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1. Introduction 

1.1 Cancer Incidents 

According to the Norwegian Cancer Registry, 26 121 new cases of cancer were 

recorded in Norway in 2008, of which 14 000 occurred in men and 12 121 in women. 

Cancers of the prostate, female breast, colon and lung are the most common cancers 

and comprise almost half of the total cancer incidents. Breast cancer remains the most 

frequent neoplasm in women, with 2 753 new cases in Norway in 2008 [1]. 

Fortunately, the introduction and improvement of breast cancer screening, together 

with better treatment, have reduced breast cancer mortality in western countries [2, 

3]. Nevertheless, breast cancer still remains the leading cause of cancer mortality in 

women worldwide [4], with over 400 000 deaths per year, and further improvement 

of both detection and therapy is desirable and necessary.  

Genetic factors, including the major susceptibility genes (BRCA1, BRCA2), may 

account for up to 10% of breast cancer cases in developed countries. However, the 

major factors influencing breast cancer risk are obesity, alcohol, exogenous hormones 

(oral contraceptives, hormone replacement therapy) and, possibly diet and lack of 

physical activity [4].  

1.2 Tumor Biology 

The word tumor is derived from the Latin word meaning “swelling”, and is a lesion 

formed by abnormal growth of cells. Tumor is, however, not synonymous with 

cancer and can be both benign and malign. Nevertheless, for the remaining part of 

this thesis, malignant tumors are referred to as tumors. Cancer is a group of diseases 

characterized by unregulated cell growth and the invasion and spread of cells from 

the site of origin to other sites in the body [5]. Cancers can grow in cell suspension 

(e.g. leukemia), but most grow as solid masses of tissue. The complexity of these 
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diseases has been, and still is, one of the biggest challenges for clinicians and cancer 

researchers. The complexity lies not only in the fact that there are different types of 

cancers, but within each type of cancer there is a great variation in both behaviour 

and responses to treatment.  

1.2.1 Hallmarks of Cancer 

Hanahan and Weinberg [6] suggested six molecular, biochemical and cellular traits 

that characterize the development and progression of malignant tumors, and called 

them jointly as “The six hallmarks of cancer”. Through different mechanisms, this set 

of functional capabilities is acquired during the development of the cancers. 

The six hallmarks are [6]: 

1. Growth signal autonomy 

Oncogenes mimicking normal growth signalling and growth signals from the 

stromal cells make the cancer cells independent on external growth factor 

signalling to proliferate.  

2. Insensitivity to growth inhibitory signals 

The main example is disruption of the retinoblastoma protein (pRB)-pathway 

in cancer cells liberates the E2F transcription factors and allows cell 

proliferation, even with anti-proliferative signalling. 

3. Evasion of apoptosis 

Many changes can lead to acquisition of apoptotic resistance, but mutation in 

the tumor suppressor gene p53 is the most common one. Functional 

inactivation of the p53 protein destroys the DNA damage sensor that normally 

induces the apoptotic cascade, opening for maintenance of mutations. 

4. Unlimited replicative potential 

Telomerase maintains the length of the chromosomes, the telomeres, making 

cancer cells avoid entering senescence and giving them an unlimited 

replicative potential. 
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5. Angiogenesis 

To be able to survive and grow, the cancer cells are dependent on formation 

of new blood vessels, angiogenesis. Alteration of the balance between 

angiogenic inducers and inhibitors can activate the ‘angiogenic switch’. 

6. Invasion and metastasis 

Normal cells maintain their location in the body, and generally do not 

migrate. Successful migration and invasion depend on alteration of the 

binding of cells to their surroundings, like changes in cell adhesion molecules 

(CAMs), and are also dependent on the capabilities of all the previously 

mentioned hallmarks. Migration and invasion of cancer cells to other parts of 

the body is the major cause of cancer deaths. 

 

From the above, it is evident that it is important not to study tumor cells in isolation, 

but rather in a context of surrounding and infiltrating tissue; collectively known as the 

tumor stroma or the tumor microenvironment.  

1.2.2 The Tumor Microenvironment 

The solid tumor forms a highly complex tissue, comprising heterogeneous malignant 

cells, as well as normal- and cancer-associated fibroblasts (CAFs), immune cells, 

pericytes, endothelial cells and extracellular matrix (ECM) (Figure 1)  [7].  

In general, the tumor stroma is characterized by low proteoglycan and hyaluronan 

concentrations and absence of an anatomically well-defined lymphatic network [8]. 

Additionally, the structural network of a tumor contains a dense network of collagen 

fibres, which are thicker and more numerous than that of normal connective tissue, 

and results in a more rigid tumor tissue [8]. Cancer-associated fibroblasts, 

inflammatory cells and mediators infiltrate the tumor stroma. Together they secrete 

various cytokines, growth factors and hormones than can directly stimulate tumor cell 

proliferation, survival, angiogenesis, invasion and metastasis [7, 9, 10].  
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Figure 1: Anatomy of normal tissue (left panel) and tumor tissue (right panel). Tumor blood 
vessels are disorganized, tortuous and dilated, with uneven diameter and excessive 
branching and shunts, leading to inefficient blood flow. Furthermore, tumors contain a great 
number of infiltrating cancer-associated fibroblasts and inflammatory cells, in addition to 
the neoplasic tumor cells. The collagen network of solid tumors is more rigid than that of 
normal tissue and there is absence of an anatomically well defined lymphatic network. 
Adapted from Heldin et al. [11], with permission from Nature Publishing Group. 

 

Tumors can not grow beyond a critical size or metastasize to other organs without 

blood vessels. Angiogenesis provides a principle mechanism for the maintenance of 

adequate blood flow in an expanding tumor tissue. Due to an imbalance in the 

angiogenic regulators, tumors have highly disorganized, tortuous and dilated blood 

vessels, with uneven diameter and excessive branching and shunts [12], leading to a 

highly variable blood flow. Together, these traits lead to inefficient and incomplete 

supply of nutrients and removal of waste products, and a hypoxic tumor 

microenvironment. Blood flow within a tumor is anything but uniform. Tumors 

contain both highly perfused areas, which are rapidly growing, and areas with 

reduced blood flow, which often are associated with development of necrosis [13]. In 

essence, the abnormal vasculature of tumors, result in an abnormal 

microenvironment, and together they form an obstacle to the delivery and efficacy of 

cancer therapy.  

During cancer progression, genetically transformed cells (cancer cells) change the 

stromal host compartment, to form a permissive and supportive microenvironment for 
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further growth and progression [14]. Thus, it is now appreciated that the tumor 

microenvironment is crucial for cancer initiation, growth and progression, and that 

the interaction between the stromal components and the tumor cells is bidirectional 

[7, 15, 16].  

