 
sampled signals, is to assume periodic signals. However, this is often a poor assumption since 
we prefer wavelet analysis if dealing with non-stationary signal. Nevertheless, because of the 
simple numerical implementation this approach is frequently preferred. Consider the case 
where the signal is sampled N times on the interval [0,1]. Thus by assuming periodic signal at 
the boundaries of t=0 and t=1 we have that; 
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This will normally result in large detail coefficients at the boundaries in the wavelet 

transform. A better approach is to assume that the signal can be folded (or mirrored) around 
the boundaries at t = 0 and t= 1. Again if the signal is sampled N times on the interval [0,1], 
the folding of the signal around the boundaries at t=0 and t=1 implies that; 
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This approach is far better than assuming the signal to be periodic, but folding the signal 
around the boundaries at t=0 and t=1 will cause discontinuities in the derivatives. This will 
again create big detail coefficients at the boundaries in the wavelet transform.  
 

The matrix calculation required when utilizing the periodic boundary condition is 
shown in Figure 4.12. The coefficients c(3)1 and d(3)1 are calculated with the use of the signal 
measurements s1 and s2 instead of s8 and s9. 
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Figure 4.12: Matrix illustrations of wavelet transform calculations with periodic boundary 
adjustment.  
  

When performing the inverse wavelet transform by eq. (4.29), we again need to adjust 
for boundary effects, and the matrix calculations with periodic boundary conditions thus 
becomes as shown in the Figure 4.13. g(0) - g(3) denotes the four scaling coefficients and 
g1(0)-g1(3) denotes the four wavelet coefficients used in the inverse wavelet transform. 
 

 
Figure 4.13: Matrix illustrations of inverse wavelet transform calculations with periodic 
boundary adjustment.  
 
Periodic boundaries give a very simple numerical implementation and are often preferred for 
this reason. Although more sophisticated methods exist to further deal with this problem(58), 
the wavelet transform in this work appears to be handled well utilizing the two boundary 
methods described above. However, we will later in the framework of a real-time wavelet 
transform, discuss how to wavelet transform real-time signal measurements without the 
influence of boundary effects. 
 

The next section will explain how wavelets can be used to remove noise from signal 
measurements in order to obtain a better signal approximation by the use of a method referred 
to as Waveshrink.  
 
 

4.8 Wavelet Filtering 
In the last decade the de-noising literature has been dominated by a technique called 
Waveshrink or wavelet filtering first developed by Donoho et. al.(53; 54) Wavelet filtering has 
proved to be an efficient way of finding structures in a signal contaminated with noise without 
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assuming any particular parametric regression model on the signal measurements. In fact, it 
has been shown that the Waveshrink method have asymptotical properties within the ideal 
performance (55; 62; 63; 64) for applications in de-noising.  

 
Recall from section 4.3 that we represented the signal measurements by a series of 

basis functions called wavelet and scaling functions as given by eq.(4.49). The coefficients in 
this representation were referred to as detail and approximate coefficients. The magnitude of 
the detail and approximate coefficients would represent the “strength” of the different basis 
functions. As outlined in section 4.3, it might be envisioned that the detail coefficients at 
different resolution levels can be used to represent different frequencies in the signal 
approximation. The wavelets representing the difference between the finest signal 
approximations can be envisioned as representing the highest signal frequencies. Wavelets 
used to represent the difference between the coarsest approximations can be envisioned to 
represent the low frequency content of the signal approximation. Thus by removing different 
wavelet functions (or equally detail coefficients) from the signal approximation, this can be 
used to change or manipulate the signal approximation. In applications as de-noising, we 
would typically like to remove the high frequencies from the signal approximations assumed 
to origin from noise. This can easily be accomplished by removing the detail coefficients at 
the finest resolution levels in the signal approximation. However, large abrupt signal changes 
typically encountered in non-stationary signals would also be represented by the use of small 
wavelet functions. These changes will typically result in large detail coefficients in the signal 
approximation and will be important to maintain. As a result, a better approach would be to 
remove those wavelet functions at the finest resolutions levels with small detail coefficients. 
Hence we can have a detailed description of the signal for some time intervals while other 
time intervals can be described with little details in the signal approximation. This illustrates 
the idea behind wavelet filtering where only a few large detail coefficients are assumed to 
originate from the signal while the rest and small ones are assumed to originate from noise (58; 

61; 53). Thus a better approximation of the underlying signal function can be obtained by 
removing the small detail coefficients caused by the noise and keeping the large ones. This 
will provide us with a better representation of the underlying signal function than the 
measurements themselves.  
 

We seek to remove the noise from these measurements by utilizing the Waveshrink 
method. To de-noise signal samples by the use of the Waveshrink method, we need to wavelet 
transform the signal samples to obtain a signal approximation as given by eq. (4.49) and 
where the number of resolution levels is given by eq.(4.50). The detail and approximate 
coefficients at each resolution level is calculated by eq. (4.27) and eq. (4.28). The 
approximate coefficients at one resolution level are used as input to the next coarser 
resolution level, while the approximate coefficients at the finest resolution level are 
approximated by the signal samples themselves. For the moment, we will perform the wavelet 
transform with all available resolution levels, although we later might choose to only modify 
the detail coefficients at some of the finest resolution levels. We will seek to remove or 
modify detail coefficients assumed to origin from noise. How the detail coefficients are 
modified is determined by a shrinkage rule and which detail coefficients to modify is 
determined by the threshold value. If the detail coefficients have been modified in one way or 
another, the remaining detail and the approximate coefficients can be transformed back 
through the inverse wavelet transform in order to obtain a new signal approximation. The 
inverse transform is simply to reconstruct the signal approximation by the use of eq. (4.29) by 
the use of the modified detail coefficients and the (unchanged) approximate coefficients.   
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Let us consider N measurements taken of a signal ],...,,[ 110 1[ NsssS . Each 
measurement will be assumed to be influenced by noise. This noise, ],...,,[ 110 1[ NN,10 , will 
be assumed normally distributed with zero mean and a given standard deviation, also 
commonly referred to as white noise. Thus  
 

(4.53) ,YS            
  
where S is the signal influenced by noise ε and where ],...,,[ 110 1[ NyyyY  is the noise free 
signal. The Waveshrink method can be summarized in the following way; 
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where W is the wavelet transform, δ is the shrinkage rule, λ is the threshold value and W-1 is 
the inverse wavelet transform. The new signal estimate, ],...,,[ 110 1[ NfffF  , is assumed to be a 
better approximation of the noise free signal Y then the original measurements S.  
 

Since the wavelet transform is an orthogonal transformation, white noise in the signal 
samples will remain white after transformation. (In general, the Gaussian ideal distribution 
has been reported as a very good model for the detail coefficient distribution at each 
resolution level(17)). The noise will be present in the detail and approximate coefficients as; 
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and  
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However, even though the noise often is assumed to be white, the Waveshrink method 
is shown to work well even in cases where the noise is coloured (65). 
 

Several choices need to be made to facilitate the removal of noise in Waveshrink. We 
need to select a wavelet and scaling function to utilize in the wavelet transform of the signal 
measurements. Further we have to determine a shrinkage rule for how to modify the wavelet 
coefficients, we need to determine a threshold to determine which wavelet coefficients to 
modify and we need to determine at which resolution level(s) to modify the wavelet 
coefficients. Some threshold estimators require an estimate of the noise level in the signal 
measurements. Hence we will need to determine how to estimate the noise level in the signal 
measurement as well. In the next sections we will give an overview of the most common 
wavelets, shrinkage rules, thresholds estimators and noise estimators found in the literature, at 
least in this author’s opinion.   
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4.8.1 Wavelet  
In order to apply the Waveshrink method as described above, we will need to select which 
wavelet to utilize in the signal approximation. Different wavelets will provide us with 
different approximate and detail coefficients in the signal approximation. As we in the 
Waveshrink method seek to modify the detail coefficients in the signal approximation, and 
where this modification will depend upon the magnitude of the detail coefficients, the 
performance of the Waveshrink method will ultimately depend upon the wavelet considered.  
 

As already mentioned, when choosing a wavelet, we usually do not choose the wavelet 
function itself, but the scaling and wavelet coefficients which can be used to represent the 
wavelet function. Below is a list showing wavelets with the number of scaling and wavelet 
coefficients considered in this work.  
 

 Daubechies:     2 ( Haar ), 4, 6 , 8, 12, 20 
 Coiflet:     6, 12, 18 
 Symmlet:     4, 6, 8, 12, 20 
 Bi-orthogonal splines: 26, 35, 39, 44, 48 
 Inv. Bi-orhtogonal splines:   62, 55, 93, 44, 84 
 Spline:    4246 

 
Daubechies, Coiflet and Symmlets are all orthogonal wavelets. The bi-orthogonal and 

the inverse bi-orthogonal splines are bi-orthogonal wavelets, while the Spline wavelet is a 
non-orthogonal wavelet. For the orthogonal wavelets, the number of scaling and wavelet 
coefficients will be equal, while the bi-orthogonal wavelets might have a different number of 
wavelet and scaling coefficients in h(n) and h1(n). The orthogonal wavelets will be named 
after the number of wavelet coefficients (or equally scaling coefficients), as for instance, 
Daubechies4 or Symmlet8. This means a Daubechies wavelet with 4 wavelet coefficients or a 
Symmlet wavelet with 8 wavelet coefficients. The bi-orthogonal wavelets will be named both 
after the number of scaling coefficients and the number of wavelet coefficients, for example 
Spline39. This refers to a bi-orthogonal spline wavelet with 3 scaling coefficients and 9 
wavelet coefficients. At the end of section 4.5 we introduced a third wavelet system, the non-
orthogonal wavelets. For the non-orthogonal wavelets, there might be a different number of 
wavelet and scaling coefficients in both h(n), h1(n), g(n) and g1(n). Thus these wavelet will be 
referred to as, for example Spline4246. This refers to a non-orthogonal wavelet with 4 scaling 
coefficients and 2 wavelet coefficients in the wavelet transform, while there is 4 scaling 
coefficients and six wavelet coefficients in the inverse wavelet transform.  
 

The scaling and wavelet coefficients for three wavelets, namely Haar, Spline39 and 
Spline4246 are shown in the table 5.1 – table 5.3 below. The wavelet and scaling coefficients 
for the rest of the wavelets considered in this work are provided in appendix B.   
 
Table 4.1: Scaling and wavelet coefficients for Haar wavelet.  

n h(n) h1(n) 
0 0.5 0.5 
1 0.5 -0.5 
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Table 4.2: Scaling and wavelet coefficients for Spline39 wavelet.  
n h(n) )(~ nh  
0  2.34375 e-02 
1  -4.6875 e-02 
2  -1.25 e-01 
3 0.25 2.96875 e-01 
4 0.5 7.03125 e-01 
5 0.25 2.96875 e-01 
6  -1.25e-01 
7  -4.6875e-02 
8  2.34375e-02 

 
 
   Table 4.3: Scaling and wavelet coefficients for Spline4246.  

n h(n) )(~ nh  g(n) )(~ ng  
0    -3.125e-2 
1 1.25e-2  1.25e-2 -2.1875e-1 
2 3.75e-1 -0.5 3.75e-1 -0.6875 
3 3.75e-1 0.5 3.75e-1 0.6875 
4 1.25e-2  1.25e-2 2.1875e-1 
5    3.125e-2 

 
 
The Haar and Daubechies4 wavelets are perhaps the most common used wavelets for 

Waveshrink, while bi-orthogonal wavelets as the Spline39 and non-orthogonal wavelets like 
Spline4246 are more rarely used. This since people in general is more familiar with the 
orthogonal wavelets than the bi-orthogonal and non- orthogonal ones. Next we will describe 
the different shrinkage rules considered in this work. 
 

 

4.8.2 Shrinkage Rule 
A shrinkage rule determines which of the detail coefficients to keep, remove or modify in any 
desired manner. For instance, if all small detail coefficients were assumed to mostly origin 
from noise while the large wavelet coefficients were assumed to mostly origin from the signal 
itself, we might for instance choose to keep the large detail coefficients and remove the small 
ones. Hence the shrinkage rule would be to remove all “small” detail coefficients and to keep 
all “large” detail coefficients. By applying such an approach, we subsequently would need to 
determine what is meant by “small” or “large” detail coefficients, but for the moment, we will 
consider all detail coefficients above a specified threshold λ as large and all detail coefficients 
below this threshold λ as small. For simplicity, we will further consider the detail coefficients 
at all available resolution levels. The number of available resolution levels for a given 
sampled signal was previously discussed in section 4.7, and where the coarsest resolution 
level was limited by the number of measurements available and given by eq. (4.50). 
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Hard Shrinkage rule 
If we choose to apply a shrinkage rule which keeps the large detail coefficients and removes 
the small ones, this shrinkage rule is referred to as Hard shrinkage and was developed by 
Donoho and Johnson (53). The Hard shrinkage rule can be mathematically stated as; 

 
(4.57) .
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Here δλ
H denotes the shrinkage rule, dj(k) the detail coefficients (where j denotes the 

resolution level and k the index of the detail coefficients at the resolution level considered). 
The Hard shrinkage rule is often referred to as a “keep or kill” approach since we either keep 
or discards the detail coefficients.  
  

As already discussed, one assumes that the small detail coefficients mostly origin from 
noise while the large detail coefficients mostly origin from the signal itself. However, also the 
large detail coefficients might be influenced by some noise as can be seen from eq. (4.56). In 
the Hard shrinkage rule this is completely ignored. Hence the Hard shrinkage rule in general 
fails to remove the noise from the large detail coefficients and the filtered signal will typically 
contain noise spikes. To overcome this problem, the Soft shrinkage rule was developed. 
 
 
Soft Shrinkage rule 
Another popular shrinkage rule is referred to as the Soft shrinkage rule, also developed by 
Donoho and Johnson (53). The Soft shrinkage rule can be mathematically stated as; 
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Here δλ
S denotes the Soft shrinkage rule. Again we remove all details coefficients below a 

given threshold λ. However, instead of keeping the detail coefficients above this threshold λ 
as we did in the case of the Hard shrinkage rule, we choose to shrink the detail coefficients 
above this threshold with a given value. In the Soft shrinkage rule, this value is chosen to be 
equal the threshold.  

The Soft shrinkage rule shrinks all detail coefficients with a given value and generally this 
approach tends to remove more information from the signal approximation then just noise. 
Improvements have been proposed in new shrinkage rules which often are compromises 
between the Hard and the Soft shrinkage rule. Such shrinkage rules are the Garrote (66), SCAD 

(63) and Firm (61).  

 
 
Scad Shrinkage rule 
The SCAD shrinkage rule was proposed by Fan et al.  (63) and given as; 
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This is a keep, shrink or kill rule. Fan et al.  suggested α equal to 3.7. In this shrinkage rule 
we keep the detail coefficients above λα, while the detail coefficients below are shrunken in 
two different ways depending upon their magnitude. This shrinkage rule is believed by Fan et 
al.  to have some advantageous over the Hard and Soft shrinkage rules.  
 
 
 
Non-negative Garrote  
The non-negative Garrote, a compromise between the Hard and Soft shrinkage rules, was 
introduced by Breiman (66) and is defined as; 
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The Garrote shrinkage function is continuous like the Soft shrinkage function. Gao (62) shows 
that the Garrote shrinkage rule might offer some advantages over the Hard and Soft shrinkage 
rule in terms of smaller bias than for the Soft shrinkage rule and smaller variance than for the 
Hard shrinkage rules.  
 
 
 
Firm 
Gao et al. (61)  introduced the firm shrinkage rule as;  
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The firm shrinkage rule requires two threshold λ1 and λ2.  Consequently, the drawback using 
the Firm shrinkage rule is the requirement of these two various thresholds. This makes 
threshold selection more difficult than for the other shrinkage rules. However, if appropriate 
thresholds are selected, it is believed by Gao et al.  that the firm shrinkage rule should 
outperform both the Hard and Soft shrinkage rule. 

 

 
Block shrinkage 
In the shrinkage rules described until now, the detail coefficients are filtered term by term. If 
the detail coefficients are evaluated on a block basis rather than individually, this is referred to 
as block shrinkage. The idea is that a detail coefficient is more likely to contain important 
signal information if the neighbour coefficients do. Cai (67)  proposed a block shrinkage 
method referred to as BlockJS. At each level j, the coefficients are grouped into blocks B of 
length L as; 
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The detail coefficients in each block are modified by the following shrinkage rule; 
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where SjB

2 is the signal energy of each block and is for a discrete signal given as; 
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In addition, L = log( N ),  λ = 4.50524 and σ is the noise level in the signal measurements. As 
opposed to the previous described shrinkage rules (Hard, Soft, SCAD and Garrote ), the block 
shrinkage rule requires no separate estimate of a threshold to determine which detail 
coefficients to keep, shrink or remove. The relative shrinkage of the detail coefficients is 
small if the signal energy in the block is considered as high, while the relative shrinkage of 
the detail coefficients is large if the signal energy in the block is considered as low.   

 
It is also possible to look at overlapping blocks as shown by Cai and Silverman(64).  

Thus, the treatments of the coefficients in the middle of the block depend on the entire block. 
At all resolution levels j, the coefficients are grouped into blocks of length L0. The blocks are 
expanded to length  /2)L1,(maxL 01 m in each direction. At the start and end of each level, the 
blocks are only expanded in one direction. L is thus given as L = L0 + 2L1. If L0 = log( N ) / 2 
and λ = 4.50524, Cai and Silverman named the method Neighblock. If L1 = L0 = 1 (and thus L 
= 3) and λ = 2/3 log(N), they named the method NeighCoeff.  Hence, the Neighcoeff chose a 
threshold for each coefficient with reference to the neighbour coefficients, while NeighBlock 
threshold coefficients simultaneous in blocks using the coefficients outside the block as a 
reference. The thresholding is accomplished in the same manner as for BlockJS in eq. (4.63) 
eq. (4.64). 

Athichanagorn et al. (5) proposed a hybrid method where the Hard shrinkage rule was 
applied close to transients while the Soft shrinkage was applied elsewhere. This since Soft 
shrinkage rule might over-smooth the signal close to the transients while the Hard shrinkage 
rule might fail to suppress noise spikes elsewhere. This method lacks the simplicity of the 
other described shrinkage rule as it requires the detection of transients. We believe that 
SCAD, Garrote and Block shrinkage offers the same compromise as the hybrid shrinkage rule 
proposed by Athichanagorn et al., but without the requirement for transient detection. 
Therefore the hybrid shrinkage rule is not considered in this work.  

In the Hard, Soft, SCAD and Garrote shrinkage rule shown above, a threshold is 
required to determine which detail coefficients to keep, shrink and/or remove. In order to 
apply the shrinkage rules considered, we need to determine this threshold. There are again 
many possible choices for how to select this threshold. The threshold is estimated by utilizing 
different threshold estimators. These will be discussed next. 

 
 

4.8.3 Threshold Estimator 
Numerous threshold estimators have been proposed in the literature in order to determine the 
value of the threshold required in the shrinkage rules described in the previous section. It is 
important to select the “correct” thresholds for use in Waveshrink. Selecting a too large 
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threshold will over-smooth the signal while selecting a too small threshold will not remove 
the noise from the signal measurements. We have to main classes of threshold estimators, 
global or level dependent threshold estimators. A global threshold estimator utilizes the same 
threshold at all resolution levels while a level dependent threshold estimator applies different 
thresholds at different resolution levels. Below the most common threshold estimators found 
in the literature is described, at least in this author’s opinion. 
 
 
 
Universal Threshold 
The most common and widely used threshold estimator is the (global) universal threshold 
proposed by Donoho and Johnson (53) and given as; 

 
(4.65) )log(2 NUGUG  

λUG denotes the (global) universal threshold estimator and N is the number of signal 
measurements. To apply this threshold estimator, we need an estimate of the signal noise. 
This will be discussed in a separate section next, since as in the case of which shrinkage rule 
and threshold estimator to select, we have different choices for how to obtain an estimate of 
the signal noise. However, it is important to notice that some threshold estimators might 
require an estimate of the signal noise while others do not.  

The magnitude of the universal threshold will not depend upon the decomposition 
level considered. If we instead chose to use different threshold at every decomposition level, 
the threshold estimator is referred to as a level dependent universal threshold estimator and 
given as; 

 
(4.66) )2/log(2 11jU NU  

λU denotes the universal threshold estimator, N is the number of signal measurements, j is the 
resolution level considered and σ is the standard deviation of the signal noise. 
  

Kovac et. al.29 experienced that the estimated universal threshold often was too large 
for the signal they considered and suggested a reduced universal threshold as; 
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Minimax Threshold 
Minimax thresholds are tabulated thresholds that will depend upon the shrinkage rule 
considered. Minimax thresholds have been derived by Donoho and Johnson (53) for Soft 
shrinkage, by Bruce et al.  (68) for Hard shrinkage, by Gao (62) for Garrote  shrinkage, by Gao 
et al. (61) for firm shrinkage and by Fan et al.  (63) for SCAD. The tabulated thresholds for the 
different shrinkage rules are given in Table 4.4. We chose to apply linear extrapolation to 
calculate Minimax thresholds when the number of signal measurements is above those listed 
in Table 4.4.  
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Table 4.4: Minimax threshold values for various shrinkage rules. 

 N=128 N=256 N=512 N=1024 N=2048 
Garrote  2.075 2.261 2.441 2.615 2.784 
SCAD 1.691 1.881 2.061 2.241  
Firm λ1 1.893 2.116 2.331 2.538 2.737 
Firm λ2 7.890 7.549 7.259 7.069 6.939 
Hard 2.913 3.117 3.312 3.497 3.674 
Soft 1.669 1.859 2.045 2.226 2.403 

 
 
The Minimax threshold is usually reduced at each decomposition level according to the 
values in Table 4.4. For example; when applying the Garrote shrinkage rule for a signal with 
2048 measurements, the threshold at the first decomposition level is 2.784, at the second 
decomposition level 2.615 etc. On the other hand, if the threshold 2.784 is utilized at every 
decomposition level for a signal with 2048 measurements, the threshold is referred to as the 
Global Minimax. The final Minimax threshold is multiplied with the estimated noise level as; 
 

 
(4.68) **M  

 
where σ is the estimated noise level and λ* is tabulated values from Table 4.4 for the 
shrinkage rule considered.  
 
 
 
Sure 
Stein’s Unbiased Risk Estimation (69)  known as SURE, is for Soft shrinkage rule given as; 
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and for Garrote  shrinkage rule as; 
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The goal is to find the threshold that minimizes SURE(λ;X). If Xkd j X)(  where dj(k) is the 

detail coefficient with index k at resolution level j, one obtains; 
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where j0 is the primary resolution level. The above optimization is straightforward. The SURE 
threshold method requires the shrinkage function to be continuous and consequently it is not 
defined for Hard shrinkage rule. Mallat (58) suggest using Soft SURE threshold multiplied by 
two for Hard shrinkage rule. The Soft SURE threshold multiplied by two will be used as the 
Hard SURE threshold also in this work. We are not aware that any SURE estimate has been 
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developed for SCAD. However, we chose to use the Garrote SURE threshold as the SCAD 
SURE threshold as well.  

 
 

 
Hybrid Sure 
SURE has a drawback in situation where there is extreme scarcity in the detail coefficients. A 
hybrid scheme is used in these cases. The estimator in the hybrid scheme works in the 
following way; 
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hybridhy denotes the hybrid threshold estimator, uu denotes the universal threshold estimator 

given by eq. (4.66) and SURESU denotes the SURE threshold estimator given by eq. (4.71). dj(k) 
denotes the wavelet coefficient at resolution level j with index k.  
 
 
 
Birge Massart  
The method developed by Birge and Massart (70) includes a variable a that can be adjusted for 
high or low smoothing. It is common to call them penalized low, medium and high for a 
values of 1.5, 2.5 and 10 respectively. The parameter a describes the scarcity in the wavelet 
coefficients.  The threshold is given as; 
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As with the SURE threshold, it involves an optimization for determination of the optimal 
threshold.  
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Multiple hypothesis testing 
The filtering of wavelet coefficients can also be viewed as a multiple hypotheses testing 
problem to whether or not a given detail coefficient should be discarded; 
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If H0 is rejected, the coefficient is kept, otherwise it is discarded. The procedure described 
here to test the zero hypothesis, is the procedure described by Abramovich et.al (71).  The idea 
behind the proposed procedure is to keep as many detail coefficients as possible, and only 
discard detail coefficients if there is a strong evidence for doing so. If the detail coefficients 
are assumed normal distributed with mean μ and standard deviation σ, one can test the zero 
hypothesis by calculating; 
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where Λ is the cumulative distribution function of a standard normal random variable and σ is 
an estimate of the noise level in the signal measurements. All estimated pj(k) are sorted 
according to their size and we need to determine the i index (all pj(k) values are indexed i) that 
maximize the expression; 
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where N is the number of signal measurements and α is a selected significance level. This is 
usually chosen equal the traditional levels for significance in hypothesis testing, i.e. α = 0.01 
or α =0.05.  From the imax determined in the above expression, we can calculate the threshold 
for use Waveshrink as;  
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where Λ-1 is the inverse cumulative distribution function of a standard normal random 
variable. λFDR is a global threshold, i.e. the same threshold value is applied at all resolution 
levels. However, note that the detail coefficients at all resolution levels are used to calculate 
this threshold. While the multiple hypothesis testing procedure seeks to keep as many 
coefficients as possible, the recursive hypothesis procedure described next only keeps 
coefficients if there is strong evidence for keeping them.  
 
 
 
Recursive hypothesis testing 
Recursive hypothesis testing was developed by Ogden et al.  (72). Instead of having a global 
threshold as produced in the multiple hypotheses testing procedure above, they developed a 
hypothesis testing procedure that creates level dependent thresholds. Again the hypothesis in 
eq. (4.77) is tested; 
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The detail coefficients are again assumed normal distributed with mean μ and standard 
deviation σ. Ogden et al.  proposed to test the above zero hypothesis by calculating what they 
refer to as the critical point of a distribution as; 
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where Φ is the cumulative distribution function of a standard normal random variable and α is 
the selected significance level usually chosen equal the traditional levels for significance in 
hypothesis testing, i.e. α = 0.01 or α =0.05. Initially, b in the above equation will equal the 
number of detail coefficients at the resolution level considered.   

The square value of bx  is compared with the square value of the largest detail coefficient at 
the resolution level considered. As long as the square value of the largest detail coefficient is 
larger than the square value of bx , the largest detail coefficient is eliminated. Each time a 
detail coefficient is eliminated, b is set equal the number of remaining detail coefficients and 
eq. (4.81) is recalculated. This means that one continuously throws out the largest detail 
coefficients until only pure noise is left. When the square value of the largest remaining detail 
coefficient is beyond the square value of bx  , the value of this largest remaining detail 
coefficient is chosen as the threshold at the resolution level considered. Hence the threshold is 
set equal the largest value of the “small” detail coefficients assumed to origin from noise only. 
 
 
Threshold summary 

Not every threshold estimators can be applied together with the shrinkage rules described 
in 4.8.2. The combinations of shrinkage rules and threshold estimators applied in this work 
are shown in Table 4.5.  

 
As mentioned in section 4.8.3, the SURE threshold estimator is not defined for the 

Hard shrinkage rule. However, Mallat (58) suggested using the Soft SURE threshold estimator 
multiplied by two. We chose to do the same. We are not aware of any SURE threshold 
estimator developed for the SCAD shrinkage rule. In this case we chose to use the same 
threshold estimator as for the Garrote shrinkage rule. For the Firm shrinkage rule, only the 
Minimax thresholds are considered due to the complexity involved in evaluating two different 
thresholds. For the block shrinkage rule, no threshold estimator is required. However, we did 
describe three different block shrinkage methods namely; BlockJS, NeighCoeff and 
Neighblock.  The methods differ in how the detail coefficients are shrunk and all three 
methods are considered in this work. To the right in Table 4.5, it is indicated whether the 
threshold estimator is a global or a level dependent threshold estimator, i.e. if the same 
threshold is applied at all resolution levels or if different thresholds are applied at different 
resolution levels. A global threshold is denoted G while a level dependent threshold is denotes 
L. 
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Table 4.5: Shrinkage rules and threshold estimators considered in this work. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
1Soft SURE threshold estimator multiplied by two as suggested by Mallat18. 
2The same threshold as for Garrote  shrinkage. Choice made by this author. 
3No threshold is required in the block shrinkage rule. 
 
 

4.8.4 Noise Estimator 
As mentioned in the previous section, we might need an estimate of the signal noise in order 
to utilize a particular threshold estimator. Once again, we have several different ways of 
obtaining such an estimate. However, common for the two noise estimators considered in this 
work, is that they will estimate the signal noise based upon the detail coefficients at the first 
decomposition level. Maybe the most popular noise estimator, proposed by Donoho and 
Johnson(54), is the median noise estimator given as; 
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MAD is the median value of the absolute values of the detail coefficients at the first 
decomposition level in the wavelet transform. The constant 0.6745 is obtained based upon the 
assumption that the noise is normal distributed with a given standard deviation and zero 
mean(54). Another method for estimation of noise is by standard deviation estimation; 
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N is the number of signal measurements and d1 denotes the detail coefficients at the first 
decomposition level. Estimating noise by standard deviation is believed to give good results 
only if the underlying function is smooth. For a piecewise continuous function, the standard 
deviation noise estimation will give too large noise estimates. 
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Global Universal x x x x   G  
Reduced Universal x x x x   G  
SURE x1 x x2 x    L 
Hybrid SURE x1 x x2 x    L 
MINIMAX x x x x x   L 
Global MINIMAX x x x x x  G  
Penalize low, med, high x x x x    L 
Multiple hypothesis x x x x   G  
Recursive Hypothesis x x x x    L 
No threshold required      x3  L 
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4.8.5 Primary Resolution Level 
Until this section, we have not discussed which resolution level(s) to include in Waveshrink. 
Should only the detail coefficients at some resolution levels be applied in Waveshrink or 
should the details coefficients from all possible resolution levels be applied in Waveshrink? 
(Recall that for finite sampled signals, the resolution levels range from the coarsest resolution 
level given by eq. (4.50) to the finest resolution level with index 0, where the finest resolution 
level is approximated by the signal samples.) 
 

Donoho and Johnson states that for infinite samples all resolution levels should be 
filtered. However when the samples are finite, the coarsest resolution levels according to 
Donoho and Johnson (54), should not be filtered even if the detail coefficients fail to pass the 
threshold in the shrinkage rule considered. There have been several proposals for how many 
decomposition levels to filter. Donoho and Johnson (53) used a fixed level at j0 = 5 and Nason 

(73) used a fixed level at j0 = 3, i.e. they chose to filter the detail coefficients below the 
estimated threshold at the 5 or 3 finest resolution levels respectively. The selected filter level 
j0 is referred to as the primary resolution level.  

 
Another way, and maybe the most popular, is to estimate the primary resolution level 

from; 
  

(4.84) .1))(log(log20 1l Nj     
 
The primary resolution level will in this case depend upon the number of signal samples N. 
This formula is based on asymptotical consideration by Härdle et al.  (74). 
 
 When applying a fixed primary resolution level, we obviously would need to verify 
that this will not be limited by the number of resolution levels given by eq. (4.50), i.e. we 
need to require that the number of available resolution levels in the signal approximation must 
be equal to or greater than the primary resolution level. In general this will only be a problem 
if the number of signal measurements is very limited and a fixed primary resolution level is 
considered (as for instance j0 = 5). 
 

Again, as with the shrinkage rule, threshold estimator, noise estimator and wavelet, we 
had several different choices for how to select the primary resolution level. Which one to 
choose for the signals we consider in this work will be the scope of chapter 5. In the next 
section we will introduce a slightly different wavelet transform called the stationary wavelet 
transform. This wavelet transform has been shown to have good properties when it comes to 
applications in de-noising.  
  
 

4.9 Stationary Wavelet Transform 
In the presence of discontinuities or sharp signal changes, the de-noising process in the 
previous section might introduce oscillations in the function approximation around these 
sharp changes or discontinuities (also referred to as Gibbs phenomena). This is nevertheless a 
much smaller problem in wavelet analysis than for instance in Fourier analysis. In addition, 
the problem can be further reduced in wavelet analysis by the introduction of the translation 
invariant wavelet transform or the wavelet stationary transform. This is also known as 
"algorithme à trous"  and was introduced by Holdschneider et al.  (75) The wavelet transform 
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is made stationary by removal of the down-sampling step in the wavelet transform and the up-
sampling step in the inverse wavelet transform. Recall from chapter 4.4 that down-sampling 
was applied to remove every second sample in the wavelet transform and denoted (↓2) while 
up-sampling was applied in the inverse wavelet transform and denoted (↑2). This is illustrated 
in the figures below, Figure 4.14 and Figure 4.15, where the up-sampling and down-sampling 
is set equal 1, indicating that the same number of points will be kept in both the down-
sampling and the up-sampling. 
 

 
Figure 4.14: Wavelet transform without down-sampling.  
 
 
 

 
Figure 4.15: Inverse wavelet transform without up-sampling. 
 
 

The stationary wavelet transform will in turn introduce redundancy in the signal 
approximation. As indicated earlier in chapter 4.4, by keeping half the number of approximate 
and half the number detail coefficients at level j, (compared to the number of approximate 
coefficients at level j-1) the signal approximation at the finer level j-1 can be reconstructed 
without loss of information. This was referred to as perfect reconstruction. By keeping an 
equal number of approximate and detail coefficients at each resolution level, we keep more 
information than required in order to reconstruct the finer signal approximation, and hence we 
will have redundancy in the signal approximation. The stationary wavelet transform will 
however provide us with better properties when it comes to applications as de-noising.(76; 77) 

 

The wavelet transform previously illustrated in Figure 4.8, can in a similar way be 
illustrated in the case of the stationary wavelet transform. This is shown in Figure 4.16. Even 
though the number of approximate and detail coefficients at each resolution level is constant, 
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the number of levels that can be applied in the wavelet transform will still be limited by 
eq.(4.50). 

 
 

 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
Figure 4.16: The approximate and detail coefficients obtained in the stationary wavelet 
transform at different decomposition levels. 

 

 

 

4.10  Summary 
We have in this chapter discussed the theory of wavelet analysis required in this work. First it 
was shown how a signal can be approximated by a sum of basis functions called scaling 
functions which was well-localized in time and space. These could be used to approximate a 
signal with different resolutions depending upon how broad or narrow these functions were 
chosen. We introduced a second set of basis functions called wavelet functions that were used 
to represent the differences between different approximations made by the scaling functions. 
The wavelets were small oscillating waves well localized in time and can thus be envisioned 
to represent different frequencies of the signal approximation. This will provide us with what 
we call a time-frequency representation of the signal. How to obtain this signal approximation 
by the use of wavelet and scaling functions were discussed next in the wavelet transform. In 
some cases, it might be useful to apply a bi-orthogonal wavelet system. Instead of only having 
one basis, we can choose to use two bases. This provides a greater flexibility in the design of 
wavelets and allows a larger class of signals to be well approximated by wavelets. In the case 
where we were dealing with finite sampled signals, solutions assuming periodic signals and 
mirrored signals at the boundaries were described. Next we said that wavelet analysis is well 
suited for de-noising signal measurements and we introduced the Waveshrink method. A 
number of selections need to be made in the Waveshrink method before it might be utilized 
for de-noising. This includes selecting which wavelet, shrinkage rule, threshold estimator, 
noise estimator, and primary resolution level to use. The most common wavelets, shrinkage 
rules, threshold estimators, noise estimators and primary resolution levels found in the 
literature, at least in the author’s opinion, where described next. Finally, a wavelet transform 
without the sub-sampling step was introduced and referred to as the stationary wavelet 

s0       s1       s2         s3         s4        s5         s6         s7          
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transform and is preferred in applications as de-noising. Parts of the numerical 
implementation of the wavelet transform are shown in the appendix B. 

