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Abstract 

The successful exploitation of many hydrocarbon reservoirs may depend on proper 

characterization of fractured or composite porous media. However, due to anisotropy 

and heterogeneity, the characterization of such kind of reservoirs is a complicated task 

which needs proper attention and care. There are often strong correlations between 

the effective permeability and seismic anisotropy of fractured reservoirs. The 

exploitation of such correlations is extremely important in understanding of the spatial 

variation of anisotropic permeability. The purpose of this thesis work was to develop 

novel workflows and methodologies in order to exploit the correlations between 

effective permeability and seismic anisotropy of fractured reservoirs. 

The correlations between the effective mechanical and transport properties of 

fractured reservoirs within the context of a joint inversion of seismic and production 

data have been exploited to obtain improved hydrocarbon reservoir characterization. 

In this work, the effective mechanical and transport properties of fractured reservoirs 

and related systems are estimated using an efficient and consistent permeability-

stiffness model from the same parameters of microstructure. The estimated effective 

mechanical properties in combination with anisotropic Gassmann relations have been 

used to calculate the seismic amplitude versus angle and azimuth AVAZ) data i.e. 

reflection coefficients as a function of incidence angle and azimuth from the top of 

the reservoir. Similarly from the estimated effective hydraulic properties, the reservoir 

simulator can calculate the production data such as well bottom hole pressure, well oil 

production, well water cut, saturation and pressure for all grid blocks at specific time 

steps.   

The seismic AVAZ and/or production data is used in the Bayesian inversion scheme 

to estimate the parameters of factures (e.g. fracture density, fracture aperture and 

fracture orientation) required to predict permeability. This work shows that joint 

inversion of seismic and production data give the best results due to the less 

sensitivity of seismic AVAZ data to fracture aperture which is one of the most 
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important parameter of the microstructure predicting the permeability. This workflow 

of joint inversion of seismic and production data has also been applied for the 

characterization of faulted reservoirs (e.g., fault damage zone with deformation bands 

oriented parallel to the fault core). The transmissibility multiplier is used to model the 

effect of the fault core and the consistent rock physics model has been used to model 

fractures and deformation bands in the damaged zone. 

    
Analogies between different physical phenomena and coupled processes such as 

wave-induced fluid flow have been given a special attention to infer more useful 

information about fractured reservoirs containing single or multiple sets of fractures. 

In this context, implications of the unified theory for the relative importance of global 

and squirt flow characterized by different microstructures and fluid mobilities are 

invesigated. This work shows that global flow effects are not so important at seismic 

frequencies for more realistic models of microstructure and needs very high 

permeability and low viscosity to have an effect. 

For the case of a fractured reservoir containing a single set of fractures, it is 

demonstrated in this work that an improved characterization can indeed be obtained 

from frequency-dependent seismic AVAZ data, provided that the anisotropic 

Gassmann relations are replaced by a theory for seismic attenuation and dispersion 

due to wave-induced fluid flow. The reflection coefficients are no longer assumed to 

be real-valued and frequency-independent. The information about all the three 

fracture parameters can be obtained that determine the effective permeability tensor. 

For the case of complex fractured reservoirs (with multiple fracture sets), it is 

demonstrated in this work that measurements of velocity anisotropy data 

corresponding to different seismic frequencies and azimuths  alone cannot recover the 

parameters related with multiple sets of fractures i.e. the fracture densities and the 

azimuthal fracture orientations. Joint inversion of measurements of seismic velocity 

and attenuation anisotropy data corresponding to different seismic frequencies and 

azimuths leads to improved estimates of fracture parameters and better management 
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of fractured reservoirs containing multiple sets of fractures. A satisfactory 

characterization of complex fractured reservoirs requires a model accounting for 

frequency-dependent anisotropy. 

The results obtained form these workflows and methods can help in better 

management of fractured reservoirs and optimum field development.          
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1. Overview 

A large and increasing percentage of world’s hydrocarbon reserves need the 

evaluation of fractured (carbonate) reservoirs (Nelson, 2001). Carbonate reservoirs 

hold approximately 60% of the world’s petroleum reserves, accounting for 40% of the 

total hydrocarbon production (Chopra et al., 2005). The extraction of hydrocarbons 

present in fractured rocks is a growing target of exploration and development and the 

proper characterization of fractures is of increasing concern for the petroleum 

industry due to its complex and unconventional reservoir architecture (Steve et al., 

2000). This suggests the need of finding new methods to successfully identify and 

characterize fracture networks that often provide pathways for hydrocarbon flow and 

also play a significant role in the successful secondary recovery of the resources 

(Steve et al., 2000). Fracture networks have a significant effect on reservoir fluid flow 

either in terms of increased reservoir permeability or increased reservoir permeability 

anisotropy. The understanding of the spatial variations of anisotropic permeability 

becomes a crucial issue for the management of fractured reservoirs.  

There are often strong correlations between the effective permeability and seismic 

anisotropy of fractured reservoirs. Historically, there have been relatively few 

attempts to make use of such correlations in the context of fractured reservoir 

characterization (but see King, 2002; MacBeth and Pickup, 2002; Rogers et al., 2003; 

Will et al., 2005; Rasolofosaon and Zinszner, 2002; Pyrak-Nolte and Morris, 2000; 

Jakobsen et al., 2007a, b; Shahraini et al., 2010). More specifically, seismic 

anisotropy can be used to determine the orientation of fractures (Sayers 2009). The 

exploitation of such correlations is extremely important in understanding of the spatial 

variation of anisotropic permeability in fractured reservoirs. 

The uncertainty in parameters related to fractures increases with increasing distance 

from the borehole. Three-dimensional seismic data provide uncalibrated information 

throughout the inter-well space that needs to be properly calibrated and up-scaled 

(Will et al., 2005). A seismic wave propagating or a fluid flowing through a fractured 
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reservoir can only see a homogenized structure and not the individual fractures, 

because the wavelength of the seismic wave or the scale-size of the pressure 

variations is often much larger than the scale-size of the fractures. The calibration and 

up-scaling of information from seismic measurements can be obtained through a good 

understanding of relevant rock physics modelling associated with fractures and 

composite porous media (Jakobsen et al., 2003a, b; Jakobsen, 2007a, b and c). The 

fractured reservoir may therefore in many cases be replaced with an effective 

homogenous medium for the purpose of seismic or fluid-flow modelling. The 

effective homogenous medium will be anisotropic if the fractures are oriented in a 

preferred direction. Rock physics models may also represent a kind of regularization 

within the context of seismic inversion or history matching. History matching is a 

process of updating a reservoir model to behave as closely as possible to the 

conditions of a real reservoir. 

Figure 1 represents a schematic workflow diagram for estimation of fracture 

parameters from seismic amplitude versus angle and azimuth (AVAZ) data. The 

parameters of fractures (e.g., fracture density and azimuthal fracture orientation) for 

each grid block are updated until the objective function is minimized. The inversion 

has been done in a Bayesian setting, which provides information about the 

uncertainties and as well as single estimates or most likely values of the fracture 

parameters. When the parameters of the fractures are known, one could obtain the 

estimates of the effective permeability tensors using a consistent rock physics model 

for effective hydraulic properties. This workflow is followed in paper 1 of this PhD 

thesis within the context of seismic fracture characterization. 

Seismic AVAZ inversion in the context of fractured reservoir characterization using 

the workflow presented in figure 1 may provide improved permeability estimates 

from seismic anisotropy, if one makes simple assumptions about the fracture 

geometry. For example fracture aperture, which is an important parameter controlling 

the fluid flow during production (Liu et al., 2005), having a little effect on the seismic 
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response in the absence of squirt flow (local pressure gradients). This suggests two 

approaches to obtain more improved characterization of fractured reservoirs. 

Figure 1 Schematic workflow diagram for the estimation of fracture 
parameters from seismic AVAZ inversion. 

The first approach deals with an integration of data type sensitive to fracture geometry 

in the workflow such as production data and a joint inversion of seismic and 

production data should be performed. Figure 2 represents a schematic workflow 

diagram for estimation of the fracture parameters by the quantitative integration of 

seismic and production data. The static (e.g., fracture density, the fracture orientation 

and the fracture aperture) and dynamic parameters of fractures (e.g., saturation) for 

each grid block are updated until the joint (related with integration of seismic and 

production data) objective function is minimized. 

The workflow described in figure 2 is applied in paper 2 and 3 of this PhD thesis. In 

paper 2 we focus on the characterization of faulted reservoirs. The transmissibility 

multiplier is used to model the effect of the fault core and a consistent rock physics 

model has been used to model fractures and/or deformation bands in the damaged 

zone. The parameters related to fault core and/or deformation bands are estimated by 

the joint inversion of seismic and/or production data. In paper 3, the workflow is 
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followed within the context of fractured reservoir characterization and seismic history 

matching. 

  

Figure 2 Schematic workflow diagram for the estimation of fracture 
parameters by quantitative integration of seismic AVAZ and production 
data. 

The second approach deals with the analysis of seismic anisotropy data using a model 

which can incorporate seismic attenuation and dispersion due to wave induced fluid 

flow. Wave induced fluid flow can occur in the form of global and/or squirt flow. 

Global flow, also known as Darcy flow, is caused by pressure gradients at the scale of 

the seismic wavelength and in the direction of wave propagation, whereas squirt flow 

is caused by the pressure gradients at the microscopic or mesoscopic scale and in the 

direction potentially different from that of the wave propagation. The presence of 

mesoscopic fractures in a reservoir can produce significant dispersion and attenuation 

at seismic frequencies, suggesting that it is generally not safe to treat seismic 

frequencies as the low frequency limit (Maultzsch et al., 2003; Gurevich et al., 2009). 

Measurements related to frequency dependence of seismic anisotropy or seismic 

velocity and attenuation anisotropy data can potentially give important information 

about the fracture systems and fluid saturation (Chapman, 2003; Liu et al., 2007a, b; 

Maultzsch et al., 2007; Chapman, 2009; Clark et al., 2009). 
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Figure 3 represents a schematic workflow diagram for estimation of fracture 

parameters by incorporating the seismic attenuation and dispersion due to wave 

induced fluid flow. The relative importance of global and squirt flow in 

cracked/fractured porous media characterized by different microstructures and fluid 

mobilities has also been given attention. A change in viscosity may lead to a shift of 

the attenuation peak towards lower or higher frequencies, depending on the 

mechanism of wave induced fluid flow. These issues are addressed in paper 4 of this 

PhD thesis by investigating the relative importance of global and squirt flow in 

cracked/fractured porous media.  

The workflow presented in figure 3 is followed in paper 5 of this PhD thesis within 

the context of seismic fracture characterization (reservoir containing single set of 

fractures) using frequency-dependent seismic AVAZ data. The workflow is also 

extended to more complex fracture modelling (multiple sets of fractures) within the 

context of seismic fracture characterization using the measurements of seismic 

velocity and attenuation anisotropy data corresponding to different seismic 

frequencies and azimuths (paper 6). 

