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Introduction

We begin with historical remarks. The research in quasiconformal maps goes back to Lavren-
tiev’s work in 1930s. The first monograph on quasiconformal maps was made in 1966 by
Ahlfors [1]. Reshetnyak [38] in 1967 introduced space mappings with bounded distortion in
the Euclidean space R" of higher dimension n > 3. Mappings of this kind are not necessary
homeomorphic and represent a nice generalization of the classical notion of analytic functions.
Systematic study in this area was initiated by Reshetnyak, we refer the reader to monographs
[59!160] and references therein. Simultaneously, the authors of [S1] introduced the definition of
quasiregular mappings. Later it was proved that the analytical definition of the mapping with
bounded distortion and the geometrical notion of quasiregular mappings leads to the same map-
pings in Euclidean space R".

The Reshetnyak theorem, see, for example [59, Chapter 3 section 5], which exhibited a re-
markable relation between quasiregular maps and elliptic equations, allowed to make an essential
progress in nonlinear potential theory, in degenerate elliptic equations and later in subelliptic e-
quations, see, for instance [9, 10, 29]. Let us recall the Reshetnyak theorem. Suppose that 2 and
G are open subsets of R”, and f: Q@ — G is a quasiregular mapping. Assume that a function
v € C!(G) is a weak solution in G of the equation div (lel"‘2Vv) = 0. Then the function u = vo f
is a weak solution in the domain Q of the equation

div (¢0(x, £)Vau(x), Vu(x)">"26(x, f)Vu(x)) = 0,

where 0(x, ) = J(x)?"[Df(x)]"'[D” f(x)]"" and J/(x) is the Jacobi determinant of f. A simple
example of this theorem can be constructed in the case of n = 2 in the context of complex
function theory. Consider a function u(x, y) in the complex plane C, fix a point a in the unit disk

D and set the Mobius transform —a

W= ——. (1)
1 -az
It is not hard to verify that the equality
i i
1= 25\2 =(1 - 25\2 2
(1 —=1wl) T = ¢ |zI%) 5202" (2)

holds and therefore the Mobius transform w preserves the Laplace equation (9> + 03)14 = 0in
the unit disk D. However, the conformal maps in R” possess more complicated properties. For
example, let us fix a pointa € B = {x € R" : |x| < 1} and consider a space mapping

Y = @al(X) := Jo o 0 Ja(x) 3)



where jo(x) := x/|x*, ju(x):= (x—a)/(x—al*)+a and ¥(x):= (1 —l|a|*)(x —a)— a. Observe

that the space mapping (3)) is a generalized version of the Mobius transform (I]) in R". It is easy

to prove that ¢, is a conformal mapping that maps the open set B into itself. Moreover, it maps
a

three points a, P I%I to three points 0, oo, 1, respectively (see for example [33]). It was shown by

Hua [30] that
(=P > oy [ = PP dyu] = (A = 1" >~ 8y, [(1 = )"0 (4)
i=1 i=1

The equation () generalizes for n > 2. It is not hard to show that the degenerate elliptic
equation div(w(x)Vu) = 0 is invariant in the unit ball B under the transform (3)), and the weight
w(x) = (1 —|x|*)*>™ is not even an admissible weight for odd n, n > 3.

The example constructed above illustrates that there are some common features in quasireg-
ular maps and elliptic equations. The progress in the study of quasiconformal and quasiregular
maps always provides new methods for the theory of elliptic equations. Gehring [[17] proved that
the Jacobian of quasiconformal maps has a higher integrability property. Shortly thereafter, Mey-
ers and Elcrat [52] obtained the higher integrability result for elliptic systems by making use of
Gehring’s technique. A well-known result from harmonic analysis [25) theorem 9.33] states that
a function w(x) is locally higher integrable if and only if w(x) is an A.-weight and thus it is open-
ended. Such property is usually called the self-improving property and the proof is essentially
reduced to the use of the reverse Holder inequality and harmonic analysis techniques. Another
characterization of A.-weight in terms of Gurov-Reshetnyak condition [26] was obtained by Ko-
renovskyy, Lerner and Stokolos [42]]. We shall discuss this topic in different geometrical settings,
such as the Euclidean space, the Heisenberg group and the Carnot-Carathéodory space.

The self-improving integrability of quasiregular maps in the planar case is well-understood.
Consider solutions of the Beltrami equation 0, f — ud:f = 0 in the plane, where yu is a bounded
measurable function, ||ul|l. = k < 1. The famous problem proposed by Gehring and Reich [18]]
asks to determine the minimal requirement of the type f € Wllo’cq which guarantees continuity of
any solution of the Beltrami equation. A deep result of Astala [2] says that f € W5 implies
f € W'k and thus f is a quasiregular map. On the other hand, Iwaniec showed in [32] that
q < 1+ k is not sufficient for the continuity. Petermichl and Volberg showed in [S7] that the
solution is always continuous for the borderline case ¢ = 1 + k. There are no good estimates
for these thresholds for Euclidean spaces of higher dimensions or for the Carnot-Carathéodory
space. Unfortunately, the results of the thesis do not provide much progress in this respect.

The thesis is organized as follows. In chapter 1, we set up a higher integrability result for
the horizontal part of certain weakly quasiregular maps on the Heisenberg group. Unlike the
Euclidean case, the exponential of the integrability is not near the homogeneous dimension Q
that is not analogous to the Euclidean setting. Chapter 2 is devoted to the study of self-improving
regularity for certain subelliptic equations. The difficulty of this problem in the Carnot group is
that the Whitney extension theorem and the main result in the Carnot group can be obtained only
for fourth-order homogeneous subelliptic systems from the arguments in [44]. Since the p-sub-
Laplace equation is a very special case of the nonlinear subelliptic equations we can establish a
better result in this case via the arguments from [12]. Chapter 3 provides a discussion of self-
improving regularity for the degenerate elliptic equations in the Euclidean space. The main result



of Chapter 3 extends a result of Lewis from [44] to the degenerate elliptic systems. The proof
relies on the weighted pointwise Sobolev inequality for higher order derivatives which is a useful
tool in study of higher order degenerate elliptic systems.






Chapter 1

Higher Integrability for Certain Weakly
Quasiregular Maps on the Heisenberg
Group

This chapter studies quasiregular mappings or, in another terminology, mappings with bounded
distortion on the Heisenberg group. We remind the definition of a quasiregular mapping on R”.
We set WI]O’;’(]R”) to be the first order Sobolev space in R” and Df be the differential of a map
f:R" — R

Definition 1.1 ([S9]]). Let Q be an open subset of R". If f : Q — R" is a continuous map and
fe W;(;:’(Q), then there exists a constant K > 0, such that

max|Df(x) - &' < K det Df, (1.1)

detDf < Kmin|Df(x) - &I (1.2)

then f is called the quasiregular map. Moreover, if f is a homeomorphism, then f is called the
quasiconformal map.

The study of higher integrability property for quasiconformal mappings in R” traces back to
the work of Gehring [17]. He proved that if f is a quasiconformal mapping, then the differential
Df has higher integrability property: Df € L"*¢. Iwaniec and Martin [31} 33| 34] showed that
if f satisfies and , then there exits & > 0 such that Df € L™ implies Df € L".
The higher integrability result can be used to study the removability property of quasiregular
mappings. It is a question of interest to know whether it is possible to establish the same result
for the Heisenberg group. The work [33] can give a clue in this topic. In fact, the use of the
Beurling operator is the basic tool in the study of quasiconformal and quasiregular mappings on
the even dimensional Euclidean space. The Beurling operator plays a crucial role in the Hodge
decomposition. Since the tangent space of the even dimensional Euclidean space has an even
dimensional basis {31, - - - 8y}, the conclusions in [33] yield that for each element d;, 1 < k < [ of
the basis, we can find a conjugate vector field dy = Oy, in the same basis and a bounded Beurling
operator S such that 9, = S o 0.
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The study of the boundedness of the Beurling operator is an interface between harmonic
analysis and quasiconformal mappings. The development of both theory and technique of the
harmonic analysis has had a big influence on the study of quasiconformal and quasiregular map-
pings in recent years. We refer the reader, for example, to [43] for the most recent excellent
progress in Astala’s conjecture regarding the distortion of the Hausdorff dimension under qua-
siconformal mappings. The novelty in this paper is the proof of the “conformal outside” part,
and that estimate relies on the boundedness of the Beurling operator on a non-doubling mea-
sure space. The main idea of the proof of the boundedness of the Beurling operator follows the
spirit of [23]], where the author uses stopping time arguments and construction of exceptional
sets. These technique can be traced back to the Fefferman and the Carleson works concerning
the convergence of Fourier series, see [0, [13]. For the systematic study of this topic, see also [3]].

Unfortunately, this approach does not work even for the lowest dimensional Heisenberg
group. This happens due to the absence of a bounded Beurling type operator for the Heisenberg
group. To illustrate this we consider the Heisenberg group (x,y,#) € H!' with its left invariant
vector fields X = 9/0x+2yd/0t and Y = 0/0y—2x0/0t. We know that the operator Z= %(X +1iY)
is exactly Lewy’s example regarding the unsolvable partial differential operator, see [46l], mean-
while the construction of the Beurling operator on the complex plane requires the solvability of
the operator 0 = d, +id,. Therefore, unlike the even dimensional Euclidean space, it is not wisely
to look for a singular integral operator S such that Z = § o Z, where Z = %(X —iY).

The authors of [[15]], provide a simple way to tackle this problem. But the new difficulty
arises: the integral zero condition for the Jacobian of the differential of a quasiconformal map
on the Heisenberg group does not hold. This is even false for case of the Jacobian of horizontal
differential. Indeed, if we consider a map F = (f,g,h) : H' — H' with f, g € Cy(Q), where Q
is an open subset of H!, then we get for the horizontal differential Dy

fdetDHFdx:fdet( Xf, Yf )dx:foYg—Yfngx:—ff[X,Y]gdx.
Q o) Xg, Yg Q Q

Observe that the integral may not vanish for all possible choices of functions f,g € C7(€2).
Anyway, this observation shed some light on the study of quasiregular maps on the Heisenberg
group. Unlike the Euclidean case, we shall impose some additional conditions on quasiconformal
mappings on the Heisenberg group and investigate the higher integrability property in this special
case.

We start from the definition of the Heisenberg group. The Heisenberg group H” is the set of
points X = (x',1)) e C" X R, x' € C", X' = (x1,...,x,) + i(X441, - - - » X2,), endowed with the group
multiplication defined by x-y = (x'+)’, #+s+2Imx’y’). We denote by Q = 2n+2 the homogenous
dimension of the Heisenberg group H". The quasinorm is defined by |(x’, 1)z = (|x'|* + |¢[*)'/*.
There exists the Carnot-Carathéodory metric dc(x,y) on the Heisenberg group, see [11]. It is
defined as the minimum over all lengths of rectifiable curves connecting points x and y. The
metric dc(x,y) is equivalent to the quasinorm |x~'y|y, see [14]. The left invariant vector fields
are defined as follows:

Xy = 0/0x; + 2x34,0/0t, Xysn = 0/0Xp4n — 2x30/0t, T =0/0t, k=1,...,n.
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The vector fields X;, k = 1,...,2n are called horizontal derivatives of the Heisenberg group. We
let dx,,...,dx;,,and 7 =2 )] j(xjdy ; — y;jdx;) + dt be the left invariant 1-forms dual to the basis
X, T, k=1,...,2n.

Let Q be an open set in H" and 1 < p < co. We denote by HW!?(Q) the horizontal Sobolev
space on the Heisenberg group:

HW'"(Q) ={feC3(Q): Xef €LP k=1,...,2n).

We set W!P(Q) to be the Sobolev space for all derivatives. The subbundle HT = span {X, ..., X5,}
is called the horizontal subbundle of the tangent bundle. We say that one form w is contact if
w() = 0 forany v € HT. A transform f = (fi,..., fon, fon+1) : Q — H" is called contact if its
differential defines a contact form. It is indicated in [28] that the differential of f can be written

as follows:
Xifi - Xahi
Df::(Dgf ;), where Dyf := ]

X1f2n T X2nf2n
The horizontal differential Dy f(x) is the linear map HT, — HT,, x € H".

1.1 A Variant Bounded Distortion

We follow the definition of the quasiregular mapping given in [28]] and we introduce the weakly
quasiregular map on the Heisenberg group in spirit of [31] and [33]].

Definition 1.2. If f : Q — H" is a contact continuous map such that f € WZ]O’Z(Q) and there
exists a constant K > 0 with

max Dy f(x)- €2 < KdetDf, (1.3)

detDf < Krlgllilll Dy f(x) - €2, (1.4)

then f is called the quasiregular map in the case g = Q. While if ¢ < Q we call the map f the
weakly quasiregular map.

The inequalities (1.3) and (1.4) imply

. 200 i .
somax IDuf(x)-&l < K éreﬁgg}%l:lIDHf(X) &l. (1.5)

Consider the collection of multiindices
J={(1,...,0y) : |lix — il # n for all integers 1 < k,[ < n}.

We fix an index I € J, and denote the n-form w = dx’ := dxﬁ} A A dxﬁ:. The definition of
pull-back I'y: A" — A" of a linear transform I" can be found in [33], page 39] and we follow
the notations therein.
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We denote by L, 1 < k < n, the vector fields either X; or X;,,. Let J = (ji, ..., j,) be any
n-tuple and let f; € C5(Q), k = 1,..., n, be smooth functions. We introduce a quantity

Lify - Lnfjl]

L](X,f) = det [
Lif, ... L.f;

Since L; are skew symmetric and [L;, L;] = O for all 1 < k, j < n, we have fQLJ(x, fdx =0,
where the observation is true due to [22} page 606]. Next, we write Dy f - (D f)T = 0 -T?. 07,
where O is an orthogonal matrix and

Y1 0
I = .
O Y2n

The matrix I" is diagonal with nonnegative diagonal terms 7y, for every 1 < k < 2n. We follow
the method developed in [33] and obtain

Dyfl"= max |Dyf-&" = max y).
Dufl" =  max_ Puf- & = max v,

Moreover, we get

max V" < KZn/Q min " < KZ"/QFa) — Kzn/Q D w
1gk32nyk lsksznyk | f | I( Hf)ﬁ |

from (1.5). Arguments in [33] page 39] imply

(Dufiw) = Dy fHadx'y = > Ly (x, dx’,

[J|=n

where L; ;(x, f) denotes the determinant of the (n X n)-minor obtained by fixing all j-th rows with
J € J and all i-th columns with i € I. If we impose the condition

Ly (x,f)>0o0r <0 forall multiindeces |J| =n and for I €J (1.6)

then we arrive to the following estimates that give a more suitable form of bounded distortion.

1

IDufI" < K" [Z Ly (x, f)z] <K Y Ly, f). (1.7)
J J

The advantage of Ii is the vanishing of fg L;;(x, f)dx for all f € C; (L) and for all multiin-
deces |J| = n. If we use the notation L(x, f) = >.,; L; ,(x, f), then we get

f L(x, f)dx = —f L(x, f)dx
F Q-F,
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for some subset F'(1) C Q.
We use the tensor product of fy = (fi,- -, f2n) by D¢ with ¢ € C7(€2)

hXag - fiXond
fH®Dyp =

f2nX1¢ e f2nX2n¢
in order to prove the following result in analogy with discussions in [[15].

Theorem 1.3. There exist a number q(n, K) < n, n > 2 such that for every q € (q(n, K),n) and
every contact mapping f € H WIIO’Z(Q, H") satisfying (1.3)-(L.7), the Caccioppoli type inequality

l¢Dp flle < Clg, n, K)llf ® Dudllrs, (1.8)
holds for any ¢ € C;' (L) and the horizontal part fy = (fi, ..., f2x) of the mapping f.

If we assume for the moment, that Theorem [1.3|is true, then the higher integrability of Dy f
can be proved by making use of the Poincaré inequality, what shows the following theorem.

