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Abstract 

New sedimentological data from the central part of Nordenskiöld Land, Spitsbergen, 

contributes to the understanding of the depositional processes and sandbody geometry of 

the Battfjellet Formation (Eocene). A detailed study, with focus on internal facies distribution 

and local parasequence stacking pattern, has been carried out in an approximately 70km2 

study area. A total of twelve aggrading and forwards stepping parasequences of a fluvio-

wave dominated deltaic origin are recognized. 

Local variations and complex geometry of the parasequences in the formation are best 

explained by autogenic mechanisms and accompanied delta lobe switching, characteristic of 

a delta with a fluvial dominated morphology (Helland-Hansen, 2010). In contrast, facies 

analysis of the formation reveals a predominance of wave generated structures. However, 

the parasequences locally show a characteristic development of alternating plane parallel 

laminated sandstone units (5-30 cm set thickness) and symmetrical small scale ripples. These 

units reflect deposition in front of, or close to, an active river mouth bar system, strongly 

influenced by hyperpycnal flow processes during flood events and accompanying wave 

reworking during waning flood and fair weather aggradation. The local variations of this 

facies makes it possible to recognize and map the position of the most fluvial influenced 

shoreface/delta front successions and their spatial distribution as a consequence of auto-

cyclic lobe change processes.  

In contrast to the well studied western, more proximal positioned, reaches of the basin, 

there are no developed clinothems or basin floor fan systems in the study area. This has 

been interpreted to be a consequence of the progressive shallowing of the basin through 

time. 
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1. Introduction 

1.1 Purpose of study 

For the last few decades most of the work on the Battfjellet Formation in the Central Tertiary 

Basin has been concentrated in the western part of the basin along the Van Keulenfjorden 

where spectacular clinoforms and related basin floor fan deposits are exposed (Kellogg, 

1975; Steel, 1977; Dalland, 1979; Helland-Hansen, 1985, 1990, 1992; Plink-Bjørklund et al., 

2001; Mellere et al., 2002; Deibert et al., 2003; Plink-Bjørklund and Steel, 2004; Crabaugh 

and Seel, 2004; Johannesen and Steel, 2005; Løseth et al., 2006; Petter and Steel, 2006; Clark 

and Steel, 2006; Uroza and Steel, 2008; Helland-Hansen, 2010). The Battfjellet Formation in 

the central part of the Nordenskiöld Land, where sand prone clinoforms and basin floor fans 

are not well developed, has not been that well studied. The purpose of this study is to, 

through detailed sedimentological studies, facies analysis and sequence stratigraphic 

concepts, to generate a model for the sand body geometries in the study area (70 square 

km) in the Ringdalen - Medalen area in the central part of the basin. This model is further 

applied to generate local and regional paleo-geomorphic models, and explain differences 

between the central and western part of the basin with respect to clinoform and basin floor 

fan development. 

1.2 Previous work 

The sandstone of the Battfjellet Formation forms a significant contrast to the underlying 

shales of the Frysjaodden Formation and overlying mixed sandstone and fine grained 

continental deposits of the Aspelintoppen Formation, as it is a cliff forming succession, easily 

recognized in the field. For this reason it has been recognized as a stratigraphic unit since the 

earliest geological work was carried out on the Cenozoic succession on Spitsbergen at the 

beginning of the 20th century (Nathorst, 1910; Ljutkevic, 1937; Orvin, 1940). The Battfjellet 

Formation was named after the mountain Battfjellet in central Nordenskiöld Land, and the 

name was first used by Major and Nagy (1964). The current sratigraphic definition of the 

Battfjellet Formation was established by the same authors in 1972. Initially, the bulk of the 

geological field work carried out on Svalbard was devoted to units of economic interest; 

hence the Battfjellet Formation was given little interest in that respect since it has no 

commercial value. 
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Later regional stratigraphic and structural studies carried out in the Central Spitsbergen also 

incorporated the Battfjellet Formation (Major and Nagy, 1964, 1972; Kellogg, 1975; Steel, 

1977; Dalland, 1979). During the last decades the formation has been subject to thorough 

sedimentological studies with particular focus on the clinoforms and associated basin floor 

fan development. Through the extensive studies by Helland-Hansen (1985), a 

paleogeographic and paleoenvironmental understanding of the Battfjellet Formation was 

established. Several papers by Steel and coworkers presents the development of the 

clinoforms in the Van Keulenfjorden area and the development of these with respect to 

sediment by-pass across the shelf edge and development of shelf edge deltas (e.g. Steel, 

1977; Plink-Bjørklund and Steel, 2004; Crabaugh and Steel, 2004; Johannesen and Steel, 

2005; Petter and Steel, 2006; Clark and Steel, 2006; Uroza and Steel, 2008). Because of the 

excellent outcrops, the Battfjellet Formation represents an excellent opportunity to study 

parasequence stacking patterns, as well as the transition from shallow to deep marine 

deposits of a deltaic system. The exposures are of seismic scale and hence of interest to the 

oil industry. This has motivated studies with focus on sequence stratigraphy, shoreline 

trajectory development and sandbody geometries in the formation in recent years (Helland-

Hansen et al., 1994; Plink-Bjørklund et al., 2001; Mellere et al., 2002; Deibert et al., 2003; 

Plink-Bjørklund and Steel, 2004; Crabaugh and Steel, 2004; Johannesen and Steel, 2005; 

Løseth et al., 2006; Petter and Steel, 2006; Clark and Steel, 2006; Uroza and Steel, 2008; 

Olsen, 2008); Stene, 2009; Skarpeid, 2010; Helland-Hansen, 2010). No detailed 

sedimentological work of the study area of this thesis has been carried out before, but 

several studies of the formation in adjacent areas have been carried out (Helland-Hansen, 

1985; Helland-Hansen, 1990; Plink-Björklund et al., 2001, Skarpeid, 2010; Helland-Hansen, 

2010). 
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Figure 1.1: Geological map of Svalbard indicating the position of the study area on 

Nordenskiöld Land (modified from Dallmann et al., 1999) 

 

1.3 Study area  

The Central Tertiary Basin is located on the south-central parts of Spitsbergen, which is the 

largest island of the Svalbard Archipelago of the north-western Barents Sea (Figure 1.1). The 

study area is located in the north-central part of the basin, in the central part of the 

Nordenskiöld Land. The field work was carried out over a five week period during the 

summer 2009, and one week during the summer 2010. The field camp was located in the 

eastern reaches of Colsedalen and 22 lithostratigraphic profiles were logged on the 

surrounding mountains of Tillbergsfjellet, Ringdalsfjellet, Sandsteinsfjellet and Mefjellet 

(Figure 1.2). Pictures of the four mountains in the study area are provided in Appendix 3. The 

locations of the different profiles are scattered over an area covering 10 km in an N-S 
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direction, and 7 km in a W-E direction. Most of the outcrops of the Battfjellet Formation in 

the study area are located at various altitudes within the range of 450m and 750m. The only 

way to get to the outcrops was by foot, and a more than three hour hike was necessary to 

reach the most distant outcrops.  

 

Figure 1.2: Overview map of the study area marking the location of the different logged 
sections on Sandsteinsfjellet, Mefjellet, Ringdalsfjellet and Tillbergsfjellet (map: Norsk 
Polarinstitutt). 

The names of the lithostratigraphic logs are based on the chronological order they were 

logged, and the second letter in the annotation indicates the mountain it was logged (eg. 

L1R1= Log 1, Ringdalsfjellet 1).  
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2. Methods 

2.1 Field work 

The observations and results presented in this thesis are obtained from sedimentological 

field work. The main method used in the field was lithostratigraphic logging, where features 

like sedimentary structures, bed thickness, colour, boundary types, texture, and 

mineralogical composition is observed and described. Large scale geometrical features of the 

sandstone bodies were observed at a distance. Paleocurrent measurements were obtained 

by the use of a geological compass. GPS and altimeters where used to record the altitude of 

studied outcrops. These instruments are based on the atmospheric pressure, and daily 

calibration to a point of known altitude was conducted. There are some uncertainties related 

to the use of altimeters as it may be strongly biased by local variations in atmospheric 

pressure. Other equipment used during field work include a geological hammer, grain size 

identification sheet, measuring stick, hand lens, binoculars, camera and graph paper with all 

necessary writing equipment. The sites of the logs in the study area were thoroughly picked 

to reflect a representative section of the rock unit. The logs were conducted vertically along 

the outcrop, but lateral shifts were sometimes necessary in order to include all of the 

exposed beds. The logs performed in the field were in a 1:20 scale. 

The means of transportation to the study area was by helicopter for the first field season 

(summer 2009), and by hiking for the second season (summer 2010).  

 

2.2 Post – field work 

Post-field work processing of the data includes digital redrawing of the logs in a 1:50 scale by 

the use of CorelDraw X4 software. Correlation of the logs along various 2D transects were 

also conducted by the use of CorelDraw X4. Additionally, simplistic correlation of the sand 

bodies in 3D was conducted by the use of Google SketchUp 7 (Figure 2.1) where a DEM 

(digital elevation model) of the study area was extracted from Google Earth. Rose diagrams 

of the paleocurrent data was created by the use of the software Rozeta 2.0, and later edited 

in CorelDraw X3. Geostatistical analysis of the rose diagrams was carried out by the use of 

the Microsoft Excel based software Ez-Rose 1.0 by Baas (2000).  
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Figure 2.1: Snapshot from Google SketchUp 7 showing the correlation of P3 (Chapter 6) on 
Sandsteinsfjellet. 
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3. Geological framework 

3.1Introduction 

Svalbard is an archipelago situated in the north-western Barents Sea, and comprises the 

islands located between the latitudes of 74° and 81° N and longitudes between 10° to 35° E. 

The archipelago represents an uplifted part of the Barents Sea, and reveals a comprehensive 

geological history as it contains a near complete stratigraphic succession ranging in age from 

Precambrium to Oligocene. Since the initiation of systematic geological survey on Svalbard 

by pioneers like A. E. Nordenskiöld, A.G. Nathorst and G. de Geer at the end of the 19th and 

the beginning of the 20th century (Dallman, 1999 and references therein), Svalbard has been 

subject to extensive geological investigations. The stratigraphic record of Svalbard (Figure 

3.1) is highly variable and comprises igneous, metamorphic and sedimentary rocks. The 

sedimentary succession represents a large range of depositional environments from 

different climatic conditions, reflecting the progressive northward movement of Svalbard 

from an equatorial position in Carboniferous to the present day arctic position (Worsley, 

2008; Worsley and Aga, 1986). Tectonic events of different ages have influenced the rocks 

on Svalbard. Of those, the most significant tectonic events are the Grenvillian 

(Precambrium), Caledonian (Ordovician-Silurian), and West Spitsbergen (Paleogene) 

orogenies (Dallmann et al., 1999). N-S to NW-SE oriented structural lineaments dominates 

the tectonic imprint on Svalbard and reflects inversion and reactivation during different 

tectonic phases (Steel and Worsley, 1984). The most prominent of these lineaments are the 

Billefjorden Fault Zone (BFZ) and the Lomfjorden/Agardhbukta Fault Zone (LFZ) (Figure 1.1). 

This chapter gives an overview of the geological history of Svalbard with a brief introduction 

to the Pre-Cenozoic (Chapter 3.2) and a more thorough description of the Cenozoic (Chapter 

3.3).  
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Figure 3.1: The stratigraphy of 

Spitsbergen (modified from 

Nøttvedt et al., 1992)  
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3.2 Pre-Cenozoic 

3.2.1 Pre-Caledonian 

The pre-Caledonian rocks on Svalbard, traditionally called the Hecla Hoek succession, 

comprise rocks of different lithologies, spanning in age from Precambrium to Early Silrian. 

Deformation from several orogenic events have influenced the pre-Caledonian rocks; in 

addition to the two main tectonic phases of the Caledonian Orogeny (Finnmarkian and 

Scandian), deformation from the Baikalian/Timanide orogeny (600-650Ma), and the 

Grenvillian orogeny has been recorded in the pre-Caledonian succession on Svalbard 

(Dallmann et al., 1999). The main Caledonian tectonic event on Svalbard, called the Ny 

Friesland orogenic phase, is of Middle to Late Silurian age and is regarded as the equivalent 

to the Scandian orogenic phase of the Caledonides on mainland Norway (Harland; 1997; 

Dallmann et al., 1999). There are some disputes regarding the age of this orogenic phase; 

e.g. a Late Ordovician/Early Silurian age was suggested by Birkenmajer (1975) and Worsley 

(1986).  The pre-Caledonian rocks are commonly sub-grouped into three different terranes; 

a northwestern, southwestern and an eastern (Gee and Teben`kov, 2004; Harland, 1985). 

The Hecla-Hoek succession contains metasedimentary, metamorphic and igneous rocks of 

20 different lothostratigraphic groups with a combined maximum stratigraphic thickness of 

approximately 20km (Worsley, 2008).  

 

3.2.2 Devonian – old red 

Late Silurian/Devonian deposits on Svalbard in large part represent post-orogenic molasse 

deposit following the mid-Silurian Ny-Freisland Orogen. The bulk of these deposits are 

located in a major down-faulted graben structure in Andrée Land in the northern part of 

Svalbard. The lowermost part of the Devonian succession consists of the Red Bay Group 

(earliest Devonian), constituting coarse grained clastic fluvial deposits above a prominent 

angular unconformity. This succession is overlain by the Andrée Land Group which consists 

of clastic fluvial red-beds with some coarse-grained (conglomeratic) intervals in the upper 

part (Friend and Moody-Stuart 1972). A major unconformity separates the Andrée Land 

Group from the overlying Billefjorden Group which spans the Devonian – Carboniferous 

Boundary. This unconformity developed during the Svalbardian tectonic phase (Harland, 

1997).  
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3.2.3 Latest Devonian to middle Permian 

Post Caledonian extension with the formation of half-grabens along the major N-S/NW-SE 

verging lineament zones is the dominating tectonic setting during Carboniferous on 

Svalbard. Two main stratigraphical groups were deposited during Carboniferous to middle 

Permian on Svalbard; the Famennian to Visean Billefjorden Group, and the Bashkirian to 

Sakmarian Gipsdalen Group (Steel and Worsley, 1984; Worsley, 2008).  

 

3.2.3.1 Latest Devonian to middle Carboniferous 

The Billefjorden Group consists of siliciclastic sediments of mainly delta plain, lacustrine and 

fluvial origin (Worsley, 2008; Gjelberg and Steel, 1981).The sediment fill of the Billefjorden 

Group was deposited in half grabens with differential subsidence (Nøttvedt et al., 1992). 

Coal seams of economic quantities occur within the Billefjorden Group on Svalbard, and 

have previously been mined at Pyramiden.  The deposits of the Billefjorden Group represent 

a humid and tropical continental depositional environment that occurred along the northern 

margins of the supercontinent Pangea (Worsley, 2008; Worsley and Aga, 1984).  

 

3.2.3.2 Middle Carboniferous-Middle Permian 

The Gipsdalen Group consists of shallow marine/shelf carbonates and evaporites of a sabkha 

environment and minor amounts of siliciclastic sediments. The transition of the Billefjorden 

Group to the Gipsdalen Group is marked with the change from gray to red continental 

siliciclastic beds (Worsley, 2008; Gjelberg and Steel, 1981). The continued transgression into 

the marine carbonates that dominates the Gipsdalen Group is believed to reflect a long term 

regional sea level rise (Gjelberg and Steel, 1981). The Gipsdalen Group comprises three syn-

rift half-graben restricted sub-groups and the overlying, post-rift Dickson Land subgroup 

(Dallmann et al., 1999). The transition from tropical continental deposits of The Billefjorden 

Group and arid deposits, indicated by the red beds and carbonate deposits, of the Gipsdalen 

Group mark a change in climatic conditions between the two groups. The ongoing 

northwards movement of Laurasia results in deposits influenced from climatic conditions of 

gradually higher latitudes. The abrupt change in climate is believed to be the combined 

effects of the northwards movement of the plate and the climatic effects of the convergence 
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of Laurasia and Gondwanaland, with closure of the Hercynian Ocean, resulting in more arid 

conditions.  

 

3.2.4 Late Permian – Early Triassic 

In Late Permian there was a significant change in lithofacies from evaporites and carbonates 

of the upper part of the Gipsdalen Group to a cherty succession dominated by siliciclastic 

sediments of the Tempelfjorden Group (Steel and Worsley, 1984). There is a significant 

hiatus separating the two groups (Worsley, 2008). The Kapp Starostin Formation is the main 

stratigraphic unit of the Tempelfjorden Group (Harland, 1997). The Kapp Starostin Formation 

is a transgressive unit, evolving from shallow marine brachiopod rich deposits of the 

Vøringen Member to spiculite rich deep marine shales of the Svenskeega and Hovtinden 

Members (Dallmann et al., 1999). The cold-water spiculite rich deposits of the 

Tempelfjorden Group markes a rapid climatic transition from the warm water carbonate 

dominated deposits of the Gispdalen Group. This is believed to be the combined results of 

the ongoing northwards movement of the Laurasian plate and the formation of the Uralides, 

inhibiting the connection with the warm Tethys Ocean (Worsely, 2008).  

 The transition from the silica rich shales of the Late Permian succession to the Early Triassic 

non-siliceous shales is an important unconformity (Worsley, 2008), and it also coincides with 

the Late Permian mass extinction event.   

The Early to Middle Triassic succession consist of siliciclastic dominated deposits of the 

Sassendalen Group (Steel and Worsley, 1984). From a regional perspective, including the 

entire Barents Sea, the most important sediment source area for the Sassendalen Group was 

the hinterland created by the Uralides (Riis, 2008). Howerer, the source area for the Triassic 

deposits on Spitsbergen up to the beginning of the Carnian stage was mainly to the west. 

The Sassendalen Group consists of transgressive-regressive cycles of marine shales to 

shoreface/delta front sandstones with rare carbonate intercalations (Steel and Worsley, 

1984). Middle Triassic deep organic rich shales of the Bravaisberget (west Spitsbergen) and 

Botneheia (east Spitsbergen) formations are potential hydrocarbon source rocks and are 

roughly time-equivalent to the proven source rock of the Steinkobbe Formation of the 

Barents Sea (Riis, 2008). 
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Figure 3.2:  

Figure from Riis 
(2008) showing 
the overall 
westward 
progradation of 
the Triassic 
deltaic system 
from Anisian to 
Carnian. Dark 
blue colour 
indicates the 
position of the 
HC-source rock of 
the Steinkobbe 
Formation. 

 

 

 

3.2.5 Late Triassic – Middle Jurassic 

The Storfjorden Subgroup of the Kapp Toscana Group of Late Triassic to Middle Jurassic age 

is, as the underlying Sassendalen Group, an overall progradational siliciclastic deltaic system 

and may be regarded as a natural continuation of the underlying group (Steel and Worsley, 

1984; Riis, 2008). The westward progradational deltaic system, sourced by the Uralides, 

formed a continuous paralic shelf environment over the Barents Sea and Svalbard in Carnian 

(Riis, 2008). The De Geerdalen Formation of the eastern Spitsbergen is thus believed to be 

the diachronous equivalent to the Snadd Formation of the Barents Sea (Riis, 2008).  

 

3.2.6 Late Jurassic and Cretaceous 

The strongly condensed Jurassic succession in the western part of Spitsbergen reflects 

several episodes of erosion and non-deposition, probably in a shallow, sediment starved 

shelf (Steel and Worsley, 1984). However, well defined coarsening upwards sequences that 

developed within the eastern part of Spitsbergen indicate delta progradation from the east.  

