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Poisson’s spot with molecules
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In the Poisson-spot experiment, waves emanating from a source are blocked by a circular obstacle. Due to
their positive on-axis interference an image of the source (the Poisson spot) is observed within the geometrical
shadow of the obstacle. In this paper we report the observation of Poisson’s spot using a beam of neutral
deuterium molecules. The wavelength independence and the weak constraints on angular alignment and posi-
tion of the circular obstacle make Poisson’s spot a promising candidate for applications ranging from the study
of large molecule diffraction to patterning with molecules.
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Diffraction experiments played a crucial role in establish-
ing the existence of de Broglie matter waves [1-3]. Today,
matter-wave diffraction is used, among other applications, to
investigate quantum interference of large molecules [4],
enabling the study of quantum decoherence [5] and its role
in the quantum-to-macroscopic-world transition. These
experiments have mostly been carried out with free-standing
material gratings [6,7] or light wave gratings [8]. The largest
molecules so far (>3 nm) for which quantum interference
was successfully demonstrated were perfluoroalkyl-
functionalized azobenzenes in a Kapitza-Dirac-Talbot-Lau
interferometer [9]. Scaling such experiments to even larger
objects, such as macromolecules or perhaps even viruses, is a
tantalizing prospect. In principle, this should be possible to
some degree with a Kapitza-Dirac-Talbot-Lau interferometer.
However, as the size of the molecule and/or object ap-
proaches the distance between grating bars difficulties arise.
In the case of material gratings, van der Waals (vdW) forces
increasingly limit interference contrast by adding a locally
varying coherent phase shift. In fact, even blocking may oc-
cur. In the case of light gratings spontaneous emission and
photon absorption are likely to perturb coherence. Further-
more, for the Talbot-Lau configuration the distance between
the three gratings is a function of wavelength, and thus re-
quires wavelength selection. This limits effective intensity of
the commonly used thermal sources because only a fraction
of the emitted molecules can be used in the experiment. In
the case of clusters, the necessity of mass selection con-
strains effective source intensity additionally. Finally, align-
ment of the gratings, both with respect to each other and the
vertical, is challenging, and misalignment can cause classical
Moiré fringes which differ from expected interference pat-
terns only in visibility and wavelength dependence.

In this paper we make use of the Poisson-spot configura-
tion to demonstrate quantum interference in a beam of mol-
ecules. The Poisson spot refers to a classical-optics experi-
ment, in which a point light-source is blocked by a circular
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obstacle. Wave theory predicts that the intensity on the opti-
cal axis within the geometrical shadow is the same as with-
out the blocking obstacle due to the cylindrical symmetry
[11], resulting in a bright interference spot, called the Pois-
son spot. When compared to the Talbot-Lau configuration,
this setup reduces interaction with the diffracting structure to
a single edge, limiting the impact of vdW forces and block-
ing is not an issue. In addition, the vdW influence can be
reduced by creating free-standing structures from thinner
membranes, perhaps even from two-dimensional (2D) crys-
tals such as graphene. Furthermore, the on-axis interference
condition giving rise to the Poisson spot is wavelength inde-
pendent, which means that experiments can be carried out
using a polychromatic source. Thus, the Poisson-spot con-
figuration can utilize the entire mass and/or velocity spec-
trum of the beam source, which increases the available in-
tensity at the detector. It also places only weak constraints on
angular alignment and position of the circular obstacle [12].
These are important differences also when compared to dif-
fraction experiments using Fresnel zone-plates [13,14], and
make the Poisson spot an interesting option for studying the
quantum-mechanical nature of molecules.

One-dimensional (1D) Fresnel diffraction has been dem-
onstrated before by Mlynek et al. [15] in a wire interferom-
eter using a beam of metastable helium. This configuration
is, however, less suited to diffraction of larger objects since it
can be shown that its ideal diffraction efficiency (diffracted
intensity divided by intensity of undisturbed beam from a
point source) diminishes with decreasing wavelength. In
comparison, the on-axis diffraction efficiency for the
Poisson-spot configuration is unity for a point source, regard-
less of wavelength. Furthermore, the wire setup’s scalability
is dependent on an efficient line detector, while the cylindri-
cal symmetry of the Poisson spot is more suited to a point-
like detector, which is simpler to implement. Recent ad-
vances in field-ionization molecular-beam detectors promise
highly efficient point detectors [16].

