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Introduction

We begin with historical remarks. The research in quasiconformal maps goes back to Lavren-
tiev’s work in 1930s. The first monograph on quasiconformal maps was made in 1966 by
Ahlfors [1]. Reshetnyak [58] in 1967 introduced space mappings with bounded distortion in
the Euclidean space Rn of higher dimension n ≥ 3. Mappings of this kind are not necessary
homeomorphic and represent a nice generalization of the classical notion of analytic functions.
Systematic study in this area was initiated by Reshetnyak, we refer the reader to monographs
[59, 60] and references therein. Simultaneously, the authors of [51] introduced the definition of
quasiregular mappings. Later it was proved that the analytical definition of the mapping with
bounded distortion and the geometrical notion of quasiregular mappings leads to the same map-
pings in Euclidean space Rn.

The Reshetnyak theorem, see, for example [59, Chapter 3 section 5], which exhibited a re-
markable relation between quasiregular maps and elliptic equations, allowed to make an essential
progress in nonlinear potential theory, in degenerate elliptic equations and later in subelliptic e-
quations, see, for instance [9, 10, 29]. Let us recall the Reshetnyak theorem. Suppose that Ω and
G are open subsets of Rn, and f : Ω → G is a quasiregular mapping. Assume that a function
v ∈ C1(G) is a weak solution in G of the equation div

(
|∇v|n−2∇v

)
= 0. Then the function u = v◦ f

is a weak solution in the domain Ω of the equation

div
(
〈θ(x, f )∇u(x),∇u(x)〉(n−2)/2θ(x, f )∇u(x)

)
= 0,

where θ(x, f ) = J f (x)2/n[D f (x)]−1[DT f (x)]−1 and J f (x) is the Jacobi determinant of f . A simple
example of this theorem can be constructed in the case of n = 2 in the context of complex
function theory. Consider a function u(x, y) in the complex plane C, fix a point a in the unit disk
D and set the Möbius transform

w =
z − a

1 − āz
. (1)

It is not hard to verify that the equality

(1 − |w|2)2 ∂2

∂w∂w̄
u = (1 − |z|2)2 ∂2

∂z∂z̄
u (2)

holds and therefore the Möbius transform w preserves the Laplace equation (∂2
x + ∂2

y)u = 0 in
the unit disk D. However, the conformal maps in Rn possess more complicated properties. For
example, let us fix a point a ∈ B = {x ∈ Rn : |x| < 1} and consider a space mapping

y = ϕa(x) := j0 ◦ ψ ◦ ja(x) (3)



where j0(x) := x/|x|2, ja(x) := (x− a)/(|x− a|2) + a and ψ(x) := (1− |a|2)(x− a)− a. Observe
that the space mapping (3) is a generalized version of the Möbius transform (1) in Rn. It is easy
to prove that ϕa is a conformal mapping that maps the open set B into itself. Moreover, it maps
three points a, a

|a|2 ,
a
|a| to three points 0,∞, 1, respectively (see for example [35]). It was shown by

Hua [30] that

(1 − |y|2)n
n∑

i=1

∂yi

[
(1 − |y|2)2−n∂yiu

]
= (1 − |x|2)n

n∑
i=1

∂xi

[
(1 − |x|2)2−n∂xiu

]
. (4)

The equation (4) generalizes (2) for n ≥ 2. It is not hard to show that the degenerate elliptic
equation div(ω(x)∇u) = 0 is invariant in the unit ball B under the transform (3), and the weight
ω(x) = (1 − |x|2)2−n is not even an admissible weight for odd n, n ≥ 3.

The example constructed above illustrates that there are some common features in quasireg-
ular maps and elliptic equations. The progress in the study of quasiconformal and quasiregular
maps always provides new methods for the theory of elliptic equations. Gehring [17] proved that
the Jacobian of quasiconformal maps has a higher integrability property. Shortly thereafter, Mey-
ers and Elcrat [52] obtained the higher integrability result for elliptic systems by making use of
Gehring’s technique. A well-known result from harmonic analysis [25, theorem 9.33] states that
a function ω(x) is locally higher integrable if and only if ω(x) is an A∞-weight and thus it is open-
ended. Such property is usually called the self-improving property and the proof is essentially
reduced to the use of the reverse Hölder inequality and harmonic analysis techniques. Another
characterization of A∞-weight in terms of Gurov-Reshetnyak condition [26] was obtained by Ko-
renovskyy, Lerner and Stokolos [42]. We shall discuss this topic in different geometrical settings,
such as the Euclidean space, the Heisenberg group and the Carnot-Carathéodory space.

The self-improving integrability of quasiregular maps in the planar case is well-understood.
Consider solutions of the Beltrami equation ∂z f − µ∂z̄ f = 0 in the plane, where µ is a bounded
measurable function, ‖µ‖∞ = k < 1. The famous problem proposed by Gehring and Reich [18]
asks to determine the minimal requirement of the type f ∈ W1,q

loc which guarantees continuity of
any solution of the Beltrami equation. A deep result of Astala [2] says that f ∈ W1,1+k+ε implies
f ∈ W1+1/k and thus f is a quasiregular map. On the other hand, Iwaniec showed in [32] that
q < 1 + k is not sufficient for the continuity. Petermichl and Volberg showed in [57] that the
solution is always continuous for the borderline case q = 1 + k. There are no good estimates
for these thresholds for Euclidean spaces of higher dimensions or for the Carnot-Carathéodory
space. Unfortunately, the results of the thesis do not provide much progress in this respect.

The thesis is organized as follows. In chapter 1, we set up a higher integrability result for
the horizontal part of certain weakly quasiregular maps on the Heisenberg group. Unlike the
Euclidean case, the exponential of the integrability is not near the homogeneous dimension Q
that is not analogous to the Euclidean setting. Chapter 2 is devoted to the study of self-improving
regularity for certain subelliptic equations. The difficulty of this problem in the Carnot group is
that the Whitney extension theorem and the main result in the Carnot group can be obtained only
for fourth-order homogeneous subelliptic systems from the arguments in [44]. Since the p-sub-
Laplace equation is a very special case of the nonlinear subelliptic equations we can establish a
better result in this case via the arguments from [12]. Chapter 3 provides a discussion of self-
improving regularity for the degenerate elliptic equations in the Euclidean space. The main result



of Chapter 3 extends a result of Lewis from [44] to the degenerate elliptic systems. The proof
relies on the weighted pointwise Sobolev inequality for higher order derivatives which is a useful
tool in study of higher order degenerate elliptic systems.





Chapter 1

Higher Integrability for Certain Weakly
Quasiregular Maps on the Heisenberg
Group

This chapter studies quasiregular mappings or, in another terminology, mappings with bounded
distortion on the Heisenberg group. We remind the definition of a quasiregular mapping on Rn.
We set W1,n

loc (Rn) to be the first order Sobolev space in Rn and D f be the differential of a map
f : Rn −→ Rn.

Definition 1.1 ([59]). Let Ω be an open subset of Rn. If f : Ω −→ Rn is a continuous map and
f ∈ W1,n

loc (Ω), then there exists a constant K > 0, such that

max
|ξ|=1
|D f (x) · ξ|n ≤ K det D f , (1.1)

det D f ≤ K min
|ξ|=1
|D f (x) · ξ|n (1.2)

then f is called the quasiregular map. Moreover, if f is a homeomorphism, then f is called the
quasiconformal map.

The study of higher integrability property for quasiconformal mappings in Rn traces back to
the work of Gehring [17]. He proved that if f is a quasiconformal mapping, then the differential
D f has higher integrability property: D f ∈ Ln+ε . Iwaniec and Martin [31, 33, 34] showed that
if f satisfies (1.1) and (1.2), then there exits δ > 0 such that D f ∈ Ln−δ implies D f ∈ Ln.
The higher integrability result can be used to study the removability property of quasiregular
mappings. It is a question of interest to know whether it is possible to establish the same result
for the Heisenberg group. The work [33] can give a clue in this topic. In fact, the use of the
Beurling operator is the basic tool in the study of quasiconformal and quasiregular mappings on
the even dimensional Euclidean space. The Beurling operator plays a crucial role in the Hodge
decomposition. Since the tangent space of the even dimensional Euclidean space has an even
dimensional basis {∂1, · · · ∂2l}, the conclusions in [33] yield that for each element ∂k, 1 ≤ k ≤ l of
the basis, we can find a conjugate vector field ∂k = ∂k+l in the same basis and a bounded Beurling
operator S such that ∂k = S ◦ ∂k.



12 Higher Integrability for Certain Weakly Quasiregular Maps on the Heisenberg Group

The study of the boundedness of the Beurling operator is an interface between harmonic
analysis and quasiconformal mappings. The development of both theory and technique of the
harmonic analysis has had a big influence on the study of quasiconformal and quasiregular map-
pings in recent years. We refer the reader, for example, to [43] for the most recent excellent
progress in Astala’s conjecture regarding the distortion of the Hausdorff dimension under qua-
siconformal mappings. The novelty in this paper is the proof of the ”conformal outside” part,
and that estimate relies on the boundedness of the Beurling operator on a non-doubling mea-
sure space. The main idea of the proof of the boundedness of the Beurling operator follows the
spirit of [23], where the author uses stopping time arguments and construction of exceptional
sets. These technique can be traced back to the Fefferman and the Carleson works concerning
the convergence of Fourier series, see [6, 13]. For the systematic study of this topic, see also [3].

Unfortunately, this approach does not work even for the lowest dimensional Heisenberg
group. This happens due to the absence of a bounded Beurling type operator for the Heisenberg
group. To illustrate this we consider the Heisenberg group (x, y, t) ∈ H1 with its left invariant
vector fields X = ∂/∂x+2y∂/∂t and Y = ∂/∂y−2x∂/∂t. We know that the operator Z = 1

2 (X + iY)
is exactly Lewy’s example regarding the unsolvable partial differential operator, see [46], mean-
while the construction of the Beurling operator on the complex plane requires the solvability of
the operator ∂ = ∂x +i∂y. Therefore, unlike the even dimensional Euclidean space, it is not wisely
to look for a singular integral operator S such that Z = S ◦ Z, where Z = 1

2 (X − iY).
The authors of [15], provide a simple way to tackle this problem. But the new difficulty

arises: the integral zero condition for the Jacobian of the differential of a quasiconformal map
on the Heisenberg group does not hold. This is even false for case of the Jacobian of horizontal
differential. Indeed, if we consider a map F = ( f , g, h) : H1 −→ H1 with f , g ∈ C∞0 (Ω), where Ω

is an open subset of H1, then we get for the horizontal differential DH∫
Ω

det DHFdx =

∫
Ω

det
(

X f , Y f
Xg, Yg

)
dx =

∫
Ω

X f Yg − Y f Xgdx = −

∫
Ω

f [X,Y]gdx.