Figure 3 Schematic work flow diagram for estimation of fracture 
parameters by incorporating the seismic attenuation and dispersion due to 
wave induced fluid flow. 
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2. Objectives 

The principal aim of this PhD thesis was to obtain a better understanding of the 

correlations between the effective permeability and stiffness tensors (seismic 

anisotropy) of fractured reservoirs, so that one can perform improved reservoir 

simulations with seismically derived fracture models. Special attention was given to 

exploit the analogies between different physical phenomena and coupled processes 

such as wave-induced fluid flow to obtain important information about fractured 

reservoirs containing single or multiple sets of fractures.   

A further aim was to investigate various ways of exploiting correlations between the 

effective mechanical and transport properties of fractured reservoirs within the 

context of a joint inversion of seismic and production data.  
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3. Geologic concepts 

According to Nelson (2001) the word ‘fracture’ in a reservoir context can be defined 

as a naturally occurring macroscopic planar discontinuity in a rock due to deformation 

and physical digenesis. Based on their deformation properties, the fractures can have 

a positive, neutral or negative effect on fluid flow in a reservoir (Aguilera, 1995; 

Nelson, 2001). The above definition of Nelson (2001) also allows addressing the fluid 

flow anisotropy in fractured reservoirs. A ‘fractured’ reservoir is defined as a 

reservoir in which naturally occurring fractures either have, or predicted to have, a 

significant effect on reservoir fluid either in form of increased reservoir permeability 

or increased permeability anisotropy (Nelson, 2001). 

3.1 Classification of fractures 

Fractures can be classified on the basis of their mechanics, genesis and morphology. 

Based on the mechanics of formation, there are two main types of fractures: extension 

fractures and shear fractures (Nelson, 2001). Figure 4 show an example of fractures 

classified on the basis of mechanics of formation. Fractures classified on the basis of 

genesis are tectonic, regional and contractional or surface related (Nelson, 2001).  

Figure 5 show an example for the fractures classified on the basis of genesis. 

Fractures classified according to their morphology are open, mineral filled and vuggy 

or deformed (Aguilera, 1995; Nelson, 2001). Figure 6 show an example for the 

fractures classified on the basis morphology.  

3.2 Fractures and permeability 

The contribution of fractures to permeability largely depends upon their connectivity 

and also to what degree they link up to make continuous networks (see Van Golf-

Racht, 1982; Nelson, 2001; Aguilera, 1995). Fracture connectivity depends upon the 
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fracture attributes like fracture spacing (also known as fracture density or intensity), 

aperture (width between walls of the fractures) and length. The effect on fluid flow 

only becomes important when fractures occur in sufficient spacing or length. Fracture 

orientation is also another important factor along with these properties to accurately 

assess the positive or negative effect of fractures on fluid flow. 

3.3 Classification of fractured reservoirs 

The reservoir must be classified on the basis of what positive effects the fracture 

system provides to overall reservoir quality (Nelson, 2001). In this regard, the 

following classification is commonly used: 

Type 1: Fractures provide the essential reservoir porosity and permeability. 

Type 2: Fractures provide the essential reservoir permeability. 

Type 3: Fractures assist permeability in an already producible reservoir. 

Type 4: Fractures provides no additional porosity and permeability but create 

significant reservoir anisotropy. 

3.4 Deformation bands 

Deformation bands are localized deformation structures that form in highly porous 

rocks and sediments and commonly found in faulted sand and reservoir-quality 

sandstone (Torabi and Fossen, 2009). There are different deformation mechanisms 

responsible for the formation of deformation bands (Fossen et al., 2007). (1) Granular 

flow involving rolling, sliding and rotation of sand grains result in the formation of 

disaggregation bands. (2) Grain fracturing, crushing and abrasion result in formation 

of cataclastic bands. (3) Dissolution and cementation result in the formation of 

dissolution and cementation bands. Deformation bands are commonly from 

millimeters to centimeters thick and sometimes up to 100 m long (Sternholf et al., 
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2004). They can be observed as a single deformation bands but can also form clusters 

of deformation bands. As a response to the complicated geometric fault slippages, 

they can also form and grow in the damage zone of an existing fault (Torabi and 

Fossen, 2009; Rykkelid and Fossen, 2002). Figure 7 shows an example of the 

deformation bands in sandstone. 

Figure 4 Fracture classified on the basis of mechanics of formation: 
extension fracture and shear fracture. This figure is taken from the PhD 
thesis of Larsen (2009).  

Figure 5 Fractures classified according to their genesis. (A) Tectonic 
fracture. (B) Regional fractures or joints. (C) Contractional fractures. (D) 
Surface related fractures. This figure is taken from the PhD thesis of 
Larsen (2009). 
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Figure 6 Fractures classified according to their morphology. (A) Open 
fractures. (B) Mineral filled fractures. (C) Vuggy fractures. (D) Deformed 
fractures. This figure is taken from the PhD thesis of Larsen (2009). 

Figure 7 Deformation bands in Arches National Park Utah. This figure is 
taken from the master thesis of Kseniya, (2010). 
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4. Seismic fracture characterization 

For carbonate reservoirs, characterizing fractures is an important part of the reservoir 

development. The goal of the fractured reservoir characterization is to estimate the 

parameters related with fractures controlling the fluid flow during production. The 

important parameters of fractures controlling the fluid flow during production are the 

fracture density, the fracture orientation and the fracture aperture. Once the 

parameters of the fractures are known, the estimates of the effective permeability can 

be obtained. Seismic methods are becoming tool of choice from one of the few 

effective ways of characterizing fractured reservoirs (Steve et al., 2000). The most 

important seismic attribute is the seismic Amplitude-Versus-Angle and Azimuth 

(AVAZ) analysis, which captures the information about fractures in a reservoir by 

detecting the seismic anisotropy caused by fractures (Gray et al., 2002; Downton et 

al., 2007). Seismic anisotropy is observable in the standard P-wave data recorded over 

the fractured reservoirs provided that it has sufficient azimuthal and offset coverage 

(Gray et al., 2002). 

For a suitable characterization of fractured reservoirs, all the important fracture 

parameters controlling the fluid flow should be estimated from seismic AVAZ data. 

Seismic measurements provide good coverage at depth, but their resolution is lower 

than the scale of fractures and we cannot directly image the fractures. A similar case 

occurs in the case of a flowing fluid in a fractured reservoir, the scale-length of 

pressure variations (the size of a typical grid block in a numerical reservoir simulator) 

is often much larger than the scale-size of the fractures so that the flowing fluid 

cannot see the individual fractures. So, to exploit the correlations between the 

effective permeability and seismic anisotropy of fractured reservoirs, a better 

understanding of the relevant rock physics and scaling issues is very important. 

Moreover, rock physics basically provides us a link between seismic and reservoir 

properties.    



12

4.1 Rock physics modelling 

The effect of a fractured layer on the seismic response can be described by anisotropic 

effective stiffness tensor, which is obtained using anisotropic effective medium theory 

(Zhang et al., 2009). The effective stiffness tensor for a fractured layer or rock can be 

estimated by two ways, 1) direct, 2) indirect (Hu and McMechan, 2009). Hu and 

McMechan (2009) classified the direct effective stiffness methods into single 

effective inclusion methods (Eshelby, 1957), smoothing methods (Hudson 1980, 

1981, 1994), self-consistent methods (O’Connell and Budiansky, 1974; Budiansky 

and O’Connell, 1976; Willis, 1977; Hoenig, 1979), differential effective medium 

methods (Nishizawa, 1982; Sheng, 1990; Hornby et al., 1994) and T-matrix methods 

(Jakobsen et al., 2003a). The indirect methods involve estimation of effective 

compliance tensor first, from which, effective stiffness tensor can be obtained by 

inverting the effective compliance tensor. Hu and McMechan (2009) classified the 

indirect methods into non-interaction approximation (NIA) (Kachanov, 1992; 

Kachanov et al., 2003; Grechka and Kachanov, 2006a, b, c) and the linear slip (LS) 

methods (Schoenberg, 1980; Schoenberg and Sayers, 1995; Liu et al., 2000).   

These all effective medium theories describe the elastic response of a fractured rock 

in the long wavelength limit and predict frequency-independent behavior. The 

presence of mesoscopic fractures in the reservoir can produce significant amount of 

dispersion and attenuation and these effects cannot be explained by static anisotropic 

effective medium theories predicting the frequency-independent behavior (Maultzsch 

et al., 2003). The frequency-dependent anisotropic effective medium theories 

describing the viscoelastic response of a fractured rock in the long wavelength limit 

are (e.g. Hudson et al., 1996; Tod, 2001; Chapman, 2003; Jakobsen et al., 2003b; 

Jakobsen and Chapman, 2009; Gurevich et al., 2009; Müller et al., 2010). 

Similarly, the effects of fractures on reservoir fluid flow can be described in terms of 

an effective reservoir permeability tensor, which is obtained using effective medium 

theory (Zhang et al., 2009). In reservoir simulation the effective flow properties of a 
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reservoir containing fractures can also be treated using effective medium theory 

(Kachanov, 1980; Oda, 1985, Jakobsen 2007c).  

The theory of Jakobsen (2007c) for effective permeability is based on the same 

mathematical formalism (and exactly the same geometrical picture of the fractured 

reservoir) as the theory of Jakobsen et al., (2003a) or Jakobsen et al., (2003b) for the 

effective seismic properties representing a consistent model for effective permeability 

and elasticity of fractured media (Zhang et al., 2009). The T-matrix approach of 

Jakobsen et al., (2003a, b) also represents the more general computational model that 

can take account of pores and fractures of any size and aspect ratio (Gurevich et al., 

2009; Müller et al., 2010). The model of Chapman (2003) for mesoscopic fractures 

can be obtained as a limit of the more general T-matrix approach of the Jakobsen et 

al., (2003b) and Jakobsen and Chapman (2009) (Agersborg et al., 2007; Müller et al., 

2010).  

Hu and McMechan (2009) argued that it is safer to use an interacting fracture (or 

inclusion) model such as the higher-order T-matrix approach rather than a non-

interacting fracture model (NIA). Both approaches may sometimes give the same 

predictions, but this depends on the spatial distribution of fractures (see also Ponte 

Castaneda and Willis 1995). In this thesis I have used the T-matrix approach of 

Jakobsen et al., (2003a), Jakobsen et al., (2003b), Jakobsen (2007c) and Jakobsen and 

Chapman (2009) for upscaling the mechanical and hydraulic properties of the 

fractured and composite porous media. The derivation of T-matrix approach of 

Jakobsen et al., 2003a, Jakobsen et al., 2003b, Jakobsen and Chapman (2009) and 

Jakobsen (2007c) is presented in appendix-A, B, C and D. In what follows, I present a 

comparison of dry case predictions of T-matrix approach, NIA approach and 

Hudson’s (1980, 1981) model for cracked media. The properties of isotropic host rock 

are taken to be same as given by Hu and McMechan (2009). The crack porosity φ  is 

related with the crack density ε  by πεαφ )3/4(= , where α  is the aspect ratio for 

cracks.  
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Figure 8 show the comparison of dry effective stiffness constant 33c  obtained using 

T-matrix approach (Jakobsen et al., 2003a), Hudson’s (1980, 1981) model for cracked 

media and NIA approach (Kachanov et al., 2003; Hu and McMechan, 2009) to the 

first order in cracked density for a crack model having horizontally transversely 

isotropic (HTI) symmetry. T-matrix approach and Hudson’s model give exactly the 

same, while overlapping between NIA approach and T-matrix approach at very small 

fracture densities (< 0.01) is observed, respectively. This shows that the two methods 

are equivalent at very small crack densities. A very nice description of Hudson’s 

model (1980, 1981) is given in Mavko et al., (2009). 