 
The implementation of the wavelet transform and the wavelet filtering will be used to 

investigate if it is possible to obtain automatic signal de-noising.  To achieve this, we need to 
make sure that the selected methods work well for the signals considered in this work. Recall 
that the signals considered in this work are signals commonly encountered in the E&P 
industry as pressure and rate signals. In other words we need to determine which wavelet, 
shrinkage rule, threshold estimator, noise estimator and primary resolution level to apply for 
the signals we have considered. This will be discussed in the next chapter. 
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Part 2: Results and Discussion 
 
5 Automatic Signal Filtering 
An increasing number of oil and gas wells are today equipped with high resolution gauges 
each capable of providing millions of measurements each year. Having a high resolution of 
the measured signals would be preferred in order to have a best possible description of the 
signals. However, it is computational costly to analyse such a large number of measurements 
and even simple visualization can be difficult. On the other hand, if we simply measured at a 
lower resolution, important signal information might be missed. Consequently we would like 
to reduce the number of measurements for analysis by removing those measurements with 
little information content and keep the rest. However, noise and outlier present in the signal 
measurements will make data reduction difficult. Hence we would like to remove outliers and 
noise from the signal measurements prior to data reduction. In addition, different types of 
analysis will become more difficult and in some cases even erroneous if noise and outliers are 
present in the signal measurements.  
 

 We will develop a module for automatic signal filtering. Thus all methods and 
selections required in signal filtering need to be predefined. We further need to make sure that 
the methods and selections proposed in automatic signal filtering work well with the signals 
considered. We believe it might be extremely difficult (or even impossible) to determine a 
single set of methods and selections that works well for any signals considered. However, we 
will only consider signal with particular characteristics, as for instance pressure and rate 
signals. Signal filtering includes outlier removal, de-noising and data reduction. 

 
Wavelet analysis has become increasingly popular in signal analysis and in particular 

for de-noising. One of the reasons for this is due to the great flexibility found within wavelet 
analysis where numerous selections can be specified to adapt the wavelet analysis to signals 
with different characteristics. This will on the other hand leave us with the problem which 
selections to utilize for our kinds of signal. Few if any guidelines at all are in general available 
for this. To determine this, a performance study is required for the signal(s) considered, and 
will be completed as a part of this work.   
 

The use of wavelet analysis for analyzing data from permanent downhole gauges in 
the E&P industry, was first introduced by Kikani et. al.(4). They used wavelet analysis to de-
noise pressure signals and to detect transients. Athichanagorn  et al.  (5) further introduced a 
seven step procedure for processing data from downhole gauges. The first four steps in the 
seven step procedure include signal filtering and event detection. These are; outlier removal, 
de-noising, transient detection and data reduction. The last three steps are well-test related and 
involve rate reconstruction, behavioural filtering and data interpretation. Athichanagorn et al. 
did not consider the performance of the selections made in Waveshrink (wavelet de-noising). 
Olsen et al.(1) did an extensive comparison study of the performance in Waveshrink for 
different selection. The performance of Waveshrink with different wavelets, shrinkage rules, 
threshold estimators and noise estimators for signals typically encountered in the E&P 
industry as pressure and rate signals was investigated. In addition, new methods for outlier 
removal and data reduction were proposed.  The paper by Olsen et al.(1) is based upon this 
work. Recently Ortiz et al. (12) published a similar comparison study for Waveshrink. Several 



Part 2: Results and Discussion 

77 
 

papers have in addition been published (6; 7; 8; 9; 10; 11; 13; 14; 15) on wavelet analysis, and a 
summary of wavelet analysis in the E&P industry has been published by Guan et al. (16).  It is 
however outside the E&P industry where most applications of wavelet analysis are found and 
among these is an extensive investigation of the performance of wavelet analysis on different 
kinds of signals by Antoniadis (17).   

  
Automatic signal filtering will in this work be performed with the same three steps as 

by Athichanagorn et al. (5)  First outliers will be removed. If outliers are present in the signal 
measurements, this can make de-noising and data reduction troublesome and they should 
therefore be removed first. Next, noise will be removed from the signal measurements. 
Finally, a large number of signal measurements might be reduced into a smaller subset that 
more easily can be handled by computers and through computer networks. Hence our 
automatic signal filtering approach is; 
 

 Automatic outlier removal 
 Automatic de-noising  
 Automatic data reduction 

 
The purpose of this work will be to improve the methods and selections utilized for 

outlier removal, de-noising and data reduction. A new method for outlier removal is 
presented. The method for outlier removal method presented by Athichanagorn et al. (5) could 
only remove single outlier and required a user specified threshold. We would like to have a 
method that can remove successive outliers. Secondly we would like to accomplish outlier 
removal without any user specified threshold(s) which is signal dependent. We will develop a 
method for outlier removal based upon a median filter for detection and removal of 
outliers, single as well as multiple, and without the need for a user specified threshold.  

 
Several selections need be made in Waveshrink (wavelet de-noising), and the 

performance of Waveshrink will depend critically upon the selection made, i.e. which  
wavelet, shrinkage rule, threshold estimator, primary resolution level and noise estimator to 
utilize. As already mentioned, Athichanagorn et al. did not consider the performance of the 
selections they made in Waveshrink. With the exceptions of the study by Olsen et al.(1)  and 
the recent study by Ortiz et al. (12), few performance studies exists for typical signals in the 
E&P industry as pressure and rate signals. In this work, we will determine the “best” 
Waveshrink selections for the signals considered through a series of filtering exercises. 
What is meant by “best” will also be explained. It will be shown that the performance of 
Waveshrink will depend critically upon the selections made.  
  

A new method for data reduction is presented as well. We will develop a simple 
method for data reduction by removing those measurements with small or none changes in 
magnitude since the previous measurement. The method requires no user selections or user 
defined thresholds. Thus all methods and selections in signal filtering will be predefined 
and this holds the promise for automatic signal filtering of the signals considered.  

 
Note that the signal filtering module is developed as a standalone module. This means 

that it can be used for data preparation to different analysis modules, not for well-test analysis 
only, as will be considered later in this work. This means that even if we in this chapter 
present recommendation for how to filter rate signals, we will in chapter 7 in the scope of 
well-test analysis, chose to only filter pressure signals and a different approach will be 
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chosen for rate signals. However, rate signal filtering might be an important input in other 
kinds of analysis and is thus included in this work.  

 
We will start by providing a detailed description of how the synthetic signals 

considered in this work were generated. Synthetic signals are required in this work as we need 
to know the true noise level in the signals we would like to de-noise. Otherwise it would be 
difficult to evaluate the performance of different selections and methods in Waveshrink. We 
will continue by describing the method preferred for outlier removal. Next the methods and 
selections preferred in Waveshrink for signal de-noising will be described. Waveshrink 
requires equally spaces signal measurements and we will next describe what to do in the case 
of unequally spaces signal measurements. Then we will describe how the performance 
analysis used to determine the “best” selections in Waveshrink was completed. Next the 
different methods and selections required in Waveshrink will be evaluated through a series of 
filtering exercises and Waveshrink will be used for signal de-noising with the selections and 
methods determined as “best”. We will not provide any discussion for why some selections 
and methods in Waveshrink work well while other does not. We will simply investigate which 
Waveshrink selections and methods that work best for de-noising typical signals encountered 
in the E&P industry as pressure and rate signals. Finally, we will show how the number of 
signal measurements can be reduced by a simple iterative method when the signal 
measurements are assumed free for outliers and noise.  

 
The results presented in this chapter are based upon the paper by Olsen et al. (1). 

However, the proposed noise estimator and threshold estimator from Olsen et al. is redefined 
in this work as will be described in chapter 5.3. 
 

 
 

5.1 Signal Generation 
A synthetic generated signal is a signal created from a mathematical model and not from 
measurements of some real physical process. We will consider both synthetic pressure and 
rate signals assumed to be representative for measured pressure and rate signals typically 
encountered in the E&P industry. In our work, the process model is a model that describes the 
pressure response in a production well as oil, gas and/or water is withdrawn from a reservoir 
through this well applying a specified rate history. This model was described in details in 
chapter 3, and the pressure response was given be eq. (3.29). However, to generate this 
synthetic pressure signal, we need to specify a synthetic rate history. Of course we could have 
utilized real rate signals measured in oil and gas wells, but this would leave us with two 
problems; first we did not have access to the number of rate signals desired in this study 
(>500) and secondly we would not know the true noise level in these signal measurements. 
Thus we choose to generate synthetic rate signals which are assumed to have the same 
magnitude and variance in rates as typically seen in real oil and gas wells. We choose to 
generate the rate signal as a piecewise constant function. To generate the rate history, we 
apply a random number generator. Parameters used to generate this rate history are drawn 
from uniform distributions within specified intervals (and with restriction). In order to have a 
piecewise constant function, we need to limit the number of rate changes to a certain fraction 
of the total number of measurements. Thus we choose to never have less than 10 
measurements in each rate change. In addition, if the number of rate changes did approach the 
number of measurements, the rate history would be completely random which would make 
signal filtering impossible. This since there would be no underlying signal trend. A zero rate 
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will in practice be the most common rate encountered and caused by well shut-ins. In addition 
to the random generated rates, we therefore chose to have a certain additional fraction of the 
rates equal zero. However, we limited the number of zero rates to never be more than a certain 
fraction of the total number of rates. If the rate is zero, the measurements are assumed to be 
noise-free. The rate history is hence generated based upon a random number generator 
drawing numbers from a uniform distribution within the limits shown below; 
 

 Number of Measurements: 250 – 100.000. 
 Time Interval: 3 – 90 seconds. 
 Rate Changes: 10 – 5.000 (Keep at least 10 measurements in each constant rate 

interval). 
 Measurements in Each Interval: 50% - 150 % (of average number of measurements 

in each interval) 
 Zero Rates: 1 – 500 (Keep it at least 10 times smaller than the number of rate 

changes. Zero rates are assumed noise-free). 
 Max Rate: 1.000 – 100.000 (stb/d). 
 Max Rate Change: 2 – 100 % (Allowed magnitude of change from one rate to next 

rate in term of max rate). 
 
This means that we might for instance have a rate history of 4600 measurements 

measured every 11 second. There might be 230 rate changes, i.e. we have 230 different time 
intervals with constant rate values. Thus the average number of rate measurements between 
each rate change is 20. The number of measurements for each constant rate is in addition 
allowed to vary with +/-50% of the average number of measurements in each time interval, 
i.e. the number of measurements for each constant rate will in this case be somewhere 
between 10 and 30. Next, 12 of the constant rate intervals might be zero. Both the number of 
zero rate values and their location in time will be selected on random. The maximum rate 
might for instance be 8900 std/d and the rate might be allowed to change with 10% of the 
maximum rate from one time interval to the next, i.e. if the rate is 1000 stb/d in one time 
interval, the next rate will be in the range from 110 stb/d to 1890 stb/d (+/- 10% of 8900 
std/d). The maximum rate change limitation does not apply if the next rate is zero or if the 
previous rate was zero. This is simply an example of how a random rate history might be 
generated, and since the values are drawn from uniform distributions, any other outcome 
within the specified parameter intervals listed above would be equally likely. 

 
Normal distributed noise with a given standard deviation and zero mean is added to the 

generated rate history and estimated pressure signal. However, note that the synthetic pressure 
is generated based upon the “exact” and noise-free values of the rates. The standard 
deviation for each noise distribution is chosen by random from a uniform distribution between 
1 and 10. Outliers are added to the signals as well. Some small fraction of the total number of 
measurements is accordingly selected as outliers, where the fraction is chosen on random 
from a uniform distribution between 0.001 and 0.05 (0.1% to 5% of the total number of 
measurements). The magnitude of each outlier is chosen on random from a uniform 
distribution ranging from 5 to 100 times the noise level. Up to nine successive outliers are 
allowed. 
 
 The noisy synthetic signal measurements are then filtered to determine the best filter 
selections. Each time a filter selection or a filtering method is proposed, it is at least based 
upon 500 random generated rate signals, and 500 pressure signals which are calculated based 
upon the generated rate signals.  Those filtered signals that have the smallest average root-
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mean-squared error compared with the original noise-free signal measurements (before noise 
and outliers was added) will be classified as the best filtered signal measurements and the 
selections utilized to obtain these best filtered signal measurements will be classified as the 
best filter selections. In Figure 5.1 (a) - (e), typical rate and pressure signals considered in this 
work are shown. 
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Figure 5.1: (a)-(e) Typical pressure and rate signals generated for use in signal filtering. 
 

 
The pressure and rate signals generated are assumed to be representative for pressure 

and rate signals measured in real wells. Consequently we expect that the results obtained by 
utilizing these synthetic generated signals will be equally valid with measurements of real 
signals. 
 
The first step in signal filtering is outlier removal and this will be described next. 
 
 

5.2 Outlier Removal 
Athichanagorn et al.  (5) proposed to use wavelet analysis to detect and remove outliers 
utilizing the non-orthogonal wavelet given by eq. (4.39). They proposed to screen the detail 
coefficients at the first decomposition level in the wavelet transform for two successive large 
values in opposite directions. A transient, on the other hand, will result in only one large detail 
coefficient at the first decomposition level. Thus outliers and transients can be distinguished 
from each other. This is illustrated in Figure 5.2 and Figure 5.3. Note that the index of the 
measurement is plotted along the x-axis. The original signal is shown in Figure 5.2. Outliers 
are present in measurements with indices 478, 507 and 513 while a transient is present in 
signal measurement with index 501. The detail signal at the first decomposition level in the 
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wavelet transform applying the non-orthogonal spline wavelet is shown in Figure 5.3. We 
clearly see that outliers and transients cause the response in the detail signal as described by 
Athichanagorn et al.  
 

The removal of outliers requires the specification of a threshold to determine which 
detail coefficients to consider as large. Athichanagorn selects a fixed threshold of 5 psi to 
separate outliers from the rest of the signal measurements. Hence all signal measurements 
which result in two successive detail coefficients with magnitude above 5 psi and in opposite 
directions at the first decomposition level in the wavelet transform are removed. 

 

 
Figure 5.2: Original signal with outliers at indices 478, 507 and 513 and a transient with 
index 501. 
 
 

 
Figure 5.3: Detail signal at the first decomposition level in the wavelet transform. 
          
  
          Khong (6) applied the method proposed by Athichanagorn to signal measurements with 
several successive outliers referred to by the author as step outliers. It was shown that the 
method proposed by Athichanagorn will not work if successive outliers are present. However, 
no improvements were proposed. The failure of the method proposed by Athichanagorn is 
illustrated in Figure 5.4 and Figure 5.5 for a signal with two successive outliers with indices 
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775 and 776. The two large detail coefficients indicating an outlier is now separated by a 
small detail coefficient and the detection method proposed by Athichanagorn will fail. 
 

  
Figure 5.4: Original signal with two successive outliers at indices 775 and 776. 
 
 
 

 
Figure 5.5: Detail signal at the first decomposition level in the wavelet transform for a signal 
with two successive outliers at indices 775 and 776. 
 
 

Recently Viberti (8) proposed a similar method for outlier removal as proposed by 
Athichanagorn, although the method proposed by Viberti utilizes the Daubechies wavelet and 
requires two different user thresholds to be defined. Viberti states that the method proposed 
by Athichanagorn is not sufficient for outlier detection as transients also can create two large 
successive detail coefficients in opposite directions at the first decomposition level in the 
wavelet transform. In Figure 5.6, the Daubechies wavelet with four wavelet coefficients is 
used to compute the detail coefficients at the first decomposition level for the signal shown in 
Figure 5.2. We clearly see that the response from the transient with index 500 is difficult to 
distinguish from the response of the three outliers.  
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Figure 5.6: Detail signal at the first decomposition level in the wavelet transform. 
Daubechies wavelet with four wavelet coefficients is applied.  
 
 

However, the detail coefficients and their characteristic will depend upon the 
wavelet considered. Thus the method proposed by Athichanagorn can separate single outliers 
from transients as long as the non-orthogonal wavelet given by eq. (4.39) is utilized. 
However, the method proposed by Athichanagorn will not work if utilized with a Daubechies 
wavelet with four wavelet coefficients.  

 
Riberi et. al. (10) removes outliers by considering different wavelets and different 

decomposition levels in the wavelet transform. It is however unclear to us how the outliers 
actually are removed.  

 
In our opinion, the outlier removal by wavelet analysis found in the P&E literature has 

two main drawbacks; 
 

 Only single outlier can be removed.  
 They require threshold(s) specified by the user depending upon the signal considered. 

 
We would like to have a method that can remove successive outliers. Secondly we would like 
to accomplish outlier removal without any user specified threshold(s) which is signal 
dependent. We chose to use a median filter to detect and remove outliers.  
 
 

5.2.1 Median Filter 
Even thought outliers accurately can be detected using the wavelet transform (5; 58), we are not 
aware of any robust and accurate method for actually removing outliers, single or multiple, 
through a purely wavelet based approach. Our investigation shows that a median filter will 
work better. This is also supported by Kovac et al.  (78). In addition, we will combine the 
median filter with accurate noise estimation from the Waveshrink method for efficient 
removal of outliers. Finally, we will determine how many successive outliers to remove in the 
scope of well-test analysis. 

 
A median filter is a moving window filter and we need to determine a window size n 

to utilize in the median filter. Next, we need to calculate the median value of the n signal 
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measurements in the window considered. The number n is usually small compared to the total 
number of signal measurements available.  If the value in the middle of the window 
considered has a value that deviates from the median value with more than a given threshold, 
it is considered an outlier and removed. This process is repeated for each signal measurement. 
This will allow us to remove single as well as multiple outliers in the signal measurements 
considered. The window size will determine the number of successive outlier that can be 
removed. 
  

We need to determine two settings to utilize a median filter for outlier removal; 
namely how much outside the “normal” signal trend the measurements need to be before they 
are classified as an outlier and how many successive outliers to remove from the signal 
measurements. How much outside the “normal” signal trend the measurements should be in 
order to be classified as outliers, will be determined by the amount of noise estimated from 
the signal measurements. The amount of noise will depend on the signal measurements and 
there are different methods available to estimate the noise level. We will determine the noise 
level from Waveshrink as described in chapter 4.8.4. Which of the noise estimators described 
in chapter 4.8.4 to use with the outlier filter will be determined in chapter 5.3.3. This means 
that the median outlier filter does not require any user defined and signal dependent threshold 
to separate outliers from noise. However, for the moment, we will assume that we know the 
true noise level in the signal measurements. 

 
 To avoid removing any measurements solely affected by noise, three times the noise 

estimate is used as the limit for outlier removal. Thus, if the absolute difference between the 
measurement considered and the window median value is more than three times the estimated 
noise level, the measurement is removed. The outlier filter can be mathematically stated as; 
 
 

(5.1) 
3)(
3)(

i

ii
i smmedian

smmedians
s  

 
where si is the signal measurement, m is the number of signal measurements in the window 
considered and σ is an estimate of the noise level in the signal measurements. (-) in the above 
expression simply means that the signal measurement will be removed. 
 

The window size allows us to specify the largest number of successive outliers that 
can be removed. How many successive outliers to remove will be important to determine. 
One single measurement far outside the “normal” signal trend is normally considered an 
outlier. Two or even five successive measurements far outside the “normal” signal trend 
might often be considered as successive outliers. Hundreds of successive measurements 
outside the “normal” signal trend are normally considered to be caused by an abrupt 
temporary change in some process variable that in turn temporarily has changed the measured 
process state. In the last case the measurements should not be detected as outliers and 
removed. In reality, we cannot distinguish outliers (not even single outlier) from 
measurements far outside the signal trend that is caused by some abrupt rapid temporary 
change in the measured process state.  This since we often do not know the true process 
model and the true process state (Recall that outliers were assumed to be caused by large 
disturbance in the signal measurements at a limited time interval.) However, even if we do 
remove some signal measurements caused by the very smallest temporary changes in the 
process state, we do believe that the error caused by doing this will be small. We will 
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determine how many successive outliers to remove in the scope of well-test analysis. We are 
aware that some of the removed outliers will be transients, i.e. we will remove some pressure 
measurements outside the “normal” signal trend which origins from a change in the process 
state. This might be the case if the rate for a very short period is temporarily 
increased/decreased. This is considered acceptable if we in the scope of well-test analysis do 
not lose any important information.  

 
We choose to remove a maximum of nine successive outliers from pressure signals. 

If a maximum of nine successive outliers are removed, we believe that even if some of the 
smallest pressure transients are removed, no important information will be lost in the scope 
of well-test analysis. Note that for other applications than well-test analysis, it might be 
desirable to remove a different number of successive outliers. We will illustrate this choice 
with an example.  

 
We generate a synthetic pressure signal based upon a known reservoir model and a 

specified rate history. The reservoir model considered is a homogenous infinite reservoir with 
no wellbore storage effects and was described in chapter 3. All known fluid and reservoir 
properties are applied in the well-test analysis, including our knowledge of which model to 
use. White noise with zero mean and 10 standard deviation is added to the pressure and rate 
signals, but the pressure signal is generated based upon the noise-free rate signal. The 
pressure and rate signal are shown in Figure 5.7. 
  
 

 
Figure 5.7:  Pressure and rate history of pressure build-up with only three pressure 
measurements.  
 
 

At time 4.3 hours, the well is shut-in and a pressure build-up occurs. During this 
pressure build-up, only 3 pressure measurements are available. Recall from chapter 3 that we 
in well-test analysis prefer to analyze the pressure during well shut-ins, i.e. pressure build-ups. 
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The permeability and skin factor are considered as unknowns and a non-linear regression 
analysis for the build-up at time 4.3 hours is performed. The permeability with confidence 
interval is estimated to 19.5 +/- 7.7 mD while the skin factor with confidence interval is 
estimated to 6.5 +/- 5.6. The limits for when the results from the non-linear regression 
analysis should be considered as reliable are for instance given by Horne(46). Horne states that 
little confidence should be given to the results from well-test analysis when the confidence 
intervals for the permeability is more than 10% of the estimated permeability and more than 
+/- 1 for the skin factor, i.e. if the estimated permeability is 20 mD, the confidence interval 
should be less than +/- 2 mD However, note that in the scope of automatic well-test analysis 
in chapter 7, the limits given by Horne is considered as rather strict and we chose to double 
the confidence interval for when the results from the non-linear regression analysis should be 
considered reliable. The above estimated confidence intervals are clearly above the limits for 
when the results from the non-linear regression analysis should be considered reliable, (even 
when doubled) and little confidence should be given to the results. Consequently, no 
important information is lost if this build-up is considered as successive outliers and removed. 

 
The non-linear regression analysis is repeated, but this time the number of 

measurements during the pressure build-up is increased. The results from non-linear 
regression analysis for the same pressure build-up with 3, 5, 7, 9 and 11 measurements are 
summarized in Figure 5.8 and Figure 5.9. 11 measurements during the pressure build-up is 
required to estimate the permeability with confidence intervals within +/- 10% of the 
estimated permeability, while 7 measurements are required to estimate the permeability with 
confidence interval within +/- 20% of the estimated permeability (the doubled limit).  More 
than 11 measurements are required to estimate the skin factor with confidence intervals within 
+/- 1, while 11 measurements are required to estimate the skin factor with confidence interval 
within +/- 2 (the doubled limit).  

 
 

 
 

Figure 5.8:  Estimated permeabilities with confidence intervals for different numbers of 
pressure measurements during build-up test. Blue text is the estimated confidence intervals. 
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Figure 5.9:  Estimated skin factors with confidence intervals for different number of pressure 
measurements during build-up. Blue text is the estimated confidence intervals.  

 
 
The results here are only meant as an illustration and will clearly depend upon noise 

level, duration of the shut-in, well-test model and well-test parameters. However, we 
considered this example as a rather “uncomplicated” case and still 11 measurements during 
the pressure build-up is required to obtain reliable results if the recommendation by Horne is 
doubled. Wellbore storage effects, fractured reservoirs, layered reservoirs and dual-porosity 
reservoirs, just to mention a few, are considered as more “complicated” cases and usually 
require more measurements for an accurate well-test analysis. The case shown is simply 
meant to illustrate that it is very unlikely to lose important information even if the smallest 
pressure build-ups are removed by a median outlier filter. Thus we conclude that the removal 
of up to nine successive outliers from pressure signals is a sound approach and will not result 
in loss of important information in the well-test analysis, even if the smallest pressure build-
ups are considered as outliers and removed.  

 
If less then nine pressure measurements are available during a pressure build-up 

lasting for hours or days, the signal sampling rate is extremely poor and should be increased. 
On the other hand, if the signal sampling rate is high e.g. every second or every tenth second, 
this means that the duration of the pressure build-up is extremely short. Recall from chapter 
3.6 that the first couple of minutes during a pressure build-up is dominated by wellbore 
storage effect and in general provides no information regarding the reservoir. Thus unless the 
signal sampling rate is extremely poor, our approach seems sound. In the case where the 
signal sampling rate is extremely poor, the signal sampling rate should be increased.  

 
Rate signals are often stored as average or aggregated values, and it is therefore more 

difficult to determine how many successive outliers to remove from rate signals. As a general 
rule, only single outliers should be removed from rate signals. However, note that in the 
later automatic well-test analysis, outlier removal and de-noising is only performed with the 
pressure signals.  
 

Let us next illustrate how the outlier median filter works.  Consider a signal with 11 
signal measurements. We choose to use a window size of five. This means that two successive 
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outliers can be removed. Let us for the moment assume that we have a good estimate of the 
noise level, in this case σ = 2. Let us consider the outlier filtering of five signal measurements 
(s3-s7) as shown in Figure 5.10. The median value in the first window considered is 2. The 
signal measurement s3 with a value of 1 is therefore required to have a value below -1 or 
above 3 to be considered as an outlier according to eq. (5.1). Thus s3 cannot be classified as an 
outlier and is kept. The same applies to the measurement s4. The signal measurement s5 is 
required to have a value between 1 and 5, otherwise it will be classified as an outlier and 
removed. Since s5 has a value of 8, it is classified as an outlier and removed. The same applies 
to s6 which also is classified as an outlier and removed. Finally, s7 is not classified as an 
outlier and is kept.  
 

The window size will determine how many successive outlier we can remove. The 
maximum number of successive outliers that can be removed is given as; 

 
 

(5.2) 
2

1
max

1moutlier  

 
where m is the window size. Thus if a window size of 19 is used, the maximum number of 
successive outliers that can be removed is nine. 

 
 

 
Figure 5.10:  Median filter used to filter the signal measurements s3-s7 for outliers. 
 The signal measurements s5 and s6 are detected as outliers and removed. 

 
 

An important feature of the median filter is that it distinguishes outliers from 
transients. Consider a signal with 11 measurements, a median filter with window size five and 
estimated noise level σ = 2. Outlier removal for the signal measurements s3 – s7 is illustrated 
in Figure 5.11. A transient starts at time t6 and none of the signal measurements considered is 
removed according to eq. (5.1).  
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Figure 5.11:  Median filter used to filter the signal measurements s3-s7  for outliers. 

 
 

Our recommendation for outlier removal is hence based upon a median filter with 
noise estimation from the Waveshrink method. We suggest removing up to nine successive 
outliers from pressure signals while only single outliers are removed from rate signals. For the 
moment, we will assume that we can get an accurate estimate of the noise level in the signal 
measurements from Waveshrink. An example of the median filter used with signal 
measurements containing several successive outliers is shown in Figure 5.12, Figure 5.13 and 
Figure 5.14. The outliers present are successfully removed utilizing the median outlier filter, 
although no more than nine successive outliers are assumed.  

 
 

 
Figure 5.12:  Successful removal of single as well as successive outliers using a median filter.  
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Figure 5.13:  Zoom in on Figure 5.12. Successful removal of single as well as successive 
outliers applying a median filter.  
 

 

 
Figure 5.14:  Zoom in on Figure 5.12. Successful removal of single as well as successive 
outliers applying a median filter.  
 
 

5.3 De-noising 
We choose to use the Waveshrink method for de-noising pressure and rate signals as 
previously done by  Kikani et. al.(4)  and  Athichanagorn  et al. (5) Kakani proposed to use the 
Haar wavelet (eq. (4.13)) for de-noising while Athichanagorn  proposed to use the non-
orthogonal spline wavelet (eq. (4.39)). They both applied the universal threshold estimator. In 
addition, they both utilized the Hard and Soft Shrinkage rules. Athichanagorn in addition 
proposed a hybrid approach; i.e. to use the Hard shrinkage rule around sharp signal 
discontinuities and the Soft shrinkage rule otherwise. However, few authors discuss the 
selection they make as to which wavelet, shrinkage rule, threshold estimator, noise estimator 
and primary resolution level to choose. Consequently they do not know the performance of 
Waveshrink with the selection they have made compared to other possible selections.  
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The exception is a recent study by Olsen et al.(1) and the recent study  by Ortiz et al. (12)
.
  

This work is based upon the work by Olsen et al. However, we propose a new noise estimator 
and a new threshold estimator in this work as a numerical error later was discovered in the 
work by Olsen. Ortiz et al. applied different wavelets, shrinkage rules and threshold 
estimators for de-noising with Waveshrink. They compared the wavelets (with the exception 
of Spline4246) and the shrinkage rules as described in chapter 4.8. In addition they considered 
the SURE, Universal and Minimax threshold estimators. The noise estimator used in their 
study is MAD eq. (4.82) and the primary resolution level is the one given by Olsen et al. (1) as 
will be discussed later in this chapter. Ortiz et al.  concluded that Daubechies8 was the best 
wavelet, Firm shrinkage rule was the best shrinkage rule while the best threshold estimator 
was Minimax.  The best selections for use in Waveshrink were determined from visual 
inspection of the filtered signals. The results are different from the results that will be shown 
in this chapter. In particular, it is surprising for this author that the Daubechies8 wavelet is 
considered the best wavelet. However differences in both signal generation and performance 
evaluation is believed to explain the difference between the results from Ortiz et al.  and the 
results presented in here.  
 

Many different selections are available in Waveshrink, and the performance of 
Waveshrink will depend critically upon the selections made. By determination of the “best” 
selections for the signals we consider, this hold the promise for automatic signal de-noising. 
Before the actual performance analysis is done, we need to define how the performance of the 
different selections and methods in Waveshrink is evaluated. In addition, Waveshrink requires 
equally spaced signal measurements. Often this is not available and we next need to determine 
what to do in the case of unequally spaced signal measurements.  

 
 

5.3.1 Best Filter Definition  
First we need to define what we mean by “best” selections in Waveshrink. There are many 
ways to define this, but we choose to define it as described in this section. Let’s consider the 
signal measurement si influenced by noise; 

 
(5.3) 

 

iii ys iy   
 

The signal measurements from the true process state are called yi and the noise with 
zero mean and a given standard deviation is denoted εi. Outliers are assumed removed from 
the signal measurements prior to de-noising. The signal approximations, where noise have 
been removed by some suitable method(s), are called fi.. The error is estimated from; 

(5.4)  
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This is the root-mean-squared error which is a very common way to estimate the error, 

and throughout this work, this is the error considered. An error of zero means a perfect match 
between the signal without noise and the filtered signal. A large error means that the filtered 
signal is still heavily influenced by noise. If the error after filtering is larger than the initial 
error, this might in addition indicate that the filtering has over-smoothed the signal, i.e. some 
of the underlying signal has been removed in the filtering process instead of or in addition to 
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noise. Over-smoothing is something that is important to avoid. Thus, instead of obtaining a 
better estimate of the underlying signal by performing the signal de-noising, we can actually 
obtain a worse estimate. In this work we have chosen to define the best filter selections in the 
following way;  

 
The best methods and selections used in Waveshrink are chosen as the selections 

and methods that on average results in the smallest error (eq. (5.4)) between the signal  
without the influence of noise and the filtered signal, while filtering a large number of 
signals with similar characteristics.  
 

This means that for one single measured signal, other selections and methods than 
what has been classified as “best” in this work might actually have a smaller error. However, 
while considering the average error for a large number of measured signals with the same 
characteristics, as for instance a large number of measured pressure signals, the selections and 
methods recommended in here on average should give the smallest error, and will for that 
reason be classified as best. In general, at least 500 different synthetic pressure or rate signals 
will be considered for each filtering exercise.  

 
It should be emphasised that we by no means claim that Waveshrink should be 

considered as the “best” method for de-noising. The performance of Waveshrink is not 
compared to other available methods for de-noising. However, if Waveshrink is utilized for 
de-noising, the selections recommended in Waveshrink will be shown to be best in terms of 
root-mean-squared error for the signals considered. It should in addition be noted that it has 
been shown that Waveshrink have asymptotical properties within the ideal performance (55; 62; 

63; 64) for applications in de-noising. 
 

When calculating the average error for a large number of de-noised signals, we need to 
take into consideration that the noise level in the various signals might be different. Recall 
that we will only consider synthetic signals where the true noise level is known. To be able to 
compare the error between different de-noised signals with different noise levels, we need to 
divide the RMSE value by the true known noise level added to the signal measurements.  

(5.5)  SERMRMSE R     

 
σ is the standard deviation of the normal distributed noise added to the signal measurements 
and RMSE is given by eq. (5.4). Before the signal measurements are de-noised, RMSEσ will be 
close to one, while RMSEσ will close to zero if most of the noise successfully has been 
removed in the de-noising. Notice that the error considered in Olsen et al. (1)  was the mean-
squared error (MSE), while we in this thesis consider the root-mean-squared error (RMSE). 
We chose to present the results in this work as RMSE as this has the same unit at the 
dependent variable. In addition, doubling the RMSE means that the error is twice as big, but 
doubling the MSE does not mean that the error is twice as big. 
 

When utilizing the error estimation in eq. (5.5), we need to know the true underlying 
signal trend denoted Y=[y0,y1,…yN-1] where N is the number of signal measurements. In 
general, the only way to know the true underlying signal is to generate the signal 
synthetically, i.e. we need to generate the signal based upon a known underlying process 
model described by some known mathematical model. The creation of these synthetic signals 
was discussed in chapter 5.1.  
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Let us illustrate the difference in performance of Waveshrink with an example. One 

standard deviation white noise was added to a pressure signal with 2000 measurements. The 
pressure signal is generated as described in chapter 5.1 and is shown in Figure 5.15. 

 
The pressure signal in Figure 5.15 was de-noised using different wavelets in 

Waveshrink.  If the Waveshrink selections work well, the error should be close to zero and if 
the Waveshrink selections work badly the error should be close to one. (The initial error by 
eq. (5.5) will be close to 1 if F=[f0,f1,…fN-1] equals S=[s0,s1,…sN-1]. N is the number of signal 
measurements). Hard shrinkage rule eq. (4.57), Universal threshold estimator eq. (4.65), 
primary resolution level j0=5 and the MAD noise estimator eq. (4.82) is applied in all cases.  
It is clearly demonstrated in Figure 5.16 that the performance of Waveshrink will depend 
critically upon the selections made. The best wavelet for this signal in terms of root-mean-
squared error is the Spline39. The worst wavelets in terms of root-mean-squared errors are the 
Haar, Coiflet18 and Spline4246. The root-mean-squared error for the worst wavelet is about 
50% larger than for the best wavelet. 

 
 

  

 
Figure 5.15:  (a) Pressure signal added one standard deviation of white noise.  (b) Zoom in 
on pressure signal in Figure 5.15 (a).  

8500

9000

9500

0 50 100 150 200 250 300 350 400 450 500

Pr
es

su
re

 (p
si

)

Time (hour)

Pressure Case 1

8280

8300

8320

8340

8360

280 290 300 310 320 330 340

Pr
es

su
re

 (p
si

)

Time (hour)

Pressure Case 1

(a) 

(b) 



Part 2: Results and Discussion 

95 
 

       

 
Figure 5.16:  Root-mean-squared error after noise filtering of pressure signal applying 
different wavelets.  

 
 

 It is in particular easy to see the difference in performance close to transients. This is 
shown in Figure 5.17 for wavelets Haar, Daubechies8, Coiflet18 and Spline39.  Oscillations 
around the transient are observed for wavelets Daubechies8, Coiflet18 and Spline39. This is a 
well known problem from Fourier analysis. This is however a much smaller problem in 
wavelet analysis, in particular since we have the opportunity to chose among wavelets that 
minimize this problem. In this case, the Haar wavelet results in very limited oscillations close 
to the transient as shown in Figure 5.17. 
 

Let us again consider filtering of the signal shown in Figure 5.15. This time we apply 
different shrinkage rules in Waveshrink and the results are shown in Figure 5.18. The 
performance of the Hard, Garrote and SCAD shrinkage rules for this signal is rather good, 
while the performance of the Soft shrinkage rule is poor. This since the Soft shrinkage rule 
tends to over-smooth the signal. Wavelet Daubechies8, Universal threshold estimator eq. 
(4.65), primary resolution level j0=5 and the MAD noise estimator eq. (4.82) is applied in all 
cases. Again we have demonstrated that the performance of Waveshrink will depend critically 
upon the selections made. Similar difference in performance can be shown for different noise 
estimators, primary resolution levels and threshold estimators.  
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(a)                                                        (b)                                 

   
(c)            (d)  

   
 
Figure 5.17:  Signal filtering around transient for wavelet (a) Haar, (b) Daubechies8 (c) 
Coiflet18 and (d) Spline39. 
 