Observe that the integral may not vanish for all possible choices of functions f , g ∈ C∞0 (Ω).
Anyway, this observation shed some light on the study of quasiregular maps on the Heisenberg
group. Unlike the Euclidean case, we shall impose some additional conditions on quasiconformal
mappings on the Heisenberg group and investigate the higher integrability property in this special
case.

We start from the definition of the Heisenberg group. The Heisenberg group Hn is the set of
points x = (x′, t) ∈ Cn × R, x′ ∈ Cn, x′ = (x1, . . . , xn) + i(xn+1, . . . , x2n), endowed with the group
multiplication defined by x·y = (x′+y′, t+s+2Imx′y′).We denote by Q = 2n+2 the homogenous
dimension of the Heisenberg group Hn. The quasinorm is defined by |(x′, t)|H = (|x′|4 + |t|2)1/4.
There exists the Carnot-Carathéodory metric dC(x, y) on the Heisenberg group, see [11]. It is
defined as the minimum over all lengths of rectifiable curves connecting points x and y. The
metric dC(x, y) is equivalent to the quasinorm |x−1y|H, see [14]. The left invariant vector fields
are defined as follows:

Xk = ∂/∂xk + 2xk+n∂/∂t, Xk+n = ∂/∂xk+n − 2xk∂/∂t, T = ∂/∂t, k = 1, . . . , n.
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The vector fields Xk, k = 1, ..., 2n are called horizontal derivatives of the Heisenberg group. We
let dx1, . . . , dx2n, and τ = 2

∑
j(x jdy j − y jdx j) + dt be the left invariant 1-forms dual to the basis

Xk, T , k = 1, . . . , 2n.
Let Ω be an open set in Hn and 1 < p < ∞. We denote by HW1,p(Ω) the horizontal Sobolev

space on the Heisenberg group:

HW1,p(Ω) = { f ∈ C∞0 (Ω) : Xk f ∈ Lp k = 1, . . . , 2n}.

We set W1,p(Ω) to be the Sobolev space for all derivatives. The subbundle HT = span {X1, . . . , X2n}

is called the horizontal subbundle of the tangent bundle. We say that one form ω is contact if
ω(v) = 0 for any v ∈ HT . A transform f = ( f1, . . . , f2n, f2n+1) : Ω → Hn is called contact if its
differential defines a contact form. It is indicated in [28] that the differential of f can be written
as follows:

D f :=
(

DH f ∗

0 λ

)
, where DH f :=

 X1 f1 · · · X2n f1

· · ·

X1 f2n · · · X2n f2n

 .
The horizontal differential DH f (x) is the linear map HTx → HTx, x ∈ Hn.

1.1 A Variant Bounded Distortion
We follow the definition of the quasiregular mapping given in [28] and we introduce the weakly
quasiregular map on the Heisenberg group in spirit of [31] and [33].

Definition 1.2. If f : Ω → Hn is a contact continuous map such that f ∈ W1,q
loc (Ω) and there

exists a constant K > 0 with

max
|ξ|=1
|DH f (x) · ξ|Q ≤ K det D f , (1.3)

det D f ≤ K min
|ξ|=1
|DH f (x) · ξ|Q, (1.4)

then f is called the quasiregular map in the case q = Q. While if q < Q we call the map f the
weakly quasiregular map.

The inequalities (1.3) and (1.4) imply

max
ξ∈HT, |ξ|=1

|DH f (x) · ξ| ≤ K2/Q min
ξ∈HT, |ξ|=1

|DH f (x) · ξ|. (1.5)

Consider the collection of multiindices

I = {(i1, . . . , in) : |ik − il| , n for all integers 1 ≤ k, l ≤ n}.

We fix an index I ∈ I, and denote the n-form ω = dxI := dxi1
i1
∧ . . . ∧ dxin

in
. The definition of

pull-back Γ# :
∧n
−→

∧n of a linear transform Γ can be found in [33, page 39] and we follow
the notations therein.



14 Higher Integrability for Certain Weakly Quasiregular Maps on the Heisenberg Group

We denote by Lk, 1 ≤ k ≤ n, the vector fields either Xk or Xk+n. Let J = ( j1, ..., jn) be any
n-tuple and let f jk ∈ C∞0 (Ω), k = 1, ..., n, be smooth functions. We introduce a quantity

LJ(x, f ) = det

 L1 f j1 · · · Ln f j1
· · ·

L1 f jn . . . Ln f jn

 .
Since Lk are skew symmetric and [Lk, L j] = 0 for all 1 ≤ k, j ≤ n, we have

∫
Ω

LJ(x, f )dx = 0,
where the observation is true due to [22, page 606]. Next, we write DH f · (DH f )T = O · Γ2 · OT ,
where O is an orthogonal matrix and

Γ =


γ1 0

. . .

0 γ2n

 .
The matrix Γ is diagonal with nonnegative diagonal terms γk for every 1 ≤ k ≤ 2n. We follow
the method developed in [33] and obtain

|DH f |n = max
ξ∈HT, |ξ|=1

|DH f · ξ|n = max
1≤k≤2n

γn
k .

Moreover, we get

max
1≤k≤2n

γn
k ≤ K2n/Q min

1≤k≤2n
γn

k ≤ K2n/Q|Γ]ω| = K2n/Q|(DH f )]ω|

from (1.5). Arguments in [33, page 39] imply

(DH f )#(ω) = (DH f )#(dxI) =
∑
|J|=n

LI,J(x, f )dxJ,

where LI,J(x, f ) denotes the determinant of the (n×n)-minor obtained by fixing all j-th rows with
j ∈ J and all i-th columns with i ∈ I. If we impose the condition

LI,J(x, f ) ≥ 0 or ≤ 0 for all multiindeces |J| = n and for I ∈ I (1.6)

then we arrive to the following estimates that give a more suitable form of bounded distortion.

|DH f |n ≤ K2n

∑
J

LI,J(x, f )2


1
2

≤ K2n
∑

J

LI,J(x, f ). (1.7)

The advantage of (1.7) is the vanishing of
∫

Ω
LI,J(x, f )dx for all f ∈ C∞0 (Ω) and for all multiin-

deces |J| = n. If we use the notation L(x, f ) =
∑

J LI,J(x, f ), then we get∫
Fλ

L(x, f )dx = −

∫
Ω−Fλ

L(x, f )dx
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for some subset F(λ) ⊂ Ω.
We use the tensor product of fH = ( f1, · · · , f2n) by DHφ with φ ∈ C∞0 (Ω)

fH ⊗ DHφ =

 f1X1φ · · · f1X2nφ
· · ·

f2nX1φ · · · f2nX2nφ


in order to prove the following result in analogy with discussions in [15].

Theorem 1.3. There exist a number q(n,K) < n, n ≥ 2 such that for every q ∈ (q(n,K), n) and
every contact mapping f ∈ HW1,q

loc (Ω,Hn) satisfying (1.3)-(1.7), the Caccioppoli type inequality

‖φDH f ‖Lq ≤ C(q, n,K)‖ fH ⊗ DHφ‖Lq , (1.8)

holds for any φ ∈ C∞0 (Ω) and the horizontal part fH = ( f1, ..., f2n) of the mapping f .

If we assume for the moment, that Theorem 1.3 is true, then the higher integrability of DH f
can be proved by making use of the Poincaré inequality, what shows the following theorem.

Theorem 1.4. There exists a number 1 < q(n,K) < n, n ≥ 2, such that for every q ∈ (q(n,K), n),
and for every contact mapping f ∈ HW1,q

loc (Ω,Hn) satisfying (1.3)-(1.7) we have

Xk f j ∈ Lq(Q−1)/(Q−q)
loc (Ω)

for any k, j, 1 ≤ k, j ≤ 2n.

Proof. Indeed, if we take a ball B = B(x0, 2r) ⊂ Ω in the Carnot-Carathéodory metric and a
function φ ∈ C∞0 (2B), φ ≡ 1 on B such that |Xkφ| ≤ C/r for all k = 1, · · · , 2n, then we get(?

B
|DH f |q(Q−1)/(Q−q)dx

)(Q−q)/(Q−1)q

≤ C(q, n,K)
1
r

(?
2B
| fk(x) − ( fk)2B|

q(Q−1)/(Q−q)dx
)(Q−q)/(Q−1)q

≤ C(q, n,K)
1
r

(?
2B
| fk(x) − ( fk)2B|

qQ/(Q−q)dx
)(Q−q)/Qq

,

from (1.8) since the volume of the ball B(x0, r) satisfies the relation |B(x0, r)| ≈ rQ. Applying the
Hölder inequality and the sharp form of the Poincaré inequality [48], we obtain(?

B
|DH f |q(Q−1)/(Q−q)dx

)(Q−q)/(Q−1)q

≤ C(q, n,K)
(?

CB
|DH f |qdx

)1/q

.

This gives the higher integrability of DH f ∈ Lq(Q−1)/(Q−q)
loc . Therefore we have proven Theo-

rem 1.4. �

Remark 1.5. The inequalities (1.3) and (1.4) show that we actually proved(?
B
(det D f )q(Q−1)/Q(Q−q)dx

)(Q−q)/(Q−1)q

≤ C(q, n,K)
(?

