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Abstract A novel graph-cuts-basedmethod is proposed
for reconstructing open surfaces from unordered point

sets. Through a boolean operation on the crust around

the data set, the open surface problem is translated

to a watertight surface problem within a restricted re-
gion. Integrating the variational model, Delaunay-based

tetrahedral mesh framework and multi-phase technique,

the proposed method can reconstruct open surfaces ro-

bustly and effectively. Furthermore, a surface recon-

struction method with domain decomposition is pre-
sented, which is based on the new open surface recon-

struction method. This method can handle more gen-

eral surfaces, such as non-orientable surfaces. The algo-

rithm is designed in a parallel-friendly way and neces-
sary measures are taken to eliminate cracks at the in-

terface between the subdomains. Numerical examples

are included to demonstrate the robustness and effec-

tiveness of the proposed method on watertight, open

orientable, open non-orientable surfaces and combina-
tions of such.
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1 Introduction

Reconstructing a surface from an unordered point data
set has been a significant yet challenging problem in

computer graphics for the last decade. As a critical step

of creating computer graphics, surface reconstruction

fills the gap between machine perception and machine
understanding, i.e. the process from discrete scanned

data to a continuous model. Due to the development

of three dimensional scanners and the increasing de-

mand of computer graphics, extensive research has been

conducted in the surface reconstruction field, much of
which was dedicated to the watertight surface recon-

struction for its topological simplicity and desirable prop-

erties. Open surface reconstruction problems, however,

occur often in real applications, such as incomplete scanned
data. As a topic which has been overlooked, the open

surface reconstruction problem, to some extent, has more

significance than the watertight surface problem for its

topological generality. The definitions of watertight and

open surface are as follows.

A surface is defined as 2-manifold embedded in R3.

In our study, we restrict a surface to be a compact 2-

manifold, which we are referring to by saying a water-

tight surface. A surface with boundary is a 2-manifold
with boundary embedded in R3, which is the definition

of an open surface. (Dey, 2007)

Most surface reconstruction methods can be cate-

gorized into two groups, explicit methods and implicit
methods. Explicit methods are mainly local geometric

approaches based on Delaunay triangulation and dual

Voronoi diagram such as Alpha shape and CRUST al-

gorithm (Adamy et al, 2000; Amenta et al, 1998, 2000;
Boissonnat and Cazals, 2000; Dey and Goswami, 2003;

Edelsbrunner andMucke, 1992). One advantage of these

methods is their theoretical guarantee that there exists
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a sub-complex of Delaunay triangulation of the data

set, which is homeomorphic to the ground truth sur-

face given a sufficient sampling. Since these methods are

local approaches, the global topological characteristics

such as watertight or open, will not affect their per-
formances. Their target is the potential homeomorphic

sub-complex embedded in the Delaunay triangulation.

The topology of the sub-complex surface does not make

any difference. Hence, the explicit method can handle
quite a number of open surface cases.

However, the explicit methods are subject to many

reconstruction difficulties such as non-uniformity, un-

dersampling and noises (Amenta et al, 1998; Franchini

et al, 2010a; Zhao, 2000). Readers can compare the re-
sult from explicit methods in Fig. 1 to our experiment

on the same data set in Section 5. Hence, during the last

decade, variational models were brought into the recon-

struction field. The reconstruction problem is formu-

lated as a minimization problem of an energy functional
defined over surfaces. To minimize an energy functional

with respect to the surface, a consistent parametriza-

tion of the surface is not always available during the

optimization procedure. As a result, researchers turned
to the implicit methods (Alexa et al, 2001; Curless and

Levoy, 1996; Franchini et al, 2010a,b; Hoppe et al, 1992;

Ohtake et al, 2005; Solem and Heyden, 2004; Solem and

Kahl, 2004, 2005; Solem and Overgaard, 2005; Ye et al,

2010; Zhao et al, 2001), such as the level set method,
to gain flexibility of representation and mathematical

facilities. One important such level set approach based

on solving the underlying partial differential equations

was proposed by Zhao in (Zhao et al, 2001; Zhao, 2000).
As an alternative, graph cuts can also minimize the en-

ergy functionals over implicitly defined surfaces, and

has been successfully applied to the surface reconstruc-

tion problem in (Hornung and Kobbelt, 2006b; Lem-

pitsky and Boykov, 2007; Paris et al, 2006). The main
advantages of graph cuts are the efficiency and abil-

ity to find global minima. However, the competence of

both the level set method and graph cuts is lost on more

general topologies (Osher and Fedkiw, 2002). Some re-
construction methods could also handle open surfaces

(Hornung and Kobbelt, 2006b; Kuo and Yau, 2005; Yu,

1999). The success of (Kuo and Yau, 2005; Yu, 1999)

relies on the uniformity of input data set. To determine

the connectivity among data points depends on the sta-
tistical property of data closeness. Besides, they are

derived from explicit methods and also subject to the

noises and outliers. (Hornung and Kobbelt, 2006b) pro-

posed a hierarchical approach which could reconstruct
some open surfaces, in which openness can be treated

as holes. In their work, the coarse grids automatically

fill the holes and create a watertight environment in

(a) (b)

(c)

Fig. 1 Failure of CRUST algorithm on a noisy open case. (a)
shows the input data points including blue ground truth data and
red outliers. (b) shows the reconstructed result with unremoved
outliers. (c) is zoomed view.

the first several hierarchical stages. However, this suc-

cess relies on the size and shape of the surface boundary.
When surface boundary does not resemble a hole at all,

the hierarchical method would fail. Another recent work

(Solem and Heyden, 2006) to reconstruct open surfaces

is to use multiple level set functions based on curve mo-

tion (Bertalmı́o et al, 1999; Burchard et al, 2001; Cheng
et al, 2002; Faugeras and Gomes, 2000; Smereka, 2000).

Instead of the gradient descent in (Zhao et al, 2001),

they propagate two implicit surfaces in a same vector

field. The portion of the main surface enclosed in the
auxiliary surface is the open surface. However, the effi-

ciency of surface propagation is still a problem in that

study. To sum up, all these methods for open surfaces

have some disadvantages and “ it is not clear how to de-

vise methods for curves and surfaces that have ends or
edges (respectively) within the computational domain”

(Osher and Fedkiw, 2002).

In this article, a novel variational reconstruction

method for open surfaces is proposed. Unlike previ-

ous methods, our method separates the two types of

ill-posedness in the open surface problem and handles
them sequentially in different ways. The explicit meth-

ods are adapted to handle the uncertainty of the sur-

face boundary. The medial axis frequently used in the
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explicit methods are applied in a different manner. And

the implicit method is used to tackle the uncertainty of

the data connectivity issue. This new methodology not

only grants the merits from both explicit and implicit

methods, but also provides approaches to more general
cases such as the combination of open and watertight

surfaces. Following is a description of our algorithm.

In the proposed method, the data set points as well

as the properly generated background points are in-
serted to an unstructured tetrahedral mesh framework

in a Delaunay way. Due to its nearest connection prop-

erty, the Delaunay triangulation combining a sufficient

sampling density provides a theoretic guarantee that

there exists a sub-complex of the Delaunay triangula-
tion such that it is homeomorphic to the ground truth

surface. In the tetrahedral mesh, a crust is established

around the data set. The crust is the vicinity domain

of the input data set. A more precise definition is given
in Section 2. In (Wan et al, to appear), a graph dual to

the whole mesh is built according to the energy func-

tional and the minimization is achieved by applying

max-flow/min-cut algorithms. Since these algorithms

find a global minimum, it is essential to specify bound-
ary conditions of the crust. This can only be accom-

plished under the assumption that the domain can be

separated into two or more subdomains by the water-

tight crust, which does not hold any more for an open
surface problem. Without specifying boundary condi-

tions, the dual graph does not have valid n-links to

both source and sink, resulting in trivial min-cuts.