The original Poisson spot experiment played a crucial role
in proving the wave nature of light. At the beginning of the
19th century evidence for the wave nature of light was accu-
mulating (Young’s double-slit experiment [17] was published
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FIG. 1. (Color online). Poisson-spot experimental setup: A beam
of neutral D, is created in a supersonic expansion from a 10 um
nozzle at 11 bar source pressure, and cooled with liquid nitrogen to
a temperature of 101 K. This results in a terminal beam velocity of
v=1060 ms~!, as determined from time-of-flight spectra, corre-
sponding to a de Broglie wavelength of A=0.096 nm. The mea-
sured velocity spread is Av/v=0.054. The source size is defined by
the 50 uwm-diameter source skimmer made from a glass pipette
[10]. A shadow is cast by a free-standing circular disk of 60 wm
diameter located at g=1496 mm and sampled at distances b=321,
641, and 801 mm using an 11 wm-aperture skimmer (prevents back
streaming) mounted on an x-y piezo table. An electron-
bombardment ionization region together with a magnetic sector for
mass selection and a channeltron are used for detection of the beam.

in 1807), but the corpuscular theory of Isaac Newton [18]
still had many supporters. In 1818 the French Academy
launched a competition to explain the properties of light.
Augustin Fresnel entered the competition by submitting his
wave theory of light [19]. One of the members of the judging

FIG. 2. (Color online). Electron and optical microscopy images
of the circular obstacle. It is a free-standing silicon nitride (SiN,)
disk, 60 um in diameter, less than 1 um in thickness and sus-
pended by four narrow support bars. It was fabricated at the Nano-
Structures Laboratory of MIT. The pattern was written by scanning-
electron-beam lithography and transferred into the SiN, using
reactive-ion etching. (a) The scanning-electron micrograph shows
the edge of the free-standing circular disk at the corner of the left-
most support bar in the same orientation as in the larger scale mi-
crographs. The edge roughness is close to minimal there and mea-
sures about 250 nm peak-to-peak. The scanning-electron
micrograph in (b) reveals additional edge roughness in the form of
remnants from etching protruding up to 500 nm from the disk edge.
(c) Optical micrograph showing the outer aperture of 400 wm
diameter.
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FIG. 3. 2D image of a molecular-beam Poisson spot. The con-
tour lines show the higher intensity regions along the edge of the
shadow, revealing the positions of the support bars. They are sepa-
rated by 200 counts per second. The central part of the shadow is
amplified as a grayscale image plot. The image is the sum of 24
images recorded consecutively at a sampling distance of 321 mm
(2.8 h recording time per image). The images were summed with a
variable pixel shift, determined from minimizing the sum of
squared pixel-value differences. This was done to compensate for
misalignment due to temperature drifts. A 2-by-2 Savitzky-Golay
filter was applied to reduce noise.

committee was the great Siméon-Denis Poisson, a supporter
of Newton’s theory. Poisson showed that a consequence of
Fresnel’s theory was that there would exist an on-axis bright
spot in the shadow of a circular obstacle. Poisson immedi-
ately concluded that this was an absurd result (as indeed it
would have been if Newton’s particle theory of light had
been correct). However, the head of the committee, Frangois-
Jean-Dominique Arago decided to perform the experiment
using a 2 mm metallic disk molded to a glass plate with wax
[19]. He immediately observed the predicted spot and
Fresnel won the competition. Arago later noted that the phe-
nomenon (which was later to be known as Poisson’s spot or
the spot of Arago) had already been observed by Delisle [20]
and Maraldi [21] a century earlier.

In this paper we present the first realization of a Poisson
spot with molecules using a cold quasimonochromatic deu-
terium (D,) beam. We favored a supersonic expansion beam
because of its high brightness and low divergence, trading
them for low detection efficiency (about 1075). The general
setup is depicted in Fig. 1 and the circular obstacle in Fig. 2.
A two-dimensional image of a D, Poisson spot is shown in
Fig. 3. For a perfect point source the Poisson spot should
reach the same intensity as outside the shadow, as predicted
by Poisson. In fact, for plane waves (large source-to-obstacle
distance) the on-axis intensity is expected to increase from
zero, adjacent to the disk, to 90% of the unobstructed inten-
sity only 1.5 diameters downstream of the circular obstacle,
and the Poisson spot’s full width half maximum is approxi-
mately given by (b\)/(r), where r is the disk’s radius [22].
In our experiment the intensity of the Poisson spot is de-
creased with respect to unobstructed intensity outside the
shadow, mainly because of the limited transverse coherence
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FIG. 4. The Poisson spot for three different disk-to-sampling
plane distances: (a) 321 mm, (b) 641 mm, and (c) 801 mm. The data
set in (a) is the horizontal profile of the image in Fig. 3 with an
accumulated measurement time per data point of 136 s. The mea-
surement time per data point was 120 s for the medium sampling
distance and 60 s for the largest. The error bars show statistical
uncertainty only. The unobstructed count rates were 3800 s~!,
2500 s~!, and 1700 s, respectively, giving diffraction efficiencies
of about 1%—2%. The lines show the result of model calculations,
taking into account the actual measured unobstructed beam intensi-
ties. The dashed lines show the diffraction pattern to be expected
from an ideally shaped circular disk, while the continuous lines
show model results taking into account roughness, which was mod-
eled by a fourth power sine with a period of about 1 um and a
peak-to-peak amplitude of 300 nm added to the edge of the ideal
disk. Fitting the data to the calculation was achieved solely by
subtracting background (approximately 475 s~') and adjusting for
any lateral misalignment. When an edge corrugation of 300 nm is
incorporated there is an excellent agreement between simulated and
measured intensity profiles. This level of edge corrugation also cor-
responds very well to the observed defects (Fig. 2).

of the source, i.e., the finite source size given by the
50 um-diameter source skimmer.