ĈB
(det D f )q/Qdx

)1/q

for some constants C(q, n,K) > 0 and Ĉ > 0. This implies that (det D f )q/Q is A∞-weight.
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1.2 Proof of Theorem 1.3
In the following arguments the neighborhood of x = (x′, s) is defined by

B(x, r) :=

y = (y′, t) ∈ Hn :
( 2n∑

i=1

|xi − yi|
2
)1/2
≤ r and |t − s − Imx′y′| ≤ r2

 . (1.9)

and the metric d is defined by

d(x, y) = max
{
|x′ − y′|, |t − s − Imx′y′|1/2

}
x, y ∈ Hn. (1.10)

It is easy to see that d(x, y) is a quasi-metric and equivalent to the quasimetric |x−1y|H or the
Carnot-Carathéodory metric dC(x, y). The neighborhoods defined in (1.9) also form a topology
basis.

1.2.1 Auxiliary Lemmas
We need to establish a geometric lemma which is obvious in the Euclidean case. We will use the
projection map πCnx = x′, where x = (x′, t) ∈ Hn.

Lemma 1.6. We set dx1 = 2dist(x1,Hn − B(x0, r)) for a fixed x1 ∈ B(x0, r). Then we have

|B(x1,Cdx1) ∩ (Hn − B(x0, r/2))| ≥ C(n)|B(x1, dx1)|

for some constant C > 0 that only depends on n.

Proof. Let x1 = (x′1, s) and x0 = (x′0, s0). Since the closure Bx0, r) is a compact set, there exists a
point y1 ∈ ∂B(x0, r) such that d(x1, y1) = dist(x1,Hn − B(x0, r)). If |x′1 − y′1| = d(x1, y1), then there
exists x2 = (x′2, s) ∈ B(x1, dx1) with x′2 ∈ πCn(Hn − B(x0, r)) such that

U := {x′ ∈ Cn : |x′ − x′2| ≤ (1/100)dx1} ⊂ {x
′ ∈ Cn : |x′ − x′1| ≤ dx1} ∩ πCn(Hn − B(x0, r)),

where πCn denotes the projection operator from the Heisenberg group Hn to Cn.
Next we aim to show that if |t− s− Imx′x′2| < (dx1/100)2 for all x′ ∈ U, then |t− s− Imx′x′1| <

Cd2
x1

. In fact, we have

|t − s − Imx′x′1| = |2(t − s) − (t − s) − Imx′2x′1 − Imx′x′2 + Imx′2x′2 − Im(x′ − x′2)(x′1 − x′2)|

≤ |t − s − Imx′2x′1| + |t − s − Imx′x′2| + |t − s − Imx′2x′2| + |(x′ − x′2)(x′1 − x′2)|

≤ 4d2
x1
.

Therefore, we have proved the inclusion B(x2, dx1/100) ⊂ B(x1,Cdx1) ∩ (Hn − B(x0, r)). We
estimate

|B(x1,Cdx1) ∩ (Hn − B(x0, r))| ≥ |B(x2, dx1/100)| ≥ C(n)|B(x1, dx1)|.

On the other hand, if the minimum is attained at the ”bottom” or ”top”, that means for y1 =

(y′1, s1) ∈ ∂B(x0, r), we have |x′1 − y′1| < |s− s1 − Imx′1y′1|
1/2 = d(x1, y1) = dx1/2. We assert that the
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boundary point y1 must have the property |y′1 − x′0| ≤ |s1 − s0 − Imy′1x′0|
1/2. If this were not true,

the point (y′1, s1 ± ε) would also lie on the boundary. But this could change the value of distance
from x1 to the boundary. By this argument we must have |s1 − s0 − Imy′1x′0| = r2 and for the fixed
y′1, x′0, s1 is unique on one side.

We only consider the case when (y′1, s1−ε) lies outside of the domain B(x0, r), since arguments
for the case when (y′1, s1+ε) is outside of the domain are similar. We take a point x3 = (y′1, s1−d2

x1
).

We can show that B(x3, dx1/100) ⊂ Hn − B(x0, r/2). In fact, we have

|t − s − Imy′x′0| = |t − (s1 − d2
x1

) − Imy′y′1 + (s1 − d2
x1

) − s0 − Imy′1x′0 − Im
(
(y′ − y′1)(x′0 − y′1)

)
|

≥ r2 + d2
x1
− (dx1/100)2 − rdx1/100 ≥ (r/2)2

for any (y′, t) ∈ B(x3, dx1/100). The last step is followed from the fact dx1 ≤ r. We also need to
show B(x3, dx1/100) ⊂ B(x1,Cdx1) for some constant C > 0. This is easy case, since

d((y′, t), x1) ≤ C
[
d((y′, t), x3) + d(x3, y1) + d(y1, x1)

]
≤ Cdx1

for any (y′, t) ∈ B(x3, dx1/100). So we have B(x3, dx1/100) ⊂ B(x1,Cdx1)∩ (Hn − B(x0, r/2)), that
completes the proof of Lemma 1.6. �

The following Lemma was proved in [27] for vector fields satisfying the Hörmander condi-
tion. Here we provide a simpler proof for the homogeneous group.

Lemma 1.7. Let Ω be an arbitrary domain in Hn. If f is a Lipschitz function on Ω ⊂ Hn, then
f ∈ HW1,∞(Ω).

Proof. If we write y = exp(tXk) and y0 = exp(Xk) for horizontal vector field Xk then y = ty0.
Since | f (xy) − f (x)| ≤ C|y|H and

Xk f =
d
dt

f (x exp(tXk))
∣∣∣∣∣
t=0

= lim
t→0

f (x exp(tXk)) − f (x)
t

, (1.11)

we get ∣∣∣ f (x exp(tXk)) − f (x)
∣∣∣ ≤ C|ty0|H.

Therefore, we have ∣∣∣[ f (x exp(tXk)) − f (x)]/t
∣∣∣ ≤ C|y0|H < ∞

by (1.11) for all |t| < δ, where δ is a small enough positive number. There exists a function
g ∈ L∞(Ω) such that there is a sequence t j → 0 with

[ f (x exp(t jXk)) − f (x)]/t j ⇀ g weakly in L2
loc(Ω).

On the other hand,∫
Ω

φ[ f (x exp(t jXk)) − f (x)]/t jdx =

∫
Ω

f (x)[φ(x exp(−t jXk)) − φ(x)]/t jdx

→ −

∫
Ω

(Xkφ) f (x)dx

for any test function φ ∈ C∞0 (Ω). This implies
∫

Ω
φgdx = −

∫
Ω

(Xkφ) f dx and Xk f ∈ L∞(Ω). �
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Lemma 1.8 (Pointwise Sobolev inequality [36, 47]). Let u ∈ W1,p(Hn), 1 < p < ∞, and let
x ∈ B = B(x0, r). Then there exist constants c > 0 and C > 0 such that

|u(x) − uB| ≤ crM(|Xku|χCB)(x0))

|u(x) − u(y)| ≤ cdC(x, y)[M(|Xku|)(x) + M(|Xku|)(y)],

where M( f ) denotes the Hardy-Littlewood maximal function defined on the Heisenberg group,
Xk is any horizontal derivative and χG is the characteristic function of the set G.

1.2.2 Whitney Extensions for Horizontal Components fk, k = 1, · · · , 2n

We assume that φ ∈ C∞0 (Ω) and supp φ ⊂ B0 := {x ∈ Hn : d(x, 0) < r/2}. Let g = |φDH f |+ | fH ⊗

DHφ| and let
Fλ = {x ∈ B0 : M(g) ≤ λ} for λ > 0,

where M(g) is the maximal function of g on the Heisenberg group. We aim to show that uk = fkφ,
1 ≤ k ≤ 2n, are the Lipschitz functions on the closed set E(λ) = F(λ) ∪ (Hn − B), where
B = {x ∈ Hn : d(x, 0) < r}. We will consider three cases.

Supposing x, y ∈ F(λ), the Lemma 1.8 implies

|uk(x) − uk(y)| ≤ cdC(x, y)[M(|Xiu|)(x) + M(|Xiu|)(y)]
≤ cdC(x, y)[M(|g|)(x) + M(|g|)(y)]
≤ cλdC(x, y).

If x, y ∈ Hn − B, then uk(x) = uk(y) = 0. We set B1 := {z ∈ B(x, dx) : uk(z) = 0}. Lemma 1.6
implies

|B1| ≥ |B(x,Cdx) ∩ (Hn − B(x0, r/2))| ≥ C(n)|B(x, dx)| (1.12)

for the case x ∈ F(λ) and y ∈ Hn − B. Basing on (1.12) and the Poincaré inequality, we get∣∣∣∣∣∣
?

B(x,dx)
uk(y)dy

∣∣∣∣∣∣ ≤ C(n)
|B1|

|B(x, dx)|

∣∣∣∣∣∣
?

B(x,dx)
uk(y)dy

∣∣∣∣∣∣
≤ C(n)

(
|B1|

|B(x, dx)|

∣∣∣∣∣∣
?

B(x,dx)
uk(y)dy

∣∣∣∣∣∣ +
1

|B(x, dx)|

∫
B(x,dx)−B1

|uk − (uk)B(x,dx)|dy
)

≤ C(n)
?

B(x,dx)
|uk − (uk)B(x,dx)|dy

≤ C(n)dx

(?
B(x,dx)

|Xiu|Q/(Q+1)dy
)Q+1/Q

.

Therefore, by the Hölder inequality we have

(uk)B(x,dx) ≤ C(n)dx

?
B(x,dx)

|Xiu| ≤ C(n)dxM(g)(x) ≤ C(n)λdC(x, y).
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This yields

|uk(x) − uk(y)| ≤ |uk(x) − (uk)B(x,dx)| + |(uk)B(x,dx)|

≤ C(n)dx

?
B(x,dx)

|Xiu| + C(n)λdC(x, y)

≤ C(n)λdC(x, y).

We have proven that uk is a Lipschitz function on E(λ) and Lipschitz constant is C(n)λ. Since
(Hn, dC) is a metric space, we can use the McShane extension theorem [53]. We extend uk to the
Lipschitz extension function uλk defined on Hn, which can be constructed as follows

uλk(x) = sup
x1∈E(λ)

[uk(x1) −C(n)λdC(x1, x)].

