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Abstract

Keywords: Wave dominated shoreface, Coal Deposits, Lower Ferron, Subsurface modelling,

Sequence Stratigraphy

Deposition of the Ferron Sandstone Member occurred during a widespread regression of the
Western Interior Seaway during the Turonian. The Ferron is informally subdivided into two
units. The Upper Ferron, ferronensis sequence is well exposed as a shallow marine and
coastal plain clastic wedge along the edge of the Wasatch Plateau in central Utah. In contrast
the Lower Ferron, hyatti sequence, has previously only been documented in the outcrop and
as a basal sandstone in the subsurface Drunkards Wash, Buzzard Bench and Helper fields
around the town of Price, where the Upper Ferron is interpreted to form a major coal bed

methane accumulation in non-marine deposits overlying the Lower Ferron sandstone.

The aim of this study is to improve the current understanding of the stratigraphy and
sedimentology of the Lower Ferron unit. Correlation of 55 borehole logs coupled with
outcrop studies have resulted in a new depositional model for the system. The correlations
suggest that the Lower Ferron is comprised of a series of progradational to aggradational
shoreface parasequences which prograded in an east to south-easterly direction. Modelling
also suggests that a series of outcrops, previously interpreted as long shore bars, are in fact the
downdip expression of these shorefaces. This model is supported by extrapolation of the
facies tracts mapped in the subsurface, geometric reconstruction of the large scale structures
and correlation of bentonite horizons. The final model suggests a more prominent Lower
Ferron depositional system than previous studies and suggests a dynamic transition between

the informally named Upper and Lower Ferron Sandstone.
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Introduction Chapter One

1 Introduction

1.1 Aim of the study
The Late Cretaceous Ferron Sandstone Member of the Mancos Shale is a well exposed,

shallow marine to paralic, clastic wedge which crops out along the western edge of the San
Rafael Swell in eastern Utah. Outcrops of the unit have been extensively studied as analogues
for sub-surface reservoirs (Corbeanu et al., 2001; Li and White, 2003; Forster et al., 2004; van
den Bergh and Garrison, 2004). There has been a long tradition on coal mining from the unit
and more recently it has become commercially important as a Coal Bed Methane (CBM) play.
The Ferron clastic wedge represents a highstand system tract (Ryer, 2004) within the Mancos
Shale of the Mesaverde Group, deposited in a period of regression during peak Cretaceous
flooding of the Western Interior Seaway in North America. The Ferron is informally
subdivided into upper and lower units. The Upper Ferron comprises the majority of the
outcrops and has been extensively studied over the past century (e.g. Lupton, 1916; Katich,
1953; Davis, 1954; Hale and Van De Graaff, 1964; Hale, 1972; Cotter, 1976; Ryer, 1980,
1981, 1984, 1994; Ryer and McPhillips, 1983; Gardner, 1993, 1995a, 1995b; Garrison and
van den Bergh, 1997), and culminated with the publication of an AAPG memoir (Chidsey et
al., 2004) which captures the current understanding. In contrast, the Lower Ferron, which is

said to underlie the recent CBM fields, has been largely ignored.
The aims of the present study are:

1. To describe the sedimentology and stratigraphy of the Lower Ferron, especially the

portion that lies within the subsurface.

2. To determine the relationship between the Lower Ferron in the subsurface and a series

of outcrops in the San Rafael Swell.
3. To clarify the stratigraphy relationship between the Upper and Lower Ferron

4. To build a geocellular model of the Lower Ferron which captures and illustrates the

relationships described above.

Data for the study have included 55 geophysical well logs and 12 outcrops that were not
previously related to the subsurface field. The model focuses on the Drunkards Wash CBM-
field, which is the largest field in Castle Valley and one of the most productive of its kind in
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North America (Montgomery et al., 2001). The coal-bearing deposits from which the methane
gas is extracted are related to a large coal-fairway in Castle Valley that stretches from beneath
the Book Cliffs in the north to the Upper Ferron outcrops 100 km south.

1.2 The Study Area
The Ferron Sandstone Member crops out in Castle Valley along the northwestern rim of the

San Rafael Swell (SRS), southeast of Price (Figure 1.1), The Castle Valley is bordered by the
escarpment of the Wasatch Plateau to the east and the Book Cliffs to the north. The present
day climate is arid, which limits vegetation cover and results in good quality outcrops. The
Ferron Sandstone Member outcrop stretches as a near continuous ridge, cut by rivers and
small canyons, south-southwest from the Book Cliffs for about 120 km to Indian Canyon in
the south. The Ferron Sandstone Member includes up to 180 m of Turonian to Cenomanian

strata.

Figure 1.1: Overview maps of the study area. All images courtesy of NASA. Approximate location of Turonian
Ferron Sandstone Member outcrop belt along dotted green line.
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The majority of this study is focused on the Lower Ferron which is present in a series of CBM
fields(Figure 1.2 B) around the town of Price and crops out in a near continuous ridge that
runs for 35 km from Wellington to Castle Dale (Figure 1.3). The Lower Ferron is on average
90 m thick in the subsurface, and close to 30 meter high outcrops are recorded along the
western rim of the SRS (Figure 1.2 A). Additionally studies were also undertaken on the
Upper Ferron Sandstone which crops crop out along Interstate 70 south of Castle Valley. This
was used as an analogue for the proximal parts of the Lower Ferron which lie within the

subsurface and do not occur at outcrop.
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Figure 1.2:A) Geological map of the study area in Castle Valley. Central feature is the San Rafael Swell,
northern escarpment is the Book Cliffs, and to the west is the Wasatch Plateau (Hintze et al., 2000). B) Map
showing the position of the CBM-fields located in Castle Valley (Chidsey et al., 2004). The relationship between
outcrop and the CBM-field is shown in Figure 1.3, along with the model grid-outline.
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The main focus of the study is the strata in the Drunkards Wash CBM field which is located,
to the east and southeast of the town of Price. Figure 1.3, and Figure 1.2 B, shows the CBM-
fields of Carbon and Emery County which follow the coal bed play of the Ferron Sandstone
Member where it stretches southward along the western rim of SRS and the escarpment of the
Wasatch Plateau in Castle Valley. The Drunkards Wash field is the largest of the CBM-fields
in Castle Valley, and one of the most productive of its kind in North America.
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Figure 1.3: Overview map of Castle Valley and the San Rafael Swell. The map highlights the most important
geological features, outcrop localities, the model outline and the producing CBM-wells.
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1.3 Previous work
Most of the previous work on the Ferron Sandstone Member has focused on the Upper Ferron

due to the superb quality of outcrops found in the southern part of Castle Valley and further
south. The Lower Ferron at outcrop was described by Cotter, (1975) and Edwards et al.
(2005) although neither of these papers considering the stratigraphic relationship between the
outcrops and the producing strata CBM-fields. Following the discoveries of commercially
producible gas fields in Castle Valley, Henry and Finn (2003) described the Ferron Sandstone
Member in the northern part of the Ferron coal-fairway with the aid of well correlation panels.
Montgomery et al. (2004) provide a summary of the work that has been carried out on the
northern part of the Ferron Sandstone Member (the Lower Ferron), and suggested that more
work was needed to fully appreciate the stratigraphic relationship between the Upper and

Lower Ferron.

The Lower Ferron, represented by the Kf-Washboard unit of Anderson and Ryer (2004), has
been interpreted to occur as far south as Mesa Butte, more than 70 km south of the Lower
Ferron recognized in this study, in their study on the Upper Ferron. The proposed explanation
for the southward extent of the Lower Ferron, to where the sandstones come to underlay the
Upper Ferron, invokes the southward migration of a shelf sand plume (Thompson et al., 1986;
Ryer, 2004) from the northern Vernal deltaic complex to be discussed in more detail later.
The southward extent of the Lower Ferron and its relation to the overlying Upper Ferron is
only vaguely addressed, and a source for controversy. Further, their terminology Kf-
Washboard highlights a second problem encountered in the Lower Ferron literature, namely
the differentiation between the Clawson and Washboard units of Cotter (1975). Originally
lithostratigraphic units, these names are applied to the parasequences of the Lower Ferron
hyatti sequence without consistency; compare for example the schematic cross sections of
Anderson and Ryer (2004) with that of Barton et al. (2004). All of these issues will be

addressed in this thesis.
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1.4 Methodology
A variety of different methods were applied to the present study. They include traditional

field work, digital datasets and 3D geocellular modelling. Each method will be covered in

more detail in the chapter to which they apply, a short summary include:

e Compilation of existing data on the Ferron Sandstone Member from papers, published
literature, field guides and maps.

e Downloading and processing available log data and cultural information for the
Drunkards Wash CBM-field.

¢ Field work including logging, bed tracing and digital mapping (two field seasons)

e Core logging of a well section from the Drunkards Wash CBM-field to establish facies
associations for the subsurface well logs.

e Combining digital datasets with outcrop and core observations to construct a digital,

subsurface 3D model.
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2 Geological Setting

2.1 Palaeogeography
The Cretaceous Ferron Sandstone Member was deposited within the western interior seaway

in a regressive phase during a Turonian highstand of sea-level (Kauffman, 1984). During this
time, the central and eastern part of the state of Utah was covered by an epeiric sea with a
northwest to northeast striking western shoreline. The shoreline lay about 60 km east of the
active foreland basin margin and responded to changes in both sediment-supply and relative
sea-level. The sea-level was influenced by both global sea-level and regional tectonic events,
(Figure 2.1) and the tectonic activity in the Sevier Orogenic belt to the west impacted both

sediment supply and regional subsidence patterns.

Figure 2.1: Palaeogeographic reconstruction of North America and close-up of western North America, in the
Late Cretaceous. Modified after Blakely, http://jan.ucc.nau.edu/~rch7/crepaleo.html 25/10-2009

The Cordilleran thrust belt at the western margin of North America extended for about 6000
km from Canada to Mexico, and existed as a continent-ocean convergent margin from the
Late Jurassic 155 Ma to the middle Eocene (DeCelles 2004). The breakup of the
supercontinent Pangaea, initiated by an ancestral North Atlantic spreading centre, forced the
North American craton westward (Dietz and Holden, 1970). This motion was counteracted by

contractional forces along the western margin where the craton met the eastward moving
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component of the Farallon oceanic plate. Dense oceanic crust which made up the Farallon
plate, being less buoyant than the continental craton, was forced to subside and led to the
development of a volcanic arc and associated accretion of foreign terrains. The mountain belt
that formed in response to the accreted terrains and magmatism is now part of the present day
state of California. A series of orogenic events including oblique collision, the accretion of
microcontinents and changes in the angle of slab subduction led to the present day situation.
The Sevier and Laramide orogenies were the most important of these tectonic events and
spanned the Cretaceous to early Tertiary (app. 119 - 45Ma). The Sevier Orogeny was
associated with an increase in the rate at which the Farallon Plate was subducted underneath
the North American craton (DeCelles 2004) and the accretion of exotic terrains from the
subducting Farallon plate. This activity which stacked Proterozoic-Palaeozoic rocks at the
western margin of the North American craton, forced the continent to bulge and flex creating

an Andean style foreland basin (Jordan, 1981; Figure 2.2 and Figure 2.4).

The western margin of this foreland basin was located in the centre of the present day state of
Utah. The basin had an asymmetric profile with a steep western margin proximal to the thrust
front and a gentler dipping margin towards its foreland bulge. The onset of this foreland
basin, coupled with a major eustatic sea-level rise forced by elevated global temperatures and
increased seafloor spreading rates (Haq et al., 1987), led to the flooding of the basin to
produce the Western Interior Seaway in the Aptian. Flooding first occurred from the Arctic
Ocean through the Mowry Sea in the north, and eventually linked up with The Gulf of
Mexico and Thethy’s ocean in the middle Late Albian. This epicontinental ocean is estimated
to have had a maximum width of 1620 km, but never reached depths of more than 500 m
(Kauffman, 1984). Due to the mountain belt in the west, the seaway was partially sheltered
from the prevailing wind direction and thus the fetch did not resemble open-ocean conditions

thus limiting the influence of storms on the sedimentary deposits (Cotter, 1975).



Geological Setting Chapter Two

SEVIER
OROG_F',"JQ\EELT FORELAND
_— A BASIN

- - PALEOCENE

© WORTH HORNFML - STRATA

P A B SN B FOXHLLESE.
a . . . A S ; o e
. . LEWSSH

PALEOZOIC
STRATA

—

: NERIEINN
. Fltpge

. "
5 .

o i
\ B y
\ 4 \ T RO - ) . — Dt
\ \ e oo ] L

\ \ 2 . . gien

AN L Py S
A T : -

e _MORAISOM FM. i

JURASSIC AND TRIASSIC STRATA

Figure 2.2: Regional schematic cross section from west to east, western Utah to western Colorado.
Intertonguing Cretaceous strata, marine shale and limestone (shaded) and non-marine to marine-clastic (dotted).
Modified by Henry and Finn, 2003, from Armstrong, 1968.

Elevated global temperatures were the norm for the Late Cretaceous (Hay et al., 1997) and the
study area experienced a warm and humid climate throughout the period of deposition,
something that is evident from the high carbonate content within the marine deposits, and

thick deposits of coal in the non-marine strata.

