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Abstract Homogeneous, non-rotating flow over a backward-facing rounded
step is simulated using the 2D vertical (2DV) version of two general circula-
tion models, a z-coordinate model, the Massachusetts Institute of Technology
general circulation model (MITgcm), and a σ-coordinate model, the Bergen
Ocean Model (BOM). The backward-facing step is a well known testcase since
it is geometrically simple, but still embodies important turbulence charac-
teristics such as separation point, reattachment length, and recirculation of
the flow. The study includes Reynolds numbers, based on the vertical eddy
viscosity ranging from 2·102 to 2·106. The results correspond with previous
published results with a relatively stationary separation point and a fluctuat-
ing reattachment length due to downslope propagating eddies released from
the reattachment zone for Reynolds numbers higher than or equal to 2 · 104.
For Reynolds number within the laminar regime the flow is stationary. The
discrepancies between the models increase for enhancing Reynolds number,
where the σ-coordinate model experiences reduction in the eddy sizes with
increasing resolution and Reynolds numbers in correspondence with published
experiments, while the size of the eddies are independent of Reynolds num-
ber using the MITgcm. The reattachment zone is shifted upstream in the
σ-coordinate model compared to in the z-coordinate model for high Reynolds
number (≥ 2 · 105). The z-coordinate model gives better convergence of the

K. Rygg
UniComputing, Høyteknologisenteret,Thormøhlensgate 55,N-5008 Bergen, Norway.
Tel.: 0047-55584075
Fax: 0047-55584295
E-mail: kristin.rygg@uni.no

G. Alendal
Department of Mathematics, University of Bergen, Johannes Brunsgate 12, 5008 Bergen,
Norway.
UniComputing, Høyteknologisenteret,Thormøhlensgate 55,N-5008 Bergen, Norway.

P. M. Haugan
Geophysical Institute, University of Bergen, Allégaten 70, 5007 Bergen, Norway.



2

separation point and reattachment length than BOM due to mixing generated
by the staircase topography.

Keywords Backward facing step · separation · reattachment · MITgcm ·
BOM

1 Introduction

Modeling the ocean is a huge challenge since the ocean consists of a wide range
of processes, with active scales ranging from Rossby waves with a length scale
of 105 m (Colling, 1989) to molecular processes as gas exchange with a length
scale of 4·10−5 m (Broecker and Peng, 1982). Numerical models can only
represent phenomena larger than twice the grid size (Haidvogel and Beckmann,
1998). Hence modeling small scales requires high computational costs, and
assumptions related to sub-scale modeling need to be done.

The resolution in ocean models is in general too coarse to resolve small scale
topography, and topographic effects are therefore often parameterized. Rough
topography leads to enhanced mixing (Poltzin et al., 1997; Ledwell et al.,
1998). A good estimate of the bottom current is important for studying local
bottom processes as sediment transport and transport of pollutants. Examples
of such studies are food access for cold-water corals (Thiem et al., 2006, 2008),
and transport of chemical transports in the bottom layer; as CO2 injected
directly into the water column and leakages of CO2 from reservoirs below the
bottom of the ocean (Fer and Haugan, 2003; Haugan and Alendal, 2005; House
et al., 2006; Kano et al., 2009). The bottom boundary layer is also important
for studying how the local meiofauna is affected by increased concentrations
of chemical compounds (Auerbach et al., 1997).

The choice of vertical coordinate system leads to different benefits and
disadvantages related to discretization of the governing equations. Terrain-
following σ-coordinates accurately describe the bottom topography and the
kinematic boundary condition, and also allows for a free moving surface. When
the bottom topography is transformed into a Cartesian grid, truncation errors
are introduced as the bottom is represented by a staircase topography (Kantha
and Claysson, 2000). This error affects the overall circulation (Greenberg et al.,
2007). The effect of the truncation error at the bottom can be reduced by using
shaved cells (Adcroft et al., 1997) or by special turbulence schemes (Greenberg
et al., 2007).

In cases with large depth variations, z-coordinate models strive with a
large number of inactive cells and difficulties to achieve sufficient resolution of
the bottom boundary layer (Kantha and Claysson, 2000). Using a σ-coordinate
models this is a problem which essentially can be solved by introducing enough
σ-layers near the bottom (Haidvogel and Beckmann, 1998).

The horizontal pressure term is important for the momentum balance. In a
z-coordinate model the horizontal pressure term can be calculated accurately
(Kantha and Claysson, 2000). The opposite is the case for the σ-coordinate
models, where the horizontal pressure error can be large in regions with rapid
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topographic changes (Berntsen, 2002). Several options have been suggested to
avoid and reduce this problem (Gary, 1973; McCalpin, 1994; Stelling and van
Kester, 1994; Mellor et al., 1998; Thiem and Berntsen, 2006), but at present
there is no universal method to solve the internal pressure error problem in
σ-coordinates.

Diffusion is added to the model to ensure numerical stability. The mix-
ing in the ocean mainly occur over pycnoclines, but is normally implemented
along the coordinate surfaces of the model, leading to problems with spuri-
ous diapycnal diffusion for both z-coordinate models and σ-coordinate models
(Kantha and Claysson, 2000). In σ-coordinate models the horizontal diffusion
is suggested set to 0 to avoid spurious mixing related to sharp topographies
(Mellor and Blumberg, 1985).