 Figure 9 shows the comparison of a special case of higher order T-matrix approach in 

which aspect ratio of cracks is equal to aspect ratio of the crack distribution with NIA 

approach for dry effective stiffness constant 33c  of a fractured model having HTI 

symmetry. I have not included the second-order correction of Hudson’s model, 

because second order expansion of Hudson’s model is not a uniformly converging 

series and it predicts increasing moduli with higher crack densities (Cheng, 1993, 

Mavko et al., 2009). The NIA approach gives exactly the same as higher order T-

matrix approach for this particular model of a porous medium with a single set of 

cracks, where the aspect ratio of the correlation function is identical with that of the 

cracks (figure 9). The reason for this is that the interactions cancel for this particular 

spatial distribution (see Ponte Castaneda and Willis 1995). 

Hu and McMechan (2009) performed a small numerical experiment to investigate 

which method is more physical. In this experiment the aspect ratio of cracks and crack 

distribution was set equal to 1, which represents an isotropic medium (the cracks 

degenerate to spherical pores). At ‘‘crack’’ density 0.24, the crack porosity will be 

equal to 100%, so there will be no solid rock, and, theoretically all stiffnesses must be 

zero (Hu and McMechan 2009). Only higher order T-matrix was able to correctly 

predict the zero effective stiffness at 100% porosity (see figure 10). Thus prediction 

of higher order T-matrix approach makes much more physical sense. 
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For the effects of fluid saturation on the effective properties of a fractured and 

composite porous media, I have used anisotropic Gassmann relations of Brown and 

Korringa (1975). In case of a fractured/composite porous medium which is partially 

saturated with different fluids (oil, gas and water), the bulk modulus of the fluid may 

be regarded as the bulk modulus of an effective fluid and I have used the well known 

relation of Wood (Wood 1955). 

Figure 8 Comparison of dry effective stiffness constant 33c  to the first order 
in crack density (epsilon) obtained using T-matrix approach (blue line), 
Hudson’s model (black line) and NIA approach (red line). T-matrix and 
Hudson’s model give exactly the same. The aspect ratio of cracks is 
1/1000.
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Figure 9 Comparison of dry effective stiffness constant 33c  as a function of 
crack density (epsilon) obtained using higher order T-matrix approach (blue 
line) and NIA approach (red line). Both the approaches give exactly the 
same. The aspect ratio of cracks is 1/1000. 

Figure 10 Predictions for dry effective stiffness constant 33c  using higher 
order T-matrix approach (blue) and NIA method (red) for a model in which 
cracks degenerate to spherical pores by setting the aspect ratio of cracks 
and crack distribution equal to 1.   
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4.2 Seismic modelling 

Seismic modelling is the next important step in the seismic fracture characterization, 

which is performed after obtaining the saturated effective elastic or viscoelastic 

properties of the fractured and composite porous media. Variations in elastic 

properties of rocks caused by fractures are detectable in certain special seismic 

attributes such as variation of amplitude with azimuth, shear-wave birefringence and 

azimuthal variation of propagation velocity for the fractured interval (Crampin et al., 

1980; Lynn et al., 1995: Lynn et al., 1999; Zhu et al., 2004; Will et al., 2005). The 

purpose of seismic modelling in this thesis was to obtain attributes which are sensitive 

to the presence of aligned inclusions (fractures or deformation bands). More 

specifically, I have used the azimuthal variation of reflection coefficients or interval 

velocity and attenuation data. To obtain the seismic AVAZ data (reflection 

coefficients as function of polar angle of incidence and azimuth) in anisotropic media 

(HTI or monoclinic symmetry), I have used Rüger’s approximation (Rüger, 1998; 

Ruger, 2002) and exact relations of Zoeppritz generalized to anisotropy (Schoenberg 

and Protazio, 1992).  

The purpose of seismic modelling is to obtain the synthetic seismograms and/or 

special seismic attributes. The synthetic seismograms can be processed in the same 

manner as the real seismic data and compared with the observed seismic data. The 

comparison between observed and predicted seismic data can be done at various 

stages of seismic processing; that is, one can compare waveforms, amplitudes or 

acoustic impedances. In what follows, I present a brief review of the most commonly 

used computational methods for synthetic seismograms, such as ray theory and the 

finite difference method.  

The fundamental concept in the seismic modelling is to solve the equation of motion 

for seismic waves. Ray theory is a well known method, which is used to compute 

seismic travel times and amplitudes along ray paths in a heterogeneous medium 

involving the high frequency approximation (Krebes, 2004). The travel time T of the 
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wave from source to a point x in a heterogeneous isotropic medium can be found by 

Eikonal equation given by (Krebes, 2004) 
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where v  is the seismic wave speed at the point x. Once T is known, the ray amplitude 

(A) can be computed in the high frequency approximation, by solving the transport 

equation for the wave and for the simple case of an acoustic wave is given by 

(Krebes, 2004) 

  02 2 =∇+∇⋅∇ TATA .       (2) 

For tracing the rays through a medium, a thorough discussion about different methods 

including the dynamic ray tracing for complex subsurface structures is presented by 

Cerveny (2001).  

To obtain the synthetic seismograms using ray theory, I consider a simple model 

consisting of a stack of flat homogenous layers (figure 11) in which the reservoir 

layer is anisotropic (vertically aligned fractures). I have followed Krebes (2004), who 

presented simple algebraic formulas to compute the travel times and amplitudes of the 

rays for a medium consisting of a stack of flat homogenous isotropic horizontal 

layers. The only difference was at the top boundary of the reservoir, where I have 

used Rüger’s approximation (Rüger, 1998; Ruger, 2002) to obtain the anisotropic 

reflection coefficients in HTI media. Once the travel times and amplitudes of the rays 

are computed, I have used the convolution method (Krebes, 2004; Sen, 2006) to 

generate the synthetic seismograms. Figure 12 show the synthetic seismograms just 

for illustration purposes for an azimuth of 45o for this particular model (figure 11).  
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Figure 11 A simple seismic model consisting of stack of layers with 
isotropic shale layer overlying an anisotropic (fractured) reservoir, used in 
connection with a combination of ray theory and convolution method for 
seismic modelling. The P-wave, S-wave, density and thickness of each 
layer is also given.   

Figure 12 Synthetic P-wave seismograms generated by using a 
combination of ray theory and convolution method for a seismic model 
given in figure 11. A Ricker wavelet of 25 Hz frequency is used for the 
generation of source wavelet.  
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Finite difference (FD) method is the other important and most popular method for 

generating synthetic seismograms by solving partial differential equations. It uses a 

grid and compute the waveform in each sub-grid by approximating the values of 

derivatives occurring in the equation of motion by finite difference formulas and then 

solving the resulting equation recursively. For approximating the values of 

derivatives, one can use forward-difference approximation, backward-difference 

approximation or the central-difference approximation (Krebes, 2004). To increase 

the accuracy one must use smaller grid sizes, and to avoid grid dispersion, one can use 

the size of the grids of the order of dominant wavelength in the wave field. A problem 

of FD method is the generation of artificial reflection from the edges of the numerical 

grid, which can be resolved by the use of absorbing or non-reflecting conditions 

(Krebes, 2004). The finite difference calculations can also be very time consuming.  

In order to obtain the reflection coefficients as a function of polar angle of incidence 

and azimuth from seismic waveforms, prestack migration data should be available. 

This analysis requires carefully designed acquisition geometries and a careful 

selection of applied processing algorithms. For example, sophisticated processing 

routines such as deconvolution, amplitude preserving migration and Q compensation 

(compensation for intrinsic attenuation) are required. 
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4.3 Bayesian inversion 

4.3.1 General considerations  

The goal of inverse modelling is to estimate the parameters related to fractures or 

deformation bands, which control the fluid flow during production. In this PhD thesis, 

I have used Bayesian approach for solving the inverse problem in the context of 

seismic characterization of fractured reservoirs. The classical approach to the inverse 

problems assumes that there exists a specific but unknown model m  needed to be 

discovered (Aster et al., 2005). The Bayesian approach to the inverse problems 

assumes the true model m  as a random variable and the solution is a probability 

distribution for the model parameters (Aster et al., 2005). One of the advantages of 

the Bayesian approach is that it allows incorporating a priori information collected 

independently from the measurements. 

I formulate my inverse problem given by 

  ( ) .dmG ≈          (3) 

Here, m  is a vector of model parameters related with fractures and/or deformation 

bands and d  is a vector of observable quantities (seismic AVAZ data). G  is a 

combination of rock physics modelling discussed in section 4.1 and the seismic 

modelling discussed in section 4.2. The solution of an inverse problem in a Bayesian 

setting is given by the posterior probability )( dmq  distribution over the model space 

M . The posterior probability distribution and )( dmq  and prior distribution )(mp  are 

related with each other in a way that makes the computation of posterior possible 

given by Baye’s theorem (Aster et al., 2005) 

),()()( mmddm pfq ∝          (4) 

where the likelihood function and prior distribution are given by 
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where 0m  is defined as the expected value of the a priori distribution. Then the 

posterior distribution function can be defined as (Aster et al., 2005) 

,)( )(mdm JeNq −⋅∝          (6) 

where N  is a constant and )(mJ  is the objective or cost function and for Gaussian 

statistics given by (Aster et al., 2005) 
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Here, DC  and MC  are the covariance matrices for the data and for the model 

respectively. The posterior PDF represents the degrees of belief about the possible 

values of m  before and observing the data d . If we have uninformative prior, then 

this equation (7) reduces to 

( ) [ ]))(())((
2
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D
TJ .       (8) 

The constant N  in equation (6) can be found by integration. Assume that the model 

parameters m  are defined in the model space M  i.e. Mm∈ , then the posterior 

distribution will satisfy (Aster et al., 2005) 
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The inverse problem using the seismic AVAZ data is ill-conditioned and sometimes 

ill-posed, raising questions about the reliability of the estimates (Downton et al., 

2007). So it is very important to perform the uncertainty analysis of the predicted 

estimates. To quantify the prediction uncertainty in the estimates of model parameters, 
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an assessment of the full posterior distribution )( dmq  is required. Since the forward 

modelling in this study is highly nonlinear and cannot be expressed by a simple 

formula, an analytical evaluation will be prohibited and the exploration of the 

posterior probability density function (PDF) can only be done by sampling. Rejection 

sampling (Ross, 1997) and Monte Carlo Markov chain (MCMc) sampling (Sambridge 

and Mosegaard, 2002; Tarantola, 2005; Liu and Oliver, 2003;) are the two sampling 

routines that can be used to sample from posterior PDF. The problem with rejection 

sampling is that one needs to have an estimate of the posterior PDF in order to obtain 

a satisfactory acceptance (or rejection) rate, suggesting that the method is not very 

efficient. MCMc methods are very efficient in this respect, and only need relatively 

high number of samples in order to generate statistical histograms that resemble the 

true PDFs (Liu and Oliver, 2003). 