1.2.3 Transcapillary Exchange 

Transport of fluid and solute molecules in the interstitium, i.e. the extracellular fluid 

compartment between blood vessels and cells, is governed by the biological and 

physiochemical properties of the molecule and the properties of the ECM [8], and is 

an important feature influencing the tumors response to therapy. Transport of 

materials across the vessel wall is mainly governed by diffusion, i.e. solute transfer 

driven by a concentration gradient, as summarized in Fick`s law: 

� �xCDAJ S ���� /  

Formula 1: Fick`s law

Js= The mass of solute transferred by diffusion per unit time, 
 �C= The concentration difference across the capillary wall,  

�x= Distance (Thickness of the capillary wall), A= Surface area, 
 D= The diffusion coefficient (inversely related to solute size). 

 

However, convection, i.e. solute flux carried by the fluid flux, also contributes to 

transvascular transport of materials. Transcapillary fluid balance aims to maintain 

constant fluid volume in the interstitium. The balance is determined by: 1) The 

properties of the capillary membrane, 2) The transcapillary hydrostatic pressure, 3) 

The transcapillary colloid osmotic pressure. 

E. H. Starling described the relationship between these factors in 1896, and thus the 

factors influencing the transcapillary fluid flux are often referred to as the Starling 

equation [17]: 
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� � � �� �ifcifcV COPCOPPPCFCJ ���� 	  

Formula 2: The Starling equation.

Jv= Filtration, CFC= Capillary filtration coefficient, Pc= Capillary hydrostatic pressure, 
Pif= Interstitial fluid pressure, �= The colloid osmotic reflection coefficient, 

COPc= Colloid osmotic pressure (capillary), COPif= Colloid osmotic pressure (interstitium) 
 

The CFC is determined by the surface area of the capillary wall and its hydraulic 

conductivity. � is the colloid osmotic reflection coefficient for proteins. The primary 

driving force for filtration is the capillary hydrostatic pressure (Pc). Filtration is on the 

other hand opposed by the colloid osmotic pressure of the plasma proteins (COPc), 

which tends to hold the fluid in the circulation. COPif is the colloid osmotic pressure 

tending to pull fluid out of the circulation. The interstitial fluid pressure (Pif) is the 

pressure exerted by the interstitium, which in skin normally varies between 0 and -2 

mmHg [18]. This pressure is crucial in the control of a stable volume in the 

interstitium and is mainly determined by the capillary fluid filtration and the lymph 

flow, in other words the extracellular fluid volume. In addition, the forces governed 

by the structural network of the interstitium are a contributing factor in regulation of 

Pif, as determined by the interstitial pressure-volume relationship; the compliance 

[19]. It is now well established that Pif in most solid tumors is increased (up to 

~60mmHg) [11]. An increase in Pif counteracts filtration, and has therefore been 

proposed as an obstacle to cancer therapy [11]. In Paper II we have studied the 

influence of Pif on the uptake of chemotherapy in the DMBA (dimetyl-�-

benzanthracene)-induced mammary tumor model. 

The mentioned features of the tumor biology influence growth and development of 

tumors, and its susceptibility to therapy. Furthermore, tumor hypoxia is an important 

factor, shared by most solid tumors, which will be thoroughly elucidated further in 

this thesis. 
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1.3 Tumor hypoxia 

Hypoxia is defined as a reduction in the normal level of tissue oxygen. Tumor growth 

often overrides the ability of the tumor vasculature to adapt to the increasing oxygen 

demand. In addition, as already stated, tumor vasculature constitutes a fundamental 

difference between normal and tumor tissue, with its structural and functional 

abnormalities. Together, this often leads to solid tumors with areas subjected to acute 

or chronic hypoxia [20]. Although severe or prolonged hypoxia is toxic to both 

cancer cells and normal cells, adaptation to the hypoxic microenvironment has 

allowed cancer cells to survive and proliferate in this hostile milieu [21].  

Traditionally, studies of tumor hypoxia were performed because of its proven effect 

on resistance to radiation therapy [22]. Later, Hockel et al. [23] showed that low 

oxygen tension in tumors was also associated with increased metastasis and poor 

survival rate. Michieli et al. [20]  stated that the insufficient oxygen supply can limit 

tumor cell division, but on the other hand it can also select for more malignant cells 

and thereby lead to tumor progression. This “Darwinian selection” will lead to more 

aggressive cancer cells [20].  

Hypoxia is known to result in cellular responses which improves oxygenation and 

viability through induction of angiogenesis, a raise in energy production by increased 

glycolytic metabolism and up-regulation of genes involved in cell survival/apoptosis 

(Figure 2) [24]. Hypoxia has also been shown to increase the genetic instability, 

activate invasive growth and persevere the undifferentiated cell state, which all in 

turn can be advantageous during tumor progression [20, 21].  
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Figure 2: Tumors survive and progress under hypoxic conditions due to adaptations of 
cellular responses which improve oxygenation and viability through induction of 
angiogenesis, increase in glycolytic metabolism and up-regulation of genes involved in cell 
survival/apoptosis, leading to more aggressive and metastatic tumors. Hypoxia is also 
known to induce resistance to therapy. EMT: Epithelial-to-Mesenchymal transition, HIF-1: 
Hypoxia inducible factor 1, ROS: Reactive oxygen species. 

 

1.3.1 Hypoxia and the Angiogenic Switch 

The `angiogenic switch` involves up-regulation of pro-angiogenic factors and down-

regulation of anti-angiogenic factors, causing formation of new blood vessels, 

although with variable degree of functionality. Generally, tumors cannot grow 

beyond ~ 1 mm in diameter without being supplied by new blood vessels [25]. 

Hypoxia is the most potent stimulator of angiogenesis. It is somehow paradoxical that 

the tumor tissue is hypoxic due to abnormal and non-functional tumor vasculature, as 

the hypoxic tumor tissue is responsible for inducing angiogenesis in the first place 

[26].  
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The hypoxia-inducible factor 1 (HIF-1)-pathway is one way that cells respond to 

reduced oxygen levels. HIF-1 is a transcription factor composed of HIF-1� and HIF-

1�/aryl hydrocarbon receptor nuclear translocator (ARNT) [27, 28]. The �-subunit is 

constitutively expressed, whereas the stability and activity of the �-subunit is 

inducible. The availability of the HIF-1�-subunit is primarily regulated by cellular 

oxygen levels [29], but also by growth factors [30]. Thus, in presence of oxygen, 

HIF-1� is bound to the tumor suppressor Von Hippel-Lindau (VHL) protein, causing 

ubiquitylation and degradation by the proteasome. In absence of oxygen, however, 

HIF-1� translocates to the nucleus, where it dimerizes with ARNT, binds to hypoxia-

response elements (HRE’s), and thereby activates the transcription of several 

hypoxia-response genes. Pro-angiogenic growth factors, like transforming growth 

factor-� (TGF-�), platelet-derived growth factor (PDGF), vascular endothelial growth 

factor (VEGF) are all induced by HIF-1, stimulating angiogenesis. 