One of the most common assumptions in ocean modeling is the hydrostatic
assumption. The hydrostatic assumption is valid on a global scale, for large
wind-driven gyres of scales of 1000s of kilometers, and geostrophic eddies of
range 10-100 kilometers (Marshall et al., 1997). However the hydrostatic as-
sumption begins to break down as the horizontal length scale becomes of the
same range as the vertical scale (Marshall et al., 1997). Marshall et al. (1997)
presented the non-hydrostatic parameter, n = γ2

Ri as a measure of when non-
hydrostatic processes should be included. The non-hydrostatic pressure should
be included when n << 1. Here γ represents Lv/Lh the ratio of the vertical
scales over the horizontal scales, and Ri the Richardson number. Including the
non-hydrostatic pressure leads to an elliptic equation for the non-hydrostatic
pressure (Keilegavlen and Berntsen, 2009), and higher computational costs.
The non-hydrostatic pressure should therefore only be included when such
processes are important, and additionally the resolution is sufficient to resolve
the non-hydrostatic processes. Berntsen et al. (2009) found through simula-
tions of flow over a sill that for horizontal grid sizes of 50 to 100 meters the
non-hydrostatic pressure effects were small, but for smaller grid sizes the non-
hydrostatic correction term clearly affected the solution. In their simulations
the vertical grid sizes ranged between 0.5 meter to 1 meter depending on the
local depth (Berntsen et al., 2009).

As an attempt to validate ocean models, a wide range of model-measurements
comparisons (Oey et al., 1992; Hackett et al., 1995; Davies and Hall, 2002)
and also hydrostatic model-model comparisons have been performed (Hackett
et al., 1995; Røed et al., 1995; Avlesen et al., 2001) and also a non-hydrostatic
comparison by Berntsen et al. (2006).

Through the Metocean Modeling Project, Røed et al. (1995) and Hackett
et al. (1995) tried to choose the best ocean model out of six models. The eval-
uation was based on test cases suggested by Haidvogel and Beckmann (1998)
and Smith et al. (1996). The simulations were done with a resolution ranging
from 20 to 2500 meters, and quite large differences between the models were
found. These differences were primarily considered generated by inadequate
parametrization of subgrid processes, not sufficient horizontal resolution, and
not well-defined boundary and initial conditions (Hackett et al., 1995).
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In the hydrostatic study by Avlesen et al. (2001) a density driven plume
affected by rotation was studied using the Princeton Ocean Model (POM) and
Bergen Ocean Model (BOM). Convergence was achieved as the horizontal grid
sizes were refined from 20 km to 2.5 km. Both POM and BOM use terrain-
following coordinates, and the study was done using very high viscosities, hence
interesting dynamics may have been filtered out. Additionally the study was
performed with a flat bottom. Though the converging results are reassuring,
more benchmarks also with lower viscosities are needed in order to sufficiently
validate the quality of the two ocean models.

Berntsen et al. (2006) did non-hydrostatic numerical experiments on lab-
oratory scales using the z-coordinate model the Massachusetts Institute of
Technology general circulation model (MITgcm) and the σ-coordinate model
Bergen Ocean Model (BOM) where they simulated two different test cases,
tank experiments on lock-release flow and solitary waves propagating over a
flat bottom approaching an incline. These simulations were high resolution
experiments with horizontal resolutions ranging from 4 to 0.5·10−4 m, using
molecular viscosities, and they found good correlation between the two con-
cerned ocean models. Still, in order to reduce the noise generated from the
staircase topography, Berntsen et al. (2006) used the Shapiro filter at the end
of each time step on the temperature and the velocity fields in the study of a
solitary wave approaching an incline with the MITgcm.

In this paper flow over a backward-facing step is studied using the 2DV
versions of the MITgcm and BOM. The sharp backward-facing step is the
simplest reattaching flow (Simpson, 1996), and a known testcase for numerical
models. It is often studied due to its simplicity combined with a separating
boundary layer, bifurcation of the reattachment point, reattachment of the
flow, and recovery of the boundary layer (Hanjalić and Jakirlić, 1998). Large
eddies with at least the length scale of the step occur in the recirculating region
(Eaton and Johnston, 1981). A wide range of studies of the reattachment
length have been performed, and Armaly et al. (1983) gives a nice summary.

Laboratory experiments have been carried out and give us valuable data
for numerical tests (Kim et al., 1985; Lee and Mateescu, 1998; Fessler and
Eaton, 1999; Beaudoin et al., 2004; Nie and Armaly, 2004; Song and Eaton,
2004). Model experiments have also been done on flow over a backward-facing
step, both through Direct Numerical Simulations (Le et al., 1997), Large Eddy
Simulations (Akselvoll and Moin, 1996), and Reynolds Averaged Navier Stokes
models (Lee et al., 2009).

As for the case of the rounded step, the separation occurs slightly down-
stream of the beginning of the topographic change (Wasistho and Squires,
2005) and is determined by the adverse pressure gradient generated by the in-
creasing depth. The rounded step has been studied, both through experiments
(Bravo and Zheng, 2000; Song et al., 2000; Bao and Dallmann, 2004; Hoe-
fener and Nitsche, 2008) and numerical simulations (Bravo and Zheng, 2000;
Neumann and Wengle, 2003, 2004; Wasistho and Squires, 2005; Chen et al.,
2006).
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There exists a much broader literature on flow over a sharp step compared
to flow over a rounded step. Though the backward-facing step has been studied
extensively, understanding and modeling separation and reattachment within
the turbulent regime are still a problem (Song and Eaton, 2004).

This paper can be considered as an extension of the comparison by Berntsen
et al. (2006) to larger scales using constant eddy viscosities but with the aim to
resolve physical boundary layer processes. The main focus is on the separation
point, the reattachment length, and the mean velocity at the bottom behind
the step. The paper presents both instantaneous states and averaged states of
the flow.

The grid sizes in this study are in the range between laboratory scales of-
ten simulated using Direct Numerical Simulations resolving the Kolmogorov
scales, and ranges traditionally studied using Reynolds Averaged Navier-Stokes
models with grid sizes of kilometers. The length scales in this paper are chosen
in order to explore whether the models are able to represent complex flow also
at this range.