The uplifting Sevier mountain range supplied significant volumes of sediment to the western
part of the basin where the Indianola and Mesa Verde groups were deposited as a large clastic
wedge (Figure 2.2). The eastern part of the seaway was dominated by carbonate deposits
which included the Niobrara Limestone. The Mancos Shale was deposited throughout the

central part of the basin.

The onset of Laramide uplift, and falling global sea-level resulted in the end of the epeiric
seaway, after a period of about 35 my. The Laramide Orogeny resulted in uplift of more than
6000 m (Howell and Flint, 2003) to its present day topography.
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2.2 Tectonic framework
Continental shortening initiated in the Late Jurassic and shortened the North American craton

by as much as 350 km. Eastward migration of the Cordilleran thrust front by 1000 km was
associated with the discontinuous to overlapping orogenic events, including the Sevier and

Laramide orogenies (Decelles, 2004).

The Sevier Orogeny has its easternmost thrust front in east-central Utah where it is named
after a type locality in Sevier County. A detailed map of the regional extent of the respective
orogenies associated with the Late Jurassic to Eocene Cordilleran thrust belt is presented in
Figure 2.3, where the Sevier thrust front may be seen as a narrow, extensive grey band
through the North American continent. The Sevier Orogeny was initiated in the Albian, about
105 million years ago (Stokes, 1988). It spanned a north-south distance of 2000 km along the
the entire North American continent, and is estimated to have been between 200 and 350 km
wide (east-west) in central Utah and eastern Nevada (Miller et al., 1983; DeCelles 2004). The
style of shortening during this orogenic event was mainly thin-skinned tectonics (Armstrong,
1968). The tectonic history included regional-scale mega-thrust sheets of Palaoezoic to
Proterozoic age in the Early Cretaceous to multiple closely spaced Palaeozoic to Mesozoic
thrust sheets in the Late Cretaceous to Palaeocene time. The frontal wedge of the Sevier
thrust, consisting of the Palaeozoic to Mesozoic sedimentary strata, followed a regional basal
décollement propagating through weak horizons such as the Lower Cambrian shale unit and
the salt interval in the Jurassic Preuss Formation (DeCelles and Mitra, 1995). This stacking
and loading of rocks on the western margin of the North American craton caused the flexure
and the development of the foreland basin. This foreland basin inherited an asymmetric
morphology (Jordan, 1981; Beaumont, 1981), as well as an asymmetric sedimentary
accumulation which contributed to further subsidence within the basin. Syn-tectonic erosion
contributed to the deposition of a thick clastic wedge at the western margin of the foreland
basin (Sinclair et al., 1991).

Flexural subsidence contributed with important control on sites of erosion and deposition
within the foreland basin (Decelles, 2004; Pang and Nummedal, 1995) during the Early
Cretaceous through Turonian (~142-89Ma). Differences in subsidence are attributed to
differential rigidity of the basement rocks, which would favour emplacement of thrust loads in
areas of less rigidity, and thus affect subsidence indirectly but notably. Additionally, Pang and
Nummedal (1995) suggest strike variation in magnitude and timing along the thrust front as a

geodynamic factor that would have contributed to the flexural subsidence pattern. The impact

10
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by Ryer and Lovekin (1986).

Chapter Two
of differential subsidence on sediment dispersal in the Vernal deltaic-complex was suggested
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Figure 3. Flexurally backstripped subsidence profiles across basin.
Light shading marks magnitude of subsidence from 97 (94 on e and f}
to 90 Ma, and dark shading marks magnitude of subsidence from 90 to
80 Ma (83 on ¢ and d). Vertical scale is tectonic subsidence in metres.
Triangles indicate locations of subsidence curves discussed in Fig-
ure 4. DCA is Douglas Creek arch.

15010
Metres

Figure 4. Temporal subsidence trends at six locations 100-150 km east
of thrust belt (see Fig. 3). Diagonal-rule areas represent cumulative
tectonic subsidence through time. Solid lines below represent total
(uncorrected) subsidence. Cen—Cenomanian; L. Tur.—lower Turo-
nian; Con—Coniacian; E. Camp.—early Campanian.

Figure 2.4: Pang and Nummedal, 1995. The Western Interior foreland basin, and its relationship between

sediment accumulation and flexural subsidence of bedrock along the easternmost margin of the Sevier Orogeny.

The Laramide Orogeny followed the Sevier Orogeny resulting in a transition from flexural
subsidence to dynamic topographic effects caused by the subducted plate. The style of
deformation, and shortening changed from the thin-skinned tectonics of the Sevier Orogeny to
a more deeply rooted tectonic event where reactivation of faults from the ancestral Rocky
Mountain Orogeny resulted in a series of basement-cored uplifts which include the San Rafael
Swell (SRS) in the study area. The overlap from the Sevier to the Laramide Orogeny was
accompanied by a change in stress regimes, from a southeastward compressional regime
exerted by the Sevier Fold and Thrust belt to basement-cored northeastward compression
following the onset of the Laramide Orogeny around 75 Ma. This resulted in a complex

interplay between two major compressional directions.

The Farnham Dome is located in the north of the San Rafael Swell in Castle Valley, and is

interpreted to consist of several reverse faults that have offset the Ferron Sandstone east of the
town of Wellington (Figure 2.5 C). The faults and folds in Castle Valley have been suggested
by various studies to be of either Laramide (Tripp, 1989; Montgomery et al., 2001), or Sevier

12
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(Neuhauser, 1988; Willis, 1999) age. The majority of workers suggest that the uplift post
dates the deposition of the study interval (e.g, Montgomery et al. 2001) while Edwards et al.

(2005) suggested that the Farnham Dome might have been a site of sediment bypass related to

the deposition of the Lower Ferron Sandstone.
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Wash Coal Bed Methane field, with transect A-A’ marked as a line stretching northwest-southeast. B) Profile A-

A’ illustrating the fault segments encountered in the gas field. C) Structure map for Castle Valley, from Condon

(2003).
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The Laramide tectonic event affected the Lower Ferron on three scales:

In the coal deposits of the Ferron Sandstone Member the Laramide stress regime

resulted in the imprint of northeast striking microfractures called ‘cleats’ (Laubach et
al., 1997). Condon (2003) showed that these northeast trending cleats have cross-cut
northwest striking cleats related to the Sevier Orogeny. He also notes that the Ferron
had to be buried to depths up to 1000 m necessary to produce microfractures in coal,

which is consistent with the rapid burial history of the area.

Reverse faulting has been observed within the subsurface Drunkards Wash field
(Figure 2.5 B). The Ferron coals are deformed by a southwest plunging anticline,
which is cut by several northeast striking reverse faults. The faults show up to 45

meters of vertical displacement (Montgomery et al., 2001).

The anticline that is the San Rafael Swell caused the present dip of the Lower Ferron
Deposits, gently to the west/northwest away from the anticline, and underneath Castle

Valley and the Wasatch Plateau.

After the Laramide Orogeny (since 35 Ma) the region has been mildly influenced by the post

orogenic collapse which generated in the Basin and Range regime to the west. Within the San

Rafael Swell area the impact of this extensional tectonic regime, is mainly restricted to the

Joe’s Valley Graben system west of the study area. Minor extensional faults displace the

strata in Drunkards Wash and the outcrops around Wellington. Faults may also have acted as

conduits for groundwater recharge in Drunkards Wash (Rice, 2003), with implication for gas

production from the field.
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2.3 Stratigraphy
Sediment for the Ferron Sandstone Member was sourced from the Sevier fold and thrust belt

to the west (Figure 2.6). The clastic wedge of the Ferron pinches interfingers with and passes
basinward into, the Mancos Shale. The Ferron Sandstone Member rests conformably on the
Tununk Shale Member and is capped by the Blue Gate Shale Member. In a palaeolandward
direction the deposits of the Ferron Sandstone Member grade into the fluvial and alluvial
deposits of the Indianola Group.

Cretaceous Western Interior Seaway

Figure 2.6: Schematic representation of the relative stratigraphic relationship, and the various depositional
environments, for the deposits of the Western Interior Basin in central-eastern Utah and eastern Colorado.
Relative position for the Ferron Sandstone highlighted in red. Modified by Howell and Flint (2003) from Hintze
(1988).

Two depositional sequences have been identified in the Late Cretaceous Turonian Ferron
Sandstone Member (Figure 2.8). The thin, Lower Ferron Sandstone of the Vernal deltaic
complex (Cotter, 1976), which is the focus of the present study, outcrops in the north of
Castle Valley while the Upper Ferron Sandstone of the Last Chance Delta (Hale, 1972)
outcrops in the south around 1-70 and was initially defined by Lupton (1916) as paralic
deposits in the coal fields near the towns of Ferron and Emery (Figure 2.7).
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Figure 2.7: Overview map of the study area, showing the Ferron Sandstone Member outcrop belt. The Lower
Ferron is located mainly north of Castle Dale, Upper Ferron deposits crop out to the south as indicated by the
relatively thick outcrop belt and the Ivie Creek log locality.

Cotter (1975) described the Lower Ferron deposits that crops out along the western and
eastern rim of the San Rafael Swell, in Castle Valley and from Wellington south to Green
River respectively (Figure 2.7). The southernmost outcrop locality in Castle Valley was
recorded just east of the town of Moore, whereas the southernmost outcrop along Highway 6
and 80 southeast to Green River was located west of Woodside Canyon. In his detailed work
on these outcrops, he divided the Lower Ferron into units and named them based on their
geographic locations; Woodside, Farnham, Clawson and Washboard units respectively. The
Woodside Unit was interpreted to be deposits from an offshore sand bar environment, the
Farnham Unit to be of a tidal inlet environment, Clawson Unit being deposited in an offshore
(shelf) environment, whereas the Washboard represents relatively more proximal deposits
ranging from offshore shelf to lower shoreface environment. The Washboard and Farnham
units were interpreted to be time equivalent and they were along with the Clawson unit only
recorded along the western rim of the SRS, in Castle Valley, where the Clawson unit was the
southernmost exposed unit of the Lower Ferron.
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Figure 2.8: Schematic cross section displaying the relationship between the Upper and Lower Ferron Sandstone.
Lower Ferron is commonly divided into the seaward stepping Clawson and Washboard beds (modified by
Montgomery et al. 2001 from Fisher et al., 1993).

Gardner (1995a), estimated an age span for the deposition of the Upper Ferron Last Chance
Delta to be between approximately 90,3 Ma and 88.0 Ma (Upper Turonian to Lower
Coniacian) based on volcanic ash layers in coal, and biomarkers. . The Lower Ferron is dated
to between 90.5 to 90.3 Ma (Middle Turonian), i.e. a period of about 200.000 years. Gardner
(1995a) termed the Lower Ferron the hyatti sequence and the upper Ferron the ferronesis
sequence. Garrison and van den Bergh, 2004, redefine the hyatti genetic sequence of Gardner
(1995a) to a depositional composite sequence which also includes the lower part of the Last
Chance Delta.

Gardner (1995b) also defined the Ferron Sandstone Member in terms of a hierarchy of base-
level rise and fall cycles. The Lower Ferron, hyatti sequence, was defined as “intermediate-
term cycle” (3" order cycle following the classification of Vail et al., 1977), whereas the
Ferron Sandstone Member as a whole were classified as a “long-term cycle” (2™ order),

recording the turnaround from falling to rising relative sea-level.

Cotter (1976) interpreted the Lower Ferron Sandstone to be distal deposits in the southern part
of a wave dominated delta which prograded in an east-southeastward direction at the western
margin of the Cretaceous Interior Seaway (Figure 2.6). The parasequences recorded in these
deposits represents a minor Highstand System Tract (Gardner, 1995b) within the Mancos
Shale; it was deposited on a shallow, ramp margin morphology. Cotter (1976) proposed that
a Late Cretaceous Vernal delta served as the sediment source for the shoreline. The delta was

17



Geological Setting Chapter Two

later abandoned as the sea rose, and led to the deposition of the overlying Blue Gate Shale.
Foci of sediment supply shifted to the above mentioned Last Chance Delta in the south, which
kept pace with the rising sea-level and deposited the Upper Ferron Sandstone (Ryer, 1994).

Ryer and Lovekin, (1986) attributed the deposition of the Lower Ferron and parts of the
northern, contemporaneous Frontier Formation (Winn, 1991) , to a regressive wedge that was
deposited over an area that had lower subsidence than the surrounding basin due to
differential flexural subsidence associated with the Sevier Orogeny. They refuted the idea of
one distinct Vernal delta in the north which was proposed by Cotter (1976) due to the lack of
evidence for a sufficiently large deltaic feature to have supplied such a widespread shoreline
with enough sediments. They suggest that the lower part of the Turonian clastic wedge which
includes the Lower Ferron, and parts of the Frontier Formation, is too thin to be related to any
such delta and that the differential outbuilding along the coastline was caused by the
prograding shoreline moving over an ancestral up-doming in the area of the present Uinta
Mountains. This geomorphological bulge in the palaesoshoreline, inferred by Ryer and
Lovekin (1986), caused the eastward migration of deltaic sediments supplied by numerous

smaller river systems rather than one pronounced delta.