 

 
Figure 5.18: Root-mean-squared error after noise filtering of pressure measurements 
applying different shrinkage rules.  
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5.3.2 Unequally Spaced Signal Measurements 
Often we are required to deal with unequally spaced signal measurements. However, in 
wavelet analysis the measurements are assumed equally spaced. Often this is corrected for by 
interpolating the signal measurements to equally spaced signal measurements. This is 
however a poor solution. Instead we recommend treating the signal measurements as 
equally spaced when used in wavelet analysis, even in the cases where they are unequally 
spaced. The reason for this is since interpolation tends to magnify noise structures within the 
signal measurements.  
 

Let us consider the pressure signal as shown in Figure 5.12 with 5251 measurements. 
We reduce the number of signal measurements by 25% (3938 measurements), 50% (2626 
measurements) and 75% (1313 measurements). The reduction is done by removing those 
signal measurements with the smallest change since the previous measurement. The initial 
measurements without noise and outliers are used to create these three cases with unequally 
spaced measurements. There are few measurements in periods with small signal variations 
and many signal measurements in periods with large signal variations. Unequally spaced 
measurements are illustrated as the red curve in Figure 5.19 where the number of 
measurements is reduced with 75% compared to the black curve. The measurements shown as 
the black curve is the initial and equally spaced measurements. Next, two standard deviations 
white noise is added to the three cases with unequally spaced measurements. The performance 
of wavelet filtering with unequally spaced measurements is then compared to the cases where 
linear interpolation is used to obtain equally spaced measurements.  

 
 

 
Figure 5.19: The number of measurements is reduced by 75% in the red curve compared to 
the black curve. 
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the initial spacing and will consequently have the same number of measurements as in the 
initial data set. We de-noise both the interpolated noisy data sets and the unequally spaced 
noisy data sets and compare their performance. In all cases, wavelet Spline39, SCAD 
shrinkage rule, Universal threshold estimator, MAD noise estimator and primary resolution 
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level j0=5 is applied. Root-mean-squared errors are calculated for all de-noised signals. The 
interpolated measurements are compared to the initial noise free pressure signal with 5251 
measurements. The unequally spaced noisy signal measurements are compared to the 
unequally spaced noise free signal measurements.  The estimated root-mean-squared errors 
are shown in Figure 5.20. 
 
 
  

 
Figure 5.20: RMSEσ in wavelet filtering for interpolated equally spaced measurements (blue) 
versus unequally spaced measurements (red).  
 
 
 

We clearly see that the RMSEσ increases considerably if interpolation is utilized with 
unequally spaced signal measurements. Consequently it is highly beneficial in wavelet 
filtering to treat the signal measurements as equally spaced even if they are unequally spaced. 
The reason for this is since interpolation tends to magnify the underlying noise structures in 
the signal measurements as illustrated in Figure 5.21. The red curve, initially containing 
unequally spaced measurements, is interpolated back to original spacing. The original and 
noise-free signal measurements are shown as the black curve. In particular between t=1800 
and t=2000, interpolation magnifies the underlying noise structures in the signal 
measurements.  
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Figure 5.21:  Interpolation tends to magnify the underlying noise structures in the signal 
measurements as illustrated with the red curve. The black curve shows the initial noise free 
and equally spaced signal measurements.  
 
 
Next we will describe how the performance analysis used to determine the best selections in 
Waveshrink was performed.  
 
 

5.3.3 Performance Analysis 
Several selections need to be made in Waveshrink. Various threshold estimators might require 
an estimate of the noise level in the signal measurements, and thus we first need to determine 
how to estimate the best noise level for use with our signals. Different methods are available 
in order to determine the primary resolution, and we will need to determine which primary 
resolution level to apply for the signals we consider. The wavelet filtering can be 
accomplished with several different wavelets and next we need to consider which wavelet to 
apply to obtain the best results for the signals we consider. The shrinkage rule determines 
how the different detail coefficients should be treated, in other words, which ones to keep, 
remove or change. Thus we further need to determine the best shrinkage rule for the signals 
we consider. Recall that small detail coefficients in the wavelet transform was assumed to be 
originating from noise while the large ones were originating from the signal itself. We will 
consequently need to determine a threshold for how to separate “large” wavelet coefficients 
from “small” ones. This threshold will depend on the resolution level considered and the level 
of noise in the signal measurements. Different methods can again be used to estimate this 
threshold and we will need to select the one best suited for our signals. How many resolution 
levels to change or remove wavelet detail coefficients from in the wavelet transform will be 
determined by the primary resolution level.  The different selections required in Waveshrink 
will be determined in the following sequence; 
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 Noise estimator 
 Shrinkage rule and wavelet (simultaneously) 
 Threshold estimator 
 Primary resolution level 

 
We will start the performance analysis by determination of which noise estimator to 

apply. Since we are utilizing synthetic pressure and rate signal added white noise, we know 
the “true” noise level. Hence the best noise estimator is the one that on average estimates a 
noise level with the smallest root-mean-squared error compared to the true known noise 
level while filtering a large number of signals with similar characteristics.  

 
Next, we will simultaneously determine which shrinkage rule and wavelet to utilize. 

The best wavelet and shrinkage rule can be determined separately from the best noise 
estimator, threshold estimator and primary resolution level. For now, all resolution levels 
available in the wavelet transform, and given by eq. (4.50) will be included in Waveshrink. 
Hence the primary resolution level is initially chosen equal the coarsest resolution level. The 
assumption is that we are able to choose the best possible threshold for use in Waveshrink at 
each resolution level. Note that the best possible threshold at the any of the considered 
resolution levels might be zero. To determine the best wavelet and shrinkage rule we will 
therefore utilize non-linear regression to determine the threshold at all available resolution 
levels that minimize the square difference between the filtered signal and the original noise 
free signal.  

 
Let us considered a signal with 5250 pressure measurements were the finest resolution 

level is 12 as given by eq. (4.50). Recall that the finest resolution level is approximated by the 
signal samples while the coarsest resolution level in the wavelet transform is given by eq. 
(4.50). For the moment we choose to include all available resolution levels (j=1, 2, ….,12) in 
de-noising. In Figure 5.22, the upper blue line shows the thresholds estimated by the universal 
threshold estimator for the 12 resolution levels considered. However, imagine that we can 
adjust the thresholds at each resolution level by an optimization routine in order to obtain the 
smallest error by eq. (5.5). Then we would obtain the optimal threshold at each resolution 
level as shown by the red line. This simply means that no matter how well we estimate the 
threshold and no matter which threshold estimator we apply, we can not for this signal obtain 
a root-mean-squared error smaller than 0.285 with the wavelet and shrinkage rule considered. 
The root-mean-squared error for the Universal threshold and the optimal threshold selection is 
shown in Figure 5.23. To obtain a smaller error (if possible at all) we would have to change 
the wavelet and/or the shrinkage rule. Hence the purpose of any threshold estimator should be 
to estimate the thresholds as close as possible to this red lower line for the wavelet and 
shrinkage rule considered. Note that the best possible threshold at resolution level 6 and 8-12 
is zero.  
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Figure 5.22: Estimated thresholds at 12 decomposition level by Universal threshold and by 
optimization routine.  
 
 

 
Figure 5.23: Root-mean-squared error in optimal threshold selection versus Universal 
threshold.  

 
 
The optimization routine is similar to the non-linear regression analysis described for 

well-test analysis in chapter 3 and the optimization problem can be mathematically stated as; 
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where ],...,,[ 110 1[ NyyyY  are the noise free measurements and the filtered signal 
measurements  ],...,,[ 110 1[ NfffF  were defined in eq. (4.54) as; 
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where ],...,,[ 110 1[ NsssS  is the measurements contaminated with white noise 

],...,,[ 110 1[ NN,10  , W is the wavelet transform, W-1 is the inverse wavelet transform, δ is the 
shrinkage rule and λ is the thresholds. Again the Levenberg- Marquardt method is used in the 
optimization. This optimization routine requires function evaluation as well as function 
derivatives with respect to the parameters considered as unknowns. The function evaluation is 
the output from Waveshrink as given by eq. (4.54). For the function derivatives we apply 
numerical derivatives with step length of 0.1 for SCAD, Garrote and Soft shrinkage rules. For 
the Hard shrinkage rule, a step length of 0.3 is used. This since instability is experienced with 
the Hard shrinkage rule for smaller step length. The Firm shrinkage rule is excluded in the 
optimization routine since two different thresholds are required, making threshold selection 
difficult. In addition, the Block shrinkage rule is excluded in the optimization routine since no 
threshold estimation is required with this shrinkage rule.  

 
The best shrinkage rule and the best wavelet for use in Waveshrink will be 

determined as the shrinkage rule and wavelet that on average give the smallest root-mean-
squared error (eq. (5.5)) from filtering at all available decomposition levels with thresholds 
determined from the optimization routine. The exception is for the Block shrinkage rule 
where no thresholds are required and for the Firm shrinkage rule where only the Minimax 
thresholds as shown in Table 4.5 are considered.  

 
Next we will determine the best threshold estimator. The best threshold estimator is 

the estimator that estimates the thresholds with the smallest root-mean-squared error 
compared to the threshold estimated by the optimization routine with the wavelet and 
shrinkage rule considered as best.  

 
Finally, we need to determine which primary resolution level to choose. Obviously the 

best would be to include all available resolution level given that the best possible threshold is 
chosen at each resolution level. However, the gain by including the coarsest resolution levels 
is usually very small or equal zero in terms of improved root-mean-squared error. A more 
practical approach in thus to stop filtering when there are small improvements by including 
additional resolution levels in Waveshrink. However, in the case of the primary resolution 
level, we will not classify the proposed primary resolution level as “best” since the root-mean-
squared error for high primary resolution levels in most cases will be constant. Instead we 
choose to define the minimum recommended primary resolution level as the resolution level 
where the error in Waveshrink is reduced by less than 0.001 in eq. (5.5) when including an 
additional and coarser resolution level.  

 
All signals utilized in the performance analysis are generated as described in chapter 5.1. 

The performance of Waveshrink with different selections will be evaluated as described in 
section 5.3.1.  

 



Part 2: Results and Discussion 

103 
 

The next sections will provide a comparison of a large number of selections and 
methods for use in de-noising of typical signals encountered in the E&P industry. 
Recommendations for the selections and methods to use in Waveshrink will be given for the 
signals considered. In addition, a new noise and a new threshold estimator are suggested. We 
will start by determining which noise estimator to apply in Waveshrink. 
 
 

5.3.4 Noise Estimation 
In this section we will check the performance of the two most common noise estimators found 
in the literature; the MAD noise estimator eq. (4.82) and the standard deviation noise 
estimator eq. (4.83). They where both previously described in section 4.8.4. In addition, we 
will propose a new estimator referred to as the RMAD noise estimator. 
  

The standard deviation and MAD noise estimator both estimate the noise from the 
absolute value of the detail coefficients at the finest resolution level in the wavelet transform. 
Consequently they might depend upon the wavelet considered. Initially we hence need to 
consider whether the noise estimators considered depend upon the wavelet utilized. We chose 
to test this by considering the MAD noise estimator with different wavelets. 500 different 
pressure and rate signals were generated and three standard deviations white noise was added 
to the various signals. The average noise level is estimated from the MAD noise estimator for 
the wavelets considered. If the wavelet and the noise estimator considered works well, the 
noise estimate should be close to three (the amount of noise added to the original and noise-
free signal measurements). 

 
 

 
Figure 5.24: Noise level estimated by MAD noise estimator utilizing various wavelets for 
pressure signals.  
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Figure 5.25: Noise level estimated by MAD noise estimator utilizing various wavelets for rate 
signals.  
 
 

  In Figure 5.24 it is shown that the MAD noise estimate for pressure signals only is 
vaguely dependent upon the wavelets considered. The exceptions are the wavelets Haar, 
Spline26 and Spline4246. Thus, the importance of choosing a particular wavelet for noise 
estimation with the MAD for pressure signals appears to be small as long as the three 
wavelets mentioned above are avoided. In Figure 5.25 it is shown that the MAD noise 
estimate only is vaguely dependent upon the wavelets considered for rate signals. As opposed 
to pressure signals, all wavelets considered in this work can be used for noise estimation with 
rate signals.  

 
        In the initial filtering exercises it was discovered that if a significant part of the signal 
was zero (and accordingly without any noise as we have defined it), as for instance will 
happen for rate signals during shut-in periods in oil and gas wells, this needs to be taken into 
account in the MAD noise estimator. Thus, zero wavelet coefficients are not included in a 
new proposed noise estimator referred to as the robust median noise estimator (RMAD) which 
is proposed as; 
 

(5.7)  
6745.0

RMAD
0
R  

 
RMAD is the median value of the absolute value to the non-zero detail coefficients at the first 
decomposition level in the wavelet transform, as opposed to MAD noise estimation taking 
into account all detail coefficients available at the first decomposition level in the wavelet 
transform. Thus this modification of MAD assumes that there will be such a large number of 
zero values among the detail coefficients caused by well shut-ins that they cannot adequately 
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be described by the normal distribution imposed on the detail coefficients and thus must be 
handled separately. 
 
 Next, we would like to compare the performance of the three noise estimators; the 
RMAD noise estimator eq. (5.7), the MAD noise estimator eq. (4.82) and the standard 
deviation noise estimator eq. (4.83). 500 pressure and rate signals were considered and white 
noise was added to the signal measurements. The signals are generated as described in chapter 
5.1 and the error is calculated as described in chapter 5.3.1. The results from noise estimation 
with the pressure signals show that the MAD noise estimator is superior to the standard 
deviation noise estimator. Excellent agreement between the estimated noise level and the true 
noise level is obtained with the MAD noise estimator resulting in a small root-mean-squared 
square error as shown in Figure 5.26. The only major drawback is encountered if parts of the 
signal are zero as typically encountered in rate signals during well shut-ins. This is corrected 
for by the introduction of the RMAD noise estimator in eq. (5.7). Thus by considering the 
RMAD noise estimator, excellent agreement is also obtained for the rate signals considered as 
shown in Figure 5.27.  
 

It should finally be noticed that a median noise estimator (MAD or RMAD) might be 
slightly unstable if utilized on very small data sets. Then the assumption of normal distributed 
detail coefficients might be poor. Statistically we need a “large” number of measurements 
before any assumed distribution can be considered as a good model. However, as long as at 
least a few hundred measurements are considered with the MAD or RMAD noise estimator, 
excellent results are obtained. This is shown in Figure 5.28. In this figure, the estimated noise 
level is poor compared to the true noise level when the number of measurement is below 200.  

 
 

  
Figure 5.26: Average root-mean-squared error in Waveshrink noise estimation from 500 
different synthetic pressure signals added white noise.  
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Figure 5.27: Average root-mean-squared error in Waveshrink noise estimation from 500 
different synthetic rate signals added white noise.  
 
   

 
 
Figure 5.28: Estimated noise level for 14 different data sets with different number of 
measurements.  
 
 

When an accurate estimate of the noise level is available, outliers can be removed by 
the use of a median filter as described in chapter 5.2.1. 
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Note that the noise estimator RMAD in eq. (5.7) is a redefinition of the RMAD noise 

estimators proposed by Olsen et al. (1) In that work, different RMAD noise estimators were 
proposed for pressure and rate signals. Unfortunately, an error was later discovered in the 
numerical implementation used by Olsen et al. (1)

. Thus the RMAD noise estimator has been 
redefined in this work.  

 
The best shrinkage rule and the best wavelet were determined simultaneously through 

a series of filtering exercises. We will address the shrinkage rule first. 
 

5.3.5 Shrinkage Rules 
The shrinkage rules considered are Hard, Soft, SCAD, Garrote, Block and Firm. The 
shrinkage rules tell how the various wavelet coefficients should by treated; which ones to 
keep, kill or shrink. The Soft shrinkage rule is supposed to perform well if signals are smooth 
and contain few transients but many noise spikes. The Hard shrinkage rule is supposed to 
work well in signals with many transients but few noise spikes. SCAD and Garrote provide a 
compromise between these two. The Block shrinkage rule is believed to work well in signals 
with transients since it considers coefficients in blocks rather than one by one. Our 
expectation to Firm shrinkage rule is small since it is only considered with the Minimax 
thresholds as given in Table 4.4.     
 

The optimal thresholds for shrinkage rules Hard, Soft, SCAD, Garrote were 
determined by the optimization routine to obtain the best possible thresholds with each 
shrinkage rule. No separate determined threshold is required for Block shrinkage while only 
the Minimax threshold is considered for Firm shrinkage. The root-mean-squared error results 
from filtering of 500 pressure and rate signals are shown in Figure 5.29 and Figure 5.30 
respectively.  The results show that SCAD on average performs best in terms of the smallest 
root-mean-squared error for both rate and pressure signals. Hard shrinkage also performs well 
and in many cases achieves almost as good results as SCAD. In general, Soft shrinkage rule is 
the one that performs worst and should be avoided. Wavelets Spline39 and Spline4246 were 
applied with pressure and rate signals respectively.  

 
At this stage we do not know which wavelet to use even though Spline39 and 

Spline4246 were utilized above. One might envision that other combinations of wavelets and 
shrinkage rule could provide better results. Consequently, the same filtering exercise as done 
in Figure 5.29 and Figure 5.30 had to be done for all wavelets considered. It was then 
established that the combination of wavelet Spline39 and shrinkage rule SCAD gave the 
smallest error for pressure signals, while the combination Spline4246 and shrinkage rule 
SCAD gave the smallest error for rate signals.  

 
It might finally be noted that it is in the author’s opinion that SCAD shrinkage yields 

visually more appealing results than the other shrinkage rules, since it does not tend to over-
smooth the signals, as might be the case with Soft shrinkage, and it is also capable of reducing 
noise spikes as opposed to Hard shrinkage rule(63). In terms of both error and more visual 
appealing signals, SCAD is the best choice. 
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Figure 5.29: Comparison of root-mean-squared errors using various shrinkage rules for 500 
pressure signals. Wavelet Spline39 was used. 

 
 

  
Figure 5.30: Comparison of root-mean-squared errors using various shrinkage rules for 500 
rate signals. Wavelet Spline4246 was used. 
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5.3.6 Wavelets 
Different authors have designed numerous wavelets with the intension of approximating 
different kinds of signal well. We are however not aware of any particular wavelets 
specifically designed for the kind of signals we consider. Nevertheless, even if such wavelets 
did exist, there would be no guarantee ensuring that these wavelets would be the best ones to 
apply. Hence one usually will have to determine the best wavelet for the signal considered 
through a series of filtering exercises. No attempts will be made to design new wavelets. We 
will simply try to determine which of the existing wavelets, designed by other authors, that 
have the best properties for the kind of signals we consider.    
 

In the previous section, the wavelet Spline39 and Spline4246 gave the best results 
along with the SCAD shrinkage rule for pressure and rate signals respectively. Thus it is 
actually already established that the wavelets Spline39 and Spline4246 should be used with 
pressure and rate signals respectively along with the SCAD shrinkage rule. The summary of 
the analysis for the different wavelets are shown in Figure 5.31 and Figure 5.32. These 
figures show the performance of different wavelets when utilizing the SCAD shrinkage rule. 
The wavelet and scaling coefficients for Spline39 were previously given in Table 4.2 and for 
Spline4246 in Table 4.3. Note that only 11 out of the 27 wavelets considered are shown in 
Figure 5.31 and Figure 5.32. The wavelets shown are the 11 that performed best for either 
pressure or rate signals. In addition, the best wavelet from each wavelet family (e.g. 
Daubechies, Symmlet, Coiflet, etc.) is included.  

 
 

 

 
Figure 5.31:  Spline39 wavelet performs best for pressure signals with SCAD shrinkage rule. 
Average results from 500 synthetic pressure signals. 
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Figure 5.32:  Spline4246 wavelet performs best for rate signals with SCAD shrinkage rule. 
Average results from 500 synthetic rate signals. 
 
 

Until now we have determined the thresholds required in Waveshrink through an 
optimization routine. We could do this since we knew the true underlying signal. However, in 
general a threshold estimator needs to be selected and the best method to estimate the 
thresholds for the signals considered will be determined next. 
 
 

5.3.7 Threshold Estimator 
We determined the best wavelet and shrinkage rule by the use of an optimization routine 
selecting the optimal thresholds at each resolution level. We assumed that we later would be 
able to estimate these optimal thresholds for the wavelet and shrinkage rule determined as 
best. Hence we decided to determine the best threshold estimator as the one that gives the 
thresholds with the smallest root-mean-squared error compared to optimal thresholds for the 
wavelet and shrinkage rule considered, where the optimal thresholds are estimated as 
described in chapter 5.3.3. Wavelet Spline39 and SCAD shrinkage rule will be used for 
pressure signals and wavelet Spline4246 and SCAD shrinkage rule will be used for rate 
signals.  
 

During the initial filtering exercises, it was discovered that the estimated thresholds 
from the threshold estimators described in section 4.8.3, usually deviated from the estimated 
optimal thresholds.  Thus we will propose a new threshold estimator based on the results from 
our optimization routine. Through a series of filtering exercises it was established that the 
optimal thresholds will depend upon the noise level in the signal and the resolution level 
considered. Based on these observations, we chose to estimate the thresholds for use in the 
Waveshrink from an empirical threshold RED (Regression Estimated Decline) on the form; 
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(5.8)  )( bajRED baj(                       

 
σ is an estimate of the noise level, j is the resolution level considered.  The parameters a and b 
were then determined through the optimization routine for the signals considered. The results 
from 500 pressure and rate signals gave the following parameters for eq. (5.8); 
  

 
(5.9)  6,5,4,3,2,1)25.351.0( 130 jjRED (     

 
The estimated thresholds will be negative for resolution levels above the 6 finest resolution 
levels available in the wavelet transform. Therefore we limit the above threshold estimator to 
the six finest resolution levels. The RED thresholds (red curve) compared to the optimal 
thresholds (black curve) and several other estimated thresholds are for three of the pressure 
signals considered shown in Figure 5.33, Figure 5.34 and Figure 5.35. Note the parameters a 
and b in the RED threshold estimator is the average parameters determined from all 500 
pressure and rate signals considered. Many of the threshold estimators require an estimate of 
the noise level. We have previously determined how to estimate the noise by RMAD given in 
eq. (5.7) and classified this noise estimator as the best. Thus the RMAD noise estimator is 
applied with any threshold estimator which requires an estimate of the noise level in Figure 
5.33, Figure 5.34 and Figure 5.35.  
  

 
Figure 5.33: Different estimated thresholds for a pressure signal with 4 decomposition levels. 
4 standard deviation of white noise is added to the signal measurements. Optimal thresholds 
are shown as the black curve while thresholds from RED threshold estimator are shown in the 
red curve. 
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Figure 5.34: Different estimated thresholds for a pressure signal with 5 decomposition levels. 
2 standard deviation of white noise is added to the signal measurements. Optimal thresholds 
are shown as the black curve while thresholds from RED threshold estimator are shown in the 
red curve. 

 
Figure 5.35: Different estimated thresholds for a pressure signal with 6 decomposition levels. 
1 standard deviation of white noise is added to the signal measurements. Optimal thresholds 
are shown as the black curve while thresholds from RED threshold estimator are shown in the 
red curve. 

 

The RED threshold estimator proposed above is a redefinition of the RED threshold 
estimators previously proposed in Olsen et al. (1) The proposed RED threshold estimator in 
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Olsen et al. (1) work was proposed on the form levelnbaRED ))log(( lob(a where that 
coefficients a and b were determined with the same approach as described above. We later 
discovered that equally good results could be obtained with a much simpler threshold 
estimator as proposed in eq. (5.9). Thus we chose to redefine the RED threshold estimator as 
described above. 

 

Based on our criteria for selection of the best threshold estimator, we will define the 
RED threshold estimator as the best. Obviously we finally need to confirm that the RED 
threshold estimator works well with the signals considered and better than other available 
threshold estimators.  However, before we can confirm that our proposed threshold estimator 
works best, we need to determine which primary resolution level to apply.  

  
  

5.3.8 Primary Resolution Level 
The primary resolution level in wavelet filtering is used to describe the number of detail levels 
in Waveshrink where the wavelet coefficients are modified. We would like to determine how 
many resolution levels to include in Waveshrink in order to obtain the smallest error by eq. 
(5.5). The common idea is to filter up to a fixed or estimated resolution level and ignore the 
coarsest resolution levels under the assumption that the detail coefficients at the finest 
resolution levels will be caused by noise, while the detail coefficients at the coarser resolution 
levels will originate from the signal itself.   

Our investigation shows that in terms of minimizing the error in eq. (5.5), all possible 
resolution level available in the wavelet transform should be used in the Waveshrink method. 
This assumes that we are able to choose the optimal threshold at each resolution level. Note 
that this threshold might be zero at some of the coarsest resolution levels as illustrated in 
Figure 5.22. Nevertheless, the gain by filtering the coarsest resolution levels is usually very 
small. In addition, if wrong thresholds are selected at the coarsest resolution levels, there 
might be a risk of over-smoothing the filtered signal. A more practical approach is therefore 
to stop filtering when there are small improvements in adding additional and coarser 
resolution levels in Waveshrink. The root-mean-squared error versus the number of 
decomposition levels is illustrated for three of the signals considered in Figure 5.36, Figure 
5.37 and Figure 5.38 
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Figure 5.36: Root-mean-squared error vs. primary resolution level for a pressure and a rate 
signal, both with 256 measurements. The blue stippled line indicates the minimum 
recommended primary resolution level. 
 

  
 
Figure 5.37: Root-mean-squared error vs. primary resolution level for a pressure and a rate 
signal, both with 4096 measurements. The blue stippled line indicates the minimum 
recommended primary resolution level. 
 
 
 
 
 

 

RMSEσ vs. primary resolution level 

RMSEσ vs. primary resolution level 
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Figure 5.38: Root-mean-squared error vs. primary resolution level for a pressure and a rate 
signal, both with 32768 measurements. The blue stippled line indicates the recommended 
primary resolution level. 
 

We choose to define the minimum recommended primary resolution level as the 
resolution level where the root-mean-squared error (eq. (5.5)) is reduced by less than 0.001 
when including an additional and coarser resolution level in Waveshrink. This minimum 
recommended primary resolution level is shown as a blue stippled line in Figure 5.36, Figure 
5.37 and Figure 5.38.  
 

From 500 pressure and rate signals considered, the following formula gave excellent 
agreement with this definition of the minimum recommended primary resolution level; 
 

(5.10)  1)(log)( 80 1l NNj      
 

and where N is the number of measurements. Consequently we do propose to estimate 
the minimum recommended primary resolution level in Waveshrink by eq. (5.10). This 
estimated minimum primary resolution level is slightly higher than the primary resolution 
level given by another common estimator found in the literature and given by eq. (4.84). This 
is illustrated in Figure 5.39. By utilizing the primary resolution level as given by eq. (5.10), 
we will typically include some additional resolution levels in Waveshrink. Although the 
improvements in the root-mean-squared error is quite small by doing this, as can be seen from 
Figure 5.36 - Figure 5.38, we can get a slightly improved root-mean-squared error with little 
extra computational effort. For instance, in the case with 4096 pressure measurements, the 
root-mean-squared error would by improved from 0.330 to 0.317 if eq. (5.10) was used 
instead of eq. (4.84). 
  

RMSEσ vs. primary resolution level
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Figure 5.39: Comparison of primary resolution level estimated from eq. (4.84) and eq. (5.10). 

   

Finally we need to confirm that the RED threshold estimator works well compared to 
other common threshold estimators. We could not do this in the previous section since we did 
not know how many resolution levels to include in Waveshrink. With the primary resolution 
level estimated from eq. (5.10), we can now compare the RED threshold estimator with other 
common threshold estimators described in chapter 4.8.3. This is shown in Figure 5.40 and 
Figure 5.41.  

 
The use of the new RED threshold estimator gave better results than any other 

threshold estimators. Among the other threshold estimators considered, the Penalized High, 
Universal and FDR threshold estimators gave good results. It is also interesting to notice that 
two commonly used threshold estimators, the SURE and Minimax, are among those that 
performed worst for the kind of signals we consider. We conclude that the RED threshold 
estimator on average provides us with the best results. As a result, RED threshold estimator is 
suggested for filtering of both rate and pressure signals in Waveshrink.   
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Figure 5.40: New RED threshold estimator compared with several other threshold estimators 
at 500 random generated pressure signals. Wavelet Spline39, SCAD shrinkage rule, RMAD 
noise estimator eq. (5.7) and primary resolution level from eq. (5.10). 
 
 

 
 
Figure 5.41: New RED threshold estimator compared with several other threshold estimators 
at 500 random generated rate signals. Wavelet Spline4246, SCAD shrinkage rule, RMAD 
noise estimator eq. (5.7) and primary resolution level from eq. (5.10). 
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Finally we will summarize the recommended Waveshrink setting for pressure and rate 

signals. For pressure signals we recommend; 
 

 Spline39 wavelet given by table. Table 4.2 
 SCAD shrinkage rule given by eq.  (4.59) 
 RED threshold estimator given by eq. (5.9) 
 RMAD noise estimator given by eq. (5.7) 
 Primary resolution level given by eq. (5.10) 

 
For rate signals we recommend; 
 

 Spline4246 wavelet given by Table 4.3 
 SCAD shrinkage rule given by eq.  (4.59) 
 RED threshold estimator given by eq. (5.9) 
 RMAD noise estimator given by eq. (5.7) 
 Primary resolution level given by eq. (5.10)  

 
The only difference in the recommendation for pressure and rate signals is the wavelet.   
 

Note the primary resolution given by eq. (5.10) is the minimum recommended primary 
resolution level, i.e. small or none improvements is achieved in terms of root-mean-squared 
error by including coarser resolution levels in Waveshrink. The other recommended selections 
in Waveshrink are the selection corresponding to the minimum root-mean-squared error for 
the signals considered.  

 
Next we propose a simple approach for data reduction if noise and outliers are already 

removed by the above suggested methods. 
 

 

5.4 Data reduction 
In data reduction, the aim is to reduce the number of signal measurements by removing the 
measurements with little information content and keeping the measurements with significant 
information content. This is often accomplished by removal of signal measurements from 
time intervals with small (and assumed insignificant) changes in the signal, and to keep the 
signal measurements from the time intervals with large (and assumed significant) signal 
changes. Thus we would like to reduce the number of signal measurements but without 
loosing significant signal information.  A straight forward way of accomplishing this, e.g. as 
to only keep measurements that have changed with a given amount since the previous 
measurement, will be heavily influenced by noise and/or outlier. If measurements are not de-
noised prior to this kind of data reduction, typically the largest noise peaks will be preserved, 
actually meaning that the noise in the signal is exaggerated. On the other hand, if signals 
simply were measured at a lower resolution, valuable information might be lost. 

 
Athichanagorn  et al. (5) performed data reduction by pressure thresholding, i.e. unless 

a measurement has changed with more than a user specified threshold from the previous 
measurement, it is removed. Athichanagorn  et al.  recommended data reduction after outlier 



Part 2: Results and Discussion 

119 
 

removal and de-noising. This method requires a user specified threshold as the threshold is 
signal specific.   

 
We also choose to perform data reduction with thresholding but without the 

requirement for a user defined and signal specific threshold.  As Athichanagorn  et al., we 
will remove outliers and noise from the signal measurements prior to data reduction. Outlier 
removal and de-noising will be accomplished as described in the two previous sections. The 
number of measurements to remove in data reduction will be determined by an iterative 
scheme.   
 

We choose to define the loss of signal energy as the square difference between the de-
noised signal measurements and the original noisy signal measurements. We would like to 
remove an amount of signal energy equal to the estimated squared noise level. This will be 
accomplished by considering the loss of signal energy from de-noising subtracted the 
estimated squared noise level given as; 

(5.11) 
,

1
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2)(1 2 ,,11 (
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N
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fi is the de-noised signal measurements, si is the original noisy measurements while N is the 
number of signal measurements. The noise level σ, is estimated as for outlier removal and de-
noising by the RMAD noise estimator given by eq. (5.7) and is calculated from the detail 
coefficients at the first decomposition level in the wavelet transform applying the original 
noisy signal measurements si. We seek to reduce the number of measurements in a sequence 
of step; [N/2, N/4, N/8, N/16,…..,1]. In the first step, half the number of signal measurements 
will be attempted removed while only one single measurement is attempted removed in the 
last step. To accomplish data reduction, the following iterative scheme is considered; 
 

1. Try to remove the N/2k signal measurements with the smallest change since the 
previous measurement from the de-noised signal measurements fi and where k 
=[1,2,3,4,…..,log2(N)] is an iteration counter.   
 

2. Interpolate the de-noised and reduced number of signal measurements fi back to the 
original signal measurement spacing si. Constant interpolation is applied for rate 
signals while linear interpolation is applied for pressure signals. 
 

3. Calculate eq. (5.11) utilizing the interpolated and de-noised signal measurements fi. If 
eq. (5.11) has a positive value, permanently remove N/2k measurements from the de-
noised signal measurements fi during the current iteration step. If eq. (5.11) has a 
negative value, do not remove any de-noised signal measurements fi during the 
current iteration step.  
 

4. Step 1-3 is repeated in a sequence of step. The counter k is increased by one for each 
iteration step as we attempt to remove [N/2, N/4, N/8, N/16, ….., 1] measurements 
with the smallest change since the previous measurement from the de-noised signal 
measurements fi.  

 
If all noise has been removed in the de-noising, the ideal energy loss in data reduction 

should be close to the estimated noise level, of course under the assumption that the signal is 
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not over-smoothed. If important signal information has been removed in the de-noising as 
well, the energy loss will be larger than the estimated noise level.  
 

Let us illustrate the proposed data reduction method by an example. Rate 
measurements are considered in this example. We start by eliminating half the number of de-
noised signal measurements as illustrated in Figure 5.42 below. Green measurements are the 
ones kept while grey measurements are the ones removed. The signal measurements after the 
largest changes are always kept. After the initial removal of half the number of de-noised 
signal measurements in Figure 5.42b, the remaining signal measurements are interpolated 
back to the original spacing by constant interpolation. In Figure 5.42b, the expression in eq. 
(5.11) will be positive. Thus half the number of measurements is permanently removed from 
the de-noised signal measurements. Next in Figure 5.42c, half the number of remaining de-
noised signal measurements from Figure 5.42b has been removed and once again the 
expression in eq. (5.11) is positive. Thus half the number of remaining measurements is 
permanently removed from the de-noised signal measurements.  
       

 
Figure 5.42: (a) Original signal, (b)-(c) removal of measurements, (d)-(e) no further removal 
of measurement. (f) Final result. 

 
In Figure 5.42d, it is obvious that too many measurements are removed if half the 

number of remaining signal measurements once again is removed. Thus the next step will 
result in a negative value in eq. (5.11) and is consequently skipped.  This means that the 
square difference between the noisy signal measurements and the interpolated de-noised 
signal measurements will be high, much higher than the estimated noise level. Then we will 
remove significant information from the de-noised signal measurements and should continue 
to the next step without removing any signal measurements. In Figure 5.42d we try to remove 
two de-noised signal measurements and the expression in eq. (5.11) will once again be 
negative. Next we will try to remove a single de-noised signal measurement as shown in 
Figure 5.42e. Once again the expression in eq. (5.11) will be negative and thus the final result 
in Figure 5.42f will be the same as in Figure 5.42c. 
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In Figure 5.43, we have illustrated the data reduction ratio where the expression in eq. 
(5.11) is zero. The number of remaining measurements in percent is given along the x-axis. 
The estimated noise level for this signal is four and the square value of the noise level is 
shown by the horizontal brown line. The vertical blue line indicates the data reduction ratio 
where the expression in eq. (5.11) is zero. The energy loss in the signal measurements is 
shown as the black curve.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.43:  Illustrates the data reduction ratio where the expression in eq. (5.11) is 
minimized for a signal added four standard deviation of white noise.  