1.3.2 Hypoxia and Cell Survival 

Normally, when mutations occur and DNA repair enzymes cannot correct the error, 

the apoptotic cascade is activated, leading to programmed cell death. However, the 

escape from this apoptotic program is one of the hallmarks of cancer, and tumor cells 

thereby maintain uncorrected mutations. The p53 tumor suppressor gene has been 

described as “the guardian of the genome”, and can activate DNA repair enzymes, 

induce growth arrest and initiate apoptosis, and thereby protect cells against 

neoplastic transformation. Hypoxia is, in addition to DNA damage, able to stimulate 

p53 levels and activate the p53 protein [31]. However, deregulation and loss of 

function of p53 is seen in more than 50% of human cancers [31], and has proved to 

promote growth and malignant progression. Telomere length is an important factor 

deciding cell replicating ability, activation of p53 lead the cells into senescence when 

the telomeres have eroded. However, hypoxia has been shown to reduced telomere 

erosion by activation of telomerase, resulting in unlimited replicative potential [32]. 

Furthermore, Graeber et al. [33] showed that p53 mutation results in over-expression 

of the apoptotic inhibitor Bcl-2 and thus results in a substantial reduction of hypoxia-
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induced cell death. Hypoxia thereby acts as a physiological selective agent, 

promoting the clonal expansion of apoptosis-resistant cells [33]. 

Additionally, Ravi et al. [34] showed that loss of p53 function in tumor cells 

enhances HIF-1� levels and increases the transcription of pro-angiogenic genes like 

VEGF in response to hypoxia. 

1.3.3 Hypoxia and the Glycolytic Switch 

Insufficient oxygen availability in tumors causes a shift in energy production from 

oxidative phosphorylation to anaerobic glycolysis to satisfy the tumor`s energy 

demand. Further, adaption to intermittent hypoxia leads to persistent metabolism of 

glucose to lactate even during aerobic conditions, a process called “the Warburg 

effect” [35]. Glycolysis leads to a lower ATP yield than oxidative phosphorylation, 

and thereby forces the tumors to increase their metabolic rate [13, 36]. Important 

components of the glycolytic pathways are the glucose transporters GLUT-1 and 

GLUT-3 and the enzyme hexokinase, all genes regulated by HIF-1, and thus by 

hypoxia [36]. It has also been showed that the end-products of glycolysis, lactate and 

pyruvate, regulate HIF-1 gene expression independently of hypoxia by stimulating 

the accumulation of HIF-1�, and thereby facilitating further glycolysis and tumor 

progression in a positive feedback loop [37].  

Also, reactive oxygen species (ROS), or free radicals, are a by-product of cellular 

metabolism [38]. Oxidative stress, a result from imbalance between production of 

ROS and activation of the cell’s own antioxidant defence, is a phenomenon linked to 

carcinogenesis and several other chronic diseases [39]. In excess, ROS can cause 

lipid peroxidation, damage cell membranes, cause DNA damage and lead to cell 

death [38].  
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1.3.4 Hypoxia and Metastasis 

Increased metastatic ability has been associated with hypoxic tumors [40, 41]. 

Evidence show that the effect of hypoxia on malignant progression is mediated by a 

series of hypoxia-induced changes activating angiogenesis, glycolysis and  inhibition 

of apoptosis, in addition to up-regulating growth factors and proteins involved in 

tumor invasiveness [42]. All these features enable tumor cells to survive or escape 

their hostile environment.  

A key step in tumor metastasis is postulated to involve the de-regulation of tumor 

cell-cell and cell-ECM interactions through Epithelial-to-Mesenchymal transition 

(EMT) [26]. EMT is a fundamental process that governs morphogenesis in 

multicellular organisms [43]. However, in tumor progression, EMT is believed to 

have a more sinister role, leading to carcinomas with an invasive or metastatic 

phenotype (Figure 3) [43-45]. Hypoxia has been shown to trigger EMT, enabling cell 

detachment and invasion [46]. The “cadherin switch”, with down-regulation of E-

cadherin (CDH1) and up-regulation of N-cadherin (CDH2) is one of the key 

regulators of EMT, as increased levels of CDH2 increase the motility and migration 

of the cells. Due to the morphological similarities of the primary tumors and the 

metastatic lesions, it has been hypothesized that tumors reactivate certain epithelial 

properties at the secondary site, through a Mesenchymal-to-Epithelial transition 

(MET) [45, 47]. However, this has yet to be proven. Tsuji et al. [48] have proposed 

an alternative hypothesis, where epithelial and mesenchymal cells cooperate to 

induce metastasis, and thus eliminates the need for MET at the distant site. 
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Figure 3: Proposed role of Epithelial-Mesenchymal-transition (EMT) and Mesenchymal-to-
Epithelial-transition (MET) in cancer progression. Local proliferation and transformation of 
epithelial cells can lead to a carcinoma in situ. Further progression – possibly through EMT 
and fragmentation of the basement membrane - can lead to invasion into the lymph or blood 
vessels, and spread to distant organs. At secondary sites, carcinoma cells can extravasate 
and form solitary micrometastasis or form new carcinomas through MET. Adapted from 
Thiery et al. [43], with permission from Nature Publishing Group. 

1.3.5 Hypoxia and Resistance to Therapy 

Hypoxia can be a direct cause of resistance to conventional therapy. Grey et al. [22] 

proved in the 1950ies that oxygen concentration influence the effect of radiation 

therapy. Later, a number of factors associated with tumor hypoxia have also been 

directly or indirectly shown to influence the effect of chemotherapy [49]. The 

hypoxic therapy resistance has been ascribed to: 1) Some drugs and radiation 

requiring oxygen to generate ROS to be maximally cytotoxic. 2) Altered cellular 

metabolism reducing drug cytotoxicity. 3) Hypoxia leading to genetic instability, 

which can lead to more rapid development of drug-resistant cells [50]. Additionally, 

as for oxygen, the distribution of the chemotherapeutic drug is compromised due to 

the uneven blood flow in tumors and high distance from the nearest capillary [51]. 
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1.4 Hyperbaric Oxygen Therapy 

With our present knowledge of hypoxia and its effect on tumor growth, progression 

and response to chemotherapy, we aimed to investigate if a reduction in the hypoxic 

state of the mammary tumors, by enhancing tumor oxygenation, might have an 

inhibitory effect on tumor growth per se, in addition to enhancing the effect of 

chemotherapy. 

Hyperbaric oxygen (HBO) is one way to increase tissue oxygenation. HBO therapy 

involves breathing of 100% oxygen pressurized to 2-3 times atmospheric pressure, 

equivalent to 10-20 meters sea water (msw). By taking advantage of the physical 

properties of gases under pressure, HBO expose tissues to elevated oxygen 

concentrations.   

Henry`s law (Formula 3) states that the amount of a gas that will dissolve in a liquid 

at a given temperature is directly proportional to the partial pressure of the gas above 

the liquid, and of the solubility coefficient of the gas in the liquid. The solubility 

coefficient decreases with rising temperature and increasing salinity.  