Theorem 1.4. There exists a number 1 < q(n, K) < n, n > 2, such that for every q € (q(n, K), n),
and for every contact mapping f € H WZIO’Z(Q, H") satisfying (1.3)-(L.7) we have
ka_ c Lq(Q—l)/(Q—q)(Q)
J

loc
foranyk, j, 1 <k,j<2n.

Proof. Indeed, if we take a ball B = B(xp,2r) C Q in the Carnot-Carathéodory metric and a
function ¢ € C7(2B), ¢ = 1 on B such that |X;¢| < C/rforallk = 1,--- ,2n, then we get

(JC |DHf|q(Q—1)/(Q—q)dx
B

)(Qq)/(Ql)q )(Qq)/(Ql)q

1
=Clan By (JC [0) = (fast?@ D@0y
2B
)(Q—q)/Qq

9

1
< C(q,n, K); ( ] | fe(x) — (fk)ZquQ/(Q_q)dX
B

from (1.8)) since the volume of the ball B(xo, ) satisfies the relation |B(xo, 7)| ~ r¢. Applying the
Holder inequality and the sharp form of the Poincaré inequality [48]], we obtain

(J[ |DHf|q(Q—l)/(Q—q)dx
B

)(Q—q)/(Q—l)q

1/q
<C(q,n, K)( IDHfqux) .

CB

This gives the higher integrability of Dy f € qu(ch_l)/ (@9 Therefore we have proven Theo-

rem L4 O

Remark 1.5. The inequalities (I.3]) and (I.4) show that we actually proved

(Q-9)/(Q-1)q
(Jc(det Df)q(Q—l)/Q(Q—q)dx) < C(g,n,K) (JC
B

CB

1/q
(det D f)"/de)

for some constants C(g, n, K) > 0 and C > 0. This implies that (det Df)?/? is A.-weight.
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1.2 Proof of Theorem

In the following arguments the neighborhood of x = (x/, ) is defined by

2n
172 _
B(x,r) := {y =, ne": (Y l-yl)  <r and |r-s—Imyy] < rz}. (1.9)
i=1

and the metric d is defined by
d(x,y) = max {lx' = y'|, [t — s - Imx'y"|"?}  x,y € H". (1.10)

It is easy to see that d(x,y) is a quasi-metric and equivalent to the quasimetric |x"'y|y or the
Carnot-Carathéodory metric dc(X,y). The neighborhoods defined in (1.9) also form a topology
basis.

1.2.1 Auxiliary Lemmas

We need to establish a geometric lemma which is obvious in the Euclidean case. We will use the
projection map mc-X = x’, where x = (¥, 1) € H".

Lemma 1.6. We set dy, = 2dist(x,, H" — B(xo, r)) for a fixed X, € B(Xo, r). Then we have
|B(x1, Cdx,) N (H" = B(Xo, r/2))| = C(n)|B(X1, dx,)|
for some constant C > 0 that only depends on n.

Proof. Letx; = (x|, s) and X, = (x;, 59). Since the closure Bx, r) is a compact set, there exists a
pointy; € dB(xo, r) such that d(x;,y;) = dist(x;, H" — B(xp, r)). If |x] — ¥}| = d(x;,y1), then there
exists X, = (x5, 5) € B(Xy,dy,) with x, € mc.(H" — B(Xo, r)) such that

U:={xeC":|x —x5| <(1/100)dy,} € {x" € C": |x — x| < dx,} N wen(H" — B(xo, 7)),

where 7. denotes the projection operator from the Heisenberg group H" to C”. o
Next we aim to show that if | — s — Imx’x}| < (dy, /100)? for all X’ € U, then |t — s — Imx’x}| <
Cd; . In fact, we have

It — s = Imx'x(| = [2( = 5) = (t = 5) — Imx,x] — Imx'x}, + Imxyx) — Im(x’ — x5)(%) — X))
<t =5 = Imxo| + |t — s — Imx' X)) + |t — s — Tmxb )| + [(x" — x5)(x] — x5)|
<4d;.
Therefore, we have proved the inclusion B(x,dy,/100) C B(x;,Cdy,) N (H" — B(Xo,r)). We

estimate
|B(xy, Cdy,) N (H" — B(Xo, )| > |B(X2, dy, /100)| > C(n)|B(x1, dy,)|.

On the other hand, if the minimum is attained at the “bottom” or “top”, that means for y; =

"}, 51) € OB(Xg, r), we have x| — || < |s — s, — Imx|y||'/? = d(x,,y1) = dy, /2. We assert that the
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4

boundary point y; must have the property [y, — x| < |s; — so — Imy/x;|'/2. If this were not true,
the point (y7, s; + €) would also lie on the boundary. But this could change the value of distance
from x; to the boundary. By this argument we must have |s; — sy — Imy’lx_()l = r? and for the fixed
Yi» X4, §1 is unique on one side.

We only consider the case when (¥}, s;—¢€) lies outside of the domain B(x, ), since arguments
for the case when (y], s, +€) is outside of the domain are similar. We take a point X3 = (y}, s —dfl ).
We can show that B(x3, d, /100) € H" — B(xp, r/2). In fact, we have

It =5 = Imy'x| = |t = (s1 = dg) = Imy'y] + (51 = dx) = so — Iy, xg = Tm (O = (x5 = 1)
> r* +d;, — (dy,/100)* = rdy, /100 > (r/2)?

for any (', 1) € B(X3,d,,/100). The last step is followed from the fact dy, < r. We also need to
show B(x3, dy,/100) C B(x;, Cdy,) for some constant C > 0. This is easy case, since

d(()”, t)’ xl) < C [d((y/, t)’ .X3) + d(X3, )’1) + d(yl’ xl)] < Cdxl

for any (', 1) € B(x3,dx,/100). So we have B(x3, dy,/100) C B(x;, Cdx,) N (H" — B(Xy, r/2)), that
completes the proof of Lemmal|l.6 O

The following Lemma was proved in [27] for vector fields satisfying the Hormander condi-
tion. Here we provide a simpler proof for the homogeneous group.

Lemma 1.7. Let Q be an arbitrary domain in H". If f is a Lipschitz function on Q c H", then
f e HW=(Q).

Proof. If we write y = exp(tX;) and y, = exp(Xy) for horizontal vector field X; then y = ryj.
Since |f(xy) — f(x)| < Clylg and

‘m Sfxexp(tXi) — f (X)’
0

= lir t (1.11)

d
Xof = d_tf (xexp(tXyi))

t=0
we get
|f(xexp(iX)) = f(x)| < Cleyolu.
Therefore, we have
|[f (xexp(eXe)) = f(0)1/1] < Clyolu < eo

by (1.11) for all || < &, where ¢ is a small enough positive number. There exists a function
g € L*(Q) such that there is a sequence t; — 0 with

[f(xexp(t;X) — f(0)]/t; =~ g weaklyin L ().
On the other hand,

fg SLf (xexp(t; X)) — F(0)1/1tdx = fg FOBCrexp(—,X0) — 9011 dx
L fg (Xe) f(Ddx

for any test function ¢ € C’(Q). This implies fQ pgdx = — fQ(qub) fdx and X f € L™ (Q). O
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Lemma 1.8 (Pointwise Sobolev inequality [36}, 47]). Let u € W'"»(H"), 1 < p < oo, and let
x € B = B(xy, r). Then there exist constants ¢ > 0 and C > O such that

|u(x) — upl < crM(|Xiuly c)(xo))

|u(x) = u(y)l < cde(x, y)IM(Xul)(x) + M Xul)(y)],

where M(f) denotes the Hardy-Littlewood maximal function defined on the Heisenberg group,
Xy is any horizontal derivative and y ¢ is the characteristic function of the set G.

1.2.2 Whitney Extensions for Horizontal Components f;, k =1,---,2n

We assume that ¢ € C7(Q) and supp ¢ C By := {x € H" : d(x,0) < r/2}. Let g = [pDy f| +|fu ®
Dy ¢| and let
Fy={xeBy:M(g) <A for A1>0,

where M(g) is the maximal function of g on the Heisenberg group. We aim to show that u; = fi.¢,
1 < k < 2n, are the Lipschitz functions on the closed set E(1) = F(1) U (H" — B), where
B={xeH": d(x,0) < r}. We will consider three cases.

Supposing x, y € F(A1), the Lemmal|l.8|implies

(%) — up (V)| < ede(x, YIM(Xiul)(x) + M(IXiu))()]
< cdc(x, )IM(Igh(x) + M(1g) ()]
< cAdc(x,y).

If x, y € H" — B, then uy(x) = u(y) = 0. We set By := {z € B(x,d,) : uy(z) = 0}. Lemma[l.6
implies
|B1| > |B(x, Cdy) N (H" — B(xo, 7/2))l = C(n)|B(x, d,)| (1.12)
for the case x € F(1) and y € H" — B. Basing on (I.12]) and the Poincaré inequality, we get

f ukwdyl
B(x,dy)

JC u(y)dy
B(x,dy)

< C(n) lur — (Ui) Bx.ayldy
B(x,dy)

< C(n)d (JE (Xiul?/ @Dy
B(x.dy)

|Bi|
u(y)d | <Clh)———
Ji(»c,d» e |B(x,d,)|

< C(n) (ﬂ

|B(x, d.)|

o),
—_ g — (i) B, Idy)
|B(X, dx)l B(x,dy)—B oo

)Q+1/Q

Therefore, by the Holder inequality we have

(UQ)Bxay < C(n)d,y JC \Xiu| < C(n)d:M(g)(x) < C(n)Adc(x, y).

B(x,dy)
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This yields
i (x) — Y| < (X)) — (i) Boan | + 1) Byl
< C(n)d, JC |Xiu| + C(n)Adc(x,y)
B(x.dy)
< C(n)Adc(x,y).

We have proven that u; is a Lipschitz function on E(A1) and Lipschitz constant is C(n)A. Since
(H", d¢) 1s a metric space, we can use the McShane extension theorem [53]. We extend i to the
Lipschitz extension function u; defined on H", which can be constructed as follows

up(x) = sup [up(x1) = C(m)Adc(x1, x)].
x1€E(Q)
1.2.3 Stopping Time Arguments

Consider any cofactor L; ;(x,¢f) that was defined in Subsection 1.1. We denote by (ji, - j,)
a multiindex from J and let ujl be a Lipschitz extension of ¢ f;. Lemma shows that ”?1 €

HW'(Q). Let f; = (u;?l ,@fp, - ¢fj,). By approximation arguments and the Holder inequality
we get

f Lis(x, fdx = 0
Q

for all n-tuples from / and J.
Since |f;, Du¢l < C(n)|fu ® Dyl and |Xi(¢f; )| < C(n)g for all i € I, we have

f ¢"Liy(x, f) < C(n) (ﬂ f g+ f |fH®DH¢|g"‘1)
FQ) Q-F(1) FQ)

from the above estimates. We multiply by A~'=¢ both sides and interchange the integrations to
obtain

fg; ¢"Liy(x, f )M(g)(X)_ESC(n)(i fQ g M(g)(x)' " dx + fg IfH®DH¢Ig"_1M(g)(X)_€dX)

for all n-tuples from 7/ and J. The definition of the variant bounded distortion of quasiregular
maps on the Heisenberg group (1.7) essentially implies

C(n)K?%e
1-€

fg &\ DufI' M) < fg ¢ M(g)(0) “dx+Cn)K> fQ fu®Dudlg™™ M(g)(x)dx.

(1.13)
Next, by the Holder inequality, and the Hardy-Littlewood maximal theorem we have

(n—€)/n €e/n
f|¢DHf|n_EdX < (f |¢DHf|"M(g)_€dx) (f M(g)”_edx)
Q Q o

(n—e)/n €/n
< C(n) ( fg |¢DHf|”M(g)‘EdX) ( fQ g"_EdX)
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for a small enough € > 0 and an integer n > 2. If the following estimate is true

fgn—edxz2n—ef|¢DHf|n—edx,
Q Q

then Theorem [I.3/has been proven. In the case

f g dx <2 f |¢Dp f1"“dx,
o Q

making use of the above estimates, the Holder inequality, the Hardy-Littlewood maximal theo-
rem, and the fact g < M(g) one gets

f o<dx < C(n) f 16D fI'M(g)“dx
Q Q

C(mK? 1/(n—€) (n—e~1)/(n—€)
< Lefg"_éa’x+ C(n)K? (f IfH®DH¢|”_de) (f g”_edx) .
Q Q 0

1-¢€

This leads to the estimate
fg”‘edx < C(n)f |fz ® Dyo|" “dx.
Q Q

The proof of Theorem[1.3|is completed.



Chapter 2

Self-Improving Regularity for the Very
Weak Solutions of Subelliptic Equations

We begin with the definition of elliptic systems in R". Let m be an integer number greater than or
equal to 1. Introduce the notations P = [y, RY and D"u = (u, d,u, - -- ,d%u) for all |o’| = m.
In order to simplify the notation, we denote by 0"u the summation }},_,, 7u. We assume in this
chapter that Q is a bounded domain in R". Let A = (A,): Q X P — RY be a function such that
Ay (-, D™u(x)), x € Q, is a measurable function on €, satisfying the following conditions:

Z Ay (x, D"u(x)) - OTu(x) = y|0"ul’ —a(x) a.e. inQ (2.1)

lo|=m

and
|As(x, D" u(x))| < [07u(x)|""" + bo(x) a.e. inQ, (2.2)

where |o| < m and a(x), b,(x) are nonnegative integrable functions. We say that a function

u € W™P(Q) is a weak solution of

D (=107 AL (x, D u(x) = 0

lor[=0
on an open set Q if

> f Ay (x, D"u(x))87¢dx = 0 (2.3)
lr|=0 V€

for any test function ¢ = (¢y,- -+, dy) € C;(Q).

In [52], authors extended Gehring’s lemma, regarding the higher integrability [[17] in a more
general form, and proved that the weak solution of elliptic system (2.1)-(2.3) has the high-
er integrability property. That is to say, there exists an € > 0 such that the weak solution
u € WmP*<(Q). There are several monographs studying and generalizing this question (see,
for example [4} 8, [19]]). Motivated by the Iwaniec and Martin work on the integrability of weakly
quasiregular maps [31,,133,34], Lewis [44] introduced a very weak solutions for elliptic systems;
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that is, if u satisfies and u € W'4(Q) for g < p then u is a very weak solution of elliptic sys-
tem (2.1)-(2.3). Lewis [44] obtained a higher integrability property for the very weak solutions
of the elliptic systems that is the extension of the result in [S2]. Also, a number of authors have
given regularity results concerning parabolic equations. Kinnunen and Lewis [40, 41] proved
the result for the first order parabolic equations and Bogelein [S] generalized these results for
the higher order parabolic systems. It is worth mentioning that there are another ways to study
the higher integrability problem for elliptic equations, see [29] for the second order degenerate
elliptic equations and [9] for the second order subelliptic equations.

It is also interesting to know whether the Lewis celebrated result [44] can be extended to the
Carnot-Caratheodory space. However up to now, it is only known that this kind of extension
works for the particular case for the second order system. Zatorska-Goldstein [16] got a higher
integrability result for the second order subelliptic equations by combining the technique in [44]]
with the Young inequality. This kind of technique was shown to be extremely useful in the
study of the first order parabolic equations, see [40, 41]]. The difficulty in this problem is that
the Whitney extension seems to be more complicated in the Carnot group than in the Euclidean
space. We shall discuss a certain specific subelliptic equations in this chapter.

In the first section, we prove the self-improving regularity result for weak solutions of the
fourth order homogeneous subelliptic system. In Euclidean space, a typical fourth order homo-
geneous elliptic equation is the biharmonic equation A’u = Ao Au = 0, A = 9% +---+ 0% , which
appears in the linear elasticity theory and the Stokes flows. We will consider a generalized form
of this kind of equation that is given in more general geometric setting, namely, on the Carnot
group G.