An important unconformity subdivides the Lower Jurassic from the Upper Jurassic. The 
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Brentskarhaugen bed occurs immediately above this unconformity. During Late Jurassic 

times thick homogeneous shale was deposited all over Spitsbergen, known as the 

Agardhfjellet Formation. This succession was first defined as a member of the Janusfjellet 

Formation (Parker, 1967) but is currently defined as a formation of the Janusfjellet Sub-

group (Dypvik et al., 1991). The lowermost Cretaceous succession consists of shales of the 

Agardhfjellet Formation (Mørk et al. 1982, Dypvik et al. 1991). A major sequence 

stratigraphic boundary is present at the Hauterivian/Barremian boundary, overlain by the 

overall transgressive Helvetiafjellet Formation (Parker, 1967; Gjelberg and Steel, 1995; 

Midtkandal and Nystuen, 2009). The formation represents fluvial and deltaic deposits 

overlain by shelfal sandstones and shales of the Carolinefjellet Formation. A significant 

stratigraphic break separates the Cretaceous Succession from the Cenozoic succession. All of 

the Upper Cretaceous is missing below this unconformity. The Cenozoic succession above 

this unconformity starts with a basal conglomerate (the Grønfjorden Bed). 
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3.3 Cenozoic: 

3.3.1 Introduction: 

The dominating tectonic event during Cenozoic on Svalbard is the formation of the West 

Spitsbergen Orogen as a result of transpression related to dextral shear along the De Geer 

Fault Zone during the opening of the Norwegian-Greenland Sea (Figure 3.3). The Central 

Tertiary basin is a foreland basin that developed adjacent to the West Spitsbergen Orogenic 

Belt in Paleogene time. The sedimentary succession of the basin makes out the Van 

Mijenfjorden Group, which is further subdivided into seven formations (Harland 1997; 

Harland 1969). The basin consists of cyclic infills of mixed continental and marine sediments, 

reflecting deposition during episodic transgressional and regressional cycles as well as 

different tectonic regimes. The basin has a thickness of 1,5km in the northeast and 2.5km in 

the southwest (Harland 1997). Post-orogenetic isostatic uplift resulted in erosion of 1,7 – 3 

km of the succession. The youngest rocks exposed in the basin are of Late Eocene/Earliest 

Oligocene age (Peach, 1999). This chapter describes the formation of the West Spitsbergen 

Orogen (Chapter 3.3.2) and the formation of the Central Tertiary Basin (Chapter 3.3.3), as 

well as the stratigraphy and basin fill of the Central Tertiary Basin (Chapter 3.3.4) 

 

 

Figure 3.3: Platetectonic setting during the 

opening of the Atlantic Ocean (Faleide, 2008). 
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3.3.2 Tectonic history: 

As previously mentioned, the West Spitsbergen Orogen formed as a result of dextral 

transpression between Greenland and Svalbard during the opening of the Norwegian-

Greenland Sea in Late Cretaceous to Eocene times. The West Spitsbergen Orogen forms a 

100-200km long prism that thins eastwards. The Orogen can be sub-divided into four main 

strike parallel zones (Figure 3.5); a basement dominated hinterland, a western basement-

involved fold and thrust complex, a central fold and thrust belt, and an eastern foreland 

zone (Bergh et al., 1997; Braathen et al., 1999). The three latter zones represents the fold 

and thrust belt portion of the orogen.  

The basement outcropping on the west coast of Spitsbergen represents the hinterland area 

of the orogen. Indicative of the absence of cover strata, this zone has experienced the 

deepest erosion along the transect, and represents the thickest portion of the accretionary 

prism (Braathen et al., 1999). Post-orogenic extensional grabens, including the 

Forlandsundet Graben (Harlan and Horsfield, 1974; Steel et al., 1985), are located in this 

section of the orogen.  

The western basement-involved zone is dominated by stacked thrusts and macro-scale 

folding (chevron-style monoclines, synclines and anticlines) with a wave length of 5km 

(Bergh et al., 1997, Braathen et al., 1999). A distinctive feature of this zone of the orogen is 

the presence of basement rooted (thick skinned) thrusts (Bergh et al., 1997, Braathen et al., 

1999).  

The central fold and thrust belt represents a thin-skinned thrust system with a regional 

decollement in Permian evaporites of the Gipshuken Formation, with additional detachment 

surfaces in shales of the Mid-Triassic Bravaisberget Formation and the Jurassic Janusfjellet 

Subgroup (Bergh et al., 1997, Braathen et al., 1999). Thrust associated fault propagation 

folds on a macro-scale are a common feature of this zone (Figure 3.4).  The transition to the 

eastern foreland province is marked with a major thrust ramp front (Braathen et al., 1999). A 

notable feature of this zone is the presence of out of sequence thrusts that cuts through pre-

existing thrusts. 

The eastern zone of the orogen is that of a foreland tectonic regime, represented with sub-

parallel cover strata with internal deformation in the form of fault propagation and fault 
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bend folds associated with décollement rooted thrust faults (Bergh et al., 1997, Braathen et 

al., 1999). Another feature of this zone is the presence of inversion structures related to 

reactivation of pre-existing normal faults such as in the Billefjorden Faults Zone and the 

Lomfjorden Fault zone (Braathen and Bergh, 1995, Braathen et al., 1999). Locally, out-of-

sequence thrusts can be observed (Braathen et al., 1999). 

 

Figure 3.4: Stacked thrust nappes of the Permian and Triassic succession at Mediumfjellet 
displaying large fault propagation folds. 

 

Bergh et al. (1997) and Braathen et al. (1999) have applied a five-stage kinematic evolution 

of the West Spitsbergen Orogen that encompasses the entire evolution from the initiation of 

shortening in Late Cretaceous/Early Paleocene to the Late Eocene/Oligocene extensional 

collapse of the orogen. Braathen et al. (1999) applied a critical taper model to explain the 

tectonic evolution of the orogen in terms of wedge geometry of the accretionary prism. The 

critical taper model is based on the assumption that the wedge geometry of the orogen 

forms a subcritical, critical or supercritical taper angle that controls the structural evolution 

of the orogen. The taper angle is the combined angle of the basal décollement angle and the 

angle of the surface slope and is controlled by factors like the compression rate, basal 

friction, rock strength, erosion rate at the surface and gravity (Braathen et al., 1999). A 
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condition of a supercritical taper can result in hinterland extensional collapse, and foreland 

propagation with out-of-sequence thrusting with a magnitude depending on degree of 

supercritical taper angle. A summary of the five tectonic stages from Bergh et al. (1997) and 

Braathen et al. (1999) is provided below: 

 Stage 1: NNE/SSW directed bedding parallel shortening. Folds and 

detachment thrusts are of a pre-uplift stage. Observed structures of this stage 

is limited to the basement-involved fold-thrust complex zone of the orogen. 

The shortening of this stage is believed to represent the initiation of the West 

Spitsbergen Orogen in Late Cretaceous/Early Eocene times. 

  Stage 2: ENE/WSW directed shortening.  Formation of the Svartfjella-

Eidembukta-Daudmannsodden lineament (SEDL) in the western hinterland 

zone. Thick skinned thrusting and rotation of pre-existing (stage 1) thrusts in 

the basement-involved fold-thrust complex zone of the orogen. In-sequence 

thin skinned piggy-back thrusting in the central fold-thrust belt zone, and 

layer parallel shortening and décollement thrusting in the eastern foreland 

province. The stage 2 deformation of the orogen is believed to be of Early- to 

Middle Paleocene age.  

 Stage 3: Continued ENE/WSW shortening. Sinistral strike-slip overprint of the 

SEDL in the western hinterland. Thick skinned thrusting and further rotation 

of pre-existing faults (stage 1 and stage 2) in the basement-involved fold-

thrust complex zone. Continued in sequence thrusting in the central zone and 

layer parallel shortening and décollement thrusting in the eastern foreland 

province. During stage 2 and stage 3, the crustal thickening of the hinterland 

is believed to have created an unstable supercritical wedge, resulting in 

increased eastwards thrusting in the central zone to create a stable taper. 

 Stage 4: NE/SW shortening. Dextral strike-slip movement along SEDL in the 

western hinterland. Conjugate strike slip faults with predominant dextral 

movement in the basement involved fold-thrust belt zone. Out of sequence 

thrusting with NE-directed truncation of pre-existing faults in the central 

zone. In the eastern foreland province, pre-existing fault zones experienced 

reverse reactivation with resulting overlying inversion structures 
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(monoclines). Towards the end of stage 3 and during stage 4, the taper angle 

is believed to have been adjusted to a critical angle, by the combined effects 

of transcurrent faulting, erosion, and extensional faulting. The wedge is then 

believed to have reached a new critical taper angle following renewed 

shortening of the hinterland, with resulting out-of-sequence faulting in the 

central fold-thrust zone. 

 Srage 5: E-W to ENE-WSW extension. Local extension and graben formation in 

the western hinterland. Continued out of sequence thrusting in the central 

and eastern foreland province with truncation of inversion monoclines. With 

the cessation of the shortening and the local extension of the hinterland, the 

wedge reached a critical taper angle during stage 5 of the tectonic evolution 

of the orogen. 

 

Figure 3.5: Cross section from Oscar II Land, showing the different deformation zones of the 

West Spitsbergen Orogen (redrawn from Braathen et al., 1999, geologic map modified from 

Dallmann et al., 1999)  
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3.3.3 The Central Tertiary Basin: 

The Central Tertiary Basin has been classified as a foreland basin by Steel et al. (1985), 

Helland-Hansen (1990) and Bruhn and Steel (2003). The main arguments for a foreland basin 

setting as presented by Helland-Hansen (1990) is the adjacent location to a fold and thrust 

belt, the asymmetric transverse profile of the basin with thicker successions closer to the 

hinterland, and syn-depositional tilting and deformational incorporation of the deposits in 

the proximal areas of the basin. However, applying typical foreland basin models for the 

entire Paleogene basin succession is not straight forward. The sedimentary succession of the 

basin does not show a consistent hinterland derived sediment input from the west 

throughout the entire evolution of the basin; there is a significant shift in source area in Late 

Paleocene/Eocene (Steel et al., 1985; Bruhn and Steel, 2003). In addition, the flanking fold 

and thrust belt is, as previously mentioned, of transpressional origin rather than purely 

compressional origin, which is an unusual setting for a foreland basin.  

Two main models of the tectonic evolution of the Central Tertiary Basin exist to account for 

the sediment infill evolution of the basin from Early Paleocene to Late Eocene/Early 

Oligocene.   

A two stage tectonic evolution was proposed by Steel et al. (1981) and Steel et al. (1985). 

This interpretation states that the basin evolved over two main distinct tectonic settings; 

from an extensional/transtensional setting, with a series of sub-basins, for the lower 

succession of Early Paleocene to late Paleocene age, to a transpressive setting for the Late 

Paleocene to Late Eocene/Oligocene deposits. The main arguments for this interpretation is 

the contrast between the mainly easterly derived, mainly transgressive, Paleocene 

succession, and the regressive, westerly derived, Eocene succession, as well as the presence 

of minor E-W verging strike-slip faults, that might be indicative of an extensional setting 

(Steel et al., 1985, Bruhn and Steel, 2003). In addition, the record of the sea-floor spreading 

between Greenland and Eurasia at the time is not supportive of compression before the 

Paleocene/Eocene transition (chron 24-25) (Bruhn and Steel, 2003). 

The model proposed by Bruhn and Steel (2003) is that of a compressional (transpressional?) 

flexural foreland basin throughout the entire tectonic evolutional history of the basin. The, 

at least partially, eastern provenance of the Paleocene deposits of the Central Tertiary Basin 



28 
 

is, in this model, explained to be derived from an eastwards migrating peripheral bulge. The 

main arguments for this model is the better concordance with existing tectonic models of 

the West Spitsbergen Orogen proposed by Bergh et al. (1997), Braathen et al. (1995), and 

Braathen et al. (1999), an apparently better fitting model to the basin fill, as well as the lack 

of evidence for an originally transtensional setting of the basin. 

There is a broad consensus of a foreland basin setting associated with flexure as a result of 

thrust nappes of the West Spitsbergen Orogen for the basin fill of the Late Paleocene to 

Eocene/Early Oligocene deposits (Frysjaodden, Battfjellett, and Aspelintoppen formations). 

This succession has a prominent provenance from a western hinterland. In addition, there is 

an eastwards migration of the depocenter of the basin fill, which likely is coupled with the 

eastwards growth of the fold and thrust belt (Helland-Hansen, 1990, Steel et al., 2003). The 

drainage reversal to a western provenance and the texturally more immature sediments 

with an increased content of metamorphic grains is argued to be the result of a major 

change in the tectonic setting of the basin by Steel et al. (1985).  

Nichols and Lüthje (2008) proposed that the basin formed as a result of compressional 

flexure rather than flexure as a result of loading related to thrust nappes. They argued that 

long wavelength asymmetric folding of the crust, related to the Hornsund fault zone, could 

create a similar basin setting.  

A simple coupling of the basin fill and the tectonic model proposed by Bergh et al. (1997) 

and Braathen et al. (1999), with a subdivision of the orogen into 4 distinct provinces and 

with a five-stage tectonic evolution, was conducted in Braathen et al. (1999). In this model, 

the Paleocene Firkanten, Basilika and Grumantbyen formations corresponds to tectonic 

stage 2, with deposition in the eastern foreland and central fold and thrust belt provinces of 

the orogen. The western shift of the source area is coupled with the main contractional 

uplift of tectonic stage 3 with deposition of the Frysjaodden, Battfjellet, and Aspelintoppen 

formations throughout stage 3 and 4 in the central fold and thurst belt and eastern foreland 

provinces.  At some time during stage 3 and 4, thin skinned thrust sheets emerged on the 

eastern side of the basin, giving the basin the characteristics of a piggyback basin (Helland-

Hansen, 1990; Braathen et al., 1999). 
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3.3.4 Van Mijenfjorden Group: 

The Van Mijenfjorden Group consists of seven formations; the Firkanten, Basilika, 

Grumantbyen, Frysjaodden, Hollenderdalen, Battfjellet and Aspelintoppen formations 

(Figure 3.6). According to Steel et al. (1985), the deposits of the Van Mijenfjorden Group 

include three main depositional cycles. The lower two are intermediate-scale transgressive-

regressive cycles; the lower one from the Firkanten Formation to the lower Basilika 

Formation, and the second from the Basilika Formation to the Grumantbyen Formation 

(Bruhn end Steel, 2003). The third depositional cycle is an ascending regressional 

megasequence deposited during the main deformational stage of the West Spitsbergen 

Orogen and includes the Frysjaodden, Battfjellet and Aspelintoppen formations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.6: The Stratigraphic formations of the 

Central Tertiary Basin (modified from Steel et 

al., 1985) 
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3.3.4.1 Firkanten Formation 

The Firkanten Formation is the basal succession of the Van Mijenfjorden Group of the 

Central Tertiary Basin. It is made up of the Grønfjorden, Todalen, Endalen and Kalthoffberget 

members, and was deposited during the early stages of the Central Tertiary Basin within 

either a transtensional setting, or an early stage transpressive foreland setting with 

peripheral bulge sourced sediments, depending on the assigned model as previously 

discussed. The main source of sediments derived from the east and northeast. 

The basal bed of mainly sandstone with conglomerates at some locations is called the 

Grønfjorden Member (Harland, 1997). The Grønfjorden Member lies uncoformably on Lower 

Creataceous marine shales (Bruhn and Steel 2003). There is a hiatus of approximately 32 My 

between the Lower Cretaceous sediments and the Paleocene sediments of the Firkanten 

Formation (Harland 1997). The conglomerates of the Grønfjorden member are concentrated 

in the western and northwestern regions of the basin and are absent south of Van 

Mijenfjorden (Kellogg, 1975). The conglomerate, with well rounded chert and quartzite 

pebbles, is believed to be braided river deposits derived from the eastern part of the basin 

(Bruhn and Steel, 2003).  

Overlying the Grønfjorden Member is the Todalen Member with fluvial-tide dominated 

deltaic sediments (Harland, 1997). The sedimentary sequence of the Todalen Member is 

made up of alternating coals, shales and sandstones. The Todalen Member changes facies 

laterally from a tide and fluvial dominated system in the northeast to a more uniform lower 

plain succession in the southwest (Harland, 1997). The shale/sand ratio increases towards 

the west, and the source of the Todalen Member was likely at the northeastern rim of the 

basin. Towards the west, the Todalen Member interfingers with the overlying Endalen 

Member.  

The Endalen Member consists of quartz-arenitic sandstones deposited in a wave dominated 

delta-front and barrier bar environment (Harland, 1997; Steel and Worsley 1984). The 

Endalen Member interfingers with its fine grained deep water equivalent in the west; the 

prodelta to delta-front sediments of the Kalthoffberget Member (Bruhn and Steel 2003).  

The overall stratigraphic evolution of the Firkanten Formation is of a transgressive nature, 

developing from non marine fluvial facies in the Grønfjorden and Todalen members to 
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marine facies in most of the Endalen Member. Although there is an overall transgressive 

development of the Firkanten Formation, it is made up of multiple minor regressive 

sequences. The Firkanten Formation is completed with a more prominent regressive 

development as the Endalen Member evolves from shallow marine to continental fluvial 

deposits at the uppermost part of the member (Bruhn and Steel 2003).  

The Firkanten Formation is of lower to mid Paleocene age. Based on foraminifera analysis 

taken from the Kalthoffberget Member in the Basilikaelva, Nagy et al. (2000) established a 

Selandian age for the deposits while analysis of fission tracks in apatite grains from the 

Endalen and Todalen Members gives a slightly younger age (Danian) (Blythe and Kleinsphen, 

1998; Bruhn and Steel, 2003). Of the exposed section of the Tertiary Central Basin, the 

Firkanten Formation is thickest (>200m) between Isfjorden and Van Mijenfjorden, but the 

original depocenter is beliveved to have been located west of the present western margin of 

the basin (Kellogg, 1975; Bruhn and Steel 2003). 

 

3.3.4.2 Basilika Formation 

The sediments of the Basilika Formation are mostly deep marine and shelf deposits 

consisting of dark gray, black or greenish shales and siltstones of a Late Paleocene age 

(Harland, 1997). The distal characteristics of these sediments conform to a continuation to 

the transgressive evolution of the underlying Firkanten Formation. The Basilika Formation is 

thickest in the south and southwest, where it has a thickness of 300-350m. Towards the 

north and northeast it is gradually thinning out to a thickness of approximately 20m 

(Harland, 1997). Interbeds of sandstones and siltstones with a thickness of 50-150 cm are 

present in the basal 45m of the formation in the western part of the basin (Kellogg, 1975). 

A zone of deep water shales in the basal part of the Basilika Formation marks the maximum 

transgressive surface, above which there is an increase in grain size upwards in the 

formation (Bruhn and Steel, 2003). This marks a change in depositional style from the 

transgressive succession of the lower Paleocene sediments to a regressive succession as 

evidenced by the upper part of the Basilika Formation and the Grumantbyen Formation 

(Kellogg, 1975). The Basilika Formation interfingers with sandstones of the regressive 
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Grumantbyen Formation, originating from a prograding inner shelf environment in the 

northeast.   

As with the Firkanten Formation, the sediment input to the lower transgressive part of the 

Basilika Formation was from the east, west and north, whereas the sediments of the upper 

regressive part of the formation was mostly derived from the north and northeast (Helland-

Hansen 1990). 

 

3.3.4.3 Grumantbyen Formation 

The Late Paleocene Grumantbyen Formation overlies the Basilika Formation, and 

interfingers with the Basilika Formation in the southwest. The Grumantbyen Formation was 

interpreted as deposits of a “shallow offshore bar complex” by Harland, (1997). It consists of 

five major sheets of greenish, highly bioturbated sandstones, representing smaller scale 

sequences within the formation (Bruhn and Steel, 2003). Tempestites and trace fossils of the 

Cruziana, Zoophycus and Nerites ichnofacies have been recognized at the lower two 

sandstone sheets, indicating a distal shelf depositional environment (Bruhn and Steel, 2003). 

As a contrast, the three upper sandstone sheets have sedimentary structures including 

hummocky cross-stratification, planar lamination and wave ripples, which indicate influence 

of storm generated waves at a more proximal shelf setting (Bruhn and Steel, 2003). The 

lower boundary to the Basilika Formation is gradational, and defined by the first appearance 

of the greenish, highly bioturbated sandstone (Dallmann et al., 1999). The Grumantbyen 

formation is thinning westwards from a thickness of approximately 450m in the 

eastern/north-eastern area of the basin to a thickness of approximately 200m in the 

western/south-western area of the basin (Dallmann et al., 1999).  

 

3.3.4.4 Frysjaodden Formation 

The Frysjaodden Formation is a uniform olive- to dark-gray shale succession situated 

between the uppermost sandstone sheet of the Grumantbyen Formation and the lowermost 

sandstone body of the overlying Battfjellet Formation (Kellogg, 1975). A few turbiditic 

interbeds of siltstone and sandstone and scattered chert pebbles are present in the 

formation (Steel et al. 1980). There is an increase in thickness of the Frysjaodden Formation 
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west- and southwards; the thickness is increasing from 200m in the northern Nordenskiøld 

Land to approximately 400m south of the Van Mijenfjorden (Steel et al. 1980). The 

Frysjaodden Formation was originally named the Gilsonryggen Formation but was given its 

present name to include the Marstranderbreen Member, located below the Hollendardalen 

Formation (Harland, 1997).  

The deposition of the Frysjaodden Formation is believed to have taken place simultaneously 

with the Late Paleocene/Early Eocene overthrusting of the West Spitsbergen Fold belt. As a 

result of the overthrusting and associated regional uplift of the area, the sediment input for 

the formation was from the west, marking a change in dominating sediment input-direction 

from the underlying formations (Helland-Hansen, 1990; Dallmann et al., 1999). The 

Frysjaodden Formation is believed to have a deltaic source west of the present day western 

margin of the basin which has been succumbed by the eastward prograding west 

Spitsbergen thrust and fold belt (Harland, 1997). 

 

3.3.4.5 Hollendardalen Formation 

The Hollendardalen Formation is a sandstone unit of a tidal dominated deltaic origin located 

above the Marstranderbreen Member and below the Gilsonryggen Member of the 

Frysjaodden Formation. It is 150m thick in the south-westernmost region of the basin and is 

thinning out towards the east until it ultimately pinches out in the Frysjaodden Formation 

(Steel et al. 1985). The deltaic system is prograding eastwards with the sediment source in 

the west (Steel et al 1985).  