To tackle this issue, a boolean operation is pro-

posed to restrict the region of interest within a nar-
row band, which can be separated into two or more

subdomains. In the proposed method, two crusts with

different thickness are built around the data set. The

medial axis of the thick crust is to be obtained. One
more crust is then built around the boundary of the

medial axis. Subsequently, the two crusts around the

data set are trimmed by the crust around the bound-

ary. The trimmed thick crust can be separated by the

trimmed thin crust. Hence in the restricted region, i.e.
the trimmed thick crust, the trimmed thin crust is wa-

tertight such that region growing algorithms and graph

cut techniques can be applied. More details and illustra-

tions of this series of operations are provided in Section
3. The method subsequently constructs a graph dual

to the restricted mesh, applies max-flow/min-cut algo-

rithms and extracts the surface from the tetrahedral

mesh according to the obtained minimal cut. A flow

chart of the whole algorithm is shown in Fig. 2.

Furthermore, a surface reconstruction method based

on domain decomposition is presented. The domain de-

composition idea has been applied to computer vision

Fig. 2 The flowchart of open surface reconstruction

(Kohlberger et al, 2003, 2004, 2005). Recently it is found

also useful as a robust alternating minimization scheme

between overlapped subspaces (Tai and Duan, 2009; Tai

and Xu, 2002). In recent study, the dual graph could
be subdivided into subgraphs as well to gain extra ef-

ficiency (Strandmark and Kahl, 2010). In the decom-

position method, the whole domain is decomposed into

several subdomains. In each subdomain, a surface re-
construction problem, input of which is a subset of

the whole data points, is solved. Merging all the sur-

face patches from different subdomains is the critical

task. Such a fix-the-boundary measure is taken before

the graph technique is applied that potential conflicts
and cracks can be eliminated effectively. The parallel

efficiency may be undermined due to the interaction

between subdomains. However, it can be compensated

largely by a proper decomposition scheme. The method
proposed in this article can handle not only open sur-

faces but also more general surfaces such as combina-

tions of open and watertight surfaces.

The remainder of this paper is organized as follows.

In Section 2, a brief review of watertight surface recon-

struction based on Delaunay triangulation and graph-
cuts will be given. Section 3 deals with the open surface

problem. The new method to tackle this problem is pro-

posed and the algorithm is given in details. Section 4
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gives an important application of the open surface re-

construction method, the surface reconstruction based

on domain decomposition, which can handle more gen-

eral surfaces. To the best of our knowledge, this is the

first attempt to approach the nonorientable surface re-
construction problem via graph-cuts. In Section 5 var-

ious numerical examples are presented to demonstrate

effectiveness and robustness of the proposed method on

all kinds of surfaces. Finally, Section 6 concludes the ar-
ticle.

2 Graph-cuts Reconstruction of watertight

surface

In the previous work (Wan et al, to appear) a varia-

tional reconstruction method was proposed for water-

tight surfaces based on graph-cuts. The cost energy
functional is a generalization from the weighted min-

imal surface model (Zhao et al, 2001), which is also

related to the minimal surface (Caselles et al, 1997b)

or geodesic active contours (Caselles et al, 1997a) ap-
proaches. This functional is minimized on an unstruc-

tured tetrahedral mesh framework, which provides more

flexibility and effectiveness than structured grids used

in other graph-based methods (Hornung and Kobbelt,

2006a,b; Paris et al, 2006). As a matter of fact, the
Delaunay-based mesh guarantees the existence of a sub-

complex homeomorphic to the ground truth surface given

a sufficient sampling. The method can handle various

reconstruction difficulties such as noise, undersampling
and non-uniformity. By adopting the idea presented in

(Bae and Tai, 2009), the method is able to address two

phase and multi-phase problems in a unified approach.

In addition, an automatic phase detecting method based

on region growing algorithms is developed to minimizes
user intervention. A brief review of the ideas and tech-

niques on watertight surfaces will be given in this sec-

tion.

2.1 Two phase surface reconstruction via graph-cuts

For convenience, this subsection only discusses two phase

problems, in which the ground truth surface S simply
separates the embedding domain X ⊂ R3 into two con-

nected regions, inside and outside. Let P be a point

data set sampled from S in the domain X . Define the

distance function as d(x) = d(x, P ) = infy∈P d(x, y),
where d(x, y) is the Euclidean distance between points

x and y in R3. As in (Wan et al, to appear; Zhao et al,

2001), the following cost energy is proposed for surface

reconstruction,

E(Γ ) =

∫
X

|φΓ (x)− I(x)| β(x)dx

+

∫
Γ

d(x)ds+ α

∫
Γ

ds , (1)

where Γ is an arbitrary surface and ds is the surface

area.

The above φΓ (x) is the piecewise constant level set

function same as (Lie et al, 2006) corresponding to the

surface Γ

φΓ (x) =

{
c1 if x inside Γ

c2 if x outside Γ
. (2)

c1 and c2 serve as the constant level set value and

could be any distinct constants. As a consequence, the

surface Γ is implicitly represented as the discontinuities
of φΓ (x).

The crust around P is defined as CP
d = {x ∈ X :

d(x, P ) ≤ d}. Given a watertight surface and a rea-

sonably dense sampling, we assume the crust around

the sampling data set is able to partition the whole
domain into two connected regions, i.e. interior and ex-

terior. I(x) is an indicator function which labels these

two subdomains as well as the crust region. Compared

with φΓ (x) which labels the final partitioning , this in-
dicator function serves as an initial labelling.

I(x) =

⎧⎨
⎩

0 if x in CP
d

c1 if x in the interior part of X\CP
d

c2 if x in the exterior part of X\CP
d

. (3)

In (1), β(x) is a confidence function suggesting the

extent to which the indicator function, the estimate for

the level set function, is faithful. The reconstructed sur-

face is rather unlikely to fall outside the crust region

given a low noise level, which results in the following
specification of β(x).

β(x) =

{
0 if x in CP

d

σ others
, (4)

where σ is a relatively large positive value.
The first term in (1), can be viewed as specify-

ing boundary conditions on φ at the boundary of the

crust. By specifying proper I(x) and β(x), the first term

would constrain the resulting surface within a restricted
region, i.e. CP

d . Otherwise, if there are any disagree-

ments between φΓ (x) and I(x) out of the crust region

where β(x) = σ, the energy would not be minimized.

This term is important; without it the global minimum

of (1) would be the trivial null surface, where φΓ is just
a constant everywhere.

The second term is the essential part in the weighted

minimal surface model (Zhao et al, 2001) and the third
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term is the regularization term concerning the surface

area. By tuning the regularization coefficient α, a com-

promise between faithfulness and smoothness can be

achieved.

In this method, (1) is discretized on an unstruc-
tured tetrahedral mesh Th instead of structured grids

used in other graph-based methods. And a mesh and

triangulation are referring to the same thing (George

and Borouchaki, 1998). Generally, a mesh can be de-
fined by a pair (V,C). V is the set of all vertices and C

is a complex consisting of four types of simplexes, i.e.

vertices, edges, triangles, and tetrahedra. For vertices

u, v, w, z, we define {v, u} as the edge between v and

u, {v, u, w} as the triangle with vertices v, u, w, and
{v, u, w, z} as the tetrahedron with vertices v, u, w, z.