1.2.3 Stopping Time Arguments
Consider any cofactor LI,J(x, φ f ) that was defined in Subsection 1.1. We denote by ( j1, · · · jn)
a multiindex from J and let uλj1 be a Lipschitz extension of φ f1. Lemma 1.7 shows that uλj1 ∈
HW1,∞(Ω). Let fλ = (uλj1 , φ f j2 , · · · φ f jn). By approximation arguments and the Hölder inequality
we get ∫

Ω

LI,J(x, fλ)dx = 0

for all n-tuples from I and J.
Since | f j1 DHφ| ≤ C(n)| fH ⊗ DHφ| and |Xi(φ f j1)| ≤ C(n)g for all i ∈ I, we have∫

F(λ)
φnLI,J(x, f ) ≤ C(n)

(
λ

∫
Ω−F(λ)

gn−1 +

∫
F(λ)
| fH ⊗ DHφ|gn−1

)
from the above estimates. We multiply by λ−1−ε both sides and interchange the integrations to
obtain∫

Ω

φnLI,J(x, f )M(g)(x)−ε ≤ C(n)
(

ε

1 − ε

∫
Ω

gn−1M(g)(x)1−εdx +

∫
Ω

| fH ⊗ DHφ|gn−1M(g)(x)−εdx
)

for all n-tuples from I and J. The definition of the variant bounded distortion of quasiregular
maps on the Heisenberg group (1.7) essentially implies∫

Ω

φn|DH f |nM(g)(x)−ε ≤
C(n)K2ε

1 − ε

∫
Ω

gn−1M(g)(x)1−εdx+C(n)K2
∫

Ω

| fH⊗DHφ|gn−1M(g)(x)−εdx.

(1.13)
Next, by the Hölder inequality, and the Hardy-Littlewood maximal theorem we have∫

Ω

|φDH f |n−εdx ≤
(∫

Ω

|φDH f |nM(g)−εdx
)(n−ε)/n (∫

Ω

M(g)n−εdx
)ε/n

≤ C(n)
(∫

Ω

|φDH f |nM(g)−εdx
)(n−ε)/n (∫

Ω

gn−εdx
)ε/n



20 Higher Integrability for Certain Weakly Quasiregular Maps on the Heisenberg Group

for a small enough ε > 0 and an integer n ≥ 2. If the following estimate is true∫
Ω

gn−εdx ≥ 2n−ε
∫

Ω

|φDH f |n−εdx,

then Theorem 1.3 has been proven. In the case∫
Ω

gn−εdx ≤ 2n−ε
∫

Ω

|φDH f |n−εdx,

making use of the above estimates, the Hölder inequality, the Hardy-Littlewood maximal theo-
rem, and the fact g ≤ M(g) one gets∫

Ω

gn−εdx ≤ C(n)
∫

Ω

|φDH f |nM(g)−εdx

≤
C(n)K2ε

1 − ε

∫
Ω

gn−εdx + C(n)K2
(∫

Ω

| fH ⊗ DHφ|
n−εdx

)1/(n−ε) (∫
Ω

gn−εdx
)(n−ε−1)/(n−ε)

.

This leads to the estimate∫
Ω

gn−εdx ≤ C(n)
∫

Ω

| fH ⊗ DHφ|
n−εdx.

The proof of Theorem 1.3 is completed.



Chapter 2

Self-Improving Regularity for the Very
Weak Solutions of Subelliptic Equations

We begin with the definition of elliptic systems in Rn. Let m be an integer number greater than or
equal to 1. Introduce the notations P =

∏
0≤|I|≤m RN and Dmu = (u, ∂xu, · · · , ∂σx u) for all |σ| = m.

In order to simplify the notation, we denote by ∂mu the summation
∑
|σ|=m ∂

σ
x u. We assume in this

chapter that Ω is a bounded domain in Rn. Let A = (Aσ): Ω × P → RN be a function such that
Aσ(·,Dmu(x)), x ∈ Ω, is a measurable function on Ω, satisfying the following conditions:∑

|σ|=m

Aσ(x,Dmu(x)) · ∂σx u(x) ≥ γ|∂mu|p − a(x) a.e. in Ω (2.1)

and
|Aσ(x,Dmu(x))| ≤ |∂σx u(x)|p−1 + bσ(x) a.e. in Ω, (2.2)

where |σ| ≤ m and a(x), bσ(x) are nonnegative integrable functions. We say that a function
u ∈ Wm,p(Ω) is a weak solution of

m∑
|σ|=0

(−1)|σ|∂σx Aσ(x,Dmu(x)) = 0

on an open set Ω if
m∑
|σ|=0

∫
Ω

Aσ(x,Dmu(x))∂σxφdx = 0 (2.3)

for any test function φ = (φ1, · · · , φN) ∈ C∞0 (Ω).
In [52], authors extended Gehring’s lemma, regarding the higher integrability [17] in a more

general form, and proved that the weak solution of elliptic system (2.1)-(2.3) has the high-
er integrability property. That is to say, there exists an ε > 0 such that the weak solution
u ∈ Wm,p+ε(Ω). There are several monographs studying and generalizing this question (see,
for example [4, 8, 19]). Motivated by the Iwaniec and Martin work on the integrability of weakly
quasiregular maps [31, 33, 34], Lewis [44] introduced a very weak solutions for elliptic systems;
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that is, if u satisfies (2.3) and u ∈ W1,q(Ω) for q < p then u is a very weak solution of elliptic sys-
tem (2.1)-(2.3). Lewis [44] obtained a higher integrability property for the very weak solutions
of the elliptic systems that is the extension of the result in [52]. Also, a number of authors have
given regularity results concerning parabolic equations. Kinnunen and Lewis [40, 41] proved
the result for the first order parabolic equations and Bögelein [5] generalized these results for
the higher order parabolic systems. It is worth mentioning that there are another ways to study
the higher integrability problem for elliptic equations, see [29] for the second order degenerate
elliptic equations and [9] for the second order subelliptic equations.

It is also interesting to know whether the Lewis celebrated result [44] can be extended to the
Carnot-Caratheodory space. However up to now, it is only known that this kind of extension
works for the particular case for the second order system. Zatorska-Goldstein [16] got a higher
integrability result for the second order subelliptic equations by combining the technique in [44]
with the Young inequality. This kind of technique was shown to be extremely useful in the
study of the first order parabolic equations, see [40, 41]. The difficulty in this problem is that
the Whitney extension seems to be more complicated in the Carnot group than in the Euclidean
space. We shall discuss a certain specific subelliptic equations in this chapter.

In the first section, we prove the self-improving regularity result for weak solutions of the
fourth order homogeneous subelliptic system. In Euclidean space, a typical fourth order homo-
geneous elliptic equation is the biharmonic equation ∆2u = ∆◦∆u = 0, ∆ = ∂2

x1
+ · · ·+∂2

xn
, which

appears in the linear elasticity theory and the Stokes flows. We will consider a generalized form
of this kind of equation that is given in more general geometric setting, namely, on the Carnot
group G.

In the second section, we consider the p-sub-Laplace equation. In this particular case, there
are some nice properties of weak and very weak solutions. We follow the approach of [12], where
it is claimed that a special kind of function Λ, defined by the p-sub-Laplace equation, belongs to
the Hardy space H1(Rn) if we have the decomposition Λ =

−→
E ·
−→
B , where

−→
E ∈ (Lp(Rn))n is the

”electric field”; that is div
−→
E = 0,

−→
B ∈ (Lp′(Rn))n is the ”magnetic field” defined by curl

−→
B = 0

with 1
p′ + 1

p = 1. Unlike the approach in [54], this technique provides another point of view on
studying higher integrability of determinants. Making use of this technique is useful for study of
determinants of vector fields satisfying the Hörmander hypoellipticity condition (see [21, 22]).

2.1 Self-Improving Regularity for the Weak Solutions of Fourth
order Homogeneous Subelliptic Systems

The Carnot group is a connected simply connected Lie group, whose Lie algebra g is nilpotent
and graded:

g = V1 ⊕ ... ⊕ Vn, [V1,V j] = V j+1, j < n, [V1,Vn] = 0.

Let Y1,Y2, ...,YM be left invariant vector fields on G that form a basis of Lie algebra g, here M =

dim G. We say that a vector field Yi has a degree di if Yi ∈ Vdi . The vector fields X1, X2, . . . , Xn1 ,
that form the basis of V1, are called the horizontal derivatives on G. If I = (i1, ..., iM) is a
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multiindex, then we denote by Y I = Y i1
i1

Y i2
i2
···Y iM

iM
the differential operator of order |I| = i1+. . .+iM,

and by d(I) = d1i1 + . . . + dMiM the homogeneous degree of the multiindex. The exponential
mapping x = exp

∑M
i=1 xiYi is a diffeomorphism of g onto G and we use it to introduce the normal

coordinates. Let ηi(x) = xi, i = 1, · · · ,M be the coordinate functions. We denote by Q =
∑M

i=1 di

the homogeneous dimension of the Carnot group.
Let us define the homogeneous polynomial on the Carnot group. We denote by ηI = ηi1

1 · · ·η
iM
M

the monomial of homogeneous degree d(I) = d1i1 + . . . + dMiM. A homogeneous polynomial of
homogeneous degree d is a linear combination of monomials of the same homogeneous degree d.
We say that a polynomial has homogeneous degree d if it is a linear combination of monomials
with the homogeneous degree at most d. We let | · |G be a quasinorm in the Carnot group. We
shall use the notation |B| to denote the Haar measure of a set B.

Let XI = Xi1
1 Xi2

2 · · ·X
in1
n1 be the m-th order horizontal derivative, Ω be an open bounded domain

in the Carnot group. Define the functional space Lp
m(Ω) of functions u : Ω→ RN as follows:

Lp
m(Ω) =

{
u = (u1, ..., uN) : uk ∈ Lp(Ω), ‖XIuk‖Lp(Ω) < ∞, |I| ≤ m, k = 1, ...,N

}
.

We consider the horizontal Sobolev space on the Carnot group defined by

HWm,p(Ω) = C∞(Ω) ∩ Lp
m(Ω).