2 Models and setup

The simulations of flow over a backward-facing step are done using two dif-
ferent general circulation models, the z-coordinate model, the Massachusetts
Institute of Technology general circulation model, MITgcm (Adcroft et al.,
2008), and the σ-coordinate model Bergen Ocean Model, BOM (Berntsen,
2004).

2.1 Governing equations

The basic equations are the Reynolds averaged momentum equations averaged
both in time and space. Additionally the Boussinesq approximation is used
leading to an inclusion of the density changes only in the gravity term. Rotation
has been neglected, giving the following momentum equations,

∂U
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∂U2

∂x
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Incompressibility is assumed, and the equation of continuity can hence be
written on the form,

∂U

∂x
+

∂W

∂z
= 0 . (3)

In Equation (1)-(3), U(x, z, t) represents the horizontal velocity, W (x, z, t)
the vertical velocity, P (x, z, t) the pressure, ρ the density, and ρ0 a reference
density. The flow is homogeneous with a density of 1028 kg m−3. The constant
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of gravity is represented by g, AM is the horizontal eddy viscosity, and KM

the vertical eddy viscosity.
For the scalar properties, as the density, a conservation equation is used,

∂ρ

∂t
+

∂Uρ

∂x
+

∂Wρ

∂z
=

∂

∂x
(AH

∂ρ
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) +

∂
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) , (4)

where AH represents the horizontal eddy diffusivity, and KH the vertical eddy
diffusivity.

The pressure at the depth z is expressed by,

P (x, z, t) = gρ0η(x, t) + g

∫ 0

z

ρdz′ + PNH(x, z, t) , (5)

where the first term represents pressure due to the surface elevation, the second
term the internal pressure, and the last term is a non-hydrostatic correction
term due to internal movements in the fluid. The non-hydrostatic pressure is
found through an elliptic equation, and in BOM the elliptic equation for the
non-hydrostatic pressure is solved using a successive over-relaxation (SOR)
method. The iterations continue until the relative error measured in the 2-norm
for the vector is less than 10−4 (Berntsen et al., 2006), or the number of itera-
tions have reached 50. The MITgcm uses a preconditioned conjugated method,
and this method is in general faster than the SOR-method used in BOM
(Berntsen et al., 2006). Solving the elliptic equation for the non-hydrostatic
pressure leads to approximately 4 times higher computational costs per time
step compared to a hydrostatic simulation using BOM, when the relative error
should be less than 10−4. This computational cost is in correspondence with
other methods as Fringer et al. (2006).

At the bottom a quadratic drag is used, specified by (Berntsen, 2004; Ad-
croft et al., 2008),

τx = ρ0CD|Ub|Ub , (6)

where Ub represents the velocity in the lowest grid cell above the bottom, and
the drag coefficient, CD, is set to 5.2·10−3 in all simulations.

2.2 Closing the system

In order to close the system, values for the eddy viscosities and diffusivities
must be chosen. On small scale, turbulence is isotropic, but on larger scale the
turbulence is influenced by the turbulence macroscale (Kantha and Clayson,
2000). Berntsen et al. (2006) assumed isotropy, but in their study the coarsest
simulations were done using a resolution of millimeters compared to meters in
this paper.

In the DNS simulations by Le et al. (1997) and the LES simulations by
Neumann and Wengle (2004) the Kolmogorov scales are resolved and isotropic
turbulence is assumed, while in the RANS-study by Lee et al. (2009) the k− ε
model is used to determine the eddy viscosities and diffusivities.
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In the experiments with BOM, the horizontal eddy diffusivity is set to
0 in order to avoid unphysical mixing near the slopes (Mellor and Blumberg,
1985). In the simulations with the MITgcm the horizontal eddy viscosities and
diffusivities are set to the constant value of 10−2 m2 s−1. Though it would have
been desired to have an even lower value for the horizontal eddy viscosity and
diffusivity, this is the lowest value that ensures numerical stability for both
models.

In the vertical, fixed values for the eddy viscosity and diffusivity ranging
from 10−2 m2 s−1 to 10−6 m2 s−1 are used. Though the horizontal eddy
diffusivities and viscosities are higher than the vertical values, the closure is
in correspondence with values set by (Xing and Davies, 2006; Berntsen et al.,
2009) for corresponding resolutions.

2.3 Topographic setup

2DV simulations of flow over a backward-facing step are presented, where
all variables are normalized based on the step height, h, and the free-stream
velocity, U∞. A sketch of the setup for flow over a backward-facing step can
be found in Figure 1. The total length of the domain is 900 meters, and the
domain is discretized into an equidistant horizontal grid with resolutions from
6 to 1.5 meters. The vertical grid is also equidistant, with a resolution ranging
from 1 meter to 0.25 meter before the step. The rounded step starts at x = 0.

Haney (1991) discussed the internal pressure error related to σ-coordinates.
The internal pressure error is caused by the x-component of the internal pres-
sure written in σ-coordinates (Haney, 1991),

∂p

∂x
|z =

∂p

∂x
|σ − σ

D

∂D

∂x

∂p

∂σ
. (7)

Fig. 1 The setup of the backward-facing step. At the left boundary the velocity profile
is prescribed with a free stream velocity of U∞ = 0.1m2s−1 above a logarithmic layer of
δ = 1.2h. The height of the step is given by h = 20 m. The vertical height of the domain is
set to 6h, and the horizontal extent to 45h. The distance from the left boundary to the step

is set to 10h, and the turning point of the slope is located in L
√
2
2
.
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Here p represents the pressure, D the total depth of the domain including the
surface elevation, and σ ≡ z

D . When the σ-coordinates are discretized on steep
topography the two terms on the right hand side may be large, of the same
magnitude, and of opposite signs. This can cause large errors in the internal
pressure estimate (Berntsen, 2002).