{Ki}Ni=1
are used to denote all N tetrahedra in Th. In

our case V is the set of mesh points including data

points and background points P ∪Q.
In a mesh Th, we can define 1-ring neighborhood of a

vertex v as N1

v = {u|{v, u} ∈ C} and M -ring neighbor-

hood in a recursive wayNM
v = {u|∃w ∈ NM−1

v , {w, u} ∈
C}. Based on this neighborhood system, the crust around

the data set P can be defined as KP
M = {Ki|∃v ∈

Ki, v ∈ NM
u , u ∈ P}.

Given P , the sizing function h(v) for each vertex

v ∈ P can be defined as the d(v, P\{v}): the close-

ness measure to the other vertices. Under uniformity
assumption, the average sizing function h̄ =

∑
v∈P

v(h)

could well approximate that of each individual vertex.

The background points aim to construct the mesh of

reasonable size and good quality. Either regular grid or

Body-centered cubic (BCC) lattice is a good choice.

BCC(h) = h ·

(
Z
3 ∪

(
Z
3 + (

1

2
,
1

2
,
1

2
)
))

(5)

where Z
3 are points with integer coordinates and h

is the size of BCC lattice (Gray and Neuhoff, 2002).
The background point set is defined as Q = {v|v ∈
BCC(h̄) ∩ X, d(v, P ) > h̄}. The restricting inequity

d(v, P ) > h̄ is necessary since too close background

points would destroy the ground truth embedded in the
mesh.

When the data sets are non-uniform, i.e. with widely

varying sizing function values, the uniform background

lattice points are not suitable any more. A well graded

sizing mesh is required instead. The mesh element sizes
shall conform with the local sizing function. The param-

eter h of BCC(h) shall vary correspondingly. A good

meshing technique is (Labelle and Shewchuk, 2007),

which utilized octree to construct graded BCC meshes.
More advanced non-uniform mesh generation technique

is also available, see (Du and Wang, 2002). The benefit

of such a reasonable sized mesh will be seen later.

In this mesh framework, the surface Γ can be ap-

proximated by Γh, a sub-complex of Th. (Amenta et al,

1998) shows that there exists a sub-complex of the De-

launay triangulation of P , which is homeomorphic to

the ground truth surface S. As a consequence of this
fact and the local property of Delaunay triangulations,

there also exists a homeomorphic-to-S sub-complex of

the Delaunay triangulation of Q∪P given a reasonable

distribution of background points Q.

The first term in (1) , the integral over the whole

domain X can be simply discretized as

∫
X

|φΓ (x) − I(x)| β(x)dx

=

N∑
i=1

∫
Ki

|φΓ (x) − I(x)| β(x)dx

≈
N∑
i=1

|φΓh
(Ki)− I(Ki)| β(Ki) . (6)

φΓh
(Ki) =

{
c1 if Ki inside Γh

c2 if Ki outside Γh
, (7)

I(Ki) =

⎧⎨
⎩

0 if Ki ∈ KP
M

c1 if Ki in the interior

c2 if Ki in the exterior

, (8)

β(Ki) =

{
0 if Ki ∈ KP

M

σ others
, (9)

where σ is a relatively large positive value.

The second and third terms in (1) are integrals over
the surface area. The surface triangulation Γh can be

thought of as the union of the triangular faces shared

by tetrahedra with different level set values.

Γh =
⋃

φΓ (Ki) �=φΓ (Kj)

Γij ,

where Γij = Ki ∩Kj. Hence combining (6), (1) can be

discretized as follows

E(Γ ) ≈
N∑
i=1

|φΓh
(Ki)− I(Ki)|β(Ki)

+
∑
i,j

(dij + α)Sij1{φΓh
(Ki) �=φΓh

(Kj)} , (10)

where

dij =

∫
Γij

d(x)ds∫
Γij

ds
, Sij =

∫
Γij

ds . (11)
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Fig. 3 The primal-dual relationship of triangular mesh (Wan
et al, to appear)

Fig. 4 Graph edge weight assignment (Wan et al, to appear)

Table 1 Relationship between cut and surface

Cut in dual graph Surface in primal mesh

C =
⋃

xi,xj∈V, φi �=φj

(xi, xj) Γ =
⋃

Ki,Kj∈Th, φi �=φj

(Ki ∩Kj)

The energy of E(Γ ) can be minimized very effi-

ciently by graph-cuts, since this energy functional is
graph representable, which can be verified by the con-

clusion of (Kolmogorov and Zabin, 2004). First, a graph

dual to the primal tetrahedral mesh is constructed, in

which each node corresponds to a tetrahedron in the
mesh and each edge corresponds to a triangular face in

the mesh. This primal-dual relationship is illustrated

for two dimensions in Fig 3.

The edge weights are determined by different terms
in E(Γ ) as shown in Fig. 4 and below

si = |I(Ki)− c2|β(Ki) , ti = |I(Ki)− c1|β(Ki) ,
Nij = (dij + α)Sij , Nji = (dij + α)Sij ,

(12)

where c1 and c2 are the piecewise constant level set

function values, standing for the regions inside and out-
side the surface.

After graph construction, max-flow/min-cut algo-

rithms can be applied on the obtained graph. The al-

gorithm in (Boykov and Kolmogorov, 2004) is a good
choice for its empirically good performance. Due to the

primal-dual relationship in Table 1, the reconstructed

surface can be directly extracted from the background

Fig. 5 Watertight surface reconstruction. Given a data set (a)
sampled from an object surface, proper background points such
as grid points are generated according to the data points distri-
bution. An unstructured tetrahedral mesh (b) is generated in a
Delaunay way and the crust around the data set is established. A
graph dual to the mesh is constructed (c). Graph-cuts are applied
and segmentation on the primal mesh is obtained (d). Extract
the surface from tetrahedral mesh (e), the reconstructed surface
is obtained (f)

Table 2 Watertight surface reconstruction method

Inputs A data point set P

Algorithm

1. Generate background points Q according to
the density of P

2. Insert P and Q to a tetrahedral mesh Th in a
Delaunay way

3. Establish the crust, KM
P

4. Region growing on the regions outside KM
P

5. Specify the Indicator function according to (3)
6. Construct a graph dual to the mesh
7. Assign edge weights according to (12)
8. Apply the graph-cuts
9. Extract the surface according to the minimal

cut

Outputs The surface triangulation S
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mesh according to the minimal cut. The whole algo-

rithm is shown in Table 2 and the flow chart is shown

in Fig 5.

2.2 Multi-phase surface reconstruction

We assume now that the interior and exterior of the sur-

face are not connected sets. Such cases can be handled

by introducing more labels. We assume the surface sep-

aratesX intoM connected regions {Xi}Mi=1
. Surfaces of

this kind can be represented in the level set framework

of (Lie et al, 2006) by defining φΓ as φΓ (x) = ci for

x ∈ Xi, i = 1, ...,M . As before, Γ is represented as the

discontinuities of φΓ . The complete energy functional

(1) is therefore given in the discrete setting as

E(Γ ) ≈
N∑
i=1

|φΓh
(Ki)− I(Ki)|β(Ki)

+
∑
i,j

(dij + α)Sij1{φΓh
(Ki) �=φΓh

(Kj)} (13)

where

dij =

∫
Γij

d(x)ds∫
Γij

ds
, Sij =

∫
Γij

ds . (14)

Minimization problems with multiple phases, or labels,

have been studied previously in image processing. The

work of (Ishikawa, 2003) and a later modification (Bae
and Tai, 2009) presented techniques to efficiently min-

imize certain such multilabel problems by graph cuts.