Given that the lower part of the Turonian clastic wedge is too thin to warrant a single delta
distributary, the northwest-southeast progradation of the Lower Ferron shoreline is considered
as part of a northern shoreline complex which was comprised of numerous shoreface and
small, deltaic units informally termed the Vernal deltaic complex. This issue will be discussed
further in the discussion chapter.

Two deltaic elements, or lobe equivalents, developed in the Vernal deltaic complex; one
deltaic element, interpreted as part of the Frontier Formation, prograded northeastward into
the Uinta Basin, while a southern deltaic element, the Lower Ferron Sandstone, prograded

towards the south-east (Figure 2.9 A).
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Figure 2.9: A) Schematic overview of the two proposed deltas or delta complexes of the Turonian Western
Interior Seaway in East-Central Utah (Cotter, 1976). B) Schematic relationship between the Turonian deltas of
the Western Interior Seaway, and latitudes. Important to note is the inclusion of a Vernal delta that was proposed
by Cotter (1976), but later reclassified by Ryer and Lovekin (1986). From Bhattacharya and MacEachern (2009).

The Lower Ferron hyatti sequence was eventually transgressed, and the Last Chance Delta
developed from the south west. This delta deposited the extensively studied Upper Ferron
sandstone, (ferronensis sequence of Garner 1995a). The Last Chance delta prograded north-
northeastwards towards and partially over the older Lower Ferron sandstone, of the Vernal
deltaic complex, which at its position in the southern Castle Valley is interpreted to have been
deposited offshore sands carried south as geostrophic currents sourced from a northern
sedimentary source (Thompson et al., 1986). The offshore marine equivalent of the Upper

Ferron sandstone is the Blue Gate Shale, which overlies the hyatti sequence.

The Upper Ferron sandstone was deposited as a clastic wedge during a period when both the
sediment supply and the creation of accommodation space are thought to have been high
(Gardner et al., 2004). Time equivalent strata elsewhere in the basin record a transgression
and the progradation is attributed to an autogenic increase in sediment supply (Ryer, 1994).
The subsequent transgression that followed in the Coniacian shifted the shoreline west of the
Wasatch Plateau and led to deposit of the thick Blue Gate Shale Member in Castle Valley.
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A humid climate allowed large swamps to develop on the coastal plain (Figure 2.6). The well
studied outcrops of the Upper Ferron Sandstone and the CBM play in Drunkards Wash
contain thick deposits of coal. In their work on the remaining petroleum potential for the
Ferron Coal Play, Henry and Finn (2003) includes a stratigraphic correlation panel that
illustrates that the Upper Ferron deposits continue into the subsurface in the northern part in
Castle Valley and below the Wasatch Plateau. The panel shows that the Lower Ferron extends
to the outcrop level as a prograding shoreline, and that the subsequent Upper Ferron
retrogradational deposits are well represented within the Drunkards Wash CBM field and

beneath the Wasatch Plateau (Figure 2.10). This correlation will be discussed later.
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2.4 Modern analogue
The search for a modern analogue for the Turonian Lower Ferron deposits of Central Utah is

complicated by the comparably low global sea-level of the post Late Cretaceous World.
Deposition occurred on a ramp margin in a continent interior seaway, for which there are no
modern examples. Ryer and Lovekin (1986), proposed a hypothetical analogue in which they
considered a flooded South American interior where the Andean mountains would correspond
to the ancient Sevier mountain belt of the Late Cretaceous central Utah. This feature would
have yielded a gentle ramp shelf margin similar to that on which the Lower Ferron was

deposited.

Bhattacharya and Tye (2004) offer a careful review of the lower part of the Upper Ferron, the
wave dominated Kf-1 and Kf-2 of the Last Chance Delta, and compare the delta to modern
equivalents. They conclude that the Last Chance Delta was orders of magnitude smaller than
the continental scale distributary deltas such as the Mississippi and Ganges-Brahmaputra in
terms of river discharge, drainage area and channel height. As modern analogues to this
ancient delta, they suggest the deltas Rhéne, Brazo, Ebro or the St. George lobe of the Danube
delta. §

The Paraiba do Sul delta in Brazil
(Figure 2.11), provides a
reasonable analogue to the
Central Utah coastline at the time
of deposition of the Lower Ferron
sandstone. This is a wave
dominated shoreline, supplied
with sediments from two rivers
that cross a low-lying coastal
plain. The beachfront protects the
vegetated coastal plain, subject to

a humid to sub-tropical climate.

Figure 2.11: Paraiba do Sul wave dominated shoreline, image
courtesy of NASA. The shoreline protects a vegetated coastal
plain. Paleoshoreline location and point of deposition and erosion
could be inferred from the image.
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2.5 The Drunkards Wash Coal Bed Methane Field
The Drunkards Wash CBM field provides a critical insight into the stratigraphy of the Lower

Ferron. Despite relatively thin coal beds, the field is one of the most productive fields of its
kind in North America, with individual wells showing averaged production rates of 500
mcf/day (Montgomery et al. 2001) and a cumulative production of over 760 BCF
(http://oilgas.ogm.utah.gov/Statistics/PROD_CBM _field.cfm as of 31/03-2010). The field
contains 234 closely spaced gas-producing wells a selection of which served as the basis for
the subsurface model described below.

Gas recovered from a coal bed methane field differs from the conventional gas recoveries in a
variety of ways. The organic rich coal offers rapid maturation and thus gas is produced at
shallower burial depths than conventional hydrocarbon systems. The coal acts as both the
source and reservoir in which the gas is absorbed to the surface of the coal rather than being

contained in intra-lithological pore volumes.

The producing coal layers in the Drunkards Wash CBM-field range in depth from 330 to 1060
m, following the gentle eastward dip away from the San Rafael Swell. The coal layers range

in thickness from <1 m to 7 m and consists of low-rank, high-volatile, B bituminous coal.

Drilling history began with the discovery of methane gas in the sandstone reservoirs on the
Clear Creek field in 1951 (Ryer, 2004). Exploration was expanded further east, when Texaco
Exploration and Production drilled two wells close to the Drunkards Wash field in 1988.
Drilling on what was later to become the Drunkards Wash field was started in 1991, when the
River Gas Corporation bought the property from Texaco and confirmed the high gas content
within the field (Montgomery et al., 2001).

Burns and Lamarre (1997) recorded vitrinite reflectance values (Ro) of 0,7% for the
Drunkards Wash field, while the value near the town of Emery to the south show Ry to be
0,5% equal to C bituminous coal. Suggesting differences in the coal rank within the Ferron
‘coal-fairway’ in Castle Valley (Figure 2.12).

Based on crossplots of Ry values measured against sample depths, Tabet (1998) suggested
that the Ferron coals where subject to burial at depths up to 2820 meters necessary to yield
values such as those present within the CBM-play. According to the model of the present day
Drunkard Wash field, where the coal layers are recorded at maximum depths around 1600

meters, this suggests and exhumation of more than 1200 meters. The difference between
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northern and southern coals, in terms of Ry values and production data, have been proposed
by Tabet (1998) to be the result of different burial history. This notion was backed by
Cretaceous and Tertiary formation thicknesses from Hintze (1988) and by burial history
reconstructions by Barker and Dallegge (1998).

RAE. REE RAGE. R12E
1;.2 -ﬁ T ”ﬁ""""'”?‘!_ T “EJ;CL;[ T Southern coals (Buzzard Bench and
e N i southward) show poorer production data
fL A *’mmsg than do the northern, this has been linked
] m’ig?m | Pm___ to the southern coals being exhumated

- _Cm‘l‘ \e=| from the water table and exposed to
4 weathering according to Barker (2004).

o / | His study of the presence of sulfate in the

o coals south of the town of Emery linked

the different levels of sulphuric content to

varying degrees of weathering.
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Figure 2.12: Coal-thickness isopach map of the Ferron
coal fairway in Castle Valley. Montgomery et al. (2001),
modified from Tabet et al., (1995).
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3 Subsurface Study
The subsurface data available for the investigation of the Drunkards Wash CBM-field include

a large amount of geophysical well data publically available on Utah Geological Survey’s on
line archive, and a drilled core from the well RGU-1. The cored well section was logged and
interpreted and then correlated with the well logs in order to define the wireline facies in the

remaining wells used in the study.

The geophysical well logs on the UGS site are image files which once downloaded, had to be
converted into digital well log data (LAS files). This was done with the use of Neuralog
digitizing software, which offered partially automatic tracking of the log response. The
process is laborious and time consuming consequently only the gamma ray and neutron logs
were converted and only for the key interval. Fifty five wells were digitized, each one taking
2 to 3 hours. LAS files were then imported to the modelling software, Petrel, and a series of
correlation strike and dip orientated correlation panels were generated. These were used as the

basis for the geomodelling.

3.1 Core Section RGU-1
Over 130 m of cored well section was logged at the UGS core store in Salt Lake City. This

package includes more than 95 m of the Turonian Ferron Sandstone Member clastic wedge,

and a bentonitic ash layer in the Blue Gate Shale that lies above the Lower Ferron unit.

The detailed facies descriptions are summarized in Table 1. This table includes the observed
lithofacies, and their interpreted facies association and depositional environments. The facies
associations have been added to the geophysical well log display and used to aid

interpretation in areas where core data are lacking.
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The interpreted logged core section reflects facies associations characteristic for a prograding
wave dominated shoreline and its non-marine deposits. The log shows an upwards coarsening
trend from shale to sandstone, overlain by fluvial deposits. Several sections from within the
fluvial interval are missing; these sections are thought to be removed for destructive sampling,
a process in which the coal is tested for microfractures, volatile content, vitrinite reflectance,
sulphuric content and so forth. Geophysical well logs accompanying the cored section were
used as a way of determining the nature of these missing sections as coals, as explained in the
following sub-chapter. The character of the coal itself could thus not be determined. As an
analogue to the coal seams in Drunkards Wash, the outcrop from I-70 (Last Chance Delta)
provided some insight to the coal characteristics for the Turonian Ferron Sandstone Member.
The logged core yields a sedimentary facies succession close to similar to the Upper Ferron
logged at Ivie Creek/I-70, to be discussed in more detail in the outcrop-chapter, and is
characteristic for a prograding shoreline. It shows offshore marine shales and siltstone that
coarsen upwards into shoreface sands, followed by sheltered marine and floodplain clays,
with coal deposits capping each cycle of deposition. Sparse and thin occurrences of channel
sands suggest that the well is drilled in the proximity of one or more channels. Grain-size as
large as those found in the outcrop analogue was not identified, and no record of coal was
preserved within the cored section. The intervals in which the coal layers were expected
(based on the accompanying geophysical well log) were not available at the UGS Core

Research Centre.

Four parasequences are interpreted within the cored section, the lowermost parasequence
record the lithofacies stacking pattern characteristic for a prograding parasequence from
offshore transition zone through shoreface to fluvial deposits, its upper limit is a flooding
surface defined by a thick coal layer. The two following parasequences within the core are
only recorded by their most proximal deposits, that is coastal plain and fluvial deposits capped
by coal. The coal layers are interpreted to be the up-dip expression of marine flooding
surfaces that separates individual parasequences within a highstand system tracts

parasequence set (Bohacs and Suter, 1997).
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3.2 Wireline facies associations
The principal geophysical well logs used in

this study were the Gamma Ray and Neutron
Porosity. The GR was used to qualitatively
assess the silt content of the facies and the
NP1 was used to identify the coal intervals.
The Gamma Ray cut-off, i.e. the value Ll
separating silt from sand, was set to 75 API
with lower values indicative of cleaner and
typically coarser sandstones and higher values
indicative of more silt and mud rich facies.
Neutron porosity data was used to identify
coal layers by a marked, decrease in the log
response (Rider, 1986). While the actual
response is used to determine the lithology the
log motif and trends are used to distinguish
the depositional environment. This was
calibrated by comparison to the cored section.
An example of a typical well log data source
used for this study is shown in the logged core
section in Figure 3.4. The wireline facies are
summarised in Table 2.The RGU1 core
contains missing core sections due to the

removal for destructive sampling of coal.

After comparison of the core and wireline
logs from well RGUL1, the geophysical well
logs from the other wells in Drunkards Wash
were interpreted in terms of the depositional

settings. An example of how the facies
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Figure 3.5: Wireline facies associations, as

Top FS

associations for the geophysical well logs are summarized in Table 2, from the uncored well Utah
34-513 in the northern part of the Drunkards Wash

divided is showed in Figure 3.5. CBM-field.
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Table 2: Facies associations for geophysical well logs.

Thick sections of high GAPI values, no
pronounced spikes towards lower values,

indicative of sandstone.

Offshore shelf deposits

Spikes in the Gamma Ray response towards
lower values in between high responses from
shale intervals. Upwards decline in bulk GAPI

values

Storm affected offshore
shelf deposits, above
storm weather wave

base.

Low Gamma Ray values compared to preceding
responses. Gamma Ray spikes indicate presence

of shale at narrow intervals

Above fair-weather
wave base, more sand-

dominated motif

Upwards coarsening Gamma Ray log profile with
rare shale spikes. Generally very low GAPI

values.

Marginal marine
deposits, daily wave
action, constant

reworking of sediments

Significantly more heterolithic profile compared
to offshore shales, no obvious trend like the
upwards coarsening GR motif of the OTZ.