 

3.3.4.6 Battfjellet Formation 

The Battfjellet formation consists of shallow marine wave influenced deltaic sandstones and 

siltstones. The formation is a part of an upwards coarsening megasequence and is not 

separated from the underlying Frysjaodden Formation by a distinct surface, rather the base 

of the Battfjellet Formation can be established where the proportion of sandstone exceeds 

the proportion of shale (Helland-Hansen, 1990). The Frysjaodden Formation, Battfjellet 

Formation and the overlying Aspelintoppen Formation forms the third depositional cycle of 

the Central Tertiary Basin which is a strongly ascending regression with sedimentation 
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strongly exceeding accommodation (Helland-Hansen, 1990). The Battfjellet Formation is at 

least partly of Early Eocene age and is believed to have formed contemporaneous to the 

ongoing development of the West Spitsbergen Oregon as a result of transpressive plate 

movement between the Eurasian and Greenland plates (Deibert et al. 2003). The resultant 

foreland basin setting with a high supply of sediment from the west and an eastward 

progradation of the sediment produced several large scale clinothems in the western part of 

the basin (Helland-Hansen, 1990; Deibert et al. 2003). The clinothems have an easterly dip 

and wedge out in the Frysjaodden shales in a basinward direction (Helland-Hansen, 1992). 

The clinothems of the Battfjellet Formation are well exposed at some locations, and the 

sediments from different facies can be traced laterally, from coastal plain to deltaic and 

shallow marine, to the more distal shelf and basin floor facies (Steel, 1977; Helland-Hansen, 

1985; Helland-Hansen, 1990; Deibert et al. 2003). Steel et al. (2000) classified the clinoforms 

i to four main groups on the basis of aggradation/progradation styles, degree of channel 

incision at the shelf edge, and the sand distribution along the clinoform (Figure 3.7). 

 

 

 

 

 

 

 

 

Both in the eastern and the western part of the basin, the shallow marine section of the 

Battfjellet Formation consists of stacked, upward coarsening parasequences (c.f. Van 

Wagoner et al., 1990), varying in numbers at different locations with no obvious preffered 

trend (Helland-Hansen, 1990, Helland-Hansen, 2010). 

Figure 3.7: The four main types of clinoforms after Steel (2000): 

Type 1: Descending progradation; erosion from incised fluvial 

channels from shelf edge deltas. Aggradataion of basin floor due 

to sediment transport beyond shelf edge. 

Type 2: Highly progradational; sediment delivery from shelf edge 

deltas with little degree of channel incision. Sand delivery to shelf 

edge and slope but little to the basin floor. 

Type 3: Ascending progradational; sand sheets deposited  from 

shelf transiting wave dominated deltas/shoreline. Little sand 

delivery beyond shelf edge. 

Type 4: Aggradational; wave generated sand from stationary 

deltas/shoreline. Sand confined to inner shelf. 
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The sandstones of the Battfjellet Formation are texturally immature, mostly being composed 

of lithic greywacke, reflecting short transportation from the source area (Helland-Hansen, 

1990; Helland-Hansen, 2010). The grains of the sandstones are a mixture of polycrystalline 

metamorphic quartz grains and sedimentary derived siliclastics and carbonate fragments 

(Helland-Hansen, 1990). The Battfjellet Formation has a thickness of less than 60m in the 

north-eastern reaches of the basin and a thickness of more than 300m in the south-western 

part of the basin, indicating a pronounced eastward thinning of the formation (Dallmann et 

al. 1999).  

3.3.4.7 Aspelintoppen Formation: 

The Aspelintoppen Formation consists of delta-plain deposits of alternating sandstones, 

siltstones, shales, and thin coals (<30cm) (Steel et al. 1985). The formation is a part of the 

third depositional cycle, the regressive megacycle including the underlying Battfjellet and 

Frysjaodden formations. The lower boundary of the Aspelintoppen Formation is defined by 

the first occurrence of coal or the first thick interval of terrestrial mudstone above the 

sandstones of the Battfjellet Formation (Dallmann et al., 1999). The Aspelintoppen 

Formation has a thickness of more than 1000m at some locations; it is the youngest of the 

formations in the Central Tertiary Basin and constitutes the upper reaches of the hill tops.  
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4. Lithofacies and facies associations: 

4.1 Introduction: 
The sedimentary rocks of the studied succession have been grouped into lithofacies based 

on lithologic features like sedimentary textures, sedimentary structures, colour, bioturbation 

and boundary types. The lithofacies are subsequently grouped into facies associations 

consisting of one or several lithofacies. These facies associations constitute the basis for the 

interpretation of the depositional environments. Thus, spatially and genetically related 

lithofacies, deposited by different processes within the same gross depositional environment 

are grouped into the same facies association. The studied section is subdivided into 16 

lithofacies (Table 4.1) and 7 facies associations (Table 4.2). A brief description and 

interpretation of the lithofacies is provided in Table 4.1, and a more through description and 

interpretation are provided for the lithofacies in the context of their respective facies 

associations. In the text, lithofacies are referred to as FX, and facies associations FAX (where 

X represents the numer of the lithofacies/facies association). The facies associations are 

arranged in ascending order from the most distal to the most proximal.  

The emphasis of this study has been on the shallow marine succession of the Battfjellet 

Formation, which has been devoted a more thorough study and discussion than the 

continental deposits of Aspelintoppen Formation.  
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Table 4.1: Lithofacies: 

  

 

Lithofacies Grain size: Description: Interpretation: 

F1 Clay-/ siltstone Frissile/flakey shales. Varying in colour from light gray 
to dark gray/purpleish to light brown/reddish (iron 
content) 

Deposits settled from suspension 
in a tranquil environment 

F2 Mudstone Mixture of clay, silt and sand grains (vf). Irregular 
lamination, commonly  gray to dark gray/purpleish to 
light brown/reddish colour. 

Low density turbidite 
deposits/basin floor fan fringe 
deposits. 

F3 Clay-/siltstone and very 
fine grained sandstone 

Load casts/ball and pillow structures: Spherical and 
hemispherical sandstone structures enclosed, or 
partially enclosed, in fine grained sediment. Varying 
proportions of fine grained sediment and sandstone. 

Deformed sandstone as a result 
of rapid deposition of sand over 
partially consolidated mud. 

F4 Very fine grained 
sandstone 

Mainly Isotropic convex hummocky cross-stratification 
structures with approximately 1 cm spacing between 
stratification surfaces. Varying wave length. Small 
scale symmetrical ripples with straight to slightly 
sinuous crest are often superimposed on the bed.  

Distal tempestite deposits from 
episodes of high oscillatory 
currents.  

F5 Very fine to fine grained 
sandstone 

Swaley cross-stratification with a few cm spacing 
between stratification surfaces. Varying wave length. 

Proximal tempestite deposits 
from episodes of high oscillatory 
currents. 

F6 Very fine grained 
sandstone 

Regular undulations in very fine grained sandstone 
where absence of internal lamina and exposed ripple 
crests inhibit further classification. 

Deposits of relatively low velocity 
currents, where either the 
unidirectional or oscillational is 
the prevailing. 

F7 Very fine to fine grained 
sandstone 

Small scale asymmetrical ripples Deposits of from a current where 
the unidirectional component 
(although relatively small) is the 
prevailing.  

F8 Very fine to fine grained 
sandstone 

Small scale symmetrical to combined flow ripples with 
2D to 3D ripple crest geometry.  

Deposits of oscillational and 
combined flows of relatively low 
velocity current velocities.  

F9 Very fine to fine grained 
sandstone 

Plane parallel lamination/stratification with 
approximately 1 cm spacing between lamina.  

Hyperpycnal flow deposits 

F10 Very fine to medum 
grained sandstone 

Large scale 2D to 3D symmetrical to asymmetrical 
ripples. Bioturbation and trace fossils of skolithos and 
ophiomorpha.  

Deposits of 
oscillational/combined flow 
dunes 

F11 Fine to medium grained 
sandstone 

Trough cross-stratification. Bed set with internal 
lamina terminating against a curved/trough shaped 
lower set surface.  

Deposition from migration of 
dunes. 

F12 Fine to medium grained 
sandstone 

Tabular cross stratification with predominantly 
tangential foresets, with some rare examples of 
nontangential and sigmoidal foresets. Great variation 
in paleocurrent direction and may be characterized as 
herringbone cross-stratification at some locations 

Deposition from migration of 
dunes. 

F13 Fine to medium grained 
sandstone 

Low-inclined sub-parallel stratification with a variable 
spacing between strata. 

Wave-swash/beach deposits 

F14 Very fine to medium 
grained sandstone 

Normal graded sandstone beds with predominantly a 
massive appearance. Bed thickness of 0,5 to 1,5m.  

Minor distributary 
channel/crevasse channel 

F15 Very fine to medium 
grained sandstone 

Normal graded sandstone beds with predominantly a 
massive appearance. Bed thickness of 3,5 to 4,5m.  

Major distributary channel 

F16 Shaley coal Coal with a high content of shale, dull appearance. Coal 
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4.2 Facies Associations: 
Table 4.2: Facies Associations: 

 

4.2.1 FA1: Offshore/shelf 

The section stretching from the top of the Hollendardalen Formation to the first occurrence 

of sandstone of the Battfjellet Formation consists of shales and mudstones of the 

Frysjaodden Formation, and makes up the lowermost facies association of the studied 

section. The measured thickness of the formation in the study area generally exceeds 300m. 

The facies association is mostly covered by scree, thus the description is based on sparse 

outcrops and weathered debris of the scree. 

Observations: 

The facies association consists mainly of light gray to dark gray/purplish laminated silty 

claystones and clayey siltstones (F1), but also contains interbedded mudstones containing 

grains varying in size from clay to very fine grained sandstone (F2). As observed from the 

scree cover, the proportion of silt- and sand grains relative to clay increases upwards in the 

facies association. Outcrops in the uppermost reaches, towards the overlying 

offshore/transition facies association (FA2), often have heterolithic appearance with 

alternations of F1 and F2 on a cm-scale. The mudstone beds with a high content of sand 

grains have no visible current influenced depositional structures, nor do they have erosive 

based bedding surfaces. Well rounded phosphate nodules with a diameter of a few 

centimeters are present in the weathered debris. At an interval between approximately 340-

360 meters above sea level, distinctive horizons stand out in the northeast facing slope of 

Sandsteinsfjellet (Figure 3.1). The deposits along these horizons crops out at some locations, 

Facies association: Sub-group: Lithofacies: Depositonal environment: 

FA1 - F1,F2 Offshore/shelf 

FA2 - F1,F2,F3,F4 Offshore/transition 

FA3: FA3 A: 
FA3 B: 

F4, F5 
(F7),F8,F9 

Lower shoreface 

FA4: - F5,(F7),F8,F9,F10,F11 Middle shoreface 

FA5: - F5,(F7),(F8),(F9),F10,F11 Upper shoreface 

FA6: - F13 Foreshore 

FA7: FA7 A: 
FA7 B: 
FA7 C: 
 

F1,F2,F7,F8,F3,F6 
F7,F6,F16 
F14,F15 

Continental 
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and reveals a heterolithic appearance of alternating shales (F1) and mudstones (F2) of an 

overall coarser nature than that of the shale in the over- and underlying scree. These 

horizons are located approximately 150 meters below the outcrops of Battfjellet Formation, 

and are traceable from the northeastern ridge on Sandsteinsfjellet, to the northern ridge on 

Mefjellet. There is a coarsening upwards trend within these distinct intervals as the 

proportion of silt and sand is higher towards the top.  

Interpretation: 

  

Figure 3.1: Picture of 

Sandsteinsfjellet with black 

lines indicating the 

location of intervals with 

heterolithic basin floor fan 

fringe deposits. The 

pictures to the left and at 

the bottom are of one of 

the sparse outcrops of this 

part of the succession.  

CU= coarsening upwards 
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It is suggested that this facies was deposited from suspension in a tranquil environment 

below storm weather wave base. This interpretation is based on the fine grained nature of 

the sediments and the absence of erosional bedding surfaces and  absence of depositional 

structures reflecting oscillatory and combined flow current movement that would be 

expected in an environment subject to storm processes. As clay fragments are more easily 

kept in suspension than silt fragments, the higher silt content towards the top of the facies 

association reflect suspension in shallower waters. The sand prone mudstones in the 

proximal reaches of the facies association may represent events of increased seaward 

transport, and are interpreted to be distal low density hyperpycnal flow deposits (see further 

discussion below).  

The coarser grained horizons observed approximately 150m under the shoreface sandstones 

of Battfjellet Formation in the southwestern part of the study area represents deposition 

from a higher energy regime than the surrounding shale. By studies carried out on 

Semmelryggen, approximately 5 km southwest of the northeastern slope of 

Sandsteinsfjellet, Plink-Björklund et al. (2001) observed a series clinothems (their clinothem 

complex 5) with a progradational and retrogradation stacking patterns, delivering sand to 

the basin floor. The lower slope and basin floor deposits observed in these studies consisted 

of sandstones from “sheet like turbidites” pinching out on the basin floor over a distance of 

5km (Plink-Björklund et al., 2001). The coarser grained interval in the Frysjaodden Formation 

in the present study is interpreted to be basin floor fan fringe deposits (distal sheet turbidite 

deposits) of this clinothem complex. The heterolithic deposits on Sandsteinsfjellet of the 

present study has a position corresponding to an outer rim position of the clinothem 

complex on Semmelryggen (Figure 3.2), as it is positioned at a distance of approximately 

5km, the same as the observed pinch-out distance of the clinothem complex in discussion 

(Plink-Björklund et al., 2001). Similar fine grained heterolithic facies were observed by Plink-

Björklund and Steel (2003) in a distal position from the classical sand dominated basin floor 

fan deposits.  
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Figure 3.2: The picture to the left is an overview map showing the cliothem complexes 
described in (Plink-Björklund et al., 2001). The picture to the right shows the possible lateral 
extent of clinothem complex 5 on Semmelryggen, and indicates the position of the described 
heterolithic section on Sandsteinsfjellet and Mefjellet. 

 

4.2.2 FA2: Offshore/transition 

Observations: 

FA2 consists of fine grained sediments varying in grain size from clay to silt, and with 

interbedded layers of very fine and fine gained sandstone (Figure 3.3 D; E). The facies 

association is generally confined to the lowermost parasequences of the individual logged 

sections and represents the transition from the offshore shales of the Frysjaodden 

Formation to the sandstones of the Battfjellet Formation. The first occurrence of a 

sandstone bed, commonly containing hummocky cross stratification, marks the lower 

boundary of the facies association. The registered thickness of the facies association varies 

from a few meters to approximately 15 meters. However, there is an uncertainty both in 

identifying the base of the facies association and its thickness as the base of the facies 

association may be covered in scree. The facies association constitutes a coarsening upwards 

sequence as the proportion of sandstone beds increases upwards relative to the fine grained 
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sediments. The individual sandstone beds of this facies have a thickness ranging from 

approximately 10 to 40cm, with an average thickness around 25cm. 

The sandstones are light gray, texturally immature, and consist of quartz grains and lithic 

fragments. There is little variation in the textural characteristics of the sandstones laterally, 

nor are there major differences between the different facies. This has also been observed by 

Helland-Hansen (2010) in nearby studies of the same formation. By the use of petrographic 

thin-section analysis and X-ray diffraction identification and quantification, Helland-Hansen 

(2010) classified the sandstones as litharenites according to Folks (1974) classification 

scheme, and as lithic greywackes according to Dott’s (1964) classification scheme, when 

taking the fine grained matrix into account. As there are little compositional differences, and 

the same mineralogical classification can be applied to the other facies associations, the 

mineralogy of the other facies associations will not be further discussed.   

The most prominent depositional structure of this facies association is hummocky cross-

stratification (HCS) (F4). The thickness of sections containing HCS of this facies association 

range from approximately 10cm to a few meters; thick layers are more common in the upper 

reaches of the facies association where several beds of HCS are amalgamated. The spacing 

between lamina is typically 1 cm, but may be as much as 5cm as it varies within and between 

HCS beds. The lamina have a convex up shape, with overlying on-lapping low angle lamina. 

The hummocky cross-stratification structures are isotropic in three dimensions, giving no 

evidence of a decisive unidirectional current movement. Some HCS beds are normal graded, 

grading from very fine to fine grained sandstone at the base, to very fine grained sandstone 

at the top. Symmetrical small ripples superimposed on the HCS beds are common. These 

symmetrical ripples have straight to slightly sinuous crests with a predominance of 

north/south orientation (Chapter 5).  

At some locations, heterolithic intervals of alternating very fine grained sandstone and fine 

grained (silty and muddy) sediments with bed thicknesses in the range of 1-7cm occur in this 

facies association (Figure 3.3 C). The thin sandstone beds predominantly consist of both 

combined flow and symmetrical small ripples. The sandstone beds locally exhibit soft 

sediment deformational structures. 
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In general, soft sediment deformational structures and load cast structures (F3) are common 

in this facies association. These structures represent different degrees of deformation 

influencing both sandstones and fine grained sediments. The size and shape of these 

structures varies with varying sand to mud ratio, and varying degree of deformation. A low 

proportion of sandstone typically forms 5-10 cm big ball and pillow structures, with ellipsoid 

or spherical shapes, enclosed in fine grained sediments in the upper part of a mud layer. A 

higher proportion of sandstone results in connected and bigger ball and pillow structures, 

with a diameter up to 2 meters, where the internal stratification, although deformed, is 

preserved. The shape of these big ball and pillow structures are typically half ellipsoid, where 

the top of the structure is truncated by an overlying sandstone bed (Figure 3.3 A). The 

sandstone in these deformational structures has, as with the remainder of the sandstones in 

this facies, a grain size of very fine and fine sand. These deformational structures have a 

higher concentration in the lower part of the facies association. 

The fine grained sediments (F1 and F2) of this facies association are mostly covered by scree, 

but may crop out where the interval between sandstone layers is thin. Dark gray/purplish 

clayey siltstone with flaky, irregular laminations on a mm-scale is the most common lithology 

of the fine grained sediments in this facies association, but reddish weathering siderite-mud 

layers, and lighter gray silty claystone layers also occur. Carbonaceous plant fragments are 

common in this facies association. 

Bioturbation is rare in this facies association. Examples of trace fossils of Helminthopsis have 

been observed at some of the HCS bedding planes (Figure 3.3). 
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Figure 3.3: 
 A: Truncated ball and pillow structure with hummocky cross stratified very fine grained sandstone 
superimposed (L1R1 on Ringdalsfjellet). 
B: Horinzontal burrows of Helminthopsis at the bedding plane of a HCS-bed (L12T3 on Tillbergsfjellet) 
C: Heterolithic alternation of symmetrical rippled very fine grained sandstone and siltstone (L18R4 on 
Ringdalsfjellet). 
D: Example of a logged section of FA2: Offshore/transition from L4S3 (Sandsteinsfjellet) 
E: L4S3 with different colours for the different facies associations. Red lines highlights the section of 
the log presented in Figure 3.3D  
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Interpretation: 

The interbedding of fine grained sediments (silt and mudstone) and sandstone beds indicate 

variations in depositional energy for the sediments. The fine grained sediments are believed 

to be low-energetic deposits below fair-weather wave base, whereas the HCS beds are 

believed to be high energetic storm generated tempestites. The sediment source for the 

storm deposits are believed to be eroded material from shallow shoreface and foreshore 

areas. This is in concordance with the beach-cycle model (Reading, 1996; Sonu & Van Beek, 

1971), which states that there is an aggradation of shoreface and foreshore deposits during 

fair weather conditions, and erosion, with resulting seaward transport of sediment, during 

storms.  

Hummocky cross stratified structures are believed to have developed mainly under large 

orbital oscialltory waves, with the symmetrical small ripples forming in the waning stages of 

the storm. The triggering mechanism for the ball and pillow structures is believed to be the 

rapid deposition of sand, over poorly consolidated mud during storms. This is evident in the 

case where truncated ball and pillow structures are overlain by fine grained hummocky 

cross-stratified sandstones containing rip-up mud clasts. 

The assumption that the source of the sediment of the HCS beds is eroded material from 

more proximal shoreface areas implies a unidirectional paleocurrent component in a 

paleoseaward direction. However, the effect of a unidirectional current influence on these 

deposits is hard to deduce; a unidirectional signature of the beds is negligible as the 

structures appear to be isotropic in three dimensions. The case of a strong unidirectional 

influence on fairly isotropic HCS and SCS deposits have been proposed in other field based 

publications (Nøttvedt and Kreisa, 1987; Allen and Underhill, 1989). Recent laboratory 

studies have contributed to new knowledge on the effect of combinations of oscillatory (Uo) 

and unidirectional (Uu) current movements, and its resulting depositional structures under 

different current regimes (Dumas et al. 2004; Dumas and Arnott, 2006; Lacy et al., 2007; 

Cataño-Lopera et al., 2009; Cummings et al., 2009; Pedocchi and Garcia, 2009).  Dumas and 

Arnott (2006) proposed that isotropic HCS-structures in very fine sand are a result of Uo-

values higher than 50cm/s and Uu-values lower than 5cm/s. Despite the fact that synthetic 

aggradation were created by stacking of “sidewall bed profiles” in the wave tunnel 

experiments of Dumas and Arnott (2006), one might question if the full effect of the rapid 



46 
 

sediment influx during the deposition of these structures can be accounted for in enclosed 

laboratory experiments. Even though the unidirectional component might be higher than 

5cm/s, a combined flow regime with the oscillatory component being prevailing is proposed 

for the studied deposits. This interpretation is further emphasized by the dominating 

symmetrical signature on the small scale ripples superimposed on the HCS-beds.  