 

PC 
��  

Formula 3: Henry`s law 

C=The concentration of the solute gas, �= The solubility coefficient,  
P= The partial pressure of the gas in the gas phase above the solution. 

 
 

Boyle`s law (Formula 4) states that if the temperature of a fixed mass of gas is kept 

constant, the relationship between volume and pressure will vary in such way that the 

product of the pressure and volume will remain constant.  

       KVP �


Formula 4: Boyle`s law

P= The absolute pressure, V= The volume, K= A constant 
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Together, Boyle`s and Henry`s laws constitute the basis for hyperbaric oxygen 

therapy.  

Increasing the partial pressure of oxygen (pO2) has essentially no effect on the 

amount of oxygen bound to hemoglobin (Hb), as Hb is 96-98 % saturated at sea level 

in normal air, giving a O2 content of approximately 200ml O2/1000mL arterial blood. 

Additionally, 3.2 mL O2/1000mL blood is dissolved in plasma and is carried in 

solution. The saturation/desaturation of dissolved O2 strictly follows Henry`s law 

(Formula 3), while the O2 saturation/desaturation of Hb is modified by the actual pH, 

CO2, 2,3-diphosphoglycerate (2,3-DPG) and temperature, following a sigmoid curve. 

Therefore, treatment with HBO will hyper-saturate the blood with oxygen, as shown 

in Table 1.  

 

Table 1: Theoretical arterial oxygen tensions pO2 (mmHg) and dissolved O2 concentrations 
for different normobaric and hyperbaric oxygen treatment protocols. All values assume 
arterial pO2=alveolar O2. Modified from Tarun et al. [52]. 

Depth Pressure  %O2 pO2 (mmHg) mL dissolved 
O2/1000mL blood 

0 m 1 bar Normal air (~21%) 159 3.2 
0 m 1 bar 100 % 760 20.9 

10 m 2 bar Normal air 318 8.1 
10m 2 bar 100% 1520 44.4 
15m 2.5 bar Normal air 397.5 10.6 
15m 2.5 bar 100% 1900 56.2 
20m 3 bar Normal air 477 13.1 
20 m 3 bar 100 % 2280 68 

 

Thus, at 3 bar pure oxygen, the amount of oxygen dissolved in the blood and 

delivered to the tissues is 20 times higher than during normal atmosphere, and is 

thereby sufficient to support resting tissue without the contribution of hemoglobin 

[53]. The dissolved oxygen can more easily reach areas where the red blood cells 

cannot pass, and can enable tissue oxygenation even with impaired hemoglobin 

oxygen carriage [53]. It has been shown that the distance that oxygen can diffuse 

through normal tissue is increased fourfold after a HBO treatment [54]. Thus, HBO 
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leads to increased oxygenation of tissue by increasing the transport of soluble 

oxygen. In general, if pressure does not exceed 3 bar and the length of therapy is less 

than 2 hours, HBO is considered safe [55]. 

The Undersea and Hyperbaric Medical Society (UHMS) has a list of approved 

indications for HBO-therapy (Table 2). HBO is the treatment of choice for 

decompression sickness, problem wounds and severe carbon monoxide poisoning. 

The duration of a single treatment (2.5-3 bar) varies from 45-90 min for carbon 

monoxide poisoning up to 2-4 h for some severe decompression disorders. For 

problem wounds most protocols average 90-120 min each of 20-30 treatments at 2.4 

bar [56].  

 

Table 2: Approved uses of hyperbaric oxygen (HBO) therapy as defined by the Undersea 
and Hyperbaric Medical Society (UHMS). 

Air or gas embolism 

Carbon monoxide poisoning 

Central retinal artery occlusion 

Clostridal myositis and myonecrosis 

Crush injury, compartment syndrome and other acute traumatic ischemias 

Decompression sickness 

Enhancement of healing in selected problem wounds 

Exceptional blood loss 

Intracranial abscess 

Necrotizing soft tissue infections 

Osteomyelitis 

Delayed radiation injury 

Skin grafts and flaps 

Thermal burns 
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1.5 History of HBO and Cancer 

As in normal tissue, the pO2 in tumor tissue increases significally during HBO 

exposure [57]. It has also been shown that the elevation of the tumor oxygen 

concentration is preserved for more than 60 min after HBO treatment [58].  

The use of HBO in cancer management was controversial, and many had concerns 

that HBO would recruit hypoxic tumor cells into the pool of proliferative cells, 

initiate angiogenesis, and thereby lead to cancer progression. However, two extensive 

reviews have concluded that HBO do not promote tumor growth [59, 60]. To 

complement the reviews written by Daruwalla et al. [60] and Feldmeier et al. [59], I 

have reviewed the work performed on HBO and cancer the last 7 years (Table 4, 

Appendix). This mini-review support the previous findings [59, 60], as  none of the 

reports observed a tumor-promoting effect of HBO (Table 4, Appendix). 

Nevertheless, as other treatment modalities, HBO display great variance in response 

between different tumor types.  

Our group have tested the use of HBO treatment in both mammary tumors and 

gliomas per se, and found that HBO has a significant growth-inhibitory effect in both 

tumor models [61-63]. Thus, these studies formed the background for this thesis.

Stuhr et al. [61] found that HBO both alone and in combination with the 

chemotherapeutic agent 5-fluorouracil (5FU) induced a clear reduction in tumor size 

compared to day 1 measurements in a chemically-induced (DMBA) mammary tumor 

model (Figure 4). The same study also included a group of rats exposed for a longer 

experimental period and with additional treatments (23 days, 7 treatments) [61]. The 

results showed that although the experimental period was prolonged with 12 days and 

three additional HBO treatments, no further reduction in tumor size was registered 

(Figure 5, series 6). Thus, the HBO effect was maximal after four HBO exposures. 

Furthermore, one series followed tumor growth 12 days post HBO treatment (Figure 

5, series 5). This group showed that although HBO treatment was ended, the tumor 

size was significantly below day 1 level. This seems to imply that some permanent 
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changes must have occurred in the tumor tissue and that these changes prevent the 

tumor from further growth.  

 

 

 

 

 
 
 
 
 
 
 

 
Figure 4: The effect of 5-fluorouracil (5FU) and hyperbaric oxygen (HBO) on DMBA-
induced tumor growth - alone or in combination. Treatments are given day 1, 4, 7 and 10. 
Values represent means ± SE.  *p<0.05 and **p<0.01. Adapted from Stuhr et al. [61]. 