Proximity to channels
and the reoccurring
incidents of levee
breaks associated with

these.

Blocky to upwards fining Gamma Ray response.

Non-marine sandstone

deposits

Coals are identified by a sharp, leftward kick in
the Neutron porosity log.

Non-marine organic

deposit
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3.3 Log correlations
The data input were considered in light of the conceptual model proposed for the Ferron by

earlier workers: prograding shoreline in a shallow ramp active margin in a foreland basin, as
discussed in the previous chapters. Conceptual models are essential to give the model an

appropriate expression. It serves as the basis for interpretations and extrapolating surfaces.

Identified surfaces include top flooding surface, which represent the regional transgression
event that ended the hyatti sequence. Tectonic uplift during the Laramide Orogeny initiated
the uplift of the San Rafael Swell, and the Ferron Sst. Member was tilted in response. The
bentonite identified in outcrops and in the cored section of RGU1 show a similar dip-

relationship when correlated.

Well section panels have served as the basis for understanding horizons and facies association
relationship within the subsurface. Multiple panels are presented below, representing both
depositional strike profiles (W, X, Y, Z panels), trending north-northeast to south-southwest
and depositional dip profiles (A, B, C, D, E, F, G panels) trending northwest to southeast. The
locations of the respective panels are marked in Figure 3.6. The panels displaying depositional
strike show more homogeneous geophysical well log responses compared to the depositional
dip profiles. Facies associations for the latter pinch out to the east and west i.e. both in the
landward and seaward direction. The wells have been flattened on the top flooding surface
horizon, which has an eastward dip away from the SRS, since this is the most regionally
traceable marker. It also serves as a chronostratigraphic surface, as it represents a relatively

rapid event of transgression.
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Figure 3.6: Overview map showing the well correlation panels underneath a contour map of northern Castle
Valley.

The following correlation panels show the depositional dip from in the order from north to
south through the Drunkards Wash field. A complete set of correlation panels is found in

Appendix .
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Figure 3.10: Depositional dip oriented correlation panel.
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The succession seen in the correlation panels illustrates a large scale progradation of the
succession, passing upward from offshore to coastal plain deposits. The top of the succession
is marked by sharp transition back to offshore which is interpreted as a major flooding
surface. The succession can be further subdidvided into 4 distinct phases of progradation,
each represented by an upward shallowing of facies. These have been interpreted as
parasequences (sensu Van Wagoner et al 1990). The lower three of these parasequences (PS1-
PS3) are stacked into a progradational parasequences set, while the upper one (PS4) shows a
backstepping pattern. The system prograded towards the SE and there is little difference in
facies along depositional strike, although some marked thickness changes can be observed in
the NE-SW panels. The correlations form the basis for sequence stratigraphic interpretation
and model building and are discussed in more detail below.

Parasequence boundaries were identified initially in the down-dip portion of the dip orientated
panels (e.g. Figure 3.7, Figure 3.8, Figure 3.9 and Figure 3.10). Surfaces were defined by a
rapid upward transition from shallow to deeper water deposits, based primarily on the facies
interpretation of the gamma ray log. The surfaces where then traced landward, though the
shoreface successions and into the coastal plain dominated part of the succession.

The correlative conformity to the marine flooding surfaces in the non-marine part of the
succession was typically expressed as a coal seam. Coal seams have commonly been
correlated with marine flooding surfaces since they are associated with a rise in base level and
more water logged conditions on the floodplain. Various authors have proposed different
correlations for the position of the surface within the coal from the base of seam (e.g. Flint et
al., 1995; Hampson, 1995) to the top (Diessel et al., 2000) or even within the coal (Davies et
al., 2006). The latter authors illustrated that determining the exact position of the correlative
conformity required detail petrographic study of the coal and was not possible just with
wireline log data. Therefore for practicality the top of the coal seam was picked as the
parasequences boundary. This uncertainty has little impact on the final correlations.

The coal layers thins and disappear to the southeast, (basinward) and it is possible to map out
the downdip pinch of the major seams. This has direct implications for the CBM fields and is

discussed in the modelling chapter.
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Depositional strike panel, ordered from west to east:
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Figure 3.12: Westernmost depositional strike oriented correlation panel.
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The panels illustrates that depositional dip is towards the SE and that there is little along-
strike change in the facies. This is consistent with the observation from the cored well that the
system is a wave dominated shoreline system. The lowermost parasequence (PS1) pinches out
within the panels, while the progradational stacked PS2 and PS3 extend out of the subsurface
study area and extend towards the outcrops. The correlation with the outcrop is discussed
below. While there is little change in the distribution of the facies along strike there are some
marked changes in thickness especially in the back stepping upper parasequence. This is also

discussed in the context of the correlation to the outcrop in Chapter 6.

The parasequences stacking pattern of progradational to retrogradational may suggest the
presence of a sequence boundary (sensu Van Wagoner et al., 1990) at the top of PS3. Such a
surface was suggested by Edwards et al. (2005) who studied the outcropping Farnham unit
and other deposits on the east side of the SRS. However, based upon the subsurface data alone

no clear evidence for such a surface was observed.

For the 3D geocellular model the parasequences boundaries were used as zone boundaries.
The base of the model was arbitrarily picked in the underlying Tununk Shale, just below the
first obvious indication of upwards coarsening. The upper boundary for the model was
defined by the regional flooding surface that overlies the Lower Ferron unit (Top PS4). In
cases where the lower boundary was not identifiable, especially for those wells not drilled
deep enough to record the transition from the Tununk into Ferron Sst., the boundary was set
to best fit the thickness recorded in the neighbouring well. An example of such an instance
may be viewed in Figure 3.7, in the north-westernmost well. Remaining zone boundaries were
set to the top of each shallow marine parasequences or at their correlative conformity in the
coastal plain. During the gridding a proportional grid with 6 equally thick layers was used to

allow the individual facies in each zone to be captured.
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3.4 Summary Sequence stratigraphy
The interpreted subsurface data show that the Drunkards Wash CBM-field is composed of a

progradational to aggradational succession that includes 2 parasequences sets. The lowermost
parasequence set includes 3 progradationally stacked parasequences (PS1 — PS3).
Parasequence (PS1) prograded over the underlying offshore shale package and the transition
from the Tununk to the Ferron Sandstone Member is conformable. PS1 pinches out within the
area of the CBM field. Parasequences 2 and 3 are progradational to aggradational, and
represent the most basinward expression of the Ferron Sandstone Member in Drunkards
Wash. The second parasequences set is comprised of just 1 parasequence, PS4, which is
aggradational and locally shows a back-stepping stacking pattern. The Ferron sandstone
member is capped by a regional flooding surface that marks the onset of the overlying Blue
Gate Shale Member, made up of the offshore shale package above the clastic wedge.

The interpreted parasequence boundaries along with the facies associations interpreted in each
well suggests that there should be age-equivalent distal deposits in the basinward dip direction
of the Drunkards Wash deposits. The correlation panels also suggest that the two
parasequences that prograded the farthest basinward are PS2 and PS 3. Given the westward
dip of the strata, it is possible that the distal expression of at least some of these
parasequences may be present in the outcrop 15-20 km to the SE along the northern San

Rafael Swell escarpment.

The following chapter addresses the outcrops and their relationship to the subsurface data.
This is followed by a reconstruction of the palaeogeography and the building of reservoir

models.

39



Outcrop Study Chapter Four

4 Outcrop Study
Outcrops along the northwestern rim of the San Rafael Swell and around the Farnham Dome,

has been studied from Wellington in the north to Castle Dale further south. Lower Ferron
outcrops are referred to as the GPS way point which was taken at their location. They are
hence numbered WP1, WP2 etc. In addition to the Lower Ferron which lacks the upper
shoreface and coastal plain deposits at outcrop, work was also udertaken on the Upper Ferron
Sandstone in lvie Creek which allows study of analogues for these more proximal deposits
(Figure 4.1).
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Figure 4.1: Overview map of Castle Valley and the San Rafael Swell. Outcrop locations are indicated in bold

blue. Ivie Creek location to the south indicates where the Upper Ferron was studied.

Standard field methods were used to capture the lithofacies variation and parasequence
boundaries in outcrops. Parasequences boundaries were traced to establish the stratigraphic

relationship, both in the field and using Google Earth. In addition to the parasequences
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boundaries which occur as sharp topped ridges in the outcrop, several bentonite ash layers

were also identified and correlated in the field and into the subsurface.

4.1 Outcrop Analogue: Uppper Ferron
Outcrops of the Upper Ferron Sandstone were studied along Interstate 70 in the vicinity of

Ivie Creek. The outcrops contains more than 120 m of upwards coarsening offshore to fluvial
deposits representing three, west-east prograding parasequences that have been termed by
Anderson et al., 2004, as Kf-2-Ivie Creek-a , Kf-2-Ivie Creek-b and Kf-2-1lvie Creek-c from

the base upward.

The Kf-2 parasequence set represent a north-south trending, eastward prograding, wave-
dominated shoreline. Interstate 70 follows the depositional dip profile of this parasequence set
and have been logged from the offshore deposits near the informally named Ivie Creek
Amphitheatre and into the fluvial deposits of Kf-2-Ivie Creek-c. Figure 4.2, below, show the
top of parasequence Kf-2-1C-a, represented by shoreface deposits, and the overlying Kf-2-IC-
b.

The outcrops were studied with the intention of comparing the resulting log to that of the
cored well section in Drunkards Wash and using the geometries observed in the outcrops to
constrain the models. Additionally, the outcrop as a whole provides a good insight into the
relative distribution of facies associations found in shallow marine to fluvial depositional
environments. Although the Upper Ferron is considered a fluvial to wave dominated shoreline
with a prominent deltaic feature, the deposits are closely related to those found in the

subsurface Drunkards Wash field.

Non-marine deposits investigated at this locality were of particular interest due to the fact that
parts of the non-marine intervals in the RGU-1 cored section was absent. Coal seams in the
outcrop along 1-70 thus allowed for an improved understanding of the Cretaceous coal

deposits from the Ferron Sandstone Member.

Channel bodies and coastal plain deposits were also studied along with the upper to middle
shoreface facies associations occupying the interval between outcrops of the Lower Ferron

and the Drunkards Wash CBM-fields easternmost margin.
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Figure 4.2: Upper Ferron Sandstone outcrop along Interstate 70. Kf-2-lvie Creek —a, -b and —c, parasequences.
A) Non-marine deposits from the uppermost section of the parasequences. B) Channel sandstone cut into coastal
plain heteroliths. C) Vertical alteration of channel sands, coal seams (partly covered in scree) and coastal plain
heteroliths. D) Coal seams as they appear along the I-70. E) Upper to Lower shoreface depsits. F) Lower
shoreface to offshore deposits.

Garrison and van den Bergh (2004) carried out a similar sedimentological description in their
work on high-resolution depositional sequence stratigraphy, where they include a detailed
description of this outcrop.
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The coal seams show a yellow discoloration which is associated with the presence of sulphur.
The seams contain numerous cleats which are analogues to those along which the gas in
Drunkards Wash is produced. The cleats have an orientation close to perpendicular to the
outcrop face in a northerly direction, with a possible cross-cutting secondary cleat set that is
oriented close to perpendicular to the first set of cleats. These conjugate cleat sets appear as
vertical and horizontal secondary mineral growth surfaces in Figure 4.4 A) and B). Cleats are
described in the chapter concerning the geological setting, sub-chapter tectonic setting.
Elevated sulphur content in coals suggest an increased marine influence which in turn is
linked to marine flooding events (Holz et al., 2002) suggesting that the occurrence of the coal
is related to the parasequences boundaries as described for the nearby Blackhawk Formation
by Davies et al (2004). The sulphur content decreases upwards suggesting that while the
initiation of mire growth is allocyclic, the majority of the coal accumulated while the
parasequence prograded. Coal thicknesses measured range from a few tens of centimetres to
1,3 m and varied along strike.

Coastal plain heteroliths include interbedded crevasse splay sandstones and carbonaceous
siltstones that occur in close proximity to the coal seams, often with a gradual transition
through coaly silt and silty coal depending on the relative content of organic matter (Figure
4.4 D).
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Figure 4.4: A) Carbonaceous siltstone and coal. The coal seam show clear evidence for cleating, one of the
prime requirements for high gas recovery from the impermeable coal layers in Drunkards Wash. B) Sulphur is
found along with the coal seams in this outcrop. C) Relationship between coal layer underlying channel sands.
D) Carbonaceous shale found both below and underneath coal layers and channels, indicative of low-energy
coastal plain depositional environments.

In addition to the coal and heterolithic overbank deposits the non marine interval also inlcudes
channel belt deposits. Channel thicknesses recorded in outcrop range from 1 — 15 m. The
erosive base of these showed scours of up to 2,5 metre. Sedimentary structures include trough
cross stratification, current ripples and lag-conglomerates along base. Organic matter and
mud-clasts were found within the channel-sands. The channels showed a general upwards
fining trend.
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Figure 4.5: A selection of channel sandstone deposits from the outcrop at 1-70. A) Channel body in coastal plain
heteroliths, joint fracture planes cut the deposit. B) Amalgamated upwards fining channel sandstones. C) Vertical
trace fossils of the type Ophiomorpha found at the base of the channel deposits in B). D) Coarse sand in the basal
part of a channel body, rip-up mud clasts of the eroded coastal plain incorporated at its base. E) Large scale
through cross stratification. F) Current ripples.
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Figure 4.6: A selection of non-marine trace fossils and organic matter. A) Tree rootlet cut through channel
sandstone. B) Small-scale coal seam. C) Rootlets of plants in coastal plain heteroliths. D) Petrified tree trunk.