  
In the author’s opinion, this method works well. Since de-noised signals will be 

available in the cases we will consider, this makes the proposed data reduction method in 
particular simple to use. The proposed data reduction method requires no user input and holds 
the promise for automatic data reduction of pressure and rate signals. 

 
It should finally be noted that wavelet analysis is referred to as well suited for signal 

compression. The idea behind signal compression in wavelet analysis is to keep the “large” 
detail coefficients and discard the small detail coefficients.  This since most of the detail 
coefficients will be zero or close to zero and most of the “important” signal information will 
be located within a small fraction of the “large” detail coefficients (and the remaining 
approximate coefficients). Thus the discrete wavelet transform is well suited if the objective is 
data compression and efficient storage of the signal measurements. However, we need to 
perform the inverse wavelet transform if we like to utilize the wavelet compressed signal 
measurements in various kinds of analyses, e.g. in well-test analysis. In the inverse wavelet 
transform, we will end up with the same number of signal measurements as before the 
wavelet transform (even if we only store the “large” detail coefficients and the remaining 
approximate coefficients). In different kinds of analysis, we would like to reduce the number 
of signal measurements to improve numerical performance, e.g. in well-test analysis. 
Consequently, signal compression by wavelet analysis is extremely useful if the objective is 
data compression to reduce the data storage requirement for the measured signals. 
However, if the objective is data reduction (reduce the number of signal measurements), as 
is the objective in this work, wavelet analysis is not well suited for this and a thresholding 
approach as described above is preferred.  
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      The measured signals can be efficiently stored by the use of wavelet analysis reducing 
the requirement for data storage capacity. By the use the discrete wavelet transform for the 
signals considered in this work, compression ratios of 8-25% is experienced for pressure 
signals while compression ratios of 3-15% is experienced for rate signals. The compression 
ratio is the number of remaining approximate and detail coefficients divided by the number of 
uncompressed signal measurements. Wavelet signal compression is performed with the same 
selections for pressure and rate signals as in signal de-noising in chapter 5.3. Hence the 
selection of which detail coefficients to consider as “large” and store, and which detail 
coefficients to consider as “small” and not worth storing, is determined in the same way as in 
signal de-noising. Also note that we cannot apply the stationary wavelet transform in wavelet 
signal compression. This since the number of detail coefficients at each resolution level is 
kept constant and redundancy is introduced in the stationary wavelet transform. The number 
of “important” detail coefficients in the stationary wavelet transform is often larger than the 
original number of signal measurements due to the redundancy introduced in the stationary 
wavelet transform. In addition, the number of remaining approximate coefficients is equal the 
number of original signal measurements. Consequently, the signal representation obtained in 
the stationary wavelet transform is not well suited for signal compression. Thus we need to 
compress the signal measurements by the use of the dyadic wavelet transform as described in 
chapter 4.7. However, as already mentioned, the wavelet signal compression is well suited for 
data compression and efficient data storage of the signal measurements, while thresholding is 
preferred if the objective is to reduce the number of signal measurements.  

 
Next we will demonstrate some valuable application of signal filtering in the E&P 

industry. 
 
 

5.5  Applications 

Case 1. De-noising and Data reduction 
The following example consists of 5335 pressure measurements generated using Eclipse 
reservoir simulator(79)  and a user defined rate history. One standard deviation of white noise 
was added to both rate and pressure measurements. The pressure measurements are however 
generated based upon exact and noise-free rate measurements. Random outliers were added to 
both pressure and rate measurements as described in chapter 5.1. The pressure and rate signals 
including noise and outliers are shown in Figure 5.44. A zoomed in section of the signals is 
shown in Figure 5.45. 
 

The first step is outlier removal using the previously described median filter. This is 
done completely automatically with the median filter described in chapter 5.2 and with noise 
estimation from RMAD noise estimator. As a result, all outliers were successfully removed 
from the pressure and rate measurements as illustrated in a limited time interval in Figure 
5.46. After outlier removal, the rate measurements are de-noised as described in chapter 5.3 
and data reduction is applied as described in section 5.4. Out of the initial 5335 rate 
measurements, only 25 remain after data reduction. This is illustrated in Figure 5.47. Ideally 
our data reduction method should have removed four additional rate measurements (four of 
the constant rate intervals contain two remaining measurements).  However, we chose to keep 
the data reduction method like this to minimize the risk of removing measurements with 
important information content. The pressure measurements are then de-noised as described in 
chapter 5.3. A zoomed in section of the filtered pressure signal is shown in Figure 5.48. 



Part 2: Results and Discussion 

123 
 

  
Figure 5.44: Pressure and rate measurements added white noise and random outliers. 

 

 
Figure 5.45:  Zoomed in section of pressure (black curve) and rate (red curve) measurements 
added white noise and random outliers. 
 

 
Figure 5.46: Outliers removed from pressure (black curve) and rate (red curve) 
measurements with proposed outlier filter.  
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Figure 5.47: De-noised and reduced number of rate measurements (red curve) along with 
original rate measurements (black curve). 
 
 

 
Figure 5.48:  Zoom in on de-noised pressure measurements (red curve) along with original 
noisy measurements (black curve). 
 
 

In automatic well-test analysis, as will be described in chapter 7, a different approach 
than described above is chosen for rate signals. In data preparation to well-test analysis, only 
pressure signals are filtered. Next pressure transients are detected and average rates between 
the detected pressure transients is calculated. Thus outlier removal, de-noising and data 
reduction is not required for rate signals in our proposed automatic well-test analysis. 
However, as this is developed as a general signal filtering module, other applications than 
well-test analysis might require rate signal filtering. Thus the purpose of this case was to 
illustrate that the proposed rate signal filtering works well if desired in other applications than 
well-test analysis.  
 

Case 2. Derivative Analysis 
One of the areas where wavelet de-noising can be very useful, is for generation of derivative 
plots(13) in well-testing. Derivative plots are used in well-testing for model identification, i.e. 
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identify if the reservoir is homogenous, fractured or layered just to mention a few. These plots 
utilize numerical pressure derivatives and are thus very sensitive to noise. Derivative plots 
were previously described in chapter 3.8.2. By de-noising the pressure measurements with a 
wavelet filter before calculating the numerical derivatives, better derivative plots might be 
obtained. Notice that the derivative plots already contains the differentiation interval(42; 46) 
used in order to smooth noisy derivatives. Instead of choosing measurements next to each 
other in calculation of numerical derivatives, measurements apart from each other are used. 
The distance between the measurements are measured along the x-axis in the derivative plots 
and is typically between 0.2 and 0.4.   In general, the use of differentiation intervals might 
distort the shape of the derivative plot if chosen too high, or it might not smooth the derivative 
plot at all if chosen too low. In the case where wavelet filtering is applied with the measured 
pressure signal, neighbouring measurements are used in the calculation of numerical 
derivatives in the derivative plot.  
 

Figure 5.49 shows a derivative plot for a dual porosity reservoir with square 
boundaries (42; 46) where the use of the differentiation interval fails to suppress the noise even 
when chosen as high as 0.7, i.e. measurements with a distance 0.7 along the x-axis are used in 
the calculation of the numerical derivatives. If chosen higher than this, it might completely 
distort the shape of the derivative plot. In some cases, the combination of noise and utilization 
of the differentiation interval can alter the derivative shape in a way that can make model 
selection hard or even wrong. The wavelet filtering suppresses the noise far better then the 
differentiation interval. The wavelet filter utilized is the one previously determined as best for 
pressure signals in chapter 5.3. The pressure measurements were de-noised before used in the 
derivative plot and numerical derivatives were calculated using measurements next to each 
other. This is shown in Figure 5.50. 

 
 

 
Figure 5.49: Derivative plot where pressure derivatives are smoothed using a differentiation 
interval of 0.7.  
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Figure 5.50: Derivative plot where pressure measurements are de-noised in Waveshrink.   
 

Case 3. Computational Time, Regression Analysis Well Testing 
In non-linear regression analysis one seeks to minimize the square difference between the 
measured signal and some mathematical model assumed to adequately describe the process 
model. In well-testing the process model describes the flow of fluid through a porous media 
towards a single well (42; 46). The output from the non-linear regression analysis is the process 
state corresponding to the smallest square difference between the measurements and the 
process model, thus providing an estimate of the state variables. Non-linear regression 
analysis was described in chapter 3. 
 

We would like to remove outliers before non-linear regression analysis. The reason for 
this is that single outliers with a large magnitude can give a significant contribution to the 
square difference and thus contribute to a poor estimate of the process state. Normal 
distributed noise with a given standard deviation and zero mean will not distort the results 
from the regression analysis. When de-noising the signal measurements, there is always a 
certain possibility of removing significant information from the signal measurements, thus 
shifting the results that otherwise would have been obtained in the well-test non-linear 
regression analysis. Thus de-noising a signal prior to non-linear regression analysis is not 
preferred. This also applies to data reduction. To make sure that no significant information is 
removed from the signal measurements, all noisy signal measurements in general should be 
included in well-test non-linear regression analysis, of course with the exception of potential 
outliers. Nevertheless, sometimes in terms of obtaining the results from well-tests regression 
analysis within a reasonable amount of time, we are required to reduce the number of 
measurements, and in particular the number of rate measurements (42; 46). As a result, we 
would like to de-noise and reduce the number of rate measurements in order to speed up the 
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non-linear regression analysis, although we would still like to obtain the same results as if all 
the signal measurements had been applied in a computational costly analysis.   
 

A rate history with 4000 measurements containing five shut-in periods is generated as 
described in chapter 5.1. Based upon a selected mathematical reservoir model, pressure 
measurements are generated based upon the noise free rate measurements. The model used to 
generate the pressure response is a vertical well in a homogenous reservoir with infinite 
boundaries as described in chapter 3.3 and given by eq. (3.22). Skin factor and wellbore 
storage are included by eq. (3.28) and variable rates by eq. (3.29). The rate and pressure 
measurements are shown in Figure 5.51. Four standard deviation of white noise is added to 
both rate and pressure measurements. The shut-in periods are assumed free from noise. No 
outliers are added to the measurements. Note that due to the large variations in pressure and 
rate, the scale on the y-axis in Figure 5.51 is large. Hence a zoomed in section of the rate and 
pressure measurements is shown in Figure 5.52 and Figure 5.53. The rate measurements are 
de-noised and the number of measurements reduced, while the pressure measurements are 
only de-noised. In well-testing, it is usually preferred to keep most available pressure 
measurements during shut-in periods to get good results from non-linear regression analysis 
and consequently data reduction is not considered in this case for the pressure measurements. 
The pressure measurements during shut-in periods should not be reduced unless high 
sampling rates are used (e.g. every second or every ten second) or if the shut-in periods are 
very long (e.g. duration of weeks or months). This is not the case for the pressure 
measurements we consider in this case. However, even if pressure de-noising is not 
recommended for pressure measurements utilized in non-linear regression, it is still 
interesting to see if the use of de-noised pressure measurements will influence the results from 
non-linear regression analysis. Recall the pressure de-noising is required before data reduction 
if a large number of pressure measurements are considered, or to facilitate model 
identification by the use of derivative plots.  The methods and selections applied in filtering of 
pressure and rate signals were given in chapter 5.2-5.4. The reduced number of rate 
measurements is shown in Figure 5.54 while the de-noised pressure measurements are shown 
in Figure 5.55. 
 
       After de-noising and data reduction of rate measurements and de-noising of pressure 
measurements, an algorithm that runs non-linear regression analysis on each shut-in period 
estimating the unknown parameters (in this case skin factor, wellbore storage and 
permeability) is applied. This is referred to as build-up testing(21) and was described in chapter 
3.7. The non-linear regression analysis is initially applied with the noisy pressure and rate 
measurements and then to the de-noised and reduced number of rate measurements along with 
the denoised pressure measurements. Then the average estimated parameter values for the five 
shut-in periods are calculated from the non-linear regression analysis with the noisy pressure 
and rate measurement, and with the de-noised and reduced number of rate measurements 
along with the noisy pressure measurements.  Figure 5.56 shows the difference in average 
estimated permeability, skin and wellbore storage in the two cases. Recall that the goal is to 
obtain the same results from the de-noised and reduced number of rate measurements along 
with the de-noised pressure measurements as from the original and noisy pressure and rate 
measurements, only much faster. The difference is less than 2% for skin factor and around 
0.5% for permeability and wellbore storage. The time is reduced from 343 seconds to only 4 
seconds, and the computational speed is increased with a factor of 86. This is illustrated in 
Figure 5.57. This shows that it is possible to obtain good results in well-test regression 
analysis using only a small fraction of the original rate measurements while increasing the 
computational speed significantly. In addition, the results indicate that even if de-noised 
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pressure measurements are utilized, the results from non-linear regression analysis is not 
significantly affected.  

 
 Figure 5.51: Pressure and rate signal used in case 3. 4000 measurements with a time 
interval of 0.01 hours are considered. 
 

 
Figure 5.52: Zoom in on rate signal to illustrate the noisy rate measurements. 
 

 
Figure 5.53: Zoom in on pressure signal to illustrate the noisy pressure measurements. 
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Figure 5.54: Data reduction of rate measurements. 
 

 
Figure 5.55: Zoom in on de-noised pressure signal to illustrate the pressure de-noising. Same 
zoom-in as in Figure 5.53. 

 
 
Figure 5.56: Average difference in estimated wellbore storage, skin factor and permeability 
from regression analysis when applying noisy and original number of pressure and rate 
measurements versus de-noised and reduced number of rate measurements along with de-
noised pressure measurements. The difference is shown in percent. 
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Figure 5.57: Computational time running non-linear regression analysis on noisy and 
original number of pressure and rate measurements versus de-noised and reduced number of 
rate measurements along with de-noised pressure measurements. 
 
 

5.6 Summary  
The proposed method for outlier removal in pressure and rate measurements will start by 
estimating the noise level using the RMAD noise estimator in eq. (5.7). This requires no user 
input. Then the window size for the median filter is chosen, i.e. we specify the largest number 
of successive outliers to remove. We choose to remove up to nine successive outliers for 
pressure signals. We are aware that some of the smallest pressure transients might be removed 
as well, but it was shown that if this is the case, it is unlikely that important information is 
removed from the pressure measurements in the scope of well-test analysis. For rate signals, 
as these frequently are stored as averaged or aggregated values, only single outliers is 
removed. The removal of outliers is then accomplished without any required user input.  
 

After outlier removal, the signals will be de-noised with Waveshrink. For pressure 
signals, this is accomplished with noise estimator RMAD eq. (5.7), primary resolution level 
from eq. (5.10), wavelet Spline39, SCAD shrinkage rule eq. (4.59) and RED threshold 
estimator eq. (5.9). For rate signals, de-noising is accomplished with noise estimator RMAD 
eq. (5.7), wavelet spline4246, primary resolution level from eq. (5.10), SCAD shrinkage rule 
eq. (4.59) and RED threshold estimator eq. (5.9). Since all selections required in Waveshrink 
are predefined or calculated based upon signal properties, de-noising can be performed 
automatically under the assumption that the selections used in Waveshrink can be considered 
universal best for the type of signals considered. Through the large number of filtering 
exercises completed, we have shown that the recommended selections in Waveshrink on 
average will work best for the signals considered.  

 
Finally, the number of signal measurements can be reduced by the proposed data 

reduction method after outlier removal and de-noising. Again data reduction requires no user 
input and can be done automatically. All the methods and selections required for signal 
filtering is consequently predefined or estimated based upon signal properties. Excellent 
performance was demonstrated for outlier removal, de-noising and data reduction for the kind 
of signals considered.  
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6 Real-time Signal Filtering and Process Monitoring 
The measurements of signals will typically be performed continuously in real-time and it will 
require some special attention to utilize automatic signal filtering in such an environment. In 
general, a better estimate of the underlying signal can be obtained in wavelet filtering when 
the number of signal measurement becomes large(55). Therefore, all available signal 
measurements should be included in wavelet filtering to obtain a better signal approximation. 
Of course, this will in most cases be impossible due high signal sampling rates and limited 
computer processing facilities. Consequently we are required to utilize the wavelet transform 
and subsequently the wavelet filtering with a limited number of the latest signal 
measurements. A window approach will be used in this case, i.e. the wavelet filtering will be 
performed on a given number of the most recent signal measurements. How large this window 
should be will be discussed later. However, in general it can be stated that if chosen too small, 
the result from wavelet filtering might be relatively inaccurate while a too large window will 
result in poor computational performance. Both outlier removal and data reduction require an 
estimate of the noise level acquired from wavelet filtering. Therefore a similar window 
approach is required for outlier removal and data reduction.  
 

The case where signal filtering is performed on continuously updated signals is 
referred to as real-time signal filtering. The objective with real-time signal filtering is to 
filter a large number of signal measurements computationally efficient, continuously and 
without user interactions. In the previous chapter, we showed that it would be possible to 
determine methods and selections to facilitate automatic signal filtering of typical signals 
encountered in the E&P industry. As this is possible, it is also possible to have a continuous 
filtering of signal measurements without any user interaction. Continuously filtered signals 
will then be available to the engineers at any time.  
 

A system is said to be in a transient state if a state variable has been changed and the 
system yet again has not reaches steady state. The detection of the start of the transient is 
referred to as transient detection.  The detection of a transient is important not only to alert 
the engineers about changes in process variables, but also as a tool to simplify and automate 
different kinds of analyses, such as well-testing. (Automatic well-testing will be discussed in 
chapter 7). Transient detection will be the key component in what we refer to as real-time 
process monitoring.  

 
The case where process monitoring is performed on continuously measured signals is 

referred to as real-time process monitoring. The objective with real-time process monitoring 
is to monitor a large number of signal measurements computationally efficient, 
continuously and without user interactions. As in real-time signal filtering, a window 
approach will be used. The window size will determine how fast and accurate changes in the 
signal measurements can be detected. A small window will result in fast detection of possible 
changes, but might in turn result in a higher frequency of “false” detections. On the other 
hand, a large window size will be better for an accurate detection of changes but might also 
result in a slower detection. 

  
The real-time signal filtering and process monitoring module can be used to directly 

monitor the process state and provide the user with alarms in the cases where changes are 
detected in the signal measurements, or the real-time signal filtering and process monitoring 
module can be used to data preparation for use with analysis modules such as well-testing. An 
illustration of real-time signal filtering and process monitoring is shown in Figure 6.1. This 
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includes the signal itself, real-time signal filtering, real-time signal trend estimation, real-time 
transient detection, real-time noise estimation and alarms. Various alarms can be triggered if 
deviations from the normal trends are detected.  

 
Figure 6.1:  Illustration of real-time signal filtering and process monitoring.  

 
In this chapter, we will develop a module for real-time signal filtering and process 

monitoring. First, we propose a computational optimized wavelet transform for use with 
signals measured in real-time. Thus we can utilize the signal filtering described in the 
previous chapter with signals measured in real-time. This is accomplished with a sliding 
window approach. A pattern recognition approach for transient detection is proposed next. 
Finally we propose a process monitoring module. This processing monitoring module 
contains the following elements; continuously updated filtered signals, continuously updated 
noise estimation, continuously updated transient detection and continuously updated signal 
trend. All elements in process monitoring need to be performed on a window basis in order to 
minimize the requirement for computer processing capacity. Discussion regarding the window 
size will be given for each of the elements in process monitoring.  

 
The results presented in this chapter are previously published in Olsen et al. (2).  
 
 

6.1 Real-time Wavelet Transform 
Until now, the wavelet transform has been considered with a finite and fixed number of signal 
measurements. Modifications are required if the wavelet transform is utilized with continuous 
signal measurements, i.e. if the number of signal measurements is continuously increased. 
Applying the normal wavelet transform in the case of real-time signals would require great 
computational effort since an updated wavelet transform would require rapid and extensive 
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recalculations as new measurements were available. In addition, depending upon the 
boundary conditions chosen in the wavelet transform, this might result in some disturbance in 
the latest (or newest) measurements. This should be avoided since the latest measurements are 
the ones normally viewed by a user. Consequently, it will be valuable to wavelet transform 
and de-noise the latest measurements without the influence of boundary conditions.  
 
       In Figure 6.2, eight signal measurements at times t0 – t7 are shown in the first row. 
The second row shows the approximate coefficients at the first decomposition level. The third 
row shows the approximate coefficients at decomposition level 2. As discussed in chapter 4.7, 
the estimation of approximate coefficients might require knowledge of what happens beyond 
the latest signal measurement and before the first signal measurement. As further discussed in 
chapter 4.7, we might choose to assume a periodic signal or a signal mirrored/folded around 
the first and last measurement. This might however result in a poor signal approximation for 
the first and the last signal measurements if this assumption is wrong (which it usually will 
be). Although other boundary conditions exist to minimize this problem, a sounder approach 
will be to eliminate those calculations in the wavelet transform that are influenced by the 
assumed boundary conditions. 
 

In the Figure 6.2, the arrows indicate which measurements at a finer resolution level 
that is required in the estimation of the approximate coefficients at the next and coarser 
resolution level. The relationship between approximate coefficients at different resolution 
levels was give by eq. (4.27). We see that the assumption made regarding the signal behavior 
beyond the last measurement, i.e. if the signal is periodic or mirrored, will affect more and 
more approximate coefficients at higher decomposition level (or coarser resolution level).  
Ignoring the detail and approximate coefficients in the wavelet transform affected by the 
assumption regarding the signal behavior beyond the boundaries, will give a “new” wavelet 
transform as shown in Figure 6.3. This is referred to as the real-time wavelet transform. We 
will see a delay in the estimation of the approximate coefficients at decomposition level 1, i.e. 
we can only calculate 7 approximate coefficients at decomposition level 1 without the 
knowledge of what happens beyond the last signal measurement. A slightly larger delay in 
estimation of approximate coefficients will appear at decomposition level 2 where only 5 
approximate coefficients can be calculated. Thus the estimation of approximate and detail 
signals at higher decomposition levels will only be close to real-time, while approximate and 
detail signals at lower decomposition levels will be in real-time. 

 
 

 
Figure 6.2: Traditional calculation of approximate coefficients applying 2 decomposition 
levels and two scaling coefficients (Haar wavelet). 
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Figure 6.3: Calculation of approximate coefficients with eight signal measurements applying 
two decomposition levels and two scaling coefficients (Haar wavelet). 
 
 

In general, the number of signal measurements required to calculate approximate or 
detail signals at a given decomposition level is found by; 
 

(6.1) #measurements = #WC 2j         
 
where #WC is the number of wavelet coefficients in the wavelet considered and j is the 
decomposition level consider. If a wavelet with four wavelet and scaling coefficients is 
considered, a sample size of 4*25=128 is required in order to calculate any approximate 
coefficients at decomposition level 5. This will in addition indicate the delay in the calculation 
of approximate and detail coefficients at a given decomposition level. By specifying the 
number of resolution levels to filter, or equally the maximum number of measurements the 
filtering should contain (in order to reduce the need for computer processing capacity), one 
can start eliminating old measurements from the beginning of the wavelet transform as 
illustrated in Figure 6.4. 
 
 

 
 
Figure 6.4: Status after adding a new measurement applying two decomposition levels and a 
wavelet with two wavelet coefficients. 
 
 
       If for instance the maximum number of measurements was chosen to eight or equally, 
the maximum number of decomposition levels was chosen equal two, Figure 6.4 illustrates 
what will happen as a new measurement becomes available. The new measurement will result 
in calculation of two new approximate coefficients as shown to the right in Figure 6.4. In 
addition, the approximate coefficient and signal measurement with index zero are deleted. 
This is shown to the left in Figure 6.4. The real-time wavelet transform will thus only result in 
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a small number of new calculations compared to the normal wavelet transform, and it will 
eliminate the influence of boundary effects in the latest measurements. 
 

Real-time filtering with Waveshrink requires the calculation of the inverse wavelet 
transform. The real-time inverse wavelet transform is slightly more complicated than the real-
time forward wavelet transform. This since modifications of detail coefficients at low 
resolution levels will cause changes in many signal approximations and thus many updates are 
required each time a detail coefficient is changed in Waveshrink. However, since most 
modifications of detail coefficients will occur at low decomposition levels, wavelet filtering in 
general will cause a limited number of updates in the signal approximation. 
                
       In real-time wavelet filtering, the forward wavelet transform is performed as described 
above when new measurements become available. This requires only a limited number of new 
calculations. In wavelet filtering, the new detail coefficients are then tested to determine 
whether or not they should be kept, reduced or killed depending upon the shrinkage rule and 
threshold estimator considered. If some of the new detail coefficients are changed by 
Waveshrink, the calculation as shown in Figure 6.5  must be performed in order to update the 
filtered signal. In this figure, a detail coefficient at decomposition level 2 was changed in 
Waveshrink. Thus when performing the inverse wavelet transform, two approximate 
coefficients at decomposition level 1 will be affected, while four of the filtered signal 
measurements will be affected.  As detail coefficients at higher decomposition levels are 
included in Waveshrink, a gradual signal filtering will be observed.  
 

 
Figure 6.5: Changing a detail coefficient at decomposition level 2 will require several 
calculations to update the filtered signal. A wavelet with two coefficients is applied (Haar). 
 

 
The approach described above for real-time wavelet transform and real-time wavelet filtering 
is computationally efficient and allows signal de-noising in real-time. Next we will describe a 
simple but efficient approach for transient detection.  

 
 

6.2 Transient Detection 
The term transient is used in many fields and in general can have many different meanings. In 
our case the term transient refers to an event that will pass with time and is relative short-
lived. This can be illustrated by what will happen if a choke in an oil/gas well is opened and 
fluid starts to flow. This will result in an instant decrease in the pressure measured downhole 
in the well. A region of pressure drawdown starts to develop near the well caused by the fluid 
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withdrawal. The drawdown area around the well will increase as the well continues to 
produce. However, after a while (if no process variables including the choke size is changed), 
steady state flow conditions will start to develop and the transient will pass. The duration of 
the transient will depend upon the process and the process state. Thus it can be said that a 
system is in a transient state if a process variable has been changed and the process yet again 
has not been stabilized. The detection of the start of the transients is referred to as transient 
detection and will be the topic of this section.  
 

We would like to have a method for automatic pressure transient detection for use 
with signals measured in real-time. Thus we require a reliable and computationally 
efficient method for pressure transient detection. In addition, no user defined input should 
be required in pressure transient detection. The transients are detected from the pressure 
measurements only as these are considered more accurate and reliable than the rate 
measurements.  
 

In the E&P industry, efforts have been devoted to the detection of pressure transients 
for use within well-testing. Pressure transients origin from changes made in the choke 
opening in a well. Thus it might be believed that one simply could detect the pressure 
transients by detecting when changes in the choke opening takes place. However, the problem 
is that the choke will use some time to open or close and this time delay might be of several 
minutes. It will thus be impossible to infer that the pressure transient will occur at the same 
time as the choke opening changes. In addition, the magnitude of this time delay normally 
will be unknown. Thus in order to have the exact location of the pressure transients, they need 
to be detected from the measurements of the pressure signal.  

 
Athichanagorn et.al(5) identified pressure transients by the use of modulus maxima at 

intermediate decomposition levels using the dyadic wavelet transform (wavelet transform 
with down-sampling as described in chapter 4.7). The wavelet modulus maximum consists of 
all detail coefficients with an absolute value greater then the previous and the next detail 
coefficient, i.e. |)(||)1(| kdkd jj | d)1  and  |)1(||)(| 1| kdkd jj  at a given decomposition level j. 
The further identification of transients would depend on the sampling rate and a user defined 
slope threshold. The transients were typically detected from the detail coefficients at 
decomposition level 3 - 5 in the wavelet transform applying a user defined slope threshold.  

 
Khong(6) discovered that the method proposed by Athichanagorn was sensitive to 

signal sampling rate and was not suited for automatic transient detection. In addition, Khong 
suggested screening for false transients by the use of Fourier analysis. Ougang et.al(11) further 
studied the mechanism behind transient detection by applying a formula to predict which 
transients that would be detected. The method proposed by Athichanagorn was also tested by 
Viberti et al. (8)  They also concluded that this method required improvements, and suggested a 
non-wavelet based method based on the analysis of pressure slopes. This method requires two 
different thresholds, one for pressure build-up and one for pressure drawdowns. The 
thresholds need to be determined by the user with a trial-and-error procedure. Rai et al. (18) 

again considered that method proposed by Athichanagorn and concluded that the method was 
not adequate as the required slope threshold was difficult to determine. Rai et al.  further 
tested the method proposed by Athichanagorn with the Haar wavelet (instead of the 
Spline4246 as used by Athichanagorn) and with the stationary wavelet transform (instead of 
the dyadic wavelet transform). Again the results were disappointing as this method still 
requires the determination of a slope threshold. They further studied an approach based upon 
Savitzky-Golay Smoothing Filters. This method fits the measured data to polynomials of 
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various degree and transients were detected from the derivatives of the fitted polynomials. 
This method will in addition work well with noisy measurements. They finally studied a 
method called the Segmentation method. Rai et al.  reported that transient detection based 
upon the Segmentation method gave good results. Numura et al. (19) considered transient 
detection as a non-parametric regression problem. The initial guess of the unknown 
parameters was obtained from the method proposed by Athichanagorn. Suzuki et al. (20) 
recently published a method for automatic transient detection based upon pattern recognition 
in the pressure derivatives. A threshold is required to eliminate the smallest detected 
transients assumed to origin from noise. Their method seems to be promising and works well 
with the tested signals. Thomas(7) applied pattern recognition methods in order to identify 
aberrant transients. This approach was shown to work well for the cases considered.  
 

The transient detection methods presented in the literature can roughly be divided into 
four; wavelet based methods, regression based methods, threshold based methods and pattern 
recognition based methods. The wavelet based methods appears to have several 
disadvantages. Let us consider the method proposed by Athichanagorn. This method has two 
main weaknesses. Athichanagorn proposed to detect the transients from the wavelet modulus 
maxima signal at intermediate decomposition levels. Recall that the wavelet modulus 
maximum consists of all detail coefficients with an absolute value greater then the previous 
and the next detail coefficient. However, the wavelet modulus maxima signal will be shifted 
compared to the original signal. This is shown below in Figure 6.6. The original signal is 
shown in Figure 6.6(a) while the wavelet modulus maxima signal for decomposition level 3-5 
is shown in Figure 6.6 (b)-(d). The transient is located at t=2501 in the original signal while 
the wavelet modulus maximum corresponding to this transient, is located at t =2497 at 
decomposition level 3, at t=2493 at decomposition level 4 and at t=2486 at decomposition 
level 5. This shifting makes it difficult to relate the detected transients in the wavelet modulus 
maxima signal, to the transients in the original signal. In addition, the selection of a slope 
threshold to determine the “large” wavelet modulus maximum is difficult to select as reported 
by several authors. (6; 10; 18) Thus we conclude that the wavelet based methods proposed in the 
literature are not suited for automatic transient detection.  

 
The regression based methods appears to work fairly well but are computational 

expensive(19; 18). Based on this author’s experience, severe convergence problems will be 
encountered if treating the location and number of transients as unknowns in a non-parametric 
regression problem as done by Numura et al. (19) The threshold based methods have a 
disadvantage as they require the determination of signal specific thresholds(8) and are therefore 
not suited for automatic transient detection. Finally, pattern recognition is reported to work 
well. The method proposed by Suzuki et al. (20) only recently came to this author’s attention 
and it appears to work very well. The advantage with pattern recognition methods is that they 
require little information about the reservoir and few, if any at all, user defined limits.  In 
addition, a pattern recognition approach is simple to implement and can be performed 
computationally efficient with real-time signals. Hence we chose to detect transients by 
pattern recognition. We have chosen a method slightly different from the one presented by 
Thomas(7). As opposed to Thomas, we supply the system with predefined patterns for the 
transients as will be described in the next section.  
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Figure 6.6: Wavelet maxima signal shifted a various decomposition levels in the wavelet 
transform. 

 
Finally note that transient detection was included as the third step in the procedure by 

Athichanagorn  et al.  (5). This means that transients were detected after outlier removal and 
de-noising but before data reduction. In our work, transient detection will be performed 
subsequent to data reduction. Athichanagorn  et al.   applied wavelet analysis for transient 
detection and hence it was beneficial to detect transients before data reduction as wavelet 
analysis requires equally spaced data. A typical data reduction algorithm removes signal 
measurements from periods with small and assumed insignificant signal changes while it 
keeps the signal measurements in periods with large and assumed significant signal 
measurements. Hence data reduction tends to create unequally spaces signal measurements. In 
this chapter, transient detection by a pattern recognition approach is proposed. Consequently, 
transients can equally good and more computationally efficient be detect after data reduction. 
Therefore we chose to detect pressure transients after data reduction. 
 

Note that we in this section will detect the transients from the available signals 
measurements. However, since we are dealing with finite sampled signals, the signal might 
not be sampled at the exact time when a transient truly occurs. This needs to be corrected for 
in well-testing and will be discussed in chapter 7. However, it is outside the scope of this 
chapter.  
 
 

6.2.1 Pattern Recognition 
We chose to detect transients by a simple pattern recognition approach. We chose to represent 
the transients as pixel based images. The images will contain binaries, either 0 or 1.  A 
window approach screening for pressure transients is utilized. We choose to include several 
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measurements both before and after the pressure transients. In this work we have chosen to 
apply a window with 20 measurements, i.e. ten measurements before and ten measurements 
after the start of the pressure transient. This appears to be a good choice based on a trial-and–
error approach. A larger window size will prevent detection of transients close to each other, 
while a smaller window will make the detection more uncertain, i.e. it is more likely that we 
might end up detecting false transients. In addition, we did chose to remove up to nine 
successive outliers by the median outlier filter in chapter 5.2.1.  Thus if a pressure transient 
contains nine or less measurements, it will be removed by the outlier filter. This means that if 
the outlier filter works properly, all remaining transients at least will have ten measurements. 
It was illustrated in chapter 5.2.1 that it was unlikely that important information was removed 
from the pressure measurements by removing up to nine successive outliers.  
 

To represent the measurements as an image, we first we need to determine the vertical 
resolution. The vertical resolution is simply determined by dividing the maximum pressure 
difference in the window considered by the window size. The index of the pressure 
measurements is used as the horizontal resolution. The pressure measurements in each 
window will be represented as a 20x20 image. Note that since a window size of 20 is used in 
the transient detection, at least 10 measurements need to separate two transients to ensure 
that both are detected. Let us illustrate this with an example. Consider the 20 pressure 
measurements as shown in Figure 6.7. The minimum pressure measurement is 8665 psi and 
the maximum pressure measurement is 9179 psi. This gives a pressure difference of 514 psi 
and consequently a vertical resolution of 26 psi. The pressure measurements can then be 
represented as a pixel based image as shown in Figure 6.8. 

 
 

 
Figure 6.7: Pressure build-up transient used in pattern recognition. 
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Figure 6.8: Pressure measurements from Figure 6.7 represented as a 20x20 image. 

 
In pattern recognition, it is possible to provide the system with a predefined pattern or 

to use some sort of a system learning process, like neural networks (7), to train the system for 
pattern recognition. We choose to provide the system with predefined patterns of the 
transients, two for build up transients and two for drawdown transients. In this context we 
refer to a pressure build-up as a rate change that cause a pressure increase, while a pressure 
drawdown is a rate change that cause a pressure decrease. The pressure prior to a pressure 
build-up can either increase or decrease depending on the previous rate changes. In the same 
manner, the pressure prior to a pressure drawdown can either increase or decrease. To us it 
appears highly beneficial to distinguish between these two scenarios and to provide different 
patterns for these two cases. The two predefined patterns for build-up transients are shown in 
Figure 6.9 - Figure 6.10 while the two predefined patterns for drawdown transients are shown 
in Figure 6.11 - Figure 6.12. These typepatterns were generated by considering a large 
number of both synthetic and real pressure signals.  

 
A simple computer algorithm compares the estimated transient patterns, as illustrated 

in Figure 6.8, with the predefined patterns as shown in Figure 6.9 - Figure 6.12. If the 
estimated transient pattern matches one of the four predefined patterns, a transient is detected. 
A transient is detected if and only if the entire transient image falls upon one of the 
predefined transient patterns. 

 
It will be important to remove outliers from the signal before transient detection. It is 

also recommended to remove signal noise, which might be critical if the noise level is high. 
On the other hand it is important not to use a noise filter that tends to over-smooth the signal 
and consequently the transients, since this again will make transient detection more difficult. 
We believe that proper outlier removal and de-noising can be achieved with the proposed 
signal filtering in chapter 5. As a general rule, outliers and noise should be removed before 
transient detection. 