 

 

 

 

 

 

 

Figure 5: The effect of hyperbaric oxygen (HBO) on DMBA-induced tumor growth. The 
after-effect of 4 HBO exposures (Series 5) and the effect of multiple HBO exposures (Series 
6). Dashed line indicates the level for initial tumor size. * p<0.05 vs day 1 and **p<0.01 vs 
day 1. Adapted from Stuhr et al. [61]. 
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These results support the fact that HBO has a tumor-inhibitory effect on DMBA-

induced mammary tumors per se. The possible use of HBO has a stand-alone- or 

adjuvant treatment in breast cancers is discussed in section 5.1 and 5.2.  
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2. Aims of Study 

The overall aim of this thesis was to study the effect of enhanced oxygenation on 

mammary tumor growth, progression and response to therapy. 

Specific aims 

1) To investigate the effect of HBO therapy on tumor growth and progression in 

two different in vivo mammary tumor models, by elucidating cell proliferation, 

cell death and angiogenesis.  

2) To study the gene expression profile of both untreated and HBO treated 

mammary tumors. 

3) To develop a mammary tumor model, to be able to study tumor-stroma 

interactions, in addition to studying both aim 1 and 2. 

4) To elucidate the effect of HBO on the uptake of a conventional 

chemotherapeutic drug, 5FU, into the mammary tumor tissue. Furthermore, to 

study possible oxygen-related changes occurring in the tumor stroma that 

might have influenced the chemotherapeutic response, as interstitial fluid 

pressure, amount of collagen, fluid distribution and reactive oxygen species.  
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3. Summary of Results 

3.1 Paper I 

Hyperoxic treatment induces Mesenchymal-to-Epithelial Transition in a rat 

adenocarcinoma model. 

Tumor growth in the DMBA-induced tumor model was significantly reduced (~16% 

compared to day 1 levels) on day 11 after HBO treatment (2 bar, pO2 = 2 bar, 4 

exposures à 90 min), whereas control tumors increased almost 100 % in volume 

during the same experimental period. Significant decreases in tumor cell 

proliferation, tumor blood vessels and collagen fibrils, together with an increase in 

cell death, are consistent with tumor growth reduction and tumor stroma influence 

after HBO treatment. Gene expression profiling showed that HBO induced a 

mesenchymal-to-epithelial transition (MET) with coordinated expression of gene 

modules involved in cell junctions and attachments together with a shift towards non-

tumorigenic metabolism.  

3.2 Paper II 

Hyperoxia increases the uptake of 5-fluorouracil in mammary tumors 

independently of changes in interstitial fluid pressure and tumor stroma. 

Uptake of [H3]-5-fluorouracil in the DMBA-induced tumors were increased with 

more than 50% immediately after a single HBO treatment (2 bar, pO2 = 2 bar, 1 

exposure of 90 min). However, this effect was not found when measured 24 hours 

after the last repeated HBO treatment (2 bar, pO2 = 2 bar, 4 exposures à 90 min). 

Tumor interstitial fluid pressure (Pif), lymphatic structures and collagen content 

decreased significantly after HBO. However, HBO did not induce any change in 
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oxygen stress (measured as malondialdehyde levels) and transcapillary transport in 

the tumors. 

3.3 Paper III 

Tumor-stroma interactions in 4T1 mammary tumors with and without 

enhanced oxygenation. 

A new tumor model with dsRed expressing 4T1 mammary tumors in eGFP 

(enhanced green fluorescent protein) expressing NOD/SCID (Non-obese diabetic/ 

Severe combined immunodeficiency) mice was successfully established. 

Fluorescence microscopy, confirmed a successful separation of the tumor- and 

stromal cells after Fluorescence Activated Cell Sorting. Gene expression profiling 

demonstrated that highly up-regulated genes in the untreated tumor stroma included 

constituents of the extracellular matrix and matrix metalloproteinases. Furthermore, 

tumor growth was significantly inhibited by HBO. However, it did not inhibit 

metastasis over time. Immunohistochemistry and gene expression data showed a 

significant anti-angiogenic effect after intermittent HBO (2.5bar, 100% O2, 3 

exposures à 90 min), whilst daily HBO (2.5bar, 100% O2, 7 exposures à 90 min) did 

not show the same response. Neither morphology, proliferation nor the amount of cell 

death was significantly changed after HBO. 
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4. Methodological Considerations 

Detailed descriptions of methods are provided in the respective papers included in 

this thesis. However, aspects influencing choice of animal models and treatment, 

together with their advantages and limitations, are discussed in this section. 

4.1 Animal Models 

We used two different mammary tumor models in this thesis. The first two papers 

were performed on chemically-induced (DMBA) tumors in rats. In Paper III, 4T1 

mammary tumors in mice were used. 

4.1.1 Chemically-Induced DMBA Adenocarcinomas 

Dr. Charles Brenton Huggins developed the DMBA-induced rat mammary carcinoma 

model in 1961 [64]. The polycyclic aromatic hydrocarbon DMBA functions as a 

immunosuppressor, in addition of being a potent organ-specific carcinogen, most 

commonly inducing skin and mammary tumors in animals [65]. This model is now 

one of the most extensively investigated laboratory animal models mimicking human 

breast cancer. Histopathological and immunohistochemical characterization confirm 

that this is a good model for the changes occurring early in the multistep process of 

mammary gland carcinogenesis [66].  Investigation on UHKBR-01, a cell line 

derived from DMBA-induced rat mammary tumors, revealed that the cells are 

oestrogen- and progesterone-receptor positive, like other established breast cancer 

cell lines such as MDA-MB-231 and MCF7, which both are derived from human 

tumors [65].  Taken together with the fact that the effect of HBO on tumor growth, 

alone and in combination with 5FU, already was tested and proven to work reliably 

in this tumor model [61, 63], made it a natural choice for Paper I and II.
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4.1.2 Murine 4T1 Mammary Carcinomas 

4T1 is one of four cell lines isolated from a spontaneously arising autochthonous 

BALB/cfC3H mammary tumor [67]. Normally, human xenograft models metastasize 

poorly or to unexpected sites in mice. In contrast, murine tumor models often have 

more similar metastatic characteristics to that observed in cancer patients. Thus, 

murine  4T1 cells in mice metastasize to lung, liver, brain and bone through the 

hematogenous route, all sites affected in human breast cancer [68]. In this thesis, 4T1 

cells were implanted in NOD/SCID  mice [69]. This stock of mice has been shown to 

have multiple defects in adaptive and innate immune function, and allow a high 

percentage of tumor take, and thereby represent an advanced model for xeno-

engraftment studies [70]. Further, most of the experiments in Paper III are performed 

on dsRed transfected 4T1 tumor cells injected into eGFP expressing NOD/SCID 

mice. This tumor model enables us to visualize in detail the co-localization of the 

tumor and host cells, in addition to enabling separation of the two compartments 

using FACS (fluorescence activated cell sorting). This gives us the opportunity to 

investigate changes occurring in the tumor cells and the stromal cells separately, and 

thereby having a better chance of finding possible mechanisms involved in the effect 

HBO has on tumors. Niclou et al. [70] showed that the eGFP expressing NOD/SCID 

stock had an immunological profile comparable to the non-transgenic parental line, 

and that we can therefore compare results from the NOD/SCID model with the 

fluorescent stock. Coincident with tumor cell implantation, a 17�-estadiol pellet 