An offshore transition zone depositional environment is proposed for the sediments of this 

facies association. The presence of storm generated sandstone beds gives evidence for 

deposition above storm wave-base. The deposits of this facies association represents a 

transition from the offshore deposits of the Frysjaodden Formation to the shallow marine 

sandstones of the Battfjellet Formation, and although the transition to the overlying lower 

shoreface facies association is gradational, the boundary is put at the top of the uppermost 

interlayer of mudstone. Ideally, the offshore transition zone represents the area between 

storm wave base (SWB) and fair weather wave base (FWWB) (Reading, 1996). However, 

there are uncertainties in pinpointing the location of the fair weather wave base, as fine 

grained sediments may be deposited above FWWB, and thick amalgamated HCS-beds may 

form below (Clifton, 2006). 

 

4.2.3 FA3: Lower shoreface 

The main features of the facies association are beds of very fine to fine grained sandstone 

with amalgamated hummocky and swaley cross-stratification (F4 and F5), and beds with 

alternating planar parallel laminations (F9) and small scale symmetrical ripples (F8). 

Although these facies may interfinger throughout the facies association, the latter 

dominates the lower reaches, while the former dominates the upper reaches. On this basis, 

and because of variations in facies occurrence between logs, the facies association is 

subdivided into FA3-A: Amalgamated hummocky and swaley cross-stratification and FA3-B: 

Alternations of plane parallel laminations and symmetrical small ripples. The thickness of the 

facies association varies from a few meters to some rare examples up to 10 meters. The 

thickness distribution of the two sub-groups of the facies association varies, but FA3-B 

typically constitutes the thickest portion. 
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FA3-A: Amalgamated hummocky and swaley cross-stratification: 

Observations: 

FA3-A consists of stacked beds of very fine to fine grained sandstone with amalgamated HCS 

and SCS, similar to those described in FA2 (Figure 3.4). As opposed to the underlying facies 

association, the amalgamated HCS beds of FA3-A are not separated by mudstones. Another 

distinct feature is the appearance of SCS. These are concave up shaped sets of laminated 

very fine to fine grained sandstone with low angle truncational surfaces. The SCS beds of this 

facies association are genetically linked to the HCS beds, and have similar amplitudes and 

wavelengths.  

 

 

 

 

 

 

 

 

Symmetrical small ripples superimposed on the HCS beds are not common for this facies 

association because of the amalgamated stacking of the beds. If present, the ripples are 

often truncated by overlying hummocky cross stratified beds. Carbonaceous plant debris and 

siderite mud clasts are common in the strata of the HCS beds in this facies association as 

well. 

Interpretation: 

The deposits of this formation are interpreted to be lower shoreface deposits. FA3-A is 

interpreted to be shoreface storm deposits above fair weather wave base. This is based on 

the absence of mudstone and presence of swaley cross-stratification. Swaley cross-

stratification is commonly regarded as a shallower equivalent of hummocky cross-

stratification, characteristic of shoreface storm deposits (Reading, 1996). The source of the 

Figure 3.4: 

Hummocky cross 

stratification beds of FA3-A 

from L19R5 at 

Ringdalsfjellet. 
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sandstone of the storm deposits are believed to be eroded material from shallower 

shoreface and foreshore areas. Since FA3-A consists of amalgamated storm deposits without 

structures indicating fair weather conditions, it is reasonable to assume a high frequency of 

storms and a high sedimentation rate. This assumption is further emphasized by the 

relatively low degree of bioturabtion; a high degree of bioturbation would be expected if the 

storm deposits were “undisturbed” on the seabed over a considerable time period.  

 

FA3-B: Alternations of plane parallel lamination and symmetrical small ripples: 

There are some uncertainties when it comes to the interpretation of the active processes 

during the deposition of the bed sets of alternating plane parallel lamination (F9) and 

symmetrical small ripples (F8) in the literature. For this reason, and the possible implications 

of the active depositional setting (discussed below), a thorough discussion of this facies 

association is presented below.   

Observations: 

Typically, there is no significant grain size difference between the plane parallel lamination 

and symmetrical small ripple sets; they both appear in very fine to fine grained sandstone 

(Figure 3.5 B). However, at some locations the plane parallel laminated beds are normal 

graded, grading from fine grained sandstone at the base to silty sandstone at the top. Where 

grading of the beds is observed, the spacing between the lamina decreases upwards in the 

bed. Although the visible spacing between the lamina of the beds characterized as F9: Plane 

parallel lamination most commonly is around 1cm, the beds locally have a massive 

appearance of up to 10cm thick intervals, and locally have lamination on a mm-scale (Figure 

3.7). Beds of symmetrical small ripples typically have a thickness varying from 2-20 cm, with 

an average around 6 cm. Beds of plane parallel laminations have a more variable thickness, 

they form the thickest sections of the two, ranging from 3-30 cm, and averaging around 

12cm. The thickness of the plane parallel lamination beds have a tendency to increase 

upwards in the succession (Figure 3.5 D). The symmetrical small ripples are often truncated 

by the overlying bed of planar parallel lamination; hence preserved ripple crests are 

uncommon. Of the symmetrical ripple crests exposed, straight to sinuous geometries as well 

as disconnected 3D crests were observed. While the former two were observed in FA3-A as 

well, the latter was not. A weak degree of bioturbation including Skolithos and Ophiomorpha 
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trace fossis can be found at some locations within FA3-B, most typically within the rippled 

sections.  Isolated large scaled symmetrical ripples are present in the upper reaches of FA3-B 

at some locations. At the base of the sub-facies association (at the transition from the 

underlying FA3-A), interbedding of hummocky and swaley cross-stratified sandstone is 

common. The thickness of FA3-B in the different logged outcrops in the study area is highly 

variable; in some logs FA3-B is absent, while the thickness in a single parasequence may be 

as much as 5-6m in other localities (Chapter 6). Sometimes poorly developed striations can 

be observed at the base of the bedding planes of the plane parallel laminated beds.  

Figure 3.5:  
A: Alternating plane parallel laminated beds and symmetrical small ripples from L1R1. 
B: Example of FA3 from L1R1. Deposits of FA3-A covers the section from 615,5 to 618 MASL, while the 
rest of log contains deposits of FA3-B.  
C: Log L1R1 with the different facies associations presented with different colours.  
D: Graph showing the thickness of the alternating beds of FA3-B (y-axis) with height in the log (x-
axis). Note the increase in thickness of the plane parallel laminate beds (n=2x18). 
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Interpretation: 

Wave period, grain size, and unidirectional/oscillatory current velocities are controlling 

factors in terms of the signature of the depositional structures of the sands in the shoreface 

(Dumas et al. 2004; Dumas and Arnott 2006; Hill et al. 2003; Cummings et al. 2009). Stability 

field diagrams for different depositional structures based on these criteria have been made 

by Myrow and Southard (1991), Dumas et al. (2004) and Cummings et al. (2009). Based on 

wave tunnel experiments, Dumas et al. (2004) calculated the stability field of symmetrical 

small ripples in very fine grained sand (0,14mm). For wave periods of 8,0s, this stability field 

is in a current regime of that over the sediment movement threshold, and below that of 

Uo~40cm/s and Uu~10cm/s (Uo = oscilation current velocity, Uu = unidirectional current 

velocity)). From the same studies, the stability field of planar beds in very fine grained 

sandstone is in a current regime of Uo>85cm/s for purely oscillatory currents, but may also 

form at lower Uo with higher Uu (for Uu>20cm/s, plane beds may form at Uo as low as 

60cm/s) (Dumas et al, 2004). This imply that small ripples are generated from the sediment 

movement threshold up to Uo=40cm/s, whereas plane parallel lamination develop at 

current velocities between 85 and 60 cm/s, depending on the unidirectional current 

component (Figure 3.6). The values presented in these stability field diagrams are derived 

from laboratory studies and should thus be applied with some caution. However, they do 

give a rough perception of the active current velocities during deposition of the different 

structures. 

A striking feature of FA3-B is the absence of an intermediate step of cross stratification/HCS 

(large scale ripples following the nomenclature of Dumas et al., 2004), as would be expected 

for a gradually waning flow from upper flow plane beds to small symmetrical ripples. The 

terminology used for oscillation and combined flow generated structures in the stability field 

diagrams of Dumas et al. (2004)(Figure 3.6) follows the definition by Hanes et al. (2001) 

where the term “ripple” is applied for all topographic bed forms. The term small ripples is 

applied to structures with a wavelength below 30cm, while the term large ripples is applied 

to structures with a wavelength above 30cm. The corresponding terminology following more 

established definitions (Campbell, 1967; McKee and Weir, 1953) is ripple laminae for 

wavelengths above one feet (30,48cm), and cross-stratification for bed forms with higher 

wavelengths.  
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Figure 3.6: Stability field diagram 

for combined flow depositional 

structures of very fine grained 

sand at a wave period of 8,0s 

(modified from Dumas et al., 

2004). The positions of the 

respective beds of FA3-B (plane 

bed and small ripples) are 

highlighted in pink.  

 

 

 

 

Similar couplets of plane beds and symmetrical small ripples have been observed in other 

wave dominated shoreface deposits (Roep et al. 1979, Hill et al. 2003). Hill et al. (2003) 

measured the active current velocities (Uo and Uu) at a 10 m depth over the shoreface of a 

present day wave dominated delta (the Grande-rivière-de-la-Baleine Delta) during fair 

weather-, moderate storm- and major storm-conditions. The measured fair weather current 

velocities of these studies plot within the stability field of small scale ripples (c.f. Dumas et 

al., 2004). The current velocities of moderate storms gave readings within the stability field 

of HCS/large scale ripples, but also reached the stability field of plane beds, up to 20cm/s for 

the unidirectional currents (Uu) and 60cm/s for oscillatory currents (Uo). For major storms, 

the highest current velocity values was that of Uu~40cm/s and Uo>100cm/s, well within the 

stability field of plane beds. Hill et al. (2003) argued that the lack of preserved intermediate 

deposits between that of small scale ripples and plane beds is caused by a too rapid 

transition of current velocities between the two stability fields for any intermediate deposits 

to reach depositional equilibration. As such, the presence of HCS/SCS in more distal 

shoreface deposits could be explained by assuming that the waning flow spends more time 

within the stability field of HCS, allowing its deposition. For such a setting, the plane beds 
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would be contemporaneous proximal equivalents to the distal tempestites consisting of HCS 

and SCS. An interpretation of the plane beds as more proximal storm deposits than that of 

the HCS beds provokes problems, as the vertical thickness of the plane beds in general are 

less than that of the HCS-beds. In addition the HCS beds show more profound erosion and 

truncations than that of the plane beds, which have planar lower bedding surfaces and less 

profound truncations.  

Since the transition between the different deposits of FA3-B cannot be explained with fair 

weather alternations or fair weather-storm alternations (c.f. Dumas et al., 2004), and since an 

interpretation of a high energetic storm origin for the plane beds does not correlate well with 

the more distal storm deposits, alternative explanations than those limited to the stability field 

diagrams should be addressed.  

  
Figure 3.7: Example of a normal graded bed of the parallel laminated sandstone, grading from 

fine grained sandstone at the base, to silty sandstone at the top. The spacing between the 

lamina gets progressively thinner upwards in the bed, from a massive appearance at the base to 

lamination on a mm-scale at the top. The features of these beds might resemble that of Bouma 

Tab and Tabc turbidite deposits. 
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Similar beds, consisting of alternating massive to parallel laminated beds and rippled beds, 

were observed in delta front deposits by Olariu et al. (2010) on studies carried out on the 

Panther Tongue Delta, Book Cliffs. Their interpretation of these beds was that of high energy 

and high concentration river fed gravity (hyperpycnal) underflows with variable flow 

intensity. The main arguments for the interpretation of a hyperpycnal origin of the beds 

provided by Olariu et al. (2010), were the similarity to Bouma-division Tabc, the waxing and 

waning type of the flow, that supposedly are more characteristic of hyperpycnal flows (cf. 

Mulder et al., 2003), and the concordance of river induced hyperpycnites with the 

established regional geomorpohlogical models.  

Traditionally, the formation of hyperpycnal flows were believed to be uncommon in marine 

settings, but studies over the last decade have revealed that many marine deltas can 

accommodate hyperpycnal conditions (Bhattacharya and Maceachern, 2009 and references 

therein). Hyperpycnal flow deposits have been recognized in Battfjellet Formation in the 

western reaches of the basin where well developed clinothems are presenet (Plink-Björklund 

et al., 2001, Mellere et al., 2002, Plink-Björklund and Steel, 2004 and Peter and Steel, 2006). 

These studies have focused on hyperpycnal deposits on the slope, and the role of 

hyperpycnal flow generated channels as conduits for turbidite currents to the basin floor. 

Since the Central Tertiary Basin of Spitsbergen was a restricted basin with high fluvial influx it 

is therefore tentatively suggested that it periodically experienced strongly brackish waters, 

which may increase the potential for generating hyperphycnal flows. 

The delta front slope gradient of the Battfjellet Formation delta system in the area is 

relatively low. Deltas with a steep gradient (>0,70°) have the capacity to generate 

hyperpycnal flows directly from river channels, whereas low angle systems (<0,3°) requires 

additional turbulence caused either by tidal or wave processes (Bhattacharya and 

Maceachern, 2009 ). The predominance of wave generated structures in the delta front 

deposits of Battfjellet Formation, and the symmetrical signature on the ripples 

superimposed on the parallel laminated bed, may suggest that storm processes play an 

important role in the generation of the hyperpycnal flows. Oscillational current movement 

during storms may add to the turbulence at the seabed and thus contribute to the motion of 

the hyperpycnal flows (c.f. Bhattacharya and Maceachern, 2009 ). Depending on the 

duration of high density fluvial discharge input from the river, hyperpycnal flows can be 
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sustained over a low gradient slope for a long period, the traveling distance for a 

hyperpycnal flow is in large part dependent on the duration of the flood (Zavala et al., 2006). 

The deposits of FA3-B are thin and generally confined to the middle- and lower shoreface 

area, and may thus represent that of relatively short lived flood events. The slope gradient 

difference from the shoreface to the offshore/transition might further delimit the down-dip 

transport of the hyperpycnal flows.   

The thickening of the parallel laminated beds upwards in the succession implies that the bed 

has its greatest thickness in a proximal position and pinches out distally. In contrast, no 

profound thickness variations were found for the rippled interval of the facies association 

(Figure 3.5). The expected fair weather current regime of the lower shoreface depostional 

environment for the Battfjellet Formation is tentatively suggested to be roughly the same as 

those observed at a 10m water depth at the the Grande-rivière-de-la-Baleine Delta by Hill et 

al. (2003); within the stability field of symmetrical small ripples (c.f. Dumas et al, 2004). The 

rippled interval may thus represent fair weather aggradation between that of cyclic 

(annual?) hyperpycnal generating flood events.  

The deposits of FA3 B are suggested to represent flood and wave aided low duration 

hyperpycnal flow deposits. This interpretation is based on the following assumptions: 

 The geomorphological setting and depositional environment supports the formation 

of hyperpycnal flows. 

 An explanation of the deposits being formed as a result of wave/storm action is not 

plausible. 

 The deposits show a striking similarity to other deposits interpreted to by 

hyperpycnal flows in a delta front depositional environment (c.f. Olariu et al., 2010) 

The thickness of FA3-B intervals varies locally along depositional strike internally in a 

parasequence. It is suggested that the thickness of this facies association reflects the relative 

distance to a distributary channel system at the delta front (Chapter 7). 
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4.2.4 FA4: Middle shoreface: 

Observations: 

This facies association consists of dark gray/brownish sandstone with grain sizes ranging 

from very fine/fine, to fine grained sand (Figure 3.9 A; B). The main depositional structures 

of the facies association are trough cross-stratification and large scale swaley cross-beds, but 

small scale symmetrical ripples are also common in the association. The lithofacies making 

up this facies association are F5-F11.  

A prominent feature of this facies association is the presence of isolated or stacked troughs 

with set length typically in the range of 8-100cm (average around 25cm), and set thickness in 

the range of 2-8cm (average around 5cm). The troughs have a predominance of symmetrical 

and sub-parallel internal lamination (Figure 3.8 A), but combined flow signatures in the form 

of foresets terminating at the base of the troughs can be observed locally (Figure 3.8 B). The 

symmetrical nature of the structures makes it hard to deduce a preferred direction of flow 

for the deposits of this facies association. The bed sets show an amalgamated stacking 

pattern and the beds are typically bounded by irregular, curved erosional surfaces at the 

base.  

 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.8: Typical trough infill geometry in Facies Association 4 (FA 4).  
A: Parallel to sub-parallel infill of the trough.  
B: Tangential down-lapping stratification developing into more parallel to sub-parallel 
stratification laterally. The orientation of the trough axis with respect to the exposed surface 
is very important with respect to the internal lamination shown. The upper example may 
represent a section perpendicular to the trough axis, whereas the lower section may be sub-
parallel to the trough axis. 
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Beds with alternating planar parallel lamination and symmetrical ripples are locally present 

in this facies association. These beds share most of the characteristics of the beds described 

for FA3-B. However, the grain size of the beds tends to be slightly coarser and the 

symmetrical ripples tend to have higher amplitude. Symmetrical ripples independent of 

plane laminated beds are also common within this facies association. The geometry of the 

exposed ripple crests varies from straight to a disconnected 3D geometry.  

The degree of bioturbation within the facies association varies from 0 (no bioturbation) to 5 

(intense bioturbation), following the classification scheme of Reineck (1963) and Taylor and 

Golding (1993). The highest degree of bioturbation is found in beds associated with trough 

cross stratification. Locally the stratification is completely disturbed as a result of intense 

bioturbation. Skolithos (Figure 3.9 D), Ophiomorpha (Figure 3.9 C), Cylindrichnus, Teichichnus 

and Glyphichnus (figure 3.9 D) trace fossils were recorded in this facies association.  

Interpretation: 

The larger scale of the symmetrical ripples compared to the underlying facies association, 

and the disconnected 3D ripple crest geometries testify to deposition from higher velocity 

oscillation current velocities. Isolated and irregularly developed troughs defined by curved 

basal erosional surfaces are believed to represent scour and fill structures. The more regular 

stacked and amalgamated troughs with a well defined sub-parallel lamination are believed 

to be trough cross-stratification formed as a result of migration of dunes. These deposits are 

believed to represent an intricate stacking of deposits from direct wave action under fair 

weather aggradation, migration of dunes from longshore and rip currents, and erosion and 

fill from periods of higher energy (storm). Based on these criteria, a middle shoreface 

depositonal environment is proposed for this facies association. Similar deposits of the 

formation elsewhere have been given the same interpretation by Helland-Hansen (2010). 

Trace fossils of Skolithos, Ophiomorpha and Glyphicnus are all characteristic of shallow 

marine deposits, but no further subdivision can be based on the presence of these trace 

fossils as they are not restricted to a middle-shoreface depositional environment. 
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Figure 3.9: 

A: Picture of an outcropping section of middle shoreface deposits at L20S6 (Sandsteinsfjellet). 

B: Lithostratigraphic log of the same section. Scale 1:10 

C: Ophiomorpha trace fossils with pellets along the wall of the burrow at L6T2 (Tillbergsfjellet). 

D: Glyphicnus and Skolithos trace fossils at L6T2 (Tillbergsfjellet). 
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4.2.5 FA5: Upper shoreface: 

Observations: 

This facies association consists of fine to medium grained light to dark gray/brownish 

sandstone with tabular cross-stratification and low angle stratification. The thickness of the 

facies association varies from 2-3 meteres. 