The topography of the rounded step is described by,

H(x) =

{−100 , x < 0 ,

−120 + h · exp− x2

(Lh)2 , x ≥ 0 ,
(8)

where the left boundary is located at x = −10h. Two different slopes have
been studied, defined by setting L = 3 or L = 8. The step height, h, is set
to 20 m. The ratio of the depth, length and step height is chosen based on
corresponding simulations by Neumann and Wengle (2004).

In this paper the results are presented by the Reynolds number, calculated
according to,

Re =
U∞h

ν
, (9)

where U∞ represents the free stream velocity set to 0.1 m s−1, h the height
of the step, and ν the viscosity. Since the horizontal eddy viscosity is set to
10−2 m2 s−1 for all simulations and filters out the numerical noise, the verti-
cal eddy viscosity is used for calculating the Reynolds number. The Reynolds
number then varies between 2·102 and 2·106 based on these assumptions. The
Reynolds number estimated from the horizontal viscosity is 2·102 in all simu-
lations.

Simulations of the MITgcm and flow over a sharp step compared to pub-
lished literature are presented in Appendix A.

2.4 Initial and boundary conditions

Initially the velocity profile is defined by a depth integrated velocity leading to
a horizontal flux of 10 m2 s−1. This flux gives an average free-stream velocity
of U∞=0.1 m s−1 for the shallowest area before the step.

At the inflow, the velocities are prescribed by a logarithmic layer in the
boundary layer. The velocities within the boundary layer are described by the
equation,

Ubl(z′) =
u∗
k

lnz′ + C , (10)

where z′ is the distance from the bottom, the friction velocity u∗ is approx-
imated as u∗ = U∞/30, and C is a constant chosen to satisfy Ubl(δ) = U∞.
The thickness of the boundary layer is set to δ = 1.2h, in correspondence with
the experiments by Jovic and Driver (1995), Akselvoll and Moin (1996), and
Le et al. (1997).

For the MITgcm the prescribed value option is used in order to describe the
inflow velocities. The open boundaries in Bergen Ocean Model are set using
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the Flow Relaxation Scheme (FRS) described by Martinsen and Engedahl
(1987). The FRS-zone consists of the 7 horizontal cells at the boundary. At
the outflow boundary, the velocity and the density are set to the mean values
of the seven cells inside the FRS-zone from the same layer. In the MITgcm
the passive Orlanski radiation condition (Adcroft et al., 2008) has been used
at the outflow boundary.

There is not done any Shapiro filtering related to the staircase topography
in the MITgcm. This option is chosen to better compare the results gener-
ated by the core of the two models, and to not suppress any non-hydrostatic
behavior due to filtering.

3 Results and discussions

The bottom boundary layer is affected by, among other factors, the pressure
gradient and the wall curvature. As the depth increases an adverse pressure
gradient is generated due to the Bernoulli dynamics. If the adverse pressure
gradient is large enough his can lead to negative velocities within the boundary
layer and hence separation of the flow. Results using two different slopes of
the rounded step, L = 3 and L = 8 (Equation (8)) are presented.

3.1 Separation and reattachment

To make sure that the bottom boundary layer is fully resolved and developed
in all simulations, the thickness of the δ90 layer have been calculated. The δ90
layer represent the distance from the bottom to the vertical position where the
horizontal velocity equals 0.9U∞ (Kundu and Cohen, 2004), and is found to
vary by only plus minus one grid cell as the backward-facing step is approached.

For a rounded step, the separation point is determined by the adverse pres-
sure gradient, the viscous forces, and the velocity profile. For high Reynolds
numbers the flow is characterized by instability (Bao and Dallmann, 2004;
Wasistho and Squires, 2005). The characteristics of the flow can therefore not
be studied using instantaneous properties. The mean reattachment point and
separation point are hence defined as the point where the average horizon-
tal velocity between 12 and 24 hours is zero, and is found by searching for a
shift in sign in the average bottom velocities in the defined period. This is a
definition in correspondence with Kasagi and Matsunaga (1995), and assumes
that long-time averaged values can be compared, also an assumption made by
Hanjalić and Jakirlić (1998).

Table 1 and 2 show the mean separation point and the mean reattachment
point for the two different steepnesses of the slopes. For Reynolds number of
Re=2·102 the viscous forces are larger than the adverse pressure gradient for
both slopes, and the pressure gradient generated by the change in topography
is not large enough to cause separation of the flow.
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Table 1 The average reattachment point and separation point using a slope of L=3. The
second column gives the number of grid cells used in the simulations, where the first number
represents the horizontal number of grid cells, and the last number the vertical number of
grid cells. The third column gives the numerical model and column four to seven give the
average separation point or reattachment length.

Re 2·103 2 · 104 2 · 105 2 · 106
Separ- 150x100 BOM - 2.6 1.7 1.7
ation 300x200 BOM - 1.7 -0.70 -1.2

600x400 BOM - 1.8 -0.44 -2.2
150x100 MITgcm 2.9 1.7 1.4 1.1a

300x200 MITgcm 2.5 1.4 1.4 1.4b

600x400 MITgcm 2.3 1.3 1.1 1.2
Reatt- 150x100 BOM - 18.5 14.9 14.3
ach- 300x200 BOM - 12.1 7.6 7.1
ment 600x400 BOM - 12.3 4.8 5.5
length 150x100 MITgcm 10.4 13.1 9.2 10.7

300x200 MITgcm 14.5 10.3 10.6 10.4
600x400 MITgcm 15.4 10.0 10.0 9.5

a Negative values occur at x = −6.7.
b Negative values occur at x = −7.0.