49



Outcrop Study

Chapter Four

4.2 Lower Ferron

Outcrops of the Lower Ferron extend from the Farnham Dome in the north to a locality east

of the town of Moore in the southern Castle Valley (Figure 4.7). These outcrops were

investigated as they were located close to the subsurface Drunkards Wash CBM-field and

because stratigraphic project suggests that they may be time equivalent strata.
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Figure 4.7: Overview map Lower Ferron outcrop locations in northern Castle Valley.
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4.2.1 Geological background to the Lower Ferron outcrops
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Figure 4.8: The original sequence stratigraphic panel for the Lower Ferron in Castle Valley, by Cotter (1975)

The Lower Ferron deposits were originally described by Cotter (1975) as a series of units
(Figure 4.8) that represent the earliest sandstone deposits within the Mancos Shale. The units
are capped by a regional transgressive surface that marks the end of the Lower Ferron
Sandstone deposition, the hyatti sequence of Gardner (1995a) and the onset of the Upper

Ferron Sandstone further south.
The units were described by Cotter (1975) as follows:

The Clawson unit is described as a poorly sorted, very fine grained sandstone with admixed
clay, silt and organic matter to sandy siltstone at some locations. It pinches out in Tununk
shale to the south, and its northern continuation is not determined. Large carbonate

concretions occur at different intervals within the Clawson.

The Washboard unit is lithologically similar to the underlying Clawson unit, but interbedded
with laminated sandstone. The unit shows an upwards coarsening trend in general towards
laminated to wavy sandstone. The most proximal part of the outcrop is located to the north,
based on an increased amount of laminated sandstone, and around Farnham Dome it encases
the Farnham unit. The limits of the Washboard unit is not defined, but traced south past

Moore, and southeast towards Cedar (near WP 62 in Figure 4.7).
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The Farnham unit crops out near Wellington were it lies within the Washboard unit. It
consists of very fine to fine sandstone with trough cross stratification and abundant shell

fragments and preserved valves.

Cotter acknowledges an offshore sand bar deposit, which he names the Woodside Unit,
stratigraphically lower than the shoreface deposits discussed above. The Woodside Unit was
not covered in this study as the focus is directed towards the deltaic part of the Lower Ferron.
Edwards et al. (2005) describes the Woodside Unit of Cotter in great detail and interprets the
deposits to be turbidites fed from the Lower Ferron shoreline in the vicinity of present day

Wellington.

The flooding surface capping the Lower Ferron interval is described by Garrison and van den
Bergh (2004) to consist of a condensed section of the Ammonite Prionocyclus hyatti
(Gardner, 1995a), this horizon marks the end of their hyatti sequence (Lower Ferron

Sandstone) The flooding surface is characterized by the distinct ‘cannonball’-concretions.

4.2.2 Lower Ferron outcrop description
Three upward coarsening successions interpreted as parasequences belonging to the Lower

Ferron, hyatti sequence, have been identified from the outcrop study. These are exposed in a
NNE-SSW trending escarpment which runs broadly parallel to the depositional strike
direction.

o —

Figure 4.9: Lower Ferron Parasequences and flooding surface along the escarpment southeast of Price. View
towards southwest. Note carbonate concretions in the uppermost sandstone ledge. The log named WP 30 cover
this outcrop interval.
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Due to the nature of the outcrop distribution, depositional dip sections are rare on the western
side of the San Rafael Swell. Edwards et al. (2005) studied the down-dip distal marine
equivalent for the Lower Ferron along the northern and eastern rim of the San Rafael Swell.
The deposits where described as channelized turbidites of a sustained hyperpycnal flow from
the Lower Ferron shoreline, and were identified by the authors as far south as Green River.
Depositional dip sections for the Lower Ferron are restricted by the westward dip of this
feature into the subsurface of Castle Valley, which limits these sections to narrow and
laterally restricted canyons and ravines not suitable for a sequence stratigraphic reconstruction
of the shoreline. The main sections on the western side of the SRS are oblique to depositional
strike section, allow study of changes in the paleoshoreline orientation.

The height of the Lower Ferron outcrops range from around 30 m in the northernmost
exposed Lower Ferron outcrop in the area around the Farnham Dome, to less than 6 m in the
south. In the southernmost record of these distal parasequences of the Lower Ferron, only one

parasequence could be distinguished directly beneath the regional flooding surface.

p—

Figure 4.10: Two upper parasequences of the Lower Ferron, as in Figure 4.9, seen from a different angle.
Carbonate concretions are visible as blocks atop the outcrop.
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In the area around Jackass Flat south of the small town of Cleveland, the parasequences
disappears and the only evidence for the stratal surface is the presence of large ‘cannonball’-
concretions in the Mancos Shale. Cotter (1975) also noted this disappearance and saw this
location as the southern limit of his Clawson Unit. Units attributed to the Lower Ferron
appear further south, although the exact nature of the correlation is contensious. This will be

discussed further below.

Figure 4.11: A) The surface expression of the Lower Ferron sandstone at Jackass Flat. The pronounced
escarpment observed further north is reduced to a gentle hill. Reoccurence of Ferron sandstones can be seen in
the far distance. B) Carbonate concretion sat in mudstone.
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Figure 4.12: Lower Ferron outcrop near Farnham Dome Railroad crossing, WP 65.

4.2.3 Bentonite layers
Sat in the Blue Gate Shale, overlying the upper hyatti sequence boundary, a layer of

bentonitic ash was identified approximately 25 m above the topmost parasequence of the
Lower Ferron. This layer was also identified in the logged core section, to be discussed in
more detail, at the same stratigraphic level relative to the Lower Ferron.

Obradovich (1993) dated the widespread volcanic ash layer overlying the Lower Ferron,

hyatti sequence, to be 90,5 Ma. This bentonitic ash layer is underlying the condensed section
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to which Gardner (1993) assigned the boundary between the hyatti and the ferronensis

sequence.

Figure 4.13:A) Bentonite layer, indicated by hammer, sat in Blue Gate Shale atop Lower Ferron outcrops near
Farnham Dome. B) Bentonite from the cored section in RGU-1, identified at the same stratigraphic level in the
core as in outcrop, approximately 25 meters above the Lower Ferron deposits.
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4.3 Facies Description Lower Ferron Outcrops
A summary of the lithofacies observed in the outcrops of the Lower Ferron and their

interpreted depositional environments is summarised in Table 4. This table includes

information gathered from both the Upper Ferron and the Lower Ferron.

s st g

Figure 4.14: Example of an outcrop location along the San Rafael Swell. WP 30. Two parasequences are visible
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Figure 4.16: A) Nodular weathering expression of highly bioturbated siltstone. B) 30 cm thick laminated to
swaley sandstone with sharp base to underlying bioturbated, nodular weathered siltstone.

Figure 4.18: A) Laminated fine sandstone. B) Ophiomorpha trace fossil towards the top of the fine sandstone
layer.
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Figure 4.19: A) Planar parallel lamination in fine sandstone capping the outcrop interval. B) Carbonate
concretion in upper part of outcrop WP 7. Popularly named cannonball concretions, these features are found
along the entire stretch of the Lower Ferron outcrop along the western rim of the San Rafael swell. Typically
situated at the top of the outcrops.

Figure 4.20: The Tidal Inlet Facies Association attributed deposits near Farnham Dome. Through cross
stratified sandstone A), and intact oyster shells both scattered (B) but also found along horizontal layers.
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4.4 Sequence stratigraphy
The outcropping part of the Lower Ferron is interpreted to comprise deposits that belong to

the distal part of a low-energy, wave dominated shoreline. They record the progradation of
three parasequences, the lower two parasequences are present across much of the area and are
progradationally stacked. The third is only present in the northern part of Castle Valley and is

back stepping.

The lower parasequence in outcrop rests conformably on the underlying Tununk Shale
Member and grades upwards initially into bioturbated siltstones, which are overlain by
bioturbated, very fine sandstone with wavy lamination to hummocky cross stratification. The
parasequence is interpreted to represent progradation from offshore to offshore transition zone
facies associations. The parasequence can be observed along the lower escarpment along the
Dinosaur Quarry road, east of Cleveland. It thins southward and dives into the subsurface at
Jackass Flat (Figure 4.21). Cotter (1975) noted a thin basal sandstone in his stratigraphic
correlation panel underneath his Clawson and Washboard units at locality G and F in Figure

4.8. which suggests a southern pinchout just east of the towns Clawson and Castle Dale.

SW Clawson Unit: 1776 m.s.| Lwr. Ferron: 1747 m.s.| N E

Figure 4.21: Overview mosaic overlooking the Jackass Flat. The Lower Ferron escarpment has thinned to
siltstone and shale, and make out gentle slopes rather than the northern escarpments. Distance between the two
arrows is approximately 11 km.

To the north this lowermost parasequence disappears into the subsurface before Washboard
Wash, the northern type locality of the Washboard unit.
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The parasequence is interpreted to re-appear southeast of the Farnham Dome due to local

uplift around the faulted Farnham Dome.

The second Lower Ferron parasequence to crop out along the western San Rafael Swell
escarpment shows a similar upward coarsening trend from offshore deposits through offshore
transition zone deposits into lower shoreface sandstones. It does, however, generally show
more amalgamated sandstones than the underlying parasequences suggesting a more
basinward progradation. In the north around WP 65 (Figure 4.22) this parasequences is
capped by a succession of tidal inlet deposits which overlie and cut into the lower shoreface

deposits. .

To the north this parasequence dives into the subsurface, and underneath the Book Cliffs. Its
southward continuation, assuming the stratigraphic relationship of Cotter (1975), Ryer (1994),
Fisher et al. (1993, Figure 2.8) and Barton et al. (2004), would extend to the escarpment east
of Clawson and continue further south to pinch out in the Tununk Shale Member, underneath
the Upper Ferron Last Chance Delta.

Overlying this second parasequence, there is a further upward coarsening unit, separated from
the preceding parasequence by a thick marine shale interval. The sandstones are thin and less
amalgamated than those at the top of the underlying pararsequence and consequently this
upper paraesquence is interpreted to illustrate a back-stepping stacking pattern. A bentonite
horizon illustrated in Figure 4.13 A) lies with the Mancos Shale 26 m above this upper
parasequences. This bentonite is correlated to the bentonite observed 25 m above the top of
the PS4 in the cored well section in RGU-1, described in the previous chapter. This provides

an additional datum for correlating the subsurface with the outcrop sections

The deposits of the Lower Ferron pinch out towards the southwest in the area around Jackass
Flat (Figure 4.22). This will be discussed further in the discussion chapter. The proposed
stratigraphic relationship between the outcrops of the Lower Ferron and their inferred
relationship to the Upper Ferron deposits is summarised in Figure 4.26, and will be discussed
further in Chapter 6.
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Upper Ferron
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Lower Shoreface
Facies Association

Regional Flooding Surface

Figure 4.22: Correlation panel of the logged outcrop sections after surface tracing.

4.4.1 Outcrop to Subsurface correlation
The three parasequences observed in the outcrop have been correlated to the four

parasequences observed in the subsurface in the Drunkards Wash CBM field (Chapter 3). The
outcrops lie to the east and SE of the CBM field and the progradation direction observed from
the subsurface data was towards the SE, hence the outcrops lie some 10+ km down
depositional dip of the CBM field. Parasequence 1 is observed to pinch out within the
subsurface data and is not present in the outcrops. Parasequence 2 and 3 are correlated to the
two stacked parasequences observed in the field. The tidal inlet observed at the top of the
Clawson unit is related to the maximum progradation of the clastic wedge and may be a distal

expression of the proposed sequence boundary, as proposed by Edwards et al. (2005).

Parasequence 4, which back steps in the subsurface data is correlated to the uppermost,

upward coarsening interval which is only local present in the outcrops in the north of the area.

The following schematic palaeogeographic maps summarise the combined outcrop and
subsurface observations and highlights a direct link between the coastal plain deposits of the

CBM field and distal lower shoreface deposits in the outcrops. This corresponds to the
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existing published models (e.g. Cotter 1975) which suggest a source for the Clawson and
Washboard units to the north and NE. The model suggests that the Lower Ferron shoreline
prograded as a more or less straight wave dominated shoreline from the northwest to the
southeast. The direction of shoreline progradation is possibly related to a well documented
bulge in the Turonian shoreline related to the ancestral Uinta uplift and as such the Lower
Ferron is a part of the Vernal Delta complex (Ryer and Lovekin, 1986), which is by this study
suggested to be a more pronounced depositional feature than previous suggested.

Progradation was followed by a transgression before ultimate abandonment and the

subsequent southern evolution of the Upper Ferron Last Chance Delta in the south.