To define the fourth order homogeneous subelliptic systems on the Carnot group G we follow
the definition of the higher order elliptic systems in Rn. Denote P =

∏
0≤|I|≤2 RN and D2u =

(u, X1u, Xσu) for all |σ| = 2. Let A = (Aσ): Ω × P → RN be a function such that Aσ(·,D2u(x)),
x ∈ Ω is measurable in Ω and satisfies the following conditions:

Aσ(x,D2u(x)) · Xσu(x) ≥ γ|Xσu(x)|p (2.4)

almost everywhere in Ω and

|Aσ(x,D2u(x))| ≤ |Xσu(x)|p−1 + bσ(x) (2.5)

almost everywhere in Ω, where |σ| = 2. We say that u(x) ∈ HW2,q(Ω) is the weak solution of
fourth order homogeneous elliptic system∑

|σ|=2

XσAσ(x,D2u(x)) = 0,

if u satisfies the following identity∑
|σ|=2

∫
Ω

Aσ(x,D2u(x))Xσφ(x)dx = 0 (2.6)

for any φ = (φ1, ..., φN) ∈ C∞0 (Ω) and q = p. We say that u is the very weak solution of (2.6) if
q < p. In order to simplify the notation, we denote by X2u the summation with respect to the
indices i and j, that is

∑n1
i, j=1 XiX ju.

In this chapter we follow the approach, developed in [44], to obtain a self-improving integra-
bility result for subelliptic equations. Our principal result states as follows

Theorem 2.1. Let Ω be a bounded domain on the Carnot group G, u ∈ HW2,r
loc(Ω) and A satis-

fies (2.4)-(2.6). Then for p > 1 there exists a δ = δ(Q,N, γ, p) > 0 such that if r = p − δ, then
u ∈ HW2,p+δ

loc (Ω).
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2.1.1 Preliminary Lemmas
First of all, we need to establish the pointwise Sobolev inequality for higher order derivatives on
the Carnot group G, which is the content of Lemma 2.2. For a locally integrable function f on
G, and B(x, r) = {y ∈ G : dC(x, y) < r}, where dC is the Carnot- Caratheodory metric on the
Carnot group we let

fB =
1
|B|

∫
B

f dx =

?
B

f dx.

We define the center maximal function

M f (x) = sup
r>0

?
B(x,r)
| f (y)|dy,

and a localized operator with respect to any fixed subset B ⊂ G,

MB( f )(x) = M( fχB)(x),

where χB is the characteristic function of B. We let Mk
B( f )(x) to be the k-times composition

operator of MB( f ), that is if Mk−1
B ( f )(x) is defined then

Mk
B( f )(x) = sup

r>0

?
B(x,r)

Mk−1
B ( f )(y)χB(y)dy

is defined inductively for k ≥ 2. We remind that the Carnot-Caratheodory metrc dC(x, y) on the
Carnot group is defined as infimum over lengths of all absolutely continuous curves γ : [0, 1]→
G such that γ(0) = x, γ(1) = y and γ̇ ∈ span{X1, · · · , Xn1}.

Lemma 2.2. Let l be a positive integer, 1 < q < ∞, r > 0, x0 ∈ Ω, and B0 = B(x0, r). If
u ∈ HW l,q(Ω) in a bounded open subset Ω ⊂ G and

∫
B0

Xαu = 0 for 0 ≤ |α| ≤ l − 1, then there
exist constants C1(n1,Q, l, q) and C > 0 such that

|u(x)| ≤ C1rlMl
B(

∑
|σ|=l

|Xσu|)(x), x ∈ B = B(x0,Cr). (2.7)

Moreover, if 1 < s < q and ls < Q, then there exists C2(n1,Q, l, q) > 0 such that

|u(x)| ≤ C2rl

?
B
Ml

B(
∑
|σ|=l

|Xσu|)s(x)dx


l
Q

Ml
B(

∑
|σ|=l

|Xσu|)
s

s∗ (x), (2.8)

(?
B
|u(x)|s

∗

dx
) 1

s∗

≤ C2rl

?
B
Ml

B(
∑
|σ|=l

|Xσu|)s(x)dx


1
s

, (2.9)

where s∗ =
Qs

Q−ls . Furthermore, if ls > Q, then

|u(x)| ≤ Ĉ2rl

?
B
Ml

B(
∑
|σ|=l

|Xσu|)(x)sdx


1
s

(2.10)

where Ĉ2 = Ĉ2(Q, l, s).
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Proof. We start our proof from the first order case, and then continue to show the higher order
result by induction. We know from papers [36, 47], that the Morrey type inequality holds for the
Carnot group. Since uB = 0 then

|u(x)| = |u − uB0 | ≤ C
∫

B

n1∑
k=1

|Xku(y)|dC(x, y)−Q+1dy

= C
∫
{y∈B:dC(x,y)<η}

+

∫
{y∈B:dC(x,y)≥η}

n1∑
k=1

|Xku(y)|dC(x, y)−Q+1dy := I + II

for some η > 0 that will be chosen later. To estimate I we write I in the form

I = C
∞∑

k=0

∫
{y∈B:2−k−1η≤dC(x,y)<2−kη}

n1∑
k=1

|Xku(y)|dC(x, y)−Q+1dy

≤ C
∞∑

k=0

2−kη
1

(2−kη)Q

∫
{y∈B:dC(x,y)<2−kη}

n1∑
k=1

|Xku(y)|dy.

Due to the relation |B(x, 2−kη)| ≈ (2−kη)Q, we get

I ≤ CηM(
n1∑

k=1

|Xku|χB)(x).

If η > Cr then II = 0 and the above estimate shows that (2.7) holds for l = 1. In the case η < Cr
we apply the Hölder inequality with the exponent s, 1 < s < Q for the second term and deduce

II ≤ C

∫
{y∈B:dC(x,y)≥η}

(
n1∑

k=1

|Xku(y)|)sdy


1
s (∫

{y∈B:dC(x,y)≥η}
dC(x, y)(−Q+1)s′dy

) 1
s′

.

Since dC ≈ |x−1y|G, we can estimate∫
{y∈B:dC(x,y)≥η}

dC(x, y)(−Q+1)s′dy ≤ C2

∫
{y∈B:|x−1y|G≥Cη}

|x−1y|(−Q+1)s′

G dy =

∫
G

H(x−1y)dy,

where H(z) = C2|z|
(−Q+1)s′

G χ{z∈G:|z|G≥Cη}. The biinvarians of the Haar measure on the Carnot group
and [14, corollary 1.16] imply∫

{y∈B:dC(x,y)≥η}
dC(x, y)(−Q+1)s′dy ≤ C(s,Q)ηQ−(Q−1)s′ .

Therefore, we obtain

II ≤ Cη−
1
s Q+1

∫
{y∈B:dC(x,y)≥η}

(
n1∑

k=1

|Xku(y)|)sdy


1
s

.
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We choose

η =

∫
{y∈B:dC(x,y)≥η}

(
n1∑

k=1

|Xku(y)|)sdy


1
Q

M(
n1∑

k=1

|Xku|χB)−
s
Q (x)

in order to get I = II. Thus we obtain the chain of estimates

|u(x)| ≤ Cr

?
B
(

n1∑
k=1

|Xku(y)|)sdy


1
Q

M(
n1∑

k=1

|Xku|χB)
s

s∗ (x)

≤ Cr

?
B

M(
n1∑

k=1

|Xku|χB)s(y)dy


1
Q

M(
n1∑

k=1

|Xku|χB)
s

s∗ (x)

= Cr

?
B
MB(

n1∑
k=1

|Xku|)s(y)dy


1
Q

MB(
n1∑

k=1

|Xku|)
s

s∗ (x).

This finishes the proof for the case l = 1.
For the general case, we assume that the theorem already holds for l − 1, and we proceed to

show the theorem for l > 1. We repeat the above arguments for x ∈ B, applying the induction
hypothesis to every Xku, and get

I ≤ CηM(
n1∑

k=1

|Xku|χB)(x)

≤ C(n1)C2ηrl−1

?
B
Ml−1

B (
∑
|σ|=l

|Xσu|)s(x)dx


l−1
Q

M

Ml−1
B (

∑
|σ|=l

|Xσu|)(·)χB(·)


s

s∗

(x)

≤ C(n1)C2ηrl−1

?
B
Ml−1

B (
∑
|σ|=l

|Xσu|)s(x)dx


l−1
Q

Ml
B(

∑
|σ|=l

|Xσu|(·)χB(·))(x)


s

s∗

for ls < Q and s∗ =
Qs

Q−ls+s . The last step followed from the Hölder inequality and the definition
of the localized operator. If η < Cr, then (2.7) holds for l. If not, we need to estimate second term
once again. Applying the Hölder inequality with the exponent s∗ for II, the similar arguments
show

II ≤ Cη−
1
s∗ Q+1|B|

1
s∗

 n1∑
k=1

?
B
|Xku(y)|s

∗

dy


1
s∗

≤ Cη−
1
s∗ Q+1|B|

1
s∗ rl−1

?
B
Ml−1

B (
∑
|σ|=l

|Xσu|)s(x)dx


1
s

.

We set

η
Q
s∗ = |B|

1
s∗

?
B
Ml−1

B (
∑
|σ|=l

|Xσu|)s(x)dx


1
s−

l−1
Q

Ml
B(

∑
|σ|=l

|Xσu|(·))(x)


− s

s∗

.
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After simplifying and making use of the fact |B| ≈ CrQ, we get

|u(x)| ≤ C2rl

?
B
Ml

B(
∑
|σ|=l

|Xσu|)s(x)dx


l
Q

Ml
B(

∑
|σ|=l

|Xσu|)
Q−ls

Q (x),

which is the required estimate. The inequality (2.9) follows immediately. To prove (2.10), ob-
serve that s′ < Q/(Q − 1), we have∫

{y∈B:dC(x,y)≤r}
dC(x, y)(−Q+1)s′dy ≤ C(s,Q)rQ−(Q−1)s′ .

Therefore,

|u(x)| ≤
∫
{y∈B:dC(x,y)≤r}

n1∑
k=1

|Xku|(y)dC(x, y)−Q+1dy

≤ C(s,Q)

∫
{y∈B:dC(x,y)≤r}

 n1∑
k=1

|Xku|(y)

s

dy


1
s

rQ/s′−(Q−1)

≤ C(s,Q)r

?
{y∈B:dC(x,y)≤r}

 n1∑
k=1

|Xku|(y)

s

dy


1
s

.