The cross strata of this facies association consists predominantly of tangential foresets 

within sets with sub-parallel boundaries (Figure 3.12 E). Such cross sets may be categorized 

as tabular cross stratification (F12) following McKee and Weirs (1953) identification scheme 

(see also Boggs, 2006). Although tangential foresets dominates, rare examples of non-

tangential and sigmoidal foresets also occur. There is a great variation in the bed thickness of 

the tabular cross sets. The measured thickness ranges from 4cm to 63 cm, but most lie 

within the range of 8-25cm. The spacing between visible individual lamina tends to increase 

with increasing thickness of the tabular cross sets, a spacing between the lamina in the range 

of 0.5-1cm is common for small scale sets with a thickness less than 5cm, while a spacing of 

2-4cm is common for large scale sets with a thickness up to 20cm. There is a great variation 

in paleocurrent direction for the cross sets of this facies association, both from different 

outcrops and locally. Locally, co-sets of tabular cross stratification show bidirectional 

paleocurrent directions, and may be characterized as herringbone cross-stratifications 

(Figure 3.10; 3.12 D). Rare examples of double mud drapes in the foresets of the 

herringbone cross-stratifications were also observed. A special structure within this facies 

association that also may be present within the middle shoreface facies association (see 

below) is gigantic troughs up to 6 meter wide and 1 meter deep (Figure 3.11). The troughs 

consist of fine to medium grained sandstone with internal stratification that is parallel with, 

or downlapping the curved concave basal surface.  
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Interpretation: 

The sediments of this facies association have, together with the overlying foreshore facies 

association, a very low degree of bioturbation, and demonstrate the coarsest grain size of 

the studied succession. The tabular cross sets represent migrating dunes at the seabed. The 

cross sets show a wide range of paleocurrent directions (Chapter 5). Such a wide range of 

paleocurrent measurements have been recorded in numerous other studies of similar 

deposits (Helland-Hansen, 2010; Roux & Elgueta, 1996; Davies, 1978). The dunes forming the 

cross sets are believed to have been formed as a result of longshore- and possibly rip-

currents in a wave dominated upper shoreface depositional environment. This 

interpretation is in concordance with models for wave dominated clastic shoreline systems 

where the upper shoreface has been described as the most energetic part of the system 

where dunes are formed as a result of such processes (Clifton, 2006). The deposits of this 

facies association are believed to be remnants of upper shoreface fair weather aggradation 

of a dissipative shoreline. The opposing paleocurrent directions of the herringbone cross 

stratifications is likely a result of tidal influence, and deposition during ebb and flood 

generated currents. The tidally influenced deposits are locally restricted, and may be related 

to processes within or associated with tidal inlets, in areas connecting interdistributary bays 

with the open sea. The origin and the morphology of the giant troughs (Figure 3.11) are not 

well understood, and it is uncertain if they represent bed forms of giant migrating dunes or 

large cut and fill structures. The morphology and the very local occurrences may suggest that 

Figure 3.10: Example of bidirectional tabular cross-stratification co-sets from L21R6 on 

Ringdalsfjellet. 
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they represent very shallow aggrading channels. Due to great variety of possible channel 

generating processes in an upper shoreface depositional environment, no further 

speculation about the origin of the structures will be given here, but they may be related to 

rip currents, sub-tidal channels, or “chute channels” that could be conduits for hyperpycnal 

flows.  

 

  

Figure 3.11: Large trough shaped structure on Tillbergsfjellet at L22T7. 
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Figure 3.12: 
A: L10M2 with different colours indicating different facies associations. 
B: Examples of FA5:  Upper shoreface and FA6: Foreshore deposits from L10M2. 
C: Picture of carbonaceous rootlet protruding down in medium grained sandstone of the FA6 at L5T1 
(Tillbergsfjellet). 
D: Co-sets of tabular cross stratification with opposing paleocurrent directions (Herringbone cross-
stratification), L10M2 on Mefjellet. 
E: Tabular cross-stratification with tangential foresets (L9M1 on Mefjellet). 
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4.2.6: FA6: Foreshore 

Observations: 

The foreshore facies association consists of fine to medium grained sandstone with a 

gray/brownish colour. The dominating features of this facies association are inclined 

surfaces (or lamination) forming low angle, and irregular non-parallel stratification (F13) 

(Figure 3.13). The spacing between the strata is highly variable, ranging from a few 

centimeters to several decimeters. This facies association is typically located at the top of 

the exposed cliffs, and is thus strongly exposed for weathering. As a result the sandstone of 

this facies association often has a massive appearance with exfoliation joints. This facies 

association has only been observed in the uppermost parasequences for the individual 

logged sections in the study area. Fossilized plant root fragments with a vertical thickness up 

to 5 cm can be seen at the top of the rocks of this facies association at some locations 

(Figure 3.12 C). The registered thickness of the facies association ranges from 0.7 m to 

approximately 3 m.  

 

 

 

 

Figure 3.13: Low angle 

stratification of FA6 at 

L9M1 on Mefjellet. 
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Interpretation: 

The sediments of this facies association are interpreted to be foreshore deposits. The low 

angle strata are believed to be a result of wave swash and back-wash processes on the 

beach. This interpretation is enhanced by the presence of plant roots at the top of the facies 

association indicating partially subaerial exposure. The presence of continental deposits 

immediately above the deposits of this facies association further strengthens the 

interpretation of a foreshore depositional environment. The preservation potential for this 

facies association is low as a consequence of erosion and wave reworking during minor 

transgressions related to abandonment, probably as a consequence of autocyclic lobe 

change in an otherwise rapidly subsiding basin (Chapter 7).  

4.2.7: FA7: Continental deposits 

This facies association comprises the continental deposits of the Aspelintoppen Formation 

and constitutes the uppermost section of the logs, above that of the shallow marine deposits 

of Battfjellet Formation. The sediments of this facies association consist of deposits from a 

lower delta plain environment, and associated sub-environments. The facies association has 

been observed and logged with variable thickness in ten of the logged sections, but due to 

sparse outcrops, no continuous sections have been measured trough the facies association. 

The facies association has been subdivided into three sub-groups;  

 FA7-A Interdistributary bay, 

 FA7-B Subaerial Lower delta plain (interchannel area). 

 FA7-C Distributary channel.  

The facies association is collectively classified as continental deposits  

 

FA7-A: Interdistributary bay 

Observations: 

FA7-A consists of silt dominated mudstones to very fine grained sandstone, typically forming 

upwards coarsening sequences with a thickness usually between  0,5m to 2m. Heterolithic 

intervals of alternating mudstone and very fine grained sandstone on a cm-scale (thickness 

of sandstone beds increase towards the top of an individual sequence) are common 

troughout the sequences. Ripple cross-laminations are the dominating depositional 
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structures observed in this facies association. The lack of visible internal lamina and ripple 

crest geometries in most cases inhibits further classification of the ripples, and they are thus 

termed “undifferentiated ripples” (F6). However, at some locations, both symmetrical small 

scale ripples (F8), and asymmetric (current) ripples (F7) are recognized in the sandstone beds 

of the succession. Soft sediment deformation, convolute bedding and minor ball and pillow 

structures (F3) of a diameter of approximately 5cm are locally observed in this facies 

association. Fossilized plant fragments are observed in FA7-A, however in less quantities 

than in FA7-B (see below). Rare burrows also occur, and trace fossils of Arenicolites and 

Skolithos were recognized. FA7-A is the dominating facies association in the continental 

section immediately above the marine deposits of Battfjellet Formation.  

Interpretation: 

The presence of mudstone at the base of this facies association indicates a protected 

depositional environment where fine grained sediments were allowed to settle from 

suspension. The presence of symmetrical ripples gives evidence of wave reworking of the 

sediments, in an environment probably open to marine water. Asymmetric ripples give 

evidence of, at least episodic, influence from unidirectional currents, and are likely flood 

induced overbank deposits. The coarsening upwards trends is believed to represent 

deposition during progressive higher energies as may take place when a bay is filled with 

sediments, and gradually become shallower. FA7-A is thus interpreted to be interdistributary 

bay deposits. Although not diagnostic of the environment, the presence of Skolithos and 

Arenicolites are common trace fossils in an interdistributary bay environment, and thus 

support the interpretation (c.f. Buatois et al., 2005).  
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Figure 3.14: 
A: Interdistributary bay deposits (FA7-A) showing the typical upwards coarsening trend of these 
deposits from mudstone to sandstone. Symmetrical small ripples are visible in the sandstone prone 
upper reaches of the section. 
B: Arenicolites and Skolithos trace fossils in interdistributary deposited sandstone at L9M1 on 
Mefjellet 
C: Small scale load casts and asymmetric (current) ripples at L15M4 (Mefjellet) 
 
 
 

 
 
Figure 3.15: 
A: Fossilized plant, 
displaying leafs, a 
branch and the 
stalk (near L22T7, 
Tillbergsfjellet). 
B: Fossilized leaf in 
a fluvial channel 
(L8R2, 
Ringdalsfjellet) 
C: Leafs in debris 
near L22T7 
(Tillbergsfjellet)  
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FA7-B: Floodplain  

Observations: 

FA7-B consists of predominantly of a hereolithic alternation of mudstone and very fine 

grained sandstone with bed thicknesses typically varying in the range of a few centimeters to 

a few decimeters. The main depositional structures are undifferentiated ripples (F6), but 

asymmetric ripples (F7) are recognized locally. Soft sediment deformation and a high 

abundance of plant fragments, rootlets, and carbonaceous fragments are common in this 

facies association. Locally, up to 10cm thick coal seams and horizons of coaly shale (F16)(up 

10cm thick)are present. No profound coarsening and fining upwards trends were recorded 

within this facies association.  

Interpretation: 

FA7-B is interpreted to be subaerial overbank deposits in a lower delta plain depositional 

environment. The absence of marine indicators in the form of trace fossils and symmetrical 

ripples differentiates it from FA7-A. In addition, the content of fossilized plant fragments 

(Figure 3.15) and rootlets is significantly higher in this facies association. The thin sandstone 

beds with asymmetrical ripples are believed to be overbank levee deposits, with deposition 

from unidirectional flows dispersed from distributary channels during flood events. The 

undifferentiated ripples are interpreted to be deposits of the same process, although this is 

speculative since no evidence of the active current regime during deposition can be deduced 

from the structures. The grain size and thickness of the beds are believed to roughly reflect 

the distance from the distributary channel at time of deposition in the sense that thin and 

fine grained beds are distal levee deposits, while thicker and coarser grained beds represent 

more proximal levee/crevasse splay deposits.  

 

FA7-C: Distributary channel 

Observations: 

This facies association consists of upwards fining sandstone successions with grain sizes in 

the range from very fine to medium. On the basis of the thickness and grain size of these 

sandstone bodies they can be subdivided into two main groups. The first (FA7-C1), consists 

of very fine to fine grained sandstone beds with a thickness between 0,5 to 1,5m (F14). The 

base of these sandstone bodies is erosive, whereas large scale parallel strata are the most 
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common internal feature. Tabular cross-stratification has been observed in one of the 

outcrops. FA7-C1 has been observed in 5 of the logged sections.  

The second type of sandstone within this facies association ( sub-group FA7-C2) consists of 

3,5 to 4,5m thick very fine to medium grained sandstone bodies (F15). As with the first 

group, the dominating internal feature of the sandstone of FA7-C2 is large scale parallel 

strata above an erosive base. At one location, large scale (one meter thick) tabular cross-

stratification with tangential low-angle foresets is observed.  

The sandstone bodies of both subgroups have a limited lateral extent. Sparse plant 

fragments are observed in this facies association.  

Artic weathering processes and associated exfoliation make it often difficult to recognize 

internal sedimentary structures of these sandstones. 

 

Interpretation: 

These characteristic upwards fining sandstone bobies with erosive bases and a limited lateral 

extent, located within a lower delta plain environment have been interpreted as distributary 

channel deposits. Because of the general lack of visible internal depositional structures, an 

interpretation of internal flow strength and processes, as well as paleocurrent 

measurements were hard to deduce from the deposits. The tabular cross-stratification 

observed in one of the units may have been generated from a migrating transverse bar. The 

large scale tabular, low angle cross-stratification (one meter thick) observed in one of the 

channel sandbodies may represent lateral accretion surfaces with a migration direction 

perpendicular to or oblique to the mainflow direction.. However, this is difficult to confirm 

because of the lack of paleocurrent measurements from the deposits. As no other potential 

lateral accretion structures were observed, it is tentatively suggested that the channels are 

of low sinuosity ribbon-like distributaries (c.f. Dreyer et al., 1990). The two different 

thickness ranges of the sandstones in this facies association is believed to reflect a hierarchy 

of distributary channels; the sandstones of a thickness between 3,5m to 4,5m are major 

distributary channels, while the sandstones of 0,5m to 1,5m thickness are minor disributary 

channels or crevasse channels.     
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Figure 3.16: A: Lithostratigraphic log L15M4 (Mefjellet). B: The uppermost section of the log, 
displaying deposits of FA7. C: Fluvial channel at L8R2 (Ringdalsfjellet) with large scale cross-
stratification possible formed as a result of lateral migration of a point bar. D: Deposits of FA7-B 
superimposed on deposits of FA6 (foreshore) at L3S2 on Sandsteinsfjellet. E: Thin shaley coal layer at 
L3S2 (Sandsteinsfjellet). 
F: Interdistributary bay deposits with symmetrical small ripples (L9M1, Mefjellet). 
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5. Paleocurrent data 

5.1 Introduction: 

This chapter gives an overview of the paleocurrent measurements in the study area.  The 

data is presented in rose diagrams, illustrating the distribution of vectors ranging from 1° to 

360°. Frequency of paleocurrent values within 10 degree intervals are grouped to individual 

columns in the rose diagram. The rose diagrams (Figure 5.1; 5.3; 5.4; 5.5) are constructed 

for illustrational purposes with the length of the column being proportional to the number of 

measurements within each 10o sector at a linear relationship. This is in contrast to the 

properties of a circular histogram (Figure 5.2) where the frequency of the individual 

columns should be proportional to the area of the column (Nemec, 1988). As such, 

geostatistical evaluations of the data cannot be deduced from the rose diagrams. 

Furthermore, the columns of the presented rose diagrams does not reflect a given 

percentage of the total sample population, but reflect relative proportions, with the column 

of highest frequency extended to the rim of the diagram. The software used for making the 

rose diagrams is Rozeta 2.0. Geostatistical analysis of the data has been conducted 

independently of the rose diagrams using the software EZ-Rose 1.0 by Baas (2000), and 

includes the non-parametric Kuiper and Watson tests and the parametric Rayleigh test. 

Two main groups of paleocurrent data are presented;  

 circular (1° to 360°) point vectors of paleocurrent measurements of cross-

stratification and asymmetric ripples  

 Semi-circular (1° to 180°) lineament vectors of symmetrical ripple crests.  

The former will henceforth be referred to as “paleocurrent directions” and the latter as 

“symmetrical ripple crest orientations”. ”Paleocurrent data” is used as a collective term. A 

complete list of the paleocurrent data, with a further sub-division of the data into facies 

association and individual logs, is included in Appendix 2. The sample population of the 

paleocurrent directions is n=97, and n=88 for the symmetrical ripple crest orientations.  

The symmetrical ripple crest orientations were measured on bedding planes with exposed 

straight or slightly sinuous crests (Figure 5.1). Measurements of symmetrical ripple crests are 

recorded from all shoreface facies associations, but the bulk is confined to FA2-FA4. As the 

symmetrical ripple crest orientations are lineament vectors rather than point vectors, two 
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values exists for each measurement; the measured direction and the opposing direction at 

±180°. Both of these are plotted in the rose diagrams. Paleocurrent directions were collected 

measuring the strike and dip direction of foresets in tabular/planar cross-strata (Figure 5.1) 

and on asymmetrical ripples.  

 

 

Figure 5.1 

A: Rose diagram of all symmetrical 
ripple crests 

B: Rose diagram of all paleocurrent 
directions. 

C: Exposed symmetrical ripple 
crests. 

D and E: Measurable foresets of 
tabular cross-stratification sets. 

 

 

 

 

 

 

5.2 Geostatistic analysis: 

The geostatistical analysis of the paleocurrent values are conducted to test if the samples 

have preferred orientations and to test the validity of the mean values. This is done with the 

Kuiper, Watson and Rayleigh tests in EZ-Rose where the following hypothesis are tested 

(Baas, 2000): 

H0: The vectorial population sampled has a uniform (non-preferential) distribution 

H1: The vectorial population sampled has a non-uniform (preferential) distribution 
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Thus, if H0 is accepted the sample is chaotic and has a useless mean value, while the mean 

value of the measurements indicates of the preferred direction if H0 is rejected. The 

confidence sector of the sample is automatically calculated in Ez-rose using the following 

equation:  

Eq.1                                                             
  

    
 

For Eq.1,     is the confidence sector of the mean, n is the number of samples in the 

population, R is the vector length of the mean, and K is the concentration of vector data 

(strength of the vector mean) (Baas, 2000). The value of mα is depending of the confidence 

level of the test, which in this case are α=0.05 and α=0.01 (mα = 112 and mα =148 

respectively). For a detailed explanation and formulas of the three different tests, see Baas 

(2000). In addition to the geostatistical analysis carried out on the total measurements 

collected, the sample population has been analyzed based on locality, and the facies 

association from which it was measured.  

Results: 

The results of the geostatistical analysis along with rose diagrams are presented in Figure 5.2 

and Figure 5.3. The results reveal that there is a very consistent orientation for the 

symmetrical ripple crests. H0 was rejected at a confidence level (α) of 0.01 for all of the tests. 

The mean value obtained is 179,56°, with a confidence sector of 5,77° (at α=0.01). This 

means that there is a 99% probability that the mean of the population is between 173,79o 

and 185,33o. For the paleocurrent directions of the entire study area, H0 was accepted at 

both confidence levels for all three tests. The distribution of the paleocurrent directions is 

thus chaotic, and no preferred direction can be deduced from the data.  
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Figure 5.2: Circular histograms of symmetrical ripple crests (A) and paleocurrent directions 
(B), and the results of Kuiper’s, Watson’s and Rayleigh’s tests. 

 

The results of the symmetrical ripple crest orientations at the different localities reveal 

similar results as that of the results of the entire study area (Figure 5.3; Figure 5.5). H0 is 

rejected at both confidence levels for all three tests at all locations, and the mean values 

roughly have a N-S orientation (ranging from 171,2o to 182,2o). Since the sample population 

at the different locations is less than that of the entire study area, the confidence sector is 

higher (ranging from 8,9o to 14,9o at a confidence level of 0,01).  

The results for the paleocurrent directions at the various locations are much more variable 

(Figure 5.3; Figure 5.5). H0 is accepted for both confidence levels for all three tests at 

Tillbergsfjellet and Ringdalsfjellet. However, H0 is rejected for all the three tests at the two 

different confidence levels for Mefjellet. The mean for the paleocurrent directions on 

Mefjellet is 308,6o with a confidence sector of 32,8o at a confidence level of 0,05 and 43,35o 

for a confidence level of 0,01. The tests from Sandsteinsfjellet was accepted at a confidence 

level of 0,01, but rejected at a confidence level of 0,05 for all tests. The mean vale is 94,5o 

with a confidence sector of 41,4o at a confidence level of 0,05.  
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Figure 5.3: Rose diagrams and the results of the geostatistical analysis for different areas in 

the study area. 

 

There is little variation between the different facies associations with respect to the 

orientations of the symmetrical ripple crests, with exception of FA5 (upper shoreface) where 

the Rayleigh test was accepted because of too few samples (n=11), all of the tests performed 

on the different facies associations were rejected for both confidence levels. The mean 

values of the symmetrical crest ripples of FA2 and FA4 are 1,9° and 175,6° respectively. The 

N-S orientation observed from these facies association conforms to the mean value of all 

symmetrical ripple crest orientations measured.  However, a small shift to the east 

compared to the other values is registered for the mean value for FA3 (lower shoreface) 
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which has a mean value of 10,5° . On the other hand, the difference is minor and the 

confidence sector intervals of the means for the different facies associations overlap. 

The paleocurrent directions of FA5 (which holds the bulk of the measurements) are accepted 

for all the tests at both confidence levels, and thus shows no preferred direction. Kuiper’s 

and Watson’s tests are rejected at both confidence levels for FA2 and FA3 (combined). 

However, H0 is rejected by the Rayleigh test because of too few samples.  

 

Figure 5.4: Rose diagrams and the results of the geostatistical analysis of the different facies 

associations. 
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Interpretation: 

The strongly preferred N-S orientation of the symmetrical ripple crests, as testified by the 

small confidence sector of the mean value of 179,56o at a confidence level of 0,01, is the 

result of stable wave influence both in time and space. This assumption is enhanced by the 

small variations observed in ripple crest orientations in the different facies associations and 

at different localities. N-S directed orientations of symmetrical ripple crests have been 

registered throughout the formations by various studies (Steel, 1977; Helland-Hansen, 1985; 

Helland-Hansen, 1990; Johannesen and Steel, 2005; Olsen, 2008; Stene, 2009; Helland-

Hansen, 2010). These measurements conform to the established depositional model of the 

Battfjellet Formation, with an overall approximately N-S orientation of the paleo-coastline, 

and progradation of the deltaic system towards the east. The combined paleocurrent 

directions have a chaotic distribution, with no preferred directions. This is believed to reflect 

the complexity of currents in the upper shoreface depositional environment, which is the 

facies association where most of the paleocurrent measurements originate from. The weak 

preferred directions observed at Sandsteinsfjellet have roughly a perpendicular direction to 

the orientations of the symmetrical ripple crest. If the assumption that the orientation of the 

symmetrical ripple crests roughly represents the strike direction of the paleo-coastline is 

made, then the preferred direction in a perpendicular seaward direction might be a result of 

rip currents. In contrast, the paleocurrent directions on Mefjellet have a weak preference in 

an oblique direction between a landward direction and a direction normal to the strike of 

the coast line. This is more likely to be the result of longshore currents. Although the 

registered preferred directions might reflect local variations in dominating current, the 

confidence sector of the mean is very high, and as such, there are uncertainties to the 

obtained means. The paleocurrent directions of FA2-FA4 have a too small sample size to 

validate if they have a preferred direction. However, it is worth noting that of the total 12 

paleocurrent directions of the distal facies associations, none have a landward (westerly) 

direction.  
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 Figure 5.5: Overview map with 

rose diagrams from the different 

mountains. 
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6. Sandbody Geometry 

6.1 Introduction 

The data obtained from the logged sections, along with other observations from the study 

area has been compiled into a model of the sandbody geometries. The aim of this chapter is 

to present the stacking of parasequences in the study area as a whole, and to present a 

more detailed description of local parasequence stacking patterns, and internal distribution 

of facies associations both along strike and dip through chosen transects.   