For Reynolds number of Re=2·103, separation occur for the steepest slope,
L = 3 using the z-coordinate model, MITgcm. This separation vortex is sta-
tionary and in correspondence with the stationary separation bubble found by
Bao and Dallmann (2004) for Reynolds numbers of 2700. Using BOM there is
no separation of the flow. One explanation for this deviation might be higher
numerical damping in BOM compared to the MITgcm, caused by for instance

Table 2 The average reattachment length and separation point for a slope of L=8. The
second column gives the number of grid cells used in the simulations, where the first number
represents the horizontal number of grid cells, and the last number the vertical number of
grid cells. The third column gives the numerical model and column four to seven give the
average separation point or reattachment length.

Re 2·103 2 · 104 2 · 105 2 · 106.
Separ- 150x100 BOM - 5.9 4.1 3.8
ation 300x200 BOM - 5.3 1.4 0.80

600x400 BOM - 5.8 2.1 2.6
150x100 MITgcm - 6.2 6.2a 6.8
300x200 MITgcm - 5.2 3.9 3.5b

600x400 MITgcm - 5.5 4.6 3.4
Reatt- 150x100 BOM - 21.2 17.6 17.0
ach- 300x200 BOM - 15.4 8.15 13.0
ment 600x400 BOM - 10.5/18.0b 11.0 11.6
length 150x100 MITgcm - 16.1 16.7 17.3

300x200 MITgcm - 16.4 14.3 13.7
600x400 MITgcm - 16.5 13.3 12.2

a Negative velocities are observed at x = −7.0.
b Two eddies occur on the slope.
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Fig. 2 The horizontal bottom velocities for a slope of L =8 and 300x200 grid cells using:
a) BOM, Re=2·103 b) BOM Re=2·104, c) MITgcm Re=2·103, and d) MITgcm Re=2·104.
The white line represents the locations where the horizontal velocity equals 0.

the implicit method used as a corrector in the time stepping in BOM (Berntsen
et al., 2006).

Separation occurs in all simulations for Reynolds numbers higher than or
equal to Re=2·104. Using the z-coordinate model, and a slope of L = 3, the
reattachment point varies between x/H ∈ [9.6, 10.5], however using the σ-
coordinate model and Re≥ 2 · 105 the separation point and the reattachment
zone is shifted upstream with increasing resolution and does not converge.
For these Reynolds numbers the separation occurs before the step with BOM.
For the less steep case (L=8) the MITgcm estimates a mean reattachment
length of approximately 16.5 for Reynolds numbers of Re= 2·104, but also
the MITgcm model encounters convergence problems for Reynolds numbers
higher than 2 · 105.

3.2 Time dependency

Figure 2 shows the horizontal bottom velocities from 6 to 24 hours for Re=2·103
and Re=2·104 using L = 8 and 300x200 grid cells. For the lowest Reynolds
number the flow is stationary both for the MITgcm and BOM (Figure 2 a) and
c)), and there is no separation of the flow (in correspondence with Bao and
Dallmann (2004)’s results). The staircase topography from the z-coordinate
model causes noise. This can be observed in Figure 2 c) as the variation in the
horizontal velocity between x/h=2 and x/h=7.
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Fig. 3 The mean vorticity and the mean velocity arrows from 12 to 24 hours and a snap-
shot of the vorticity and the velocity arrows at 24 hours for Re=2·103 using a) BOM and
b) MITgcm.

For Re=2·104, eddies are generated on the slope due to the adverse pressure
gradient for both models. The separation point is located between x/h=5.2-5.3
(Figure 2 b) and d)) and is quite constant in time. Downstream the separa-
tion point there is a region with very low velocities, before a region with high
negative velocities can be observed. The high negative velocities are related
to clockwise eddies. These eddies are generated directly downstream the sep-
aration region and are eventually released from the recirculation zone. As one
vortex is moved downstream new vortex structures are generated just down-
stream from the separation line. This phenomenon is also observed in Bao and
Dallmann (2004)’s studies. Due to the vortex shedding, the reattachment point
fluctuates in time (Eaton and Johnston, 1981). The vortex shedding can give
an instantaneous change in reattachment point of several step heights (Simp-
son, 1996). The fluctuating reattachment point can be seen by the saw-tooth
pattern in Figure 2 b) and d).

The region just downstream of the separation point with very low velocities
(Figure 2 b) and d)) is often referred to as “the dead-water region” (Bao and
Dallmann, 2004). This region is larger using the MITgcm compared to BOM.
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Fig. 4 The mean vorticity and the mean velocity arrows from 12 to 24 hours and a snap-
shot of the vorticity and the velocity arrows at 24 hours for Re=2·104 using a) BOM and
b) MITgcm. The red line represents where the horizontal velocity equals 0.

3.3 Effects of the vertical discretization methods, resolution and Reynolds
numbers

Figure 3-5 show the mean vorticity between 12 and 24 hours using Re=2·103,
2·104, and 2·106 for both ocean models and a slope of L = 8. The top figure
shows the mean vorticity and the lower figure a snapshot of the vorticity after
24 hours of simulation.

The stationarity of the flow within the laminar regime, Re=2·103, is il-
lustrated in Figure 3. For the simulations with Re=2·104 both MITgcm and
BOM give a clockwise eddy behind the separation point when the mean vor-
ticity is calculated from the average velocity field in the last 12 hours of the
simulation (Figure 4). However the height of the eddy is smaller using BOM
compared to the MITgcm. Looking at the snapshot of the vorticity, one can
observe that the eddies are generated further upstream in the terrain-following
model compared to in the z-coordinate model. The reduction of the height of
the separation bubble and also the shift upstream in separation point are es-
pecially prominent as the vertical eddy viscosities are reduced to 10−6 m2s−1

(Figure 5). In the latter case the stagnant eddy is now replaced by a number of
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Fig. 5 The mean vorticity and the mean velocity arrows from 12 to 24 hours and a snap-
shot of the vorticity and the velocity arrows at 24 hours for Re=2·106 using a) BOM and
b) MITgcm. The red line represents where the horizontal velocity equals 0.

smaller eddies on the slope. Bao and Dallmann (2004) observed a reduction in
the spatial size of the vortexes for increasing Reynolds numbers. However the
separation line in the experiments by Bao and Dallmann (2004)’s experiments
is more horizontal than what is found in the simulations with vertical eddy
viscosities of 10−6 m2s−1 using BOM.