By making a simplification of the length term in (13),

we can convert the problem (13) to such graph rep-

resentable form. It was observed that several surfaces
could be represented by a hyper-surface in a higher di-

mensional domain. Hence the multi-way cut problem

is equivalent to a binary cut problem in a multi-layer

graph. Therefore, an extra dimension is introduced to
the original graph dual to the primal mesh. This multi-

layer graph idea is illustrated in Fig. 6.

The multi-layer idea does not change much from im-

age processing to surface reconstruction. As earlier, we

let CP
d denote the crust around the data points P. The

domain X\CP
d now contains several disconnected sub-

domains (instead of just two as in the last subsection).
The indicator function I should be specified such that

it takes different values in different subdomains

I(x) =

{
0 if x in CP

d

ci if x inside the ith subdomain.
. (15)

Once the original graph dual to the primal mesh is con-

structed, it is duplicated M − 1 times if the number of

subdomains is M . More specifically, a graph is created

(a) two phase segmentation (b) multiphase segmentation

(c) two phase segmentation

result

(d) multiphase segmentation

result

Fig. 6 One dimensional example to illustrate multilayer graph
(Bae and Tai, 2009)

such that M−1 vertices in the vertex set are associated

to each tetrahedra Ki. The notation vki is used for the

vertex corresponding to Ki at level k ∈ {1, ...,M − 1}.
We let c(a, b) denote the cost on the edge between ver-
tex a and b. The edges connecting vertices in the same

level are called horizontal edges, while the others are

called vertical edges. The weights for the vertical edges

represent the data term, and are defined by

c(s, v1i ) = |c1 − I(Ki)|β(Ki) for i = 1, ..., N,

c
(
vki , v

k+1

i

)
= |ck+1 − I(Ki)| β(Ki) for i = 1, ..., N,
∀k ∈ {1, ...,M − 2},

c
(
vM−1

i , t
)
= |cM − I(Ki)|β(Ki) for i = 1, ..., N.

(16)

The weights for the horizontal edges represent the
regularization term in functional (1), and are defined

as follows.

c(vki , v
k
j ) = (dij + α)Sij , c(v

k
j , v

k
i ) = (dij + α)Sij , (17)

∀i, j ∈ {1, ..., N}, ∀k ∈ {1, ...,M − 1}.

After finding the minimum cut C on this graph, the
labeling function can be recovered by

φi =

⎧⎨
⎩

c1 if (s, v1i ) ∈ C

ck+1 if (vki , v
k+1

i ) ∈ C, k = 1, ...,M − 2

cM if (vM−1

i , t) ∈ C

.

(18)

As shown in Fig. 7, the multi-layer graph idea is il-

lustrated by two intersecting spheres. Fig. 7(a) presents

the cut view of the mesh, where red crust separates the

domain into four regions marked with different colors.
The corresponding three layer graph is shown in Fig.

7(b), in which I(Ki) = 1, 2, 3, 4 when Ki is blue, green,

purple, or brown. The nodes in the graph correspond
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(a)

(b)

Fig. 7 A multi-phase surface problem and the corresponding
multi-layer graph (Wan et al, to appear)

to the tetrahedra with the same color. The weights dis-

tribution among vertical edges depend on I(Ki). It is

worth noticing that some vertical edges vanish as shown

in (b) and the red nodes do not have vertical edges at

all.

In order to determine the number of subdomainsM ,

an intelligent method for detecting the number of sub-
domains based on region growing algorithms is applied

after the mesh generation and crust establishment. In

this procedure, the indicator function I(Ki) is speci-

fied automatically. User intervention is optional, but in
most cases unnecessary. As first developed in the im-

age segmentation field, the region growing algorithm

(Adams and Bischof, 1994) mainly consists of the fol-

lowing steps. Firstly, several initial seeds are selected.

Secondly, for each seed, its neighborhood is examined
to decide whether that belongs to the same partition

or not. Based on this idea, a phase detection method is

developed on the tetrahedral mesh, in which the neigh-

borhood of a tetrahedron Ki are four tetrahedra shar-
ing one face with Ki respectively. In this method, the

seeds are not required to be appointed. Instead they

are picked automatically during the algorithm, which

is presented in Table 3 and Table 4.

3 Open Surface Reconstruction via Graph-cuts

The method discussed in Section 2 can reconstruct wa-

tertight surfaces, which has an interior and exterior re-

gion in R3. In this section we discuss open surfaces,

Table 3 Phase detecting method based on region growing

Inputs

1. A mesh Th = (P ∪Q,C), {Ki}Ni=1 ∈ C

2. Labelling values ci, i = 1, . . . ,M.

Algorithm

1. Construct the crust KM
P

%% Initiate all tetrahedra
2. For i = 1 : N
3. If Ki ∈ KM

P

4. I(Ki) = 0
5. Else
6. I(Ki) = −1
7. End If
8. End For

%% Region growing all tetrahedra out of crust
9. L = 1
10. For i = 1 : N
11. If I(Ki) == −1
12. region growing(Ki, cL)
13. L = L+ 1
14. End If

15. End For
%% At the end, all tetrahedra in the same par-
tition are labeled the same value.

Table 4 Region growing function

function region growing(K, l)

Function

%% {Ni}4i=1 are four neighbors of K, and l is
the label value

1. I(K) = l

2. For i=1:4
3. If I(Ni) == −1
4. region growing(Ni, l)
5. End If
6. End For

which obviously does not have a clear interior and ex-
terior. One critical step of the previous method was the

specification of the indicator function I(x) as the estab-

lishment of the boundary conditions, which was com-

pleted by the phase detection method based on region

growing algorithms described in Section 2. If the crust
around the data set fails to separate the domain into

two or more partitions as in Fig. 5(b), the phase detec-

tor would label all regions out of the crust with the same

indicator value. A solid and reasonable boundary con-
dition is not available and hence the global minimum

would be the trivial null surface. Therefore graph-cuts

can not be conducted properly. Fig 8 illustrates this

situation and the failure of our previous method by an

example in two dimensions.

Certain interactive specification can be used in this

situation as in Fig. 9(a). One spot (small region) on

each side of the potential surface has been assigned
with different indicator values as two ’seeds’. The graph

cut result is shown in Fig. 9(b). It can be noticed that

the result has been artificially extended from two ends
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(a) (b)

Fig. 8 The failure of previous graph based methods

(a) (b)

(c) (d)

Fig. 9 An interactive method to handle open surface and its
limitation

of the ground truth curve. This is inevitable since the

minimal cut is required to separate the whole graph,

which corresponds to the whole domain. In addition,

the selection of the “seeds” spot should be rather cau-
tious. Otherwise, improperly small “seeds” as well as a

great regularization coefficient is likely to lead to a triv-

ial result as shown in Fig. 9(c), in which the cut and

the corresponding surface shrink to the boundary of a

“seed” spot. All these disadvantages aside, this interac-
tive method apparently lacks generality to be applied

on more complicated cases such as Fig. 9(d). It is trou-

blesome for users to select two ’seeds’ in the complex

spiral curve, not to mention that the graph-cuts result
would be ruined by the artificially extended surface.

All above considered, in this article, a more intelligent

and robust reconstruction method for general surfaces,

including open surfaces, watertight surfaces, and com-

binations of such is proposed.

As presented and illustrated above, the gap between

our previous method and the new problem of open sur-

faces is a reasonable partitioning of the region out of

the crust. The proposed method consists of an auto-

matic partitioning procedure followed by all steps con-

tained in Section 2. By defining a boolean operation on

the vicinity of the data set, the region of interest has
been trimmed in such a way that it can be separated

into two or more partitions by a watertight crust. Sub-

sequent phase detection and graph techniques can be

applied on the trimmed region. Detailed description is
as follows.