Prograding
Lower Ferron
sandstone

Parasequence 1 Parasequence 2 Parasequence 3

Back-stepping
Lower Ferron
sandstone

Transgression of
the Lower Ferron
sandstone
Upper Ferron
develop west
and south (Last
Chance Delta)

Last Chance Delta
U. Ferron

Parasequence 4

Figure 4.23: Schematic palaeogeographic map suggested for the Lower Ferron Sandstone of Castle Valley, and
their paralic subsurface deposits. This map is based mostly on the outcrop studies, and the first subsurface
correlation panels. Upper Ferron shoreface is based on Henry and Finn (2003) and Anderson and Ryer (2004),
though only relatively positioned for comparison.
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4.4.2 Relationship to the existing lithostratigraphy
The existing lithostratigraphy for the outcropping part of the Lower Ferron is confusing and

somewhat contradictory. The lower parasequence of the present outcrop study is thought to
coincide with the Clawson unit of Cotter (1975). The sandstones are overlain by an interval of
finer grained material related to the overlying parasequences which corresponds to the
Washboard unit of Cotter (1975).

However, the proposed relationship between the units he names Clawson and Washboard in
northern Castle Valley does not fit with the conceptual model for the Lower and Upper Ferron
units towards the south. The Washboard and Clawson both thin and become more distal up to
Jackass Flat and then disappear. A unit also called the Washboard reappears south of Castle
Dale and thickens and becomes more sand rich towards the south before eventually thinning
and pinching out underneath the Upper Ferron to the south.

Further, the present study of the terminology of Cotter (1975), were he names the units after
type localities along the Lower Ferron escarpment is not descriptive of the parasequences
actually exposed there. For example, the unit he names the Clawson unit is the most
inconspicuous feature east of Clawson according to the present study. The terminology of
Ryer (1994), Kf-Washboard, is the best fit with the correlation panel presented above, as it
describes the unit of Cotter (1975) as a parasequence, and also notes that it is the most

basinward expression of the Lower Ferron.

The relationship between the various outcropping units, the Lower Ferron in the subsurface
and the Upper Ferron outcropping around lvie Creek is ambiguous. Visualizing the succession
in 3D is a useful way to full investigate some of the facies trends spatially and to relate the
various data sets. This relationship will be discussed further (Chapter 7) after the 3D model

has been described and presented.
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5 Model
Over the last decade, 3D geocellular modelling has, become a standard routine when dealing

with subsurface petroleum reservoirs, and is currently widely applied within the petroleum
industry. More recently the same software packages have also been used to study outcrops
(e.g. Howell et al., 2008; Enge and Howell, 2010). The software and workflows have
significant application for understanding sequence stratigraphic architecture and facies
distribution. There are no previous studies that include both subsurface and outcrop data in a
single model

The model presented in the current study was built using Schlumberger’s Petrel 2009
software. The goals of building the model were: 1) to understanding and visualise the
sequence stratigraphy and facies architecture within the Drunkards Wash CBM field; 2) to
facilitate detailed correlation between the outcrops and the subsurface; 3) to visualise a largely
unstudied clastic wedge in 3D, in order to further understand the detail of sediment transport
and stacking patterns. The data used for building the model were the extensive well and
outcrop log database and the surfaces mapped at outcrop. No seismic data were used since
none were available. The following chapter explains how the model was built, what data were
used and finally the results.

Given the high density of wells data within the proximal part of the model, it can be
considered highly deterministic and the extrapolated facies associations did not extend far

from each given input data.

5.1 Constructing the model
The model was constructed in Petrel and includes a 10 m Digital Elevation Model (DEM)

obtained from the USGS, well log data from the Utah Geological Survey and outcrop data

collected during the first field season in spring 2009.

The first stage was to recreate the topography of Castle Valley. 10 m DEM data were
downloaded from http://seamless.usgs.gov/website/seamless/viewer.htm. The data were
converted from a raster dataset to a text format through the use of ArcGIS, before they could
be imported to Petrel. This dataset provided the geographic framework for constructing the
model (Figure 5.1).
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Figure 5.1: Topography of northern Castle Valley, representing the model-framework and geo-reference frame.
No vertical exaggeration, contours every hundred meters. The ticks along the x-axis are spaced by 5km, along
the y-axis by 10km.

Quality control of the gridded surface was carried out by comparing the topography with
Kelly Bushing values for the wells and the location of the logged outcrops. The topographic
dataset proved an exact match with the vast majority of wells, and all logged outcrops. Some

Kelly Bushing values given in the datasets had to be edited manually.

The Drunkards Wash field contains over 250 wells. Fifty five of these were selected and
downloaded from the database of the state of Utah’s Division of Oil, Gas and Mining
(http://oilgas.ogm.utah.gov/index.htm 11/04-2010). The prerequisite for the chosen wells was
that some of these wells should follow the outer rim of the CBM-field, the remaining wells
where chosen to provide a representative sample. Well RGU-1 was selected because it

contains the cored section through the Lower Ferron.

All downloaded well logs had to be manually digitized before they could be imported to the
Petrel program as discussed previously. Outcrops logs were scanned and imported as jpg files
and later digitised. Facies association logs were created for all of the well logs and for the
outcrop sections. A zone log was also generated for the 4 parasequences for both the

subsurface and the outcrop sections as discussed in Chapter 3 and Chapter 4.
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5.2 Surfaces and Grid design
The parasequences boundaries were used as the surface framework for the model. The

surfaces were interpolated away from the data points (logs and outcrop locations) and
gridded. A number of gridding algorithms are available and after gridding the surfaces were
visually inspected to ensure that they matched the conceptual geological understanding. For
the purpose of this study a Convergent Interpolation algorithm gave the best results. Figure
5.2 shows the 5 key surfaces with respect to topography and associated well logs along an
oblique-to depositional dip profile (EW oriented J-section). Figure 5.3 shows the detail of the

surfaces within the model and how they relate to the wells.

jo

Figure 5.2: Key surfaces in an east-west directed cross section with vertical exaggeration 15. Well trajectories
and topography included for reference.
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Figure 5.3: Oblique aerial view of the top of parasequence 3, white contour lines every 100 meters.

Facies are represented in the model as grid cells. A number different grid designs can be used
to optimize the number of cells and the resolution. Given that no obvious onlap or truncation
were, expected a proportional grid with 6 layers for each zone was used. This produced a
typical vertical resolution of 2,5 m. The lateral resolution of the grid was 597 x 710 and the

grid was orientated to the north by default. The gird contains a total of 12.23 million cells.

5.3 Populating the Grid
Facies property modelling used the facies association (FA) scheme described in Table 5, in

the facies description chapter. On the basis of this scheme, a facies log was generated for each
well or outcrop section and then upscaled to the grid. The upscaling procedure is based on a
discrete modal average recording the most abundant facies within a cell. For the later facies
modelling it was necessary to generate two upscaled facies logs, one which included the
channels and coals with the coastal plain as “undifferentiated coastal plain” and one in which

these three association were kept separate (Figure 5.4).
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Table 5: Facies associations for the model building, their modelling method and appearance.

0 Offshore Grey Blue
1 Offshore Transition Brown Light Blue
Zone Truncated
2 Lower Shoreface Gaussian Deep Yellow | Yellow
_ with trends
3 Upper/Middle Shoreface Yellow Orange
4 Coastal Plain Green Green
5 Channel Stochastic Object
) Red
Modeling
6 Lagoon N/A Pale Light Blue
! Coal Indicator Kriging Black
8 Bakground Aiding Stochastic )
) _ White
Object Modeling

Three different property modelling techniques were used to capture the geometries of the
different facies associations. The detail of these is described below.

5.3.1 Shoreface Facies modelling, Truncated Gaussian with trends:
Parallel belts of facies are typically modelled using a property modelling tool which is based

upon a series of “linear expectation planes” with added Gaussian noise. The plane represents
the mean position of the facies boundary and the noise provides a stochastic representation of
the bed scale inter-fingering (see MacDonald and Aasen 1994 for a full description). The
approach was used to model s series of belts which included the undifferentiated CP, the USF,
LSF, OTZ and offshore. The thickness of the USF, LSF and OTZ were determined from the
upscaled geophysical well logs and the mapping of the facies tracts. The Undifferentiated
Coastal plain and Offshore facies associations populated the remaining facies property model

in the landward and basinward direction respectively. The trend option allows the user to
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define the limits of each facies belt according to the predicted shoreline trend. In the case for
the model and Drunkards Wash in general the trend was set to northeast-southwest to NNE-
SSW. The Gaussian simulation calculates the relative position of each FA according to user-
defined parameter, resulting in an interfingering, prograding distribution of FA. The input
parameters include general trend for aggradation angle, whether the shoreline is
progradational or retrogradational. Quality control was important to ensure that the trend input
did not override the well log data input. A few re-runs of the property modeling was necessary

in addition to some manual editing at small scale.

X-axis
488000 a9z000 496000 500000 504000 508000 512000 516000 520000 524000 528000 532000 536000 540000
Y 1 1 I ¢ [ i 2
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*

Figure 5.4: Facies belt modelling, here represented by the top of parasequence 2. Facies codes differ from that
of the final, merged model as explained in the text.

5.3.2 Coal seam modelling, Indicator Kriging:
Indicator Kriging was used to model facies properties for the coal seams. This is a

deterministic approach for kriging discrete properties that prevents over interpreting the
upscaled well logs from input. The input data is honoured in terms of position of coal layers
close to the wells and the relative percentage of coal within the layered zones. The input data
is extrapolated using kriging with manually set variance and distribution. This produced a
series of well constrained laterally continuous coal seams that honoured the observations in
the wells.
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5.3.3 Fluvial Channels, Stochastic Object Modelling:
Stochastic object based modelling was employed for the fluvial channel bodies. This approach

places objects with a pre-define shape (e.g. channel) into a background. The proportions of
object vs background are defined by the user and the object dimensions and orientation are
drawn stochastically from a user defined distribution. The position is random, but can be set

to condition to the observation in the wells.

The main input for the modelling was the upscaled well logs which provide data on the
relative percentage of FA and the distribution of individual channel sands. The input
parameters determining the shape of the channel body was set according to channel data from
similar environments including observations made in the outcrops of the Upper Ferron and
from the published literature (Reynolds, 1999; Gibling, 2006). The parameters for channel
body morphology in Petrel include: orientation, amplitude, width, height and the drift for each

of these. Input data allowed for min, max and mean values for each parameter, as shown

below.
Chaninel ﬁﬁy”""tjﬂ Armplitude
‘-.-'-.-"éﬁ.-'eler:ugth
Drift [0-1] | Min Med/mean | Max/std
Orientation | 0,2 110 120 130
Amplitude | 0,2 600 800 1000
Wavelength | 0,2 10000 15000 20000
W idth
Interzection ﬁ Thickmess
WIS
Drift [0-1] | Min Med/mean | Max/std
Width 0,2 150 300 450
Thickness | 0,2 1 3 15
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5.3.4 Merging Facies Properties
Given that different facies modelling tools were used to model different parts of the system it

was then necessary to merge the realisations into a final model. This was done using the
merge facies tool. Firstly the facies associated with the coastal plain environment were added
together, the channels were set to truncate the coal seams were these coincided. The resulting

property modelling may be viewed in Figure 5.6.

488000 492000 496000 500000 504000 508000 512000 516000 520000 524000 528000 532000 536000 540000
it 1 1 | i !
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Figure 5.5: Fluvial and coal facies combined with the background undifferentiated coastal plain facies. Top
parasequence 2.

These specific coastal plain facies were then merged with the CP, from the Truncated
Gaussian simulation. In this case the coal and channels replaced the undifferentiated CP but
not any of the other facies. The final result is a model that includes 3 facies (coal, channel and
background) in the coastal plain and then a series of parallel belts in the marine setting.

This stepwise approach enabled the modelling of facies with different geometries. Howell et

al. (2008) describe a similar workflow for shallow marine reservoirs.
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Figure 5.6: Fluvial facies set to replace the coastal plain facies from the initial facies belt modelling step. Top
parasequence 2.

5.3.5 Faults in the model interval
The dense grid of well data is excellent for generating the surfaces, however it is difficult to

identify and predict the position of faults, unless the wells are cut or if the faults significantly
displace the layers. Seismic data enable the more accurate mapping of faults but were not
available to this study. Seismic data is described in the literature on the Drunkards Wash
CBM-field. However, only one article exemplifies such a dataset. The poor quality of this

seismic image does not allow for reliable interpretation at reservoir scale (Figure 5.7).
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Figure 5.7: Seismic line, as described by Lyons (2001). URL:
http://www.aapg.org/explorer/geophysical_corner/2001/12gpc.cfm

Given the goal of this study was to investigate the stratigraphy architecture a decision was
made to ignore the structures, although a couple of small (c. 10m) faults were observed at
outcrop. Figure 2.5 provides an overview of earlier work on the Drunkards Wash tectonic
features. A brief review of inferred fault surface locations within the model is given in the

following results chapter.

Other short comings include the lack of discrete crevasse splay deposits in the model because
of the grid resolution and the potential for extending the model further into adjacent CBM
fields, neither of these would significantly alter the conclusions that are presented in the

following chapter.
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6 Results from model building
Representing a 3D model on a 2D page is challenging. This chapter includes a series of screen

shots which include 3D views, maps of surfaces and cross sections which are used to support
the observations described and the discussion in the subsequent chapter. The model is
included on a DVD in appendix Il. Given that it is difficult to include a scale on a view of a
3D volume it should be noted that the area covered by the DEM is 61 x 67,5 km. The
geocellular model covers an area of 28 x 31 km and the Lower Ferron interval is 90 m thick
on average. The maximum depth of burial, seen where the model diverges the most from the
DEM is 1843,31 m.