This proves (2.10) for l = 1, and it is easy to prove the general case by induction. This completes
the proof of Lemma 2.2. �

In the Euclidean space it is very useful to consider a special type of polynomial P(x, B) of
degree m, which satisfies

∫
B

(∂αu(x) − ∂αP(x, B)) dx = 0 for all |α| ≤ m − 1. Such a polynomial
is called the fitting polynomial that received its named after P. W. Jones’s celebrated paper [37]
concerning the extension problem of the Sobolev space on (ε, δ)-domains. In the present paper
we should prove that such kind of polynomials also exist on the Carnot group. Our proof is based
on Nhieu’s ideas [56]. In fact, the proof can be rather straightforward extended to an arbitrary
Carnot group. For this purpose we state the following lemma.

Lemma 2.3. (Existence of fitting polynomial on Carnot groups) For any fixed measurable subset
B ⊂ B̄ ⊂ Ω, 0 < |B| < ∞ and any u ∈ Wm,p(B), m and p are any fixed positive integer, there exists
a polynomial P(x, u, B) (may not unique) such that

XIP = 0 for all |I| = m, and
∫

B
XI(u − P)dx = 0 for all |I| ≤ m − 1.

Proof. We divide the proof into 3 steps.
Step 1: Some properties of homogeneous polynomials on the Carnot group.

Remind from [14] that the left invariant vector fields can be written as

Xk = ∂/∂ηk +
∑
di>dk

Pik∂/∂ηi,
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where Pik is a homogeneous polynomial of homogeneous degree di − dk. The higher derivatives
can be written

XI =
∑

d(K)≥d(I), |K|≤|I|

PIK(∂/∂η)K ,

where PIK is a homogeneous polynomial of homogeneous degree d(K) − d(I). Therefore, it is
easy to check that if P is a homogeneous polynomial of the homogeneous degree m, then the
homogeneous degree of XIP equals

degG(XIP) = d(K) − d(I) + m − d(K) = m − d(I).

We conclude that if d(I) > m, then XIP = 0 and if d(I) = m, then XIP is a constant. Since we only
take into account horizontal derivatives, we get d(I) = |I|. Therefore we have degG(XIP) = m−|I|.
Step 2. The proof of Lemma 2.3 will be completed by proving the following statement: for any
fixed integer l, 0 ≤ l ≤ m − 1 there exists a homogeneous polynomial Pl of degree degG(Pl) = l
such that

∫
B

XI(u − Pl)dx = 0 for all |I| = l.
If this statement is true, we first find a homogeneous polynomial Pm−1 such that

∫
B

XI(u −
Pm−1)dx = 0 for all multiindeces |I| = m − 1. Next, we let g = f − Pm−1 and find a homogeneous
polynomial Pm−2 such that

∫
B

XI(g−Pm−2)dx = 0 for all |I| = m−2. Continue to repeat this process
until we find a 0-degree homogeneous polynomial P0. Then we assert that P = P0+P1+···+Pm−1

is the desired polynomial.
Observe that if multiindex I satisfies |I| = m, then XIP =

∑m−1
k=0 XIPk = 0.

For any fixed multiindex I with |I| = l ≤ m − 1, we have showed that homogeneous polyno-
mials, constructed above, satisfy

∫
B

XI(u − Pm−1 − · · · − Pl)dx = 0. Since XI(
∑l−1

k=0 Pk) = 0 we
get ∫

B
XI(u − P)dx =

∫
B

XI(u − Pm−1 − · · · − Pl) − XI(
l−1∑
k=0

Pk)

 dx = 0.

This finishes the proof of Step 2.
Since XlPl is a constant, in order to find the homogeneous polynomial it suffices to determine

its coefficients, that is to find a solution of the overdetermined linear system:

XIPl =

?
B

XIu, |I| = l. (2.11)

To complete the proof of Lemma 2.3, it is enough to show that the linear system (2.11) has
solutions. It reduces to the linear algebra problem to indicate whether {XIPl : |I| = l} and
{XIu : |I| = l} has the same linear dependent relation. This will be proved in the third step.
Step 3. We prove that the equality ∑

|I|=l

cIXIPl = 0,

implies ∑
|I|=l

cIXIu = 0 (2.12)
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for any choice of real numbers cI .
Indeed, first, we assert that for the same set {cI : |I| = l}, the equality∑

|I|=l

cIXIP = 0 (2.13)

holds for any polynomial P.
Indeed, if the homogeneous degree of P satisfies k = degG P ≤ l, then (2.13) holds auto-

matically. If k = degG P > l, we write this polynomial in the form P =
∑k

j=0 P j and assert that
XIP(0) = 0. In fact, XIP =

∑
j≥l+1 XIP j, since XIP j is the homogeneous polynomial of the ho-

mogeneous degree j − d(I) = j − |I| = j − l ≥ 1. Therefore XIP j(0) = 0 for all j ≥ l + 1. Thus
the assertion is true.

We denote τx(y) = x · y the left translation on the Carnot group G which is a diffeomorphism
of G. Composition P ◦ τx is a polynomial if P is a polynomial. Since XI are invariant under the
left translation, we have∑

|I|=l

cIXIP(x) =
∑
|I|=l

cI(XIP) ◦ τx(0) =
∑
|I|=l

cI(XIP ◦ τx)(0) = 0.

We prove the equality (2.12) for u ∈ C∞0 (Ω). In [14, page 34-35], one can find the Taylor
series on the Carnot group. We apply this formula to u for any fixed x0. Let

P(x, x0) =
∑

d(I)≤k

aI(x0)
ηI(x−1

0 x)
I!

be the Taylor polynomial of u with homogeneous degree k > l. Then we can conclude that∑
|I|=l

cIXIP(x, x0) = 0.

Since XIP(x, x0)|x=x0 = XIu(x0), we get ∑
|I|=l

cIXIu(x0) = 0

for any fixed x0 ∈ Ω.
The last step is to show that the equality (2.12) holds for u ∈ HWm,p(B). This follows imme-
diately from the definition of the Sobolev space on Carnot groups. Applying approximation
arguments to u ∈ C∞0 (B), we get that the conclusion holds for the Sobolev space. This completes
the proof of Lemma 2.3. �

Another approach to prove the existence of fitting polynomial can be found in [49].

Lemma 2.4. Let Ω be a domain on the Carnot group G and x0 ∈ Ω. Assume that λ > 0, r > 0,
and 1 < q < ∞. For u = (u1, ..., uN) ∈ HW2,q(Ω) with supp u ⊂ B(x0, r) ⊂ Ω, we denote
B = B(x0,Cr) for some C > 1 and

F(λ) = {x ∈ Ω : M2
B(|X2u|)(x) ≤ λ} ∩ B , ∅.
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Then u|F(λ) has the Whitney extension v to G satisfying
(1) v = u on F(λ),
(2) Xkv = Xku on F(λ),
(3) |Xσv| ≤ cλ a.e. on G for |σ| = 2.

Proof. We need to verify that u satisfies the conditions of the Whitney extension theorem shown
in [63]. We know by approximation arguments that

∫
2B

Xkudx = 0. Applying Lemma 2.2, we get

|Xku| ≤ CrM2
B(|X2u|)(x) ≤ Cλr for any x ∈ F(λ)

and for k = 1, ..., n1. Moreover, we have |u − u2B| ≤ Cλr2. If x1 ∈
(

3
2 B

)c
, then u(x1) = 0 and

|u2B| = |u(x1) − u2B| ≤ Cr2M2
B(|X2u|)(x1)

≤ Cr2−Q
∫

2B
MB(|X2u|)(y)dy ≤ Cλr2.

Therefore |u(x)| ≤ Cλr2.
The first order Taylor polynomial for the function u can be written in the form

P(x, x0) = u(x0) +

n1∑
k=1

Xku(x0) ηk(x−1
0 x).

We can choose a polynomial Q(x, y0, s) of homogenous degree 1 satisfying∫
B(y0,s)

(u − Q)dx = 0 and
∫

B(y0,s)
Xk(u − Q)dx = 0 for k = 1, ..., n1

for any fixed y0 ∈ F(λ) and s > 0 by Lemma 2.3. Using Lemma 2.2, we get

| u − Q | ≤ Cλr2 and | Xk(u − Q) | ≤ Cλr on F(λ) ∩ B(y0, s). (2.14)

Since Q is the polynomial of the homogenous degree 1, it contains only ηk for index k varying
only from 1 to n1. Therefore, Q can be written as

Q(x) = Q(x0) +

n1∑
k=1

(XkQ)(x0) ηk(x−1
0 x)

and from (2.14) we can immediately deduce

|Q(x0) − u(x0)| ≤ Cλr2, |XkQ(x0) − Xku(x0)| ≤ Cλr.

Since P and Q are polynomials of homogenous degree 1, their first order horizontal derivatives
are identically constant, therefore XkQ(x) ≡ XkQ(x0) and XkP(x0, x) ≡ XkP(x0, x)|x=x0 = Xku(x0).
This implies

|P − Q| ≤ Cλr2 and |Xk(P − Q)| ≤ Cλr.

So we get
|P − u| ≤ Cλr2 and |Xk(P − u)| ≤ Cλr

and this shows, that u satisfies the condition of [63, Theorem 2]. Thus, we conclude that require-
ments (1) and (2) of the statement of Lemma 2.4 hold and the observation from [63, page 611]
implies that |Xσv| ≤ cλ on F(λ)c. This completes the proof of Lemma 2.4. �
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In order to prove the main result of the present chapter, we recall the following Gehring’s
lemma on metric measure spaces X, d, µ, where d is a distance and µ is a doubling measure.

Lemma 2.5. [16] Let q ∈ [q0, 2Q], where q0 > 1. Assume that functions f , g, defined on a metric
measure space (X, d, µ), are nonnegative and g ∈ Lq

loc(X, µ), f ∈ Lr0
loc(X, µ) for some r0 > q. If

there exist nonnegative constants b > 1 and θ such that for every ball B ⊂ βB ⊂ X, β > 1, the
following estimate holds?