3.1 A description of the method

Given a point set P in the domain X ⊂ R3, which is

sampled from the surface S. The distance d(x, P ) and

the crust CP
d is defined in the same way as in Section

2. Firstly, two crusts with different thickness parame-

ters d1 < d2 are constructed around P : CP
d1

and CP
d2
.

CP
d2

rather than the whole domain X is the region of

interest. The resulting surface is supposed to lay in CP
d1
.

These two crusts are illustrated in Fig. 10(a), in which

the inner crust CP
d1

fails to separate the region CP
d2

and

to create a watertight environment.

Secondly the medial axis Md of the boundary of CP
d2

is to be found. As defined in (Amenta et al, 1998), the
medial axis of a manifold Σ ⊂ Rk is the closure of the

set of points in Rk that have at least two closest points

in Σ. Under a noise-free assumption, this medial axis

Md itself is a good approximation to the ground truth
surface S. Well approximating as it is, the medial axis

is only an intermediate product of the algorithm. More

steps are required to handle difficulties such as noises

and non-uniformity.

Thirdly Bd, the boundary of Md is found, which
well approximates the boundary of the ground truth

surface S. A crust around Bd is constructed: CBd
d3

=

{x ∈ X, : d(x,Bd) ≤ d3}, d3 ≥ d2. Subsequently those

two crusts around P, i.e. CP
d1

and CP
d2
, are trimmed by

the crust around Bd, i.e. CBd
d3

, which can be expressed

as the boolean operation: C̃P
d1

= CP
d1
− (CBd

d3
∩ CP

d1
),

C̃P
d2

= CP
d2
− (CBd

d3
∩CP

d2
). We can safely assert that C̃P

d2

can be separated into two or more partitions by C̃P
d1

given sufficient sampling and proper d1, d2 and d3. This

procedure is illustrated in Fig 10(b), in which Bd in two

dimensions is the two ends of the curve. Two red crusts,

CP
d1

and CP
d2
, have been trimmed by the gray circles, i.e.

CBd
d3

, and the remaining light red crust C̃P
d2

is separated

by the remaining dark red one C̃P
d1
. Hence the phase

detector can label these disconnected subdomains with
different indicator values and graph-cuts can be applied

to the C̃P
d2

as shown in Fig. 10(c),(d). These two steps

are same to those described in Section 2 except that
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(a) (b)

(c) (d)

Fig. 10 Crust establishments and boolean operation

(a) (b)

Fig. 11 Approaching the case in Fig. 9(d)

the region of interest is no longer the whole domain X .

As a proof of the effectiveness of the proposed method,

the case in Fig 9(d) can be approached perfectly with
the result shown in Fig 11.

d1, d2, and d3 serve as the thicknesses for three

crusts used in the proposed method. The discussion
of these parameters setting and their impact is given

as follows. d1 is the thickness of the inner crust CP
d1
.

Under noise-free assumption, d1 > minv∈P h(v), where

h(v) is the sizing function defined in Section 2. This re-
striction means the CP

d1
shall connect any data point to

at least another data point. On uniform and noise-free

cases, we usually set d1 = 2h̄. d2, as the thickness of the

outer crust CP
d2
, is only required be slightly larger than

d1 in continuous circumstance, usually set to 4h̄. But
in discrete implementation, the difference between d1
and d2 is more important, which we will discuss in Sec-

tion 3.2. d3 is the thickness of the trimming crust CBd
d3

,

which is required to be slightly larger than d2, both in
continuous and discrete circumstances. It is set to 5h̄ in

the experiments. When facing a non-uniform data set,

a single tuple of di parameters obviously is not enough.

{di, i = 1, 2, 3} shall vary according to the data density,

which means the h̄ shall be replaced by the local h(v).

This could be a difficult issue, which, however, will be

tackled well in the discrete implementation.

It is worth noticing that Bd would be an empty
set if the ground truth surface S is watertight. There-

fore an empty crust CBd
d3

is constructed and no boolean

operation is done upon CP
d1

and CP
d2
. In other words,

the method in Section 2 is a special case of the pro-
posed method. Various types of cases, including open,

watertight, and hybrid surfaces, can be approached by

a single algorithm without any a priori knowledge of

surface topology or beforehand hole detections.

It is also worth mentioning that the surface falling

in CBd
d3

is designed to be abandoned. The loss in the

reconstructed result is estimated to be comparable to

d3, which is negligible compared to the huge data set.

We choose to sacrifice the portion of surface in CBd
d3

to
gain more robustness. The slightly loss could hardly be

observed in the numerical examples.

3.2 The implementation of the method

In this subsection, we provide the discrete versions of

the concepts involved in the above algorithm. This algo-

rithm is implemented upon a tetrahedral mesh based on

these discrete concepts, which is presented in detail in
the Table 5. Before presenting these concepts, the estab-

lishment of the mesh framework is briefly introduced.

Given a data point set P , background points Q are gen-

erated according to the local density of P . Usually, uni-
form or adaptive grid points are a good choice. Both P

and Q are inserted into a tetrahedral mesh Th in a De-

launay way. In the mesh Th = (P ∪Q,C), {Ki}Ni=1
⊂ C

are the tetrahedra and {Fi}Li=1
⊂ C triangular faces.

Let the mesh and the crust be defined in the same
way as in Section 2. The discrete distance between vi
and vj is defined as dh(vi, vj) = min

M
{M |vj ∈ NM

vi
}.

Then the discrete distance between a vertex v and a ver-

tex set V can be defined as dh(v, V ) = minx∈V dh(v, x).
Further, given a surface triangulation Σh, the discrete

medial axis can also be defined in two ways. The dis-

crete medial axis in vertices MV = {v|∃u1, u2 ∈ Σh,

dh(v, u1) = dh(v, u2) = dh(v,Σh)}. The discrete medial

axis in triangular faces MF = {Fi = {u, v, w}|u, v, w ∈
MV }.

Notice that the d1, d2 and d3 parameters are re-

placed by the discrete distance N1, N2 and N3. As

mentioned in previous subsection, for non-uniform data
sets, the tuple of {di, i = 1, 2, 3} shall vary according to

the sizing function h. Recall the reasonable sized mesh

we construct for the non-uniform data set. Since the
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Table 5 Open surface reconstruction on a tetrahedral mesh

Inputs A point set P

Algorithm

1. Generate background points Q according to
the density of P

2. Insert P and Q to a tetrahedral mesh Th in a
Delaunay way

3. Build two crusts KP
N1

and KP
N2

4. Find Σ, the boundary triangulation of KP
N2

5. The medial axis of Σ in vertices MV is found
6. The medial axis of Σ in faces MF is found
7. The boundary of MF is found B

8. The vertices on the boundary B is to be found:
Bd = B ∩ (P ∪Q)

9. Build a crust K
Bd
N3

around Bd with N3 > N2

10. Trim the two crusts around P : K̃P
N1

= KP
N1
−

(K
Bd
N3
∩KP

N1
), K̃P

N2
= KP

N2
− (K

Bd
N3
∩KP

N2
)

11. Partition the region K̃P
N2

− K̃P
N1

by region
growing algorithms

12. Construct a graph G dual to K̃P
N2

13. Apply graph-cuts on G and extract the surface
S from the minimal cut

Outputs The surface triangulation S

mesh element sizes conform with the local sizing func-

tion, the varying sizing function h has been included

in the varying mesh size. Hence the discrete parame-

ter {Ni, i = 1, 2, 3} can be fixed globally. For exam-
ple, instead of {d1, d2, d3} = {2h, 4h, 5h} with varying

h, {N1, N2, N3} = {2, 4, 5}. This largely facilitates the

implementation.