To obtain the marginal PDFs I have used MCMc method (in paper 2, 3, 5 and 6). In 

paper 1, I have used numerical integration method, which yields the marginal PDFs 

for small dimensional problems (Tarantola, 2005). Also in paper 1, when inverting for 

a distribution of model parameters (analysis of more than one grid blocks), the 

minimum/maximum of the objective function given in equation (7) is obtained via a 

systematic search through all allowed points within a discretized version of the model 

parameters (Tarantola, 2005). The problem of finding the minimum of the objective 

or cost function is the same as finding the maximum of the posterior distribution. In 

what follows, I present a very brief introduction about finding the marginal PDFs 

using numerical integration and MCMc methods. A comparison of marginal PDFs 

obtained via numerical integration and MCMc methods is also presented for a simple 

case where I have two unknown model parameters related with fractures (fracture 

density and azimuthal fracture orientation).

4.3.2 Marginal PDFs via numerical integration and MCMc method 

The marginal PDFs of the model parameters can be found by integrating the model 

parameters with respect to other model parameters. For example, I consider the case 
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when I have two unknown model parameters (fracture density and azimuthal fracture 

orientation) in the context of fracture characterization. The marginal PDFs for the 

fracture density and the azimuthal fracture orientation can be obtained in the 

following way.  

Let �  denote the fracture density, �  denote the azimuthal fracture orientation and M

is the model space for the parameters, the posterior distribution satisfies (Equation 

(9)) 

( ) .1,
0 0

max

=� � ���� ddq
π ε

        (10) 

The marginal distribution for the fracture density will then be obtained by integrating 

over all the azimuthal fracture orientations i.e. 

  ( ) ( ) .
0

���,�� dqq �=
π

        (11) 

Similarly, the marginal distribution for azimuthal fracture orientation can be obtained 

by integrating over all the fracture densities i.e.

  ( ) ( ) .
max

0
���,�� dqq �=

ε
        (12) 

Marginal PDFs obtained via numerical integration require dense discretization of the 

model space. Sparse discretization of model space may lead to missing of important 

features of posterior distribution. This method is only useful when the computation of 

forward model is not much time consuming and we have a small dimensional problem 

at our hand. For high dimensional problems and time consuming forward problem, 

this method might proves to be ineffective.  

To obtain the marginal PDFs using MCMc method, I have used the Metropolis 

algorithm (Metropolis and Ulam, 1949; Metropolis et al., 1953; Hastings 1970; 

Tarantola, 2005) to generate independent samples from the posterior PDF. The 
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method is random (Monte Carlo) and has no memory, as each step depends only on 

the previous step (Markov chain). A random walk is performed which obtains 

samples from the initial probability distribution, then by the application of some 

probabilistic rules the random walk is modified, so that the modified random walk 

samples the target distribution (Tarantola, 2005). An important thing to note is that 

there is no general rule for obtaining the independent posterior samples, as this 

strongly depends on the particular problem at hand. The efficiency of the algorithm is 

determined by the acceptance rate. The random walk should be designed in a sense 

that the perturbations of the likelihood function is as small as possible as this will 

increase the acceptance rate of the Metropolis rule (Tarantola, 2005). The 

perturbation size in the model space should be such that the acceptance rate of the 

Metropolis criterion is 30-50% (Tarantola, 2005). If the acceptance rate is larger, we 

are not moving fast enough in the model space; if it is smaller, we are wasting our 

resources to test models that are not accepted (Tarantola 2005). 

Figure 13 show the comparison of marginal PDFs obtained via MCMc and numerical 

integration methods for a small dimensional problem of two unknown model 

parameters (fracture density and azimuthal fracture orientation). A combination of the 

T-matrix approach of Jakobsen et al., (2003a) with the anisotropic Gassmann 

relations of Brown and Korringa (1975) is used to relate the parameters of fractures to 

the effective undrained elastic constants. Rüger’s approximation (Rüger, 1998, 2002) 

is used to obtain the reflection coefficients as a function of polar incidence and 

azimuthal angles from top of the reservoir. The properties of solid mineral, dry porous 

matrix, fluid and overburden used for the numerical calculations are given in table 1. 

The true fracture density and azimuthal fracture orientation is set to 0.05 and 35o. 
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Table 1 The properties of dry porous matrix (Nolen-Hoksema et al., 
(1995)), solid mineral, fluid and isotropic overburden used to perform 
numerical calculations in figure 13.  

Figure 13 Comparison of marginal PDFs obtained via MCMc (blue bars) 
and numerical integration (red line) methods. The standard deviation of the 
measured seismic data was set to 20% and an uninformative prior was 
considered during the inversion. 

Material Bulk modulus 

(GPa) 

Shear Modulus 

(GPa) 

Density (kg/ m3) 

Dry porous matrix 

(Carbonate) 

41.2 25.2 2500 

Solid Mineral 

(Calcite) 

72.0 45.0 2710 

Fluid (Brine) 2.2 0.0 1000 

Isotropic 

Overburden 

44.5 25.4 2633 
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5. Main scientific contributions 

The main scientific contributions of the thesis consist of a set of research papers 

describing the development of novel workflows about the correlations between 

effective permeability and seismic anisotropy of fractured and composite porous 

media. In this section, I present each of the papers with their objectives and relevance, 

and their main findings and conclusions are summarized. The full length papers are 

presented in Part II. The appendices of part II consist of corresponding extended 

abstracts for papers 1, 2, 3, 4 and 6. The ideas and methodology presented in extended 

abstracts has been extended leading to papers described above. 

Paper 1: On the accuracy of Rüger’s approximation for reflection 
coefficients in HTI media: Implications for the determination of 
fracture density and orientation from seismic AVAZ data 

Reflection coefficients as a function of offset and azimuth are mostly used as an 

important seismic attribute when dealing with the characterization of fractured 

reservoirs. The added dimension of azimuth in anisotropic media makes the reflection 

problem more challenging. To cope up with this challenge, several approximate forms 

for the reflection problem in anisotropic media have been introduced. Among these 

approximate forms, the most popular and widely used in the industry is Rüger’s 

approximation for a medium with horizontal axis of symmetry (Rüger 1998, Rüger 

2002). The main reason for its wide use is that the effect of anisotropy on reflection 

signature can be analyzed with the help of a simple analytic approximation and it 

gives direct and straightforward insight into the azimuthal signature. In this paper, we 

have investigated the accuracy of Rüger’s approximation for PP reflection 

coefficients in HTI media relative to an exact generalization of Zoeppritz to 

anisotropy derived by Schoenberg and Protazio (1992) within the context of seismic 

fracture characterization.  
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More specifically, we investigate the implications of Rüger’s approximation for the 

determination of fracture density and azimuthal orientation, as well as the accuracy in 

forward modelling of reflection coefficients. A combination of the T-matrix approach 

of Jakobsen et al., (2003a) with the anisotropic Gassmann relations of Brown and 

Korringa (1975) is used to relate the parameters of the fractures to the effective 

(undrained) elastic constants. The inversion of this non-linear forward model was 

done in a Bayesian setting, which provides information about uncertainties as well as 

the most likely values. The main outcomes of this study are: 

• Rüger’s approximation can be used to recover the fracture density with 

small uncertainty if and only if the fracture density and contrast is 

significantly smaller than the values that is believed to occur in many 

practically interesting cases of fractured (carbonate) reservoirs. 

• Rüger’s approximation can be used to obtain estimates of the azimuthal 

fracture orientation with small uncertainty, even when the contrast and 

anisotropy level is extremely large. 

• It is generally safer and not extremely more computationally expensive to 

use the exact generalization of Zoeppritz to anisotropy provided by 

Schoenberg and Protazio (1992) rather than Rüger’s approximation; but 

Rüger’s approximation seems to give the estimates of the fracture 

orientation with small uncertainty, and it can sometimes give (fit for 

purpose) qualitative information about the trends in the spatial distribution 

of the fractures.

Paper 2: Improved characterization of fault zones by quantitative 
integration of seismic and production data 

The impact of faults on the flow of fluids in hydrocarbon reservoirs has been 

recognized long time ago. In reality, faults are complex 3D objects typically 

consisting of fault core surrounded by a heterogeneous damage zone. The fault 
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damaged zone typically consists of fractures or deformation bands that may or may 

not have a preferred orientation. The purpose of this paper was to obtain an improved 

characterization of fault zones by quantitative integration of seismic AVAZ and 

production data. Our workflow is based on a consistent stiffness-permeability model 

for the fractured or composite porous media in the damage zone, and a Bayesian 

(Monte Carlo Markov chain) method of inversion, which provides information about 

uncertainties as well as the most likely values of the model parameters. We have 

generated synthetic seismic and production data for a model of a fault zone, and 

demonstrated how accurately one can recover the fault core transmissibility and the 

parameters of the fault damaged zone from production and seismic amplitude versus 

angle-azimuth (AVAZ) data that have been contaminated with random noise. This 

study represents an extension of the fracture characterization system developed by 

Jakobsen et al., (2007a, b) and Jakobsen and Shahraini (2008a, b) in the sense that we 

have introduced the fault core as an additional complication, that increases the non-

uniqueness associated with the inverse problem. The main outcomes of this study are: 

• The study shows that seismic and production data are complementary to 

each other. The reason is that seismic data are sensitive to the fault 

transmissibility via saturation but the effects were not large enough, so that 

the seismic data alone can recover the fault transmissibility.  

• The joint inversion of seismic and production data also helps to reduce the 

uncertainty in the fault transmissibility along with fracture density or 

volume fraction of deformation bands. 

This paper is published online in Journal of Geophysics and Engineering. There is 

some confusion with figures 4, 5, 6 and 7 in the paper related with the axis of 3D-

plots. For example, in figure 4 it shows increasing stiffness with increasing fracture 

density. The figures are not wrong, only the axis must be reversed. For this purpose, 

the figures 14, 15, 16 and 17 with correct axis are shown here.  
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Figure 14 Axis-corrected version of the figure 4 in paper 2. 

Figure 15 Axis-corrected version of the figure 5 in paper 2. 
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Figure 16 Axis-corrected version of the figure 6 in paper 2. 

Figure 17 Axis-corrected version of the figure 7 in paper 2. 
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Paper 3: Characterization of fractured reservoirs using a 
consistent stiffness-permeability model: focus on the effects of 
fracture aperture 

This paper proposes a method for the characterization of naturally fractured reservoirs 

by quantitative integration of seismic and production data. Previous studies (Jakobsen 

et al., 2007a) showed that there is a high uncertainty in the estimated effective 

permeability using only seismic AVAZ data due to the low sensitivity of the effective 

stiffness tensor to the aperture. In this paper, we have inverted for all the three 

fracture parameters (e.g., fracture density, orientation and aperture) that determine the 

effective permeability tensor of a fractured reservoir. The method is based on a 

consistent theoretical frame work to model both effective hydraulic and elastic 

properties of fractured porous media and a (non-linear) Bayesian method of inversion 

that provides information about uncertainties as well as mean (or maximum 

likelihood) values. We model a fractured reservoir as a porous medium containing a 

single set of vertical fractures characterized by an unknown fracture density, 

azimuthal orientation and aperture. We then look at the problem of fracture parameter 

estimation as a non-linear inverse problem and try to estimate the unknown fracture 

parameters by joint inversion of seismic AVAZ data and dynamic production data. 