The normalized wall skin friction coefficient is defined as,

Cf =
τw

1
2ρU

2∞
, (11)

where τw represents the wall shear stress (Le et al., 1997). The skin friction
coefficient in the simulations with L = 8 and a Reynolds number 2·104, and
2·106 with a resolution of 300x200 grid cells is presented in Figure 6. Negative
peaks in the skin friction coefficient is observed within the recirculating region.
The magnitude of the negative peak skin friction coefficient within the recircu-
lating region is approximately the same using BOM compared to the MITgcm.
The low skin friction just downstream the separation point, correspond to the
low velocity region or ”dead-water region“. However the magnitude of the skin
friction coefficient is lower than in the studies by Le et al. (1997) and Chen
et al. (2006). This can be explained by the much larger scales in this setup,
with a height of the step of meters compared to cm, leading to a less resolved
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Fig. 6 The skin friction for the simulations with L=8 for a resolution of 300x200 grid cells
a) Re=2·104 and b) Re=2·106.

sharp velocity gradient near the bottom. In addition Bravo and Zheng (2000)
reported a reduction in the magnitude of the skin friction coefficient for flow
over a rounded step compared to a sharp step. As in Le et al. (1997) the skin
friction coefficient increases with decreasing Reynolds number in the recovery
region (Figure 6).

The Strouhal number, St = fh
U∞

, is approximately 0.03 for the simulations
with vertical eddy viscosities of 10−4m2s−1, when f is the average frequency
of vortex shedding and h the height of the slope. As the vertical eddy viscosity
is reduced to 10−6m2s−1 the Strouhal number increases to 0.06 for the simu-
lations with BOM, but is still approximately 0.03 in the simulations using the
MITgcm. For the direct numerical simulations of a sharp backward-facing step
Le et al. (1997) reports a Strouhal number of 0.06.. The increase in Strouhal
number with increasing Reynolds number (observed in BOM) is previously
reported by Bao and Dallmann (2004).

In BOM there has been used values of the horizontal diffusivity of 0 com-
pared to 0.02 m2s−1 in the MITgcm. Setting the horizontal eddy diffusivity
to 0.02 m2s−1 also in BOM, only gives a minor shift in the position of the
reattachment point. The important parameters in this setup are the vertical
coordinate, the grid size and the vertical eddy viscosity. As Δx is less or equal
to 3 m the length of the reattaching region is reduced for high Reynolds num-
bers (≥ 2 · 105). This reduction in reattachment length for higher Reynolds
numbers is also observed by Song and Eaton (2004). The length of the reattach-
ment zone is also reduced as the vertical viscosity is reduced from 10−4m2s−1

to 10−5m2s−1.
Using a horizontal resolution of 6 m (150x100 grid cells), the separation

point and reattachment point is less dependent on the viscosity for both mod-
els. At this resolution the numerical viscosity influences the solution. The
staircase topography in the MITgcm forces the reverse flow to propagate in
the vertical direction as the rear current faces a vertical wall. Hence noise oc-
curs, leading to enhanced bottom mixing. In BOM the topography is smooth,
and the velocity is less influenced by bottom noise. As the horizontal reso-
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lution is reduced to 3 meters or less, the recirculating bubble is shifted up-
stream in BOM due to reduced numerical viscosity, and also lower frictional
effects compared to the MITgcm. Using the MITgcm the size of the eddies
are less influenced by the Reynolds number and the resolution due to the in-
creased mixing caused by the the staircase topography. The mixing related
to the steps is independent of the background viscosity, making the bottom
flow in the MITgcm less dependent on the Reynolds number than in BOM.
Also Wasistho and Squires (2005) reports variations in the estimates of the
reattachment length when different RANS models are used, illustrating the
complexity of modeling separating flow.

In order to improve the correlations between the flow fields in BOM and
MITgcm one must either use a much higher resolution to directly resolve all
the structures on the slope or a parametrization of the sub-grid processes.
However the latter is outside the scope of this work since it will not compare
the core of the two models.

3.4 Round step versus sharp step

There exists a much wider literature of flow over a sharp step compared to a
rounded step. Simulations of flow over a sharp step using the MITgcm have
hence been performed in order to compare the results to published literature.
The results can be found in appendix A. For flow over a sharp step, the
separation point is located at the edge of the step. Downstream the separation
point there are many similarities between flow over a rounded step and over a
sharp step. The MITgcm is able to represent flow patterns over a sharp step
both within the laminar, the transition and the turbulent regime. A horizontal
resolution of Δx = 3 m gives the best results compared to literature, and a
resolution of Δx ≤ 6 m is needed in order to achieve robust results. As for
the rounded step increasing resolution and Reynolds number lead to more
and more eddies generated downstream the step. In addition the release time
for the eddies are also reduced as the resolution and Reynolds number are
increased.

3.5 3-dimensionality

Flow over a backward-facing step has three-dimensional properties. Still in
order to achieve high resolution, the study is done in two dimensions. There
exists a wide range of 2DV studies, especially for flow over a sharp step. For
the sharp backward-facing step, three dimensional effects are observed for
Reynolds number greater than 400 (Williams and Baker, 1997). It has been
found an underestimation of the reattachment length for two-dimensional stud-
ies for Reynolds numbers larger than 400 m for the sharp step (Williams and
Baker, 1997).