In the second section, we consider the p-sub-Laplace equation. In this particular case, there
are some nice properties of weak and very weak solutions. We follow the approach of [[12]], where
it is claimed that a special kind of function A, defined by the p-sub-Laplace equation, belongs to
the Hardy space H'(R") if we have the decomposition A = E -7?), where E € (LP(R™))™ is the
“electric field”; that is divf =0, ? € (L” (R™)" is the "magnetic field” defined by curlTB) =0
with i + % = 1. Unlike the approach in [54], this technique provides another point of view on
studying higher integrability of determinants. Making use of this technique is useful for study of
determinants of vector fields satisfying the Hormander hypoellipticity condition (see [21} 22]).

2.1 Self-Improving Regularity for the Weak Solutions of Fourth
order Homogeneous Subelliptic Systems

The Carnot group is a connected simply connected Lie group, whose Lie algebra g is nilpotent
and graded:

g=Vi®..0V, Vi.Vil =V, j<n, [Vi,V.]=0.

Let Yy, V>, ..., Y), be left invariant vector fields on G that form a basis of Lie algebra g, here M =
dim G. We say that a vector field Y; has a degree d; if ¥; € V,;,. The vector fields X;, X, ..., Xy,
that form the basis of V;, are called the horizontal derivatives on G. If I = (ij,...,iy) is a
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multiindex, then we denote by Y/ = Yl."l1 Yl’; Yl’A": the differential operator of order |I| = i;+...+iy;,
and by d(I) = dyi; + ... + dyiy the homogeneous degree of the multiindex. The exponential
mapping x = exp Y7, x;¥; is a diffeomorphism of g onto G and we use it to introduce the normal
coordinates. Let n;(x) = x;, i = 1,--- , M be the coordinate functions. We denote by Q = Zle d;
the homogeneous dimension of the Carnot group.

Let us define the homogeneous polynomial on the Carnot group. We denote by ! = r]’i‘ . -n%
the monomial of homogeneous degree d(I) = dyi; + ...+ dyiy. A homogeneous polynomial of
homogeneous degree d is a linear combination of monomials of the same homogeneous degree d.
We say that a polynomial has homogeneous degree d if it is a linear combination of monomials
with the homogeneous degree at most d. We let | - | be a quasinorm in the Carnot group. We
shall use the notation |B]| to denote the Haar measure of a set B.

Let X' = X ’f X; --- X, be the m-th order horizontal derivative, Q be an open bounded domain
in the Carnot group. Define the functional space L},(Q) of functions u : Q — R¥ as follows:

Lh(Q) = {u = (uy, e un): we € LP(Q), X willirey < o0, Il S m.k =1,...N}.
We consider the horizontal Sobolev space on the Carnot group defined by
HW™P(Q) = C*(Q) N LL(Q).

To define the fourth order homogeneous subelliptic systems on the Carnot group G we follow
the definition of the higher order elliptic systems in R”. Denote P = [Jo<<; RY and D*u =
(u, X'u, Xu) for all o] = 2. Let A = (A,): Q x P — R" be a function such that A,(-, D*u(x)),
x € Q is measurable in Q and satisfies the following conditions:

Ay (x, D*u(x)) - XTu(x) > v|X“u(x)| (2.4)

almost everywhere in Q and
e (x, D*u(x))] < IXTu(0)l"™" + by (x) (2.5)

almost everywhere in Q, where |o| = 2. We say that u(x) € HW*9(Q) is the weak solution of
fourth order homogeneous elliptic system

Z XA, (x, D*u(x)) = 0,
|o|=2

if u satisfies the following identity

> f Ay (x, D*u(x) X" p(x)dx = 0 2.6)
=2+
for any ¢ = (¢1,...,¢n) € C37(Q) and g = p. We say that u is the very weak solution of if
g < p. In order to simplify the notation, we denote by X?u the summation with respect to the
indices i and j, thatis ZZ‘FIX[X .

In this chapter we follow the approach, developed in [44], to obtain a self-improving integra-
bility result for subelliptic equations. Our principal result states as follows

Theorem 2.1. Let Q be a bounded domain on the Carnot group G, u € H WIZD’E(Q) and A satis-

fies 2.4)-@2.6). Then for p > 1 there exists a § = §(Q, N,y, p) > 0 such that if r = p — 6, then
ue HW"(Q).
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2.1.1 Preliminary Lemmas

First of all, we need to establish the pointwise Sobolev inequality for higher order derivatives on
the Carnot group G, which is the content of Lemma For a locally integrable function f on
G, and B(x,r) = {y € G : dc(x,y) < r}, where d¢ is the Carnot- Caratheodory metric on the

Carnot group we let
i 7=
= — dx = d.x.
B B Bf Bf

We define the center maximal function

M f(x) = sup JE lflIdy,
B(x,r)

r>0

and a localized operator with respect to any fixed subset B C G,

Mp(f)(x) = M(fxp)(x),

where yj is the characteristic function of B. We let i)ﬁ’l;( f)(x) to be the k-times composition
operator of Mpz(f), that is if zmg—l( f)(x) is defined then

ME()(x) = sup f( )m?%‘l(f)(y))(g(y)dy
B(x,r

r>0

is defined inductively for k£ > 2. We remind that the Carnot-Caratheodory metrc d¢(x,y) on the
Carnot group is defined as infimum over lengths of all absolutely continuous curves y : [0, 1] —
G such that y(0) = x, y(1) = y and y € span{Xy,--- , Xy, }.

Lemma 2.2. Let | be a positive integer, 1 < g < oo, r > 0, xo € Q, and By = B(xy,r). If
u € HW"(Q) in a bounded open subset Q c G and fBo X%u =0 for0 < |a| <1—-1, then there
exist constants Cy(ny, Q, 1, q) and C > 0 such that

lu(x)| < Clrlﬁﬁg(z IX7ul)(x), x € B = B(xg,Cr). 2.7
lo|=l

Moreover, if 1 < s < gandls < Q, then there exists Cy(ny, Q, 1, q) > 0 such that

é
u(x)| < Cor! [ JC My IX"ul)S(x)dx] M XU (x), (2.8)
B

o=l o=l

1

( f Iu(x)ls*dx)s* < czr’( JE My IX‘rul)s(x)dx] : 2.9)
B B

lol=1

Qs
Q-ls*

where s* = Furthermore, if s > Q, then

u(x)| < Cor’ [ f zmlB(Z |X"u|)(x)‘dx} (2.10)
B

o=l

where 62 = @(Q, L, 5).
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Proof. We start our proof from the first order case, and then continue to show the higher order
result by induction. We know from papers [36,47], that the Morrey type inequality holds for the
Carnot group. Since up = 0 then

n

(o)l = = up,| < C f D IXu()lde(x, y) 2 dy

B =1

ny
) Cf + f 3 X, y) 0 dy = 1+ 11
{yeB:dc(x,y)<n} (yeBidc(x.y)>n) 4=

for some 1 > 0 that will be chosen later. To estimate / we write I in the form

o ni
1=cy f D Xeu(lde(x, )2 dy
k=0 Y yeB27*In<dc(xy)<27*n) 15

oo 1 1
<c N oy f X (y)ldy.
; (2"‘77)Q {yeB:dc(x,y)<2~*n} ;

Due to the relation |B(x, 27*n)| ~ (27*n)2, we get

1< CaM(Y X)),
k=1

If n > Cr then I1 = 0 and the above estimate shows that (2.7 holds for / = 1. In the case n < Cr
we apply the Holder inequality with the exponent s, 1 < s < Q for the second term and deduce

1 1
ni s ra
11 < C[ f D IXku(y)I)de] ( f dc(x,y)(‘Q“)“’dy) :
{yeB:dc(xy)zn} =1 {yeB:dc(x,y)2n}

Since d¢ ~ |x~'y|g, we can estimate

f de(x, )" dy < €, f GO gy = f H(x"y)dy,
{yeB:dc(x,y)=n} {yeB:|x"1ylg=Cn) G

where H(z) = C2|z|(G_Q+1)S, X(:€G:lde=Cni- The biinvarians of the Haar measure on the Carnot group
and [[14} corollary 1.16] imply

f de(x, )" dy < C(s, Q@1
{yeB:dc(x,y)zn}

Therefore, we obtain

11 < O+ ( f O X)) dy -

beBdc(ey)zn)
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‘We choose

ni é ni ]
n= [ f » |Xku<y)|>de] M) Xialys) ()
{yeB:dc(xy)zn}t =1 k=1

in order to get I = /1. Thus we obtain the chain of estimates

ni é ni
ju(x)| < Cr f(z |Xku(y)|)‘*dy] M) Xy p)™ (x)
B k=1 k=1
n é ny
<cr| £y, |Xkum>5<y>dy] MO e ()
B =1 k=1

1

ni 0 ni i
= Cr f Mp( ) |Xku|)5(y)dyJ My IXil) * ().
B k=1 k=1

This finishes the proof for the case [ = 1.

For the general case, we assume that the theorem already holds for / — 1, and we proceed to
show the theorem for / > 1. We repeat the above arguments for x € B, applying the induction
hypothesis to every X;u, and get

1< CpM() , Xiulys)(®)
k=1

o
< Cm)Conr'"™! f MO IX7u) (x)dx M(Dﬁ;—‘(Z IX“ul)(~))(B(-)) (x)

B = o=t

=1

o i
< C(ny)Cor™™! f MO IXTuly (x)dx [imlB(Z |X"u|<-)XB(->>(x>]
B

lol=1

o=l

forls < Q and s* = Q_Q;;S. The last step followed from the Holder inequality and the definition
of the localized operator. If n < Cr, then (2.7) holds for [. If not, we need to estimate second term
once again. Applying the Holder inequality with the exponent s* for /1, the similar arguments

show

1
_1 1 S s 8
k=1 VB

1
< Cp w2 B! ( JC My () IX"ul)S(x)dX) :
B

lol=1

We set

S
F

- ki
n* = BI* [ f my' IX‘TMI)S(x)a’x] (sm;(Z |X“u|<->>(x)] :
B

o=l |or|=I
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After simplifying and making use of the fact |B| ~ Cr?, we get
!

0o
U0l < Cor’ [ f My > |X‘fu|>“‘<x)dx} MO 1X7ul) T (),
B

o=l o=l

which is the required estimate. The inequality (2.9) follows immediately. To prove (2.10), ob-
serve that s’ < Q/(Q — 1), we have

f de(x,y) 2 dy < C(s, Q)re- .
{yeB:dc(x,y)<r}

Therefore,

ni

u(o)l < f D Xl y)dc(x. y) 2 dy
{yeB:dc(xy)<r} 31

ni s lv
<C(s,Q) [ f [Z IXkul(y)] dy) FQ/5'=(0-1)
(yeBidc(xy)<r)

k=1
s

SC(,Q)JC [ IXI)]d]-
’ r( {yeB:dc(x,y)<r} Z ku(y Y

k=1

This proves (2.10) for / = 1, and it is easy to prove the general case by induction. This completes
the proof of Lemma O

In the Euclidean space it is very useful to consider a special type of polynomial P(x, B) of
degree m, which satisfies fB (0%u(x) — 0"P(x, B))dx = 0 for all || < m — 1. Such a polynomial
is called the fitting polynomial that received its named after P. W. Jones’s celebrated paper [37]]
concerning the extension problem of the Sobolev space on (€, §)-domains. In the present paper
we should prove that such kind of polynomials also exist on the Carnot group. Our proof is based
on Nhieu’s ideas [56]. In fact, the proof can be rather straightforward extended to an arbitrary
Carnot group. For this purpose we state the following lemma.

Lemma 2.3. (Existence of fitting polynomial on Carnot groups) For any fixed measurable subset
Bc BcQ 0<|B| <o andanyu € W™P(B), m and p are any fixed positive integer; there exists
a polynomial P(x,u, B) (may not unique) such that

X'P=0 forall |I|=m, and f X'u—-P)dx=0 forall |I[|]<m-1.

B

Proof. We divide the proof into 3 steps.

Step 1: Some properties of homogeneous polynomials on the Carnot group.
Remind from [14] that the left invariant vector fields can be written as

X, = /0 + Z P00,

d,'>dk
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where P is a homogeneous polynomial of homogeneous degree d; — di. The higher derivatives
can be written
X'= Y Pr@/on),
d(K)=d(D), |KI<|I]
where P;x is a homogeneous polynomial of homogeneous degree d(K) — d(I). Therefore, it is
easy to check that if P is a homogeneous polynomial of the homogeneous degree m, then the
homogeneous degree of X’ P equals

deg(X'P) = d(K) — d(I) + m — d(K) = m — d(I).

We conclude that if d(I) > m, then X'P = 0 and if d(I) = m, then X' P is a constant. Since we only
take into account horizontal derivatives, we get d(I) = |I|. Therefore we have deg (X' P) = m—|1|.

Step 2. The proof of Lemma will be completed by proving the following statement: for any
fixed integer [, 0 < [ < m — 1 there exists a homogeneous polynomial P; of degree deg(P;) = [
such that [, X'(u — P)dx = 0 for all |I] = L.

If this statement is true, we first find a homogeneous polynomial P,_; such that fBX’ (u —
P,,_1)dx = 0 for all multiindeces |I| = m — 1. Next, we let g = f — P,,_; and find a homogeneous
polynomial P,,_, such that fB X' (g—P,,_»)dx = Oforall |I| = m—2. Continue to repeat this process
until we find a 0-degree homogeneous polynomial Py. Then we assert that P = Py+P;+---+P,,_;
is the desired polynomial.

Observe that if multiindex I satisfies |I| = m, then X'P = Y7/ X'P, = 0.

For any fixed multiindex I with |I| = [ < m — 1, we have showed that homogeneous polyno-
mials, constructed above, satisfy fBX’ (U= Py — - —P)dx = 0. Since X'(3t-5 P;) = 0 we

get
I-1

f X'(u - P)dx = f (X’(u — P, —-—P)— X’(Z Py |dx = 0.
B B k=0

This finishes the proof of Step 2.
Since X'P; is a constant, in order to find the homogeneous polynomial it suffices to determine
its coeflicients, that is to find a solution of the overdetermined linear system:

X'p, = JC Xu, |1l =1. (2.11)
B

To complete the proof of Lemma it is enough to show that the linear system (2.11) has
solutions. It reduces to the linear algebra problem to indicate whether {X'P; : |I| = [} and
{X"u : |I| = [} has the same linear dependent relation. This will be proved in the third step.

Z cX'P =0,

171=t

Step 3. We prove that the equality

implies
Z eXlu=0 2.12)
|1|=1
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for any choice of real numbers c;.
Indeed, first, we assert that for the same set {c; : |I| = [}, the equality

Z X'P =0 (2.13)

|1=l

holds for any polynomial P.

Indeed, if the homogeneous degree of P satisfies k = deg P < [, then holds auto-
matically. If k = degi P > [, we write this polynomial in the form P = Z];':o P; and assert that
X'P(0) = 0. In fact, X'P = 3,5/, X'P;, since X'P; is the homogeneous polynomial of the ho-
mogeneous degree j — d(I) = j—|I| = j— 1 > 1. Therefore X'P;(0) = 0 for all j > [ + 1. Thus
the assertion is true.

We denote 7.(y) = x -y the left translation on the Carnot group G which is a diffeomorphism
of G. Composition P o 7, is a polynomial if P is a polynomial. Since X’ are invariant under the
left translation, we have

Do aX'Pa) =Y aX'P)ot,(0) = Y ci(X'Por)(0) = 0.
= TE =1
We prove the equality (2.12) for u € C3'(Q). In [14, page 34-35], one can find the Taylor
series on the Carnot group. We apply this formula to u for any fixed xj. Let
7' (x5 %)
1!

P(x,x0) = > arxy)
d(D<k

be the Taylor polynomial of # with homogeneous degree k > [. Then we can conclude that
Z 1 X'P(x, xy) = 0.
|11=l
Since X' P(x, x0)l=x, = X'u(x0), we get
> erXutxo) = 0
1=l

for any fixed x € Q.