Pressure Difference 514 psi
Vertical Resolution 26 psi

R a n k
Time(hours) Pressure (psi) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

42,63 8666 P 9154 - 9179 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

42,65 8667 r 9128 - 9154 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

42,68 8665 e 9102 - 9128 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

42,70 8665 s 9077 - 9102 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

42,73 8667 s 9051 - 9077 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

42,75 8667 u 9025 - 9051 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

42,78 8668 r 8999 - 9025 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

42,80 8668 e 8974 - 8999 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

42,83 8668 8948 - 8974 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
42,85 8668 I 8922 - 8948 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

42,88 9042 n 8897 - 8922 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

42,90 9086 t 8871 - 8897 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

42,93 9110 e 8845 - 8871 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

42,95 9126 r 8819 - 8845 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

42,98 9141 v 8794 - 8819 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

43,00 9151 a 8768 - 8794 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

43,03 9157 l 8742 - 8768 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

43,05 9165 s 8716 - 8742 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

43,08 9173 8691 - 8716 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

43,10 9179 8665 - 8691 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
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Figure 6.9: Predefined pattern for pressure build-up with prior pressure decrease. 
 

 
Figure 6.10: Predefined pattern for pressure build-up with prior pressure increase. 
 

R a n k
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P Interval 20 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
r Interval 19 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
e Interval 18 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
s Interval 17 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
s Interval 16 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
u Interval 15 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0
r Interval 14 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0
e Interval 13 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0

Interval 12 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0
I Interval 11 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
n Interval 10 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
t Interval 9 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
e Interval 8 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
r Interval 7 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
v Interval 6 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
a Interval 5 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
l Interval 4 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
s Interval 3 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

Interval 2 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
Interval 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

R a n k
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P Interval 20 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
r Interval 19 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
e Interval 18 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
s Interval 17 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
s Interval 16 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
u Interval 15 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0
r Interval 14 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0
e Interval 13 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

Interval 12 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
I Interval 11 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
n Interval 10 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
t Interval 9 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
e Interval 8 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
r Interval 7 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
v Interval 6 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
a Interval 5 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
l Interval 4 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
s Interval 3 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

Interval 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Interval 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Figure 6.11: Predefined pattern for pressure drawdown with prior pressure increase. 
 
 

 
Figure 6.12: Predefined pattern for pressure drawdown with prior pressure decrease. 

R a n k
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P Interval 20 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
r Interval 19 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
e Interval 18 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
s Interval 17 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
s Interval 16 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
u Interval 15 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
r Interval 14 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
e Interval 13 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

Interval 12 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0
I Interval 11 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0
n Interval 10 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0
t Interval 9 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0
e Interval 8 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0
r Interval 7 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0
v Interval 6 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
a Interval 5 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
l Interval 4 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
s Interval 3 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

Interval 2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
Interval 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

R a n k
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P Interval 20 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
r Interval 19 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
e Interval 18 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
s Interval 17 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
s Interval 16 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
u Interval 15 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
r Interval 14 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
e Interval 13 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

Interval 12 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0
I Interval 11 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0
n Interval 10 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0
t Interval 9 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0
e Interval 8 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0
r Interval 7 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0
v Interval 6 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
a Interval 5 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
l Interval 4 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
s Interval 3 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

Interval 2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
Interval 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
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A pattern recognition approach will not provide us with the magnitude of the detected 

transients. We can have very small pressure changes with the predefined patterns as shown in 
Figure 6.9 - Figure 6.12 or we could have large pressure changes. What we would like to do 
is to detect the large pressure changes and ignore the smallest ones. The smallest transient 
patterns are assumed to be caused by an underlying noise structure which is not suppressed by 
de-noising.  We chose to eliminate the smallest transient patterns in the same manner as we 
eliminated the smallest outliers in chapter 5.2. Hence a transient is detected if and only if the 
pressure difference in the window considered is at least three times the estimated noise level. 
Thus outlier removal, data reduction and transient detection all rely upon an accurate noise 
estimate as can be obtained in Waveshrink as shown in chapter 5.3. If the signal is virtually 
noise free or has been denoised in advance, another criterion is required in order to eliminate 
the very smallest transients. If the standard deviation of an image window with an identified 
transient is less than a factor 0.1 of the total signal standard deviation, it is discarded. Hence a 
pressure transient is detected if and only if the entire transient image falls upon one of the 
predefined transient patterns and the pressure difference in the window considered is at 
least three times the estimated noise level and the standard deviation in the window 
considered has a standard deviation at least 0.1 of the total signal standard deviation. 

 
In addition we will calculate the relative size of the detected transients compared to 

each other. This means that the largest detected transient will have a value equal one while the 
rest of the detected transients will get a size relative to the largest detected transient. Note that 
this is simply used as a tool for visualization of the relative transient “strength” and it has no 
other practical implications. In real-time, such a list will be continuously updated as new 
transients are detected.  

 
 

6.2.2 Applications 
The proposed method for transient detection was tested with numerous synthetic generated 
pressure signals and for two cases with real data from two North Sea wells. 
 
 
Case 1: Transients in synthetic generated signals 
In this case a total of 10 synthetic pressure signals were generated. The signals were generated 
as described in chapter 5.1. Two of the signals considered are shown in Figure 6.13. The 
signals contain both outliers and noise. Outliers and noise are removed before transient 
detection with the methods previously described in chapter 5.2 and chapter 5.3. 
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Figure 6.13: Synthetic generated signals used for transient detection. 
 

When tested on synthetic signals, more than 86% of the transients were accurately 
detected. About 13% of the transients were missed. Only the very smallest transients with 
pressure changes slightly above the estimated noise level were missed. All the “large” 
transients in terms of pressure change were accurately detected.  No erroneously transients 
were detected in these cases. This is summarized in Figure 6.14. 
 

 
Figure 6.14: Summery of correctly, missed and wrongly detected transients for 10 synthetic 
generated pressure signals. 
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Case 2: Transients in North Sea well #1 
Pressure measurements was been obtained from a North Sea well. As opposed to synthetic 
data, the use of real measurements requires the author to scan through the measurements to 
determine whether or not a transient is correctly detected. We thus distinguish between 
correctly detected transients, those missed due to outliers, those missed because they were too 
small in terms of pressure change, those missed due to “wrong” patterns, those erroneously 
detected and finally those pressure changes that were difficult to classify whether or not to 
consider as transients. The original signal and the detected transients are shown in Figure 
6.15. Zoom in on Figure 6.15 are shown in Figure 6.16 - Figure 6.18.  
 

The final results are the average values found by the author and co-workers and are 
shown in Figure 6.19. 58 transients where correctly determined, 13 missed because they were 
too small in terms of pressure change and two missed because of “wrong” patterns. Finally, 
five transients were difficult to classify and it is uncertain whether or not they should have 
been detected as transients. This means that 79% of the transients were correctly determined, 
while 21% were missed, mainly because they had too small pressure changes. All “large” 
transients were accurately detected. No false transients were detected. A summary of the 
results are shown in Figure 6.19. 
 
 
 

  
Figure 6.15: Illustrates the transients detected along with the measured pressures from a 
North Sea well. 
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Figure 6.16: Illustrates the detected transients along with the measured pressures from a 
North Sea well. Zoom in from Figure 6.15. 
 

 
Figure 6.17: Illustrates the detected transients along with the measured pressures from a 
North Sea well. Zoom in from Figure 6.15. 
 

 
Figure 6.18: Illustrates the detected transients along with the measured pressures from a 
North Sea well. Zoom in from Figure 6.15. 
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Figure 6.19:  Summary of (A) correctly detected transients, (B) missed transients with small 
pressure changes,  (C) missed transients due to outliers, (D) missed transients with “wrong” 
patterns, (E) erroneously  detected transients and (F) transients  difficult to classify for North 
Sea well #1. 
      
 
Case 3: Transients in North Sea well #2 

The following pressure history was obtained from another North Sea well. The transients 
were detected and classified as in the case above. The pressure signal is shown in Figure 6.20 
while the results from the detection of transients are shown in Figure 6.21. 
 
      55 transients where correctly detected, 12 missed since they had to small pressure changes 
and two missed because of wrong pattern. Finally, four transients were difficult to classify 
and it is uncertain whether or not they should have been detected as transients.  This means 
that 80% of the transient were correctly determined, while 20% were missed mainly because 
the pressure change was too small. All “large” transients in terms of pressure changes were 
accurately detected. No false transients were detected. 
 

 
Figure 6.20: Pressure data from North Sea well #2. 
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Figure 6.21:  Summary of (A) correctly detected transients, (B) missed transients with small 
pressure change,  (C) missed transients due to outliers, (D) missed transients with “wrong” 
pattern, (E) erroneously  detected transients and (F) transients  difficult to classify for North 
Sea well #2. 
 

 
We believe that the proposed method for transient detection will perform well compared 

to the other proposed methods for transient detection in the E&P industry, although no 
comparison study has been performed. This claim is based upon the disadvantages reported 
by several authors(6; 10; 18) for the wavelet based methods. In addition the regression based 
methods are computationally expensive(18; 19) and when considered as a non-parametric 
regression problem(19), convergence trouble can be a serious problem. The exception is the 
pattern recognition methods, such as the one proposed by Suzuki et al. (20), which is based 
upon pattern recognition in the pressure derivative. However, the work by Suzuki was just 
recently brought to this author’s attention. 

 
In summary the proposed method is reliable, it is computationally efficient and 

requires no user input. In addition, it is well suited for pressure signals measured in real-
time. In the cases considered, only small transients, in terms of pressure changes, were 
missed. All “large” transients were accurately detected and no erroneously transients were 
detected. This holds the promise for automatic transient detection.  

 
 
 

6.3 Real-time Process Monitoring 
The proposed module for real-time process monitoring includes real-time noise estimation, 
real time signal filtering, real-time trend estimation and real-time transient detection. We will 
start by describing real-time noise estimation. 
 

0

10

20

30

40

50

60

A B C D E F



Part 2: Results and Discussion 
 

149 
 

6.3.1 Real-Time Noise Estimation  
The preferred noise estimator in Waveshrink depends upon the median value of the absolute 
value to the detail coefficients at the first decomposition level in the wavelet transform. By 
using a moving median window, this estimate can be calculated continuously and in real-time. 
This window should have some extent in order to minimize the error, as the error decreases as 
the window size increases. The formula for the moving robust median noise estimation is 
given as; 
 

(6.2) 
6745.0

_ windowmovingRMADR ,           

 
where details about the RMAD noise estimator was discussed in chapter 5.3.4. In Figure 6.22 
we have illustrated the estimation of the median value for a window size of five. At time t5, 
we have obtained five detail coefficients in the real-time wavelet transform. This gives a 
median value of 2. At time t6, one additional measurement is available and one new detail 
coefficient is estimated in the real-time wavelet transform. Since a window size of five is 
chosen, the first point is removed and a new median value of 2 is estimated based on five 
latest (newest) estimated detail coefficients. At time t7, the same process is repeated, one new 
detail coefficient is added and a median value of 3 is estimated from the five latest detail 
coefficients. As new details coefficients are obtained, this process is continuously repeated, 
providing a continuously updated noise estimate from eq. (6.2). If the detail coefficients in 
addition are stored in a continuously sorted list, the median value will always be the element 
in the middle of the list or if even sized, the average value of the two middle elements. By 
such an approach, the median value is computationally efficiently obtained. 
 
 

 
Figure 6.22: Real-time noise estimation. A continuously updated median value is obtained as 
new detail coefficients become available.  

 
 

By the use of a window based robust median noise estimator eq. (6.2), an accurate 
noise estimate as a function of time is obtained. A change in the noise estimate can indicate 
problems with the measuring device or interference at the signal transmission. White noise 
with standard deviation 1 on the time interval t=0 to t=30 was added to a pressure signal. 
After time t=30, white noise with standard deviation 2.2 was added to the pressure signal. The 
noise was estimated from the pressure signal by eq. (6.2) with a window size of 200, i.e. the 

Window size 

1      2       1       3       2                                      MEDIAN  VALUE= 2 

1      2       1       3       2       3                             MEDIAN VALUE = 2 

Increasing time 

1      2       1       3       2       3      3                     MEDIAN  VALUE = 3 

t0         t1         t2          t3          t4         t5         t6       
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200 latest pressure measurements were used in the continuous estimation of the noise level. 
The noise estimation was repeated each time a new signal measurement was available. The 
result from this estimation is shown in Figure 6.23 along with the “true” noise trend. 
 
 A small window size will allow a rapid detection of changes in noise level in the 
measured signal. On the other hand, a large window will result in a more accurate noise 
estimate but in a slower detection of changes in the noise level. Accurate noise estimates can 
be obtained with as little as 200 signal measurements (see Figure 5.28) and allows rapid 
detection of changes in noise level.  
 

Note that this window size should not be confused with the later recommended 
window size in real-time signal filtering. The aim in real-time signal filtering is to get an 
accurate noise estimate to achieve accurate signal filtering and it might be beneficial to use a 
larger window. In real-time noise estimation, the goal is rapid detection of possible changes in 
noise level. Thus a smaller window size is preferred.  
 
  

 
Figure 6.23:   Noise estimate as a function of time from a synthetic generated pressure signal 
where the noise level is increased at time t=30 hours. 
 
 
Next we will consider real-time signal filtering.  
 

6.3.2 Real-Time Signal Filtering 
Real-time signal filtering will provide the user with continuously and automatically filtered 
pressure and rate signals. All selections required for an automatic signal filter were 
determined in the previous chapter. The filtering could be done automatic as no user input 
was required. Signal filtering removes outliers, signal noise and reduces the number of signal 
measurements. This ensures that data is ready for analysis at any time. 
 

De-noising is accomplished with Waveshrink as described in chapter 5.3. In addition a 
sliding window approach, as described in chapter 6.1, is required for signals measured in real-
time. The window size should be chosen as large as possible, but this will of course be limited 
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by computer processing capacity. We have not done any extensive study to determine which 
minimum window size to consider in Waveshrink, but some simple observations can be made 
from the comparison study performed in chapter 5.3. 

 
 In Figure 5.36 - Figure 5.38 it was shown highly beneficial, in terms of root-mean-

squared error, to include at least 4.096 measurements in Waveshrink. A significant smaller 
root-mean-squared error is achieved with 4.096 measurements in Figure 5.37 than with 512 
signal measurements in Figure 5.36.  No significant improvements are achieved in terms of 
root-mean-squared error in Figure 5.38 when 32.768 measurements are included in 
Waveshrink. When utilizing 4.096 signal measurements as a minimum window size in 
Waveshrink, good computational performance is achieved, and consequently we perform no 
further study to determine whether or not an even smaller window size could have been 
utilized. Consequently, at least 4.096 measurements should be included in the window 
considered for real-time de-noising. This is a minimum recommendation and additional 
measurements might be included if possible, but this is often limited by available 
computational facilities. The real-time wavelet filtering is updated each time a new 
measurement becomes available. 
 

Outlier removal was described in chapter 5.2. The median filter used for outlier 
removal is already a sliding window filter and requires no modifications for use with real-time 
signal measurements. However, the proposed method for outlier removal requires an accurate 
estimate of the noise level in the signal measurements. An accurate noise estimate for use in 
outlier removal can be achieved with as little as 200 signal measurements (see Figure 5.28). 
However, for simplicity and computational efficiency, the same window size will be applied 
in real-time outlier removal as in real-time de-noising. For that reason a window size of at 
least 4096 signal measurements is applied for noise estimation in real-time outlier filtering. In 
chapter 5.2 we recommended removal of up to nine successive outliers for pressure signals 
and only single outliers for rate signals. If the latest (or newest) measurement is far outside the 
“normal” signal trend, we do not know if this is an outlier or the beginning of a new transient. 
Thus a delay is required in the outlier filter equal the number of successive outliers that can be 
removed. The nine latest measurements are therefore never included in the outlier filter for 
pressure signals and the latest measurement is never included in the outlier filter for rate 
signals.  Outlier removal will be performed each time a new measurement is available. 

 
Data reduction requires a de-noised signal as described in chapter 5. Since at least 

4.096 measurements are recommended for de-noising, the same window size will be utilized 
in real-time data reduction. In addition, it is not meaningful to utilize data reduction each time 
a new signal measurement is available. Consequently, we will only apply data reduction each 
time at least 4.096 new measurements are available. Recall that there will be a delay in the de-
noising and data reduction should not be utilized with signal measurements until they are 
completely denoised. Since a window size of at least 4.096 is utilized in de-noising, the latest 
4.096 signal measurements should not be included in data reduction. If a larger window size is 
utilized in de-noising, the delay in data reduction should be adjusted likewise.  
 

It should again be emphasized that the recommended window size of 4096 signal 
measurements in real-time signal filtering is a minimum recommendation. If possible, 
additional measurements should be included. However this is in many cases limited by 
computational facilities.  
 



Real-time Signal Filtering and Process Monitoring 
 

152 
 

Next we will illustrate the real-time noise filtering process. Initially, only a small 
number of signal measurements are available and we can only utilize Waveshrink with a 
limited number of resolution levels. As more measurements become available, additional 
resolution levels can be included in Waveshrink to improve de-noising. This was previously 
illustrated in Figure 5.36 - Figure 5.38 where the root-mean-squared error decreased as the 
number of measurements available increased and additional resolution levels could be 
included in Waveshrink. If only two resolution levels were available in Waveshrink, only a 
fraction of the noise will be removed. This is illustrated in Figure 6.24. In this figure the 
filtered signal is shown along with the original noisy signal. All the figures (Figure 6.24-
Figure 6.26) are zoomed in at the same time interval to show the gradual smoothing of the 
filtered signal. In Figure 6.25, additional measurements become available and additional 
decomposition levels can be included in Waveshrink, four in this case. More noise is removed 
in the filtered signal which gradually becomes smoother. Note that new signal measurements 
will be added outside these windows and are therefore not visible.  
 

 
Figure 6.24:   In the beginning, only a few resolution levels are included in Waveshrink and 
the signal is only slightly de-noised. 
 

 
Figure 6.25:   After a while, additional resolution levels are included in Waveshrink as the 
number of signal measurement increases, and the signal is further de-noised. 
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In Figure 6.26, five resolution levels are included in Waveshrink and the filtered signal 
becomes even smoother. The methods and selections, as described in chapter 5.3, are used for 
pressure signal de-nosing. 
 
 

 
Figure 6.26:   The final resolution levels are included in Waveshrink and the signal is further 
de-noised. 
 
 
Next we will illustrate how the wavelet transform can be used to obtain a real-time signal 
trend.  
 
 

6.3.3 Real-Time Signal Trend 
The approximate wavelet signals at coarse resolution levels are ideal for investigating 
underlying signal trends. The approximate signal at coarse resolution levels (or high 
decomposition levels in the wavelet transform) will give us the low frequency content of the 
signal as all the high frequency content is removed from the signal approximation and stored 
in the detail signals. For the signal shown in Figure 6.27, the approximate signal at 
decomposition level 12 in the wavelet transform is shown in Figure 6.28. This will provide us 
with the underlying signal trend. By inspecting the underlying trend in Figure 6.28, it is 
possible to find that the pressure is slightly increasing, which is virtually impossible to see 
from the original signal in Figure 6.27 alone. The wavelet Spline39 is used in the wavelet 
transform.  
 
 If the same window size of 4.096 signal measurements is utilized in the real-time trend 
analysis as in the real-time wavelet filtering, approximate signals at 12 different resolution 
levels is available. Hence we recommend the same window size in real-time trend analysis as 
in real-time wavelet filtering. It will be a good choice to monitor the approximate signal a 
both intermediate and at high decomposition levels. Thus, signal trends are recommended 
monitored at decomposition level 6 and 12.  
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Figure 6.27: Signal used for trend investigation. 
 
 

 
Figure 6.28: Underlying signal trend from wavelet approximate signal at decomposition level 
12.  Original signal is shown above in Figure 6.27. 
 
 
The next element in real-time process monitoring is real-time transient detection. 
 
 

6.3.4 Real-Time Transient Detection  
Transients are detected by the pattern recognitions approach described in chapter 6.2. The 
proposed pattern recognition approach is implemented as a sliding window analysis and is 
thus well suited for use with pressure signals measured in real-time.  
 

Previously we have stated that outliers and noise should be removed from the signal 
measurements before transient detection. However, with the proposed window size of 4096 
for de-noising, this would result in a significant delay in transient detection if de-noised signal 
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measurements were required. Thus for transient detection in the context of real-time process 
monitoring, noisy signal measurements will be used. By applying noisy signal measurements 
in transient detection, some additional and small transients might be missed, compared to the 
case where de-noised signal measurements are applied. However, the “large” transients will 
still be accurately detected in the proposed method for transient detection. Hence we have to 
compromise between a rapid detection of transients and an accurate detection of “small” 
transients. We believe that in the context of real-time pressure monitoring, a rapid detection of 
transients is more important.  Note that outliers will be removed before transient detection as 
the proposed delay in outlier removal is only nine measurements. To ensure that outliers are 
removed before transient detection, a delay in the transient detection equal to the window size 
in the outlier median filter is required. Thus the latest (or newest) 19 measurements are not 
included in transient detection.  

 
The proposed pattern recognition is computationally efficient and is performed each 

time a new measurement is available. An example illustrating the real-time transient detection 
is given below. 
 

The original pressure signal is shown in Figure 6.29. The transients detected for the 
first 200 hours in this signal is shown in Figure 6.30. Note that the relative magnitude of the 
detected transients is considered as large in this figure. However, as new transients are 
detected, the first detected transients will be classified as relatively small with respect to the 
latest detected transients. In the last two figures, Figure 6.31 and Figure 6.32, the relative 
magnitude of the first two detected transients from Figure 6.30 will be relatively small 
compared to the latest detected transients. In Figure 6.31 and Figure 6.32, the relative 
magnitude of the detected transients is somewhat constant, thus indicating that the relative 
magnitude of the detected transients will stabilize as the number of detected transients 
increase. Recall that the displayed relative magnitude of the detected transients is simply used 
for visualization. 
 

 
Figure 6.29: Pressure signal from North Sea well used in transient detection. 
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Figure 6.30: Detected transients after 200 hours of pressure measurements. 
 

 
Figure 6.31: Detected transients after 400 hours of pressure measurements. 
 

 
Figure 6.32: Detected transients after 600 hours of pressure measurements. 
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6.4 Summary 
We have shown how the real-time wavelet transform might be used to continuously update 
wavelet transformed data with a minimum of computational effort. The real-time wavelet 
transform is performed continuously with the measured signals through a window approach in 
which the boundary problems in the wavelet transform of finite signals is eliminated. The 
transformed data can be used for real-time wavelet de-noising to ensure continuously de-
noised signals ready for analysis at any time. The methods and selections for an automatic 
wavelet filter were determined in chapter 5 for use with typical signals encountered in the 
E&P industry as pressure and rate signals.  

 
       Pattern recognition is a promising way for detection of transients requiring no user 
input. A new method for transient detection is proposed based upon pattern recognition. 
Predefined images for pressure build-ups and pressure drawdowns are provided. In addition, 
small transients assumed to origin from underlying noise structures not adequately removed in 
de-noising, are eliminated by requiring the transients to have a certain magnitude.   A 
transient is detected if and only if the current transient image match one of the predefined 
images and the magnitude of the transient (in terms of pressure change) is at least three time 
the estimated noise level and the standard deviation in the image window considered is at 
least 0.1 of the total signal measurements standard deviation. The magnitude of the detected 
transients relative to the largest detected transient (in terms of pressure difference) is used for 
visualization. A window size of 20 is applied in transient detection.  

 
In process monitoring, noise level estimation, signal filtering, signal trends and 

transient detection is continuously estimated. The noise level is continuously updated through 
a median noise estimator and a sorted list of wavelet detail coefficients at the finest resolution 
level. A smaller window size is recommended for real-time noise estimation than for real-time 
signal filtering. This since a rapid detection of possible changes in noise level is desired. 
Hence a window size of 200 is recommended for real-time noise estimation.  

 
The window size in real-time signal filtering should be chosen as large as possible, but 

this will of course be limited by computer processing facilities. In the author’s experience, at 
least 4096 measurements should be used and will be sufficient for good results. However, it 
might be beneficial to include additional measurements if the computational capacity is 
sufficient.  

 
In real-time transient detection, the requisite for de-noised signal measurements must 

be removed. This since there will be a significant delay in real-time signal de-noising. If a 
noisy signal is applied in transient detection, some additional and “small” transients might be 
missed. Hence we have to compromise between a rapid detection of transients and an accurate 
detection of “small” transients. We believe that in the context of real-time pressure 
monitoring, a rapid detection of transients is more important. Thus in the context of real-time 
process monitoring, noisy signal measurements will be used. However, outliers are removed 
from the signal measurement before transient detection. 

 
The real-time wavelet transform can be applied for investigation of underlying signal 

trends located in the approximate signals at lower decomposition levels. Decomposition level 
6 and 12 is recommended. Alarms can be added to warn the operator if significant deviation 
from trends occurs. This will help the operator to easily and efficiently detect changes in the 
wells considered.  
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We have in this chapter described a module for real-time signal filtering and process 
monitoring. The aim was automatic signal filtering and process monitoring of signals 
measured in real-time. This can be used as an input to different kinds of analyses. One such 
analysis is well-testing. We will in the next chapter describe automatic well-test analysis. 
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7 Automatic Well-Test Analysis 
In well-testing we analyze the pressure response to rate changes in a specific well. As 
discussed in chapter 3, we prefer to analyze the pressure response during well shut-ins 
which is referred to as build-up tests. Typical information required for description and 
understanding of the flow properties of the reservoir (e.g. permeability) and the flow 
properties of the well (e.g. skin factor) is obtained in well-test analysis. This 
information is valuable for the engineers for increased understanding of the well and 
reservoir considered and to ultimately determine and optimize the recovery of oil and 
gas. 
  

Well-testing is however quite a time consuming exercise that would require 
significant attention from the engineers if utilized with all pressure and rate 
measurements available from wells equipped with permanent high resolution gauges. 
Due to limited engineering time, frequently only a limited number of well-test 
analyses are completed, thus utilizing only a limited number of the measurements 
available. We will in this section describe an approach which utilizes all available 
pressure measurements during shut-in periods and minimizes the engineering time 
associated by repeatedly performing well-test analyses. As previously explained, we 
will limit ourselves to only consider well-tests from shut-in periods due to the poor 
results usually obtained from well-tests during flow periods, where the poor results 
are caused by inaccurate rate measurements.  
 

The idea behind the proposed method is that once a manual well-test 
analysis has been performed for a shut-in period, automatic well-test analyses can 
be performed for later automatically detected shut-ins. By a manual well-test 
analysis is here meant a well-test where the user performs the four steps described for 
modern well-test analysis in section 3.8, including data preparation, model 
identification, non-linear regression analysis and confidence interval estimation. By 
an automatic well-test analysis is meant a well-test analysis performed without user 
interaction and where the well-test analysis is initialized with the same settings (e.g. 
same model selection, same method for data filtering etc.) as a previously performed 
manual well-test analysis. These settings will, as stated in the introduction, be referred 
to as run specifications. Hence, one manual well-test is required for determination of 
the run specifications required in automatic well-test analysis.  

 
In automatic well-test analysis, one of the main purposes will be to detect 

changes in the reservoir properties previously estimated in a manual well-test 
analysis. If no changes are detected, the other main purpose is to obtain smaller 
confidence intervals of the initial estimated reservoir properties from the manual 
analysis, accomplished by performing additional automatic well-test analyses.  

 
By performing well-testing on arbitrary detected shut-ins, we obtain time 

series of estimated parameters such as permeability and skin factor. These time-series 
will help us to detect possible changes in the well that might affect the fluid flow and 
the well performance. For instance, a decrease in permeability and/or an increase in 
the skin factor will reduce the fluid flow and/or increase the pressure drop in the well. 
A decreased flow rate in the well will have economical aspects that might need to be 
accounted for in the overall asset management, while an increased pressure drop 
might cause operational difficulties such as decreased lift potential in the well. 
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Ultimately actions might be required in order to deal with these problems; however 
the key element in this work will be proper detection and identification of possible 
changes in well and reservoir properties that might be identified by automatic well-
testing.  

 
 In non-linear regression analysis, it is possible to match pressures during the 
individual shut-in periods (as we propose to do) or to match the entire pressure history 
(during both flow and no-flow periods). Non-linear regression analysis of the 
individual shut-in periods allows us to estimate time-series of parameters which we 
propose to use for detection and identification of possible changes in well and 
reservoir properties. If we had chosen to apply the entire pressure history in the well-
test regression analysis, only average parameter values would be estimated, i.e. we 
would not be able to detect possible changes in well and reservoir properties.  
 

Athichanagorn et al. (5) proposed a window approach for use in well-test 
analysis for calculation of well and reservoir properties, and presented the results as 
time-series. Also Lee(22), Coludrovich et al. (25), Airlie et al. (23) and Shi-Yi et al. (15) 
have published work regarding this. Thus there is nothing new in presenting the 
results from repeatedly well-test analyses as time series. However, the proposed 
methodology for how to perform repeated automatic well-test analyses contains 
several new elements. The proposed automatic statistical evaluation of the results 
from repeated well-test analyses is new. This will help the engineers to spend their 
time on those well-tests where changes are detected. In addition, the proposed 
methods for automatic signal filtering and process monitoring is new, providing the 
automatic well-test analyses with continuously updated and filtered data. The 
methods proposed for automatic signal filtering and process monitoring were 
described in chapter 5 and 6.  

 
Some authors have also proposed automatic model selection in order to do a 

fully automatic well-test analysis(24; 80), but this would also lead to uncertainties as to 
whether the correct model is chosen.  We believe that the analysis will be improved if 
an engineer does a setup in advance in order to determine the proper model. It would 
for instance be unwise not to use the engineer’s knowledge of well models (like 
slanted wells, partial penetrated wells etc.), reservoir models (like double layered 
reservoir or dual porosity reservoir etc.) and boundary models if possible.  

 
  We will start by providing a brief summary of the steps in the proposed 
method for automatic well-test analysis. The proposed method includes four steps; 
setup, data preparation, well-test analysis and possible user intervention. We will 
describe the data preparation module, the operations applied in it and their sequence. 
We have chosen not to have a separate section for the setup module, but will instead 
describe the run specifications along with the sequence of operations in data 
preparation. We will continue by describing the well-test module. This module 
includes both the non-linear regression analysis and a method for evaluation of the 
results obtained. In the result evaluation, we have chosen to apply hypothesis testing 
for detection of possible changes in the time series of estimated parameters. As for the 
data preparation module, any run specifications for the well-test module will be 
discussed simultaneously. Finally, several examples utilizing the proposed method are 
presented.  
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The results presented in this chapter are previously published in Olsen et al. (3). 

7.1 The Proposed Method 
The proposed approach for automatic well-test analysis is a four step procedure as 
illustrated in Figure 7.1.  
 
  

 
Figure 7.1: Illustration of the four main steps in the proposed automatic well-test 
analysis. 
 
 
 
Setup 
The first step is the setup. The purpose of the setup module is to provide the run 
specifications for how to perform the operations in each subsequent module. This step 
includes the setup for both data preparation and well-test analysis. In the data 
preparation setup, we specify those run specifications required to obtain continuously 
filtered signals and continuously detected events. This includes run specifications on 
how the pressure signal should be de-noised, how the number of pressure 
measurements should be reduced, how to detect events such as well shut-ins etc. The 
operations used in data preparation along with recommended run specifications were 
discussed and determine through chapter 5 and 6. The idea was that for typical signals 
encountered in the E&P industry, it was possible to determine methods and selections 
that would allow automatic signal filtering.   
 

The main objective of the well-test setup is to determine the mathematical 
model to use in the automatic non-linear regression analysis. In addition, we need to 
choose which parameters to consider as unknowns, i.e. which parameter to tune in the 
non-linear regression analysis. Further, we need to provide an initial estimate of the 
well and reservoir parameters considered as unknowns. As previously discussed in 
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chapter 3, good initial estimates of the parameters will help to improve the 
convergence in the non-linear regression analysis. Finally, we need to determine the 
significance level to apply in the hypothesis testing for detection of changes in the 
estimated time series of parameters.  

 
The setup module also includes elements such as data source connections, i.e. 

how and from where to obtain the latest available measurements. Usually we will 
have to connect to a database, often found remotely, to continuously receive the latest 
measurements.  
 

This first step is only done once and provides the initial run specifications for 
the automatic data preparation and well-test analysis. The next steps, step two and 
three, are executed each time a new shut-in is detected. 
 
 
 
Automatic Signal Filtering and Process Monitoring 
The second step in the proposed method is automatic signal filtering and process 
monitoring. This step includes a sequence of different signal filtering and process 
monitoring operations where the run specifications for this module are defined in the 
setup module. The purpose of this module is to provide the well-test module with 
continuously filtered signals and to detect events such as shut-ins that subsequently 
will trigger automatic well-tests.  
 
 
 
Automatic Well-test Analysis and Automatic Result Evaluation  
For each detected shut-in, an automatic well-test analysis is performed including 
automatic result evaluation. This is the third step in the proposed method. This is 
done by non-linear regression analysis and a new estimate of the unknown model 
parameters along with their confidence intervals is obtained. This will ultimately 
provide us with time-series of the estimated parameters. In the evaluation of the 
results from the repeated well-test analyses, the main purposes are to detect changes 
in the process variables such as skin factor and permeability or to obtain smaller 
confidence intervals of the initially estimated well and reservoir properties provided in 
the setup section. 
 
 
 
Possible User Interaction 
If changes are detected in the estimated parameters from the automatic well-test 
analyses, an alarm is triggered and the engineer is recommended to verify the results. 
If the engineer in the verification process confirms a parameter change, this might 
require some sort of well intervention. This is the fourth step of the proposed method. 
If for instance a change in the skin factor is detected (for instance caused by scaling), 
this will cause the flow rates of the well to decrease. In some cases, the decrease in 
flow rates might be so severe that the engineer might determine that a well work-over 
is desired.  
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We have in this section briefly described the four main steps in the proposed 
method. We will in the next section provide additional details of the proposed method 
based upon the more detailed illustration as shown in Figure 7.2. However, note that 
we in the subsequent section will provide details about the sequence of operations and 
simultaneously provide run specifications for the individual operations, i.e. we do not 
have a separate section for the module setup.  
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Figure 7.2: Detailed illustration of the proposed method for automatic well-test 
analysis. Note that the “recommended” actions are only meant as examples of 
possible actions. 
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7.2 Signal Filtering and Process Monitoring 
The data preparation module consists of several operations where the purpose is both 
signal filtering and process monitoring. In data preparation, we provide a sequence of 
operations for how typically signals as pressure and rate should be prepared for well-
test analysis. All operations are described in the sequence they are performed and as 
illustrated in Figure 7.2. 
 
 
 
Data Check 
For the moment, the only data check performed is for a changing noise level. A 
changing noise level in the rate or pressure measurements might indicate troubles with 
the measuring devices or that the measurements are influenced by a time dependent 
disturbance. This will increase the uncertainty as to how well the measurements 
reflect the true process state and this need to be taken into consideration when 
performing a well-test.  
 
 The changing noise level is detected with a noise estimator from wavelet 
analysis called RMAD and given by eq. (5.7). The wavelets Spline39 and Spline4246 
are applied with pressure and rate signals respectively.  The noise estimator utilizes a 
window size of 200 of the latest measurements. The noise estimation is continuously 
performed for each new measurement. The recommended window size for noise 
estimation was selected in chapter 6.3.1. 
 
 
 
Outliers 
Outliers can introduce errors in the non-linear regression analysis. In addition, the 
presence of outliers might cause the proposed pressure transient detection scheme to 
fail. Outlier removal is the second step in data preparation in Figure 7.2. Outliers are 
removed with a median filter with window size 19, i.e. we can remove up to nine 
successive outliers. This was a choice made in chapter 5.2. We remove outliers from 
the pressure measurements only as a different approach is chosen for rate signals. The 
noise level estimate required in the outlier filter is obtained from the RMAD noise 
estimator given by eq. (5.7). Wavelet Spline39 is used with pressure signals. A 
window size of 200 is applied in estimation of the required noise level. The outlier 
removal is performed continuously for each new measurement. However, we cannot 
remove outliers from the latest measurements since we do not know if these are actual 
outliers or just the start of a new transient. Consequently we apply a delay in outlier 
removal equal the number of successive outliers that can be removed. Thus when 
utilizing a window size of 19, the nine latest measurements are never included in 
outlier removal. 
 