Once the fracture parameters have been estimated the corresponding effective 

stiffness and permeability tensors can be estimated using consistent models. The main 

outcome of this study is: 

• This study shows that seismic and production data complement each other, 

in the sense that the seismic data resolve non-uniqueness associated with 

fracture parameters (fracture density and orientation) and the production 

data help to recover the fracture aperture and the effective permeability 

tensor, because production data are more sensitive to the fracture aperture 

than the seismic data. 
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Paper 4: On the relative importance of global and squirt flow in 
cracked porous media  

An important aspect of this PhD project was to investigate the phenomenon of wave 

induced fluid flow to develop new methods for improved reservoir simulations by 

seismically derived fractured models. This requires developing new workflows for the 

estimation of anisotropic permeability in fractured reservoirs from measurements of 

frequency-dependent seismic anisotropy attributes. For this purpose, we have first 

investigated the relative importance of global and squirt flow in cracked porous media 

using the unified theory of Jakobsen and Chapman (2009). More specifically, we have 

investigated the implications of unified theory of Jakobsen and Chapman (2009) for 

the relative importance of global and squirt flow characterized by different 

microstructures and fluid mobilities. A further aim was to investigate if a prediction 

of negative velocity dispersion in certain models where global flow dominates will 

change significantly if one accounts for certain effects of non-local elasticity that 

exists in the unified theory (Jakobsen and Chapman, 2009), but have never been 

implemented in a proper manner. We use an iterative method for solving the 

nonlinear equations associated with the unified theory of global and squirt flow in 

cracked porous media, where the effective stiffness tensor depends on the frequency 

and effective wave vector. A quadratic equation representing microstructural and 

phenomenological theories of wave-induced fluid flow in isotropic media to the first 

order in porosity or crack density is also presented. We also present and apply a 

simple model for the effects of viscosity on the relaxation time constant for squirt 

flow associated a particular pore/shape orientation. The main outcomes of this study 

are: 

• The magnitude of squirt flow dominates over global flow and global flow 

appears to be important at higher frequencies for more realistic 

microstructures (models like pores and randomly oriented micro-cracks or 

pores, randomly oriented micro-cracks and aligned mesoscopic fractures).  
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• The attenuation peak of squirt flow move towards relatively low 

frequencies with the increase of viscosity i.e. changing saturating fluid 

from water to oil, while the global flow attenuation peak move towards 

relatively high frequencies with the increase of viscosity.  

• The attenuation peak of the global flow obtained using the approximate 

wave number is always shifted to the right as compared to the solution with 

correct wave number (exact analytical or iterative solution).  

• This study shows that the observations of negative velocity dispersion in 

Jakobsen and Chapman (2009) theory still remain, even if we use the 

correct effective wave number, when dealing with the phenomenon of 

wave-induced fluid flow in models of cracked /fractured porous media 

where global flow effects dominates. 

• At seismic frequencies global flow effects are not so important and needs 

high permeability and low viscosity to have an effect. 

Paper 5: Anisotropic permeability in fractured reservoirs from 
frequency-dependent seismic AVAZ data 

 Attempts to predict permeability from seismic AVAZ data on the basis of a 

combination of the consistent stiffness-permeability model with the anisotropic 

Gassmann relations of Brown and Korringa are not very much successful due to the 

low sensitivity of effective stiffness to fracture aperture than the corresponding 

effective permeability tensor (Jakobsen et al., 2007a). The presence of mesoscopic 

fractures in a reservoir can produce significant dispersion and attenuation at seismic 

frequencies, suggesting that it is generally not safe to treat seismic frequencies as the 

low frequency limit (Maultzsch et al. 2003). In this paper, we show that one can 

obtain information about all the three fracture parameters that determines the effective 

permeability tensor (that is, the fracture aperture as well as the fracture density and 

orientation), provided that the anisotropic Gassmann relations are replaced by a theory 
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for seismic attenuation and dispersion due to wave-induced fluid flow; and the 

reflection coefficients are no longer assumed to be real-valued and frequency-

independent. Synthetic seismic AVAZ data are generated by using a combination of a 

dynamic effective medium theory with Rüger’s approximations for PP reflection 

coefficients in HTI media. A Monte Carlo method is used to perform a Bayesian 

inversion of these synthetic seismic AVAZ data with respect to the parameters of the 

fractures. The effective permeability model is then used to construct the 

corresponding probability density functions for the different components of the 

effective permeability constants. The main outcome of this study is: 

• Improved estimation of anisotropic permeability can be obtained via 

frequency-dependent seismic AVAZ data i.e. including the velocity 

dispersion and attenuation associated with mesoscopic fractures using a 

dynamic effective medium theory. 

Paper 6: Seismic characterization of reservoirs with multiple 
fracture sets using velocity and attenuation anisotropy data  

The workflow described in paper 5 can be extended to more complex fractured 

reservoir characterization i.e. a fractured reservoir with multiple sets of fractures. This 

is also due to the fact that T-matrix part of the workflow described in Paper 5 

represents the most general model, because it allows for non-dilute concentrations of 

inclusions characterized by different shapes, orientations and spatial distributions 

(Gurevich et al., 2009; Müller et al. 2010). In this paper, we use measurements of 

velocity and attenuation anisotropy data corresponding to different seismic 

frequencies and azimuths to infer important information about the multiple fracture 

sets present in the reservoir. We model a reservoir containing two sets of vertical 

fractures characterized by unknown azimuthal fracture orientations and fracture 

densities. Synthetic seismic velocity and attenuation anisotropy data is computed 

using effective viscoelastic stiffness tensor solving the Christoffel equation. A 

Bayesian inversion method is then applied to measurements of velocity and 
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attenuation anisotropy data corresponding to different seismic frequencies and 

azimuth to estimate the azimuthal fracture orientations and the fracture densities, as 

well as their uncertainties. The main outcomes of this study are: 

• For fractured reservoir containing two sets of aligned mesoscopic fractures, 

one can in principle estimate the azimuthal fracture orientations and 

fracture densities from measurements of seismic velocity and attenuation 

anisotropy data corresponding to different seismic frequencies and 

azimuths, provided that one has priori information about the porous matrix, 

saturating fluid(s) and fracture geometry. 

• Measurements of velocity anisotropy data alone corresponding to different 

seismic frequencies and azimuths cannot recover the fracture parameters 

related with multiple sets. 

• A satisfactory characterization of complex fractured reservoirs requires a 

model accounting for attenuation anisotropy. 
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6. Concluding remarks and possible extensions 

This study contains novel workflows and methodologies to exploit the correlations 

between effective permeability and seismic anisotropy of fractured reservoirs. The 

workflows and methodologies are based on the rock physics models that calculate the 

effective mechanical and transport properties of the fractured and composite porous 

media. Bayesian approach has been used to solve the non-linear inverse problem of 

finding the parameters related with fractures from seismic amplitude versus angle and 

azimuth (AVAZ) data (frequency-independent or frequency-dependent) and/or 

production data. This study shows that improved characterization of fractured or 

composite porous media can be obtained either using the joint inversion of frequency-

independent seismic AVAZ data and production data or the frequency-dependent 

seismic AVAZ data obtained by including the seismic velocity dispersion and 

attenuation data. 

This study can be extended in multiple directions. An obvious extension is the use of 

seismic AVAZ data obtained from the synthetic seismograms by the application of 

proper processing routines as for real seismic data instead of using the amplitude of 

the reflection coefficients from the top of the reservoir. In this way the effect of the 

overburden can also be incorporated in a proper manner. The synthetic seismograms 

can be obtained via ray theory or finite difference methods (see Krebes, 2004). 

Seismic AVAZ data obtained in this manner can then be used in Bayesian inversion 

methodology to obtain the parameters related with fractured and composite porous 

media and the corresponding effective permeability estimates. 

Another possible extension of the workflow can be performed by involving other data 

types e.g., shear wave birefringence. The shear wave birefringence is often taken as 

proportional to the fracture density in the case of single set of aligned fractures. Shear 

wave birefringence also tends to be quite robust, so incorporation of such type of data 

can improve the efficiency of the proposed methodology.  
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A further extension can be to include the effects of percolation in the rock physics 

models. In this study we have considered that the fractures are isolated with respect to 

fluid flow, but for the effects of intersecting fractures, the percolation effects should 

be included. A self-consistent approach can be used to model the effect of 

interconnected fractures (Pozdniakov and Tsgang, 2002). 

Another improvement in the workflow can be obtained by performing the joint 

inversion of frequency-dependent seismic AVAZ data and production data for 

improved characterization of reservoirs with complex fracture system i.e. multiple 

sets of fractures. 

A further improvement in the method can be to include the effects of pressure in the 

rock physics models. Fracture aperture is the most important parameter controlling the 

fluid flow and pressure changes can have an important affect on the aperture of the 

fractures. 
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Appendix-A T-matrix approach for effective elastic 
stiffness tensor 

The derivation of the effective stiffness tensor using T-matrix approach is taken from 

Jakobsen et al., (2003a). The stress tensor )(xσσσσ  and the strain tensor )(xεεεε  at point x of 

an elastic sample with complex microstructure occupying a large spherical region �

can be related by linear transformation, under a deformation with infinitesimal strain   

)()()( xxCx εεεεσσσσ = ,               (A-1) 

where )(xC  is the local tensor of elastic constants, which reflects the complex 

microstructure of the sample varying with x in a random manner, on a scale that is 

small compared with all other length-scales. For the heterogeneous material as a 

whole, similar relation in terms of the averaged stress tensor �� )(xσσσσ  and strain tensor 

�� )(xεεεε  gives 

   ��=�� ∗ )()( xCx εεεεσσσσ ,              (A-2) 

then our problem is to determine the tensor ∗C  of effective elastic constants using the 

statistical information about )(xC . The angular brackets ⋅  in Equation (A-2) denote 

the ensemble average, which can be replaced by the volume average if the material is 

statistically homogeneous, which means that any sufficiently large sub-regions of �

is statistically identical with the whole specimen and all ensemble-averaged material 

quantities, such as ∗C , are independent of position. 

To evaluate the tensor of effective elastic constants from Equation (A-2) an integral 

equation for the strain tensor field is introduced 

   [ ]{ }T)()(
2
1)( xuxux ∇+∇=εεεε ,             (A-3) 

under a known displacement u(x) of the surface Ω∂  of the sampleΩ : 
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   ),()( xUxu = �∂∈x .             (A-4) 

Now starting with equilibrium equation 

   ,0)( =⋅∇ xσσσσ                 (A-5) 

and since the material is homogenous on the macroscopic scale, it can be written as 

   ),()( )0( xCCxC �+=               (A-6) 

where )(xC�  is the fluctuation of )(xC  from a quantity )0(C  which is uniform in space. 