The last step is to show that the equality (2.12)) holds for u € HW™P(B). This follows imme-
diately from the definition of the Sobolev space on Carnot groups. Applying approximation
arguments to u € C7(B), we get that the conclusion holds for the Sobolev space. This completes
the proof of Lemma[2.3] |

Another approach to prove the existence of fitting polynomial can be found in [49].

Lemma 2.4. Let Q be a domain on the Carnot group G and x, € Q. Assume that A > 0, r > 0,
and 1 < q < co. For u = (uy,...,uy) € HW>4(Q) with supp u C B(xy,r) C Q, we denote
B = B(xy, Cr) for some C > 1 and

F(Q) = {x € Q: MH(IXul)(x) <A N B #0.
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Then ul|py has the Whitney extension v to G satisfying
(1)v=uonF(Q),
(2) Xyv = Xpu on F(Q),
(3) 1X7v| < cda.e. on G for|o| = 2.

Proof. We need to verify that u satisfies the conditions of the Whitney extension theorem shown
in [63]]. We know by approximation arguments that f2 5 Xikudx = 0. Applying Lemma we get

IXeul < Crona(IX?ul)(x) < CAr  forany x € F(Q)
and for k = 1, ..., n;. Moreover, we have |u — uyp| < CAr>. If x; € (%B)c, then u(x;) = 0 and

luap| = [u(x)) — upp| < CrPOML(X7ul)(x,)

<Cr? | M(Xul)(y)dy < CAr’.

2B
Therefore |u(x)| < CAr?.
The first order Taylor polynomial for the function u can be written in the form

P(x, x0) = u(xo) + ) Xeu(xo) 15 x).
k=1

We can choose a polynomial Q(x, yo, s) of homogenous degree 1 satisfying
f (u—Q)dx=0 and f X (u—-Q)dx=0 for k=1,...n
B(y0.5) B(yo.5)

for any fixed yy € F(A) and s > 0 by Lemma[2.3] Using Lemma[2.2] we get
lu—Q|<CAP and | Xu(u— Q)| < CAr on F() N By, ). (2.14)

Since Q is the polynomial of the homogenous degree 1, it contains only 7, for index k varying
only from 1 to n;. Therefore, Q can be written as

0(x) = 0(x0) + ) (X Q)(x0) milxg' )
k=1

and from (2.14)) we can immediately deduce
10(x0) — u(xo)l < CAr*, 1X,Q(x0) = Xeu(xo)| < Car

Since P and Q are polynomials of homogenous degree 1, their first order horizontal derivatives
are identically constant, therefore X; Q(x) = X;Q(xo) and Xy P(xo, x) = X; P (X0, X)|y=x, = Xitt(X0).
This implies

|P— Q| <CAr* and |X,(P- Q)| < Car.
So we get

|P—ul < CAr* and [Xy(P-u) < Car

and this shows, that u satisfies the condition of [63, Theorem 2]. Thus, we conclude that require-
ments (1) and (2) of the statement of Lemma 2.4 hold and the observation from [63, page 611]
implies that | X7v| < ¢4 on F(2)°. This completes the proof of Lemma [2.4] O
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In order to prove the main result of the present chapter, we recall the following Gehring’s
lemma on metric measure spaces X, d, i, where d is a distance and yu is a doubling measure.

Lemma 2.5. [/6] Let q € [qo,2Q], where qo > 1. Assume that functions f, g, defined on a metric
measure space (X, d, u), are nonnegative and g € LfOC(X, w, f e L’ (X,u) for some rg > q. If

loc

there exist nonnegative constants b > 1 and 0 such that for every ball B C BB C X, B > 1, the
following estimate holds
+6 JC gldu,
BB

gldu <b gdu ' + Sfldu
B BB BB

then there exist nonnegative constants 6, and €, 6y = 6y(qo, Q, C4,8) and € = €y(b, gy, O, Cy,B)
such that if 0 < 0 < 0y then g € LY (X, u) for p € [q,q + &) and moreover

loc

()" <e(fyeaf o (£ ) |

Jor C = C(b,q0, Q. Ca. ).

2.1.2 Proof of Theorem 2.1]

Our approach is due to [44]] and we divide the proof into several steps.
The distributional set of maximal function on the Carnot group is an open set.

For any fixed locally integrable function f, we prove that the set {x € G : M(f) > t} is an
open set for all # > 0. This assertion is equivalent to saying that the maximal function M f(x) is
lower semi-continuous. Obviously, any average of the function f

1
d
BO D) fB - |fO)ldy

X —

is continuous. Therefore

0 [B(x, 1)l

1
=U{xe@: o |f<y>|dy>r}.

%0 BCx)

(xeG: M(f)>t}:{x€G: sup ! f |f(y)|dy>t}
B(x,r)

is an open set. This proves the assertion.
Stopping time arguments.

Let u, Q be as in Theorem Suppose B(zp, R) be the any Carnot-Caratheodory ball in
Q. We fix a point xy € B(z9,R/2). Let r = R/4C, C > 1, and denote by B, the ball B(xy, r).
There exists ¢ € C°(B), B = B(xo, Cr), such that ¢ = 1 on B(xo, ), supp ¢ C B and |X7¢(x)| <
Ci(e)r 1, |o| < 2, see [14]. By Lemma , there exists a polynomial P such that fB(XO ® X'(u -
P)dx = 0 for any |I| < 1. Denote uy = (u — P)(x) and let ’

E() = {x : M3(X°u)(x) < A} and F(2) = E(1) N B.
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So that () is a closed set. Applying Lemma[2.4] we extend uo|r(y to v on G. Next, denote by 6
a test function 6 € C’(B(xo, R)), which 6(x)|p(x,3¢cr2) = 1. Define v(x) = v(x)6(x). We can show
that [X"V] < C; Xjr<2 IX7V] < Ci(1 + A + A%), and thus X9 € L*(Q) for all || < 2. Since Q is
bounded, we can deduce X" € LY(Q) for ¢ > p — 6. We assert that (2.6)) holds if we substitute ¢
by v, that is

Z f Ay (x, D*u(x)X"(x)dx = 0.
Q

lo|=2

In fact, we choose a sequence ¢; € C;°(€2) such that [|¢; — Vl|y24) — 0. Therefore

> f A (x, Du(x)X H(x)dx| = | ) f Ay (x, D*u(x)) (XT5(x) — X ;(x)) dx
=2 Y & =2 ¥ €&

<> f (IX7u()|P™" + be(x)) (XT5(x) — X7 (%)) dx
lorj=2 V&

<C Z |||X0-u(x)|p_6 + bo'(‘x)d‘x||L(p—5)/(l—§)(Q)

=2
X |IX79(x) = X7¢i(0)l o) — O.

The last step is followed from the Holder inequality.
We split Q into two sets Q = F(1) U (Q — F(1)) and obtain

Z f Ay (x, D*u(x)X 1o (x)dx = Z f Ay (x, D*u(x)X5(x)dx
lorj=2 Y F@ =2 YO-F(

(2.15)

<Cia f IXTu(x)lP™" + by (x)) dx.

1 |;:2 B(XO,R)—F(A)( o x) *

The last inequality is followed from (2.5). We assert that there exists 4y > 0 such that E(1) =
F () for any A > A,. To prove this assertion notice that we have

MEIXuol)(x) < Cr_Qf M (1 X ol )(x)dx
B(x0,4Cr) (2.16)

< . 2 2
<C, [in | M X uol)(x)

for any x € Q — B(xy,3Cr). Setting
A = C”_Qf Mp(1Xuol)(x)dx,
B(x0,4Cr)

we finish to prove the assertion. Multiply both sides of (2.15]) by 17!~ and integrate on (1, o).
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Interchange the integration on both of sides. We get for the right hand side

K = f ) /1—1-52 f Ay (x, D*u(x)) X7 1o (x)dxd A

Ao =2 YF

= C, f e Z f (IX7uOl™" + b(x)) dxda

Ao =2 B(xo,R)—F(A)

<C f i f IXTu(x)""! + b,(x)) dxdd
! Z 0 B(xo,R)—F(/l)( )

lo|=2

1
1-¢ B(xo.R)

lo|=2

=C MEIXuo) ()™ (IXTu()P™" + be(x)) dx

M2 (X 140]) ()0 + MA(IX10]) () b (X)dx
1 =6 Jpuor)

f 1XPuol”dx + M5(X 1)) (x)' b (x)dx,
B(x0,R) B(xo,R)

<C
=S

where the last step follows from the Hardy-Littlewood maximal theorem. Let
FP™ = MK uo) ()b, (x).

Then

K< f FI'dx +c f IX2uol”dx (2.17)
B(x9,2Cr) B(xp,2Cr)

F, € L"(B(x,,2Cr)) (2.18)

and we have

for certain @ > 0. It remains to estimate the lower bounds for K. In fact, we can write

K:Z f o710 ( f + f A, (x, D*u(x) X ug(x) | dxda
Ao F(d0) F()-F(o)

lo|=2
1

= 5156 f Ay (x, D*u(x)) X uo(x)dx+
F(20)

! f 21X 10]) (%) Ay (x, D*u(x)) X () x (2.19)
6 Jo-E)
1

> — f MLUX 10 (X) A (x, D*u(x)) X 1o(x)dx—
0 B(x9,Cr)

1
- IM2(1X2uol)(x) ° Ay (x, D*u(x)X uo(x)dx := L, — L.
E(10)

The estimate of L.
First of all, we need to prove the estimate

X up(x)] < CMH(X%u))(x). (2.20)
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We assume for all multiindeces [ that /| = 2 and this assumption will play a crucial role in the
proof of Theorem Thus we can write

X'y = > X(u = PYx)X p(x)

a+p=1

=eX'w-P)+ Y X"u-P)Y0)XPp(x)

a+B=1, |a|<2

= goXlu + Z X(u — P)(x)XBgo(x).
a+p=I, |a|<2

The last step is followed from the equality X’P = 0. We have
X (u = P)(x)| < Cyr? MIOG(X % ul)(x)
from Lemma Combining this result with the fact | XP¢(x)| < C;r7¥, we get
X (u = PY)XP ()] < CIMG(IXu)(x)
for all multiindices @ and 5, 0 < |a| < 2, 0 < |B] < 2. Since ¢ is bounded it trivially follows that
X u(x)| < COMZUXul)(x).

This implies the inequality (2.20). We can conclude that u(x) = uy(x) on B(xy, r) and we have
the inequality
X 1o — oX'u| < C,r2 Z X(u — P)(x) 2.21)
0<|a|<2

for all multiindices I, |I| = 2.
Suppose 0 < 77 < 3 and split E(1y) = E;(d) U (E(Ao) — E (o)), where

Ei(d) = {x € E(Ao) : [XPu(x)| = 1" Ao}.

We have the chain of inequalities

1 _ _
Li<< | 9G0X%ue) (01X uo(o)l (IXuCol ™ + by(x)) dx
E(do)
1
<< | MR D) (XU + by(x)) dx
E(9)
1 1
< - M5(IXuoh () 1X*u(x)) dx + - f FPdx.
EQo) 0 JE)

by (2.5). We also know
MEIXuol)(x) < Ao < 17 1X7u(x)|

for any x € E;(dy). We continue for [X?u(x)| > n~' Ay:

1 1 .
L < —Ul_éf IX?u(x)|P~dx + —f Fy °dx.
5 E(lo) 6 JEw)
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On the other hand, [X?u(x)| < n7' 4y for any x € E(dy) — E;(dy). Applying (2.16) and (2.19), we
get the pointwise estimate for a fixed t > 0

MG (X210} ()X 226 (O] (IX U™ + b ()
<5707 + 501X uo(x)| by (x)

1/t
<n’ (JE lxzurdx) + A5 g ()] (%)
B

by the Hardy-Littlewood maximal theorem. Recalling the definition of 4y, and making use of the
notation
FI™ = 5% X uo(0)] by (),

we get the estimate

nl—p (p—9)/t 1
Ll < Cl—rQ (f |X2u|’dx) + —f Fg_édxa
0 B(x0,2Cr) 6 B(x0,2Cr)

where we have used the fact |B(xq, 2Cr)| ~ r?. Therefore, we have proved the estimate for L;:
1 1 -
L <—-n"° f IX*u(0)P°dx + — f F?™%dx
0 B(x0,2Cr) 0 B(x0,2Cr)

nl—p 5 (p—9)/t
+—° JC 1X2u(x)|"dx ,
9 B(x0,2Cr)

where F3 is the integrable function defined by

FI% = FP™° + FI™ and F; € L**(B(xo, 2R)).

(2.22)

Decomposition of L,
In order to estimate L,, we need to decompose L, in a more suitable way. Denote by D, the
set
D = {x € B(xo,Cr) = B(xo, ) : Mp(IX uol)(x) < & Mp(X>ul)(x))

and set D, = B(xy, Cr) — (D U B(xy,r)). We get
L, = ( f + f )mé(leuol)(X)_‘sAa(x, D’u(x))X " ug(x)dx
B-D, D

> M2 (1X 2 140]) (%) 0 A (x, D*u(x)) X 1 (x)dx—

B-D;
| D) a0l (X + bo(0)
D,
Denote the second term by H3 and decompose the first term into two parts as follows

L, > N2 (X2 10]) (%) Ay (x, D*u(x)) - X" u(x)dx—
B-D;

MEIXuo))(xX) Ay (x, D2u(x)) - (X u(x) = X7uo(x))dx
B-D;
—H3 = H1 _HZ_H3.
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Consider H;. Since B = Dy U D, U B(xy, r), we have the following estimate by (2.4))

H, = f M (1X uol)(x) ° Ay (x, D*u(x)) - X u(x)dx
B(xo,r)UDz

> IM2(1X2uo ) (x) P Ay (x, D*u(x)) - X7 u(x)dx
B(xo,r)

2y M(1X 210 ()| X ()" dlx := J).
B(xg,r)

To estimate H, we will use the estimate (2.20) and the equality uy(x) = u(x) on B(xy, r). We

rewrite H, as follows

H, = f MG (X2 ])(x) A (o, D?u(x)) - (X 7u(x) = X ttg(x))dlx
B(x9,r)UD>
< f ME(X 1) ()™ (IXuCOP™ + by (1) - X 1(x) = X ttg(x)ldx
D,

< N f MIXuoD () (IXuCOl™" + by () + X () = P)Idx.
D,

0<|er|<2

Denote by J, the last term of the above inequality. We continue and get for H;
Hy = | DG0X°uoD) () 1Xuo ()| (1Xu(x)"™ + by (x)) dx

D,
< f MEXuoh () (IXu()P~" + by(x)) dx := T3,
D,

Then we arrive at the following relation
0L, > Jy—Jy—Js.

The estimate of J,
We can write

Mp(1Xu0)(x) = M(X>uly)(x)
< M(IXuolys,)(x) + M(X*uoly -p,)(x)
for any x € B(xo, 5). For the second term we deduce
MOXuoly-5,)(3) < f Xuoldx.
B(xp,Cr)

Therefore, we obtain

M0 < MUK ttolys, () + f Xuoldx.

B(xp,Cr)

(2.23)
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Moreover, by the same arguments, we have

MG (X uo)(x) < M (MAX utoly5,)(Ws()) (x) + f X2 ugldx

B(x0,Cr)
< M (M(X o) (s, () (0

+ M (M(X uolys,)(Ws-5,()) (x) + f X2 uoldx

B(x0,Cr)

M(X?uol)(x)x pdx + JC IX2uoldx

B(x9,Cr)

< MG, (IX7uo)(x) +JC

B(x0,Cr)

< DG, (1Xuo))(x) +2 f (X2 uol) (x)dx.