B
gqdµ ≤ b

[(?
βB

gdµ
)q

+

?
βB

f qdµ
]

+ θ

?
βB

gqdµ,

then there exist nonnegative constants θ0 and ε0, θ0 = θ0(q0,Q,Cd, β) and ε0 = ε0(b, q0,Q,Cd, β)
such that if 0 < θ < θ0 then g ∈ Lp

loc(X, µ) for p ∈ [q, q + ε0) and moreover(?
B

gpdµ
)1/p

≤ C
(?

βB
gqdµ

)q

+

(?
βB

f pdµ
)1/p

for C = C(b, q0,Q,Cd, β).

2.1.2 Proof of Theorem 2.1
Our approach is due to [44] and we divide the proof into several steps.
The distributional set of maximal function on the Carnot group is an open set.

For any fixed locally integrable function f , we prove that the set {x ∈ G : M( f ) > t} is an
open set for all t > 0. This assertion is equivalent to saying that the maximal function M f (x) is
lower semi-continuous. Obviously, any average of the function f

x→
1

|B(x, r)|

∫
B(x,r)
| f (y)|dy

is continuous. Therefore

{x ∈ G : M( f ) > t} =

{
x ∈ G : sup

r>0

1
|B(x, r)|

∫
B(x,r)
| f (y)|dy > t

}
=

⋃
r>0

{
x ∈ G :

1
|B(x, r)|

∫
B(x,r)
| f (y)|dy > t

}
.

is an open set. This proves the assertion.
Stopping time arguments.

Let u, Ω be as in Theorem 2.1. Suppose B(z0,R) be the any Carnot-Caratheodory ball in
Ω. We fix a point x0 ∈ B(z0,R/2). Let r = R/4C, C > 1, and denote by Br the ball B(x0, r).
There exists ϕ ∈ C∞0 (B), B = B(x0,Cr), such that ϕ ≡ 1 on B(x0, r), supp ϕ ⊂ B and |Xσϕ(x)| ≤
C1(ϕ)r−|σ|, |σ| ≤ 2, see [14]. By Lemma 2.3, there exists a polynomial P such that

∫
B(x0,R)

XI(u −
P)dx = 0 for any |I| ≤ 1. Denote u0 = (u − P)ϕ(x) and let

E(λ) =
{
x : M2

B(|X2u0|)(x) ≤ λ
}

and F(λ) = E(λ) ∩ B.
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So that F(λ) is a closed set. Applying Lemma 2.4, we extend u0|F(λ) to v on G. Next, denote by θ
a test function θ ∈ C∞0 (B(x0,R)), which θ(x)|B(x0,3Cr/2) ≡ 1. Define v̄(x) = v(x)θ(x). We can show
that |Xηv̄| ≤ C1

∑
|σ|≤2 |Xσv| ≤ C1(1 + λ + λ2), and thus Xηv̄ ∈ L∞(Ω) for all |η| ≤ 2. Since Ω is

bounded, we can deduce Xηv̄ ∈ Lq(Ω) for q ≥ p − δ. We assert that (2.6) holds if we substitute φ
by v̄, that is ∑

|σ|=2

∫
Ω

Aσ(x,D2u(x))Xσv̄(x)dx = 0.

In fact, we choose a sequence φi ∈ C∞0 (Ω) such that ‖φi − v̄‖W2,q(Ω) → 0. Therefore∣∣∣∣∣∣∣∑
|σ|=2

∫
Ω

Aσ(x,D2u(x))Xσv̄(x)dx

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∑
|σ|=2

∫
Ω

Aσ(x,D2u(x)) (Xσv̄(x) − Xσφi(x)) dx

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∑
|σ|=2

∫
Ω

(
|Xσu(x)|p−1 + bσ(x)

)
(Xσv̄(x) − Xσφi(x)) dx

∣∣∣∣∣∣∣
≤ C1

∑
|σ|=2

∥∥∥|Xσu(x)|p−δ + bσ(x)dx
∥∥∥

L(p−δ)/(1−δ)(Ω)

× ‖Xσv̄(x) − Xσφi(x)‖Lq(Ω) → 0.

The last step is followed from the Hölder inequality.
We split Ω into two sets Ω = F(λ) ∪ (Ω − F(λ)) and obtain

∑
|σ|=2

∫
F(λ)

Aσ(x,D2u(x))Xσu0(x)dx =
∑
|σ|=2

∫
Ω−F(λ)

Aσ(x,D2u(x))Xσv̄(x)dx

≤ C1λ
∑
|σ|=2

∫
B(x0,R)−F(λ)

(
|Xσu(x)|p−1 + bσ(x)

)
dx.

(2.15)

The last inequality is followed from (2.5). We assert that there exists λ0 > 0 such that E(λ) =

F(λ) for any λ > λ0. To prove this assertion notice that we have

M2
B(|X2u0|)(x) ≤ cr−Q

∫
B(x0,4Cr)

MB(|X2u0|)(x)dx

≤ C min
B(x0,8Cr)

M2
B(|X2u0|)(x)

(2.16)

for any x ∈ Ω − B(x0, 3Cr). Setting

λ0 = cr−Q
∫

B(x0,4Cr)
MB(|X2u0|)(x)dx,

we finish to prove the assertion. Multiply both sides of (2.15) by λ−1−δ and integrate on (λ0,∞).
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Interchange the integration on both of sides. We get for the right hand side

K =

∫ ∞

λ0

λ−1−δ
∑
|σ|=2

∫
F(λ)

Aσ(x,D2u(x))Xσu0(x)dxdλ

= C1

∫ ∞

λ0

λ−δ
∑
|σ|=2

∫
B(x0,R)−F(λ)

(
|Xσu(x)|p−1 + bσ(x)

)
dxdλ

≤ C1

∑
|σ|=2

∫ ∞

0
λ−δ

∫
B(x0,R)−F(λ)

(
|Xσu(x)|p−1 + bσ(x)

)
dxdλ

= C1
1

1 − δ

∑
|σ|=2

∫
B(x0,R)

M2
B(|X2u0|)(x)1−δ

(
|Xσu(x)|p−1 + bσ(x)

)
dx

≤ C1
1

1 − δ

∫
B(x0,R)

M2
B(|X2u0|)(x)p−δ + M2

B(|X2u0|)(x)1−δbσ(x)dx

≤ C1
1

1 − δ

∫
B(x0,R)

|X2u0|
p−δdx +

∫
B(x0,R)

M2
B(|X2u0|)(x)1−δbσ(x)dx,

where the last step follows from the Hardy-Littlewood maximal theorem. Let

F p−δ
1 = M2

B(|X2u0|)(x)1−δbσ(x).

Then
K ≤

∫
B(x0,2Cr)

F p−δ
1 dx + c

∫
B(x0,2Cr)

|X2u0|
p−δdx (2.17)

and we have
F1 ∈ Lp+α(B(x0, 2Cr)) (2.18)

for certain α > 0. It remains to estimate the lower bounds for K. In fact, we can write

K =
∑
|σ|=2

∫ ∞

λ0

λ−1−δ
(∫

F(λ0)
+

∫
F(λ)−F(λ0)

Aσ(x,D2u(x))Xσu0(x)
)

dxdλ

=
1
δ
λ−δ0

∫
F(λ0)

Aσ(x,D2u(x))Xσu0(x)dx+

1
δ

∫
Ω−E(λ0)

M2
B(|X2u0|)(x)−δAσ(x,D2u(x))Xσu0(x)dx

≥
1
δ

∫
B(x0,Cr)

M2
B(|X2u0|)(x)−δAσ(x,D2u(x))Xσu0(x)dx−

1
δ

∫
E(λ0)

M2
B(|X2u0|)(x)−δAσ(x,D2u(x))Xσu0(x)dx := L2 − L1.

(2.19)

The estimate of L1.
First of all, we need to prove the estimate

|XIu0(x)| ≤ C1M
2
B(|X2u|)(x). (2.20)
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We assume for all multiindeces I that |I| = 2 and this assumption will play a crucial role in the
proof of Theorem 2.1. Thus we can write

XIu0 =
∑
α+β=I

Xα(u − P)(x)Xβϕ(x)

= ϕXI(u − P) +
∑

α+β=I, |α|<2

Xα(u − P)(x)Xβϕ(x)

= ϕXIu +
∑

α+β=I, |α|<2

Xα(u − P)(x)Xβϕ(x).

The last step is followed from the equality XIP = 0. We have

|Xα(u − P)(x)| ≤ C1r2−|α|M2
B(|X2u|)(x)

from Lemma 2.2. Combining this result with the fact |Xβϕ(x)| ≤ C1r−|β|, we get

|Xα(u − P)(x)Xβϕ(x)| ≤ C1M
2
B(|X2u|)(x)

for all multiindices α and β, 0 ≤ |α| < 2, 0 < |β| ≤ 2. Since ϕ is bounded it trivially follows that

|XIu(x)| ≤ C1M
2
B(|X2u|)(x).

This implies the inequality (2.20). We can conclude that u(x) = u0(x) on B(x0, r) and we have
the inequality

|XIu0 − ϕXIu| ≤ C1r|α|−2
∑

0≤|α|<2

Xα(u − P)(x) (2.21)

for all multiindices I, |I| = 2.
Suppose 0 < η ≤ 1

2 and split E(λ0) = E1(λ0) ∪ (E(λ0) − E1(λ0)), where

E1(λ0) = {x ∈ E(λ0) : |X2u(x)| ≥ η−1λ0}.

We have the chain of inequalities

L1 ≤
1
δ

∫
E(λ0)

M2
B(|X2u0|)(x)−δ|X2u0(x)|

(
|X2u(x)|p−1 + bσ(x)

)
dx

≤
1
δ

∫
E(λ0)

M2
B(|X2u0|)(x)1−δ

(
|X2u(x)|p−1 + bσ(x)

)
dx

≤
1
δ

∫
E(λ0)

M2
B(|X2u0|)(x)1−δ|X2u(x)|p−1dx +

1
δ

∫
E(λ0)

F p−δ
1 dx.

by (2.5). We also know
M2

B(|X2u0|)(x) ≤ λ0 ≤ η |X2u(x)|

for any x ∈ E1(λ0). We continue for |X2u(x)| ≥ η−1λ0:

L1 ≤
1
δ
η1−δ

∫
E(λ0)
|X2u(x)|p−δdx +

1
δ

∫
E(λ0)

F p−δ
1 dx.