From equations (A-1), (A-5) and (A-6) it can be written as  

   [ ] [ ])()()()0( xxCxC εεεεεεεε �⋅−∇=⋅∇ .            (A-7) 

An integral equation for the strain field can be derived from the differential equation 

(Equation (A-7)) 

  )()()()()( )0()0( xxCxxxGxx ′′′−′+= � εεεεεεεεεεεε �d
�

,            (A-8) 

where )0(εεεε  is the strain tensor due to the boundary displacements in a material with 

properties given by )0(C . )()0( xG  is the strain Green’s tensor function for a translation-

invariant system where the components are given by 

  .
)()()()(

4
1)(

)0()0()0(0
)0(

�
�

	




�
�

�




∂∂
+

∂∂
+

∂∂
+

∂∂
−=

ki

jl

kj

il

li

jk

lj

ik
ijkl xx

g

xx
g

xx

g

xx
g

G
xxxx

x            (A-9) 

Here )()0( xikg  is a component of the displacement Green’s tensor function )()0( xg

which vanishes at the boundary of �   
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Now introducing a fourth-rank tensor field )(xT  which, when contracted with )0(εεεε on 

the right, yields the stress difference )()( xxC εεεε�   

  )0()()()( εεεεεεεε xTxxC =� .                       (A-11) 

)(xεεεε  is linearly dependent on )0(εεεε  through the boundary condition (Equation (A-4)), 

so )(xT  depends only on the material properties and not on )(xεεεε  or )0(εεεε . Next step is 

to find a similar integral equation for )(xT  like in Equation (A-8). Using Equation (A-

11) in Equation (A-8), it can be written as  

    )0()0()0( )()()( εεεεεεεεεεεε xTxxGxx ′′−′+= �
�

d .                    (A-12) 

By multiplying equation (A-12) with )(xC�  from the left and using Equation (A-11) 

again, it can be obtained  

  )0()0()0()0( )()()()()( εεεεεεεεεεεε xTxxGxxCxCxT ′′−′+= �
�

d�� .                   (A-13) 

The elements ijklT  of T is chosen to be symmetric in (i,j) and (k,l) and, since )0(εεεε  may 

be chosen to be an arbitrary symmetric matrix, it follows that 

  )()()()()( )0( xTxxGxxCxCxT ′′−′+= �
�

d�� .                    (A-14) 

The tensor field )(xT  specifies the ‘transitions’ out of the reference field )0(εεεε  and 

gives the complete information about the strain tensor field distribution )(xεεεε  in the 

micro-inhomogeneous material, provided that we can solve the integral equation 

(Equation (A-14)). 

For finding the effective elastic constants in terms of T, Equations (A-1) and (A-6) 

give 

  εεεεεεεεσσσσ CC �+= )0( .                        (A-15) 
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By combining Equations (A-11) and (A-15) we get 

  )0()0( εεεεεεεεσσσσ TC += .                      (A-16) 

From Equation (A-12) it is clear that 

  )0()0( εεεεεεεεεεεε TG+= ,                        (A-17) 

where 

  ),()0( xxGG ′−′= �
�

xd   �∈x                    (A-18) 

is a constant tensor (Eshelby, 1957). Equation (A-17) gives )0(εεεε  in terms of εεεε

εεεεεεεε 1)0( )( −+= TGI ,      (A-19) 

where I is the identity tensor. Equations (A-2), (A-16) and (A-19), imply that 

  1)0( )( −∗ ++= TGITCC .                     (A-20) 

Equation (A-20) represents a formal exact solution for the case of local elasticity in 

terms of the T-matrix for the material. Next, a material was considered in which )(xC

is piecewise constant, or specifically a media is considered with inclusions that were 

either embedded in a homogenous matrix material or else make up a granular 

aggregate. The population of inclusions is divided into families of inclusions having 

the same shape/orientation and stiffness tensor )(rC , labeled by Rr ,....,2,1= . Dry 

cavities may formally be treated as inclusions having vanishing stiffnesses (see 

Jakobsen et al., 2003a). It was assumed that there were )(rn  inclusions of type r , 

occupying identical regions )(r
��  of the space � , centered at random points )(r

�x

),...,1( )(rn� = . Denote by )()( xr�  the characteristic function of the domain )(r
��  (that is, 

,1)( )()( =− r
�

r� xx  if )(r
��∈x  and 0 otherwise). It follows that the fluctuation )(xC�  may 

be decomposed as 
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  .)0()()( CCC −= rr�                       (A-23) 

A decomposition of the T-matrix for the material, which is analogous with that of 

)(xC�  in Equation (A-21), is given by 
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)()( xTxT ,                       (A-24) 

  )()()( )()()( r
�

rr
� � xxxTxT −= .            (A-25) 

Equations (A-14), (A-21) and (A-24) imply that the )()( xT r
�  must satisfy 
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,

)()0()()()( )()()()()( xTxxGxxCxCxT .        (A-26) 

Let )()( xt r
�  denote the solution of the integral equation 

  )()()()()( )()0()()()( xtxxGxxCxCxt ′′−′+= � r
�

�

r
�

r
�

r
� d�� ,         (A-27) 

then the expression (A-26) for )()( xT r
�  can be written exactly as 

  )1()()()()()(
,

)()0()()()(
�	rs

	s

s
	

�

r
�

r
�

r
� ��d −′′−′+= �� xTxxGxxtxtxT .       (A-28) 

The solution of the integral equation in the form of )()r( xtα  infact completely solves the 

single-body problem. The second term on the right hand side of Equation (A-28) 

describes the interaction of different bodies or inclusions (Jakobsen et al., 2003a). 

Successive iterations of Equation (A-28) will lead to the many-body problem. To 

avoid the complicated calculations of the many-body problem, we restrict ourselves to 
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the two-body problem based on two-point statistics. A single iteration of Equation (A-

28) yields 

  )1)(()()()()(
,

)()0()()()(
�	rs

	s

s
	

�

r
�

r
�

r
� ��d −′′−′+≈ �� xtxxGxxtxtxT .       (A-29) 

Now assuming that the inclusions are ellipsoidal in shape, the T-matrix for a single 

inclusion can be found. The transition tensor )()( xt r
�  satisfies (see Equation (A-11)) 

  )0()()()( )()()( εεεεεεεε xtxxC r
�

r
�

r
�� = ,            (A-30) 

where )()( xr
�εεεε  is the strain field for a single inclusion of type r  embedded in the 

homogenous matrix. If )()( xr
�εεεε  is constant within the inclusion, then )()( xt r

�  must also 

be; and it is zero outside, so it can be written as  

  ),()( )()()()( r
�

rrr
� � xxtxt −=             (A-31) 

where )(rt  is a constant tensor. Inserting this into the integral equation (Equation (A-

27)), it can be found  
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rrr
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rrr
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rr �d����� xxtxxGxxxCxxCxxt −′′−′−+−=− � .  

       (A-32) 

Integrating over � it can be obtained 

  )()()()()( rrrrr �� tGCCt += ,            (A-33) 

or 

  )(1)()()( )( rrrr �� CGCIt −−= ,             (A-34) 

where 

  )(1 )0(
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)()(

xxGxxG ′−′= ��
rr ��

r
r dd

�
,           (A-35) 
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and )(r�  is the region of an inclusion of type r  centered at the origin. Clearly, )(rG  is 

a constant tensor, and its components can be evaluated by using the formulae 

discussed in appendix-B. 

From Equations (A-24), (A-29) and (A-31), it can be found  

  )()()( 21 xTxTxT +≈ ,             (A-36) 

where 
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1 xtxT
r

r

r ��= ,             (A-37) 
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r �d� txxxxGxxxt −′′−′−− �� ,        (A-38) 

and 

  )()( )()()( r
�

r

�

r �� xxx −=� ,            (A-39)  

is the indicator function of phase r . 

 In order to evaluate the effective elastic constants from Equation (A-20), or 

from some equation implied by it, an equivalent T  is needed to be constructed. From 

Equation (A-36), it can be obtained  

  21 TTT +≈ .             (A-40) 

Equation (A-37) yields 

  �=
r

rr v ,)()(
1 tT              (A-41) 

where 
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  ,)()()( xrr �v =              (A-42) 

is the relative volume concentration of phase r . From Equation (A-38) it can be 

obtained  

  ,~)()()( )()()()()()()0()(
2 ��� � −′′−′=

r

rrrssr

r s �

r ��d tGttxxxxGxtT       (A-43) 

where 
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xxxxGxxxxG −′′−′−= �� �         (A-44) 

and the ensemble average of the second term on the right-hand side of Equation (A-

38) is replaced by its volume average. Equations (A-35) and (A-44) imply that 

  ,~ )()()( rrr v GG =              (A-45) 

since   
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r ==�             (A-46) 

The exact expression (A-20) for ∗C  can be rewritten exactly as  

  ,)( 11 GTC += −−∗�               (A-47) 

where 

  )0(CCC −= ∗∗� .             (A-48) 

Multiplying Equation (A-47) with 1−T from the left and using the standard rule for 

inversion of tensor inner products, it can be obtained 

  [ ] GTTTCT 1
11

1
1

1 )( +=
−−−∗� .           (A-49) 
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Combining Equations (A-40) and (A-49) it can be written as 

  [ ] GTTTICT 1
11

12
1

1 )( ++≈
−−−∗� .          (A-50) 

If we now assume that 

  11
12 <−TT ,             (A-51) 

where ⋅  denotes a suitable tensor norm, then it follows from Equation (A-50) that 

∗∗ ≈ T�� CC  where 

  .)( 1
1

121 GTTTICT +−= −∗
T�            (A-52) 

After some tensor algebra, this expression can be rewritten for effective material 

parameters: 

  ,)( 11
11

−−∗ −= XTITCT�             (A-53) 

where

  112 TGTTX −= .             (A-54) 

From Equations (A-18), (A-41), (A-42), (A-43), (A-45) and (A-54), it can be written 

as 

  ,)()()()()()()( rrr

r

rs

r

rs

s

r v tGttAtX ��� −=           (A-55) 

where 

[ ])()()()()( )()()()()0()( xxxxxxGxA ′−′′−′= � srsr

�

rs ����d ,        (A-56) 

depends only on )0(C  and the stochastic geometry of the microstructure. )(rsA  can 

be written as (Ponte Castaneda and Willis, 1995; Jakobsen et al., 2003a) 
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rs vvv� GGA −=  ,           (A-57) 

where 
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xxGxG ′−′= �
rs

d�

rs
d d )(rs

d�∈x           (A-58) 

is a spatially invariant tensor since )(rs
d�  represents an ellipsoid having the same 

symmetry as )()|( zz ′−rsp  which, in turn, represents the probability density for finding 

an inclusion of type s centered at point z′  given that there is an inclusion of type 

r centered at point z . Since )()( )|()|( zzzz −′=′− srrs pp  it follows that )()( sr
d

rs
d GG = . It 

was assumed that the inclusions do not overlap because an ellipsoid of type r  is 

surrounded by a ‘security’ ellipsoid )(rs
d� , in the sense that 0)()|( =′′zrsp  if )(rs

d�∈′′z . 