6.2 Methods and principles for correlation: 

To extract information from each individual log and compile it into a 3D model, a set of 

sequence stratigraphic concepts must be fulfilled for both the detailed interpretation of each 

individual log and for the subsequent correlation. The first step of this work is to classify the 

facies associations and flooding surfaces of each logged section, and then subdivide them 

into parasequences. The set of facies associations observed vertically (Chapter 4), grading 

conformably from FA1 to FA7 represents deposits of progressively shallower environments 

following Walther’s law. Following the definition from Van Wagoner et al. (1990), a 

parasequence is “a succession of relatively conformable and genetically related beds or 

bedsets bounded by flooding surfaces or their correlative surfaces”. Thus violations of 

Walther’s law, in the sense that a facies association is suddenly overlain by a much more 

distal facies associations mark a flooding surface and the onset of a new parasequence. 

There are a few localities in the present study of stacked sandstone units that have been 

assigned to different parasequences, although the facies association assemblage of the two 

bodies does not reflect a violation of Walther’s law. This has been done when the correlative 

surface of a more proximally expressed flooding surface is traceable along the outcrop. The 

correlative surfaces identified in the present studies are all within the FA2 

(offshore/transition) succession of the logs. Because of the lack of consistent outcrops within 

the delta plain deposits of Aspelintoppen Formation, and the absence of continental 

deposits towards the top of parasequences (discussed below), no correlative surfaces have 

been identified within the continental deposits in the study area.  

As outlined in Chapter 5, the progradational direction of the system is towards east. A 

parasequence is thus expected to grade from delta plain deposits through the 
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foreshore/backshore and shoreface facies associations and eventually pinch out in the 

offshore shale of the Frysjaodden Formation along dip from west to east.  

Preservation of transgressive deposits between parasequences are rare, in most cases the 

transition between parasequences is marked with a flooding surface where distal deposits 

are superimposed directly on more proximal deposits. No sandy turbidite units or basin floor 

fans have been observed in the study area. Neither have sandy clinothems, where sand has 

been transported past the shelf edge/prodelta slope been identified. However, the 

parasequences have a clinoform shape in the sense that the relative inclination in the dip 

direction increase from the low inclinational delta plain and foreshore/backshore deposits to 

a higher inclination of the shoreface deposits, before it again returns to a lower inclination in 

the offshore/transition succession, giving a characteristic lensoid shape. The thickness of a 

parasequence is thus expected to increase before it thins and eventually pinches out in a dip 

direction. This has been partially observed at various locations in the study area (Figure 6.7), 

and is partially conceptual, based on the thickness variations of sandbodies observed 

between the logs. The flooding surfaces are correlated as isochronous lines while facies 

association boundaries are correlated as diachronous lines.  

The sandstones of the Battfjellet Formation are cliff forming because of its higher resistivity 

to weathering than the underlying shales of the Frysjaodden Formation. Parasequences are 

to some extent recognizable along the cliff exposures of the Battfjellet Formation (Figure 

6.1). The reason for this is that each parasequence usually starts with a shaley/silty horizon 

that weathers more easily than the sandstone and hence develops a thin marker horizon 

that can be traced along the exposures. However, visible correlation along mountain slopes 

is in many cases limited because of cover by scree and glaciers. Correlation of parasequences 

between mountains is problematic because of the significant lateral variations along strike 

and dip, even over relatively short distances. Even though the same number of 

parasequences is observed on two different mountains separated by a valley, they are not 

necessarily the same parasequences. Thus, correlation is in large part based on sequence 

stratigraphic concepts. 
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Figure 6.1 Example from L9M1 showing the recognizable cliff forming tendency of 

individual parasequences. Coarsening upward trends is marked with yellow, and flooding 

surfaces are marked with red lines.  
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6.3 Parasequence stacking pattern 

 A total of twelve different parasequences are recognized in the study area, but the number 

of parasequences present for each individual logged section varies between three and five 

(Table 6.1). The twelve recorded parasequences are given named based on its position 

relative to hinterland, thus P1 (lower most parasequence at the western edge of the study 

area) is the oldest, while P12 (top most parasequence at the eastern edge of the study area) 

is the youngest (figure 6.2).  

 

 Log nr: P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 ∑ 

Sa
n

d
st

ei
n

sf
je

lle
t L4S3 X X X X - - - - - - - - 4 

L2S1 X X X X - - - - - - - - 4 

L3S2 X X X X - - - - - - - - 4 

L7S4 X X X X - - - - - - - - 4 

L11S5 X X X X - - - - - - - - 4 

L20S6 - - - - - - - - - - - - - 

M
ef

je
lle

t 

L10M2 - X X X X X - - - - - - 5 

L15M4 - - - X X X X - - - - - 4 

L14M3 - - - X X X - - - - - - 3 

L9M1 - - - X X X X - - - - - 4 

R
in

gd
al

sf
je

lle
t L1R1 - - - - - X X X - - - - 3 

L8R2 - - - - - X X X - - - - 3 

L13R3 - - - - - X X X - - - - 3 

L18R4 - - - - - - X X X X - - 4 

L19R5 - - - - - - - - X X X - 3 

Ti
llb

er
gs

fj
el

le
t 

L5T1 - - - - X X X - - - - - 3 

L21T6 - - - - - X X X - - - - 3 

L6T2 - - - - - X X X X - - - 4 

L12T3 - - - - - X X X X X - - 5 

L17T4 - - - - - - - X X X X - 4 

L22T7 - - - - - - - - X X X X 4 

L16T5 - - - - - - - - X X X X 4 

Table 6.1: Listing the presence of parasequences (P1 – P12) at the different logs, and the 

total parasequences present at a given log. 
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Figure 6.2: Overview maps showing the 

distribution of individual parasequences, 

indicating their observed lateral extent both 

along strike and dip. The locations of the 

logged sections are marked with numbers. 

Yellow colour indicates the presence of a 

parasequnce at, and close to a logged 

section where it has been demonstrated, 

while dashed yellow colour indicates the 

expected position of a parasequence where it 

is not observed. Due to uncertainties related 

to extensive local deformation (discussed 

below), the logged sections in the eastern 

area of Ringdalsfjellet are marked with a 

dashed yellow colour.  

Note: Due to the 

small scale of the 

maps, only the 

chronological 

number of the logs 

are given, and not 

the full annotation. 
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Because of the expected lensoid shape of the parasequences, there are thickness variations 

along strike and dip of each individual parasequence. The lowermost parasequence typically 

is the thickest one (most commonly in the range between 7-20m). The reason for the 

lowermost parasequence being the thickest was explained by Helland-Hansen (2010) to be a 

result of progradation into deeper waters. The onset of a renewed progradation following a 

transgression will prograde above a previously developed parasequence and therefore have 

less accommodation space to fill. For the same reason, the uppermost parasequence in 

many cases is the thinnest (4-15m thickness). The thickness of a parasequence rarely 

exceeds 20m. The recorded depositional dip length of the shoreface part of the 

parasequences, from FA6 to FA2, is between 2 and 4km. The onset and termination of P8 is 

visibly traceable along the southern mountain slope of Tillbergsfjellet, and pinches out over 

a distance of 2,5km. There are more uncertainties in estimating the length of the 

parasequences in strike direction. P6 and P7 have been correlated from the northern to the 

southern rim of the study area, and the length of these parasequences thus exceeds 10km in 

strike direction. There are however uncertainties to these correlations as there are two wide 

valleys within the correlated distance.  

Extensive studies by Helland-Hansen (2010) and additional contributions by Skarpeid (2010) 

are the basis of a map indicating the number of parasequences present at different locations 

throughout Nordenskiöld Land. This map, together with the number of parasequences 

observed at the various locations of the present study is presented in Figure 6.3:   

Figure 6.3: Overview map of 

Norendskiöld Land indicating the 

position and number of 

parasequences at various locations as 

established by Helland-Hansen 

(2010). Green colour indicates the 

additional contributions to this map 

by Skarpeid (2010), while red colour 

indicates the number and position of 

parasequences in the study area of 

the present study.  
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6.4 Correlation panels 

Three correlation panels along different transects of the study area is presented in this 

chapter in order to address different aspects of the local sandbody geometry (Figure 6.4).  A 

transect through Sandsteinsfjellet and Mefjellet is presented to address internal facies 

association variations, both along strike and dip. A roughly N-S oriented transect through 

logged sections on Mefjellet, Ringdalsfjellet, and Tillbergsfjellet is presented to address 

parasequence variations along strike, and a WNW – ESE oriented transect along the 

southern slope of Tillbergsjellet is presented to address parasequence variations along dip. 

 

 

 

 

 

 

 

 

 

  

Figure 6.4: 

Overview map of 

the study area 

indicating the 

location of the 

transects presented 

in this chapter. 
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6.4.1 The Sandsteinsfjellet-Mefjellet transect 

The Sandsteinsfjellet-Mefjellet transect includes 5 logged sections on Sandsteinsfjellet with a 

slightly oblique orientation relative to strike, and 4 logged sections on Mefjellet, that have a 

more scattered position relative to strike and dip. L20S6 on Sandsteinsfjellet is not included 

as it is not in an in situ position (will be discussed below). In order to illustrate the internal 

facies association development of the seven parasequences (P1-P7) recorded along the 

transect, the transition from the shallow marine Battfjellet Formation to the continental 

Aspelintoppen Formation is plotted as a horizontal line, and the vertical thickness of the 

correlation panel is exaggerated (Figure 6.5 B).  

There are no onset or terminations of parasequences along the transect at Sandsteinsfjellet; 

all five logged section consists of the same four stacked parasequences (P1-P4). However, a 

marked thinning from NNW to SSW is registered for the two lower parasequences. The 

second parasequence (P2) is thinner and has a more distal internal facies association 

distribution than that of the underlying parasequence (P1). For this reason, and for the 

better fitting with the spatial distribution of the sandbodies, P1 and P3 are correlated to the 

two lowermost parasequences on Mefjellet (Figure 6.5 B), while P2 is pinching out between 

the two parasequences. P4 is the only parasequence that can be correlated between all logs 

in the transect. It represents the uppermost parasequence at Sandsteinsfjellet, and the 

lowermost parasequence at the three south-easternmost logged sections on Mefjellet. Of 

the latter three, L14M3 has a more proximal internal facies distribution than L9M1 and 

L15M4, which consists of thick sections of offshore/transition deposits. P5 and P6 can be 

correlated between the four logged sections on Mefjellet, while P7 is only present at L9M1 

and L15M4.  

Interpretation: 

The small variations observed between the logged sections on Sandsteinsfjellet are believed 

to reflect their roughly parallel/slightly oblique position relative to strike. The small contrasts 

between the NNW/SSE oriented transect in discussion, and the expected N-S orientation of 

the strike of the paleo-coastline, is evident by the thinning of the two lowermost 

parasequences towards SSE. As P2 has a more distal internal facies association distribution, 

and are thinner than P1, it is interpreted to reflect a retrogradational parasequence stacking 

pattern. This is only observed between P1 and P2; the other parasequences show a 
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progradational stacking pattern. The position of the logs on Mefjellet in a dip direction 

relative to the logs on Sandsteinsfjellet is evident from the onset of two superimposed 

parasequences (P5 and P6) on L10M2. The close resemblance between L9M1 and L154, and 

their contrast to L14M3, reflect the more proximal position of the latter. Because of the 

relative position between the three logs in discussion, this observation implies that the strike 

of the paleo-coastline locally had a NNW-SSE orientation. Such local variations of the paleo-

coastline are expected following the depositional model of Battfjellet formation (Chapter 7.) 

The reason for the thick offshore/transition deposits at L9M1 and L15M4 is believed to be 

caused by slumping (discussed below).  
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Figure 6.5 (Previous page) 
A: Panorama picture of Sandsteinsfjellet and Mefjellet. Correlated flooding surfaces are 
marked with red straight (isochronous) lines, and the upper and lower formation boundaries 
of the Battfjellet Formation with green and yellow ragged (diachronous) lines. 
B: Correlation of logs on Sandsteinsfjellet and Mefjellet. The boundary between the 
Battfjellet Foramation and Aspelintoppen Formation has been used as datum. Facies 
association boundaries are marked with diachronous lines, while flooding surfaces is marked 
with isochronous lines. 

 

6.4.2 The Tillbergsfjellet – Ringdalsfjellet – Mefjellet transect. 

A roughly N-S oriented correlation panel was made along a transect incorporating two logs 

on Mefjellet, two logs on Ringdalsfjellet, and one log on Tillbergsfjellet (Figure 6.6). The main 

emphasis of this correation is to address variations along strike for the parasequences, and 

address problems related to correlation across valleys. Five different parasequences are 

recorded in the correlation, and individual logs consist of three or four parasequences. A 

distinctive feature in this correlation is that all the logs (excluding L14M3) has a 0,5 to 1,5m 

thick succession of transgressive deposits superimposed on a transgressive surface.  

Interpretation: 

From correlation along dip from L5T1 and L15M4 to their nearest neighboring down-dip log 

(L6T2 and L9M1, respectively), transgressive deposits are registered above the same 

transgressive surface. Beside this, there are no transgressive deposits in the study area. The 

transgressive unit is thus believed to be a marker bed, and a correlative horizon at a close to 

isochronous level. From the recorded parasequences in the study area, the transgressive 

unit is located between parasequence P6 and P7. As illustrated in Figure 6.5, the onset of P7 

is inferred to occur between L14M3 and L15M4, and as the topmost parasequence at L14M3 

is P6, the transgressive unit is not possible to detect here, as it would be located with the 

Aspelintoppen Formation. For L15M4 and L5T1, the transgressive unit is located at the base 

of the topmost parasequence, while there are two parasequences above the unit at the logs 

on Ringdalsfjellet. As the logs on the Ringdalsfjellet are located slightly more to the east than 

the other logs along the transect, the additional parasequence present above the 

transgressive unit at that location is inferred to be the onset of a new, more basinward 

located, parasequence (P8) in dip direction. For the same reason, the additional 

parasequences present below the transgressive unit at L5T1 and L15M4 are pinching out in a 

basinward direction, and are thus not present at the logs on Ringdalsfjellet.  The lowermost 
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parasequence at L5T1 has been assigned to P5 based on its position relative to the other 

parasequences and the transgressive unit. However, it might not be correlative with P5 on 

Mefjellet; there are uncertainties related to the great distance between the two logs. Thick 

sandbodies assigned to P4 and P5 on L15M4 pinch out over a relatively short distance to 

L8R2 on Ringdalsfjellet. A possible explanation for the thick sandstone units pinching out 

over relatively short distances may be that the basal part of these sandstones are slump 

deposits with a limited lateral extent, while the overlying succession was deposits by 

shoreline aggradation (discussed below). In addition, the slight NE-SW direction of the paleo-

coastline of the area adds to the distance along dip between the two logs from what is 

perceived if the paleo-coastline had a straight N-S orientation.   

Figure 6.6 
A: The logs of the NS oriented correlation panel, positioned with their relative distance from 
each other and aligned with the transgressive unit as datum. 
B: Overview map indicating the position of the transect. 
C: Correlation panel between logs on Tillbergsfjellet, Ringdalsfjellet and Mefjellet. The 
vertical axis is exaggerated.  
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6.4.3 The Tillbergsfjellet transect 

The correlation panel from Tillbergfjellet presents the stacking pattern of P5 to P12 at an 

orientation roughly along dip (Figure 6.7). The correlation panel consists of 5 logs, spread 

over a distance of 4km. Thicknesses of the parasequences containing shoreface deposits 

range from 5 to 20m. The characteristic lensoid shape of the parasequences, with a 

thickening – thinning trend along depositional dip, is to some degree observed along this 

transect.  

The stacking pattern of P5 to P9 in the western area of the transect (between L5T1 and 

L12T3) reveals a shoreline trajectory with a high aggradational component. This is evident by 

the high number of vertically stacked parasequences (5 at L12T3) and the thickness of each 

individual parasequence. In contrast, a stronger progradational component for the shoreline 

trajectory of P10 to P12 in the eastern section of the transect (between L12T3 and L16T4) is 

evident by the relatively thin parasequences. 

Interpretation: 

The correlation panel in discussion is believed to represent a roughly depositional dip 

parallel transect. The observations made, with the onset and termination of parasequences 

over relatively short distances conforms to this assumption. Sediment input and subsidence 

rate are believed to be the controlling factors of the variations of the shoreline trajectories 

observed along the transect. The thick parasequences in the western part of the transect 

might reflect a high subsidence rate with increased accommodation and a resulting relatively 

high aggradation rate. In contrast, the thin parasequences in the eastern part of the transect 

might reflect a slower subsidence rate and a relatively high sediment input, resulting in a 

strong progradation. Shoreline trajectories, and its controlling factors will be further 

discussed in Chapter 7.  

L17T5 has a lower position on the mountain slope than the outcrops of the other logs. This is 

believed to be a result of modern landslide, resulting in a displacement of 20-30m. This has 

been corrected for in the correlation panel, but inevitable there are some uncertainties 

related to this. Modern landslides as a possible source of error when conducting correlations 

will be discussed below.  
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Figure 6.7 (Previous page): 

A-C: Pictures of the outcrops where L6T2, L12T3 and L16T4 were logged. Flooding surfaces are 
marked with red lines.  
D: Correlation panel along the mountain slope of Tillbergsfjellet showing the parasequence 
stacking pattern roughly along depositional dip. 
E: Overview map indicating the position of the transect. 
F: Correlation panel of the same transect with exaggerated vertical axis. 

 

 

6.5 Sources of error 

The model for the sandbody geometry is a “best fit model” from the data available. As 

previously described, there are uncertainties related to cover by scree and glaciers as well as 

uncertainties related to correlation across wide valleys. In addition, the data could be 

erroneous collected due to errors cased by instruments (eg. altimeter error due to local 

variations in atmospheric pressure), or sand bodies that are not in an in situ position could 

erroneously be incorporated in the model. The latter was given special interest when 

conducting the field work. In the following section, three different sand bodies, interpreted to 

not be in an in situ position are discussed.   

 

6.5.1 Eastern Ringdalsfjellet 

At the eastern part of Ringdalsfjellet (at L13R3, L18R4 and partially at L19R5), there is a zone of 

extensive deformation, marked with the presence of deformed and homogenized sandstones, local 

thrusting and isoclinal folding.   

There are two different clusters of sandstone bodies in the area, where the lower cluster is 

located 20-50m below the upper. The upper cluster consists of typical shoreface deposits of the 

Battfjellet Formation, although locally deformed and folded. The lower cluster is more 

deformed than the upper, and is characterized by strongly deformed/homogenized intervals 

associated with a local thrust plane. 

The lower cluster consist predominantly of deformed sandstone with a mixture between mud 

and very fine grained sandstone. However, less deformed intervals with preserved sedimentary 

structures, such as HCS-stratification and alternating plane parallel lamina and symmetrical 
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small ripples also occur. The beds in the sandstone of the lower cluster are slightly inclined with 

a dip direction towards the southwest (Figure 6.8 A). A minor thrust fault with a displacement 

of approximately 20 cm was observed at one location in the lower cluster, adjacent to L13R3 

(Figure 6.8 D). The strike and dip of the fault plane is 172/23, indicating a propagation direction 

of the fault towards east-northeast (082°).  

Deformed and homogenized sandstone intervals were also observed in the upper sandstone 

cluster, albeit with a slightly coarser grain size (very fine to medium grained sandstone) than 

the deformed sandstone in the lower sandstone cluster. An isoclinal fold with the hinge dipping 

towards northeast was observed at one of the outcrops of the upper sandstone cluster (Figure 

6.8 B; 6.8 C). The contrast between the northeastern limb of the isoclinal fold and the dip of the 

adjacent sandstone beds tentatively suggests the presence of a fault (Figure 6.8 B). This fault 

can be correlated to the next ridge, where similar contrast in dip is observed. The strike of the 

fault plane, as inferred from correlating the fault between the two ridges is roughly 320°. 

Slickensides, with secondary growth of quartz crystals, were observed in both the lower and 

upper cluster. Direction measurements of the striations in the slickensides reveal a consistent 

direction roughly towards northeast (Figure 6.8 G).  