According to Bao and Dallmann (2004) the eddies keep their two-dimensional
features only for a short distance downstream the separation point. A short
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distance after the separation point the eddies start to twist and stretch (Bao
and Dallmann, 2004). 2DV simulations hence give more robust results of the
separation point than the reattachment point. In this study the flow is modeled
using 2DV versions of the respective models in order to ensure high resolu-
tion. In the future, the study should be extended in the y-direction in order
to include how three-dimensional phenomena will affect the separation point
and the reattachment point. Deviations from the published results might be
due to the fact that in 2DV simulations the vortex stretching mechanism in
the y-direction is lost (Ting et al., 2006). This will influence both the velocity
and the energy fields, and energies can hence be accumulated at the wrong
scales (Ting et al., 2006).

4 Summary

In order to understand the separating flow over a rounded step it is important
to resolve the vortexes downstream of the separation point properly. Bao and
Dallmann (2004) observed a steady separation point, and a steady angle be-
tween the separation line and the wall. Downstream the separation point the
flow pattern is complex for Re> 2700 with many downstream moving vortexes
in the separated flow region (Bao and Dallmann, 2004). This phenomenon is
also observed through this study with a stationary flow without separation for
low Reynolds number, a stationary separation bubble using the MITgcm for
Re=2 · 103 and L = 3, and time-dependent flow with separation for Reynolds
number higher than or equal to Re=2 · 104 for both slopes.

The vertical discretization in the models influences the results. The stair-
case topography in the MITgcm enhances the mixing and leads to an increased
height of the reattachment zone compared to the terrain-following model. The
flow simulated with the MITgcm is more affected by noise from the topogra-
phy than the flow in BOM, leading to smoother eddies on the slope when flow
over a backward-facing step is modeled by BOM for high Reynolds numbers.
The rear flow in the z-coordinate mode is affected by the staircase topography,
leading to a more stagnant separation point and reattachment point than in
the σ-coordinate model. In BOM the separation point occurs before the onset
of step for the case of the steepest slope L=3. If increased values of the eddy
viscosity and diffusivity is included in the lowest layer at the slope in BOM,
the separation point is shifted downstream.

As Bao and Dallmann (2004), an increase in the frequency of vortex shed-
ding for enhanced Reynolds number is found. Using BOM also the sizes of
the vortexes are reduces spatially as the Reynolds number increases in cor-
respondence with Bao and Dallmann (2004). However the separation line is
more horizontal in Bao and Dallmann (2004)’s experiments than in the simu-
lations using BOM for high Reynolds numbers. The vortex shedding frequency
is of the same size as in Le et al. (1997)’s direct numerical simulation of flow
over a sharp step using vertical eddy viscosities of 10−6 m2s−1 and BOM. For
lower Reynolds numbers and in the simulations with the MITgcm the vor-
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tex frequency is up to 50% lower than in Le et al. (1997)’s Direct Numerical
Simulations.

BOM gives the benefit of smoother eddies less influenced by noise caused
by the topography, while the MITgcm gives a more robust average separation
point and reattachment length without the use of complex turbulence schemes,
and also a more horizontal separation line. However in the presence of a proper
turbulence scheme BOM will probably be better suited than the MITgcm
to simulate the flow on the step without the interaction of noise from the
topography.
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A Sharp step

The backward-facing sharp step is a well-known testcase for numerical models. Many labo-
ratory experiments and numerical simulations have been performed and published and can
be used for validation of numerical models. In this appendix results of simulations of flow
over a sharp step using the MITgcm are presented. The results from these simulations are
then compared to published literature.

A.1 Setup

The topography H(x) is described by,

H(x) =

{−100 , x < 0 ,
−120 , x ≥ 0 ,

and the left boundary is located at x = −18h. The velocity profile is defined by a depth
integrated velocity of 10 m2 s−1, leading to an average free-stream velocity of U∞=0.1
m s−1 for the shallowest area. The step height, h, is set to 20 m, as for the rounded step.
In correspondence with the simulations of the rounded step the horizontal eddy viscosity
and diffusivity is set to 10−2 m2 s−1 in all simulations, and the vertical eddy viscosities and
diffusivities are ranging from 10−2 m2 s−1 to 10−6 m2 s−1. The horizontal resolution varies
from to 12 m to 1.5 m, leading to a total number of runs of 20.

A.2 Results and discussion

Figure 7 shows the mean streamlines from 12-24 hours (upper figure) and a snapshot of the
streamlines (lower figure) after 24 hours of simulation for five different viscosities and two
different grid sizes. For the lowest viscosities and diffusivities (10−2 m2 s−1) corresponding
to a Reynolds number of 2·102, the flow is stationary. The stability of the flow can be seen
by the similarity between the average flow field and the snapshot of the velocity profile after
24 hours in Figure 7 a) and b). For higher Reynolds number the flow is time dependent and
clockwise eddies are released from the reattachment zone and propagates downstream. For
Reynolds number of 2·103 the reattachment zone is larger than for Reynolds number larger
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Fig. 7 Stream lines for the mean velocity field from 12-24 hours and a snapshot of the
velocity field at 24 hours. The left column shows results using a resolution of 150x100 grid
cells, and the right column results using a resolution of 300x200 grid cells, for a-b) Re =2·102,
c-d) Re =2·103, e-f) Re =2·104, g-h) Re =2·105, and i-j) Re =2·106.
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Table 3 The end of the first and the second eddies as a function of Reynolds number
and numerical resolution. The second column gives the number of grid cells used in the
simulations, where the first number represents the horizontal number of grid cells, and the
last number the vertical number of grid cells. Column three to seven gives the length of the
first and the second eddy in the recirculation region.