(0.18mg/pellet-60 day release) was implanted into the neck of the mice. 4T1 lack 

estrogen receptor � (ER�), and is therefore non-responsive to estrogen stimulation of 

growth. Nevertheless, Banka et al.[71] found that estrogen stimulation can affect the 

metastatic capability of 4T1 tumors. Thus, we chose to implant estrogen-pellets to be 

able to investigate tumor metastasis in addition to tumor growth. 
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4.1.3 Change of Animal Model 

As Stuhr et al. [61] and Raa et al. [63] both achieved promising results with HBO on 

the DMBA-induced mammary tumor model in rats, we wished to follow-up these 

studies to thoroughly elucidate how enhanced oxygenation influence tumor 

progression and response to chemotherapy in this model. Thus, both Paper I and II 

include studies on the DMBA-induced tumor model. Furthermore, in Paper III we 

wanted to test the hypothesis of enhanced oxygenation in a different mammary tumor 

model, to see if HBO had a general tumor-inhibitory effect on mammary tumors. 

Development of a mammary tumor model with dsRed 4T1 tumor cells injected in 

eGFP mice, enabled us to separately investigate oxygen-related changes occurring 

both in the tumor cells and in the tumor stroma. As of today, eGFP rats are not 

available, but if so, rats would be preferred, as tumor growth studies in rats enables 

longer experimental periods without influencing with the mobility and welfare of the 

animals, and also provides more tissue for analysis. 

4.2 Hyperbaric Oxygen 

In clinical practice, side effects of HBO are rare and mild because of the relatively 

low oxygen pressures used and the limited time of the treatment sessions.  

4.2.1 Side Effects due to changes in Atmospheric Pressure 

During compression and decompression of the hyperbaric chamber, the pressure-

volume relationship described in Boyles law (Formula 4), may cause unpleasant or 

more serious side effects.  

The most frequent problem caused by changes in atmospheric pressure is middle ear 

barotraumas, due to insufficient equilibration of the middle ear. Further, perforation 

of the oval window, and thereby leakage of perilymph from the inner ear to the 

middle ear, is a rare, but serious side effect. The most serious effect of barotrauma is 

pneumothorax, wherein air or gas is present in the pleural cavity, and leads to 
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collapse of the lung. However, this state has only been reported in a few cases, and 

always in comatose or ventilated patients [54]. Most of the adverse effects of 

hyperbaric conditions are, however, related to rapid decompression, i.e. relieving 

pressure [72]. Normally, gases of the atmosphere are in solution in the body tissues. 

Exposure to increased environmental pressure, leads to increased solubility of these 

gases in the body fluids, until saturation is reached. A sudden decrease of 

environmental pressure will lead to bubble formation. Still, the bubbles are mainly 

caused by nitrogen, as the body quickly can consume and deal with excess oxygen 

and carbon dioxide, and these bubbles induce decompression sickness. 

Decompression sickness can take several forms. Type I, or “the bends”, is related to 

pain in the major joints. Type II is a more serious condition and involves pulmonary, 

cardiac, ophthalmic, or neurological symptoms and the possibility of shock or coma 

[72]. HBO have shown beneficial effects on patients with decompression sickness, by 

reducing the bubble size, increasing the dissolution of the gas bubbles and counteract 

the hypoxic condition [56]. 

In the present study, both compression and decompression of the chamber was 

performed following a conservative schedule, using 3-5 min to reach the desired 

pressure and ~10 min to decompress the animals. The animals did not show any sign 

of discomfort during pressure changes. 

4.2.2 Side Effects due to Oxygen Partial Pressue 

In 1878, Paul Bert was the first to demonstrate the toxicity of oxygen. Thus, seizures 

resulting from acute oxygen toxicity to the central nervous system are still referred to 

as the "Paul Bert effect". Now it is clear that brain oxygen toxicity is pressure 

dependent and the immediate toxicity is reached by breathing 100% oxygen at 4-5 

bar [73]. At lower pressure the threshold is time dependent. Later, Lorrain Smith 

discovered that even moderate oxygen tensions could lead to serious and fatal lung 

injuries when the exposure time was long enough. This chronic pulmonary oxygen 

poisoning is therefore called the “Lorrain Smith effect”. Oxygen lung toxicity is 
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related to the cumulative damage from oxygen free radicals to lung parenchyma and 

airways and may thereby only occur during prolonged hyperbaric treatments [54]. 

Further, symptoms of oxygen toxicity may include disorientation, breathing problems 

and vision changes. Repeated HBO sessions may lead to transient myopia [74], but is 

reversed a few weeks after the cessation of treatment. In any environment with raised 

oxygen pressure, there is an increased risk of fire.  

 

Pott et al. [75] found no persistent effect on pulmonary function after 90 min HBO 

treatment of 2.4 bar. Together with the study by Lambertsen et al. [73], this clearly 

show that the pressure and time-frame used in our experiments are within safe range 

and that neither acute nor chronic oxygen toxicity was considered a problem. 

Furthermore, to avoid the fire hazard in the pure O2 environment, the animals were 

showered lightly with water prior to entering the pressure chamber. Additionally, the 

chamber was litter free, oil free and all electrical connections were disconnected. 

4.2.3 Change of HBO Protocols  

In paper I and II, the animals were treated 4 times for 90 min in a 2 bar and 100% O2 

atmosphere. This protocol was chosen, as these studies were performed as follow-up 

studies of Stuhr et al. [61]. They found that an extended experimental period, with 7 

HBO treatments over 23 days, gave no further reduction in tumor size, and thus 4 

treatments were chosen [61]. Additionally, Paper II included a single HBO treated 

group, to be able to study the acute effect of increased pO2.  

Raa et al. [63]  studied the effect of normobaric- and hyperbaric hyperoxia. This 

study, combined with the study by Stuhr et al. [61] indicate that the growth reduction 

is dose-dependent on pO2. Therefore, in Paper III, the HBO protocol was slightly 

changed. First, the atmospheric pressure was increased to 2.5 bar, to see if increased 

pO2 would induce an even greater growth-inhibitory response. Furthermore, due to 

the change of animal model from rats to mice and the aggressiveness of the 4T1 

tumors, the control mice could not carry the tumors for more than 8 days. Thus, the 
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treatment protocol was reduced from 4 treatments over 11 days, to 3 treatments over 

8 days. Additionally, one group of mice was treated daily with HBO, to elucidate if 

this could possibly potentiate the inhibitory effect of HBO, or if the tumors would 

adapt to the enhanced oxygenation, and thus display less response to the treatment. 
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5. General Discussion  

Although cancer research has made significant progress, important questions within 

this field are still unanswered. Hypoxia is one of the known features of solid tumors, 

and has been connected to several important parameters influencing both tumor 

growth and response to therapy. Thus, the rationale for focusing on tumor 

oxygenation in this thesis, is the hypothesis that hyperoxia, “the flip of the coin”, 

might counteract some of the mentioned negative aspects of hypoxia and thereby lead 

to additional insight into the effects of tumor oxygenation.  