Based on these definitions in a discrete language,

the proposed algorithm can be effectively implemented

on a tetrahedral mesh as described in Table 5. The
underlying Delaunay-based mesh makes the resulting

surface more likely to be homeomorphic to the ground

truth. More examples are shown in Section 5 to demon-

strate the effectiveness and robustness of the proposed
method.

What is also worth mentioning is the difference be-
tween N1 and N2 should be paid special attention to.

The discrete distance are measured by vertices and the

subsequent region growing algorithm are conducted on

tetrahedra. The region growing procedure could be eas-

ily obstructed if the cavity between KP
N1

and KP
N2

are
too slim. The connected region in continuous circum-

stance would be detected as several disconnected re-

gions in discrete mesh. The Armadillo example in Sec-

tion 5 shows this situation.

4 Reconstruction of open surfaces based on

domain decomposition

In Section 3, the open surface reconstruction method

has been proposed, whose effectiveness and robustness

will be shown in Section 5. The good performance on

various kinds of surfaces leads to further consideration

of its applications. One of the most significant applica-

tions is to reconstruct a surface based on domain de-

composition. Domain decomposition has been success-
fully applied on computer vision field for a long time.

One option is to use domain decomposition idea as pre-

conditioners to get fast solvers for some related linear

problems (Kohlberger et al, 2003, 2004, 2005). Some re-
cent analysis reveals that domain decomposition can be

used as a robust alternating minimization scheme be-

tween overlapped subspaces, see (Tai and Duan, 2009;

Tai and Xu, 2002). In recent study, the dual graph could

be subdivided into subgraphs as well to gain extra effi-
ciency (Strandmark and Kahl, 2010). In surface recon-

struction, the robustness and effectiveness of such kind

of divide-and-conquer algorithms will strongly depend

on a good reconstruction method for general surfaces,
since the surface in a subdomain may be open or have

disconnected interior. Hence, based on the method pro-

posed in Section 3, we present a reconstruction method

based on domain decomposition. Since the idea of par-

allel surface reconstruction is also very attractive, the
method is designed in such a way that it can easily be

adapted to parallel machines.

Another motivation is the incompetence of the method
proposed in Section 3 on some special cases. As is known,

all 2-manifolds without boundary in R3, i.e. watertight

surfaces, are orientable (Dey, 2007). The methods dedi-

cated to watertight surfaces do not have to face the diffi-
culty about non-orientability. However, the 2-manifolds

with boundaries, i.e. open surfaces, may be nonorientable.

This nonorientable surface problem would be a great

challenge for those methods based on implicit represen-

tations. For instance, the method proposed in Section
3 cannot handle nonorientable surfaces such as Mobius

strip. After the trimming operation, C̃P
d1

may still fail

to separate C̃P
d2

into two or more subdomains. A sur-

face reconstruction method based on domain decompo-

sition would be helpful when facing this difficulty. Once
the domain X has been decomposed properly, the sur-

face piece in each subdomain is orientable, and can be

approached by the method in Section 3. To the best

of our knowledge, this study is the first to reconstruct

non-orientable surfaces via graph-cuts.

4.1 Overlapping domain decomposition scheme

Given a domain X ⊂ R3, a partitioning {Xi}Ni=1
of X

can be obtained according to a decomposition scheme.

In practice, the decomposition scheme can be spatial

oriented, feature oriented or data oriented. In this study,
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(a) (b)

Fig. 12 Nonoverlapping and overlapping decomposition schemes

Fig. 13 A concrete example of cracks in non-overlapping decom-
position scheme

a common spatial decomposition scheme is used. Obvi-

ously, any rectangular cuboid B can be decomposed

into small tessellating rectangular cuboids {Bi}
N
i=1

as
illustrated in Fig. 12(a). In our problem, by choosing

B to be a rectangular cuboid properly bounding X , i.e.

X ⊂ B, {Xi}Ni=1
can be obtained through Xi = X∩Bi.

Notice that ∪N
i=1

Xi = X , Xi ∩Xj = ∅.

However, to avoid the cracks between subdomains

as in Fig. 13, overlapping parts are necessary. In our

study, an overlapping decomposition scheme could be

obtained by expanding cuboid cells {Bi}
N
i=1

to {B′
i}

N
i=1

as shown in Fig. 12(b). A new partitioning with overlap-

ping {X
′

i} is then obtained. The surface reconstruction

problem on P is decomposed into the sub-problems of

P
′

i = P ∩ X
′

i . To tackle the issue of possible conflicts
and cracks in overlapping part, in this study, a sequen-

tial fix-the-boundary method is proposed. As a result,

some parallel potential is lost due to the increasing in-

teraction between neighboring subdomains, which can

be compensated in some degree as explained later in
this section.

4.2 Fix-the-boundary reconstruction method

Without loss of generality, it is assumed that the whole
domain is decomposed into only two subdomains, i.e.

Xi andXj . The partitioning with overlapping is X
′

i and

X
′

j . The overlapping region isXij = X
′

i∩X
′

j. Both these

(a) (b)

(c) (d)

(e) (f)

Fig. 14 A sequential fix-the-boundary method is presented to
tackle cracks and conflicts. In (a), Xi : I + II; Xj : III + IV .

X
′

i : I + II + III; X
′

j : II + III + IV . In (b)-(e), X
′

i : I + II;

X
′

j : II + III; Xij : II. In (f), Xi : I; Xj : II

two partitioning systems are depicted in Fig. 14(a). The

sequential algorithm begins from X
′

i . Once the partial

data set P
′

i = P∩X
′

i is ready, the background points Q
′

i

for this subdomain are generated. Both P
′

i and Q
′

i are
inserted into the tetrahedral mesh Ti. Meanwhile the

background points falling into the overlapping region,

i.e. Q
′

i ∩ Xij are stored. The graph-based method is

applied and the reconstruction result S
′

i is obtained as
in Fig. 14(b). The reconstructed surface falling into the

overlapping region, i.e. S
′

i∩Xij is also stored for further

use as in Fig. 14(c).

When the second subdomain X
′

j is processed, one
measure is taken upon the background points. After

the background points Q
′

j for X
′

j are generated, the

background points falling into the overlapping region

are replaced by those background points stored in the
X

′

i stage: Q
′

j = (Q
′

j − Xij) ∪ (Q
′

i ∩ Xij). This op-

eration ensures that the two subdomains contain the

same background points in the overlapping region, i.e.

Q
′

i ∩Xij = Q
′

j ∩Xij . The same data points and back-

ground points add up to an identical mesh point set in
the overlapping region. Under the assumption of gen-

eral positions, the Delaunay triangulation of a point set

is unique. Combined with the local property of Delau-

nay triangulations, it is safe to assert that the meshes in
the overlapping region from two subdomains are iden-

tical, i.e. Ti ∩ Xij = Tj ∩ Xij , which guarantees that

S
′

i ∩Xij ⊂ Tj ∩Xij .
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Following the routine of the graph-based method,

a graph is constructed dual to the mesh Tj . Then we

increase the weights of those edges corresponding to the

stored faces S
′

i∩Xij , to a relatively large value. Through

this adjustment, the surface S
′

j reconstructed in X
′

j is

forced to coincide with S
′

i in the overlapping region, i.e.