From Equations (A-55) and (A-58) it can be found 
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d

r

r s

r vv tGtX ��−=  .           (A-59) 

From Equations (A-41), (A-48), (A-53) and (A-59), a new expression for the effective 

elastic constants is obtained  
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setting 
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rrv )()(
1 tC ,             (A-61) 
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r r

rr vv tGtC ��=  ,           (A-62) 

the effective stiffness tensor can be expressed as 

  .)( 1
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1
11

)0( −−∗ ++= CCICCC                  (A-63) 
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It is also important to mention that when the rth  set of inclusions have a spatial 

distribution described by an orientation distribution function ),,()( φψθrO , the T-matrix 

for the individual inclusion, )(rt  in Equations (A-61) and (A-62) have to be replaced 

by the orientation averaged tensor )(rt  given by (Mavko et al., 2009; Jakobsen et al., 

2003a, b;) 

),,(),,(sin )(
2

0

)(
2

00

)( φψθφψθφψθθ
πππ

rrr Oddd tt ���= .          (A-64) 

The three Euler angles ),,( φψθ  define the orientation of the ellipsoid with principal 

axes 321 XXX  with respect to the fixed global coordinates 321 xxx , where θ  is the 

angle between the short axis of the ellipsoid and the 3x -axis (Mavko et al., 2009).The 

orientation averaging of the T-matrix also involves coordinate transformation of the 

inclusion stiffness tensor )(rC  from the local coordinate system of the inclusion to the 

global coordinates using the usual transformation laws for the stiffness tensor (Auld, 

1990; Mavko et al., 2009) .  
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Appendix-B Evaluation of the G Tensor 

The tensor )(rG  is given by (Jakobsen and Johansen, 2005) 

  ,)0()()( SEG rr −=                 (B-1) 

where )(rE  is the Eshelby tensor of the ellipsoid. The Eshelby tensor generally is 

given in terms of first and second elliptical integrals (Jakobsen et al., 2003a; Jakobsen 

and Johansen, 2005). In the case an isotropic material containing spheroidal 

inclusions with semi-axes r
rr aaa == )(

2
)(

1  and r
r ba =)(

3  and whose symmetry axis is 

aligned in 3x -direction, the elliptical integrals can be evaluated analytically (Jakobsen 

et al., 2003a). If the matrix material is isotropic then the components of )(r
ijklE  are given 

by (Jakobsen and Johansen, 2005) 
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where 
 is the Poisson ratio of the matrix, rrr ab� /=  is the aspect ratio of the rth 

spheroid, and q  is given by 

[ ]2/121
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when .1≤r�

From these results it can be written for spheres )3/2,1( == q�r , 
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If r refers to a typical flat compliant Hudson-crack (characterized by 0,0 →→ q�r ), 

then only non-vanishing components are 
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The above expressions for the )(rG  tensor can also be used to evaluate the )(rs
dG

tensor.  
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Appendix-C Equations for a single communicating 
cavity 

 The derivation is taken from Jakobsen and Hudson (2003), Jakobsen et al., 

(2003b) and Jakobsen and Chapman (2009). The t-matrix for a single inclusion of 

type r  is given by (Jakobsen et al., 2003a) 

  [ ] 1)0()()(
4

)0()()( )()(
−

−−−= CCGICCt rrrr ,                       (C-1) 

where 4I  is the identity tensor for the fourth-rank tensors. The t-matrix in Equation 

(C-1) can be expressed with a K-matrix which relates the strain, )(rεεεε , within an 

inclusion to the imposed stress at infinity )0(σσσσ   

   )0()()( σσσσεεεε rr K= .               (C-2) 

The K -tensor can be expressed as (Jakobsen et al., 2003b) 

   [ ] ,)( )0(1)0()()(
4

)( SCCGIK
−

−−= rrr                       (C-3) 

such that the t-matrix is 

   )0()()0()()( )( SKCCt rrr −= .                         (C-4) 

The Equation (C-4) means that we can find the t-matrix of a communicating cavity 

provided that we know the corresponding K-matrix. By linear superposition, the strain 

inside a fully saturated cavity of type r under fluid pressure )(r
fp and imposed stress 

)0(σσσσ at infinity, is given by the strain within the corresponding dry cavity under the 

imposed stress )( )(
2

)0( r
fpI+σσσσ  minus the strain within a similarly shaped and oriented 

cavity with hydrostatic stress )(
2

r
fpI  applied both at infinity and inside the cavity, 

where 2I  is the second-rank identity tensor. By using this argument in conjunction 

with Equations (C-2) and (C-3), it can be written as 
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r pp ISIKK −+= σσσσσσσσ                          

(C-5) 

where 

,)( )0(1)0()(
4

)( SCGIK −+= nr
d                           (C-6) 

is the K-matrix of a dry cavity of type r . 

The linearity of the problem suggest that there exists a second-rank tensor )(r� , which 

relates the fluid pressure to the applied stress given by 

  )0()()( σσσσrr
fp �= .                (C-7) 

From Equations (C-5) and (C-7) and using the fact that )0(σσσσ  is arbitrary, it can be 

found 

  ),)(( )(
2

)0()()()( rr
d

r
d

r �ISKKK ⊗−+=              (C-8) 

where the symbol ⊗denotes the dyadic tensor product. Inserting Equation (C-8) in to 

Equation (C-4), an expression for t-matrix can be obtained for a single cavity of type 

r  fully saturated with a homogenous fluid given by 

  )0()(
2

)0()()()( )( C�ISttt rr
d

r
d

r ⊗+= .                        (C-9) 

Now the problem is reduced to the evaluation of the fluid pressure polarization tensor 
)(r� . To evaluate the fluid-pressure-polarization tensor )(r�  in the case of a 

communicating cavity, we ensure that total fluid mass concentration fm  in an 

arbitrary volume is conserved. The wave-induced fluid flow at the scale of 

wavelength is given by Darcy’ law (Jakobsen et al., 2003b; Jakobsen and Chapman, 

2009)  
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where f�  is the fluid mass density, f�  is the fluid viscosity and ΓΓΓΓ  is the effective 

permeability tensor. The pressure and density of the fluid inside the 'r th cavity set are 

related by (Jakobsen et al., 2003b; Jakobsen and Chapman, 2009) 

   
f

r
f

r
f




p

�
�

)(

)(
0 1−= ,              (C-11) 

where 0�  is the density of the unstressed fluid and f
  is the fluid bulk modulus. The 

fluid pressure of the 'r th cavity set will change because of both fluid flow out and 

porosity change, if a quasi-static stress field is imposed on the arbitrary volume. The 

first order expression for changes in porosity can be obtained by using the equations 

(C-2) and (C-6) and is given by (Jakobsen et al., 2003b; Jakobsen and Chapman, 

2009) 
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�
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where )(~ r�  is the stressed porosity while )(r�  is the unstressed porosity of the 'r th 

cavity set, respectively. The expression for )(r
dK  is given in Equation (C-6).     

The expression controlling the fluid-mass flow out of the 'r th cavity set in Jakobsen et 

al., (2003b) has an error related to the conservation of fluid mass, which was 

corrected by Jakobsen and Chapman (2009). The fluid-mass flow out of the 'r th 

cavity set is given by (Jakobsen and Chapman, 2009)
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where � is the relaxation time constant.  

Using Equation (C-7) and working toward first order in Equations (C-11) and (C-12) 

with the assumption that the propagating-plane harmonic wave has angular frequency 

ω and the wave vector k, it can written as (Jakobsen and Chapman, 2009) 
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and  
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where 

�
��


kk�

f

fjiij=�                       (C-16) 

is a new term related to the coupling of the processes of wave induced fluid flow. To 

find the � tensor in Equation (C-14), an expression for fm  using Equations (C-11) 

and (C-12) is obtained and then inserted into the Equation (C-10) to get  
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From Equations (C-14), (C-17) and (C-18), it can be obtained 
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where 
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Appendix D- T-matrix approach for effective 
permeability tensor 

The derivation of the effective permeability tensor using T-matrix approach is taken 

from Jakobsen (2007c). A permeable specimen with complex meso-structure 

occupying a large spherical region �  is assumed. During steady-state flow of a 

single-phase fluid, the fluid filtration velocity )(xQ  and the pressure gradient )(xJ  are 

related by the Darcy law 

)()()( xJxKxQ = ,                (D-1) 

where )(xK  is a second-rank tensor of the permeability constants. For a heterogeneous 

porous medium Equation (D-1) can be written in terms of the averaged fluid filtration 

velocity )(xQ  and )(xJ  given by 

)()( xJKxQ ∗= ,               (D-2) 

where the ⋅  denote the ensemble average of the which may be related to the volume 

average if the material is statistically homogeneous. The remaining problem is to 

determine the effective permeability tensor ∗K  using the statistical information we 

have about )(xK . To evaluate the effective permeability constants in Equation (D-2) 

an integral equation for pressure gradient field is used 

)(p)( xxJ ∇= ,                (D-3) 

where )(p x is the known fluid pressure on the surface �∂ of the specimen � . The 

conservation of the fluid mass takes the from for the steady-state flow 

0)( =⋅∇ xQ .                (D-4) 

As the medium is homogenous on macroscopic scale, it can be written as 

)()( )0( xKKxK �+= ,               (D-5) 
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where )(xK�  is the fluctuation of )(xK  from a quantity )0(K  which is uniform in 

space. Now from Equations (D-1), (D-4) and (D-5), it can be obtained 

[ ] [ ])()()()0( xJxKxJK �⋅−∇=⋅∇ ,               (D-6) 

where the term on the right-hand side can be regarded as an applied source term. An 

integral equation for pressure gradient can be derived from Equation (D-6) 

)()()()( )0()0( xJxKxxGxJxJ ′′′−′+= � �d
�

,             (D-7) 

where )0(J  is the pressure gradient due to the applied boundary conditions on a 

material with properties given by )0(K .The components of the dipolar tensor 

)()0( xxG ′−  are given by 

jiij xxgG ∂∂= /)()( )0(2)0( xx ,              (D-8) 

where the scalar Green’s function )()0( xg  is the solution to the flow equation in a 

homogenous medium with a unit source given by 

[ ] )(�xx/)(gK ji
)0()0(

ij xx −=∂ .               (D-9) 

Following Jakobsen et al., (2003a), a second-rank tensor field )(xT  is introduced 

which, when contracted with )0(J  on the right, yields the velocity difference )()( xJxK�

  )0()()()( JxTxJxK =� .                       (D-10) 

Since )(xJ  is linearly dependent on )0(J  through the boundary conditions and )(xT

depends only on the material properties and not on )(xJ  or )0(J , then by using 

Equation (D-10) in (D-7) we get an integral equation similar to Equation (D-7) 

)()(d)( )0()0(

�

)0( JxTxxGxJxJ ′′−′+= � .                     (D-11) 
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Now multiplying Equation (D-11) with )(xK�  from the left and using Equation (D-

10), it can be written as 

)0()0(

�

)0()0( )()(d)(�)(�)( JxTxxGxxKJxKJxT ′′−′+= � .                   (D-12) 