5.1 HBO in Cancer Treatment 

As oxygen is believed to be required for all the major processes of wound healing, 

including resistance to infection, collagen deposition, angiogenesis and epithelisation 

[76], one feared that HBO would have the same proliferative effect in tumors. 

Therefore, throughout the 1950ies and 1960ies, the effect of HBO on cancers was 

tested to elucidate if HBO did promote tumor growth. The results from the studies 

were reviewed by both Feldmeier et al. [59] and Daruwalla et al. [60]. The reviewed 

studies included different types of cancers, with and without additional therapy, and 

thus had a variety of responses. Nevertheless, both reviewers concluded that HBO did 

not promote tumor growth, and that the use of HBO in patients with malignancies 

was considered safe. Subsequently, systematic research on HBO and cancer was 

terminated. It is important to emphasize that an effect of HBO treatment per se on 

tumors possibly depends on multiple factors, including tumor type and stage, as well 

as the timing, duration, atmospheric pressure and number of HBO exposures. In vitro 

studies have shown that there are discrepancies in growth fraction between cell lines 

exposed to hyperoxia [77], indicating differences in response to oxygen between 

different tumor types. This is reflected in the literature where patients with head and 

neck cancers tend to be most responsive to HBO therapy and patients with cervical 

and bladder cancer least responsive [60]. Thus, the observed variety in response to 
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HBO observed by Feldmeier et al. [59] and Daruwalla et al. [60] can therefore be 

ascribed to both differences in types of tumors, but also to the large variety in HBO 

treatment protocols. Nevertheless, studies from our group have demonstrated a 

growth-inhibitory effect of HBO on mammary tumors [61, 63], and therefore 

elucidation of HBO’s effect on mammary tumors were the scope of this thesis. 

Previous studies performed on HBO and cancers have only included evaluation of 

tumor growth and/or metastasis. Hence, the work performed in this thesis have 

looked further into the changes oxygenation causes in the tumor tissue, and 

considered the possibility that HBO might have been too early abandoned as a 

possible cancer treatment, at least as a treatment adjuvant. 

Hyperoxia and the Angiogenic Switch 

Even though clinical experience has shown that hyperoxia stimulate healing of 

wounds, the mechanisms accounting for the dependency of oxygen on angiogenesis, 

are largely unknown [78]. In contrast to the comprehension that oxygen leads to 

angiogenesis and collagen deposition in non-tumor tissue, our work show that HBO 

has an anti-angiogenic effect and leads to less fibrosis in tumors [62, 63, 79, 80]. 

Thus, this thesis contributes to new understanding of oxygen and its influence on 

angiogenesis in tumor tissue. It is well known that the HIF-1�-pathway is activated 

during hypoxia. It is therefore paradoxical that increased oxygenation should lead to 

increased angiogenesis in wound healing of non-tumor tissue, as HIF-1� is degraded 

when oxygenated. On the other hand, the anti-angiogenic effect we observed after 

hyperoxia, where several growth factors known to be induced by HIF were 

significantly reduced, supports the fact that HIF-1� is degraded during oxygenation. 

Based on the fact that angiogenesis creates new blood vessels that can nurture the 

tumor tissue, anti-angiogenesis could help explain the tumor-inhibitory effect. 

However, since both daily and intermittent HBO treatment of the 4T1 tumors in 

Paper III induced a growth-inhibitory effect, but only the intermittent group 

displayed anti-angiogenesis, angiogenesis cannot be the main determining factor 

behind the observed growth inhibition. 
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Hyperoxia and Cell Survival 

Together, Papers I and III indicate that HBO has a general tumor-inhibitory effect on 

mammary tumors. However, the extent of tumor-inhibition is far greater in the 

chemically-induced DMBA-tumors than in the 4T1 tumors. This also shows that 

despite the increased atmospheric pressure (from 2 to 2.5 bar); used in treating the 

4T1 tumors, the HBO treatment did not induce a more pronounced tumor-inhibitory 

response. This indicates that the previously observed dose-dependency of pO2 in the 

DMBA tumors [63] is not applicable when changing tumor models. 

Immunohistochemistry revealed differences in response to HBO with respect to both 

cellular proliferation and cell death in the two tumor models. While HBO display an 

anti-proliferative and pro-apoptotic effect in the DMBA-tumors, no significant 

changes in these parameters were observed in the 4T1 model. One might speculate if 

the 4T1 tumor were less hypoxic, and thereby displayed less response to enhanced 

oxygenation.  

Hyperoxia and the Glycolytic Switch 

Lòpez-Làzaro [81] published a review in 2009 questioning the importance of hypoxia 

in tumor progression, and proposed the alternative idea, viewing cancer as a process 

in which oxygen metabolism is altered from an energy-generating pathway to an 

ROS-producing pathway. With this in mind, the results from Paper I indicate a switch 

to a non-tumorigenic metabolism, while this metabolic-switch was not observed in 

the 4T1 tumors in Paper III. This discrepancy in metabolism could be a reasonable 

explanation for the difference in the extent of tumor growth-inhibition in the two 

mammary tumor models. 

Hyperoxia and Metastasis 

Metastasis is the major cause of cancer deaths [40]. As stated in the introduction, 

hypoxia increases the metastatic capability of tumors [40, 41]. In accordance to this, 

results from Paper I indicated that oxygen is an important factor in the “switch” from 

EMT to MET, leading to less aggressive and invasive tumors. On the other hand, the 
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supplementary results in Paper III show that HBO did not seem to inhibit the 

metastatic capability of the 4T1 tumor model over time. Thus, oxygen does not 

induce the same “switch” in all tumor models. Due to the fact that the DMBA tumor 

is not a metastatic model, the influence of MET on the metastatic behaviour is hard to 

determine. However, the significance of O2 as a factor in the induction of MET in 

DMBA-induced tumors is still interesting, since such a transition is believed to 

induce a less aggressive phenotype. 

 

Only a few other experimental studies have elucidated the effect of HBO per se on 

breast cancer growth and metastasis. Granowitz et al. [82] and Chen et al. [83] 

concluded that HBO had a significant inhibitory effect on mammary cell proliferation 

in vitro, which is in accordance with the results from our in vivo models. Further, 

McCredie et al.[84] and Haroon et al. [85]  found that HBO did not promote 

metastatic capability. Nevertheless, even though HBO display tumor-inhibitory 

effects in the mammary tumor models described in this thesis, there are too few 

studies supporting HBO inhibitory effects as a stand-alone mammary cancer therapy. 

However, combining enhanced oxygenation with chemotherapy, or another tumor-

inhibiting modality, may be one way to synergistically improve the treatment effect. 