B(x9,Cr)
Since X7 up(x) = X7u(x) on B(xy, r) for all multiindices o, || = 2 we produce the estimate
MLUXuo)(x) < MG, (Xul)(x) + C, MEUXul) (x)dx (2.24)
B(x9,Cr)

by (2.19). Having established (2.24), we construct the set D as

D= {x € B(xo, r/2) : M (1X*ul)(x) > C; f fm“B(|X2u|)(x)dx}.
B(x9,Cr)
We immediately obtain that if x € D, then we have
M(X2uol)(x) < CTMG, (IX*ul)(x) (2.25)

by (2.24). It is known that the quantity (Dﬁé(leuol)(x))_é is A,-weight if 26 < p — 1 by [16]
Lemma 4.1]. This leads to the lower bound for J;

h=y D | OGIXCueh) X w0l dx
lo=2 7 B(xo.7)

> Cy MGX1t0)) () MB(X> ul) ()7 dx

B(xo,r)
> C, f MG, (IXul)(x)"dx (2.26)
D

> C, f M, (Xul)(x)"°dx - C MG, (Xul)(x)"°dx
B2

Byjp—=D

(p=9)/t
> C f IX2uP~Cdx — C,r2 ( f |X2u|fdx) .
By B(x0,2Cr)

The estimate of J,
To estimate J,, we set ¢ = pT“ and 7/ = max {t,p — t(%) -6,p—0-— 1} and we consider
three cases.
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If 1(2 — |e]) < Q, we apply Lemma[2.2] (2.8) to « derivative of u — P, and get

2-|a]

IX(u — P)(x)| < Cor* ™ ( f mé(lxzun(x)’dx)g MK ul)(x)' T,
B

We get for x € D,,

IR X2 )0 Xl X = P))

2-]a|
2|

<€) ( f m%(lxzulxx)’dx)g M(IXul) ()"~
B

2-|a]

|/
[

< C(9) (JC Smfg(|X2M|)()C)’Adx) mé(leuD(x)p—é—t% .
B

A
7

Therefore, we have the estimate for J,

2ol ¢

Jy < C(6)r ( f mt%qxzm)(x)fdx) o f M2 (1X2ul) (x)P 070" dx
B B

(p-6)/f
< C©)r? ( f |X2u|(x)fdx) .
B

In case (2 —|a]) = Q, we may take 1 < 7 < ¢ and define i similarly. We can get (2.27) once again.
If #(2 — |e|) > Q, we apply Lemma [2.2] (2.10) to « derivative of u — P. We get in this case

(2.27)

IX(u — P)(x)] < Cor* ( f Smé(leul)(x)tdx)t < Gyl ( JC E)ﬁfg(leul)(x)fdx)f .
B B

Therefore, from Hardy-Littlewood maximal theorem we have

< COr° ( f im%(lxzul)(x)fdx)f f MEIXul) ()"~ dx
B B

N\ (2.28)
< C(©)r? ( f |X2u|(x)’dx) :
B
Summing over @, we conclude that
o\
J> < C(o)r° ( f |X2u|(x)fdx) (2.29)
B

by 27) and (228).

The estimate of J;
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By the definition of the set D and by the Hardy-Littlewood maximal theorem we have
I= | MU0 (IXPuol™ + by(x)) dx
D,

< f MEX2ul) ()~ (IXu()P~" + by(x)) dx (2.30)
D,

<§'° f IX2uol?Cdx + f F'dx.
B(x0,2Cr) B(x0,2Cr)

Final estimations
We get

(p—0)/t
5L, >C, f IX2ulPodx — Cor? ( JC |X2u|fdx)
B> B(x0,2Cr)

(p-0)/i
-G f F'™°dx — C(8)r? ( JC zmgqxzup(x)’dx) - (6" f IX?uol"~dx
B(x0,2Cr) B B(x¢,2Cr)

from (2.22), (2.25), (2.28) and (2.30). Therefore, since B(xy, 2Cr) ~ r¢ we can deduce

(p—-0)/t
6r 2L, > C, JC 1X2ulP°dx — C, ( f Iqultdx)
B,/z B(x0,2Cr)

-G, JC F'dx — C,6'° f IX2uo|P°dx.
B(x0,2Cr) B(x0,2Cr)

Combining the above estimates, we have

5r 2K > C, f IX?ulP~dx = Co(' ™ +6'™°) f X2 u(0)l"dx
B, B(x0,2Cr)
3

(p—0)/t
- Z J[ F'dx - Cy(n'™" + 1) ( f |X2u|’dx)
k=1 v B(x0.2Cr) B(x0,2Cr)

by (2.18) and (2.21). Applying (2.17) which is the upper bounds of K, we obtain

3
f Xul’dx < C; )" f FI™dx
Br/2 k=1 B(x0,2Cr)

+ G+ 670 +6) IX2u0|P~°dx
B(x9,2Cr)

(p—0)/t
+CmP+ 1) ( JC |X2u|fdx) .
B(x0,2Cr)

Now we take £, 0 < < p — ¢ and denote f'/" = ¢ | Fi, ¢ = (p — 6)/t. Applying Lemma
to |X?ul’, we have proved that the highest horizontal derivatives have the higher integrability.
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If X7u(x) € L1(B(x,2R), for some g > p and the multiindex o, |o| = 2, then the Poincaré
inequality enables us to prove that both X;u and u have the higher integrability. Since u €
HW?P= function u and its derivatives X,u are locally integrable. We have

I Xiull Loy < C(B, u) + || Xpu — (Xitt)llLacs)
ny
< C(B,w) + Cy ) IXullzaqr) < o0
J=1
for any ball B ¢ Q by the Poincaré inequality [36]. Moreover
llutll oy < C1(B,u) + |lu — upllrs
ni
< Ci(Bw) + Gy ) X ulias) < .
=1

This completes the proof of Theorem 2.1}

2.2 Hardy Space Estimate for Weak Solutions of Sub-Laplace
Equations

Let {Xi,..., X} be a set of real C*-smooth vector fields on an open bounded domain Q2 C R".
This set satisfies the Hormander condition if there exists an integer s such that the family of
commutators of the vector fields up to the length s, i.e. the family of vector fields

Xl""7Xm7 [Xj17Xj|]7-"7 [ij[ij, ["-7Xj‘y]]--']’ jk = 1"--’S$

spans the tangent space T,R" at every point x € R".
In [55]], the authors define a (quasi)metric p on . We say that an absolutely continuous curve
v : la,b] — R" is admissible, if there exist functions «; : [a,b] — R, j =1, ..., k, such that

7= a0X(y() and Y a0 < 1.
J=1 j=1

The distance p(x, y) between points x and y is defined as the infimum of those 7" > 0 for which
there exists an admissible curve vy : [a,b] — R” such that ¥(0) = x and ¥(T) = y. For x € Q
and 6 > 0, let B(x,0) = {y € Q : p(x,y) < ¢} be the ball centered at x with radius ¢ with
respect to the metric p. In general it does not need to be a metric. When the family of vector

fields Xi, ..., X; satisfies the Hormander condition, then p is a metric and we say that (R", p) is
a Carnot-Carathéodory space. The set {Xi,..., X,,} is often called the horizontal vector fields in
Q.

It was shown in [53]] that these balls satisfy doubling property for Lebesgue measure. More
precisely, for any compact subset K of €2, there exist positive constants Cx and ¢’(K) such that
forall 5,0 <6 < ¢'(K) and all x in K

|B(x,20)| < Ck|B(x,0), (2.31)
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where | - | denotes the Lebesgue measure. We denote by C, the best constant of the estimate
(2.31), then the Carnot-Carathéodory space (R", p) with a Lebesgue measure has the homoge-
neous dimension Q = log, C,. We define the local Hardy-Littlewood maximal function

1
Mo = sup s [ lroay
It follows from (2.31)) that the Hardy-Littlewood maximal function maps L”(Q) to L?(K) for any
K compact subset of Q and 1 < p < co.

Next, we are going to define the Hardy space H'(Q2). Fix a smooth bump function ® in the
unit ball of the Carnot-Carathéodory space and let ®s5(y) = 6"®s(6"'y). For any x, in Q and
6 > 0 small enough, the push-forward of ®s by any of the coordinate maps constructed in [S3]]
gives a smooth bump ®° supported in the ball B(xo,5). One can check that for any compact
subset K of Q and for arbitrary x € K

DX (x)| < CkIB(xo,O)" and  [X(@P)(x)| < Ck67'1B(xo, O, k=1,...,m,  (2.32)

when 0 < 6 < ¢”(K), where &” is a small constant such that B(xy, 6”) C Q.
For a function f on Q and 6 > 0, let

M5(f)(x0) = sup

0<o<6

fg O] 2.33)

We say that f lies in H'(Q) if for any compact subset K of Q, there exists a do(K) > 0 such that
M(;O(K)( f)(x) is in L'(K). We define the Hardy space norm of f on K by setting

1Nl = $Up | Moy (D1 - (2.34)
KcQ
Given a first-order differential operator X = (Xi,...,X,,), we define the Sobolev space

WLP(Q) in the following way:
Wh(Q) = {ue L(Q) : Xu e LP(Q), j=1,....m|,
where Xju is the distributional derivative. The W'P_norm || - |l1, is defined by
luellr,p = lloallr + [1Xullrr,

where Xu = (Xju, ..., X,u) is the horizontal gradient and its length is given by

Xu(x)] = [Z |Xku<x>|2]
k=1

We denote by X the C*-smooth vector field which is the formal adjoint to X; in L% ie.

1
2

fijgdx = _ f gX;fdx for functions f, g € C5(Q).
Q Q
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We say that u(x) € W'P(Q) is the weak solution of the p-Sub-Laplace equation

y X (1XulP*X;u) = 0,
2% )

i=1

if u satisfies the following identity
f 1 XulP 2 X;uX:¢pdx = 0 (2.35)
i=1 VO

for any ¢ € C;(Q).
Our result states as follows.

Theorem 2.6. Let u be the weak solution of the p-Sub-Laplace equation (2.35|) and % <p<

O+1.
(a) If u € WH(Q), %p < g < p, then we have

IIXul”llgy < Cllullf,

9 ©Q
;,ﬁ<’yﬁl

(b) If u € W'(Q), where 5% p < q < p then u € W'P(Q).

where y =

Proof. Lett > 0 and x € Q, we set B, = B(x,t) and up, = |B,|™! fB u(y)dy. We find a smooth
function @} such that ® > 0 and ®; = 1 on B(x, t/2). We first write

OXOIXuI = " Xilat — up Xt |Xul" 2D} (). (236)
i=1

Since

m

DX 0 1 )] Kot X0 = 15 )Xot - XX 07 y)

i=1 i=1

+ " Xilu = ug ) Xiu - |Xul20L(),
i=1

by differentiating of product and from (2.36), we get
OEOIXuOI = > X; [ = up )OF)] Xt - |Xup ™
i=1

= > = up )Xo - [Xul 2 XD).

i=1
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It is easy to see that it = (u — up )@’ € WHP(Q). Thus there exists a sequence ¢y € Cy(Q) such
that ||¢y — @l , — O where g < ¢’ < p. We have

> f X; [( = g )OF ()] Xt - [Xul 2y = ) f X; (@~ ¢w) Xau - |Xul"dy
Q i=1 V&

i=1
< IXull?; ' 11X (¢w — DI, — 0.

Therefore, we obtain
fg O; WIXuy)lPdy = — Zm: L (u — ug )X - 1XulP 2 X7 (y)dy.
i=1
From (2.32)), we get
' f @i‘(y»Xu(y)Wdy‘ 3 f e = | X - X2y,
Q i=1 v Bx

Remind the Poincaré inequality on the Carnot-Carathéodory space [48]]:

1 m 1
( lu(x) — JC udylsdx) < CtZ (f IXiulrdx)
By By ' \J2s,

foré <l<l, %—é <1 < 1. It follows that
m_ m ' R
f O E)IXupdy| < C > ( f |X,~u|fdx) ( f (1Xul - 1Xu2)’ dx)
Q i=1 j=1 \W2B: Bx
where 1 = é +1,
Since |X;u| < | Xu| for r = % we have

0+1

op 2
< C(n,®) (JC |Xu|Q+1dx) .
By

o+l
Q

f Xu(y)ldy < \ f O Xu(y)dy
B(x,t/2) Q

This proves part (b), and moreover,

sup (2.37)

>0

f O;(IXu)lPdy| < C(n, @) [MQ|Xu|5f1(x)
Q

Therefore, we can get the Hardy space estimate as follows:
0+1
7N
X0l = Cln, @) ||MolXul (0| Ton
op 1
< €1, ®) | IXul# (0| Tou
Lo
= C(n, D) IXu(0)I7,, < Cln, @) [ullf,,

by boundedness of the Hardy-Littlewood maximal function. This finishes the proof of (a). O
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Remark 2.7. Notice that if u € W!?(Q) then for any compact set K C Q we have
leul”log*lXuldx < 400,
K

This means that if the horizontal gradient Xu of a solution u belongs to L”(£2), then it has lo-
cally higher integrability L”log*L(Q). In fact, the author in [16, Theorem 1.2] actually proved a
stronger result that if u € W!'P(Q) then u € W'P*¢(Q) for some € > 0. Combining this result with
Theorem [2.6|(b), we come to the following proposition:

Proposition 2.8. If u is a weak solution of (2.35) and u € W'(Q), where % p < q < p, then
u € Whrre(Q).

Remark 2.9. From the estimate (2.37)), we have

<

>0

0+1
{x cR" MQ|Xu|QQ+”1(x)] “ S, CD)A}‘

{x € R" : sup fs;d)f(y)lXu(y)l”dy‘ > /l}

< Cln, ®)A 2 [Xu()|l!,
o

o+l
space H %, which was introduced by Grafakos [20] and

for the end point case with y = We conclude that |[Xu|” belongs to the weak type Hardy

[I1Xul”]| < Cllull?,
AW

0
ak—H 0+1
Remark 2.10. If we restrict the Carnot-Carathéodory space to the Heisenberg group, then from
the arguments in [22], we state without proof the following compactness result:

Proposition 2.11. Let u; be solutions of ([2.35) and |lul|,, < C for k > 1. Then there exists some
subsequence uy, of wy such that | Xuy |V converges -weakly in H I. Moreover if Xuy — Xu a.e. for
some u, then |Xu|P — |Xu|P converges x-weakly in H'.

Remark 2.12. Let i be solutions of (2.33). We set

P=1{g>0: g<panducWQ)implies u € W(Q)}.

It is of interest to know whether g = % is the best lower bounds of the set *J3? In other words, is
it possible that the set 3 is an open set? If the answer is affirmative, the integrability property of
the solution of is open-ended. Keith and Zhong [38] proved that the (1, r)-type Poincaré
inequality is open-ended. The proof of part (b) of Theorem [2.6]shows the investigation of open-
ended property for the Poincaré inequality in general case is rather important. For the definition

of open-ended property see Subsection 3.4.



Chapter 3

Self-Improving Regularity for Very Weak
Solutions of Degenerate Elliptic Systems

In this chapter, we consider degenerate elliptic systems in Euclidean space R”. We aim to find a
result analogous to a result from [44] for degenerate elliptic equations. In comparison with [29]
Lemma 3.38, Theorem 3.58] our result reveals some new aspects of a measure u defined by
A ,-weight.

Let (R", u) be a measure space, where du = w(x)dx and w(x) is A,-weight for some p > 1.
ie fQ w (liQ| fQ wl‘p')p_1 < ¢, where Q is an arbitrary cube in R". Let m be an integer number

such that m > 1. Denote P = [To<<, RY and D"u = (u,d,u, - - - ,87u) for all |o| = m. Let Q be
a bounded domain in R", A = (A,): Q x P — R" be a function such that A,(-, D"u(x)), x € Q,
is a measurable function on Q satisfying the following conditions:

ZAg(x,Dmu(x))-Bju(x)Zya)(x)la’”ulp ae.in Q 3.1)
lo|=m

and
|A,(x, D" u(x))| < a)()c)l(')gu()c)ll’_1 ae. in £, (3.2)

where |o| < m. We set H"?(Q, u) to be the weighted Sobolev space defined in [29]. Similarly,
we introduce the definition of the higher order weighted Sobolev spaces.