In Fig. 4 a series of one-dimensional plots show the in-
tensity distribution across the Poisson spot for three different
distances to the circular obstacle (distance b in Fig. 1). The
experimental data is shown together with model calculations.
The expected diffracted intensity profile was calculated in a
two-step process: First, a 2D diffraction image is computed
for a point source, applying an algorithm devised by Dauger
[23]. The algorithm was adapted to take advantage of the
radial symmetry of the problem. The outer aperture edge and
support bars were neglected in all calculations. A variation in
the disk radius was used to simulate roughness of the disk
edge. In the second step the pattern to be expected from the
extended source of the supersonic expansion is arrived at by
incoherently summing contributions from a large number of
independent point sources distributed randomly in the source
plane. In this experiment the diameter of the extended source
is simply the skimmer diameter. This can be deduced from
previous results of experiments on the size of the virtual
source in supersonic expansions [24]. The diffraction image
of off-axis points is derived from the on-axis image by shift-
ing it in the sampling plane, as deduced from the geometrical
magnification M=b/g.
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The two sets of model calculations shown in Fig. 4 cor-
respond to a disk with (continuous line) and without (dashed
lines) edge roughness, revealing its effect on the Poisson-
spot intensity. At the closest distance considerable dampen-
ing may be noted while at the farthest position the difference
to an ideal disk is less than the experimental uncertainty. The
effect of disk edge roughness can be understood using the
Fresnel zone concept [25]. The width Ar of the first Fresnel
zone beyond the disk edge is given by Ar~[r>+\gh/(g
+b)]%3—r. In order for the Poisson-spot intensity to be solely
determined by source coherence, edge roughness must be
small compared to the adjacent Fresnel zone width or the
wave front’s positive interference is disturbed. Note that the
further away from the circular obstacle the Poisson spot is
observed, the larger the zones are, resulting in a smaller in-
fluence of a given edge roughness. This is in good agreement
with our measurements.

The second effect to consider is the attractive vdW inter-
action between molecules and the disk, whose potential can
be written in the form V=-Cs/d> where d is the distance
between disk edge and molecule. The value Cj
=0.33 meV nm? has been determined experimentally for the
interaction between D, and SiN, [26]. Crossing the force
field, the molecules undergo a phase shift [27] and are de-
flected toward the disk edge. However, since the vdW inter-
action is weak and decays quickly with d, these two contri-
butions are only important for molecules passing closer than
50 nm to the disk edge. The adjacent Fresnel zone is much
wider so any phase shift in this region can be safely ne-
glected. Further, the force field causes particles passing close
to the disk edge to be deflected into the shadow. For an ideal
circular disk this results in an on-axis intensity peak. How-
ever, as our model showed, this intensity is smeared out to
less than measurement uncertainty by edge corrugation,
which is large with respect to the 50-nm vdW interaction
zone, and is therefore not shown in Fig. 4. The simulation of
vdW forces was achieved by sampling molecular trajectories
and calculating their deflection in the force field. To this end
the field was assumed to be constant for each individual tra-
jectory and restricted to the region of width equal to the
disk’s thickness.

Finally, we discuss briefly a few more potential applica-
tions of the Poisson-spot setup. A very interesting field of
study could be the investigation of transverse coherence and
aberrations of atom lasers [28,29] by measuring the deviation
from a point-source Poisson-spot profile. The ideal coher-
ence properties of a Bose-Einstein condensate (BEC) imply
that the Poisson spot in the perfect case would be character-
ized by a Bessel-type beam profile. The Poisson spot could
also be used for the deposition of large molecules on sub-
strates with high lateral precision. This has many technologi-
cal applications. Advances in, for example, self-assembly
techniques or electron-beam-induced deposition have opened
some possibilities. However, in the case of electron-beam-
induced deposition the process tends to break up large mol-
ecules and in the case of self-assembly the technique is lim-
ited in terms of species and patterns. Poisson-spot-based
“focusing” has the potential to become a nondestructive and
species-independent patterning technique. It should be pos-
sible to create a “dot-matrix” printer setup, enabling fast and
flexible patterning.
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