6.1 Summary
The model (Figure 6.1) shows a westward dipping package of strata which dives into the

subsurface at a tectonic dip of 1-3 degrees and then flattens underneath the Wasatch Plateau
away from the SRS. Minor bulges in the model are most probably related to small scale
reverse faults documented by Burns and Lamarre (1997, Figure 2.5). No apparent repeated
sections have been observed in the well data, but more data from more closely spaced wells
would offer a good restraint on the fault distribution throughout the CBM-field. The faulted
appearance becomes clearer when the vertical exaggeration is increased which is to be

discussed in a following sub-chapter.

Figure 6.1: The model and its spatial relationship to the topography in Castle Valley. Westward dip away from
the San Rafael Swell, view looking north-northeast. Vertical exaggeration is X3.
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Figure 6.3: Entire model, viewed from the Wasatch Plateau looking south. Ferron Sandstone Member deposits
continue underneath the Wasatch and are thought to be the source rock for conventional HC-production from
sandstone reservoirs produced from the Clear Creek field on the Plateau. Vertical exaggeration X3.

The thickest part of the model occurs where the shoreface intervals of the 4 parasequences are
stacked. The model thins slightly landward, due to coal compaction and significantly
basinward due to facies thinning. The model ranges in thickness from about 5-30 m in the
outcrop section at the most distal reaches to 90 m. Localised thickening to around 140 m is

attributed to post-depositional tectonic events.

6.2 Geological features:
Individual parasequences are up to 60 m thick and the facies belts within them are up to 4 km

wide (Figure 6.4) The shorelines follows a relatively straight, north-northeast to south-
southwest trend, in accordance with the conceptual model. Lateral variations along the strike
of the shoreline are highlighted in the areas where the model is conditioned to a lot of well
data: Away from the wells the boundaries are extrapolated and should be treated with more

caution.
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6.2.1 Facies stacking patterns and stratal architecture
Various cross sections (in the I- and J- direction — SN and EW respectively) through the

model show the facies stacking patterns and stratal architecture. Given that the thickness to
length ratio of the model is relatively low, the geometries are difficult to display in a complete
cross-section. Some of the cross sections are displayed with a simbox-grid. The simbox option
is a way to simplify the 3D-model so that it is uniformly flattened, faults (if any are present)
are neglected and the depth of the model is averaged. The result is a rectangular cube that
does not correspond with the well log depth (Figure 6.8), but offer a unique way to view and
evaluate the cross sections. For the current model this results in the removal of the post-
sedimentary deformation and tilt of the Lower Ferron, which enables a view into how the
sedimentary package would have looked like at the time of deposition. It is important to bear

in mind that these views of the model are flattened.
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The following figures present the model in a simbox grid. In the three immediately following
figures, I-Section view, an option to scroll through the cross-sections of the model is briefly
portrayed.

Figure 6.8: I-section Simbox view from east (A) to west (C).

84



Results from model building Chapter Six

The various cross sections and maps highlight that the stacking patterns the progradational
stacking patterns observed in PS1-PS3 are captured in the model. The models also show the
back-stepping to aggradtionally stacked PS4 at the top of the Lower Ferron. Note that PS4
contains a high proportion of channel bodies. This model differs from that proposed by Henry
and Finn (2003), who suggested that sandstone in PS4 was all comprised of a transgressive

shoreface deposit.

The model also highlights the distribution of coal within the model. The major coal intervals
are associated with PS2 and PS3. Coal layers are almost completely absent in the upper part
of the model, where the channel sands dominate. This suggests that the rate of

accommodation may have been too great for coal formation (Diessel et al., 2000).

6.2.2 Fault surfaces
As already mentioned, thrust faults are reported in the Drunkards Wash CBM-field (Tripp,

1989; Burns and Lamarrre, 1997; Montgomery et al., 2001). While these were not modelled
discreetly, their location can be inferred from rapid changes in bed dip and local thickness
changes within the model (Figure 6.9). A number of fault surfaces were created (Figure 6.10,

Figure 6.11 and Figure 6.12) although not included in the final models.
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Figure 6.9: J-section, west-east, showing the prograding stacking patten of the Lower Ferron. Dip is to the west,
away from the San Rafael Anticline. Vertical exaggeration is X10. Individual parasequences dip basinward. The
profile at this exaggeration suggests the relative location of a fault, evident from the kink in the profile.

......

Figure 6.10: Extrapolated fault surfaces in relation to an unfaulted 3d grid. Fault surfaces are picked from
neighbouring wells. Reverse faulting. Vertical exaggeration X10.
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Figure 6.11: Fault surfaces without 3d-model, shows relation to well input. Vertical exaggeration x10.

The fault surfaces derived from this model are low angle thrust faults. The offset could not be
quantified, but previous work has recorded offset of about 45 meters (Burns and Lamarre,
1997).

£t
508000

Figure 6.12: Gently dipping fault surfaces as above, vertical exaggeration x3.
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6.3 Correlation of the subsurface and the outcrop
The model includes data that have been taken from both the subsurface and the adjacent

outcrops. Using the model it is possible to visualize and QC the proposed relationships
(Figure 6.13). There model illustrates that there is good conformity between the geocellular

model, the field observations, and our conceptual understanding of shoreface architecture.

Figure 6.13: Oblique aerial view of the Lower Ferron Drunkards Wash deposits exposed underneath a
transparent topography. The bright colours along the eastern margin of the model show where the Ferron model
intersect the surface, and predictive position of outcrops.

6.3.1 Implications of the model for understanding the Sequence Stratigraphy
Visualising the strata in 3D has implications for understanding the spatial relationships of the

different stratigraphic elements. The present model suggests that the subsurface Drunkards
Wash CBM-field is readily correlated to the outcrops in the northern part of Castle Valley.

As discussed previously the lowermost parasequences pinches out within the CBM field and
does not extend to the surface. The three uppermost parasequences all extend to the Lower
Ferron (Clawson and Washboard) outcrops which is a new correlation, not previously
proposed by former workers (e.g. Cotter 1975; Ryer 1986; Henry and Finn, 2003)
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To highlight this correlation some of the correlation panels presented previously were
extrapolated schematically to the logged outcrops to illustrate their relation.
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Figure 6.14: Northern correlation panel, extrapolated to WP 65.
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Figure 6.15: Second correlation panel from north, extrapolated to WP 33.
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Figure 6.16: Third correlation panel from north, extrapolated to WP 60.
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Figure 6.17: Fourth correlation panel from north, extrapolated to WP 7.

Figure 6.18: Fifth correlation panel from north, extrapolated to WP 58.
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Figure 6.19: Sixth correlation panel from north, extrapolated to WP 56.

The model and correlation differ from that proposed by Henry and Finn (2002) who did not
correlate the subsurface with the outcrops and did not recognize the upper most, back stepping
parasequence. Parasequence 4 highlights some unusual geometries which are evident from the
model isochore maps (on the following page) and cross sections from the model. Firstly the
PS appears to show a change in shoreline orientation. The southern panel (Figure 6.20) shows
a more aggradational stacking pattern, suggesting that the shoreline may have shifted closer to

N-S. The implications of this are discussed in the next chapter.
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Figure 6.20: Southernmost correlation panel (G-G”) and its schematic extrapolation to an arbitrary point. The 17
km are measured to the southernmost outcrop (WP94), its implications are discussed further in the following
chapter.
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There is also a marked thickening of PS 4 towards the centre of the model (Figure 6.21),
which is expressed as a thickening of the individual facies tracts. It is common for
transgressive systems tracts parasequences to illustrate a more steeply climbing shoreline
trajectory which results in thicker facies tracts that do not prograde as far basinward. The
along strike thickness changes occurs over too short a distance to be associated with changes

in flexural subsidence (c. 10km).

Vo

t

Figure 6.21: Isochore representation of the parasequences described above. Light contours every 2 meters,
heavy contours every 10 meters. Colour scheme illustrates the range and magnitude of thickness differences.
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6.3.2 Stratal archictecture, palaeogeography and sequence stratigraphy
A series of plan view screen grabs from the different zones within the model illustrate the

mapped palaeogeography (Figure 6.22 and Figure 6.23).These maps show progradation of a
series of broadly parallel facies belts towards the SE. This is in accordance with the regional
palaoegeographic model and a north-westerly source from the Vernal delta complex as

discussed in Chapter 2.
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Figure 6.22: Progradational stacking of parasequences 3 and 4 (uppermost) in plan view. Layers in Petrel
corresponds roughly to clinoforms. Tidal flat/Lagoonal facies have not been clearly defined, and remains as an
artifact from the model building.
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Figure 6.23: Progradational stacking of parasequences 1 and 2 (lowermost) in plan view. Layers in Petrel
corresponds roughly to clinoforms. Tidal flat/Lagoonal facies have not been clearly defined, and remains as an
artifact from the model building.

The map views of the model facies, conditioned to the well data and outcrop show a detailed
palaeogeographic evolution. While the overall trend is consistent with the models of Ryer and
Lovekin (1986) there is a level of detail that would be extremely difficult to capture using
conventional maps and sections. This detail includes suitable changes in the width of facies
belts and the presence of a series of minor embayments and kinks along the shoreline that are
comparable to the variability seen along modern coastlines.
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The model also has implications for the larger scale correlation between the Lower Ferron in
the subsurface, the Clawson and Wash Units and the Upper Ferron to the south. This is

discussed further in the following chapter.
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7 Discussion
The 3D geocellular model constructed for this study illustrates the application of modelling to

improve understanding of sequence stratigraphy. The 3D model provides more insight into
facies stacking patterns than, more widely applied, 2D representation such as correlation

panels and maps.

The model shows a progradational to aggradational to backstepping, ascending shoreline
(Helland-Hansen and Martinsen, 1996) divided into four distinct parasequences. The
lowermost parasequence pinches out in the subsurface, while the three uppermost, prograding
to backstepping shorelines are visible at outcrop-level, where they manifest themselves as the
Clawson and Washboard units defined by Cotter (1975). The model illustrates how these

parasequences and the facies within them are distributed.

Based on the model, this study has shown that the subsurface interval in the Drunkards Wash
CBM-field has its down-dip marine equivalent exposed along the western escarpment of San
Rafael Swell in Castle Valley. The relationship of these deposits to the distal deposits that
occur beneath the Upper Ferron outcrops to the south will be discussed in more detail below.
Katich (1953) suggested that they were time equivalent and the lower Ferron shoreline was
embayed, this was later disproved by Ryer and McPhillips (1983). Although not directly
stated, such a model would suggest that further coal deposits lie beneath the Wasatch Plateau
in the south east. Other authors such as Thompson et al. (1986) have suggested that the
outcropping Clawson and Washboard units represent the south extent of long shore
transported plumes derived from the north. The correlation of the outcrop and the subsurface
undertaken in the present study and the relationship between the upper and lower Ferron are

discussed in the following section.

7.1 Sequence stratigraphic relationship
During the course of the current study two possible sequence stratigraphic models have been

considered. Both of these consider the Lower Ferron as a depositional system with a non-
marine portion in the subsurface CBM field and more distal deposits in the outcrop. The key
issue to be discussed here is the detail of the correlation between the outcrop and the

subsurface and the correlation of the outcropping units from north to south.

96



Discussion Chapter Seven

One of the proposed sequence stratigraphic models has already been described in the outcrop
chapter (Figure 4.22). That model suggested that the upper and lower Ferron are two distinct
and unrelated depositional systems. An alternative model (Figure 7.4) suggests a greater
degree of linkage between the upper most parasequence in the Lower Ferron which is

retrogradationally stacked and the overlying initiation of the Last Chance Delta in the south.

7.1.1 Alternative Outcrop Correlation
The uppermost parasequence modelled in the subsurface Drunkards Wash Field (PS4) is

correlated to the outcrop where it has been extended south to the escarpment near the town of
Clawson (Washboard Unit of Cotter, 1975, and Kf-Washboard of Ryer, 1994). This locally
back-stepping parasequence to the north (PS4) is interpreted to be accompanied to the south

by a regressive part of the same parasequence.

From the town Castle Dale and southward this upper parasequence becomes the most
prominent feature of the Lower Ferron and is reported as far south as Mesa Butte south of I-
70 by Anderson and Ryer (2004). The more proximal expression of the shoreline east of
Castle Dale and Clawson and southward is the basis for interpreting PS4 as locally
transgressive in the north (seen in the well logs of Drunkards Wash), with a regressive

contemporaneous component to the south.

In the correlation panel in chapter four, PS3 was correlated to that escarpment, in accordance
with the published literature. Such a correlation implies a more sinuous shoreline, a more
rapid transgression and a close to complete reversal of depositional direction of the Lower
Ferron. If the escarpment is related to PS 4 then a series of thin basal sandstones at localities
F and G in Cotter (1975, Figure 4.8) would link to PS3, suggesting that PS3 pinches out
towards the south. This is more consistent with the depositional trends and facies belts width
suggested by the model, especially the occurrence of the proximal tidal channel deposits of
the Farnham Unit of Cotter (1975) to the north of the SRS.
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Figure 7.1: The proposed stratigraphic relationship for the Lower Ferron sandstone in outcrop.