Definition 3.1. For a function ¢ € C*(Q) we let

m l/p
lwmm=§](£WWuquMﬁ .

lo1=0

The weighted Sobolev space H™?(Q, ) is defined to be the completion of
{o € C¥(Q) : ¢lln,y < o}

In other words, a function u € H™P(Q, u) if and only if u € LP(Q, u) and there are functions v,
such that for some sequence ¢; € C* (L) we have convergence

f lo; — ul’ w(x)dx — 0
Q



46 Self-Improving Regularity for Very Weak Solutions of Degenerate Elliptic Systems

and

f 107 ¢ — ve|Pw(x)dx — 0
Q
as i — 0. The function v, is called o-th derivative of u in H™?(Q).

We say that a function u € H™4(Q, ) is a weak solution of

D (=137 AL (x, D" u(x)) = 0

lor|=0

on an open set Q if ¢ = p and

> f Ao (x, D" u(x))0%¢dx = 0 (3.3)
lorj=0 V€
for any test function ¢ = (¢y,--- ,dy) € C7(2). We say that u € H™(Q, u) is the very weak

solution if (3.3)) holds and ¢ < p.

Definition 3.2. For the locally integrable function u denote by ggu the o-th weak derivatives;

that is
f¢5§udx:(—1)|”|fu6§¢dx
Q Q

for any ¢ € Cy(Q). We say that u € W™P (L, u) lfgfu e LP(Q, ) for all |o| < m.

Observe that we have the identity 5x o 5x = 5)% due to

f ¢5x(5xu)dx:— f 5xu6x¢dx: f (/)Aa?cudx,
Q Q Q

and moreover, we have the semigroup property
808 =97 (3.4)

for any multiindeces o and .
In this chapter we follow the approach, developed in [44], to obtain a self-improving integra-
bility result for degenerate systems in the weighted space. Our principal result states as follows.

Theorem 3.3. Let Q be a bounded domain in Q, p > 1, and w(x) is A,-weight. Assume that
u € H)(Q,p) and A, satisfies (3.56)-(3.3)). Then there exists 6 = 6(n, N,vy, p,[wla,) > 0 such

loc

that if r = p — 6, then u € HZ;’C“&(Q,/J).

We postpone the proof of Theorem [3.3]to Section 3.4 and start from some auxiliary results.
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3.1 Preliminary Lemmas

For w(x) € A, there exists a py < p such that w(x) € A, (see for example [29, 25]). We set
qo = qo([wla,) = Inf{py : w € A), 1 < pp < p} and fix a positive number gy < g < p.
It is important to introduce another weighted Sobolev space W™?(Q, w) as follows.

Definition 3.4. For the locally integrable function u denote by Egu the o-th weak derivatives;
that is fg¢0gudx = (=1l fguagqbdx for any ¢ € Cy(Q). We say that u € W™P(Q,w) if
u € L(Q, w) for all |o| < m.

The author of [39] shows that H™?(Q, w) = W™P(Q, w) for m = 1. His arguments also can
be successfully applied for m > 2. We sketch the proof of this lemma for the completeness.

Lemma 3.5. [39] H™?(Q, w) = W"™P(Q, w).

Proof. We divide the proof into three steps.
Step 1. Let n(x) € C7(€2), n(x) = n:(|x[) and fRn n(x) = 1, where 1,(r) is a decreasing function.
If wis Ay,-weight and f € LP(R", w), thenn; * f — fin L’(R", w).
Step 2. We show that H™?(Q, w) ¢ W™P(Q,w). If D c R" is a bounded domain recalling the
embedding property [39]

LP(D, w) c LP/“(D). (3.5)

So, for any u € H™P(R", w), we have u € H™?/%(D, dx) whenever D is a bounded open subset
of Q. Moreover, any o-th derivative of u that is in H™” (€, w) is also the o-th weak derivative.
Since this assertion is true for m = 1, we prove the assertion for higher order derivatives by
induction. If we have H"" TP(Q,w) C Wn=LP(Q, w) and m > 2, since u € H™"(Q, w), there exists
¢;j € Cy(Q), and 07¢; — 6‘7u in L(Q, w) with 0 < o] < m—1and d}¢; — v, where |7| = m. We
set ¢; be the multiindex with k-th component 1 and O elsewhere. For any multiindex |0 = m — 1,
from Definition we can verify that 6”+eku(x) = axk(a"u)(x) We take ¢ € C7(2) and from

b

'fgguﬁxkl// — (=1)Viie pdx| < max | Dy (f |5¥u - 07 ¢jldx + f Vs, — 07 % jldx
Q Q Q

-0 as j— oo.

It follows that 87+ u(x) = Vot € LP(Q, w). This completes the proof of Step 2.

Step 3. We aim to show the inclusion W"?(Q,w) ¢ H™P(Q,w). Let u € W"P(Q,w) and D
be a bounded domain in Q. It suffices to prove u € H™P(D,w), see [29, 1.15]. Since u; =
nj*u € C*(R") and 07u; = n; *éfu(x) (64, Lemma 2.13], we have |u; — ull,, ., — 0. Therefore,
u e H™?(Q, w). |

Let (R", d, 1) be the metric space with doubling measure. Let f be a locally integrable func-
tion on this measure space. We introduce arbitrary maximal function with respect to the measure
w1 which is defined by

— 1
M, (f)(x) = sup ) f | fldp,
0

xeQ M
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where the supremum is taken over all cubes QO C R”" containing x. We define the centered
maximal function

1
M - d
W) = SUP B Sy

where B(x,0) = {y € R" : d(x,y) < ¢}. We start from the observation that, the doubling
condition of the measure u implies the inequality M,(f)(x) < CM#( f)(x) for some constant
C > 0. We choose an arbitrary cube Q, containing x. Let r = 2+/nl(Q) and Q' = 100+/nQ,
where [/(Q) is the length of the edge of the cube Q. Then Q C B(x,r) C Q' and therefore

U(B(x,r)) < u(Q") < Cu(Q). So we have

du < CM
o f fldu < (B( ~ fB < CML ()

and, consequently, we know that these two maximal functions are pointwise comparable

C' M, ()(x) < Mu(f)(x) < CML(f)(). (3.6)
From Vitali lemma and Marcinkiewicz interpolation theorem, we have the following lemma

Lemma 3.6. [61)] (1) If f € L'(R", ), then for every 1 > 0,

plx s My(f) > A} < % FOldu(y)
N
(2)If f € LP(R",u), 1 < p < oo, then M, (f) € L’(R", u) and

M.

0 < Cpllfllzr@n

where the bound C, depends only on c, n and p.

More specifically, for du = w(x)dx and d(x,y) is the Euclidean metric |x — y|, we define a
localized maximal operator with respect to any fixed subset B C R", Mp(f)(x) = M,(fxs)(x),
where yp is the characteristic function of B. We let Mg( f)(x) to be the k times composition
operator of Mp on f. That is if M’ g‘l( f)(x) is defined, then

MY(f)(x) = sup MS (OGN )w)dy

1
>0 W(B(x,r)) B(x,r)

is defined inductively for k > 2. We write

1
M d
B = SUp e fm,r) 7 heedy

be the classical Hardy-Littlewood maximal function. Since w(x) € A,, we get

|B|q 7'

q-1
=04 <C ~C . 3.7
(fg @t x) : [,wx)dx  w(B) G
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We can deduce the following estimate

1 1 1/q 1-1/q
dvy < q d -q/(g-1) d )
rmxmlBWHV”By<|ern(£wﬂﬂX”””)J (ﬂ”@) @My (3.8)

< Mp(I 10",

Note that from (3.8]) we actually proved

ME(A)(x) < M1 (3.9)

for k > 1 and any locally integrable function f.

To simplify the notation, we write J% f(X)w(x)dx to be ﬁB) fB f(x)w(x)dx and 0”u to be the o-
th derivative of u when u € H™?(€), w). We shall use a theorem of Gehring in doubling measure
space [16]. It is also worth to mention that Martin and Milman [50] extended the Gehring’s
lemma for non-doubling measures.

Lemma 3.7. /50 16] Let g € [qo,2n], where gy > 1. Assume that functions f, g, defined on
(R", w), are nonnegative and g € L! (R",w), f € L’ (R",w) for some ry > q. If there exist

nonnegative constants b > 1 and 0 such that for every ball B C BB C R", B > 1, the following
estimate holds

q
JC glw(x)dx < b[( JC gw(x)dx) + JC flw(x)dx| + 0 JC glw(x)dx,
B BB BB BB

then there exist nonnegative constants 6, and €, 6y = 6y(qo, Q, C4,8) and € = €y(b, gy, O, Cy,B)
such that if 0 < 0 < 6y then g € LY (R", w) for p € [q,q + &) and moreover

loc

1/p q 1/p
(JC gpa)(x)dx) <C [(JE gqa)(x)dx) + (JC fpa)(x)dx) }
B BB BB

for C = C(b, q0, Q, Ca, p).

3.2 Weighted Pointwise Sobolev Inequality

The following lemma extends [44, Lemma 2.1] to the case of the weighted Sobolev space.

Lemma 3.8. Let [ > 0 be an integer, r > 0, xo € Q, and B = B(xo,r) € Q. If u € W"(B, w),
fB 0udx =0for0<|al <l-1, and x € B, then there exists C\(n,l, p) > 0 such that

()| < C ' ML(I8'u|")(x)s  a.e. in B (3.10)
B

Moreover, if g < s < p, and ls < ngq, then there exists C,(n, L, p) > 0 such that

lu(x)| < czr’( JC Mg(|a’u|q)(x)2w(x)dx)"q ML(10'u))(x)™ a.e. in B (3.11)
B
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1

( f |u(x)|s*a)(x)dx) L <o ( f Mg(|alu|q)(x)$w(x)dx) S (3.12)
B B
where s* = nZ‘fls then
. 1/s
|u(x)| < Car'! ( J[ Mg(|alu|‘f)3/qw(x)dx) a.e. inB (3.13)
B

where 52 = @(n, L, s).
Proof. Recalling the embedding property (3.5)), we conclude that

IVu(y)l
-y 4
< CrMp(IVul)(x) < CrMp(IVul))(x)'?  a.e. in B

1
o - o u(y)dy\ ) f .

where Vu = (0,,u,--- ,0,,u) is the distributional derivatives of u. From an iteration argument,
we have
lu(x)| < C1r'ML(10'u|)(x)"/4  a.e. in B.

Next, making use of arguments from [29} page 306] for ¢ < s < ng, we can write

1/s (g=1)/s
lu(x)| < CipMg(|Vul)(x)+Cons "9/ ( f IVulsw(x)dx) ( f w(x)l/“—q)dx) = [+11. (3.14)
B B

Thus we have

1/ng (g—D/nq
lu(x)] < CMp(|Vul|)(x) ™9/ ( f |Vu|sw(x)dx) ( f w(x)”“-q)dx) (3.15)
B B

by taking

- Mp([Vul)(x)

[(fB |Vu|”w(x)dx)l/s (fB w(x)l/(lq)dx)(ql)/s]s/nq

Combining (3.7) with (3.15]), we obtain
1/nq
u(x)| < CrMp(|Vul)(x) "4~/ ( f IVulsw(X)dX)
B
, 1/nq
< CrMp(|Vul?)(x)"a=9/ma ( f MB(IVulq)S/qa)(x)dx) .
B

The last step is followed by the fact [Vu| < Mp(|Vu|)(x)!/4, w—a. e.in B. As aresult, we have
proved (3.11)) for the case / = 1. Now, we need only to show (3.11) since the inequality (3.12)) is
an immediate consequence of (3.11)).
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Applying the induction argument we show that if (3.11]) already holds for / — 1, then it also
holds for /. We repeat the arguments above, for x € B and (I — 1)s < Is < ng, observing that
5= —_ > sand § < ng. Replace 5 by s in || and get the estimate of /

ng—Is+s

[ = CinMp(IVul)(x)

(-1)/nq
< Cpr'™! ( f Mﬁ;%wluw)(x)s/%(x)dx) Mp(M};" (10'ul")(-)4)(x)
B
(-1)/nq
< Cpr'™! ( f Mﬁ;%w‘ulq)(x)s/qw(x)dx) M (10'u|)(x)*17°
B

by (3.11), and the induction hypothesis where the last step is follows from (3.9) and Holder
inequality. On the other hand, we estimate /1 as follows:

o ] 1/s (=D/5
11 = Cop*"hs ( f IVul“'w(x)dx) ( f w(x)l/(l_q)dx)
B B
/s (g-1)/5
< Cza)(B)l/S (53— nq)/s - l(JCM§1(|ﬁlu|q)(x)S/qw(X)dX) (fw(x)l/(l_q)dX)
B B
1/s
< CyplSy S5yl (JE Mﬁ;l(Ié?lul")(x)s/qw(x)dx) )
B
by (3.7 and induction procedure. Choosing

1/nq
n= r( JC M (10'ul?)(x)"! qw(X)dX) M0 ul) ()~
B

we get [ = I] in this case and we obtain

I/nq
u(0] < Cor' ( f Mf;(lﬁlulq)(x)s/"w(x)dx) Mi(16'ul)(x)*'*
B

that proves (3.11)) for the general case. To prove (3.13)), observe that (s/q)’ < n/(n — 1), we have
|x — y|H D6 dy < C(s, n)r*~"=16/9"  Therefore,

U@l < Cln )fl' ”(J\lv,f'l

qls
< C(s,n) ( f |Vu(y)|s/qdy) 1/ (s/9)'~(n=1)
{yeB:lx—yl<r)

{yeB:lx—yl<r}

1/s
< C(s,n)r (JC IVu(y)ISw(x)dy) .
B

This proves (3.13) for / = 1, and it is easy to prove the general case by induction. This completes
the proof of Lemma O
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As an application of Lemma [3.8 we have the following lemma which will be used later. We
fixaqg; > I suchthatg < g, <p

Lemma 3.9. Let A > 0. If h € W™1'(Q, w), supph C %B ={xeQ:|x—x<r}, and
F(1) = EQ)NB # 0 where E() = {x € R": My(8"h!)(x)"" < 4},

then h |py) has an extension H to R" satisfying

(i) H=hon F(A) and supp H C B(xy, 4r),

(ii) H € W™(R") with ||0” H||o®ey < cAr™71, 0 < || < m,

(iii) |07 (H — h)(x)| < cAd(x)" ! a.e. for 0 < |o| < m — 1, where d(x) denotes the distance
from x to F(A).

Proof. From (3.5)), we know that 7 € W™41/9(QQ). Observe that

f@”hdx =0 when O<|o| <m,

B

and, by Lemma 3.8 we have [07(x)| < cA"7! for any x € F(1) and 0 < |o| < m. On the other
hand,

1
‘h(x)— — | bl < e MP(@ R a.e. in B. (3.16)

1Bl Jg

Therefore we can find a point x; € {‘g—’ < |x—xp| < 37’} such that holds for x;. Since A(x;) = 0,

we get
1
i,
1Bl Jp

Since w(B(xg, 7)) < w(B(xy,5r)) < Cw(B(xy, 3Z’)), we get

1
m .
Bl Jg

where My is the localized arbitrary maximal function and the last step is followed by 1j This
implies |37 h(x)| < cAr™! for any x € F(1) and 0 < |o| < m. From a similar argument of [44),
Lemma 2.2] and Lemma 3.8} for any z, € F(2) and s > 0 we have

1 1/q1
< "M ™) (x) D < cﬂ"(— f lhl‘“w(xwa :
B : W(B(x1, 2)) Jpon

< " mll? Mg(lamhlw )(xl)l/fh < crt ml}fli'] Mgl(lamhlql)(xl)l/lh
e X€

107 (u — Q1)) < cAs" 1ol yeF), 0<L|a|<m

where Q,,_ is the Taylor polynomial of degree m—1. So £ |, satisfies the conditions of Whitney
extension theorem. O
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3.3 The A, weight on metric space with doubling measures

Consideration is given to A, weight the metric space (R",d, i) with doubling measures. More
specifically, the measure u satisfies a so-called doubling D, condition which states as follows.