Choosing the elements of T to be symmetric in (i,j) and )0(J  as an arbitrary tensor, it 

follows 

)()(d)(�)(�)( )0(

�
xTxxGxxKxKxT ′′−′+= � .                    (D-13) 

Next step is to evaluate the effective permeability constants in terms of ensemble 

average of T . Using Equations (D-1) to (D-5) and combining the resultant expression 

with Equation (D-10), it can be obtained 

)0()0( JTJKQ += .                       (D-14) 

From Equation (D-11) it can be written as 

)0()0( JTGJJ += ,                       (D-15) 

where 

)(d )0( xxGxG ′−′= �
Ω

, Ω∈x ,                      (D-16) 

is a constant tensor. Equation (D-15) gives )0(J  in terms of J  : 

JTGIJ 1)0( )( −+= ,                       (D-17) 

where I  is the identity tensor. Equations (D-2), (D-14) and (D-17) imply that 

  1)0( )( −∗ ++= TGITKK .                      (D-18) 

Equation (D-18) gives a formal exact solution for the tensor of effective permeability 

constants of a random medium in terms of ensemble average of the T-matrix of the 
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medium. The ensemble average of the T-matrix still remains to be determined. The all 

above equations are valid for the tensor of permeability constants )(xK  arbitrarily 

varying in space. Now considering a media in which )(xK  is piecewise constant and 

inclusions are either embedded in the homogeneous matrix material or else make up a 

composite porous medium. The population of inclusions is divided into families of 

inclusions having the same shape/orientation and permeability tensor )(rK , labeled by 

N,.....,2,1r = . It was also assumed that there are )r(n  inclusions of type r , occupying 

identical regions )r(
αΩ  of the space Ω , centered at random points )r(

αx )n,...,1( )r(=α . 

The characteristic function of the domain )r(
αΩ  is denoted by )r(

αθ  and as the medium is 

piecewise constant we can write it as ( ,1)( )r()r( =−θ αxx  if )r(
αΩ∈x  and 0 otherwise). The 

fluctuation of )(xK  can be decomposed as 

  )()(
N

1r

n

1

)r(
)r(

xKxK ��
= =α

αδ=δ ,                      (D-19) 

  )()( )r()r()r()r(
αα −θδ=δ xxKxK ,            (D-20) 

  )0()r()r( KKK −=δ .             (D-21) 

Similarly, T-matrix of the medium can be decomposed given by 

  ��
= =α

α=
N

1r

n

1

)r(
)r(

)()( xTxT ,             (D-22) 

  )()()( )r()r()r(
αα −θ= xxxTxT .            (D-23) 

Equations (D-13), (D-19) and (D-22) imply that )()r( xTα  must satisfy 

  ��
β

β
Ω

ααα ′′−′δ+δ=
,s

)s()0()r()r()r( )()(d)()()( xTxxGxxKxKxT .        (D-24) 

From the work of Jakobsen et al., (2003a), Equation (D-24) can be written exactly as 
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  )1()()(d)()()( rs
,s

)s()0()r()r()r(
αβ

β
β

Ω
ααα δδ−′′−′+= �� xTxxGxxtxtxT ,       (D-25) 

where )()r( xtα  denote the solution of the integral equation and gives us the fluid 

pressure inside the inclusion ( α,r ) given by  

  )()(d)()()( )r()0()r()r()r( xtxxGxxKxKxt ′′−′δ+δ= α
Ω

ααα � .         (D-26) 

 Infact )()r( xtα completely solves the single-body problem. The second term on the right 

hand side of Equation (D-25) describes the interaction of different bodies or 

inclusions (Jakobsen, 2007).  Successive iterations of Equation (D-25) will lead to the 

many-body problem. To avoid the complicated calculations of the many-body 

problem, we restrict ourselves to the two-body problem based on two-point statistics. 

A single iteration of Equation (D-25) yields 

��
β

αββ
Ω

ααα δδ−′′−′+=
,s

rs
)s()0()r()r()r( )1)(()(d)()()( xtxxGxxtxtxT .        (D-27) 

Now, in Equation (D-27) the first term on the right-hand side is related to the single 

inclusion transition tensor, while the second term on the right-hand side is directly 

related to interactions between two inclusions, respectively. To evaluate the single 

transition tensor )()r( xtα , the shape of the inclusion is taken to be ellipsoidal and )0(K

corresponds to the properties of the matrix. The transition tensor )()r( xtα  satisfies 

)0()r()r()r( )()()( JxtxJxK ααα =δ ,            (D-28)  

where )()r( xJα  is the pressure gradient field for a single inclusion of type r  embedded 

in  the homogenous matrix. The )()r( xJα  can be written as 

)()( )r()r()r()r(
αα −θ= xxJxJ ,            (D-29) 

where )r(J is a constant tensor and then )()r( xtα  can be written as 

)()( )r()r()r()r(
αα −θ= xxtxt ,             (D-30) 
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where )r(t  is a constant tensor. Using Equation (D-29) in (D-26), it can be obtained  

)()(d)()()( )r()r()r()0()r()r()r()r()r()r()r()r()r(
α

Ω
ααα −′θ′−′−θδ+−θδ=−θ � xxtxxGxxxKxxKxxt .  

                 (D-31) 

Now integrating over � , it can be obtained 

)r()r()r()r()r( tGKKt δ+δ= ,            (D-32) 

or 

)r(1)r()r()r( )( KGKIt δδ−= − ,            (D-33) 

where 

        ( ) � �
Ω Ω

′−′Ω=
)r( )r(

)(dd/1 )0()r()r( xxGxxG ,           (D-34) 

and )r(Ω  is the region of an inclusion of type r  centered at the origin. )r(G  is a 

constant tensor, and it’s components are given by 

  )0(
ii

)r(
i

)r(
ii /n KG −= ,   no sum,          (D-35)  

where )r(
in , 3,2,1i =  are the depolarization coefficients which depend on the shape of 

the spheroid, given by (Jakobsen, 2007c) 

  2/)n1(nn )r(
3

)r(
2

)r(
1 −== ,            (D-36) 

  [ ]( )r
1

r
3
r

2
r

)r(
3 ltanll/)l1(n −−+= ,           (D-37) 

  { }1)/()(l )0(
11

)0(
33

2)r( −α= KK ,            (D-38) 

and )r(α  is the corresponding aspect ratio.     

Equations (D-22), (D-27) and (D-30) give 



69

  )()()( 21 xTxTxT += ,             (D-39) 

where     

  � θ=
r

rr )()( )()(
1 xtxT ,             (D-40) 

  )s()s()r()0(

r s

)r(
2 )()()(d)( txxxxGxtxT ′θθ′−′=�� �

Ω

   )r()r()r(

,r

)0()r()r()r( )()(d)( txxxxGxxxt α
α Ω

α −′θ′−′−θ−� � ,       (D-41) 

and    

  �
α

α−θ=θ )()( )r()r()r( xxx ,                      (D-42) 

is the indicator for phase r . 

An equivalent T  is needed to be constructed to evaluate the effective permeability 

constants from Equation (D-2). Equation (D-39) can be written as 

  21 TTT += .             (D-43) 

Equation (D-40) yields 

  �=
r

)r()r(
1 vtT ,             (D-44) 

where 

    )(v )r()r( xθ= ,             (D-45) 

is the relative volume concentration of the phase r . 

In Equation (D-41), replacing the ensemble average of the second term on the right 

hand side by its volume average, it can be written as 
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��� � −′θθ′−′=
Ω r

)r()r()r()s()s()r(

r s

)0()r(
2

~)()()(d tGttxxxxGxtT ,       (D-46) 

where      

( ) )()(d)(d/1~ )r()r()0()r()r()r(
α

Ω Ω
α

α
−′θ′−′−θΩ= � �� xxxxGxxxxG .        (D-47) 

Equations (D-34) and (D-47) imply that 

)r()r()r( v~ GG = ,              (D-48) 

since 

Ω

Ω
=

Ω

Ω
=�

α

)r(
)r(

)r(
)r( nv .            (D-49) 

Now recalling the formal exact solution for effective permeability ∗K  which can be 

written as 

  GTK +=δ −−∗ 11)( ,             (D-50) 

where 

  )0(KKK −=δ ∗∗ .             (D-51) 

Multiplying Equation (D-50) with 1T  from the left and using the standard rule for 

inversion of tensor inner products, it can be obtained 

  [ ] GTTTKT 1
11

1
1

1 )( +=δ
−−−∗ .           (D-52) 

Combining Equations (D-43) and (D-52), it can be obtained 

  [ ] GTTTIKT 1
11

12
1

1 )( ++≈δ
−−−∗ .          (D-53) 
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Assuming 112 <<TT , where ⋅  denotes a suitable tensor norm, Equation (D-52) 

gives 

  GTTTIKT 1
1

12
1

T1 )( +−=δ −−∗  .          (D-54) 

A new expression for the tensor of effective permeability constants can be obtained 

from Equation (D-54) using some tensor algebra 

  11
11T )( −−∗ −=δ XTITK ,            (D-55) 

where     

  112 TGTTX −= .             (D-56) 

1T  is given by Equation (D-44) and it remains to evaluate X . From Equations (D-

16), (D-44), (D-45), (D-46), (D-48) and (D-56), it can be obtained 

  �� �−=
r s r

)r()r()r()r()s()rs()r( v tGttAtX ,          (D-57) 

where  

  [ ])()()()()(d )s()r()s()r()0()rs( xxxxxxGxA ′θθ−′θθ′−′= �
Ω

,       (D-58) 

depends only on )0(K  and the stochastic geometry of the microstructure. For the 

evaluation of )(rsA  we use the method of Jakobsen et al., (2003a) for a class of 

microstructures with prescribed two-point correlation functions having ellipsoidal 

symmetry for the distribution of the centers of arbitrarily shaped inclusions. The 

evaluation gives 

  )rs(
d

)s()r()s()r(
rs

)rs( vvv GGA −δ= ,           (D-59) 

where  
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  �
Ω

′−′=
)rs(

d

)(d )0()rs(
d xxGxG ,  )rs(

dΩ∈x ,         (D-60) 

is a spatially invariant tensor since )rs(
dΩ  represents an ellipsoid having the same 

symmetry as )(p )rs( zz ′−  which, in turn, represent the probability density for finding 

an inclusion of type s centered at point z′  given that there is an inclusion at point z. 

From Equations (D-57) and (D-59), it can be found 

  ��−=
r s

)s()s()rs(
d

)r()r( vv tGtX .           (D-61) 

From Equations (D-44), (D-51), (D-55) and (D-61) it follows that  

1

r u v

)v()v()uv(
d

)u()u(1)s(

s

)s()r()r()0(
T vv)v(v

−
−∗ � ��� �

	



�
�



++= tGttItKK ,               (D-62) 

which becomes completely explicit and easy to use when the inclusions are ellipsoidal 

in shape. Equation (D-62) can be further rewritten as 

  [ ]3)r(

r r s

)s()s()rs(
d

)r()r()r()r()0(
T )v(Ovvv +−+= � ��∗ tGttKK ,       (D-63) 

which is similar to the Equation (A-60) describing the effective stiffness tensor. 