S
′

i ∩Xij = S
′

j ∩Xij as in Fig. 14(d). The surface in the

overlapping region Xij serves as the boundary of both
S

′

i and S
′

j. In the X
′

i stage, the choice of the boundary

of S
′

i is relaxed. In the X
′

j stage, the boundary of S
′

j , i.e.

S
′

j ∩ Xij , will be fixed through the adjustment on the

edge weight assignment. Hence conflicts and cracks can

be avoided as in Fig. 14(e). We refer to this adjustment

of the edge weight as “fix the surface in Xij” for short.

Furthermore, some measures are taken to eliminate

the redundant output of surface. Notice the curve in

the overlapping region in Fig 14(e) has been outputted
twice in two stages. This redundant output is harmless

and can be eliminated by a trimming operation. After

the surface piece S
′

i in each subdomain is obtained, the

non-overlapping decomposition Xi is used to trim the

surface piece, i.e. Si = S
′

i∩Xi. The union of all trimmed
surface pieces S = ∪N

i=1
Si is the final result, which is

free of redundant output, cracks or conflicts as in Fig.

14(f). The whole divide-and-conquer algorithm is given

in Table 6.

4.3 Parallel efficiency regained

As mentioned, some parallel potential is lost due to the

interaction between subdomains in this method. Two

neighboring subdomains cannot be processed simulta-
neously. As in the example of Fig. 14, the subdomain

X
′

j cannot be processed until S
′

i ∩ Xij is obtained. To

adapt this method to parallel machines, it would be

helpful to color all subdomains at the beginning so that

no neighboring subdomains have the same color. Then
the group of subdomains sharing the same color can be

processed simultaneously because of the independence

between any two of them. This coloring preprocessing

turns the sequential algorithm in Table 6 to a parallel
algorithm. However the coloring strategy and the num-

ber of colors required determine the parallel efficiency.

In two dimensional problems such as image segmen-

tation (Hodneland et al, 2009), the well known four-
color theorem can limit the number of the colors re-

quired within four. Unfortunately, there is no such the-

oretic bound of the number of colors required in three

dimensions. However, for some special cases, we still can
figure out the number of colors required. For the rect-

angular cuboids decomposition scheme described above

and the underlying 26-neighborhood system, it can eas-

Table 6 Algorithm of surface reconstruction based on domain
decomposition

Inputs

1. A point set P

2. Partition of X, {Xi}Ni=1

3. Partition of X with overlapping, {X
′

i }
N
i=1

4. Neighi[Ni], i = 1, · · · , N , Ni is the number of
neighbors of Xi, and the array Neighi stores
Ni neighbors.

Algorithm

1 Initialize a flag matrix {Fij} = 0
2 Allocate storage for Qij background points in

Xij

3 Allocate storage for Sij the surface in Xij

4 For i = 1 : N

5 P
′

i = P ∩X
′

i

6 Generate Q
′

i according to P
′

i

7 For k = 1 : Ni

8 j = Neighi[k]
9 if Fij == 1

10 Q
′

i = (Q
′

i −Xij) ∪Qij

11 else

12 Qij = Qji = Q
′

i ∩Xij

13 End if
14 End For

15 Insert P
′

i and Q
′

i to generate the mesh Ti
16 For k = 1 : Ni

17 j = Neighi[k]
18 if Fij == 1
19 Fix all Sij in Xij

20 Fij = Fji = 1
21 End if
22 End For

23 Apply graph-based method and obtain S
′

i

24 Trim the surface piece Si = S
′

i ∩Xi

25 End For

Outputs The surface triangulation S =
N⋃
i=1

Si

(a) (b)

Fig. 15 Eight Coloring Scheme

ily be shown that only eight colors are required for a

neighbor-different coloring. An example of 5 × 5 × 5

decomposed cube’s 8 coloring scheme is shown in Fig.
15. The parallel efficiency of these decomposition cases

is still high even with the dependence between subdo-

mains.
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In this section, a new reconstruction method based

on domain decomposition was proposed. Interaction be-

tween subdomains was introduced to eliminate possible

cracks and conflicts. Though this interaction between

subdomains requires a sequential algorithm, a proper
decomposition manner as well as a coloring preprocess-

ing allows for parallel algorithms. Some examples ap-

proached by this decomposition based method are in-

cluded in Section 5 to show its robustness and effective-
ness.

5 Examples

In this section, various examples are presented to demon-

strate the efficiency and robustness of our method as

well as the quality and faithfulness of reconstructed sur-

faces. All experiments had been conducted on a desktop
PC with Intel Pentium 4 CPU of 3.2GHz. Most mod-

els were obtained from Stanford 3D Scanning Reposi-

tory, Large Geometric Models Archive of Georgia In-

stitute of Technology and Digital Shape Workbench
Project while the others were synthesized by ourselves.

We applied Computational Geometry Algorithms Li-

brary (cga, 1997) in our program. All surfaces are ren-

dered by MeshLab. Only points locations were utilized

in the algorithm. Based on the properties and purposes
of theirs, these examples can be categorized into four

groups: simple open surfaces, complicated (general) sur-

faces, watertight surface approached by domain decom-

position, and non-orientable surfaces approached by do-
main decomposition.

5.1 Simple open surfaces

Simple open surfaces generally refer to manifolds with

boundaries. As the initial motivation of this study, sev-

eral examples of the simple open surfaces are demon-
strated in Fig. 16, 17, and 18 including the data point

sets and the reconstructed surfaces. Two human faces,

one representative category of open surfaces, are faith-

fully reconstructed. The front views show the well pre-

served features and the back or bottom view shows the
boundaries of reconstructed surfaces. The other exam-

ple, a hand, is presented as well. All these three exam-

ples can be seen as the application on incomplete data.

After all, it is hardly possible to obtain watertight mod-
els of human body parts by a 3D laser scanner.

5.2 Complicated (General) surfaces

Since simple open surface cases can be approached per-

fectly, the proposed method is challenged by some more

(a) (b) (c)

Fig. 16 Julius Caesar

(a) (b) (c)

Fig. 17 Max Planck

(a) (b) (c)

Fig. 18 A hand

complicated examples: multi-phase open surfaces, hy-

brids of open and watertight surfaces, and open sur-

faces with noises or outliers. To sum up, this subsection

presents surface examples which are more general and

occur ubiquitously in daily life.

Multi-phase open surfaces do not have to separate
the domain into more than two regions. Multi-phase

means the trimmed crust C̃P
d2

is partitioned by C̃P
d1

into

more than two regions. These cases may involve inter-

sections or not. Multi-phase cases without intersections,
i.e. disconnected surface patches, are still 2-manifolds

with boundaries and apparently no challenge to the pro-

posed method. Furthermore, an example of two inter-

secting semi-spheres, which is no longer 2-manifold, is
shown in Fig. 19, from which we can see that all features

of the intersecting parts are reconstructed faithfully.

The above example can be seen as a union of two

2-manifolds, both of which have boundaries. Next pre-
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Fig. 19 A multi-phase open surface example: two intersecting
semi-spheres

Fig. 20 A hybrid of a watertight surface and an open one: a
rectangle intersecting a sphere

sented is a union of two 2-manifolds, one of which has

boundaries while the other has not, i.e. a union of a

watertight surface and an open one. The reconstruction

result of a rectangle intersecting a sphere is shown in
Fig. 20, from which we can see that both the sphere and

the rectangle have been reconstructed faithfully. From

a technical point of view, this example has nothing spe-

cial compared to the one in Fig 19. It becomes, however,

more meaningful after post-processing. The watertight
sphere surface can be thought of as the boundary of

a 3-manifold ball. Once the domain bounded by the

sphere is volumetrically meshed, the union of the 3-

manifold and the 2-manifold can be represented dis-
cretely by a triangular and tetrahedral mixed mesh.