Definition 3.10. [/62|] We say that u € Dy, if there are a constant k > 0 and a number b > 0 with
the property that for all x e R", t > 1 and r > 0 we have

w(B(x, tr)) < ki’ u(B(x, r)).

We follow the definition of A, weight on the metric space (R", d, u) which was introduced in
[62, page 4].

Definition 3.11. [l62]] The A,(u) condition for w with respect to the measure y, that is
1 1 ol
— fa)d,u (— fw_l/(”_l)d,u) <c
H(B) Jp u(B) Jp

We will also need the following lemma.

for all the ball B c R".

Lemma 3.12. [62)] Let p > 1. The estimate ||M,(fllLroy < Cpllfllroy holds for every f € LP(v)
if and only if v is a weighted measure with respect to u and the weight w € A,(u).

We are going to prove the following lemma which in analogue with [25, Theorem 9.2.7].

Lemma 3.13. Let f be a locally integrable function on (R",u), 1 < g < pand0 <6 < p—gq.
Then M, (|f1)(x)™°/4 is the A, (1) weight.

Proof. The proof is divided into several parts.

Step 1. Recalling the Kolmogorov theorem on the measure space [61, page 43]. Let S :
L'(R", ) — L"°(R", 1) be a weak-(1, 1) type operator and A is a finite measurable set. Then

f IS (H)@)I dp < (1= €)M IS 1 wpA)' ™ ( fR Ifldﬂ) . (3.17)
A n

for all 0 < € < 1. From Lemma 3.6} we have (3.18) is true when S replaced by M,,.
Step 2. Let 0 < € < g. We prove that M, (|f |9)(x)€/ is an A;(u) weight. The assertion is reduced
to showing that
1
0 f M (f1D0)du(y) < Cln, €, M (1D 1 ae. (3.18)
o

for arbitrary cube Q C R" containing x.
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We split the function f(x) = f(xX)x3 o + f(X)X 3 yrgy := f1 + f2. On the one hand, we have

1 1 €4
— | MJAIDYO)duy) < Cn, )| — f qd)
= fQ A du(y) < Cln e)(ﬂ@ 1y

1 €/q
< C(n, —_ 9
<Cn e)(ﬂ@ fwlﬂ u)

< C(n, )M, (I f1)(x)

by 1b On the other hand, observe that M, (|f5|!)(y) < CMN(I Hl|9)(x) for any x,y € Q. Com-
bining this estimate and @, we have M, (|£2|))(y) £ CM,(|f217)(x) < CM,(|f17)(x). Therefore,

- f MBI )y < CoyM(fI7 0,

This proves (3.18).
Final Step. We show that &£(x) = M#(Iflq)(x)’é/q isan A, (u) weight..
Denote by B an arbitrary ball in R” and obtain

1 g
- “rad M q $/(p=a) 4
) fo(X) ) f L(FID () u
< C(n, p, M, (If19)(x)°/ 7~

from (3.18)). Then we get

(p=9)/q
f(X)( B f Ex) ")du) < C(n.p.q)
and thus
1 1 (p-9)/q
( B f fx )d#) (@ fB §(X)“”(”‘q)dﬂ) < C(n. p. ).
This completes the proof. O

Since the A, weight w(x) satisfies the D, condition (see, for example [25, page 284]), from
Lemma and Lemma we get the estimate

f M (i7" M (| 1) ()™ Y w(x)dx < C f 1P Mg(| f11)(x) "M w(x)dx, (3.19)
Q Q

for any function 4 € LP(R", n(x)dx) where n(x) = Mg(|f]7)(x)"%/9w(x).
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3.4 Proof of Theorem

Let u, Q be as in Theorem [3.3] Suppose B(zo, R) is any ball in Q. We fix a point xy € B(z9, R/2).
Let 0 < r < R/32 and B, = B(xg,r). There exists a smooth function ¢ € C7’(B), where
B = B(xo,2r), such that ¢ = 1 on B(xo, ), supp ¢ C B and [8”¢(x)| < Cr’!, |o| < m. There
exists a polynomial P such that fB (0.8 0'(u—P)dx = 0 for any |I| < m—1. Denote uy = (u—P)p(x)
and v be the Whitney extension of uy |1). We assert that (3.3) holds if we substitute ¢ by ¥; that
is

> f Ay (x, D"u(x)375(x)dx = 0
|o|=0

In fact, we choose a sequence ¢; € C;’(Q) such that [|¢; — Vl|gme-oa-0@, n — 0 asi — oo.
Therefore

> f A (x, D" u(0))TF(x)dx| = | f A (%, D"u(x)) (I79(x) — 37¢hi(x)) dx
=0 V€ |cr|—0 Q

f 107u(x)1P™" |879(x) — 07 ¢i(x)| w(x)dx

=0
= Z ”a(r”‘” — 7 ”L(P D/1-0(Q, ) — 0.
=0
The last step follows from the Holder inequality.
We split Q into two sets Q2 = F(1) U (Q — F (1)) and obtain
> f A (x, D" u(x)Tug(x)dx = - )" f A (x, D" u(x))0v(x)dx
jor}=0 ~FCD jor}=0 =F(D
m—1
<>, Ay (x, D"u(x))37 (19 = V)()dx
=0 * B(x0,8r)—F(A)
(3.20)

m—1
_Zf‘ Ao (3, D" u(x)) o (x)dx
B

lo=0 ¥ B(x0,8n)—F ()
-1
+cA f |07 u(0)|” w(x)dx
B(x0.81)—F(1)

=Ji+JL,+ s

We need to verify that F(1) is a nonempty set. We assert that there exists 4o > 0 such that
E(1) = F(A) for any A > A,. Notice that if x € R" — B(xy, 3r), then

wW(B(xp,2r)) < w(B(x,7r)) < Cw(B(x,r)).
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This implies
MG (07 ug|")(x) < c——— Mm_l(la;”u [T (x)w(x)dx
5 ° W(B(x0,41)) JBxp.ar) g ’ (3.21)
< . Mm 8m q1 .
¢ jmin, 5 (107 uol™)(x)
We denote

1/q
do=c (Jc MZf_l(I@fuolq‘)(X)w(X)dX) ,
B(x0,4r)

We find that the assertion is true and F(1) # 0 for 2 > Ay. Multiplying both sides of (3.20) by
A717° integrating on (4, ), and interchanging the order of integration on both sides, we get

6'K

=4! Z f M}’;qamuowl)(x)—é/qlAU(x’ D"u(x))0 uo(x)dx
lo|=0 R*—F(Ap)

- 22
+ 6‘1/16‘5 Z f Ay (x, D"u(x))0T up(x)dx (3.22)
=0~ F(40)
3 o 3
< A 1dr= Y K.
If we set
1/q
A, = C(JC |6Z1uo|‘“(x)a)(x)dx) ,
B(xp.,4r)
we conclude that 1y > A;,.
The estimate of K,
Let 0 <1 <m— 1. We define the following quantities:
- (p—De
100n(p + €)%’
. (m—-D( -a)p
p= 1- ’
nq
i il = 3.23)
oo " |B(zo, )| @
"= ( f M3 ("l ) w(x)dx) —
Bz, %) w(B(z0, 3))®
1 (1-a)/(p=9)
V= | |07 u I”“S(x)w(X)dX] ,
' 0BG, 40) Jpigan
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a1 200 @ |B(zo, Pl |
Y2 = [ fB . sj)Mé (10" ul™) o w(x)dx] B ENE
3 w(B(z0, 7)) |

_ 1 7
i a |B(zo, ) |”

T = ( f M?(Ia’"uol‘“)('i-')w(x)dX) %
B(zo. %) w(B(zo, ) |

](1—0)/(17—5)

1
A I 0"l (WD
1 »(U(B(XO, 4r)) B(x0,4r)

b

1

o i 1B, ) "

T5 = ( f M$<|a’"uo|‘“>"<3l’w<x)dx) —a |
Bz, %) w(B(zp, 2))r

‘We can write

@"uy= Y "= Y0P ()

a+f=m

=g w- P+ Y W= P(0Pe)

a+f=m, |a|<m

=@ u + D 3" PYPe().

a+B=m, |a|l<m

We have
0% (1 — P)(x)| < Cr™ M7 am ) (xye < Crmmtol pa 1ol gy )i
from and by 8" P = 0. Combining this estimate with the fact that |#P¢(x)| < Cr ¥, we get
10(u = PYOPp(x)] < CM("ul )(x)

for all multiindices @ and 8, 0 < || < m, 0 < |B] < m. Since ¢ is a bounded function, we know
that

10" u(x)] < CMP(F™ul")(x)TT. p—a.e,
see, for example [61]. Therefore,
10"uo) < CME(F" U™ ()T p— a. e. (3.24)

and

|J1] < C/IZf 10" ulP d" ! (x)w(x)dx

-1
=0 JR-E)
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from (3.57). Observe that d"!(x) < C|B(xo, 8r) — E(D)|"". We fix 0 < ¢ < (p — 6)/¢; and deduce

m=l
n

Ad™ () < CA f Mg’(lc')’"uolql)q[ldxl
| JB(z0,3)

m—1

[ 1 0=l
_ q1 1 q1
<At ( f Mm(lﬁmuolq‘)’w(x)dx) ( f w(x)_ql‘l)
sy Bz, ) (3.25)

m=l

i | T |BGe ) |
<cA ( f ngamuowl)fw(x)dx) M}
B, ) w(B(zo, )

< Cmin{A%1y, 2715} < Cmin{A%y,, A7y,},
where the last step is followed from (3.24)). Using (3.25)), we get

m—1
|Jil < ¢ Z f 10" ul”~" min{A%yy, PPy, }w(x)dx.
1=0 VR'-EW)

If p > 4% then we choose A%y, that provides the minimum in (3.25). In this case,

—_

3

M ol ) 7T
C) v f f A7 A0 ulP~ w(x)dx
B(x0.81)—E(dy) JO

K

IA

~
(=]

3
L

S
g

" f M ol 510" ()l x
B(x0,8r)

~
(=]

3
L

IA

cYy, f M) 0l (),
B(x0,8r)

[=

(=]

where the last step follows from 1} While in the case p < %_"l, the quantity A7y, should be
taken into account, and thus,

1

m—1 M (0" ul1) T .
Ki<CY v f f AP G )P w(x)dx
=0 B(x0,8r)—E(1p) YO

-1 ﬂ
CO» M up|™) 5 10" "™ eo(x)dx
1=0 B

m
(x0,87)
m

IA

—_

IA

-6
'y, f M) 5 10" ulP ™ w(x)dx.
B(x¢,8r)

=0

We use arguments similar to [44]], and conclude that

Kl < f o Ff_éw(x)dx7 with F] € LP-HY,(B(XO’ 87‘),#), (326)
B(x0.8r)
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provided (p + @’)(p — min{a, p} — 6)/(p — 6) < p — ¢ and thus
6 < min{a, p} — &’ + o’ min{a, p}/p. (3.27)

The estimate of K,
We write

m—1
ZEDY f 16" ]P0t (X)w(x)dx
1=0 B(X(],Sr)—F(/l)
and distinguish several cases. First of all, we assert that
10'uol(x) < C(m, 1, 5, QA" My (10" uo|™)(x)! /1. (3.28)
forallthe 0 </ < m— 1. If (m — )q; > nq, we use inequality (3.11)) with s = g;, and from the

fact that ¢; > ¢ > 1, Hardy-Littlewood maximal theorem and Holder inequality, we obtain

(m-)/ng
) M0 1)) e) -1 0n=Dima)

10" uo|(x) < Cor™™ ( JC Mg(|amuo|4)(x)%w(x)dx
B

(m=0)/nq
) Mgl(lamuo|q)(x)(1/q)(1—q1(m—l)/ml)

< Gy (JE |0 ug| ()7 w(x)d x
B
< Czrm—l%(ql/q)(m—l)/anrg(wnludqn)(x)(l/ql)—(m—l)/nq

We can take a small 0 < @ < 1 < (g1/¢q)(m — I)/n, from the fact 2, < g < ME(0up|? )(x)"/4
and Ay < A, we conclude that

10'u01(x) < Cor™ ' A" M (10" o)) (x) 1~/

3.29
< Co(m, 1, 5, QA" My (10" up|™ ) () =41, (3.29)

If m — I)q, = nq, we use Holder inequality and apply the argument with g; replaced by g,
where g < g, < q;. If (m — )q, > nq, we apply (3.13) with s = ¢; to conclude that

10'uo|(x) < Cr™' 4 < Ca(m, 1, 5, QA M0 ol ) (x) =4 (3.30)

This proves the assertion (3.28)).
If p— 6 > —L, we assert that

10'uol(x) < C'(m, 1, s, Q)T (DM (10" o ) ()4 (3.31)
From (3.4), we get
10'uol(x) < Cr~'ag
_ (1-)/q1
< Cy(m, 1, 5,) (Jclamuol(X)qlw(X)dx) M (18" uol* ) (x)™4!
B

< Ca(m, 1, 5, QY (DM (18" o) ()
< Cy(m, 1, 5, Q)T (DM (10" o)™ ) ()41,
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which implies that (3.31) is true for the case (m — [)q; > nq. In case (m — l)q; < ng, we can
choose ¢ < s < ng/(m—1) < p— & so that (im — l)s/ng = 1 — . We apply Lemma 3.8 (3.11)) to
the [/ derivative of u,, from Hardy-Littlewood maximal theorem, we have

(m=1)/ng
) M (3" |1 () =m0/

10'uo|(x) < Cor™™ ( JE M8 uo|")(x) s w(x)dx
B

(m=D/ng
) M (10" u ") (x)*/

< Cyr! ( f 10" uo|(x)* w(x)dx
B

< Ca(m, 1, 5, Q)Y My (18" ugl) ()™ < Cy(m, 1, 5, Q7] M (10" o|") ().
This proves the assertion (3.31). Therefore,

10'uo] = 10'uo|*10"uo] ™ < C(DAYT, M8 uol) 5~ (3.32)

from inequalities (3.28)) and (3.31) evaluated in the power « and 1 — a, respectively. We proceed
to estimate K,:

m—1 Mg(|(j’"u0\‘il )% oa?
|K2|§ZC(I)T’1 f ( 8)|amu|P—1 fo AP0 G AN M (0™ o) 1 w(x)dx
— X0,07"

= B
m-! (17(127(5
< » Cr) f 0" ulP~ M (10 uol") 1 w(x)dx (3.33)
1=0 B(x(,8r)
m—1

a—a?-
cir, f "l ME (0"l T w(x)dx.
B(x0,8r)

In the case p — 6 < =L, using - once again, we obtain

pon-b-a) )

0uol < Cr" "yl Bz, 3R/ M@ ugl®yir =7

a _p(m l)(l a)) (334)
< C)’sz(|5mMo|ql)‘“

= Cya M0 | )
We write |0'ug| = |0'u|® X |0'up|'~* and get

(-Bp/q)a+(1-a)p

0'uol < Cln, Ry, My uol™y (3.35)
from (3.29) and (3.34). We finish to estimate K, in this case:

1
m-l Mg (10" uol1) T (1-Bo/qa+(1-a)p
K| < CZyz(l)l‘“ f 0" ! [ f AﬂO“‘l‘ﬁdﬂ] MR ul™) 0 w(x)dx
=0 (x0,8r) 0

—

3

l-a m. p—1agmoam,, 1q1 Bpla—o+1-a)p
<y 0 M ™) T o
(x0,87)

.\
(=]

—

3

o (Bpla—6+(1-a)p

YD) f 0" ulP M (0 w1 T w(x)dx.
B(x(,8r)

I/\

[=

(=]

(3.36)



3.4 Proof of Theorem ’3_3| 61

Combining (3.36) with (3.33)) we deduce

K, < f Fg_éw(x)dx, with  F, € L (B(xy, 87), o). (3.37)
B(x0,87)
by the Muckenhaupt theorem, provided
(p +)(p —min{c;(Bo) + (1 = )P, c1(Bo)a — &’} = 6)/(p =) < p— 6
and thus

0 < min{c;(By)a+(1-a)p, cl(ﬁo)a—a/z} —a’ +a' min{c;(By)a+(1—a)p, cl(ﬁo)a/—az}/p. (3.38)

The upper bound of K
Since we have

K;<C f 10" ulP~ M (0" ol ) T w(x)dx
B(x0,8r)

<C f 10" ulP~ M U] T w(x)dx
B(x0,8r)

<c f M8 ™) & w(x)dx < C f 0" w(x)dx,
B(x0,8r) B

(x0,8r)

where the last step follows from the Muckenhaupt theorem under the condition ¢; < p — . We
conclude that

K<s¢ f Frw(x)dx + 6 f " ulP w(x)dx,
B(x0,87) B(x0,87)

with  F5 € L (B(xo, 87), o).