 
 
Pressure Signal De-noising  
De-noising should not be used as a part of automatic well-test analysis unless it is to 
facilitate data reduction or model identification. De-noising signals for use in non-
linear regression analysis might introduce errors and provides no improvements in the 
analysis. This will typically happen if de-noising removes more than just noise from 
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the signal measurements and over-smoothes the signals by removing some of the 
signal information. De-noising of pressure signals is thus only utilized if we have a 
large number of measurements and data reduction is required. Then proper de-noising 
of the pressure measurements will be critical. De-noising of pressure signals is 
accomplished by Waveshrink with the selections summarized in chapter 5.6. De-
noising is performed continuously as described in chapter 6. 
 

In addition, when it comes to model recognition/data visualization, de-noising 
is an important and critical tool in order to achieve this. Thus de-noising will also 
have an important role in the well-test setup as part of model identification. 
 

 
 

Data Reduction Pressure Signal 
The fourth step in the automatic signal filtering and process monitoring is data 
reduction. The method for data reduction was described in chapter 5.4. The aim in 
data reduction is to obtain a smaller subset of the measured signals but with 
approximately the same information content. The reason for data reduction is to 
increase the computational speed of the later well-test analysis. However, we would 
like to obtain the same results as if the original number of signal measurements were 
used. The rate measurements will be handled at a later stage, and hence we at this 
stage will consider data reduction of the pressure measurements only. In general, data 
reduction should be applied if and only if the well-test module cannot handle the 
number of pressure measurements available in a computationally efficient manner. If 
a signal is sampled only every minute during a week, it sums up to approximately 
10.000 signal measurements. In addition, we would like to have pressure 
measurements with higher resolution than this in the beginning of the pressure build-
up, as for instance every five or every ten second. Thus a great number of pressure 
measurements can be available and data reduction is therefore enabled by default. 
However, in some cases and for different reasons, signal sampling rates might be 
poor. In such cases, the user should consider disabling data reduction during setup. 
We will choose to do this for two of the cases we have considered in this work, 
namely in case 3 and case 4 as will be discussed later. Data reduction is performed 
continuously as described in chapter 6. 
 
 
 
Transient Detection 
A pattern recognition approach is used for pressure transient detection. The advantage 
of using pattern recognition is that it is easy and computationally efficient to use. The 
method used for transient detection was described in chapter 6.2.  A window size of 
20 is used in the pattern recognition, i.e. we look for transient patterns within the 20 
latest pressure measurements. As discussed in chapter 6.3, outliers should be removed 
before transient detection, and thus a delay in transient detection equal to the window 
size of the outlier filter is required. Thus the 19 latest (or newest) pressure 
measurements are not included in transient detection. Transient detection is updated 
for each new measurement. This is the fifth step in data preparation in Figure 7.2. 
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Rate Accumulation 
The number of rate measurements might be reduced and filtered independently of the 
pressure measurements. This was illustrated in case 1 in chapter 5.5. Although rate 
signal filtering has been shown to work well, errors might occur. Our investigations 
show that it is beneficial to simply calculate the average rates between the detected 
pressure transients. This simple and efficient approach synchronizes the pressure and 
rate measurements, and in addition, the number of rate measurements is reduced. Thus 
there is no need for outlier removal or de-noising in the rate measurements. This is 
step six of the proposed method shown in Figure 7.2. 
 
 
 
Shut-in Detection 
Next, every period with zero rates are detected as shut-in periods and will be analyzed 
as build-up tests by the well-test module. This is step seven of the proposed method 
shown in Figure 7.2. 
 
 
 
Shut-in Time Correction 
Sometimes the pressure is not measured at the exact shut-in time, i.e. only pressure 
measurements before and after the “true” shut-in is available. In derivative plots, this 
might be identified from the deviation of the unit slope line in the beginning of the 
plot, either upwards or downwards (42). This effect can easily be removed by 
“adjusting” the shut-in time. The time where the true shut-in occurs is found from the 
intersection of the straight lines of the two measurements before the “true” shut-in and 
by the two measurements after the “true” shut-in. The shut-ins were detected in the 
previous step and this step corrects the detected shut-ins times. This is step eight in 
data preparation. Next the well-test analysis module will be described.  
 
 
 

7.3 Well-Test Analysis 
The automatic well-test module uses the filtered signals together with the detected 
shut-ins to perform automatic well-test analysis. The well-test module is executed 
each time the end of a new shut-in is detected. The well-test module consists of two 
main elements, the non-linear regression analysis and the statistical evaluation of the 
results. 
 
 
 
Automatic Regression Analysis 
In non-linear regression analysis we seek to minimize the difference between the 
measured pressures and the pressures calculated from a mathematical model assumed 
to adequately describe the physical process we consider, i.e. fluid withdrawal from a 
porous medium (reservoir) through a well. The method for non-linear regression 
analysis is the Levenberg-Marquardt method described in chapter 3. The minimization 
is accomplished by tuning the process variables considered as unknown. Which 
parameters to consider as unknowns are determined in the well-test setup by a manual 
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well-test analysis. The well, reservoir and boundary models to use in non-linear 
regression analysis are determined from derivative plots in the manual well-test 
analysis, while the initial estimate of the unknown parameters are determined from the 
manual performed non-linear regression analysis. As described in chapter 3, it is 
important to provide the non-linear regression analysis with good initial estimates of 
the unknown parameters such as skin factor and permeability. If the initial parameter 
estimates are far away from the “true” parameters, the non-linear regression analysis 
might fail due to convergence problems. 
 

In well-testing, the unknown parameters are usually considered to be the skin 
factor and permeability, but might in addition include other well and reservoir 
properties such as wellbore storage, drainage area and reservoir heterogeneities. The 
parameters that might be estimated will depend upon the duration of the shut-in 
periods considered. For short shut-ins, typically limited to a couple of hours, only well 
and reservoir properties (such as permeability, skin factor, etc.) might be estimated. 
For longer shut-ins, typically lasting for days or maybe weeks, boundary properties 
(such as size and shape of drainage area) might be estimated as well. We expect that 
most shut-ins considered will be of limited duration from where only well and 
reservoir properties might be estimated and that only a limited number of the shut-ins 
will allow estimation of boundary properties. However, note that the non-linear 
regression analysis is always performed utilizing pressures for the entire shut-in 
period applying the model identified in the derivative analysis. This means that if the 
selected model includes boundary properties, these are estimated for each detected 
shut-in period, even the shut-ins of short duration. Since none of the measured 
pressures during short shut-ins are influenced by boundary effects, boundary 
properties will in these cases be estimated with large uncertainties resulting in large 
confidence intervals. For longer shut-ins, the pressures will be influenced by reservoir 
boundaries, and boundary properties might be estimated with small uncertainties and 
small confidence intervals. Since we assume that most shut-ins will be of short 
duration, we will focus on the estimation of well and reservoir properties such as 
skin factor and permeability, which can be estimated even from short shut-ins 
periods. 
 

If a parameter is estimated with a small confidence interval in the non-linear 
regressions analysis, the result is usually considered good and high confidence can be 
given to the result. On the other hand, if the parameter is estimated with a large 
confidence interval, the result is usually considered poor, and little confidence should 
be given to the result. If for instance, the permeability is estimated to 100 ± 5 mD, this 
is usually considered a good result, while an estimate of the permeability to 100 ± 90 
mD, is usually considered a poor result.   

 
We choose to eliminate estimated parameters with large confidence intervals 

from the time-series of estimated parameters. The reason for this is simple; little 
confidence can be given to the results from well-test analysis if the estimated 
parameters have large confidence intervals. Although we assume that we are able to 
estimate permeability and skin factor from most shut-in periods, even from short shut-
in periods, there are still several reasons why a non-linear regression analysis can fail. 
This might for instance be that the shut-in period is very short, few available signal 
measurements (poor signal sampling rate) during the shut-in period, convergence 
failure in non-linear regressions analysis etc. We could choose to check the duration 
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of the shut-in periods and the number of available measurements during the shut-in 
periods to eliminate shut-in periods that were likely to give poor results. However, it 
appears more convenient to simply exclude estimated parameters with high 
confidence intervals from the time-series.  

 
In the book by Horne(46), the following recommendation is given; if the 

confidence interval for the permeability is maximum ±10% of the estimated 
permeability value, this is considered a good result, otherwise not. This means that if 
the estimated permeability is 100 mD, the confidence interval should be less than ±10 
mD to consider the result reliable. Similar limits are provided for other estimated 
parameters such as skin factor, initial pressure etc. However, in our cases, the 
recommended limits given by Horne appear to be too strict. In this work, we 
consequently choose to apply broader limits. We chose to double the 
recommendations given by Horne and these new limits are summarized in Table 7.1. 
The reason why we increased the limits was since many of the performed well-tests in 
our work had confidence intervals just above the limits given by Horne, and we did 
find it beneficial to also include these in our analysis.  

 
Table 7.1: Tolerance limits used in automatic non-linear regression analysis.  
 Tolerance 
Permeability ±20% 
Skin ±2 
 

Note that the tolerance limits in Table 7.1 is only applied with a single 
automatic well-test analysis. Later we will calculate average parameter values based 
upon parameter estimated from several automatic well-test analyses, and in these 
cases, we will apply the same tolerance limits as recommended by Horne.  

 
The automatic well-test analysis is performed each time a new shut-in is 

detected and this will provide us with new values of the parameters considered as 
unknowns for each detected shut-in. We will therefore obtain time series of the 
unknown parameters and hypothesis testing will be used to detect possible changes in 
these time series. 

 
 

 
Statistical Result Evaluation 
To evaluate the results from automatic well-test analysis, we apply hypothesis testing 
for detection of significant changes in the time series of estimated parameters. If a 
significant change is detected, a notification will be send to the engineer. If no 
significant changes are detected, average parameter values with confidence intervals 
are calculated. Since this average parameter value is calculated based upon many 
“measurements” of the parameter considered, it is assumed to represent an improved 
estimate of the parameter considered. In addition, we expect this average parameter 
value to have a smaller confidence interval than individual estimated parameter 
values.  
 

Automatic well-test analysis is performed each time a new shut-in period is 
detected. If N different shut-ins are detected, N non-linear regression analyses are 



Automatic Well-Test Analysis 
 

170 
 

performed and N estimated parameter values are obtained. The estimated parameters 
from the non-linear regression analysis will hence form a time series.  

 
Each estimated parameters from the non-linear regression analysis will be 

associated with a mean value and a variance obtained from the non-linear regression 
analysis. Based upon the variance, a confidence interval can be constructed as shown 
in chapter 3. Each of the values estimated from the non-linear regression analysis is 
assumed to be independent of the other values estimated. 

The subject will be to determine whether the last estimated parameter, with 
index N, have a significant different value then the rest of the estimated parameters 
(1,…, N-1) in terms of mean value. To investigate this, hypothesis testing is ideal(81; 

82). In hypothesis testing we try to answer the question; assume that the zero 
hypothesis is true, what is the probability of observing a value that is at least as 
extreme as the value that we actually did observe? (82) To determine whether or not to 
reject the zero hypothesis, a significance level is chosen. The significance level tells 
us the probability for two samples to have the measured difference and still have the 
same mean, i.e. that the zero hypothesis is true. The chosen significance level in 
hypothesis testing is often set to 5%, also in this work. This means that if a value is 
observed and it is less than 5% probability of observing such a value, the zero 
hypothesis is rejected.  

 
We would like to test the difference in mean value by the following 

hypothesis; 
 
(7.1) H0 ; Ax = Bx  
 
(7.2) H1 ; Ax ≠ Bx      

where xA and xB are the two different populations considered and where population xA 
contains the estimated parameters with index (1,….., N-1)  and population xB contains 
the single estimated parameter with index N. H0 is referred to as the zero hypothesis 
while H1 is the alternative hypothesis. To test the zero hypothesis, we consider the 
estimated parameters in the time series as being from two independent distributions. 
The average value of the N-1 estimated parameters in population xA is given as; 
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However, to obtain an average parameter estimate like this, we need to assume 

that each parameter have been estimated based upon approximately the same number 
of signal measurements, i.e. each non-linear regression analysis is performed with 
approximately the same number of signal measurements. We believe that this 
assumption will be accurate enough once the number of estimated parameters in the 
time series increases.   
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To estimate the variance of the N-1 measurements assumed independent, we 
need to sum up all the measured variances and divide it with the squared number of 
samples in the distribution, N-1; 
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The variance for each estimated parameter is obtained from the diagonal elements in 
the co-variance matrix given by eq. (3.42). 
 

One can test if the two distributions have different mean values by performing 
a student t-test (51; 52). The t in the student t-test with NA-NB-2 degrees of freedom is 
given as; 
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and where sD is given as; 
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and where NA is the number if samples in the first distribution and NB in the number of 
samples in the second distribution.    
 

The student t-test probabilities are finally found from lookup table or 
estimated trough a computer program(52) with the given number of samples and 
degrees of freedom. The zero hypothesis is rejected if the probability from the student 
t-test is lower than the chosen significance level. 

 
Once a significant change in the time series is detected, the automatic well-test 

module continues by performing two different hypothesis tests. One test as described 
above containing two data sets with N-1 estimated parameters and one estimated 
parameter respectively. The other test splits the data set in two from where the first 
significant change was detected, and continues by adding new estimated parameters 
to the second population (initially consisting of only the last estimated parameter). 
Thus, we would like see if the change in the estimated parameters still is significant 
when new estimated parameters are added to the second population.  

 
The two different tests are illustrated in Figure 7.3 and Figure 7.4.  These 

figures illustrate the two different populations tested at six different times, t1 – t6, 
where each time will correspond to the time when a new estimated parameter is added 
to the time series. A significant change in the estimated parameters is assumed to 
occur at time t4. In Figure 7.3 only the last estimated parameter is considered as 
population B and the hypothesis, whether the last estimated parameter has the same 
mean value as the rest of the estimated parameters, is tested. Once a significant 
change is detected in the first test, in this case at time t4, a second hypothesis test is 



Automatic Well-Test Analysis 
 

172 
 

performed as shown in Figure 7.4. In this test, all new estimated parameters are added 
to population B to test if the difference between the two populations mean value still 
is significant. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 
 
 
Figure 7.3: Hypothesis test #1 in well-test result evaluation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.4: Hypothesis test #2 in well-test result evaluation. 
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7.4 Applications 
We will show four cases to illustrate the use of the automatic well-test module; two 
cases with synthetic data and two cases with real data. By a synthetic data case is 
meant a case where the pressure response in the well is generated based upon a 
specified rate history and a specified mathematical model. Noise and outliers are 
added to the pressure and rate measurements, although the pressure measurements are 
generated based upon the noise free rate history. A detailed description of signal 
generation for use in data filtering was given in chapter 5.1, and signal generation for 
use in automatic well-test analysis is identical.   The reason why we consider synthetic 
data cases is since the true well and reservoir properties are known and consequently 
we can evaluate the performance of the automatic well-test analysis since we know 
the “true” answers. By a real data case is meant a case where the pressure and rate 
measurements are obtained from a real oil and/or gas well. The cases with real data 
were performed to validate that the proposed method was applicable with real data. 
The latter will typically include challenges as a large number of measurements, noisy 
measurements, difficulties/uncertainty in well-test model identification etc.  
 

We will start by providing details of the evaluation criteria used to determine 
the performance of the proposed automatic well-test analysis. Then two cases with 
synthetic data are presented followed by two cases with real data from a North Sea 
gas/condensate reservoir.  
 
 

7.4.1 Performance Analysis 
In this section we will describe how we evaluated the performance of the automatic 
well-test analysis in the cases we considered. We evaluated the proposed method with 
both synthetic and real data, the later obtained from wells in a North Sea 
gas/condensate reservoir. 
 

The synthetic cases were completed to verify that the proposed automatic well-
test analysis works as required when synthetic pressure and rate measurements are 
applied. We are then required to choose some success criteria for the performance of 
the proposed method. In the performance evaluation, we chose to only consider the 
final calculated average parameter value in the time series. If the true parameter 
value is within the confidence interval of the final estimated average parameter 
value obtained from automatic well-test analyses, and if the estimated confidence 
interval is small, the results will be considered a success. If the estimated confidence 
interval is less than ± 10% of the estimated permeability value, we choose to consider 
this a small confidence interval, and the result a success. For the skin factor, we 
choose to consider the confidence interval small and the result a success, if the 
confidence interval is less than +/- 1. Note that these confidence intervals are half the 
confidence intervals used in the evaluation of single automatic well-tests and the same 
confidence intervals as recommended by Horne (46).  

 
Consider the time series of estimated average skin factors as shown in Figure 

7.5. The last average skin factor value to the right in this figure is estimated to 3.0 ± 
0.1. The “true” skin factor of 3 in within the estimated confidence interval and the 
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confidence interval is definitely within the range of an acceptable confidence interval, 
chosen above to ± 1. This result is hence considered a success.   

 
 

 
Figure 7.5: Average estimated skin factors with confidence intervals. 
 
  

If we consider a test case with constant parameters, i.e. they do not change 
with time, the results from the hypothesis testing are evidently considered a success if 
no changes is detected. On the other hand, if the test case is designed with a changing 
parameter value, the results from hypothesis testing is evidently considered a success 
if the change is detected with the selected significance level.   
 

To evaluate the performance in the cases with real data, we choose to compare 
the results from the automatic well-test analyses with those obtained by performing 
manual well-test analyses. This since we only know the true parameter values when 
working with synthetic data. In manual well-test analysis, data is carefully prepared 
and filtered. A manual inspection of the filtered signals is done and clearly erroneous 
measurements/trends not removed by the filter are excluded from the analysis. The 
shut-in periods are determined by visual inspections of the pressure and rate signals. 
Rate and pressure measurements are carefully synchronized if datum-shifting effects 
are present. Non-linear regression analysis is performed for each detected shut-in 
period and we determine by visual inspection if the non-linear regression analysis is 
successful. This is done by examining if the match between the measured and 
calculated pressure is adequate. Hence we manually perform each step in the well-test 
analysis and carefully evaluate the results. In the automatic well-test analysis, the 
scheme in Figure 7.2 is followed. Besides from the initial run specifications, the 
proposed method is performed without any user interaction.  

 
If the results from the manual tests and the results from the automatic tests are 

consistent, this will be a good indication that the automatic well-test analysis works 
well, at least in the cases we have considered. If no changes are detected in the 
estimated parameters by hypothesis testing, the results are considered a success if 
the last average parameter values from the time series in the manual and automatic 

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90

Sk
in

Time (hour)

moving avg



Part 2: Results and Discussion 
 

175 
 

well-test analyses have over-lapping confidence intervals. If a change in any of the 
estimated parameters are detected, the results will be considered a success if the last 
average parameter values from the manual analyses and the last average parameter 
values from the automatic analyses, have overlapping confidence intervals. In 
addition, the last estimated average parameter values from the manual and the 
automatic analyses before the detected change should have overlapping confidence 
intervals to consider the result a success.  
 
 

7.4.2 Case 1 
The first case is part of the verification process for the proposed automatic well-test 
analysis. We apply a synthetic generated pressure signal based upon a known 
reservoir model and a specified rate history. The pressure signal is generated based 
upon constant well and reservoir properties. All known fluid and reservoir properties 
are applied in the automatic well-test module, including our knowledge of which 
model to use. Hence the purpose of this case is to obtain continuous estimates of the 
permeability and skin factor close to the true known values and with small confidence 
intervals. The proposed hypothesis testing for detection of changes in the estimated 
time series of permeability and skin factor should not reject the zero hypothesis; that 
the permeability and the skin factor are constants. 
 
The reservoir considered is a homogenous reservoir with wellbore storage and skin 
effects as described in chapter 3. The rate history was generated based upon a random 
number generator as described in chapter 5.1 consisting of 10.000 uniformly spaced 
rate measurements. The mobile phase is assumed to be oil only. The pressure was 
generated based upon the specified rate history and the homogenous reservoir model 
given by eq. (3.29), eq. (3.28) and eq. (3.22). Other relevant fluid and reservoir 
properties are listed below; 
  
 Reservoir height: 40 ft 
 Total compressibility: 5.2e-4 1/psi 
 Porosity: 0.2 
 Permeability: 60 mD 
 Skin factor: 3 
 Oil b-factor: 1.2 rb/stb 
 Viscosity: 0.6 cp 
 Well radius: 0.35 ft 
 Wellbore storage constant: 0.6 std/psi 
 Initial pressure: 9000 psi 
  

Three standard deviation white noise and random outliers were added to the 
pressure and rate measurements (although the pressure measurements are generated 
based upon the noise free rate measurements).  The resulting pressure and rate history 
is shown in Figure 7.6. The generated rate history, the fluid properties and the 
reservoir properties were selected such that they should be representative for what we 
believe might be encountered in a real oil well. 

 
Before we can run automatic well-test analyses, we need to perform the 

required setup. The methods and settings for the automatic signal filtering and process 
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monitoring modules were given in chapter 5 and 6 and summarized for automatic 
well-test analysis in section 7.2. Further we apply all known fluid and reservoir 
properties in the well-test module, including which well, reservoir and boundary 
model to use.  
 

The proposed method is then applied with the synthetic pressure and rate 
signals. First the filter is used for outlier removal, de-noising and data reduction in the 
pressure signal. Pressure transients are detected and average rates between the 
detected pressure transients are calculated. Next, shut-in periods are detected and 
corrected for possible errors in the exact shut-in time. Non-linear regression analysis 
is performed and an estimate of the skin factors and permeabilities with confidence 
intervals is obtained for each detected shut-in period. Hypothesis testing is performed 
on the time series of skin factors and permeabilities to test if any significant changes 
are present. If no changes are detected, average parameter values are calculated.  
 

The automatic well-test analysis works well for the case considered. The 
estimated skin factor and permeability are very close to the original values; skin factor 
of 3 and permeability of 60 mD. The estimated confidence intervals are in addition 
small. This is shown in Figure 7.7 and Figure 7.8. The hypothesis testing did not 
detect any significant changes in the estimated time series of permeabilities and skin 
factors as shown in Figure 7.9 and Figure 7.10. However, one estimated value of the 
skin factor and one estimated value of permeability had too large confidence intervals 
(as defined in Table 7.1) and were excluded from the hypothesis testing and average 
parameter value estimation. Figure 7.9 and Figure 7.10 show the probability that the 
H1 hypothesis is true, i.e. that we have significant changes in the time series of 
estimated parameters. Note that the results from the H1

 hypothesis testing are shown 
in these figures, i.e. it shows the probabilities for changes in the estimated 
permeabilities. Recall that in hypothesis test #2 in Figure 7.10, estimated parameters 
are added to population B once a significant change is detected. Since no significant 
changes are detected, the values in this graph will be identical to Figure 7.9.  
 

For both the estimated skin factors and permeabilities, the probability of the 
parameters not being a constant is less than 2%, i.e. there is a 98% probability for the 
parameters being constants. Hence we can calculate average parameter values as 
shown in Figure 7.11 and Figure 7.12 to obtain continuously updated parameter 
estimates with confidence intervals. The final estimated skin factor and permeability 
in these time series are well within the success criteria as defined in chapter 8.4.1. We 
would consider the result a success if the final estimated permeability had a 
confidence interval less then 10% of the estimated parameter value and if the “true” 
parameter value was inside the estimated confidence interval. In this case, the final 
estimate of the permeability is 60.1 ± 1.2 mD, and this can clearly be considered a 
success since the “true” permeability is 60 mD. We would consider the result as a 
success if the final estimated skin factor had a confidence interval less than 1 and if 
the “true” parameter value was inside the estimated confidence interval. In this case, 
the final estimate of the skin factor is 3.0 ± 0.1, and the result can clearly be 
considered a success (“true” skin factor is 3). 
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Figure 7.6: Synthetic pressure and rate history in case 1.  
 
 

 
Figure 7.7:  Estimated skin factors from all detected shut-ins with confidence 
intervals estimated in automatic well-test analysis. 
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Figure 7.8: Estimated permeabilities from all detected shut-ins with confidence 
intervals estimated in automatic well-test analysis. 
 
 
 
 

 
Figure 7.9:  Results from hypothesis test #1 testing for significant changes in skin 
factor and permeability mean values, i.e. that the H1 hypothesis is true. Recall that 
only the last estimated parameter is used as population B in hypothesis test #1. 
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Figure 7.10:  Results from hypothesis test #2 testing for significant changes in skin 
factor and permeability mean values, i.e. that the H1 hypothesis is true. Recall that all 
estimated parameters are used as population B in hypothesis test #2 once a 
significant change is detected. 
 
 

 
Figure 7.11:  Estimated average permeabilities with confidence intervals from the 
detected shut-ins. 
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Figure 7.12:  Estimated average skin factors with confidence intervals from the 
detected shut-ins. 
 
 

7.4.3 Case 2 
Case 2 was performed with the same intention as case 1; we would like to test how 
well the automatic well-test analysis works in a case where we know the true answer. 
A random rate history of 20.000 measurements is generated as described in chapter 
5.1.  The pressure is generated based upon a specified rate history and the same 
reservoir model as described in case 1. However there are two main differences; the 
permeability is set to 10 mD and the skin factor is changing and increases abrupt from 
1 to 4 at time t = 100 hours. Hence in this case we would like to investigate if the 
proposed automatic well-test analysis is capable of detecting a change in the skin 
factor. Once again, three standard deviation white noise and random outliers are 
added to both rate and pressure measurements. (Again the pressure is generated based 
upon the noise free rate measurements.) The pressure and rate history in case 2 are 
shown in Figure 7.13. 
 

In Figure 7.14, the permeabilities with confidence intervals from all detected 
shut-ins are shown. Figure 7.15 shows the results from the hypothesis testing of 
whether significant changes are detected in the estimated permeabilities. Note that the 
results from the H1

 hypothesis testing are shown in this figure, i.e. it shows the 
probabilities for changes in the estimated permeabilities. Although the probabilities 
for changes in the estimated permeabilities are quite high, the zero hypothesis that the 
permeability is constant cannot be rejected with a significance level of 5%. Hence a 
continuously updated average value of the permeability with confidence intervals can 
be estimated and is shown in Figure 7.16. Again the true permeability is within the 
confidence interval of the final estimated permeability and the estimated confidence 
interval is significantly smaller than the limit for an acceptable confidence interval as 
discussed in chapter 7.4.1 (less than 10% of the estimated average parameter value). 
Hence the result is again considered a success. 
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Figure 7.13:  Pressure and rate history in case 2. 
 
 
 

 
Figure 7.14:  Estimated permeabilities from all detected shut-ins in automatic well-
test analysis. 
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Figure 7.15:  Results from hypothesis test #1 testing for significant changes in 
permeability mean values, i.e. that the H1 hypothesis is true.  Recall that only last 
estimated permeability is used as population B in hypothesis test #1.  
 
 

 
Figure 7.16:  Estimated average permeabilities continuously updated in automatic 
well-test analysis. Only permeabilities estimated with small confidence intervals (i.e. 
less than 20% of the estimated permeability) are included. 
  
 
 Regarding the skin factor, the results from the individual well-tests are shown 
in Figure 7.17. By observing the estimated skin factors, we can clearly see the change 
taking place at t=100 hours.  
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Figure 7.17:  Estimated skin factors from all detected shut-ins in the automatic well-
test analysis. 
 
 
 

 
Figure 7.18:  Results from hypothesis test #1 testing for significant changes in skin 
factor mean values, i.e. that the H1 hypothesis is true. Recall that only the last 
estimated parameter is used as population B in hypothesis test #1. 
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Figure 7.19:  Results from hypothesis test #2 testing for significant changes in skin 
factor mean values, i.e. that the H1 hypothesis is true. Recall that all estimated 
parameters are used as population B in hypothesis test #2 once a significant change is 
detected. 
 
 

In Figure 7.18, only the last estimated parameter value is used as population B 
in the hypothesis test. Once a significant change in the estimated skin factor is 
detected, as happens at t=100 hours, all new estimated skin factors are added to 
population B in a second hypothesis test. The result from this hypothesis test is shown 
in Figure 7.19. This to verify that the first detected change still is significant when 
new estimated parameters are added to population B. In Figure 7.19, it is shown that 
the change in skin factor is detected with a probability above 99.9% and the 
hypothesis that the skin factor is constant must clearly be rejected. Recall that we use 
a significance level of 5% for the zero hypothesis that the skin factor is constant. Less 
then 0.1% probability for a constant skin factor simply means that the chance of doing 
a “measurement” like this and still have constant skin factor, is less then 1 to 1000. 
This example illustrates the capability of the proposed automatic well-test analysis to 
detect changes in time series of estimated parameters such as skin factor.  
 
 

7.4.4 Case 3 
Case 3 is from a North Sea gas/condensate well. We would like to perform automatic 
well-test analysis on production data from this well in order to obtain time series of 
estimated well and reservoir properties such as skin factor and permeability. 
 

 Approximately two month of production data is analyzed. The data is 
obtained from a database where pressure sampling has been performed only every 15 
minute or slightly more frequently in periods with larger pressure changes. This also 
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applies to the rate data. This means that the pressure resolution is quite poor. From the 
data base, an amount of 12.000 pressure measurements are stored giving an average 
sampling rate of only 8 measurements/hour for the two month considered. Sampling 
rates higher than 1 measurement/min are rare. This means that the wellbore storage 
period will contain few measurements, if any at all. Thus it should be expected that 
the skin factor and wellbore storage parameter estimates are poor. Recall that in the 
cases where only pressure signals with poor sampling rates are available, pressure de-
nosing and data reduction is disabled. Even if the data resolution is poor, this is often 
the kind of data available for analysis. It is thus very interesting to check what results 
it is possible to obtain using such data. The pressure and rate measurements obtained 
from this well are shown in Figure 7.20.  

 
The known well and reservoir parameters for the well considered are; 
 
 Total Compressibility: 4e-5 1/psi 

Well Radius: 0.354 ft. 
Porosity: 0.14 
Viscosity gas: 0.64 cp. 
B-factor gas: 0.003 rb/stb  
Height: 200 ft. 

 Temperature: 293 F 
  
The well considered is a gas/condensate well where the oil rate contributes less than 
2-3 percent to total reservoir flow rate and can thus be ignored. The well is located in 
a high pressure/high temperature reservoir meaning that the well can be analyzed 
without the use of pseudo-pressures(21).  Numerous unplanned and planned shut-ins 
occur during this two month allows automatic well-test analysis to be performed.  
 
 

 
Figure 7.20:  Pressure and rate data for well in case 3.  
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Initially one well-test needs to be analyzed manually to determine which 
wellbore, reservoir and boundary model to apply. As discussed in chapter 3, model 
identification is usually accomplished by the use of derivative plots. The shut-in 
period ending at approximately t=400 hours is analyzed and the derivative plot for 
this shut-in period is shown in Figure 7.21.  As seen from the derivative plot, the 
reservoir behaves as a homogenous reservoir with wellbore storage and skin effects in 
the start. At the end, boundary effects start to influence the derivative plot. The half 
unit slope line at the end of the derivative plot indicates that the well is placed inside a 
channel. 
 

 The results obtained from the manual and automatic tests indicate as expected 
that the only parameter that can be estimated from some of the tests with small 
enough confidence interval, i.e. where the confidence intervals are within the limits 
given in Table 7.1, is the permeability. The results from all well-tests are shown in 
Table 7.2 and the continuously estimated permeability from the automatic well-test 
analysis is shown in Figure 7.22. Some of the permeabilities are estimated with large 
confidence intervals indicating poorly estimated parameters and are eliminated from 
the analysis. All the estimated permeabilities with small confidence intervals, i.e. 
within the limits given in Table 7.1, are marked in yellow and bold in Table 7.2. 

 
 
 

 
Figure 7.21:  Derivative plot for shut-in ending at time 400 hours. 
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Table 7.2: Results from non-linear regression analysis in automatic well-test analyses 
compared with manual well-test analyses. The estimated permeabilities with 
confidence intervals within the tolerance limits in Table 7.1, are marked in bold and 
yellow. 

 
 
 

 
Figure 7.22:  Permeabilities with confidence intervals estimated in automatic well-test 
analyses. 
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permeabilities for tests that did pass the confidence interval limit of maximum ±20% 
of the estimated permeability applying a significance level of 5%. In Figure 7.23 the 
probability that the permeability is changing is shown, i.e. the inverse of the 
permeability being a constant. No significant changes are detected, and this allows us 
to obtain a continuously updated average permeability with confidence intervals as 
shown in Figure 7.24. This will in general provide us with an increasingly improved 
permeability estimate with a smaller and smaller confidence interval. 

 
In the manual analysis, 10 out of 12 shut-in periods had small enough 

confidence intervals to be accepted while only six out of 12 well-tests did pass in the 
automatic analysis. The other well-tests failed due to convergence failure in the well-
test non-linear regression analysis and/or high confidence intervals of the estimated 
parameter values. It should however be noted that those well-tests that passed in the 
automatic analysis, were the tests with the largest number of measurements and often, 
but not always, the well-tests with the smallest confidence intervals in the manual 
analysis. The final estimated average value obtained from the automatic well-test 
analyses was 83.7 ± 1.5 mD versus 81.1 ± 1.8 mD in the manual well-test analyses. 
The confidence intervals are overlapping, and thus within the uncertainty of the 
estimated values. We consequently consider the result a success. 

 
 
 

 
Figure 7.23:  Results from hypothesis test #1 testing for significant changes in 
permeability mean values, i.e. that the H1 hypothesis is true. Recall that only the last 
estimated parameter is used as population B in hypothesis test #1. 
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Figure 7.24:  Average permeability estimated from automatic well-test analysis where 
the estimated permeabilities passed the confidence interval limits in Table 7.1. 
 
 

Usually the confidence intervals in manual well-test analysis are smaller than 
in the automatic well-test analysis. This seems logical since we in manual well-test 
analysis continuously have the opportunity to eliminate errors. However, in some 
cases the confidence interval of the automatic well-test analysis is smaller. Actually 
one well-test in the automatic analysis with small enough confidence interval, had not 
small enough confidence interval in the manual analysis (within ±20% of estimated 
permeability value). This test is at time t=601 hours. There might be several reasons 
for this including different pressure signal filtering, poor convergence in the manual 
non-linear regression analysis, different initial estimate of parameters used in non-
linear regression analysis etc. Although we should expect to obtain better results in 
the manual analysis than in the automatic analysis, we believe exception can be 
expected, as seen in this case. 
 

Finally, we will in Figure 7.25 show an example of one well-test performed in 
the automatic well-test analysis with a good match between the measured pressures 
and the calculated pressures. One well-test with a poor match between the measured 
pressures and the estimated pressures in the automatic well-test analysis is shown in 
Figure 7.26. Unfortunately, skin factors and wellbore storage constants are not 
available from any of these well-tests due to large confidence intervals. The results 
are summarized in Table 7.3 and Table 7.4.  
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Table 7.3: Results from regression analysis of build-up at t=817 hours. The bold and 
yellow estimated parameters had small enough confidence intervals to be accepted in 
automatic well-test analysis. 

 Parameter estimates 95% confidence 
interval (+/-) 

Permeability  (mD) 84.4 5.5 
Wellbore Storage (stb/psi) 0.51 0.21 
Skin Factor 10.6 5.3 
Initial pressure (psi) 9305 1 
 
 

 
Figure 7.25:  Non-linear regression match on radial plot for build-up at t=817 hours.  

 
 
Table 7.4: Results from regression analysis of build-up test at t=759 hours. All 
estimated parameters had too large confidence intervals to be accepted in automatic 
well-test analysis. 

 Parameter estimates 95% confidence 
interval (+/-) 

Permeability  (mD) 138.1 79.5 
Wellbore Storage (stb/psi) 3 4.4 
Skin Factor 20 666 
Initial pressure (psi) 9488 2049 
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Figure 7.26:  Non-linear regression match on radial plot for build-up test at t=759 
hours.  
 
 
 

7.4.5 Case 4 
The fourth case is a well from the same North Sea gas/condensate reservoir as in case 
3. Again we would like to utilize automatic well-test analysis to obtain time series of 
estimated permeabilities, skin factors and wellbore storage constants. 
 