This issue ubiquitously occurs in animations, medical

applications, and CAD industries.

The next example is an open surface with noise.

The noises in real world may be introduced during the
data acquisition procedure. In this study, the noise is

added artificially. The data set in blue as well as the

noise in red is shown in Fig. 21(a). This distinguishing

coloring scheme is only for clear demonstration and the

algorithm treats data and noise as a whole input. Fig
21(b) and (c) show results with regularization coeffi-

cient α = 0 and 0.001 respectively. Readers can com-

pare our results to the result of the explicit methods

in Fig. 1. The noise removal result with α = 0.001 is
zoomed and shown in Fig 21(d).

Then the example of an open surface with outliers

is shown. The input of 53,054 blue data points sampled

from a hand and 447 red artificial outliers are shown in

(a) (b)

(c) (d)

Fig. 21 The noisy case of a semi-sphere

(a) (b)

Fig. 22 A hand example with outliers

Fig. 22(a). The clean reconstructed result in Fig. 22(b)

shows that our method is also robust to the difficulty

of outliers.

Fig. 23, the last example in this subsection, is rad-

nom Gaussian noises added on each points in the hand

data set. Results under two levels of noises are shown.
The noise in Fig. 23(a) is pertubed by a Gaussian noise

of 0.3h̄ standard deviation and in (b) 0.6h̄.

By Fig. 21-23, we demonstrate the robustness of our

method to noises and outliers. The reason lies in the fact

that only the precision of estimated boundary matters

to the final result. Thus the intermediate steps could
tolerate the distortion. As to the noises and outliers

near the boundary, we leave more discussions to Section

6.
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(a) Noise of 0.3h̄ (b) Noise of 0.6h̄

Fig. 23 The hand model with Gaussian noises

(a) (b) (c)

Fig. 24 Perforated cubes approached by domain decomposition

5.3 Watertight surfaces approached by domain

decomposition

Surface reconstruction based on domain decomposition
is an important application of the open surface recon-

struction method. In this subsection, some watertight

cases, which had been approached by previous graph-

cuts methods, are used to test the effectiveness of the
decomposition based reconstruction method, especially

the overlapping and interface part.

Fig. 24 shows that two cube-based objects are re-
constructed in a domain decomposition way. The per-

forated cube is reconstructed in two subdomains as in-

dicated by different colors in Fig 24(b). Similarly, two

tangling perforated cubes in Fig 24(c) has been ap-

proached in eight subdomains, each of which contains
multiple disconnected surface patches. These are same

to the results obtained by previous methods.

Next three classic examples, armadillo, horse, and
dragon, are shown in Fig. 25. The colorfulness of ar-

madillo is used to illustrate the relationship between

the choice of thickness parameters, d1 and d2, and the

Table 7 Statistics of open surface examples

Example
Data
Set

Mesh
Generation
Time

Graph
Built
Time

Graph
Cut
Time

Caesar 387900 248.4952 7.48386 22.3256

Planck 199169 96.7383 5.2332 9.8995

Hand 53054 41.37467 1.16082 8.49171

multiphase issue. Once we increase the difference be-

tween d1 and d2, the colorfulness disappears gradually

as the phase number decreases, which is shown in the

horse and dragon examples.

At last of this subsection, three statuettes are shown

in Fig 26. From left to right, the statuettes are re-

constructed in four, two and three subdomains respec-
tively. Through this subsection, the absence of undesir-

able conflicts and cracks proves the effectiveness of our

method.

5.4 Nonorientable Surfaces

As mentioned, when the research area is extended to

the open surfaces, i.e. 2-manifolds with boundaries, the

nonorientable issue becomes a problem for all implicit

methods. In this subsection, Mobius strip, one motiva-

tion of this decomposition based method, is approached
perfectly with the result shown in Fig. 27. Another fa-

mous nonorientable surface, Klein bottle, is also pre-

sented in Fig. 28.

Table 7 gives the sizes of the data sets of several
open surface examples and corresponding CPU time

counted in seconds. The first column gives the exam-

ples’ names. The second column contains the numbers

of data points P . The third column is the mesh genera-
tion time, the fourth the graph construction time, and

the fifth the graph cut time. In Table 8 included are

sizes and time of the domain decomposition examples.

Each block contains the statistics of every subdomain

as well as those in total.

6 Conclusion

In this article, a variational reconstruction method for

open surface is proposed based on Delaunay triangu-

lation and graph-cuts. In the proposed method, the
graph is constructed dual to the mesh in a restricted

region obtained after crust establishments and boolean

operations, by which the open surface problem in the
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(a) (b)

(c) (d)

(e)

(f)

Fig. 25 Three classical examples approached by domain decom-
position

(a) (b) (c)

(d) (e) (f)

Fig. 26 Three statuettes approached in different decomposition
schemes

(a) (b)

Fig. 27 Mobius strip approached by domain decomposition

(a) (b) (c)

Fig. 28 Klein bottle approached by domain decomposition
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Table 8 Statistics of domain decomposition examples

Example
Data
Set

Mesh
Generation
Time

Graph
Built
Time

Graph
Cut
Time

Armadillo
Total

172974 191.58093 4.74328 3.936398

Subdomain 1 76525 73.61781 1.78773 3.06553

Subdomain 2 119073 117.96312 2.95555 0.870868

Horse
Total

494195 843.2701 16.12855 12.67107

Subdomain 1 300357 315.7326 7.78682 5.00724

Subdomain 2 299595 527.5375 8.34173 7.66383

Dragon
Total

437645 605.4991 15.40466 2.239658

Subdomain 1 190871 259.2044 4.87826 0.151977

Subdomain 2 265931 346.2947 6.66699 1.9627

Subdomain 3 155873 194.8477 3.85941 0.124981

whole domain has been translated to a watertight sur-

face problem in a restricted region. The phase detection

based on region growing algorithms hence can be ap-

plied and so can the graph techniques.

Furthermore, a surface reconstruction method based

on domain decomposition is presented as an impor-

tant application of open surface reconstruction. First,

the domain decomposition is a powerful tool to tackle

the difficulty in non-orientable surfaces. Since locally
all the non-orientable surfaces can be decomposed into

orientable patches, the reconstruction based on domain

decomposition would be an effective approach without

loss of generality. Another motivation is parallel surface
reconstruction. The overlapping decomposition scheme

as well as our fix-the-boundary method could effectively

eliminates the cracks and conflicts.

However, the independence between subdomains are

sacrificed to eliminate the conflicts and cracks. This
loss of parallel potential may be largely compensated

if we adopt proper decomposition scheme. By the de-

composition scheme in this paper, if the numbers of

processing units and subdomains are both larger than

eight, the parallel efficiency is as high as a subdomain-
independent algorithm. Parallel implementation of this

domain decomposition method and investigation of its

efficiency is one of our future research interests.

We assume all data sets in this paper are sufficiently

sampled. To some extent our method is subject to the
difficulty of undersampling. The crust defined in this

paper may still fail to separate the domain when facing

severely undersampling cases. Possible solutions such as

dilation of data points are still under investigation.

Besides, our method is subject to noises and outliers
near the boundary as mentioned in Section 5.2. Because

the trimming operation is crucial to the success of con-

verting open cases to watertight cases. When facing the

difficulty such noises and outliers around the boundary,

possible filtering could be performed on the rawly de-

tected boundary before the trimming operation. This is

also one of our future research interests.
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