(3.39)

The lower bounds of K
Since supp uy C B(xy,2r), we can write

K=Y f M (10" uol™ )(x) ™ A (x, D"u(x))OTuo(x)dx
/=0 Y R"=F (o)

A0 f Aq(x, D"u(x))07 o (x)dx
lo=0 * F(d0)

>y f M 1ol () ™ A, e, D) o)l
B(x¢,2r)

lor|=m

(3.40)

m—1
—c ). M (0" ol ) (010"l 0T o (x)lew()dx
B

|o]=0 (x0,21)
—c f M0 uol ) ()™ 0" ul” 0™ o (x)|w(x)d x
E(20)

:Ll_L2_L3.
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We start from estimates of L, and Ls.
The estimate of L,
Following the same method we used above, we obtain that

L, < f Ff_5w(x)dx, with  F; € L (B(xo, 87), 1), (3.41)
B(x0,8r)

from (3.4)) and (3.34).

The estimate of 15
Suppose 0 < < % and split E(1y) = E (1) U (E(Ay) — E{(Ap)), where

Ei(d) = {x € E(A) : 10"ul > 17" Ao}

We have the estimate

L; < f My (10" uol™)(x) "8 ulP ! w(x)dx.
E(20)

We also know that
M(0" uol™)(0)"'" < A9 < 110"l

for any x € E;(4y). We continue and for |0"u| > 7' 1, we get

Ly <np'™?® f 10" ulP~° w(x)dx. (3.42)
E1(d9)

On the other hand, |0"u| < 7' A, for any x € E(1y) — E, (). Applying (3.21) and (3.24), we get
the pointwise estimate

M (10" ol ™) () 10" up (OO uCol™" < M0 ol )ae) !V =2 a7
p—o
=" <" [B{nig) M;’<|a;"uo|ql)(x)”ql] :
XQ,0r

Since for a fixed 7, such that ¢, > g, the following inequalities

1/t
min M (10" uol? )(x)" " < f Mg’(la;zuolql)(x)’o/qlw(x)dx)
B(x0,8r) B(x0,87)

IA

1/ty
2
JC ME" (107 ul™ x pxg.8m) (6) w(X)dX)
B(x0,8r)

1/t
< JC |6fu|’°w(x)dx) ,
B(x0,8r)

hold by the Muckenhaupt theorem, we obtain the estimate

1/t
Ly <np'™® f 10" ulPw(x)dx + n° P w(xy, 87) (JC |6Tu|’°w(x)dx) (3.43)
B(x(,8r) B(x(,8r)
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from (3.42)).
Decomposition of L,

In order to estimate L;, we need to decompose L; in a more suitable way. Denote by D, the

set
D = {x € B(xo,2r) = B(xo, ) : MG(0"uol™)(x)"'"" < &6 My (10" ul")(x)"'"'}

and set D, = B(xy, 2r) — (D U B(xo,r)). We get

Li=) ( f ' f )Mzda'"uor“)(x)“”‘“A(,(x,Dmu<x>)a°‘uo<x>dx
B(x0,2r)-D D,

lo|=m

>y f M0 ol )(x)™/ A (x, D"u(x))0 uo(x)dx
B(x0,2r)-D

lol=m
- Z f M (18" ol )(x) 1|0 uo ()N u(0)I" ™ w(x)dx.
lo|=m Dy
Denote the second term by H3 and decompose the first term into two parts,

L > f M0 upl™)(x) ™ Ay (x, D"u(x)) - 07 u(x)dx
B(x0,2r)-D;

lo|=m

- f M(10" uol™) (%)™ Ay (x, D™ u(x)) - (987 u(x) — 87 uo(x))dx — Hs
B(x0,2r)-D

lo|l=m
= H1 - H2 - H3.
Consider H, first. Since B(xq,2r) = Dy U D, U B(x,, r), we have the following estimate
Hi= Y [ MmO - g0
B(xp,r)UD;

lo|=m

> Z Mg’(l@’"u()Iql)(x)_‘s/‘“A(,(x, D"u(x)) - 07 u(x)dx

loj=m ¥ B(x0.7)

>y f M0 uo™)(x) ™" ()P w(x)dx = J;
B(xo,r)

To estimate H, we use the estimate (3.24]) and the equality uy(x) = u(x) on B(xy, ).

rewrite H, as follows

H= ), f M (0" gl )™/ A (x, D"u(2) - (907 u(x) = 3 uo(x))dx
B(x9,r)UD>

lor|l=m
< Z pmel f M (0" uol™) ()1 | u(0)I" |6 (u(x) — P(x))ldx.
0<lal<m Dy
Denote by J, the last term of the above inequality. We continue and estimate Hj:

Hy= | ME(10"uol™)(x)™°/"0" uo()]|0" u(x)’ ' w(x)dx
D,

= f M (0™ ug ™))" u(x) w(x)dx = T,
D,

We
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Then we arrive at the following relation
Ly>J,—J,— Js. (3.44)

The estimate of J,
Let B, = B(xg, r). We can write

M1 uo| ™)) = M(10" ugx 51" )(x)"
< M(I8" uox 5, 1" ()" + M(10™ uox 55,1 )(x)

1/q
< M, (10" upl ™))" + ( JC IG"’uolq‘w(X)dX)
Bi

(x0,87)

for any x € B(xo, 5). Moreover, by the same arguments as (2.24)), we have

1/q
MAG" o0 < M (M (10" 0l ()i5) """ + ( f |3muo|qlw(x)dx)
B

(x0,87)
1/q1

1/q1
|Mp, (0" up)| " w(x)dx) + (JC 10" uo|? w(x)dx
B

(x0,8r)

< M (10" gl )0 + (JC
B

(x0,87)

1/q:
SMé,uamuow')(x)”q'+c(f |MB(6'"uo>|q'w(x)dx) .
B

(x0,8r)

Since 0"uy(x) = 0"u(x) on B(xy, r) we get the estimate

1/q1
Mg (0" uol™)(0) " < M (10" ul™)(x)"' " + c( f Mz (10" u))® w(x)dx) (3.45)
B

(x0,87)

by induction. Next, we construct the set G:

1/q1
G = {x € B(xo, %) My (10"l ()" > C, ( JC Mﬁm(wmurh)w(x)dx) }
B

(x0,8r)
We see at once that if x € G, then
ME1" ul™)(x) ™' < eC My (10™ul)(x)! . (3.46)

It is known from Lemma that the quantity M (18" uol )(x)'/? is A,,,,-weight in the measure
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space (R",u) if 6 < p — g1. Since 1y > g1, we can find the lower bound for J;:
Ji=vy f M (10" 1| ) ()~ |0 ()| w(x)dx
B(xo,r)
> Cy f M3 (0™ uol ™))™ My (10" ul® x g, )(X)”' " w(x)d x
B(xo,r)

>C f M (10" ul™ )(x) P~ w(x)dx
G
(3.47)

C f M (18" ul ") ()P~ w(x)dx - C, M (10" u]*)(x) P~ w(x)dx
B2 Byp—G

\%

)(P—(S)/fh

(x0,87)

Cf 10" ul’° w(x)dx — C1w(B(x, 87)) (JC Mg’r(|8mu|ql Y(xX)w(x)dx
B B

(p—0)/1o
> Cf 10" ulP° w(x)dx — Cw(B(xo, 87)) (J(: |6’"u|’°w(x)dx)
Byja B

(x0,81)

The estimate of J,
To estimate J,, we set 7 = max {ql, P —q ”,’11) -0,p—0— 1} and we consider three cases.
If g1(m — I) < ng, we apply Lemma [3.8| (3.11) to the [ derivative of u — P with s = ¢,

m=1

0 = P < Cor™ [ MpQamut o (x| M0ty o o-orbam,
B B B

From Holder inequality and x € D,,
M (10" uol™ )(x) 1" < C(5)M (10" ul™) ()~
< COME (8" ul?)(x) ™M,
From Hardy-Littlewood maximal theorem, we get

P M (0" ) () ulP 6 (u — P)I(x)

m=l

< C(§) (JE Mgz(lamulq)(x)ql/qw(x)dx) " Mglqammq)(x)(l/q)[p—é—(m—l)ql/nq]

B

fh'Z;;l
< C() (JE ngamqux)t/qw(x)dx) ! ngamu|q)(x)(1/q)[p—6—(m—l)ql/nq].
B

Therefore, by Hardy-Littlewood maximal theorem, we have the estimate for J,

(p-0)/t
J, < C(6)w(B) ( JC Mg(|amu|q)(x)’”/qw(x)dx)
B (3.48)

R (p-0)/t
< C(6)w(B) ( JC |8mu|(x)’w(x)dx) )
B
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In case g;(m — I) = ng, we may take 1 < ¢ < t and define i similarly. We can get |i once
again. If ¢;(m — I) > ng, we apply Lemma[3.8| (3.13) to / derivative of u — P. We get in this case

10'(u — P)(x)| < Cor™! ( Ji M?(l(')mulq)(x)ql/qa)(x)dx)ql < Cyr! ( Ji M?(lﬁmulq)(x)f/qa)(x)dx)f .

Therefore we have

J, < C(6)w(B) ( f Mg’(l@mulq)(x)f/qw(x)dx)f f M (10" ul?)(x) "0V w(x)d x
B B

X (3.49)
R (p-9)/t
< C(6)w(B) (JC |8mu|(x)ta)(x)dx) )
B
Summing over /, we conclude that
R (p-0)/f
J» < C(O)w(B) (JC Iamul(x)tw(x)dx) (3.50)
B

by (3.48) and (3.49).

The estimate of J;
By the definition of the set D, and by the Hardy-Littlewood maximal theorem we write

Js=f M0 uol)(0)" 18" u(x)lP~ w(x)dx
Dy

<60 | MR ul)(0) 0" u(x)P w(x)dx (3.51)
D,

<o f 10" u ()P w(x)dx.
B(x0,8r)

Final Estimations

The estimations (3.47)-(3.51)) imply

f 0" ul" w(x)dx < Cw(B(xo,8r)) 'Ly + f FPw(x)dx
B(xo.r/2)

B(X(),SV)

(p—0)/10

+c6'? f 10" ulPw(x)dx + ¢ ( f |amu|f0w(x)dx) (3.52)

B(x0,8r) B(x0,8r)
. (p—0)/f

+ C(6) (J[ |6mu|(x)’dx) )

B
On the other hand, since K = L; — L, — L, it follows from (3.31)), (3.42)) and (3.43)) that
JC 10" ul” P w(x)dx < cw(B(xy, 8r) 'K + JC (Ff_‘s + Ff_d)w(x)dx
B(xo,r/2) B(x0,8r)
+c(6"° + 7' f 10" ulP~ w(x)dx (3.53)
B(x0,8r)

(p—0)/1o
+cen’P ( JC Ia’"ultow(x)dx)
B(x0,8r)
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Combining (3.33) with (3.39)), we get

JC 10" ulP P w(x)dx < J[ FPw(x)dx
B(x¢,r/2) B(x0,87)

+ (80 + nl“s)][ 10" ulP~ w(x)dx (3.54)
B(x0,8r)

+cn’P ( JC 10" u|° w(x)dx
B(x0,8r)

where FP~0 = 3 F'™°. We take the quantity ¢(6'~ + ') in 1D to be sufficiently small, for
instance, less than 1/2. This leads to

JC 10" ulP P w(x)dx < JC FPw(x)dx
B(xo,r/2) B(x0,8r)

1
+- JC 18" ul” P w(x)dx + Cy ( JC 10" ul° w(x)dx
2 JBensn B(xo.81)

for some large Cy > 0.
In view of 1} we can use Lemmaby letting g = |0"ul®, f = F* and 0 = % We apply
Theorem [3.3] for the value of ¢ satisfying (3.27), (3.38) and 6 < p — .

b

)(P—ﬁ)/ fo

)(p—a)/zo (3.55)

Remark 3.14. In the Euclidean case, [44] is the classical paper regarding the very weak solutions
of elliptic systems. But there is a mistake in that paper. From Sobolev inequality, we should

restrict s > 1, but in the page 1528 of that paper, s may be less than 1 when we set s = -2

The Lemma[2.2](2.10), Lemma [3.8] (3.13)), estimates of J, in chapter 2, estimates of K, and J, in
chapter 3 were suggested by Lewis [45]], these modifications are very efficient to overcome these
difficulties in the estimates of the lower order terms. In fact, the E(A) in [44] should be defined
by

EQ) = {x e R" : M™(|0™ul")(x)"" < /l}

where 7 is fixed and we should take 1 < 7 < p.

If we modified the techniques of chapter 3, it is not hard to establish the same result for the
elliptic systems in the following more general form:

Z Ay (x, D"u(x)) - O7u(x) = yw(x)|0"ul’ —a(x) a.e.in Q (3.56)

lor|l=m

and
|As(x, D"u(x))| < w(x)lé’ju(x)l’"l +by(x) ae. in Q, (3.57)

where a(x) € L'(R", w) and b,(x) € LP7(R", w). But, as indicated by Lewis [45], we shall write
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the lower bounds of K differently:
K = f M0 uol™)(x) ' < A(x, D™u(x)) — A(x, D" u(x)), D" uo(x) > dx
B(yo,2r)

>c M (19" uol™) ()™M du(x)Pw(x)dx — ¢ | M8 upl™)(x)!' =" |du(0)lP ™" w(x)dx
BOo.») Dy

-1
—e ) f M w0l ) 0w~ 10 (e ~ P(ew(x)dx
D,

=0

- f a(x)w(x)dx — ¢ f M (10" uo|™ ) ()"~ by (x)w(x)dx
B(yo,2r) B(y0,2r)

:Ll —Lz—Lg—L4—L5.

Remark 3.15. In the situation when du = w(x)dx is defined by a quasiconformal map, namely
w(x) = (det Df)!=P/"_ where f is a quasiconformal map, one needs to find a different approach to
this problem.

Remark 3.16. We hope that this kind of techniques could shed some light on the study of self-
improving regularity problem of the degenerate elliptic equation with double weight, namely let
A, (x, D™u(x)) be a measurable function satisfies

Z Ay (x, D"u(x)) - OTu(x) > yw ()07 u(x)’  a.e. inQ (3.58)

lo|=m

and
|A,(x, D"u(x))| < a)z(x)lagu(x)lf”_1 a.e. in £, (3.59)

where |o| < m and w(x), wy(x) are two weights. For example, we can assume that (w, w;)
satisfies the following two-weight Muckenhaupt condition:

wa(x)dx(ifw(x)l_"')p_ldx<c
101 Jo 01 Jo ° -

This kind of degenerate elliptic equations was initiated by Chanillo and Wheeden [/]].

Remark 3.17. It is an interesting problem to understand whether the main results in [5} 140} 41]]
can be extended to the degenerate parabolic systems

Ou — w3(x)divA(x, Vu) = 0,

where wj;(x) is an admissible weight and A(x, Vu) satisfies (3.58)) and (3.59) for m = 1.
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