Re 2 · 102 2 · 103 2 · 104 2 · 105 2 · 106
End 1st eddy 75x50 - 1.2 1.2 0.60 -
(Counter-clockwise) 150x100 - 0.90 1.5 1.8 1.5

300x200 - 2.1 1.8 1.7 1.5
600x400 - 3.8 1.6 1.2 1.3

End 2nd eddy 75x50 6.0 15.6 10.2 9.0 11.4
(Clockwise) 150x100 6.6 14.1 6.9 9.6 8.4

300x200 6.8 11.1 6.6 6.6 5.3
600x400 7.0 12.5 5.7 4.5 5.3

or equal to 2·104. According to Nie and Armaly (2004), flow over a backward facing step can
be divided into three different regimes, laminar flow Re < 400, the transition flow regime
400 < Re < 3400, and the fully turbulent flow regime Re > 3400. In the transition regime,
Nie and Armaly (2004) observed a longer reattachment zone than in the fully turbulent
regime, and in the turbulent regime the reattachment length was approximately constant
(Nie and Armaly, 2004). As the grid sizes decrease (the right hand column in Figure 7) more
eddies are resolved. Additionally the reattachment zone is elongated especially closer to the
bottom boundary, where it tends to have a “tail” near the bottom for lower resolutions.

Table 4 Values of the reattachment length found in literature. Column 1 gives the reference,
column 2 determines if it is a numerical simulation or a laboratory experiment, column 3
gives the Reynolds number, and the last column the reattachment length.

Reference Calc/Exp Re Reattachment length
Gartling (1990) Calc 600 12.2
Gartling (1990) Calc 800 6.1
Akselvoll and Moin (1996) Calc 38000 9.4
Kaiktsis et al. (2006) Calc 2000 18.5
Le et al. (1997) Calc 5100 6.28
Hanjalić and Jakirlić (1998) Calc 5000 6.38
Chiang and Sheu (1999) Calc 1000 12.75 a

Barkley et al. (2002) Calc 600 11.41
Neumann and Wengle (2004) Calc 3000 5.8
Beaudoin et al. (2004) Calc 100 7
Rani et al. (2007) Calc 1000-2000 10-13
ul Haque et al. (2007) Calc 3615 6.42
Kim et al. (1985) Exp 3·104 7.0
Kim et al. (1985) Exp 4.5·104 7.0
Armaly et al. (1983)b Exp 70 < Re < 8000 7.0
Armaly et al. (1983) Exp 2000 13.5
Jovic and Driver (1994) Exp 5100 6.0
Kasagi and Matsunaga (1995) Exp 5540 6.51
Lee and Mateescu (1998) Exp ≤ 3000 6.0
Fessler and Eaton (1999) Exp 18400 7.4
Beaudoin et al. (2004) Exp 100 4.5

a mean value from their simulations
b Results taken from Lee and Mateescu (1998)
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Fig. 8 Reattachment length versus Reynolds number. The black circles and squares rep-
resent values found from literature (Table 4). The triangles are modeled results presented
in this paper (Table 3). The vertical dotted black lines divide the results into the laminar
regime, the transition regime, and the turbulent regime based on Nie and Armaly (2004).
Note the jump in the Reynolds values at the right side of the x-axis.

The separation point is located at the edge of the step for the sharp case (Le et al., 1997).
Downstream the step a recirculation bubble occur, consisting of a counter-clockwise eddy
closest to the step, and then a clockwise eddy (Le et al., 1997). Table 3 presents the end of
the first counter-clockwise eddy and the clockwise eddy (the reattachment length) when the
velocities are averaged from 12-24 hours using five different values on the viscosity and four
different resolutions. The end of the reattachment zone is defined as the location where there
is a probability of 0.5 that the velocity will be zero in the last 12 hours of the simulation. The
reattachment point is found by searching for the shift in sign for the bottom velocities. As
Hanjalić and Jakirlić (1998), it is assumed that long-time averaged values can be compared.
Using a resolution of 75x50 grid cells (i.e. Δx = 12m), the length of the first and the second
eddy differs considerably from higher resolution simulations, leading to the conclusion that
this resolution is not sufficient to represent the flow properly. Table 4 presents reattachment
lengths from literature and these reattachment lengths are illustrated in Figure 8 combined
with the reattachment lengths from Table 3. The simulations with Re = 200 are within the
laminar range and correspond to previously published simulations and laboratory experi-
ments (Table 4). The reattachment length varies between 6.0 and 6.9. For the simulations in
the transitional regime, the reattachment lengths increase, also in correspondence with pre-
vious experiments, and in the turbulent regime the reattachment lengths stabilizes around
7. In the turbulent regime the simulations with a horizontal resolution of 3 m (300x200 grid
cells) gives the closest match to the values from the literature. Still, the flow is influenced
by the grid size in all the simulations with Reynolds numbers higher than 2·103.

The horizontal bottom velocities are presented in Figure 9 using 150x100 grid cells. For
Reynolds number of 2·102 a stationary eddy is generated downstream the step. The size of
the eddy is constant in time. In the transitional and fully turbulent regime several eddies are
generated and the reattachment point propagates backward and forward in time as eddies
are released from the reattachment zone. The free moving eddies propagate downstream, and
eventually out of the domain. In the transitional regime the release time between subsequent
eddies are larger than in the fully turbulent regime. As the viscosities are reduced the release
time for the eddies are reduced and new eddies are more frequently formed. The discharge
of eddies from the reattachment zone generates a saw tooth pattern in Figure 9 b), c), and
d), which has also been observed by Le et al. (1997). Le et al. (1997) observed fluctuations
in the reattachment length varying between x/H = 5 to 8. Barkley et al. (2002) found that
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Fig. 9 The horizontal bottom velocities for a) Re = 2 · 102, b) Re = 2 · 103, c) Re = 2 · 104,
and d) Re = 2 · 105 and a resolution of 150x100 grid cells.

flow over a backward facing step was absolute stable up to a Reynolds number of 1050, also
in correspondence with the results in this study (Table 4).
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