Approximately two month of production is analyzed. Again it is assumed that the only 
parameter that it is possible to estimate is the permeability due to poor pressure 
sampling rate as discussed in the previous case. Recall that in the cases where only 
pressure signals with poor sampling rates are available, pressure de-nosing and data 
reduction is disabled. Again a relatively large number of planned and unplanned shut-
ins occur making it possible to obtain time series of the estimated parameters. In 
Figure 7.27, the pressure and rate history for this well is shown.   
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Figure 7.27:  Pressure and rate history for well in case 4. 
 
 
All known reservoir and fluid properties are shown below; 
 
 Total Compressibility: 4e-5 1/psi 

Well Radius: 0.354 ft. 
Porosity: 0.14 
Viscosity gas: 0.64 cp. 
B-factor gas: 0.003 rb/stb  
Height: 200 ft. 

 Temperature: 293 F 
 
 Once again we need to perform one manual well-test analysis to determine the 
model for use in the non-linear regression analysis. The shut-in starting at time t=430 
hours is used and the derivative plot for this build-up test is shown in Figure 7.28. 
The derivative plot for this well indicates a well with wellbore storage and skin. The 
half unit slope line at the end of the derivate plot indicates that the well is placed 
inside a channel.  
 

After the module setup is completed, automatic well-test analysis is performed 
with the rest of the rate and pressure measurements. Once again the estimated skin 
factors and the wellbore storage constants have too large confidence intervals, while 
acceptable confidence intervals are obtained for many of the estimated permeabilities. 
Eight automatic well-tests have estimated permeabilities with small enough 
confidence intervals while ten manual well-tests have estimated permeabilities with 
small enough confidence intervals. The results are shown in Table 7.5. The 
permeabilities with confidence intervals obtained in automatic well-test analysis are 
shown in Figure 7.29.  One well-test in the automatic analysis with small enough 
confidence interval was estimated with large confidence intervals in the manual well-
test analysis. The reason for such a result was briefly discussed in the previous case. 
We were not able to analyse the shut-ins detected at times t=1142 and t=1158, not 
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even in the manual well-test analysis. Too few measurements were available during 
these shut-in periods.  
 
 
 
 

 
Figure 7.28:  Diagnostic plot for build-up test starting at time 430 hours.   

 

Table 7.5: Results from regression analysis of automatic well-tests compared with 
manual performed well-tests. The estimated permeabilities with confidence intervals 
within the tolerance limits in Table 7.1 are shown in yellow and bold text. 
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Figure 7.29:  Estimated permeabilities with confidence intervals from automatic well-
test analysis. 
 
 
 Hypothesis testing is performed each time a new estimate of the permeability 
is available and the results are shown in Figure 7.30. This figure shows the 
probability for a change in the estimated permeabilities, i.e. for the H1 hypothesis 
being true. No significant changes are detected, and once again a continuously 
updated average permeability with confidence interval can be estimated. This is 
shown in Figure 7.31. 
 
 
 
 

 
Figure 7.30: Results from hypothesis test #1 testing for significant changes in 
permeability mean values, i.e. that the H1 hypothesis is true. Recall that only the last 
estimated parameter is used as population B in hypothesis test #1. 
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Figure 7.31:  Estimated average permeabilities with confidence intervals from 
automatic well-tests that passed the confidence limits from Table 7.1. 
 
 

The final average permeability estimated in the manual and automatic well-
test analyses are very close. The permeability is estimated to 30.3 ± 0.8 mD in the 
automatic well-test analyses against 32.0 ± 1.1 mD in the manual well-test analyses. 
Again we have overlapping confidence intervals and the results can be considered 
identical within the uncertainties of the estimated values. Consequently we once again 
consider this result a success. 
 
For this well, we also show the wellbore storage constant ands the skin factors 
estimated in the manual and the automatic well-test analyses. These are shown in 
Table 7.6 and Table 7.7. As previously mentioned, due to poor pressure data 
resolutions, poor estimates of the parameters along with large confidence intervals 
were obtained, both in the manual well-test analysis and in the automatic well-test 
analysis. In most cases, the estimated skin factors equal the initial estimate of 0 or the 
upper limit of 20 used in the non-linear regression analysis. And in most cases, the 
estimated wellbore storage constants equal the initial estimate of 0 or the upper limit 
of 3 used in the non-linear regression analysis. No limitation is put on the confidence 
intervals, and thus very high confidence intervals are in some cases seen due to very 
large uncertainties in the estimated parameter values.  
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Table 7.6: Skin factors estimated from manual and automatic well-test analyses.  
  Manual Analysis Automatic Analysis 
Time 
(hours) 

Skin 95%  
confidence interval 

Skin 95%  
confidence interval 

431.844      0 0.8 20 538 
815.827      0 932.889 0 17.0 
855.961      0 654 0 72 
904.302      0 2192.13 0 121 
1001.72      20 49.0501 20 4.0 
1141.84 ---- ---- ---- ---- 
1157.66 ---- ---- ---- ---- 
1320.85      0 17.4683 0 369 
1351.21 0 15.212 0 102 
1478.78      0 159.673 ---- ---- 
1538.86      0 176254 20 12 
1582.43      20 1.93884 20 16.4 
1629.66      6.7 9.1 20 7.4 
1918.51       20 3.1 0 430 
 
 
Table 7.7: Wellbore storage constants estimated from manual and automatic well-test 
analyses. 

 Manual Analysis Automatic Analysis 
Time 
(hours) 

Wellbore 
storage 
(std/psi) 

95%  
confidence interval 
(std/psi) 

Wellbore 
storage 
(std/psi) 

95%  
confidence interval 
(std/psi) 

431.844     3 0.5 3 69 
815.827     0.223029 31.3524 3 15 
855.961     0 11 0 0.1 
904.302     0 32.9027 0 0.1 
1001.72     0 0.43330 0 0.7 
1141.84 ---- ---- ---- ---- 
1157.66 ---- ---- ---- ---- 
1320.85     0 0.510381 0 17 
1351.21 0 0.0212 0 0.1 
1478.78     0 7.42722 ---- ---- 
1538.86     0 12.9172 0 0.1 
1582.43     0 0.015 0 0.1 
1629.66     0 0.034 0 0.1 
1918.51     0 0.10 0 10 
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7.5 Summary 
We have in this chapter described the proposed method for automatic well-test 
analysis. This method consists of four main step, setup, data preparation, well-test 
analysis and possible user intervention. The data preparation consists of several 
elements from the automatic signal filtering and process monitoring module, where 
the goal is to provide the well-test module with continuously filtered data and event 
detection. For each detected shut-in, the well-test module is executed. The well-test 
module contains two main elements, the non-linear regression analysis and the result 
evaluation. From the non-linear regression analysis, time series of the parameters 
considered as unknown are obtained. The result evaluation, based upon hypothesis 
testing, was used for detection of possible changes in the time series of estimated 
parameters.  A notification is sent to the engineer if changes are detected. If no 
changes are detected, average parameter values are calculated. Four cases illustrating 
the application of the proposed method was shown, two cases with synthetic data and 
two cases with real data from a North Sea gas/condensate reservoir.  
 

In chapter 7.4.1, we specified the criteria used to evaluate the proposed 
automatic well-test analysis with both synthetic data and real data. For all cases 
considered the proposed automatic well-test analysis performed well. In the synthetic 
cases, the true parameter values were within the confidence intervals of the estimated 
parameter values. In addition, the estimated confidence intervals were small and well 
within the success criteria discussed in chapter 7.4.1. Unfortunately, poor data 
resolution in the real data cases made skin factor estimation difficult. However, the 
permeabilities estimated from the automatic well-test analyses compared well to those 
estimated from the manual well-test analyses. In the third case considered, the final 
estimated average permeability was 83.7 ± 1.5 mD in automatic well-test analyses 
versus 81.1 ± 1.8 mD in manual well-test analyseis. In the fourth case, the final 
average permeability was 30.3 ± 0.8 mD in automatic well-test analyses against 32.0 
± 1.1 mD in manual well-test analyses. Based upon the cases we have considered, we 
conclude that the proposed automatic well-test analyses works excellent for the cases 
considered. Unfortunately, we did not have the opportunity to test the automatic well-
test analysis with high resolution signals measured in real-time. 
 
 Finally note that we do not claim that automatic well-test analysis is better or 
more accurate than manual well-test analysis in any ways. However, additional well-
tests will be completed if performed automatically and we have shown that some of 
the information obtained by repeatedly performing manual well-test analysis might be 
obtained in automatic well-test analysis.  
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8 Conclusions 
In this work, new methods for automatic signal filtering, process monitoring and well-
test analysis is proposed. Automatic signal filtering saves the engineers for significant 
effort in signal filtering and data processing. Measured signals can easily be utilized 
in different kinds of analyses. The fact that automatically filtered measurements are 
available at any time might in fact increase the use of different types of analyses as 
they might be performed faster. The process monitoring approach provides the 
engineers with increased and improved process monitoring. This provides the 
engineers with faster and better detection of events such as transients, changing noise 
level and changing signal trends. Automatic well-test analysis ensures that all 
available rate and pressure measurements are analyzed and the information within the 
measurements is revealed. This leads to faster and better decisions. Actions can be 
implemented based upon these decisions where the aim is to improve the asset 
management. An initial setup is required for the automatic modules, but when 
completed, it is shown that signal filtering, process monitoring and well-test 
analysis can be performed automatically and in real-time with the signals 
considered in this work.  

 
 More specifically we have developed methods for automatic signal filtering 
including; 
 

 Outlier removal 
 De-noising  
 Data reduction 

 
The method for outlier removal is based upon a median filter and removes 

single as well as multiple outliers without user intervention.  We conclude that the 
proposed outlier removal is well suited for automatic outlier removal as all settings 
are predefined or estimated from the measured signals. Excellent performance was 
demonstrated with the signals considered in this work. 
 

Signal de-noising was accomplished with Waveshrink. Through the large 
number of filtering exercise done by this author, the selections and methods in 
Waveshrink that on average works best for the signals considered were determined. 
This holds the promise for automatic signal de-noising. 
 

Next, the number of signal measurements can be reduced by thresholding in an 
iterative minimization process. We conclude that the proposed method for data 
reduction is well suited for automatic data reduction as all settings are predefined or 
estimated from the measured signals. Again, good performance was demonstrated for 
the proposed method with the signals considered in this work.  

 
From the results in signal filtering, we conclude that automatic signal 

filtering is possible for the kind of signals we have considered with the methods 
proposed in this work.  

   A pattern recognition approach is proposed for pressure transient detection.  
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When tested on synthetic pressure signals, in general around 85% of the pressure 
transients were correctly identified. For the cases considered with real pressure 
signals, around 80% of the pressure transients were correctly identified. In general 
only the transients with the smallest pressure changes were missed. All the “large” 
transients in terms of pressure change were accurately detected and no erroneously 
transients were detected in the cases considered. In summary, good performance was 
demonstrated for the proposed transient detection and the method is well-suited for 
automatic transient detection.  

 
Additional challenges will occur if signal filtering and transient detection 

should be utilized with continuously measured signals. A process monitoring 
approach is consequently proposed. This includes; 

  
 Real-time noise estimation 
 Real-time signal filtering 
 Real-time transient detection  
 Real-time trend estimation 

 
A window approach is required for signal filtering and process monitoring 

with continuously measured signals. Recommendation of window size for use in real-
time signal filtering and process monitoring was given. In addition, a real-time 
wavelet transform is proposed to continuously update noise estimation, signal filtering 
and trend estimation with a minimum of computational effort. Continuously updated 
filtered signals will be ready for analysis at any time and the process monitoring is 
well suited for continuous pressure transient detection, signal noise estimation and 
signal trend estimation, We conclude that with the proposed approach, a large 
number of signal measurements can be handled in a computationally efficient 
manner in real-time for use in automatic signal filtering and process monitoring. 

 
In this work, we have also proposed a method for automatic well-test analysis 

from continuously measured pressure and rate signals. The proposed method contains 
four main step;  
 

 Setup 
 Automatic data preparation 
 Automatic well-test analysis  
 Possible user interaction  

 
In initial setup is required, but once this is done, well-test analysis is 

performed automatically. The performance of the automatic signal filtering and 
process monitoring module for data preparation in well-test analysis was very good in 
the cases we considered. 

 
The estimation of well-test parameters can be best done from shut-ins and this 

can be performed continuously and automatically for each detected shut-in. This will 
provide us with time series of estimated parameters provided that enough shut-ins 
occur. However, measurements with a sufficiently high sampling rate must be 
available, otherwise the estimation of different parameters becomes highly uncertain. 
In our cases with real data, poor pressure sampling rates prevented the estimation of 
skin factor and wellbore storage. With a high degree of certainty, the non-linear 
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regression analysis will fail for some of the detected shut-ins and results in erroneous 
parameter estimates. High confidence intervals rules out many of the erroneous 
parameter estimates and provides us with an excellent tool for quality checking the 
results. It is further shown that hypothesis testing can be used to detect changes in 
estimated parameters. This was tested with synthetic data and worked very well.  
 

When hypothesis testing indicates that the parameters mean value is constant, 
a continuously updated average parameter value with variance is estimated. It is 
shown that even if some of the shut-in periods are missed or give erroneous results in 
the automatic well-test analyses, the estimation of average parameter values can still 
be successful when compared to the results from manual well-test analyses. In our 
two cases with real data, the final estimated parameters from the manual and the 
automatic well-test analyses were close, 81.1 mD versus 83.7 mD  (case 3) and 30.3 
mD versus 32.0 mD (case 4). We will not claim that automatic well-test analyses is 
more accurate than manually performed well-test analyses, but additional well-tests 
will be completed if automatic well-test analyses are available and additional 
information about the well and reservoir considered will be available. We conclude 
that the use of the proposed automatic well-test analysis for calculation of average 
parameter values works very well.  
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9 Further work 
Improved and better use of real-time data has been a major concern in the E&P 
industry for some time now. However, the main challenge is to utilize these 
measurements to obtain more information about wells and reservoirs. For engineers 
with limited available time, efficient and automatic tools for extraction of information 
are critical. We have in this work considered automatic signal filtering, automatic 
process monitoring and automatic well-test analysis. A natural extension of this work 
will be to consider other types of analyses than well-testing. This includes material 
balance calculation and decline curve analysis. Material balance is simply a volume 
balance which equates the total production and injection in the reservoir to the initial 
volume and the current volume. Decline curve analysis is used to fit production data 
to a decline curve for prediction of future oil and gas production. Both material 
balance and decline curve analysis would be good candidates for a similar approach as 
is described for well-test analysis in this work.  

 
Even in reservoir simulation, a similar approach could be applied. Today, the 

reservoir engineers spend a lot of time on data preparation for updates of reservoir 
simulation models. Then the reservoir simulation is performed and the results are 
inspected by the reservoir engineers. If measured data significantly deviates from 
predicated data, additional history-matching of the reservoir simulation model is 
usually considered. However, we can envision that reservoir simulation could be done 
automatically in the same way as well-test analysis, and where the reservoir engineer 
only receives a notification if a significant deviation between the measured data and 
the predicted data is found. Thus the reservoir engineers could spend less time on data 
preparation and routinely updates of the reservoir simulation model and more time on 
analysing the cases where a poor history match is obtained.  

 
Some further improvement and extension of the modules developed in this 

work is recommended as well. The performance of the proposed data reduction 
method or the proposed transient detection method has not been tested against other 
methods available in the literature. We believe that they will perform very well 
compared to the methods found in the literature, but this should be confirmed.  

 
In Waveshrink we simply determined the best selections for use in 

Waveshrink in terms of root-mean-squared errors. We did not investigate or explain 
why some selections gave better results than the others. An improvement of this work 
will be to understand why some selection works better than others for the various 
signals considered. 
 
 The automatic well-test module has been tested using numerous synthetic data 
sets and four cases with real data (where two synthetic cases and two real-data cases 
representative for the results obtained were included in this work). However, we still 
believe that it would be beneficial to test the proposed method with more data, and in 
particular data where various well-test models would be required (note that the well-
test implementation developed in this work already includes numerous other well-test 
models than the models described in this thesis). It would in addition be beneficial to 
test the automatic well-test module using real data with higher sampling rates than we 
had access to. The system has been tested using synthetic data with high sampling 
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rate, but from the experience gained in this work, additional challenges might be 
identified when using real signals with high sampling rates. 
  

Finally, automatic signal filtering, process monitoring and well-test analysis 
should be tested within an online operation centre by an asset team, to verify that the 
recommendations and methods developed in here will prove valuable to the asset 
team. It should also be verified that the proposed automatic process monitoring 
provides the asset team with information from the signal measurements faster or with 
information otherwise missed. Further it should be verified that automatic signal 
filtering saves time for the asset team in data preparation when preparing data for 
different kinds of analysis, and that this subsequently results in faster and/or in the 
completion of additional analyses providing the asset team with valuable information. 
Next it should be verified that automatic well-test analysis provides the asset team 
with faster information from well-tests and/or the completion of additional well-tests. 
Finally it should be verified that the information obtained leads to faster and better 
decisions, and the value of these decisions should be quantified in terms of increased 
recovery and/or decreased cost. 

 



 

 
 

Nomenclature: Well-testing 
 

A Reservoir area or drainage area for the well 
B Formation volume factor 
C Wellbore storage constant 
CD Dimensionless wellbore storage constant 
c Compressibility (Total compressibility of formation and fluid)           
h Reservoir height 

I0(x) Modified Bessel function of second order 
I1(x) Modified Bessel function of second order 
K0(x) Modified Bessel function of first order 
K1(x) Modified Bessel function of first order 

k Permeability 
L Laplace transform 

L-1 Inverse Laplace transform 
m Mass 
μ Viscosity 

Δp Pressure difference 
Δpskin Pressure drop/increase caused by skin factor 

PD Dimensionless pressure 
PwD Dimensionless pressure with wellbore storage and skin effects 
pwf Flowing well pressure 
pwfn Flowing well pressure influenced by n’th rate change  
pi Initial reservoir pressure 
Φ Porosity 
ρ Density 
r Radius 
rw Well radius 
re Reservoir extension 
reD Dimensionless reservoir extension 
rD Dimensionless radius 
S Skin factor 
t Time 
tD Dimensionless time 
v Velocity 
V Volume 
Vp Pore volume. 
Vb Bulk volume 
Vt Total volume 
Q Surface flow 
q Sandface flow 
qw Wellbore flow 
z Laplace variable 

            
 
 
 
 



  
 

 
 

Nomenclature: Non-Linear Regression Analysis 
 

nmA n  Sensitivity matrix for m parameters and n samples 

mmC m  Covariance matrix for m parameters 

cii Element in the covariance matrix 
ε Model error 

f(t,v0) Model function with initial parameter vector v0 at times t 
f(t,v) Model function with parameter vector v at times t 
f(t,v)* Approximation of the model estimate 

G Jacobi matrix 
H Hessian matrix 

J(v) Objective function 
R Real numbers 
Σ Expected value of residual vector 

tn-m t –distribution of sample with n samples and m parameter 
θ Risk level in student t-test 
v Parameter vector in regression analysis 
v0 Initial estimate of parameters vector v              
vi Element i of the parameter vector 
Y Measurement vector at times t 
yi Measurement at time ti 

 
 
Nomenclature: Wavelet Analysis 
 

c(k) Approximate coefficient k at resolution level j=0 
cj(k) Approximate coefficient k at resolution level j 
cj0(k) Approximate coefficient k at primary resolution level j0 
dj(k) Detail coefficient k at resolution level j 
f(t) Model function 
F De-noised signal 
fi De-noised signal measurements i (i is an integer index) 
j Resolution level in wavelet transform  
j0 Primary resolution level 
J Max resolution level 
k Finite or infinite integer index used in function approximation  
Λ Cumulative distribution function 

Λ-1 Inverse cumulative distribution function 
m Window size for use in median outlier filter 
N Number of samples taken of a signal 
n Finite or infinite index for use with scaling or wavelet coefficients 
p Signal period 
S Signal 
si Signal sample i (i is an integer index) 

 De-noise signal 



 

 
 

fi Denoised signal sample i, (i is an integer index) 
T Sampling interval of signal S(t) 
W Wavelet transform 

W-1 Inverse wavelet transform 
α Noise level 

      δ Thresholding operator for wavelet coefficients  
δλ Thresholding operator for wavelet coefficients applying a threshold 
λ Threshold in wavelet filtering 
μ Mean value 

)(, tkj ,kj
 Scaling function with dilation j and translation k            

)(t(  Basic scaling function with k=0 and j=0. 
ψj,k Wavelet function with dilation j and translation k            
ψ(t) Basic wavelet function with k=0 and j=0. 
Φj Vector of all scaling functions at level j 
Ψ j Vector of all wavelet functions at level j 
Y Noise free signal 
yi Noise free signal sample i, (i is an integer index) 

  
k will in the context of wavelet and scaling functions refer to the translation of these functions. 
j  will in the context of wavelet and scaling functions refer to the dilation of these functions. 
 
Nomenclature: Hypothesis Testing 
 

H0 Zero hypothesis in hypothesis testing 
H1 Alternative hypothesis in hypothesis testing 

ix  Mean value sample i 
vari Variance sample i 
X  Average mean  

)var( X  Average variance 
N Number of samples 
NA Number of samples in population A 
NB Number of samples in population B 

Ax  Mean value population A 

Bx  Mean value population B 
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Appendix A - Bessel Functions 
The Stehfest routine described in chapter 3 adds together several successive large and small 
values as given by eq. (3.23) - (3.25). This summation will require an accurate estimate of the 
PD function in eq. (3.22). Since the PD function in well-test analysis usually contains Bessel 
functions (42; 44), it is very important to have Bessel functions with high accuracy in order to 
get accurate solutions with the Stehfest algorithm. In addition, the large number of Bessel 
function evaluations requires that the Bessel functions can be calculated computationally 
efficient.   
 

We will in this appendix describe how to obtain both fast and accurate modified Bessel 
function for use in well-test analysis. Finally, we will provide a summary of the derivatives 
for all the Bessel functions that will be useful in the calculation of the pressure derivatives in 
non-linear regression analysis. 
 

A.1 Equations 
The modified Bessel functions are series that are solutions of the differential equation; 
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where the solution of the above equation is given as; 
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In(x) and Kn(x) are referred to as the modified Bessel function of first and second order. c1 and 
c2 are constants. As a series expansion, the modified Bessel function of first order may be 
written as; 
 

(A.3) 
0

2

)1(!

)4
1(

2
1)(

k

kn

n knk

x
xxI  

      
where n is given in eq. (A.1) and Γ is the gamma function(51). The modified Bessel function of 
second order is given as; 
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The main problem by applying a straightforward implementation of the modified Bessel 
functions is the summation of infinite series. It will in general be very computational 
expensive to calculate these series with high enough precision. Thus, it is very common to use 
approximations for faster calculations of Bessel functions. Very often one looks at the 
evaluations of small and high function arguments separately. For Kn(x) and In(x), the 
difference between low and high functions arguments are normally chosen to be around 2. For 
small function elements (<2) the modified Bessel functions can be approximated as; 
 

(A.5) ,.....3,2,1
)1(

)( 2
1

3,2,1
)1(

n
n

xxIn      

 
(A.6) )ln()(0 xxK ln   

 
and       

 
(A.7) .0,)2

1)((2
1)( 0,(1 nnxnxK n

n      

 
For large function elements (>2) the modified Bessel functions can be approximated as 
follow; 
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The number of terms in the summation will determine the precision of the approximations.  
 
 Three sources with implementations of the modified Bessel functions were originally 
considered in this work; Matlab(83), Netlib(49) and Numerical Recipes(52). Common for all three 
implementations is that they use approximations as described above for evaluation of the 
modified Bessel functions. Numerical Recipes use the implementation by Abramowitz and 
Stegun(51) while Matlab use the implementation by Amos (which they actually have obtained 
from Netlib as well). The final implementation considered is the one in Netlib (and referred to 
as the Netlib implementation) by Saunders and Boisvert(84).  
 

Since the well-test module will be written in C++(85) (computer programming 
language), the Bessel functions are required to be written in C or C++, they need to be 
converted to C or C++ or they can be linked into C++ as an external numerical library.  
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The Matlab code (Amos)  was tested by linking Matlab to C++ while the Numerical 

Recipes code (Abramowitz and Stegun) is already written in C. The Netlib code (Saunders 
and Boisvert), written in Fortran, is converted to C by a converter found in Netlib(49) called 
f2c. 

 

A.2 Precision Considerations 
The Bessel functions found in Netlib, Matlab and Numerical Recipes are all approximations 
used to increase the computational speed of the Bessel functions. This since the full series 
implementation of the Bessel functions (eq. (A.3) and eq. (A.4)) is very computational 
expensive and would be too computational expensive for use in well-test analysis. However, 
to test the precision of these approximations, we test the approximations against the full series 
implementations of the Bessel functions. The full series implementation of the Bessel 
functions is highly accurate but computational expensive.  

 
To test the various implementations of modified Bessel functions found in Netlib, 

Matlab and Numerical Recipes, modified Bessel functions with function arguments on the 
interval 0.01 to 100 with a step length of 0.01 were considered. The relative and absolute 
errors for the modified Bessel functions were calculated on the interval considered. 

 

A.2.1 Matlab 
First we test the Matlab implementation of the Bessel functions. The Matlab modified Bessel 
functions appear to be highly accurate and give a full precision answer (sixteen correct digits) 
for the modified Bessel functions.  This holds for all modified Bessel functions considered, 
K0, K1, I0, and I1. The performance was tested against the complete series implementation 
given by eq. (A.3) and eq. (A.4). 

A.2.2 Netlib 
The modified Bessel functions K0, K1, I0, and I1 from Netlib by Saunders and Boisvert were 
considered next. The relative and absolute errors were obtained for each function and the 
results are discussed in the subsequent sections. 
 

Bessel K0  
The Netlib algorithm calculates the modified Bessel function K0(x) correct up to 7 digits on 
average. The absolute error is largest for function arguments around 8, while the relative error 
is more uniform. This is shown in Figure. A.1. The average, minimum and maximum error for 
the Netlib K0(x) function is summarized in Table A.1. 
 
Table A.1: Average absolute and relative error for Netlib K0(x) function. 
 Absolute Relative (%) 
Average error 3.60796e-14 1.06061e-5 
Minimum Error 0 0 
Maximum Error 4.00624e-12 1.45921e-5 
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Figure A.1: Absolute and relative error for Netlib Bessel K0(x) function for different function 
arguments. The y-axis unit in the left plot is p=10-12 while the y-axis unit in the right plot is 
μ=10-6. (Note that the relative error is shown in percent, i.e. multiplied with 100.) 
 

Bessel K1  
As for the K0 function, the Netlib K1(x) function calculates the Bessel function correct up to 7 
digits on average. The absolute error is largest for function arguments around 8, while the 
relative error again is more uniform. This is shown in Figure A.2. The average, minimum and 
maximum error for Netlib K1(x) function is summarized in Table A.2. 
 
 
Table A.2: Average absolute and relative error for Netlib K1(x) function. 
 Absolute Relative (%) 
Average error 2.09082e-012 1.65641e-5 
Minimum Error 0 0 
Maximum Error 3.40915e-010 1.42518e-5 
 
 

 
Figure A.2: Absolute and relative error for Netlib K1(x) function for different function 
arguments. The y-axis unit in the left plot and the right plot is μ=10-6. (Note that the relative 
error is shown in percent, i.e. multiplied with 100.) 
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Bessel I0  
The Netlib I0(x) function is highly accurate and calculates the function correct up to 15 digits 
in average, and never less than 14 digits. This is not far from the precision to a float number 
within C++ of 16 digits. Since the I0(x) function approaches infinite as the function argument 
becomes large, the absolute error will become higher for large function arguments. This is 
shown in Figure A.3. The average, minimum and maximum error for Netlib I0(x) function is 
summarized in Table A.3. 
 
 
Table A.3: Average absolute and relative error for Netlib I0(x) function. 
 Absolute Relative (%) 
Average error 6.91e25 2.91e-13 
Minimum Error 0 0 
Maximum Error 1.87e28 2.15e-12 
 
 

  
Figure A.3: Absolute and relative error for Netlib Bessel I0(x) function for different function 
arguments. The y-axis unit in the right plot is p=10-12. (Note that the relative error is shown 
in percent, i.e. multiplied with 100.) 
 
 
 

Bessel I1 
As for the I0(x), the Netlib I1(x) is highly accurate and calculates the function correctly up to 
15 digits in average, and never less than 14 digits. This is shown in Figure A.3. The average, 
minimum and maximum error for Netlib I1(x) function is summarized in Table A.4. 
 
 
Table A.4: Average absolute and relative error for Netlib I1(x) function. 
 Absolute Relative (%) 
Average error 6.88e25 2.90e-13 
Minimum Error 0 0 
Maximum Error 1.84e28 2.17e-12 
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Figure A.4: Absolute and relative error for Netlib Bessel I1(x) function for different function 
arguments. The y-axis unit in the right plot is p=10-12. (Note that the relative error is shown 
in percent, i.e. multiplied with 100.) 
 
 

A.2.3 Numerical Recipes 
The implementation in Numerical Recipes is very similar to the one found in Netlib and the 
results are close to those from Netlib. Numerical Recipes in general gives modified Bessel 
functions with an accuracy of 6-7 digits for Ko(x) and K1(x) and with an accuracy of 14-15 
digits for Io(x) and I1(x). 
 
  

A.3 Computational Performance 
If only precision was important, modified Bessel functions in Matlab should have been used, 
however the speed is equally important as the precision. The different Bessel functions were 
tested in order to determine their computational speed. All calculations were done at a Dell 
Dimension 1.8 GHz laptop with 512 MB memory. All functions were calculated four million 
times with different functions arguments from 0.0001 to 400 with an interval of 0.0001. 
 

A.3.1 Netlib  
The results obtained for the Bessel functions in Netlib are shown in Table A.5. 
 
Table A.5: Computational performance for evaluation of Bessel functions applying Netlib’s 
Bessel functions. 
 K0(x) K1(x) I0(x) I1(x) 
Time(secs) ≈1 ≈1 ≈8 ≈8 
 
The results show that the Bessel functions Ko(x) and K1(x) are fast while the Bessel functions 
Io(x) and I1(x) are considerably slower. 
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A.3.2 Numerical Recipes 
The results obtained from the Bessel functions in Numerical Recipes are shown in Table A.6.  
 
Table A.6: Computational performance for evaluation of Bessel functions applying 
Numerical recipe’s Bessel functions. 
 K0(x) K1(x) I0(x) I1(x) 
Time(secs) ≈1 ≈1 ≈1.5 ≈1.5 
 
The results show that all Bessel functions are computational fast.  
 
 

A.3.3 Matlab  
It is possible to call Matlab’s Bessel functions by direct calls from C++ code. The 
computational performance using direct calls was poor. By comparing the performance of the 
Bessel functions made by these external calls from our C++ code, and from the calculations 
performed directly within the Matlab environment, we observe that the overhead of calling 
Matlab functions from C++ is large. However, it should in fact be noted that the performance 
in both cases is rather poor as shown in Table A.7 and Table A.8. 
 
 
Table A.7: Computational performance in Matlab for evaluation of modified Bessel functions 
by linking to C++. 
 K0(x) K1(x) I0(x) I1(x) 
Time(secs) ≈103 ≈105 ≈115 ≈113 
 
 
 Table A.8: Computational performance in Matlab for evaluation of modified Bessel functions 
inside Matlab environment. 
 K0(x) K1(x) I0(x) I1(x) 
Time(secs) ≈28 ≈28 ≈33 ≈33 
 
 

The Bessel functions I0(x) and I1(x) from Numerical Recipes ensures both high speed 
and high precision. This is sufficient for the requirements we have for the Bessel functions for 
use with the numerical Laplace inversion scheme. Also the K0(x) and K1(x) performs well for 
small functions arguments, however the performance for large function arguments are rather 
poor. The main problem with the implementation found within Netlib by Saunders and 
Boisvert is the calculation speed of Io(x) and I1(x) and the precision of K0(x) and K1(x) for 
large function arguments. The main problem with linking to Matlab is poor performance, 
although the precision is excellent. The speed is in most cases reduced by a factor 100 when 
linking to Matlab.  

 
For I0(x) and I1(x) we choose to use the implementations found in Numerical Recipes. 

For K0(x) and K1(x) we choose to use the implementations found in Numerical Recipes for 
small functions arguments, but improvements are required for large function arguments (x>2) 
and will be described in the next section.  
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A.4 Improvements 
In Numerical Recipes, approximations of the functions K0(x) and K1(x), are given on the form: 
 

(A.10) 
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However, as mentioned earlier, the precision of the modified Bessel functions implemented in 
Numerical Recipes is smaller than we would like to have for large function arguments. By 
simply increasing the size of the polynomial in the approximation above, high precision 
modified Bessel functions can be obtained. Thus, we chose to use the approximation above 
with a polynomial of 12 terms. The actual implementation of these Bessel functions is given 
in Appendix A.6. The absolute and relative error for the new Bessel functions is shown in 
Figure A.5 and Figure A.6. 
 

 
Figure A.5: Absolute and relative error in new implementation of K0(x) Bessel functions for 
different function arguments. The y-axis unit in the left plot is μ=10-6 while the y-axis unit in 
the right plot is n=10-9. (Note that the relative error is shown in percent, i.e. multiplied with 
100.) 
 
 

 
Figure A.6: Absolute and relative error in new implementation of K1(x) Bessel functions for 
different function arguments. The y-axis unit in the left and the right plot is μ=10-6. (Note that 
the relative error is shown in percent, i.e. multiplied with 100.) 
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Table A.9: Computational performance for the implemented Bessel functions. 
 K1(x)  K0(x)  I1(x)  I0(x)  
Time(secs) ≈1 ≈1 ≈1.5 ≈1.5 
 

With the new Bessel functions, the accuracy is now 12-13 digits for the K0(x) and K1(x), 
for both small and large function arguments. Four millions function evaluations are done in 1-
1.5 second using the same computer as previously. The computational performance for the 
different Bessel functions is summarized in Table A.9. The new Bessel functions are thus 100 
times faster than the Bessel functions in Matlab, although with a slightly lower precision. The 
new implementation of K0(x) and K1(x) has 5-6 digits higher precision than in Numerical 
Recipes for large function arguments but are evaluated at the same speed.  
 
 

A.5 Derivatives of Bessel Functions 
When performing well-test non-linear regression analysis, we need analytical derivatives of 
the Bessel functions to avoid using numerical derivatives that both would both yield a larger 
error and secondly be slower (since they often include twice the number of function 
evaluations). The derivatives of the modified Bessel functions can be found in most calculus 
books(38;73) and are given as: 
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A.6 Numerical Implementation 
This appendix contains some of the implementation of the Stehfest Laplace inversion scheme 
and the Bessel functions. For practical reasons, only a limited amount of the code is given in 
here. All implementation is done in C++ applying Microsoft Visual Studio 2003(85). 
 

A.6.1 Inverse Laplace Transform 
The following files and C++ code has been written for the numerical implementation of the 
Stehfest Laplace inversion scheme. A subclass must be written to the LaplaceBase class to 
implement the function CalculateLaplaceArgument which evaluates the actual Laplace 
function. 