 

Interpretation: 

The Battfjellet Formation consists of syntectonic deposits in a foreland basin adjacent to an 

ongoing fold and thrust building orogen.  The presence of thrust faults and isoclinal folding in 

the study area are indicative of compression. As such it is natural to look for explanations 

related to the compressive tectonic regime. The thick succession of shale in the Frysjaodden 

Formation is susceptible to form a detachment and decollement zones for thrust fault 

propagation. The isoclinal folding observed in the area of discussion, could then be explained as 

a result of folding related to fault propagation. However, there are no other indications 

testifying to the presence of a major thrust in the study area. Furthermore, no major thrust 

faults have been recorded in the Cenozoic succession on Svalbard, and evidentially neither has 
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Frysjaodden Formation been recognized as a major detachment/decollement zone, although 

small detachments do occur (Helland-Hansen, 2010, personal communication).   

The presence of shoreface deposits in the lower sandstone cluster indicates that these deposits 

probably were part of the delta front depositional system of the Battfjellet Formation. Although 

thrusting of the overlying sandstone unit could account for the displacement between the two 

units, listric downfaulting of the underlying unit is more likely. The strike of the measured fault 

planes and the directions of the slickensides are parallel to the strike and dip of the paleo-

coastline, respectively. These directions conform to the expected directions of a listric fault 

system in the depositional model of the Battfjellet Formation. 

The presence of homogenized/deformed sandstone (soft sediment deformation) as well as 

brittle and ductile deformational structures indicates that the sediment was partially 

consolidated at the time of deformation. Displacement of delta front sandstone bodies on the 

mountain slopes at other locations in the study area been interpreted to be a result of modern 

landslides (discussed below). The presence of homogenized sandstone and ductile 

deformational structures renders such an interpretation for the location in discussion less likely.   

Although a given number of parasequences have been recognized in the logged section of the 

area in discussion, there are uncertainties to correlating them to the other parasequences of 

the study area due to the extensive deformation. 
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Figure 6.8 (Previous page): 
A: Overview picture of the area of extensive deformation on the east side of Ringdalsfjellet. 
Several listric faults with relative shallow detachment planes displace the Battfjellet Formation 
both laterally and vertically. The throws of the individual faults are small. It is difficult to 
distinguish such faults from modern landslides, but the soft sediment deformation and folding 
suggests early movements with unconsolidated sediments. 
B: Field sketch from L13R3 showing the listric faulting and isoclinal folding in the upper 
sandstone cluster. 
C: Picture from the same area as Figure 6.8 B 
D: Thust fault in the lower sandstone cluster at L13R3. 
E: Overview map showing the position of the logged sections in the eastern part of 
Rindgalsfjellet. 
F: Overview map showing the position of the fault plane observed at L13R3, and the location of 
the exposures in the area. 
G: Example of slickensides and a list of the slickenside striation measurements. 
H: Deformed homogenized sandstonein the upper sandstone cluster. 

 

6.5.2 Eastern Mefjellet 

At profile L9M1, in the south-eastern edge of the study area,  a 5m thick section of a deformed 

chaotic mixture of very fine and fine grained sandstone and mudstone was observed at the 

base of the outcropping Battfjellet Formation. Although sparse remnants of hummocky cross 

stratification was observed, the overall expression of the section is chaotic, partially 

homogenous and structureless with no profound grading. Overlying the deformed section is a 

30m thick succession with deposits mainly of FA2 (offshore/transition). Such a thickness is 

unusually thick for this facies association, and it also contains the most abundant occurrence of 

soft sediment deformation (e.g. ball and pillow structures) in the study area.  

The same trend, but with a somewhat lesser thickness, was observed at profile L15M5. Here, 

the section of deformed homogenous sandstone is much thinner (approximately 2m). The unit 

appears to be slightly less deformed than the equivalent unit at L9M1 and has a higher 

abundance of visible hummocky cross-stratification structures.   

Interpretation: 

The chaotic, partially homogenous, deformed sandstone body is interpreted to be slump 

deposits following delta front slope failure. Remolding and liquefaction of the internal 

stratification during slumping may result in a chaotic and deformed sandstone body as seen at 
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L9M1 (Reading, 1996). No evident shear plane of the slump structure was observed at the 

profile as most of the basal part of the unit is covered by scree and ice. In situ post burial 

remobilization is an alternative explanation for the deformation of the sandstone to a chaotic 

and partially homogenous state. However, the lack of indications of fluidization in the form of 

injection structures, fluid escape structures and mud lumps renders this possibility less likely. In 

addition, in situ remobilization does not explain the abnormally thick interval of sandstones 

present at this interval of the profile. In contrast, paleoseward transport of sand as a result of 

slumping explains the thick section of deformed sandstone. In addition, slumping may explain 

the thick section of the offshore/transition deposits overlying the deformed sandstone unit. A 

slump structure of this magnitude is likely to have created a significant change in the local 

shoreface slope geometry, with increased accommodation space in the slump scar. The 

increased accommodation space likely decelerated the rate of progradation, and caused the 

sediment to aggrade with a near vertical shoreline trajectory (Figure 6.9 A). As the slump scar is 

healed and an equilibrium delta front slope profile is acquired, the system goes back to a 

normal progradational setting. The thick offshore/transition succession of L9M1 and L15M4 is 

correlative to parasequence P4, which can be correlated over the profiles at Mefjellet and 

Sandsteinsfjellet. The slumping is thus believed to have happened prior to, or at an initial stage 

of the development of P4. Profile L14M3 is located between, but with a more proximal position 

with respect to the hinterland than L9M1 and L15M4. The thickness of the offshore/transition 

facies for P4 at L14M3 is not thicker than normal. However, the thickness of middle shoreface 

and upper shoreface succession in P4 at L14M3 has a combined thickness of approximately 

20m, which is thicker than the average thickness of the middle and upper shoreface successions 

in the study area, and is considerably thicker than for the other parasequences of the profile. It 

is thus reasonable to assume that middle and upper shoreface deposits of P4 at L14M3 are part 

of the same progradational system with increased thickness due to increased accommodation 

at the collapse scar. No clear aggradational trend for P4 can be observed at the profiles at 

Sandsteinsfjellet, nor at the northwestern ridge at Mefjellet. The oversteepening of the profile, 

and the resulting slumping, may be a result of proximity to a distributary channel at the time of 

deposition. This interpretation is based on the assumption that to the area in front of a 
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distributary channel would have a high sediment input, and thus be more prone to 

oversteepening and resulting slope failure. In addition, the concentration of interpreted 

hyperpycnal flow deposits is higher in the logged sections close to where the slump deposits 

are observed for P4 than at the other locations (Sandsteinsfjellet and north-eastern ridge on 

Mefjellet).  

Figure 6.9: 
A: Schematic illustrations showing the interpreted evolution of the delta front slope with 
oversteepening and slumping (II), and resultant aggradation as a result of the increased 
accommodation (III).  
B: Lower part of the logged section at L9M1 
C: Deformed homogenized very fine grained sandstone interpreted to be slump deposits at the 
base of L9M1.  
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6.5.3 Southern Sandsteinsfjellet 

A problem in performing geological mapping in the field and the subsequent correlation is the 

possibility of outcrops being allocthonous due to displacement as a result of modern landslides. 

Displacement as a result of modern landslide has been recorded at two of the logged sections 

(L17T5 and L20S6). They show little internal signs of deformation, but the displaced body at 

L20S6 is slightly rotated, which is evident from the inclination of the bedding with a dip towards 

the mountain slope (Figure 6.10 B). The small degree internal deformation is a possible pitfall 

for subsequent correlation. L20S6 (Figure 6.10) is located more than 100m below the in situ 

shallow marine sandstone bodies at the other logged sections  on Sandsteinsfjellet and is not 

incorporated in the correlation. L17T5 is believed to only be displaced by 20-30m and is 

included in the correlation with constrain.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.10:  
A: Picture of the southeastern slope of Sandsteinsfjellet displaying the displaced sandstone body 
at L20S6. 
B: Uppermost section of the sandstone body, illustrating the dip of the strata towards the 
mountain slope. 
C: Simplistic and schematic illustration of a modern landslide. 
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Chapter 7: Depositional environment and paleogeography 

7.1 Depositional environment: 

The facies associations and their respective depositional environments were described in 

Chapter 4. The facies associations were ordered from the most distal to the most proximal with 

increasing serial numbers. The shoreface succession (FA3-FA5) shows a predominance of wave 

generated structures. The high abundance of tempestites in the offshore/transition (FA2) and 

lower shoreface (FA3) testify to a depositional environment subject to frequent storms. The fair 

weather aggradation deposits of the proximal shoreface successions indicate increasing 

oscillation current velocities with decreasing depth of deposition. The upper shoreface (FA5) is 

dominated by deposits laid down from longshore and rip currents (Chapter 5). Tidal influenced 

deposits are observed locally, probably related to tidal inlets, connecting embayments along 

the coastline with the open sea. A schematic figure illustrating the different depositional 

environment along the coastline is provided in Figure 7.1. Because of the local variations in 

potential hyperpycnal flow deposits (FA3-B), two dip parallel transects are provided. 

A rough estimate of the water depth of the different facies associations can be obtained by 

measuring the thickness from the top of the uppermost parasequence (where the transition 

from shallow marine to continental facies is well documented) down to the respective faceis 

associations. These measurements is believed to give a rough estimate of the water depth 

based on the assumptions that the effect of compaction (decreasing thickness) and subsidence 

(increasing thickness due to aggradational component) roughly level each other out, and that 

the system progrades at a low shoreline trajectory (Helland-Hansen, 2010). From these 

assumptions, the following approximate range of water depths were calculated; FA6 

(foreshore): 0-2m, FA5 (upper shoreface): 1-6,5m, FA4 (middle shoreface): 3-8m, FA3 (lower 

shoreface): 4,5-12,5m.  The lower extent of FA2 is commonly not present in the uppermost 

parasequence, and the range of FA2 is thus not obtained, although it has not been observed at 

shallower thicknesses than 7m. 
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Figure 7.1 (Previous page):  
A: Schematic block diagram illustrating the various depositional environments of the facies associations 
recognized in the study area. The delta front is strongly influenced by wave processes but in front of the 
fluvial channel mouths hyperpycnal under-flows may develop The dashed lines illustrates the position of 
the respective dip parallel transects presented in Figure 7.1 B. 
B: Two delta front transects where the upper one upper one represents a delta front depositional 
environment dominated by wave processes. The lower one shows a more fluvial influenced delta front 
with hyperpycnal flow development. 
 
 

As described in chapter 3, the concentration of hyperpycnal flow deposits in the lower/middle 

shoreface is expected to be higher for successions being deposited in front of the river mouth. 

The total concentration of hyperpycnal flow deposits (hyperpycnite thickness in relation to the 

total shoreface thickness) is plotted in Figure 7.2 to illustrate the variability of the facies 

association in the study area. It is worth noting that the eastern Ringdalsfjellet and 

southeastern Mefjellet, which are areas interpreted to have experienced slope failure as a 

result of a high local sediment supply (Chapter 6), both have a fairly high concentration of 

hyperpycnal flow deposits.   

 

 

 
Figure 7.2:  
Concentration of hyperpynites (% 
of total shoreface thickness) 
illustrated in colours ranging 
from yellow (low concentration) 
to red (high concentration). See 
Figure 1.2 for names of the 
logged sections. 
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By plotting the thickness of the hyperpycnal flow deposits for individual parasequences 

(Chapter 6), a clear trend in the spatial distribution of the facies association (FA3-B) was 

observed. For any given parasequence, the logged sections containing thick sections of 

hyperpycnal flow deposits tend to be clustered in specific areas. It is tentatively suggested that 

the position of these clusters indicate a position in front of a terminal distributary channel. This 

trend is most evident for the parasequences stretching the entire N-S oriented width of the 

study area (P5-P7), where a shift in the clusters is registered between the different 

parasequences (Figure 7.3). The shifts imply a lateral shift in the order of 3,4-5km, which is in 

concordance with the estimated lateral distribution of the parasequences. 

 
Figure 7.3:  

Overview maps of the study area showing the distribution and thickness of hyperpycnites of the different 

logged sections at P5, P6 and P7. The thickness of hyperpycnites at the various logged sections is marked 

with colours ranging from yellow (thin) to red (thick). Simplistic illustration of the inferred position of the 

delta lobe for the different parasequnces is provided. See Figure 6.2 for parasequence distributions.  
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7.2 Formation boundaries: 

The Frysjaodden, Battfjellet and Aspelintoppen formations represent different depositional 

environments of the same overall progradational deltaic system. Segments of each of the 

formations occurred simultaneously, thus the boundaries are diachronous; no major sequence 

stratigraphic surfaces/hiatus separate the formations.  

The transiton between the underlying offshore/shelf deposits of the Frysjaodden Formation to 

the shoreface succession of the Battfjellet Formation is put at the base of the first occurrence of 

an interpreted tempestite bed of FA2 (Chapter 3).  

The transition between the Battfjellet Formation and the overlying Aspelintoppen Formation is 

complicated and usually not well exposed. Only at one single locality (L3S2 on Sandsteinsfjellet) 

has the contact between the two formations been observed (excluding locations where fluvial 

channels cut into shoreface deposits) (Figure 7.4). At this particular location there is a sharp 

transition between foreshore (FA6) deposits of the Battfjellet Formation and floodplain(FA7-B) 

of the Aspelintoppen Formation. Outcrops of floodplain deposits immediately above the 

Battfjellet formation are rare; interdistibutary bay deposits (FA7-A) are most commonly the first 

occurring exposed deposits of the Aspelintoppen Formation. 

 

 

Figure 7.4: 
The boundary between 
foreshore (FA6) deposits 
of the Battfjellet 
Formation and 
floodplain deposits 
(FA7b) of the 
aspelintoppen 
Formation at L3S2. The 
picture in the upper 
right corner is of an in 
situ fossilized leaf. 
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Pinpointing the boundary between the two formations is often difficult because of the lack of 

exposures. The boundary is put at the top of the exposed Battfjellet Formation if the uppermost 

section consists of foreshore deposits (FA6). In cases where the uppermost section of the 

formation is missing, and deposits of more distal facies associations makes out the topmost 

exposures, the boundary is conceptually placed, based on excepted thicknesses observed at 

other logged sections. The boundary between the two formations seems to be relatively sharp 

all over the area with no observed interfingering pattern. The lack of profound interfingering 

between the two formations is likely to be a result of the limited transgressions between the 

parasequences caused by autogenic delta lobe switching (see discussion below).  

 

7.3 Sequence stratigraphy: 

The limited extent of the study area and the overall progradation of the Battfjellet delta system 

make it difficult to apply traditional sequence stratigraphic concepts (e.g. Haq et al., 1987; 

Galloway, 1989; Van Wagoner et al., 1990; Embry and Johannesen, 1992) in the stratigraphic 

interpretation. The apparent absence of deposition during relative sea level fall together with 

the absence of major flooding events makes a subdivision into system tracts inapplicable. For 

this reason, a model independent approach on the basis of ascending and descending 

regressive and transgressive shoreline trajectories (c.f. Helland-Hansen and Gjelberg, 1994; 

Helland-Hansen and Martinsen, 1996; Helland-Hansen and Hampson, 2009) will be applied.  

The shoreline trajectory is dependent on factors like sediment supply, basin topography, 

eustasy and subsidence (Helland-Hansen and Martinsen, 1996; Helland-Hansen and Hampson, 

2009). The Battfjellet deltaic system is part of a regressive megasequence, incorporating 

Frysjaodden and Aspelintoppen formations. As a result of its position in a foreland basin, 

adjacent to an ongoing orogen, the deltaic system was laid down concomitant with high 

sedimentation and high subsidence conditions.  

The overall progradational pattern for the Battfjellet Formation is well known and has been 

documented by many workers (e.g. Kellogg, 1975; Steel, 1977; Helland-Hansen, 1990). The 

formation shows a general progradational and aggradational pattern with parasequences 
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generally stepping basinward with a shoreline trajectory at a relatively low ascending angle, 

although local variations of the trajectory occur. Descending shoreline trajectories (forced 

regressions) are not commonly recorded in the Battfjellet Formation but a few exceptions have 

been documented (eg. at Høgsynta; Plink-Bjørklund and Steel, 2002). Descending regressions 

observed in the formation are in large part restricted to the western clinothem forming area of 

the basin, and no descending regressions have been observed in area of the present study.   

Fluvial channels cutting into shoreface deposits have been observed at two of the logged 

sections (L11S5 and L8R2). Although often indicative of a descending regression (RSFE), these 

channel erosions are not interpreted to be so as there are no other indications of a descending 

regression along the same parasequences, and since fluvial channels have the capacity to erode 

below sea level (c.f. Bhattacharya, 2006).  

Interpreting the key factors controlling the shoreline trajectory at different segments of the 

overall progradation is often speculative. A relatively strong aggradational component with a 

more strongly ascending trajectory, as observed between P6 and P10 along the Tillbergsfjellet 

transect (Chapter 6; Figure 6.7), can be a result of different factors. Aggradational shoreline 

trajectories could take place in abandonment areas, marginal to active sediment supply 

systems where the local sediment supply is relatively low. In addition, a high subsidence rate 

generating increased accommodation space could result in a strongly ascending trajectory, 

even in front of an active sediment supply system. Similarly, a strong progradational low angle 

ascending shoreline trajectory could be a result of high sediment supply or low subsidence rate. 

It is tentatively suggested that sediment supply is the driving mechanism of these factors, as 

switching of delta lobes easily explains the variations both along strike and dip of the coastline.  

Relative sea level variations as a consequence of the combined effect of eustasy and 

tectonically driven subsidence may be an important factor influencing the progradational 

pattern. High frequent large scale eustatic sea level fluctuations are not documented for the 

Eocene Epoch and no glaciations have been reported from the literature. However, eustatic sea 

level fluctuations due to other processes might have taken place. It is tentatively suggested that 

the absence of descending regressions, as may be an expected response to eustatic sea level 
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falls, is a result of the high subsidence rate of the basin (Figure 7.5). If the subsidence rate is 

sufficiently high, the effect of eustatic sea level fall might only result in a still stand or reduced 

rate of the relative sea level rise. This would result in a more rapid progradation and basinward 

forward stepping of the parasequences.  

 

Figure 7.5:  
The figure shows how a rhythmic relative sea-
level curve will be influenced by different basin 
floor subsidence rates. A fall in eustatic sea level 
fall may not result in relative sea level fall if the 
subsidence rate is high enough. 
 

 

 

 

 

 

In most locations the parasequences show a progradational vertical stacking pattern, with a 

more proximal internal facies distribution in stratigraphically higher parasequences. However, 

locally retrogradational stacking patterns are present, such as on P2 on Sandsteinsfjellet 

(Chapter 6: Figure 6.5). Although retrogradtional stacking patterns may be observed locally, it is 

not necessarily diagnostic of an overall retreating shoreline, but may rather reflect a lateral lobe 

change, with temporarily low sediment supply at the abandonment.  

The cause of the non-accretionary transgressions separating the parasequences can be the 

result of tectonically driven subsidence, eustasy, or simultaneous variations along strike of the 

coastline due to autogenic processes. Autogenic lobe switching, where the shoreline regress at 

the delta lobe (high local sediment supply), and simultaneously transgress at the strandplain 

(low local sediment supply) best explains the limited lateral extent and the complex stacking 
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pattern of the parasequences as described in Chapter 6 (Figure 7.6). The negligible amount of 

transgressive deposits supports this notion, as a transgression caused by allogenic processes 

(eustasy or tectonically driven subsidence) is more likely to transgress over larger area of the 

low gradient delta plain (Helland-Hansen, 2010). Autogenic process has been recognized as a 

driving mechanism for generating low order sequence stratigraphic surfaces, and the vast 

majority of the studies conducted on Battfjellet Formation has recognized delta lobe switching 

as the driving mechanism in generating the transgressions separating the parasequences (e.g. 

Helland-Hansen, 1990; Olsen, 2008; Stene, 2009; Helland-Hansen, 2010; Skarpeid, 2010).  

Figure 7.6:  
Schematic illustrations showing the generation of parasequences as a result of autogenic lobe 
switching. The delta front progrades at the front of the delta lobe as a result of high sediment 
supply, and simultaneously transgress at the abandonment areas where the sediment supply is 
cut off.   
 
The transgressive unit observed between P6 and P7, that stretches the entire N-S oriented 

width of the study area, is unusual. It is tentatively suggested that this transgression represent 

a more dramatic lobe switch (see discussion below). It may also be related to allogenic 

processes such as tectonically driven subsidence or a rise in sea level caused by eustasy. As 

described in chapter 6, there are uncertainties in correlating parasequences over vast distances. 

The correlation of P6 and P7 is in large part based on their position immediately below and 
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above the transgressive unit. If the mechanism resulting in the formation of the transgressive 

unit is of a superior order relative to that of the parasequence generating mechanism, the 

transgressive unit may cap several parasequences along deposition strike. The parasequences 

correlated as P6 and P7 may thus represent more than one parasequence respectively.    