This new model suggests a southward shift of the depositional system between PS3 and PS4
and a greater degree of linkage between the deposits of the Lower and Upper Ferron with a
gradual southward migration of the main depositional system, rather than two discreet

systems with highly sinuous shorelines and long distance, geostrophic currents on a shelf.

7.1.2 Lower Ferron terminology and lithostratigraphy
The previous work carried out by Cotter (1975) identified the lithological units of the Lower

Ferron outcrops and placed them in a stratigraphic relationship. The current study suggests
that the existing lithostratigraphy is ambiguous and inconsistent. The current lithostratigraphy
includes 2 (sometimes 3) units in which the Washboard overlies the Clawson. The Washboard

locally includes a third unit “the Farnham”.

The Washboard unit alters between proximal to distal deposits over short distances although
there is an overall proximal to distal trend towards the south for both the Clawson and

Washboard. This trend is then reversed in the Washboard south of the town of Clawson where
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the Washboard unit become more proximal and extends southward as far as 1-70. The lower

Clawson unit pinches out in the Tununk shale near the town of Emery.

The correlation panel in this chapter suggests that in the north the Clawson is equivalent to
PS2 and the overlying Washboard is equivalent to PS3. The Farnham unit which includes the
tidal channel complex within the Washboard is a possible expression of the sequence
boundary at the stratigraphic turn-around between progradation and retrogradation (c.f.
Edwards et al., 2005).

To the south, the main escarpment east of Castle Dale and the town of Clawson is the distal
expression of PS4 rather than PS3. In that case the lithostratigraphic Clawson unit is now
assigned to PS3 and the Washboard is PS4. PS2 does not extend this far south. This revised

correlation has implications for understanding the stratigraphic evolution of the area.

SE NW

Top Flooding Surface

Parasequence 3

Figure 7.2: Lower Ferron parasequences in northern Castle Valley. Parasequence boundary in red, transgressive

top flooding surface in blue.
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A comparison between the parasequences of the present study, and the Lower Ferron

lithostratigraphy is summarised in the table below:

Table 6: Summary of the interpreted parasequences and their relation to the previous work.

PS1 N/A N/A N/A Progradational
PS2 Clawson Kf-Clawson | Washboard | Progradational
PS3 Progradational to

Wash Farnh .

ashboard/Farnham K- Aggradational
Washboard

Clawson .

PS4 W Aggradational

Washboard
Back-stepping

7.2 Evolution of the Lower Ferron depositional system
This study has suggested two significant changes to the understanding of the Lower Ferron

depositional system: 1) the updip correlation of the outcrops to the subsurface deposits in the
CBM fields and, 2) the along strike re-correlation of the outcrops and the southward migration

of the depositional system.

The old conceptual model states that the Lower Ferron sandstone was deposited during rapid
regression over an area of low subsidence rates. The non-marine, coal bearing deposits above
this thin, basal sandstone are part of an aggradational to retrogradational depositional system
related to the Upper Ferron sandstone, implying that the 30- 60 meter thick Lower Ferron
sandstone deposits are traceable from the outcrops along the San Rafael Swell to the
subsurface beneath the Wasatch Plateau without any associated paralic deposits. This
supposed rapid regression must then be accompanied by a rapid transgression that quickly
ended the widespread Lower Ferron depositional cycle and marked the onset of Upper Ferron
coal bearing deposits. The correlation panel constructed by Henry and Finn (2003) for the
U.S. Geological Survey exemplifies the errors that follow the conceptual model originally
envisaged for the Ferron Sandstone Member. The first occurrence of sandstone is correlated
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over a broad area and does not interfinger in the palaeolandward direction, as one would
assume for such a depositional system. Additionally, the correlation panels presented therein
must assume much broader facies tracts to account for the prograding distance than what is

proposed in the present study.

Rather than abrupt changes in style and direction of deposition, this study highlights the
possibility of a more pronounced Lower Ferron depositional system, including a continental
depositional environment with coal accumulation. This model is supported by the improved
correlation that is facilitated by the 3D model. Furthermore the facies tract thicknesses and
belt widths suggested by this new depositional systems model are consistent with those
observed from other Upper Cretacoeus systems in Utah (Howell and Flint 2003; Hampson
and Howell 2005; Sgmme et al 2008 and others).

The re-evaluation of the along strike correlation of the outcrops also has implications for
understanding the relationship between the Lower and Upper Ferron systems. The study of
the Lower Ferron suggests that the system migrated southward through time and that PS4
represented a transition from a shoreline system linked to the Vernal Delta Complex in the

north to the younger, Upper Ferron, Last Chance Delta to the south.

This study offer means for understanding the Lower Ferron as a distinct part of the Vernal
deltaic complex, non-contemporary with the overlying Last Chance Delta of the Upper
Ferron, but with a gradual transition between them. Whereas previous work have interpreted
the Lower Ferron to be a thin, seaward stepping sandstone package with associated southward
distribution of marine shelf sands by geostrophic currents, the current study suggests that the
Lower Ferron has a non-marine equivalent in the Drunkards Wash, Helper Field and most
likely the Buzzard Bench CBM fields, and a gradual transition to the Upper Ferron through
autogenic cyclicity. Such a shift may be autocyclic, related to the switching of fluvial input
points, it may also be explained by the uplift of an ancestral SRS/Farnham Dome proposed by
Edwards et al. (2005), similar to the mechanism proposed by Ryer and Lovekin (1986) to

explain anomalous bulges in the Vernal shoreline.

The palaeogeographic maps (Figure 7.3) are updated from those presented chapter four
(Figure 4.22). The notable difference is the southward bulge in the shoreline of PS4. This is a
plan view representation of the proposed correlation panel presented above.
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The figure below illustrates the relative relationship between the Upper Ferron and the newly

proposed stratigraphy for the Lower Ferron:

Upper Ferron

— 11,5 km | 45km | 2km | 45km  [25km|2km[65km| 9km | 2km |

Parasequence 3

Parasequence 2

Lower Ferron

Offshore Transition Zone
Facies Association

Lower Shoreface
Facies Association

Regional Flooding Surface

Figure 7.4: The alternative explanation for the stratigraphic relationship between the Upper and Lower Ferron.
Schematic outcrop model not to scale, Upper Ferron stratigraphy by Fisher et al. (1993, Figure 2.8).

7.3 Future work
There are three key aspects of this study that could be improved with further work.

1. Mapping of faults within the CBM field. This could be achieved by using more of the
available well data or having access to the seismic data. While this would not change
the understanding of the stratigraphic relations but it would add to the utility of the

model.

2. During the course of the work, numerous bentonites were observed in the field.
Sampling, mapping and geochemical correlation of these would greatly improve the

confidence in the new correlations

3. There are numerous intervals associated with very large “cannonball” concretions.
There is significant scope for petrographic and isotopic work to understand their

genesis and correlation.
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7.4 Conclusions

The Drunkards Wash CBM-field was successfully modelled from geophysical well
logs, core and outcrop data.

The model yielded four distinct parasequences comprising the Lower Ferron. Three of
which were proven to extend to the surface of northern Castle Valley, where they crop
out along the San Rafael Swell.

The combined data presented in this study suggest that the Lower Ferron was a more
prominent feature during its deposition than previously assumed.

The present study offers a different explanation for the southward extent of the Lower
Ferron sandstone, and a more dynamic evolution from the northern Vernal deltaic

complex to the southern Last Chance Delta.
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Appendix I
This appendix includes information mentioned in, or relevant, to the thesis. Petrel files, las-

files, pictures, correlation panels, core log and maps are all included in Appendix Il on a
DVD.

In the following pages one will find:

e Well correlation panels, depositional dip and strike

e Overview maps of the correlation panels and the extrapolated correlations

e Well correlation panels extrapolated to outcrop

e Statistics from the final model

e Well log information table containing the specs for the well logs included in the model

e Waypoint information table that accounts for the various localities visited in the field,
listed with UTM-coordinates and purpose of locality.

e Outcrop logs, either raw or processed in CorelDraw.

Well correlation panels

Well correlation panels NW-SE (depositional dip), panels ordered from north to south:
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Correlation Panels NNE-SSW (depositional strike), panels ordered from east to west:
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Overview Maps Correlation panels

Overview map Correlation Panels
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Correlation panels extrapolated to outcrop
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Model statistics

Statistics for Merged3 (Unfiltered)

Code Name % N Intervals Min
0 Offshore 12.53 874614 124845 0.0 (1)
1 0Tz 12.50 872318 242026 0.5(1)
2 Lower Shoreface 11.18 780123 298179 0.4 (1)
3 Middle/Upper Shoreface 18.66 1302618 429891 0.2 (1)
4 Floodplain 29.22 2039050 640660 0.1(1)
5 Channel 11.93 832840 409549 0.2 (1)
6 Lagoon/Embayment 0.00 1 1 6.4 (1)
7 Coal 3.97 277211 172427 0.2 (1)

Statistics for Merged3Final

AXxis Min Max Delta

X 498282.00 528132.00 29850.00

Y 4354283.00 4389783.00 35500.00

Z 811.03 2654.33 1843.31

Description Value

Number of properties:

In this folder: 5
Includes sub

folders: 5

Cells (nl x nJ x nK) 597 x 710 x 29

Total number of cells: 12292230

Total number of cells

in filtered area: 8092778

Unit:

Name Type Min Max Delta N

Facies [U] Disc. 0 8 8 8092819

General discrete [U]  Disc. 0 4 4

Coal Disc. 7 8 1

CoastalPlain Disc. 4 8 4

Merged Disc. 0 7 7 8092830

130

Mean

13.4 (7.01)
8.7 (3.6)
8.7 (2.62)
14.4 (3.03)
10.5 (3.18)
5.1 (2.03)
6.4 (1)

5.1 (1.61)

Mean Std Var Sum

7

3

1

2

Max Std
33.3(21) 8.092
412 (12) 6.714

54.4 (9) 6.56
96.4 (17) 13.72
96.5(24) 11.86
48.0 (18) 4.121

6.4 (1) 0
28.4(10) 3.145
1 59654378
4 21632904



Well log information table
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Waypoint information table

The table includes the most notable localities covered during the field work in Utah, ‘missing’
waypoint-number include start/end localities of logs after traversing (minor significance),
bentonite that have not been sampled, localities of overview sketches and pictures. The
strike/dip measurements were carried out to test for any eventual folding in the area of Jackass
Flat, where the distal expressions of the southern Lower Ferron sandstone deposits disappear
into the subsurface. These measurements did not yield any results to suggest such a feature, as
expected, and are therefore not included in the thesis.

71522233|4360161 1702 | Logged outcrop

16537301 | 4369920 1638 | Bentonite sampling

17537297 | 4369906 1637 | Bentonite sampling

18537334 | 4369950 1643 | Bentonite sampling

23|537190| 4369634 1628 | Logged outcrop Lower Ferron

26535754 | 4368409 1688 | Logged outcrop Lower Ferron

291535727 | 4368654 1690 | Logged outcrop Lower Ferron

30(535689 (4368657 1689 | Logged outcrop Lower Ferron

331526343 (4367904 1642 | Logged outcrop Lower Ferron
431477072|4295152 1807 | Logged outcrop Upper Ferron (lvie Creek/I-70)
56520131 (4354378 1747 | Logged outcrop Lower Ferron

58521309 | 4358705 1716 | Logged outcrop Lower Ferron

60| 525504 | 4365932 1663 | Logged outcrop Lower Ferron

65 (5280394373673 1668 | Logged outcrop Lower Ferron

66527106 | 4374607 1619 | Bentonite sampling

68 (524867 (4363717 1677 | Logged outcrop Lower Ferron

69|517599| 4351728 1758 | Bentonite sampling: highly weathered
70|517385|4351911 1753 | Bentonite sampling: highly weathered

77 (5539104354730 1714 | Bentonite sampling: highly weathered

84 (526794 (4375171 1661 | Bentonite sampling: highly weathered
87517405 |4351382 1772 | Strike-dip measurement Jackass Flat: 198/08
88515807 | 4349656 1780 | Strike-dip measurement Jackass Flat: 210/05
89517940 | 4348640 1785 | Strike-dip measurement Jackass Flat: 195/10
90| 5182574348632 1782 | Strike-dip measurement Jackass Flat: 249/12
91|517573 | 4348000 1788 | Strike-dip measurement Jackass Flat: 210/12
92| 515427 | 4345534 1776 | Strike-dip measurement Jackass Flat: 243/07
93 |512555|4345851 1780 | Strike-dip measurement Jackass Flat: 223/07
94512490 | 4345495 1774 | Logged outcrop 'Clawson' + Strike/dip: 240/07
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Outcrop logs and raw log RGU-1
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Figure A.5: A) WP 7, B) WP 26, C) WP 30
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Figure A.6: A) WP 33, B) WP 56, C) WP 58
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Figur A.7: A) WP 60, B) WP 65, C) WP 68, D) WP 94
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Figur A.8: A) lvie Creek, B) RGU-1 (Depth given in feet)
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