Bessel Functions 
 

10 
 

File LaplaceBase.h 
#pragma once 
 
class SLaplaceBase : public SDerivativeBase 
{ 
public: 
    SLaplaceBase( ): 
    virtual ~SLaplaceBase( ): 
    virtual double CalculateLaplaceArgument(double s) = 0: 
}: 
 

File Laplace.h 
#pragma once 
 
#include "SLaplaceBase.h" 
#include <vector> 
 
class SLaplace 
{ 
public: 
    SLaplace(SLaplaceBase* base): 
    virtual ~SLaplace(void): 
 
    double InversStehfestTransform( double s, std::vector<double>& viTable): 
 
protected: 
    std::vector<double> m_viTable: 
   
    static void CalculateViTable(int N,std::vector<double>& viTable): 
 
    SLaplaceBase* m_base:  
 
}: 
 

File Laplace.cpp 
#include "slaplace.h" 
#include "slaplacebase.h" 
#include "smath.h" 
#include <math.h> 
#include <limits> 
 
 
SLaplace::SLaplace(SLaplaceBase* base) 
{ 
    m_base = base: 
 
     
} 
 
SLaplace::~SLaplace(void) 
{ 
} 
/////////////////////////////////////////////////////////////////////// 
// 
// 
// 
//////////////////////////////////////////////////////////////////////// 
void SLaplace::CalculateViTable(int N, std::vector<double>& viTable ) 
{ 
    double sum = 0: 
    int q = (int)( N / 2): 
     
    std::vector<double>fak_tab: 
    fak_tab.resize( N + 1): 
    fak_tab[0] = 1: 
 
    for(int k = 1: k <= N : k++) 
        fak_tab[ k ] = fak_tab[ k - 1 ] * k: 
 
    viTable.resize( N ): 
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    for(int i = 1: i <= N : i++) 
    { 
        double sum = 0: 
        int K = (int)(( i + 1) / 2) : 
        int M = __min( q , i): 
 
        for(int j = K : j <= M : j++) 
        { 
            sum += pow( j , q + 1) *  
                fak_tab[ 2 * j ] / 
                fak_tab[ q - j ] / 
                fak_tab[ j ] / 
                fak_tab[ j ] / 
                fak_tab[ i - j ] /  
                fak_tab[ 2 * j - i ]: 
        } 
 
        //set new vi 
        viTable[i-1] = pow(-1, q + i ) * sum: 
    } 
} 
 
 
//////////////////////////////////////////////////////////////////////// 
// 
// 
// 
//////////////////////////////////////////////////////////////////////// 
double SLaplace::InversStehfestTransform(double s, std::vector<double>& viTable) 
{       
    double pd = 0,si,pds: 
      
    for( unsigned i = 1: i <= viTable.size() : i++) 
    { 
        si = log(2.0) * i / s:               
  pds = m_base->CalculateLaplaceArgument( si ): 
        pd += viTable[ i - 1 ] * pds: 
 
    return log(2.0) / s * pd: 
} 
 
 
 
 

A.6.2  Bessel Functions 
The implemented Bessel functions for small function arguments in K0(x) and K1(x) and for all 
arguments to I0(x) and I1(x) are equal to the implementation in Numerical Recipes. 
Modifications are introduced for large function arguments in the evaluation of K0(x) and 
K1(x). 
 
#include ".\sbesselfunction.h" 
#include <math.h> 
 
   
const double SBesselFunction::polytabK0_2[11] = { 9.33474288285696, 3.04214327567263, -0.351411991966095, -0.558108807018695, 
-0.0140618292519901, 0.00582065816805504, 0.0764607816969116, -0.0836772538861002, 
0.0875262546036897,-0.156640362498542, 1.25331373336153}: 
  
const double SBesselFunction::polytabK0_3[11] = {0.480114948051918,0.103846117801027,-0.150842128124707, 0.51512251369496, -
0.10338592177391,-0.121327975433006, 0.12028360285608, -0.0902211469515844, 0.0880491093088693,-0.156662294258367, 
1.2533141149068 }: 
               
const double SBesselFunction::polytabK0_4[11] ={ 0.872825749408107, 0.460464482628261, 0.280325879465922,-0.352810259427467, -
0.149037838405807,-0.100080483324538, 0.121167762749324, -0.0906639398140896, 0.0880860003561732,-0.156663595449291, 
1.25331413231261 }: 
 
const double SBesselFunction::polytabK0_5[11] = {  7.83950456709176, 8.93375021874497,5.35964076581855, 1.19181812702166, 
13.0905289572043, 2.55971945564961, -0.10424924636207, -0.0806567849538216, 
0.0878412531147571, -0.156660481572338, 1.25331411633321 }: 
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const double SBesselFunction::polytabK0_6[11] = { 0.516212169302723,0.225353963750184,0.183819301703172,0.216071222249249, 
0.421331952791799,0.884796700680851,0.00421010756282323,-0.0853862798741548, 
0.0879728661129094,-0.156662493639418,1.25331412897483}: 
 
const double SBesselFunction::polytabK1_2[11] = { -3.69542031928046, -7.82526935544691, 1.16170179992147, 0.926141255160686, 
-0.207204051005454, 0.0730970467785583, -0.117246171581445,0.120278239349953, 
-0.14625820246747,0.469967993103062,1.25331455902848 }: 
 
 
const double SBesselFunction::polytabK1_3[11] = { 9.06205834354389,29.4377721695286,-8.72498963426441,-
2.36542384211555,1.32460846506163, -0.0942394895926431, -0.128760373763683,0.124756486680772,0.146707023134645, 
0.469988695216057, 1.2533141812342 }: 
 
const double SBesselFunction::polytabK1_4[11] = { 0.516158228830742,0.225218160392226,0.183327115095412,0.212625150629218, 
0.392734004030057,0.71879898369353,-0.292453382201777,0.139074336564685, 
0.147348143484178,0.470003289540679,1.25331404583092 }: 
 
const double SBesselFunction::polytabK1_5[11] = {  4.38982009207877, 3.11303384610487,2.08587610524995, 1.39731575465267, 
5.37367536164528,  1.5373298745296,-0.298822530074184,  0.134441291001168, 
0.147034286688754,0.469995090391121,1.25331412405964}: 
 
 
const double SBesselFunction::polytabK1_6[11] = { 0.516145962891471,0.225494508374971,0.183809581250699,0.215800013270206, 
0.414925879996119,0.806413168188277,-0.244388406667257,0.131657490182756, 
0.146948409644669,0.469993702859215,1.25331413304212}: 
 
const double SBesselFunction::polytabK0divK1[6] = { -0.083392410135614, 0.236935274253949,-0.32473168821664, 
0.370555356536421, -0.499882244766124,0.99999964263615 }: 
 
 
 
 
///////////////////////////////////////////////////////////////////////// 
///  
/// 
/// 
/// 
///////////////////////////////////////////////////////////////////////// 
double SBesselFunction::BesselK0(double x) 
{ 
 double ans = 0: 
 double y: 
 const double* tab: 
    
 
 if( x < 2.0 )  
 { 
  y = x * x / 4.0: 

ans = ( - log ( x / 2.0 ) * BesselI0( x ) ) + ( - 0.57721566 + y * ( 0.42278420 + y * ( 0.23069756 + y * ( 0.3488590 * 
0.1 + y * ( 0.262698 * 0.01 + y * ( 0.10750 * 0.001 + y * 0.74 * 0.00001 ) ) ) ) ) ): 

 } 
 else if( x < 50 ) 
 { 
  if( x < 10 ) 
   tab = polytabK0_2: 
  else if( x < 20 ) 
   tab = polytabK0_3: 
  else if( x < 30 ) 
   tab = polytabK0_4: 
  else if( x < 40 ) 
   tab = polytabK0_5: 
  else if( x < 50 ) 
   tab = polytabK0_6: 
   
  double cur_x = 1: 
 
  for( int i = 0: i < 11 : i++ ) 
  { 
   ans += cur_x * tab[ 10 - i ]: 
   cur_x /= x: 
  } 
 
  ans = ans * exp( - x ) / sqrt( x ) : 
 } 
 else 
 { 
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  y = 2.0 / x: 
ans = ( exp( -x ) / sqrt( x ) ) * ( 1.25331414 + y * ( - 0.7832358 * 0.1 + y * ( 0.2189568 * 0.1 + y * ( -0.1062446 * 0.1 
+ y * ( 0.587872 * 0.01 + y * ( -0.251540 * 0.01 + y * 0.53208 * 0.001 ) ) ) ) ) ): 

 } 
 
 return ans: 
} 
 
 
///////////////////////////////////////////////////////////////////////// 
/// 
/// 
/// 
/// 
///////////////////////////////////////////////////////////////////////// 
double SBesselFunction::BesselK1(double x) 
{ 

double ans = 0: 
 double y: 
 const double* tab: 
  

if( x <= 2.0 )  
 { 
  y = x * x / 4.0: 

ans = (  log ( x / 2.0 ) * BesselI1( x ) ) + ( 1.0 / x ) * ( 1.0 + y * ( 0.15443144 + y * ( -0.67278579 + y * ( - 0.18156897 
+ y * ( - 0.1919402 * 0.1 + y * ( - 0.110404 * 0.01 + y * ( - 0.4686 * 0.0001 ) ) ) ) ) ) ): 

 } 
 else if( x < 50 ) 
 { 
  if( x < 10 ) 
   tab = polytabK1_2: 
  else if( x < 20 ) 
   tab = polytabK1_3: 
  else if( x < 30 ) 
   tab = polytabK1_4: 
  else if( x < 40 ) 
   tab = polytabK1_5: 
  else if( x < 50 ) 
   tab = polytabK1_6: 
   
  double cur_x = 1: 
 
  for( int i = 0: i < 11 : i++ ) 
  { 
   ans += cur_x * tab[ 10 - i ]: 
   cur_x /= x: 
  } 
 
  ans = ans * exp( - x ) / sqrt( x ) : 
 } 
 else 
 { 
  y = 2.0 / x: 
  ans = ( exp( -x ) / sqrt( x ) ) * ( 1.25331414 + y * ( 0.23498619  

+ y * ( - 0.3655620 * 0.1 + y * ( 0.1504268 * 0.1 + y * ( -0.780353 * 0.01 + y * ( 0.325614 * 0.01 * y * ( -0.68245 * 
0.001 ) ) ) ) ) ) ): 

 } 
 
 return ans: 
} 
 
 
 
 
 
///////////////////////////////////////////////////////////////////////// 
/// 
/// 
/// 
/// 
///////////////////////////////////////////////////////////////////////// 
double SBesselFunction::BesselI1(double x) 
{ 
 double ans: 
 double y: 
 double ax = fabs( x ): 
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     if( x < fabs( 3.75 ) )  
 { 
  y = x / 3.75: 
  y = y * y: 

ans = ax * ( 0.5 + y * ( 0.87890594 + y * ( 0.51498869 + y * ( 0.15084934 + y * ( 0.2658733* 0.1 + y * ( 0.301532 * 
0.01 + y * 0.32411* 0.001 ) ) ) ) ) ): 

 } 
 else 
 { 
  y = 3.75 / ax: 
  ans = 0.2282967 * 0.1 + y * ( - 0.2895312 * 0.1 + y * ( 0.1787654 * 0.1  
        - y * 0.420059 * 0.01 ) ): 
  ans = 0.39894228 + y * ( - 0.3988024 * 0.1 + y * ( - 0.362018 * 0.01  
   + y * ( 0.163801 * 0.01 + y * ( - 0.1031555 * 0.1 + y * ans ) ) ) ): 
  ans *= exp( ax ) / sqrt( ax ): 
 } 
 
 return x < 0.0 ? -ans : ans: 
} 
 
 
 
 
 
 
 
 
 
///////////////////////////////////////////////////////////////////////// 
/// 
/// 
/// 
/// 
///////////////////////////////////////////////////////////////////////// 
double SBesselFunction::BesselI0(double x) 
{ 
 double ans: 
 double y: 
 double ax = fabs( x ): 
 
    if( x < fabs( 3.75 ) )  
 { 
  y = x / 3.75: 
  y = y * y: 
  ans = 1.0 + y * ( 3.5156229 + y * ( 3.0899424 + y * ( 1.2067492  

+ y * ( 0.2659732 + y * ( 0.360768 * 0.1 + y * 0.45813 * 0.01 ) ) ) ) ):  
 } 
 else 
 { 
  y = 3.75 / ax: 

ans = ( exp( ax ) / sqrt ( ax ) ) * ( 0.39894228 + y * ( 0.13285921 * 0.1 + y * ( 0.225319 * 0.01 + y * ( - 0.157565 * 
0.01 + y * ( 0.916281 * 0.01  + y * ( - 0.2057706 * 0.1 + y * ( 0.2635537 * 0.1 + y * ( - 0.1647633 * 0.1 + y * 
0.392377 * 0.01 ) ) ) ) ) ) ) ): 

 
 } 
 
 return ans: 
} 
 
           
///////////////////////////////////////////////////////////////////////// 
///  
/// 
/// 
/// 
///////////////////////////////////////////////////////////////////////// 
double SBesselFunction::BesselK0divK1(double x) 
{ 
 double ans = 0: 
 double cur_x = 1: 
 
 for( int i = 0: i < 6 : i++ ) 
 { 
  ans += cur_x * polytabK0divK1[ 5 - i ]: 
  cur_x /= x: 
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 } 
  
 return ans: 
} 
 

 

A.7 Summary 
We have in this appendix evaluated the accuracy and computational performance of Bessel 
functions found within three different sources, Matlab, Netlib and Numerical Recipes. These 
implementations of the Bessel functions were discovered to be either too slow or too 
inaccurate. Improvements are suggested in order to have computational efficient Bessel 
functions with high precision. This is required in order to get accurate solutions from 
numerical Laplace inversion with the Stehfest Laplace inversion scheme. Some examples of 
the actual numerical implementation in C++ were given as well. 
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Appendix B -   Numerical Implementation Wavelet 
Transform 

 
This appendix contains some of the numerical implementation of wavelet analysis 
used in this work. Out of practical considerations, it is not possible to list all 
implemented code in this appendix, but important parts of the numerical 
implementation is shown including all the scaling and wavelet coefficients, the 
forward stationary wavelet transform and the inverse stationary wavelet transform. 
The numerical implementation is written in C++ applying Microsoft Visual Studio 
2003(85). 
 

The numerical implementation has been verified versus Matlab(83) and 
Wavelab(86). Our implementation gives the same results as obtained in Matlab and 
Wavelab.  
 
 

B.1  Wavelet and Scaling Coefficients  
Below the scaling and wavelet coefficients for the wavelets considered in this work 
are given.  
 

Table B.1: Scaling and wavelet coefficients for Haar wavelet. 

h(n) h1(n) 
0.5 0.5 
0.5 -0.5 

 
  

Table B.2: Scaling and wavelet coefficients for Daubechies4 wavelet.  

h(n) h1(n) 
0.3415063509462205 -0.09150635094586698 
0.5915063509458669 -0.1584936490537795 
0.1584936490537795 0.5915063509458669 

-0.09150635094586698 -0.3415063509462205 

 

Table B.3: Scaling and wavelet coefficients for Daubechies6 wavelet.  

h(n) h1(n) 
0.2352336038927046 0.02490874986589096 
0.5705584579173084 0.06041610415535419 
0.3251825002637103 -0.0954672077842601 
-0.0954672077842601 -0.3251825002637103 

-0.06041610415535419 0.5705584579173084 
0.02490874986589096 -0.2352336038927046 

 

Table B.4: Scaling and wavelet coefficients for Daubechies8 wavelet.  

h(n) h1(n) 
0.1629017140256182 -0.00749349466512713 
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0.5054728575456509 -0.02325180053555719 
0.4461000691231943 0.02180815023738527 

-0.01978751311790877 0.1322535836843695 
-0.1322535836843695 -0.01978751311790877 
0.02180815023738527 -0.4461000691231943 
0.02325180053555719 0.5054728575456509 
-0.00749349466512713 -0.1629017140256182 

 
 

Table B.5: Scaling and wavelet coefficients for Daubechies10 wavelet.  

h(n) h1(n) 
0.1132094912917304 0.002358713969200755 
0.4269717713527106 0.008895935050925998 
0.5121634721301556 -0.004413400054325186 

0.09788348067375365 -0.05485132932107695 
-0.1713283576913299 -0.02280056594204701 

-0.02280056594204701 0.1713283576913299 
0.05485132932107695 0.09788348067375365 

-0.004413400054325186 -0.5121634721301556 
-0.008895935050925998 0.4269717713527106 
0.002358713969200755 -0.1132094912917304 

 
 

Table B.6: Scaling and wavelet coefficients for Daubechies12 wavelet.  

h(n) h1(n) 
0.07887121600143437 -0.0007617669025837149 
0.3497519070375683 -0.003378031181505082 
0.5311318799412127 0.000391625576034686 
0.2229156614650506 0.02233187416547526 
-0.1599932994458742 0.01946160485396355 
-0.0917590320300334 -0.06894404648719725 
0.06894404648719725 -0.0917590320300334 
0.01946160485396355 0.1599932994458742 
-0.02233187416547526 0.2229156614650506 
0.000391625576034686 -0.5311318799412127 
0.003378031181505082 0.3497519070375683 

-0.0007617669025837149 -0.07887121600143437 
 
 

Table B.7: Scaling and wavelet coefficients for Daubechies20 wavelet.  

h(n) h1(n) 
0.01885857879639622 -9.37920788831568e-006 
0.1330610913968657 -6.617718319909407e-005 
0.3727875357426617 -8.235450295380118e-005 
0.4868140553661002 0.0004849739199556974 
0.198818870884399 0.00140884329496359 

-0.1766681008964704 -0.0009866626824421689 
-0.1385549393599319 -0.007589501167678906 
0.09006372426665785 -0.002550218483932993 
0.06580149355070224 0.02348490704840919 
-0.05048328559800522 0.02082962404384584 
-0.02082962404384584 -0.05048328559800522 
0.02348490704840919 -0.06580149355070224 

0.002550218483932993 0.09006372426665785 
-0.007589501167678906 0.1385549393599319 
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0.0009866626824421689 -0.1766681008964704 
0.00140884329496359 -0.198818870884399 

-0.0004849739199556974 0.4868140553661002 
-8.235450295380118e-005 -0.3727875357426617 
6.617718319909407e-005 0.1330610913968657 
-9.37920788831568e-006 -0.01885857879639622 

 
 

Table B.8: Scaling and wavelet coefficients for Symmlet4 wavelet.  

h(n) h1(n) 
0.34150635094622 -0.09150635094586999 
0.59150635094587 -0.15849364905378 
0.15849364905378 0.59150635094587 

-0.09150635094586999 -0.34150635094622 

 

Table B.9: Scaling and wavelet coefficients for Symmlet6 wavelet.  

h(n) h1(n) 
0.2352336038927 0.02490874986589 

0.57055845791731 0.06041610415535 
0.32518250026371 -0.09546720778426 
-0.09546720778426 -0.32518250026371 
-0.06041610415535 0.57055845791731 
0.02490874986589 -0.2352336038927 

 
 

Table B.10: Scaling and wavelet coefficients for Symmlet8 wavelet.  

h(n) h1(n) 
0.0227851729479749 -0.0535744507089411 

-0.008912350720840191 0.0209554825625269 
-0.0701588120894228 0.351869534327613 
0.210617267101768 -0.568329121704375 
0.568329121704375 0.210617267101768 
0.351869534327613 0.0701588120894228 

-0.0209554825625269 -0.008912350720840191 
-0.0535744507089411 -0.0227851729479749 

 
Table B.11: Scaling and wavelet coefficients for Symmlet10 wavelet.  

h(n) h1(n) 
0.01381607647893 0.01932739797744 
-0.01492124993438 -0.02087343221079 
-0.12397568130675 -0.02767209305836 
0.01173946156807 -0.14099534842729 
0.44829082419092 0.51152648344605 
0.51152648344605 -0.44829082419092 
0.14099534842729 0.01173946156807 
-0.02767209305836 0.12397568130675 
0.02087343221079 -0.01492124993438 
0.01932739797744 -0.01381607647893 
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Table B.12: Scaling and wavelet coefficients for Symmlet12 wavelet.  

h(n) h1(n) 
-0.00551593375469 0.01089235016328 
0.00124996104639 -0.00246830618592 
0.03162528132994 -0.08343160770584 
-0.01489187564922 0.03416156079324 
-0.0513624849309 0.34722898647835 
0.23895218566605 -0.55694639196396 
0.55694639196396 0.23895218566605 
0.34722898647835 0.0513624849309 
-0.03416156079324 -0.01489187564922 
-0.08343160770584 -0.03162528132994 
0.00246830618592 0.00124996104639 
0.01089235016328 0.00551593375469 

 

Table B.13: Scaling and wavelet coefficients for Symmlet20 wavelet.  

h(n) h1(n) 
-0.000324794948390885 0.000544585223622193 
4.03306014989603e-005 -6.76225099711391e-005 
0.00324786418934092 -0.00611032131704497 

-0.000568767655336868 0.00103618196027345 
-0.0143931159719293 0.0324754623014821 
0.0040764083918897 -0.00820943470817067 
0.0353517837811451 -0.112779486159984 
-0.0226203861521081 0.0501201075064675 
-0.0251282701703028 0.333535669214576 
0.271406505551405 -0.544125765368736 
0.544125765368736 0.271406505551405 
0.333535669214576 0.0251282701703028 

-0.0501201075064675 -0.0226203861521081 
-0.112779486159984 -0.0353517837811451 

0.00820943470817067 0.0040764083918897 
0.0324754623014821 0.0143931159719293 

-0.00103618196027345 -0.000568767655336868 
-0.00611032131704497 -0.00324786418934092 
6.76225099711391e-005 4.03306014989603e-005 
0.000544585223622193 0.000324794948390885 

 
 

Table B.14: Scaling and wavelet coefficients for Coiflet6 wavelet.  

h(n) h1(n) 
-0.051429728471 -0.011070271529 
0.238929728471 0.051429728471 

0.6028594569420001 0.272140543058 
0.272140543058 -0.6028594569420001 
-0.051429728471 0.238929728471 
-0.011070271529 0.051429728471 
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Table B.15: Scaling and wavelet coefficients for Coiflet12 wavelet.  

h(n) h1(n) 
0.011587596739 -0.000509505399 
-0.02932013798 0.001289203356 
-0.04763959031 0.003967883613 
0.273021046535 -0.016744410163 
0.574682393857 -0.042026480461 
0.294867193696 0.054085607092 
-0.054085607092 0.294867193696 
-0.042026480461 -0.574682393857 
0.016744410163 0.273021046535 
0.003967883613 0.04763959031 
-0.001289203356 -0.02932013798 
-0.000509505399 -0.011587596739 

 

Table B.16: Scaling and wavelet coefficients for Coiflet18 wavelet.  

h(n) h1(n) 
-0.002682418671 -2.4465734e-005 
0.005503126709 5.0192775e-005 
0.016583560479 0.000329665174 
-0.046507764479 -0.000790205101 
-0.04322076356 -0.001820458916 
0.286503335274 0.006369601011 
0.56128525687 0.011229240962 

0.302983571773 -0.024434094321 
-0.050770140755 -0.058196250762 
-0.058196250762 0.050770140755 
0.024434094321 0.302983571773 
0.011229240962 -0.56128525687 
-0.006369601011 0.286503335274 
-0.001820458916 0.04322076356 
0.000790205101 -0.046507764479 
0.000329665174 -0.016583560479 
-5.0192775e-005 0.005503126709 
-2.4465734e-005 0.002682418671 

 
 

Table B.17: Scaling and wavelet coefficients for Spline26 wavelet.  

h(n) )(~ nh  
-0.0625 0 
0.0625 -0 

0.5 0.5 
0.5 -0.5 

0.0625 0 
-0.0625 -0 
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Table B.18: Scaling and wavelet coefficients for Reverse Spline26 wavelet.  

h(n) )(~ nh  
0 -0.0625 
0 -0.0625 

0.5 0.5 
0.5 -0.5 
0 0.0625 
0 0.0625 

 
 

Table B.19: Scaling and wavelet coefficients for Spline35 wavelet.  

h(n) )(~ nh  
0 -0 

-0.125 0 
0.25 -0.25 
0.75 0.5 
0.25 -0.25 

-0.125 0 
 

Table B.20: Scaling and wavelet coefficients for Reverse Spline35 wavelet.  

h(n) )(~ nh  
0 0.125 

0.25 0.25 
0.5 -0.75 

0.25 0.25 
0 0.125 
0 0 

 
 
Table B.21: Scaling and wavelet coefficients for spline39 wavelet.  

h(n) )(~ nh  
0 -0 

0.0234375 0 
-0.046875 -0 

-0.125 0 
0.296875 -0.25 
0.703125 0.5 
0.296875 -0.25 

-0.125 0 
-0.046875 -0 

 
 
Table B.22: Scaling and wavelet coefficients for Reverse Spline39 wavelet.  

h(n) )(~ nh  
 2.34375 e-02 
 -4.6875 e-02 
 -1.25 e-01 

2.5 e-1 2.96875 e-01 
5 e.1 7.03125 e-01 

2.5 e-1 2.96875 e-01 
 -1.25e-01 
 -4.6875e-02 
 2.34375e-02 
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Table B.23: Scaling and wavelet coefficients for Spline44 wavelet.  

h(n) )(~ nh  
-0.25 0.125 
0.75 -0.375 
0.75 0.375 
-0.25 -0.125 

 
Table B.24: Scaling and wavelet coefficients for Reverse Spline44 wavelet.  

h(n) )(~ nh  
0.125 -0.25 
0.375 -0.75 
0.375 0.75 
0.125 0.25 

 
Table B.25: Scaling and wavelet coefficients for Spline48 wavelet.  

h(n) )(~ nh  
0.046875 0 
-0.140625 -0 
-0.109375 0.125 
0.703125 -0.375 
0.703125 0.375 
-0.109375 -0.125 
-0.140625 0 
0.046875 -0 

 
Table B.26: Scaling and wavelet coefficients for Reverse Spline48 wavelet.  

h(n) )(~ nh  
0 0.046875 
0 0.140625 

0.125 -0.109375 
0.375 -0.703125 
0.375 0.703125 
0.125 0.109375 

0 -0.140625 
0 -0.046875 
  

 
   Table B.27: Scaling and wavelet coefficients for spline4246.  

h(n) )(~ nh  g(n) )(~ ng  
   -3.125e-2 

1.25e-2  1.25e-2 -2.1875e-1 
3.75e-1 -0.5 3.75e-1 -0.6875 
3.75e-1 0.5 3.75e-1 0.6875 
1.25e-2  1.25e-2 2.1875e-1 

   3.125e-2 
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B.2  Stationary Wavelet Transform 
The source code written in C++ for the forward and inverse stationary wavelet 
transform is given below.  
 
File SWaveletStat.h 
 
#pragma once 
 
#include "swavelet.h" 
#include <vector> 
 
class SWaveletStat : public SWavelet 
{ 
 
public: 
 SWaveletStat( std::vector<double>& xtable,  
              std::vector<double>& ytable, 
     int wavelet, 
     int boundary, 
     bool interpolate, 
     int normalized, 
     int adjust = S_ADJUST_NONE  ); 
 virtual ~SWaveletStat(void); 
 
 virtual bool OneStepForwardTrans(); 
 virtual bool OneStepInverseTrans(); 
 
  
 bool IsAtrous() const; 
 
 bool GetDetailSignal( std::vector< double >& table ,int detailLevel) const; 
 bool GetApproximateSignal( std::vector< double >& table,int detailLevel) const; 
 bool GetMaximaSignal( std::vector< double >& table,int detailLevel) const; 
 bool GetTimeSignal( std::vector< double >& table,int detailLevel) const; 
 
 virtual bool GetDetailSignalIndex( int level, int& startindex, int& endindex ) 
const; 
 virtual bool GetApproximateSignalIndex( int level, int& startindex, int& 
endindex ) const; 
 
 virtual void Print(); 
 
protected: 
 virtual bool RemoveOneDetailLevel(); 
 virtual bool AddOneDetailLevel(); 
  
}; 

 
File SWaveletStat.cpp 
 
 
#include "StdAfx.h" 
#include "SWaveletStat.h" 
 
 
 
SWaveletStat::SWaveletStat(std::vector<double>& xtable, 
                               std::vector<double>& ytable, 
                               int wavelet,int boundary, 
                               bool interpolate, 
          int normalized, 
          int adjust) 
    : SWavelet(xtable ,ytable ,wavelet ,boundary ,interpolate, normalized, adjust) 
{ 
    
} 
 
SWaveletStat::~SWaveletStat(void) 
{ 
} 
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////////////////////////////////////////////////////////////////////////////// 
/// 
/// 
/// 
////////////////////////////////////////////////////////////////////////////// 
bool SWaveletStat::GetDetailSignalIndex( int level, int& startindex, int& endindex ) 
const 
{ 
 if( level <= m_detailLevel ) 
 {  
  startindex = ( m_boundaryPoint + m_originalPoint + m_adjustPoint ) * 
level; 
  endindex = ( m_boundaryPoint + m_originalPoint + m_adjustPoint ) *  
           ( level + 1 ) - m_boundaryPoint - m_adjustPoint; 
  return true; 
 } 
 else 
  return false; 
} 
 
////////////////////////////////////////////////////////////////////////////// 
/// 
/// 
/// 
////////////////////////////////////////////////////////////////////////////// 
bool SWaveletStat::GetApproximateSignalIndex( int level, int& startindex, int& 
endindex ) const 
{ 
 startindex = 0; 
 endindex = ( m_boundaryPoint + m_originalPoint + m_adjustPoint ); 
 return true; 
} 
 
 
////////////////////////////////////////////////////////////////////////////// 
/// 
/// 
/// 
////////////////////////////////////////////////////////////////////////////// 
bool SWaveletStat::GetDetailSignal( std::vector< double >& table,int detailLevel ) 
const 
{ 
   if( detailLevel > 0 && detailLevel <= m_detailLevel ) 
    { 
        table.resize( m_originalPoint ); 
  int start = ( int ) ( ( m_boundaryPoint + m_originalPoint + 
m_adjustPoint ) * detailLevel + m_boundaryPoint / 2.0 ); 
 
        for(int i = 0 ; i < table.size(); i++) 
            table[ i ] = m_ytable[ start + i ]; 
 
  return true; 
    } 
 else 
  return false; 
} 
 
 
 
////////////////////////////////////////////////////////////////////////////// 
/// 
/// 
/// 
////////////////////////////////////////////////////////////////////////////// 
bool SWaveletStat::GetMaximaSignal(std::vector< double >& table,int detailLevel) const 
{ 
    if( detailLevel > 0 && detailLevel <= m_detailLevel ) 
    { 
        table.resize( m_originalPoint ); 
  int start = ( m_boundaryPoint + m_originalPoint + m_adjustPoint ) * 
detailLevel; 
  
        for(int i = 0; i < m_originalPoint ;i++) 
        { 
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            if( i > 0 && i < m_originalPoint && 
              ( ( m_ytable[ start + i - 1 + m_boundaryPoint / 2 ] < m_ytable[ start + 
i + m_boundaryPoint / 2 ]  &&  
                  m_ytable[ start + i + 1 + m_boundaryPoint / 2] < m_ytable[  start + 
i + m_boundaryPoint /  2 ] ) || 
    ( m_ytable[ start + i - 1 + m_boundaryPoint / 2 ] > 
m_ytable[ start + i + m_boundaryPoint / 2 ]  &&  
                  m_ytable[ start + i + 1 + m_boundaryPoint / 2] > m_ytable[  start + 
i + m_boundaryPoint /  2 ] ) ) )        
        
            { 
                table[ i ] = m_ytable[ start +  i + m_boundaryPoint / 2 ]; 
            } 
            else 
                table[ i ] = 0; 
        } 
 
  return true; 
    } 
 else 
  return false; 
} 
 
 
////////////////////////////////////////////////////////////////////////////// 
/// 
/// 
/// 
////////////////////////////////////////////////////////////////////////////// 
bool SWaveletStat::GetTimeSignal( std::vector< double >& table, int detailLevel ) 
const 
{ 
    if( detailLevel > 0 && detailLevel <= m_detailLevel ) 
    { 
        table.resize( m_originalPoint ); 
 
        for(int i = 0; i < table.size(); i++) 
            table[ i ] = i; 
 
  return true; 
    } 
 else 
  return false; 
} 
 
 
 
////////////////////////////////////////////////////////////////////////////// 
/// 
/// 
/// 
////////////////////////////////////////////////////////////////////////////// 
bool SWaveletStat::GetApproximateSignal(std::vector<double>& table,int detailLevel) 
const 
{ 
    if( detailLevel > 0 && detailLevel <= m_detailLevel ) 
    { 
        table.resize( m_originalPoint ); 
 
        for(int i = 0; i < table.size(); i++) 
            table[ i ] = m_ytable[ i + m_boundaryPoint / 2 ]; 
 
  return true; 
    } 
 else 
  return false; 
} 
 
 
////////////////////////////////////////////////////////////////////////////// 
/// 
/// 
/// 
////////////////////////////////////////////////////////////////////////////// 
bool SWaveletStat::IsAtrous() const 
{ 
    return true; 
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} 
 
 
////////////////////////////////////////////////////////////////////////////// 
/// 
/// 
/// 
////////////////////////////////////////////////////////////////////////////// 
bool SWaveletStat::AddOneDetailLevel() 
{ 
 int size = m_ytable.size() / (  m_boundaryPoint + m_originalPoint + 
m_adjustPoint ); 
 
    if( size <= m_maxDetailLevel ) 
    { 
  m_ytable.resize( m_ytable.size() + m_boundaryPoint + m_originalPoint + 
m_adjustPoint ); 
  m_detailLevel++; 
  return true; 
    } 
 else 
  return false; 
 
} 
 
 
 
 
////////////////////////////////////////////////////////////////////////////// 
/// 
/// 
/// 
////////////////////////////////////////////////////////////////////////////// 
bool SWaveletStat::RemoveOneDetailLevel() 
{ 
 int size = m_ytable.size() / (  m_boundaryPoint + m_originalPoint + 
m_adjustPoint ); 
 
    if( size > 1 ) 
 { 
  m_ytable.resize( m_ytable.size() - m_boundaryPoint - m_originalPoint - 
m_adjustPoint ); 
        m_detailLevel--; 
  return true; 
 } 
 else 
  return false; 
} 
 
 
 
////////////////////////////////////////////////////////////////////////////// 
/// 
/// 
/// 
////////////////////////////////////////////////////////////////////////////// 
bool SWaveletStat::OneStepForwardTrans() 
{ 
    if (m_detailLevel < m_maxDetailLevel )  
    { 
        if (m_detailLevel == 0) 
            PreWaveletTrans(); 
        AddOneDetailLevel(); 
                 
        int n = m_boundaryPoint + m_originalPoint + m_adjustPoint; 
        int p = ( int )pow( 2.0, m_detailLevel - 1 );   
  int s = ( m_boundaryPoint + m_originalPoint + m_adjustPoint ) * ( 
m_detailLevel ); 
         
        for (int i = 0; i < n; i++)  
        { 
            m_tempYTable[ i ] = 0; 
 
    
   for(int k = 0; k < m_hCoeff.size(); k++) 
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    m_tempYTable[ i ] += m_ytable[ ( n + i + k * p + m_hIndex 
* p ) % n ] * m_hCoeff[ k ]; 
                           
                                  
   for( int k = 0; k < m_gCoeff.size(); k++) 
    m_ytable[ s + i ] += m_ytable[ ( n + i + k * p + m_gIndex 
* p ) % n ]  * m_gCoeff[ k ];                                   
    
  } 
        for (int i = 0; i < n; i++)  
            m_ytable[ i ] = m_tempYTable[ i ]; 
  
  return true; 
    } 
 else 
  return false; 
} 
 
 
 
 
////////////////////////////////////////////////////////////////////////////// 
/// 
/// 
/// 
////////////////////////////////////////////////////////////////////////////// 
bool SWaveletStat::OneStepInverseTrans() 
{ 
    if (m_detailLevel > 0)   
    { 
        int n = m_boundaryPoint + m_originalPoint + m_adjustPoint; 
        int p = ( int )pow(2.0, m_detailLevel - 1 ); 
  int h = p * 2 * m_igIndex; 
  int s = ( m_boundaryPoint + m_originalPoint + m_adjustPoint ) * 
m_detailLevel ; 
                  
        for (int i = 0; i < n; i++)  
        { 
            m_tempYTable[ i ] = 0; 
       
   for(int k = 0; k < m_ihCoeff.size(); k++) 
     m_tempYTable[ i ] += 0.5 * m_ytable[(n + i + p * k + p * 
m_ihIndex ) % n] * m_ihCoeff[ k ] ; 
 
   for( int k = 0; k < m_igCoeff.size(); k++) 
     m_tempYTable[ i ] += 0.5 * m_ytable[ s + ( n + i + p * k 
+ p * m_igIndex )% n ] * m_igCoeff[ k ];       
         
  } 
 
        for ( int i = 0; i < n; i++ )  
            m_ytable[ i ] = m_tempYTable[ i ]; 
 
                 RemoveOneDetailLevel(); 
 
        if ( m_detailLevel == 0) 
            PostWaveletTrans(); 
 
  return true; 
    } 
 else 
  return false



 

 
 

 