5.2 HBO as a Chemoterapeutic Adjuvant 

As opposed to studying the effect of HBO per se on tumor growth, several studies 

have elucidated HBO as an adjuvant to conventional chemotherapy, both 

experimentally and in a clinical setting [61, 82, 86-92]. The studies were performed 

on different tumor types, with different chemotherapeutic drugs, and thus with great 

variation in response. Teicher [50] underlines that the importance of hypoxia on the 

response to chemotherapy is highly drug dependent. As stated in the introduction, 

hypoxia-mediated chemo-resistance has been ascribed to: 1) Some drugs and 

radiation requiring oxygen to generate ROS to be maximally cytotoxic. 2) Altered 
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cellular metabolism reducing drug cytotoxicity. 3) Hypoxia leading to genetic 

instability, which can lead to more rapid development of drug-resistant cells [50]. In 

addition the cytotoxicity, availability of the chemotherapeutic drug is important to 

obtain maximal effect. Tumor tissue anatomy influence transport of intravenously 

injected substances to the tumor cells, and thus the efficacy of the drug.  

5FU is a chemotherapeutic drug widely used in treatment of cancers, including 

colorectal cancer and breast cancers [93]. Paper II showed that the uptake of 

radioactively labelled 5FU was increased compared to control immediately after one 

HBO treatment, when the pO2 was still high, but not 24 hours after the last of 4 

repeated treatments. Oxygen-related changes observed in the tumor stroma, like 

collagen density and Pif, did not seem to influence the uptake, as thoroughly 

discussed in Paper II. Rump et al. [94] speculated if hyperbaric or hyperoxic 

conditions may affect the drug distribution by changing the catalytic activity of drug 

metabolizing enzymes, the hemodynamics and membrane permeability. The 

synergistic effect of HBO and 5FU observed by Stuhr et al. [61] is therefore not only 

ascribed to increased cytotoxicity, but seems to be related to increased availability of 

the chemotherapeutic drug, due to increased uptake.  

Pre-clinical studies have shown, that combining HBO with the right 

chemotherapeutic drug, might improve the treatment outcome of several types of 

cancer [61, 82, 88-92, 95]. However, further research within this field is needed to 

elucidate the mechanisms underlying the synergistic effect of oxygen and 

chemotherapy. 

 



 41

6. Conclusions

Our overall aim in this thesis was to study the effect of enhanced oxygenation on 

tumor growth, progression and response to therapy. 

We therefore addressed and answered the following specific aims: 

1. To investigate the effect of HBO therapy on tumor growth and 

progression in two different mammary tumor models, by elucidating cell 

proliferation, cell death and angiogenesis.  

HBO significantly inhibited mammary tumor growth in both the chemically-

induced DMBA tumors and the 4T1 tumors. Intermittent/Repeated HBO had a 

significant anti-angiogenic effect in both tumor models. However, while HBO 

had a pro-apoptotic and anti-proliferative effect on the DMBA-tumors, no such 

effect was apparent in the 4T1 tumors. (Paper I and III).  

2. To study the gene expression profile of both untreated and HBO treated 

tumors. 

Gene expression profiling showed that HBO induced a Mesenchymal-to-

Epithelial Transition and a shift towards a non-tumorigenic metabolism in the 

DMBA-induced mammary tumors, leading to more differentiated and less 

aggressive tumor phenotype. No such transition was observed in the 4T1 

tumors. Additionally, the immunohistochemical findings on angiogenesis, cell 

proliferation and cell death were supported by results from the gene expression 

analysis (Paper I and III). 
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3. To develop a mammary tumor model, to be able to study both aim 1 and 

2, in addition to elucidate tumor-stroma interactions. 

A new mammary tumor model was established, with dsRed transfected 4T1 

tumor cells injected into eGFP expressing NOD/SCID mice. This mammary 

tumor model enabled us to separate tumor and stromal cells, and demonstrated 

that the two compartments are characterized by distinct gene expressions, both 

in the native state and following HBO treatments (Paper III).  

4. To elucidate the effect of HBO on the uptake of a conventional 

chemotherapeutic drug, 5FU, into the tumor tissue,  and study possible 

oxygen-related changes occurring in the tumor stroma that might have 

influenced the chemotherapeutic response, as interstitial fluid pressure, 

amount of collagen, fluid distribution and reactive oxygen species.  

HBO increased the uptake of [H3]-5FU in the DMBA induced mammary 

tumors per se, independently of changes in Pif, oxygen stress, collagen fibril 

density or transendothelial transport alone (Paper II).  
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7. Future Perspectives and Concluding Remarks

Paper I, II and II have taken us one step closer to determining the effect of enhanced 

oxygenation on mammary tumor growth, progression and response to therapy by 

elucidating changes occurring in the tumor tissue.  

Due to the observed tumor-inhibitory effect of HBO on both the DMBA- induced- 

and the 4T1 mammary tumors, we aim to study a human mammary tumor model, 

MDA-231, in vivo. By elucidating the response to this human tumor model, we wish 

to increase the clinical relevance of the studies and get an even closer look into the 

background for the response to HBO.  

To be able to reach our ultimate goal of finding the mechanisms by which oxygen 

influence tumor development and response to therapy, further in vitro studies have 

been outlined. We aim to study cell proliferation of the breast cancer lines, 4T1, 

MDA-MB-231 and MCF-7 in vitro, after exposing the cells to three different oxygen-

environments, hypoxia (2% O2), normoxia (20% O2) and hyperoxia (80% O2). After 

incubation of the cells in the different oxygen-concentrations, gene expression studies 

will hopefully help us uncover possible oxygen-sensitive genes involved in tumor 

growth and progression.  Thus, by comparing genes that respond in opposite direction 

after hypoxic and hyperoxic conditions, we can possibly indentify important oxygen-

dependent genes for further evaluation.  

Ultimately, we wish to study Lentiviral/siRNA over-expression and knock-out 

strategies of the possible oxygen-dependent genes. This will first be performed on 

cell lines, before prospective functional validation in vivo.  

In turn, this may provide important new information as to how growth of cancers 

might be controlled, to potentially provide new treatment strategies for both breast 

cancer, but also other types of neoplasms.  
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Errata 

Introduction: 

1.3, line 12, Michieli et al. should read Michieli. 

1.3.5, line 1, Grey et al. should read Gray et al. 

Paper I:  

Table 3, Agilent Human Whole Genome Oligo Microarrays should read Agilent 

G413F Whole Rat Genome (4x44k) Oligo Microarray Kit. 

Figure 3C, should not contain heading (Number of collagen fibrils (2C)). 

Paper III: 

Discussion, page 13, paragraph 3, line 3, fgf should read FGF. 
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Appendix 

Table 3: Pressure conversion table. 

            To     

From 

atm bar kPa msw 

atm 1 1.013 101.325 10.123 

bar 0.987 1 100 10 

kPa 9.869 x 10-3 0.010 1 0.1 

msw 0.099 0.1 10 1 
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 c
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H
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