 

Because of the variable size of the recorded fluvial channels (Chapter 3; FA7-C1 and FA-7C2) 

and different degrees of avulsion at different sections of the delta plain, it is reasonable to 

assume that the delta lobe switching mechanism may develop in a hierarchy (Figure 7.7). On a 

speculative level, three such hierarchy levels are proposed: 

 Channel switching within a delta lobe 

 Delta lobe switching 

 Delta switching 

The highest frequency cyclicity, which is connected to active channel switching within the delta 

lobe itself, would probably not cause any bigger influence on the depositional pattern other 

than that of local variance of fluvial influence within parasequences. The intermediate 

hierarchy level on the other hand, representing avulsion of channels on the lower delta plain, 

results in lobe switching, and is responsible for the parasequence distribution pattern (see 

discussion above). The highest order switching mechanism, that may take place as a 

consequence of major avulsions or river captures at more proximal sections of the delta plain, 

could result in a switch in the entire delta. This is not well documented and remains highly 

speculative. The result of this kind of switching would normally effect the entire study area, and 

the lack of continuous exposures makes it difficult to document. There is little relevant 

literature available about this topic, delta lobe switching mechanisms are discussed in various 

papers (e.g. López-Blanco et al., 2000; Correggiari et al., 2005; Prélat et al., 2009), but a higher 

order switching of the entire delta is not incorporated in these discussions.   
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Figure 7.7:  
Figure illustrating the different proposed hierarchy levels of delta lobe switching. 1-5 illustrates 
channel switching within delta lobes. A-C illustrates switching of delta lobes, while I-II illustrates 
switching of the entire delta. X-X’ is a schematic transect illustrating the possible geometry 
along depositional strike, with internally stacked parasequence within two different delta 
systems.  
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7.4 Delta Type: 

A deltaic origin of the succession is evident from the distributary channels cutting into the 

shoreface deposits, the delta plain depositional environment of the overlying  Aspleintoppen 

Formation, the texturally immature sediments (Helland-Hansen, 2010), and the lobate 

shoreline morphology, as inferred from the parasequence stacking pattern. The shoreface 

succession of the Battfjellet formation shows a predominance of structures generated by (wave 

driven) oscillatory currents (Chapter 3), indicating a wave dominated depositional environment. 

This is in contrast to the perceived delta lobe morphology of the delta, as delta lobes are a 

feature associated with fluvial dominated deltas. Problems related to coupling the internal 

facies architecture of a deltaic depositional system with classification schemes related to the 

delta morphology has been addressed in recent studies of deltaic systems (Helland-Hansen, 

2010 and references therein). Helland-Hansen (2010) classified the Battfjellet delta system as a 

fluvio-wave interaction delta, based on the indicative features of both fluvial and wave action. 

Helland-Hansen (2010) argued that the abundance of soft sediment deformation structures 

together with the texturally immature composition of the sandstones testify to a system of high 

sediment supply. Furthermore, the texturally immature composition reveals that the dispersion 

of the sediment due to wave action was limited. A texturally mature composition would be 

expected in a wave dominated delta where wave induced coast parallel currents is the main 

sediment distributing factor.  

The observations made in the present study supports the classification by Helland-Hansen 

(2010). Additional criteria contributing to this classification, is the recognition of short duration 

hyperpycnal flow deposits in the delta front succession, which are indicative of fluvial induced 

sedimentation. In addition, the slope failure structures described in chapter 6 supports the 

notion that system is of a high sediment supply (see discussion above).  

7.4.1 Modern analogues 

The Po delta, facing the Adriatic Sea on the northeastern coast of Italy has been braught up as a 

possilbe modern analouge to the Battfjellet deltaic system by various workers (Olsen, 2008; 

Helland-Hansen, 2010; Skarpeid, 2010). As with the Battfjellet deltaic system, The Po delta 

(Figure 7.8) has been classified as a fluvio-wave interaction delta (Helland-Hansen, 2010; 
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Galloway 1975). Autogenic lobe switching of the delta lobes have been recognized as a 

parasequne generating mechanism for the Po delta (Correggiari et al., 2005).  

 

 

 

 

 

 

 

 

 

 

 

Another modern delta that may have some similarities with the Battfjellet Formation delta 

system is the lacustrine Slave Delta in the Greate Slave Lake in Artic Canada. This delta is 

strongly fluvial dominated but also wave influenced (Smith, 1991). The main difference 

between this delta and the Battfjellet delta system is the complete lack of tidal processes in the 

lacustrine Slave Delta. The fresh water conditions of the former delta may also represent a 

significant difference from the studied marine Batfjellet Formation. On the other hand, it has 

been tentatively suggested that the Central Tertiary Basin could be strongly fresh water 

influenced in periods (Chapter 4: FA3-B discussion). The delta is comparable to the Batfjellet 

Formation both in size and morphology and may also be useful in order to demonstrate the 

transition between delta plain and delta front environment. This transition is sharp, but may 

also develop in an oblique aggradational pattern with some interfingering between the 

continental and marine facies in situations where the shoreline trajectory is aggradational 

(Figure 7.9).  

Figure 7.8:  
Picture of the Po delta 
showing the typical 
morphology of a  fluvio-
wave interaction delta. 
However, the size of the 
delta is larger than the 
deltas of the Battfjellet 
Formation (picture from 
Google Earth). 
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Figure 7.9 (Previous page):  

Schematic cross section along dip direction of the Batfjellet Formation, showing the 

parasequence development and stacking pattern together with the relationship between the 

Aspelintoppen and Batfjellet Formations. The two figures below show a depositional model of 

the Batfjellet Aspelintoppen Fms, and a modern analogue represented with the delta of the 

Slave Delta in the Great Slave Lake. 

 

7.4.2 Delta size 

The size of an individual parasequence gives a rough estimate of the size of the individual delta 

lobes. As pointed out in Chapter 6, there are uncertainties in estimating the length of individual 

parasequences along strike. Individual parasequences have locally been estimated to exceed 

the width of the study area of 10km (Chapter 6; P6 and P7). However, the lengths of 

parasequences, as observed by Helland-Hansen (2010) at other locations on Nordenskiöld Land, 

was in the range of a few km up to 10km. Helland-Hansen (2010) further argued that the 

geological setting, with a relatively small basin and a short distance to the catchment area, 

points to the formation of a relatively small delta. It is thus suggested that the length along 

strike of an individual parasequence does not exceeds 10km by much, and a range of a few km 

to approximately 15km is tentatively suggested. The deltaic system is likely to consist of several 

simultaneously active delta lobes, at variable spatial distributions along the coastline. An 

estimate of the total delta size will not be conducted in the present studies because of the 

limited extent of the study area.  

7.5 Basin geometry 

 The general paleogeographic setting and depositional environment for the Eocene succession 

in the Central Tertiary Basin have been described and well documented by many authors. A 

foreland basin with an eastward migrating deltaic system is a common perception applied in 

these models (Chapter 3.3.3). The present studies support these criteria as a framework for the 

depositional environment. Flexure as a result of tectonic loading related to thrust nappes, is 

most commonly perceived as the driving mechanism for the subsidence of the Central Tertiary 

Basin(e.g. Steel et al. 1985; Bruhn and Steel 2003)(Chapter 3.3.3). However, in the recent years 

an alternative explanation, with the possibility of the subsidence being a result of long 

wavelength compressional flexure has been debated (Nichols and Lüthje, 2008; Olsen, 2008). 
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Olsen (2008) argued that loading by thrust nappes as the sole factor controlling the subsidence 

cannot accommodate for the thick sedimentary succession of the basin, if assuming a purely 

compressional regime. Olsen (2008) further argued that the strike-slip component of the 

tectonic regime of the West Spitsbergen Orogen could influence the basin geometry, and that a 

transpressional regime generates deeper and less wide foreland basins, than that of foreland 

basins generated by purely compressional regimes.  The presence of extensive thrust planes in 

the western part of Spitsbergen is well known and documented (see Chapter 3.3.2). This 

suggest that flexure as a result of thrust nappes loading, at least partially, played a role in the 

subsidence of the basin.  

As described in Chapter 3.3.3, there is a marked shift in the basin evolution from the mainly 

east derived lower succession of the Firkanten, Basilika and Grumantbyen formations (Steel et 

al. 1985; Bhrun and Steel, 2003), to the upper west derived succession of the Frysjaodden, 

Hollendardalen, Battfjellet and Aspelintoppen formations. As it exceeds the scope of the 

present study, no evaluation of weather the lower succession is of a transtensional setting 

(Steel et al., 1985), a foreland setting with a peripheral forebulge as sediment source (Bruhn 

and Steel, 2003), or of a compressional flexure generated setting (Nichols and Lüthje, 2008), 

will be conducted. The upper westerly derived succession of the basin conforms to the main 

phase of deformation, with substantial uplift of the hinterland in most of these models. This 

phase of deformation conforms to stage 2 and 3 in the model of the tectonic evolution of the 

West Spitsbergen Orogen by Bergh et al. (1997), and Braathen et al. (1999). Figure 7.10 

illustrates the formation of the upper section of the Central Tertiary Basin in relationship with 

the tectonic movements of the orogen: 
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Figure 7.10: 

Schematic figures illustrating the Late Paleocene to Oligocene basin development of the Central 
Tertiary Basin. The lowermost figure shows a simplified section of the present day setting of the 
basin (Redrawn from Helland-Hansen, 1985; Steel et al. 1985).  
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The lack of basin floor fan deposits in the study area (with the exception of fine grained fringe 

deposits-Chapter 4), differs from localities in the south and west in the basin where well 

developed clinoforms and basin floor fans are common (eg. Van Keulenfjorden).  

Helland-Hansen (2010) explained this to be an effect of shallower waters in the eastern areas of 

the basin. The eastward shallowing of the basin was explained to be a result of the combined 

effect of the more distal position in the basin, with less crustal downwarping (less subsidence), 

and due to infill of the eastern basin from suspension derived mud as the deltaic system 

prograded in the west. This theory is supported by the observed shallowing eastward trend of 

the basin floor fans in the basin (Stene, 2009; Olsen, 2008), and the eastward thinning of the 

Hollendardalen, Frysjaodden and Battfjellet formations towards the east, as derived from 

isopach maps (Figure 7.12.). Figure 7.11 shows conceptual illustrations of the basin setting of 

the western and eastern area: 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.11: Simplified regional paleogeographic model for the Battfjellet Formation showing 
the development from the West Spitsbergen Orogeny with the eastward progradation and 
aggradation through time. Basin floor fan deposits developed at a relative early stage when the 
delta plain/shelf was relative narrow (A). Later when the delta front reached a more easterly 
position such depositional systems ceased to develop (B). 



117 
 

 The asymmetric fill of the basin can be illustrated by plotting the thickness of the westerly 

derived succession of the basin in an isopach map (Helland-Hansen, 1985; Olsen, 2008; Stene, 

2009; Skarpeid, 2010). This includes the Marstranderbreen Member (Frysjaodden Formation), 

the Hollendardalen Formation, the Gilsonryggen Member (Frysjaodden Formation) and the 

Battfjellet Formation (Figure 7.12). As the Aspelintoppen Formation has no exposed upper 

boundary, it is not included in the isopach map. Near log L6T1, at Tillbergsjellet north in the 

study area, the combined thickness of the Gilsonryggen Member and the Battfjellet Formation 

is 357m. Sætre and Hanevik (2010, personal communication), measured a thickness of 41m for 

the Marstranderbreen Member and the Hollendardalen Formation at the northwestern part of 

Ringdalsfjellet.  The combined thickness of the Hollendardalen, Frysjaodden and Battfjellet 

formations in the study area is thus roughly 400m. This value roughly fits within the generalized 

contours of the isopach map but is slightly less. The NW/SE orientation of the contours is in 

contrast to the assumed N-S orientation of the paleo-coastline (Chapter 5). This may reflect 

local variations of the coastline due to variations of the sediment influx pattern. The last basin 

floor fan complex observed in an eastern direction at various positions in the basins is roughly 

parallel with the isopach contours, and the termination occur roughly between the 500 and 600 

meters contours (Figure 7.12). 

 

Figure 7.12:  
Isopach map for the 
Hollendardalen, 
Frysjaodden and Battfjellet 
formations. The green line 
represents the easternmost 
extent of the basin floor fan 
deposits. The grey dots 
represent areas where such 
deposits have been 
recorded (Modified from 
Helland-Hansen 1985; 
Olsen, 2008; Stene 2009 
and Skarpeid, 2010). 
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8. Summary and conclusions  
The sedimentological development, facies distribution and parasequence geometry and 

stacking pattern of the Eocene Battfjellet Formation in the central western Nordenskiöld Land is 

the focus of the present study. A total of twelve aggrading and forward stepping parasequences 

of a fluvio-wave dominated deltaic origin are recognized.  

The Battfjellet Formation constitutes the delta front/shallow marine section of an eastward 

prograding deltaic system in a foreland basin setting, adjacent to the West Spitsbergen Orogen. 

The formation has been thoroughly studied for many years, but most of these studies were 

carried out on localities that are located in a more proximal position with respect to the 

provenance area, and where both clinothems and basin floor fans are well developed. In the 

area of the present study, neither clinothems nor well developed basin floor fans are present. 

The main conclusions of the study are summarized in the following five paragraphs: 

1. The studied successions have been subdivided into facies associations on the basis of 

depositional environment from a basinal to a landward position. A complete lateral and 

vertical compilation of these facies association represents the gradual transition from 

offshore/shelf (FA1), through offshore/transition (FA2), lower shoreface (FA3), middle 

shoreface (FA4), upper shoreface (FA5), and foreshore (FA6), to the continental deposits 

of the Aspelintoppen Formation (FA7). Individual parasequences, as observed vertically 

at the logged sections, consists of a conformable succession of gradually more proximal 

facies associations, in concordance with Walther’s law.  

2. The Battfjellet deltaic system has been classified as a fluvio-wave interaction delta. In 

contrast, the shoreface succession (FA3-FA5) shows a predominance of wave generated 

structures. The interpretation of direct fluvial influence as reflected by the presence of 

hyperphycnal flow deposits (FA3-B) is a new way to interpret the parallel laminated 

beds in alternation with symmetrical small ripples. The distribution of hyperphycnal flow 

deposits is relevant in order to identify areas where fluvial input has been high and 

hence the paleo-position of fluvial channels in a landward position. 
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3. The size, stacking pattern and progradational pattern of parasequences are information 

that are important in the understanding of the delta building mechanisms, and show 

that the parasequences develop across a typical distance of 2-3km in the depositional 

dip direction and over a distance of a few km to 15 km in the depositional strike 

direction. The parasequences are stepping forwards in a complex manner reflecting the 

autocyclic switching of delta lobes. A hierarchy of delta lobe switching mechanisms have 

been suggested, where the highest frequency is related to main distributary channel 

switching, the second hierarchy to delta lobe switching (with parasequence 

development) and the third hierarchy (lowest frequency) is related to the entire delta 

switching. 

4. The paleogeographic setting, as inferred from the present study, is consistent with the 

general understanding of the basinal configuration as established in earlier studies. This 

is also supported by paleocurrent data, revealing a N-S orientation of the symmetrical 

ripple crests. 

5. The lack of well developed basin floor fan and clinothems in the study area contrasts to 

the observations in many other localities, such as the Van Keulenfjorden and Western 

part of the Van Mijenfjorden area where such deposits usually are present. The lack of 

such deposits is likely to be a consequence of gradually shallower water depths, as the 

system progrades to the east.  

Suggestions for further work 

Even though the present study may contribute to the understanding of interacting processes in 

a fluvio-wave interaction delta, and the understanding of sandbody stacking patterns, there are 

still many questions to be answered. Further work should focus on parasequence mapping and 

correlation, combined with further studies on the lobe switching hierarchy. The latter has only 

briefly been touched in this thesis and needs further elaboration. It may also be useful if the 

concept of delta front hyperpycnites could be further elaborated and mapped in a more 

regional setting in order to understand the distribution of the fluvial input spatially. 

Furthermore, the understanding of the development of the basin and basin fill in response to 

the tectonic evolution of the West Spitsbergen Orogen should be elaborated. 
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Appendix 1: Lithostratigraphical logs: 

Order of appearance of the logged sections:  

L1R1 

L2S1 

L3S2 

L4S3 

L5T1 

L6T2 

L7S4 

L8R2 

L9M1 

L10M2 

L11S5 

L12T3 

L13R3 

L14M3 

L15M4 

L16T4 

L17T5 

L18R4 

L19R5 

L20S6 

L21T6 

L22T7 

Legend: 

 

The logs are presented in a 1:50 scale. Height in meters above sea level is provided every 5 meters.  
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L1R1 1/2     Ringdalsfjellet 
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L1R1 2/2    Ringdalsfjellet 
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L2S2 1/2    Sandsteinsfjellet 
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L2S2 2/2    Sandsteinsfjellet 
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L3S2 1/2     Sandsteinsfjellet 
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L3S2 2/2    Sandsteinsfjellet 
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L4S3 1/1    Sandsteinsfjellet 
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L5T1 1/2     Tillbergsfjellet 
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L5T1 2/2     Tillbergsfjellet 
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L6T2 1/2     Tillbergsfjellet 
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L6T2 2/2    Tillbergsfjellet 
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L7S4 1/2    Sandsteinsfjellet 
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L7S4 2/2    Sandsteinsfjellet 
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L8R2 1/2    Ringdalsfjellet 
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L8R2 2/2    Ringdalsfjellet 
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L9M1 1/3    Mefjellet 
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L9M1 2/3    Mefjellet 
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L9M1 3/3    Mefjellet 
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L10M2  1/2    Mefjellet 
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L10M2  2/2   Mefjellet 
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L11S5  1/1   Sandsteinsfjellet 
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L12T3  1/2   Tillbergsfjellet 
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L12T3  2/2   Tillbergsfjellet 
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L13R3  1/2   Ringdalsfjellet 
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L13R3  2/2   Ringdalsfjellet 
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L14M3  1/2   Mefjellet 
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L14M3  2/2   Mefjellet 
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L15M4  1/2   Mefjellet 
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L15M4  2/2   Mefjellet 
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L16T4  1/2   Tillbergsfjellet 
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L16T4  2/2   Tillbergsfjellet 
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L17T5  1/1   Tillbergsfjellet 
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L18R4  1/2   Ringdalsfjellet 
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L18R4  2/2   Ringdalsfjellet 
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L19R5  1/2   Ringdalsfjellet 
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L19R5  2/2   Ringdalsfjellet 
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L20S6  1/1   Sandsteinsfjellet 
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L21T6 1/2    Tillbergsfjellet 
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L21T6  2/2   Tillbergsfjellet 
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L22T7  1/2    Tillbergsfjellet 
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L22T7  2/2   Tillbergsfjellet 
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Appendix 2: Paleocurrent data  
Profile: FA2:     FA3:     FA4:     FA5/FA6:   

  Current: Crest:   Current: Crest:   Current: Crest:   Current: Crest: 

L1R1.: 154 355     22     360   234 322 
    350           8   150   
                355   315   

L2S1.: 135 32   135 23     2   45 346 
  135 28     347     9   135 357 
    20     36         278   
                    34   

L3S2.:   12   90 334         127 291 
    337   120 19         45   
    345                   

L4S3.:   11               130 350 
                    58   
                    315   
                    10   

L5T1.: 91 345               50 346 
    331               292   
                    220   
                    330   
                    30   
                    210   
                    173   
                    28   

L6T2.:   355               67   
                    120   
                    242   
                    220   
                    251   
                    360   
                    336   
                    270   
                    12   
                    322   
                    21   
                    220   

L7S4.:   315     360             

L8R2.:             12 341   151 346 
              171 7   243   
                    259   
                    146   
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Profile: FA2:     FA3:     FA4:     FA5/FA6:     

  Current: Crest:   Current: Crest:   Current: Crest:   Current: Crest:   

L9M1.:   2     32     346   212     
                    307     
                    254     
                    343     
                    356     
                    307     
                    296     
                    253     
                    342     

L10M2.:   356     8   42 336   135 354   
                334   289     
                9   38     
                352         
                347         
                355         

L11S5.:   349     343   359 328   169     
                322   233     
                347   94     
                326         

L12T3.:   15           338   224 15   
                    330     
                    104     
                    26     
                    283     
                    257     
                    115     
                    200     

L13R3.:   59           354   17     
    22           350   39     
    18                     

L14M3.:   13           36   266     
                    335     
                    31     
                    9     
                    330     

L15M4.:   339     5     32   286     
    347     7     5   257     
          23     17   90     
                6   286     
                359   200     
                    270     
                    229     
                    45     
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Profile: FA2:     FA3:     FA4:     FA5/FA6:     

  Current: Crest:   Current: Crest:   Current: Crest:   Current: Crest:   

L16T4.:                   76     

                    315     

L17T5.:               11         

                16         

L18R4.:   1     360         345     

          339         327     

          350         135     

L19M5.:   349     33   135           

    17     11               

    21                     

L20S6.: 
Not in 
situ                       

L21T6.:         31     346   171 337   

                    121 351   

                    267     

                    147     

L22T7.:         38         140     
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Appendix 3: The mountains of the study area 
 

 

 

 

 

 

 

 

 

 

 

Mefjellet 

 

Sandsteinsfjellet 
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Ringdalsfjellet 

Tillbergsfjellet 

 