2.1 Self-Improving Regularity for the Weak Solutions of Fourth order Homogeneous
Subelliptic Systems 35

On the other hand, |X2u(x)| < η−1λ0 for any x ∈ E(λ0) − E1(λ0). Applying (2.16) and (2.19), we
get the pointwise estimate for a fixed t > 0

M2
B(|X2u0|)(x)−δ|X2u0(x)|

(
|X2u(x)|p−1 + bσ(x)

)
≤ λ2−δ

0 ηδ−2 + λ−δ0 |X
2u0(x)| bσ(x)

≤ η2−p

(?
B
|X2u|tdx

)1/t

+ λ−δ0 |X
2u0(x)| bσ(x)

by the Hardy-Littlewood maximal theorem. Recalling the definition of λ0 and making use of the
notation

F p−δ
2 = λ−δ0 |X

2u0(x)| bσ(x),

we get the estimate

L1 ≤ C1
η1−p

δ
rQ

(?
B(x0,2Cr)

|X2u|tdx
)(p−δ)/t

+
1
δ

∫
B(x0,2Cr)

F p−δ
2 dx,

where we have used the fact |B(x0, 2Cr)| ≈ rQ. Therefore, we have proved the estimate for L1:

L1 ≤
1
δ
η1−δ

∫
B(x0,2Cr)

|X2u(x)|p−δdx +
1
δ

∫
B(x0,2Cr)

F p−δ
3 dx

+
η1−p

δ
rQ

(?
B(x0,2Cr)

|X2u(x)|tdx
)(p−δ)/t

,

(2.22)

where F3 is the integrable function defined by

F p−δ
3 = F p−δ

1 + F p−δ
2 and F3 ∈ Lp+α(B(x0, 2R)).

Decomposition of L2

In order to estimate L2, we need to decompose L2 in a more suitable way. Denote by D1 the
set

D1 = {x ∈ B(x0,Cr) − B(x0, r) : M2
B(|X2u0|)(x) ≤ δM2

B(|X2u|)(x)}

and set D2 = B(x0,Cr) − (D1 ∪ B(x0, r)). We get

δ L2 =

(∫
B−D1

+

∫
D1

)
M2

B(|X2u0|)(x)−δAσ(x,D2u(x))Xσu0(x)dx

≥

∫
B−D1

M2
B(|X2u0|)(x)−δAσ(x,D2u(x))Xσu0(x)dx−∫

D1

M2
B(|X2u0|)(x)−δ|X2u0(x)|

(
|X2u(x)|p−1 + bσ(x)

)
dx

Denote the second term by H3 and decompose the first term into two parts as follows

δ L2 ≥

∫
B−D1

M2
B(|X2u0|)(x)−δAσ(x,D2u(x)) · ϕXσu(x)dx−∫

B−D1

M2
B(|X2u0|)(x)−δAσ(x,D2u(x)) · (ϕXσu(x) − Xσu0(x))dx

− H3 := H1 − H2 − H3.
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Consider H1. Since B = D1 ∪ D2 ∪ B(x0, r), we have the following estimate by (2.4)

H1 =

∫
B(x0,r)∪D2

M2
B(|X2u0|)(x)−δAσ(x,D2u(x)) · ϕXσu(x)dx

≥

∫
B(x0,r)

M2
B(|X2u0|)(x)−δAσ(x,D2u(x)) · Xσu(x)dx

≥ γ

∫
B(x0,r)

M2
B(|X2u0|)(x)−δ|Xσu(x)|pdx := J1.

To estimate H2 we will use the estimate (2.20) and the equality u0(x) = u(x) on B(x0, r). We
rewrite H2 as follows

H2 =

∫
B(x0,r)∪D2

M2
B(|X2u0|)(x)−δAσ(x,D2u(x)) · (ϕXσu(x) − Xσu0(x))dx

≤

∫
D2

M2
B(|X2u0|)(x)−δ

(
|X2u(x)|p−1 + bσ(x)

)
· |ϕXσu(x) − Xσu0(x)|dx

≤
∑

0≤|α|<2

r−2+|α|

∫
D2

M2
B(|X2u0|)(x)−δ

(
|X2u(x)|p−1 + bσ(x)

)
· |Xα(u(x) − P(x))|dx.

Denote by J2 the last term of the above inequality. We continue and get for H3

H3 =

∫
D1

M2
B(|X2u0|)(x)−δ|X2u0(x)|

(
|X2u(x)|p−1 + bσ(x)

)
dx

≤

∫
D1

M2
B(|X2u0|)(x)1−δ

(
|X2u(x)|p−1 + bσ(x)

)
dx := J3.

Then we arrive at the following relation

δ L2 ≥ J1 − J2 − J3. (2.23)

The estimate of J1

We can write

MB(|X2u0|)(x) = M(|X2u0|χB)(x)

≤ M(|X2u0|χBr )(x) + M(|X2u0|χB−Br )(x)

for any x ∈ B(x0,
r
2 ). For the second term we deduce

M(|X2u0|χB−Br )(x) ≤
?

B(x0,Cr)
|X2u0|dx.

Therefore, we obtain

MB(|X2u0|)(x) ≤ M(|X2u0|χBr )(x) +

?
B(x0,Cr)

|X2u0|dx.
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Moreover, by the same arguments, we have

M2
B(|X2u0|)(x) ≤ M

(
M(|X2u0|χBr )(·)χB(·)

)
(x) +

?
B(x0,Cr)

|X2u0|dx

≤ M
(
M(|X2u0|χBr )(·)χBr (·)

)
(x)

+ M
(
M(|X2u0|χBr )(·)χB−Br (·)

)
(x) +

?
B(x0,Cr)

|X2u0|dx

≤M2
Br

(|X2u0|)(x) +

?
B(x0,Cr)

M(|X2u0|)(x)χBdx +

?
B(x0,Cr)

|X2u0|dx

≤M2
Br

(|X2u0|)(x) + 2
?

B(x0,Cr)
M2

B(|X2u0|)(x)dx.

Since Xσu0(x) = Xσu(x) on B(x0, r) for all multiindices σ, |σ| = 2 we produce the estimate

M2
B(|X2u0|)(x) ≤M2

Br
(|X2u|)(x) + C1

?
B(x0,Cr)

M4
B(|X2u|)(x)dx (2.24)

by (2.19). Having established (2.24), we construct the set D as

D =

{
x ∈ B(x0, r/2) : M2

Br
(|X2u|)(x) ≥ C1

?
B(x0,Cr)

M4
B(|X2u|)(x)dx

}
.

We immediately obtain that if x ∈ D, then we have

M2
B(|X2u0|)(x) ≤ C2

1M
2
Br

(|X2u|)(x) (2.25)

by (2.24). It is known that the quantity
(
M2

B(|X2u0|)(x)
)−δ

is Ap-weight if 2δ ≤ p − 1 by [16,
Lemma 4.1]. This leads to the lower bound for J1

J1 = γ
∑
|σ|=2

∫
B(x0,r)

M2
B(|X2u0|)(x)−δ|Xσu(x)|pdx

≥ C1

∫
B(x0,r)

M2
B(|X2u0|)(x)−δM2

B(|X2u|)(x)pdx

≥ C1

∫
D
M2

Br
(|X2u|)(x)p−δdx

≥ C1

∫
Br/2

M2
Br

(|X2u|)(x)p−δdx −C1

∫
Br/2−D

M2
Br

(|X2u|)(x)p−δdx

≥ C1

∫
Br/2

|X2u|p−δdx −C1rQ

(?
B(x0,2Cr)

|X2u|tdx
)(p−δ)/t

.

(2.26)

The estimate of J2

To estimate J2, we set t =
p+1

2 and t̂ = max
{
t, p − t

(
2−|α|

Q

)
− δ, p − δ − 1

}
and we consider

three cases.
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If t(2 − |α|) < Q, we apply Lemma 2.2 (2.8) to α derivative of u − P, and get

|Xα(u − P)(x)| ≤ C2r2−|α|
(?

B
M2

B(|X2u|)(x)tdx
) 2−|α|

Q

M2
B(|X2u|)(x)1−t 2−|α|

Q ,

We get for x ∈ D2,

r−2+|α|M2
B(|X2u0|)(x)−δ|X2u|p−1|Xα(u − P)|(x)

≤ C(δ)
(?

B
M2

B(|X2u|)(x)tdx
) 2−|α|

Q

M2
B(|X2u|)(x)p−δ−t 2−|α|

Q

≤ C(δ)
(?

B
M2

B(|X2u|)(x)t̂dx
) 2−|α|

Q
t
t̂

M2
B(|X2u|)(x)p−δ−t 2−|α|

Q .

Therefore, we have the estimate for J2

J2 ≤ C(δ)rQ

(?
B
M2

B(|X2u|)(x)t̂dx
) 2−|α|

Q
t
t̂
?

B
M2

B(|X2u|)(x)p−δ−t 2−|α|
Q dx

≤ C(δ)rQ

(?
B
|X2u|(x)t̂dx

)(p−δ)/t̂

.

(2.27)

In case t(2− |α|) = Q, we may take 1 < t̄ < t and define ˆ̄t similarly. We can get (2.27) once again.
If t(2 − |α|) > Q, we apply Lemma 2.2 (2.10) to α derivative of u − P. We get in this case

|Xα(u − P)(x)| ≤ C2r2−|α|
(?

B
M2

B(|X2u|)(x)tdx
) 1

t

≤ C2r2−|α|
(?

B
M2

B(|X2u|)(x)t̂dx
) 1

t̂

.

Therefore, from Hardy-Littlewood maximal theorem we have

J2 ≤ C(δ)rQ

(?
B
M2

B(|X2u|)(x)t̂dx
) 1

t̂
?

B
M2

B(|X2u|)(x)p−δ−1dx

≤ C(δ)rQ

(?
B
|X2u|(x)t̂dx

)(p−δ)/t̂

.

(2.28)

Summing over α, we conclude that

J2 ≤ C(δ)rQ

(?
B
|X2u|(x)t̂dx

)(p−δ)/t̂

(2.29)

by (2.27) and (2.28).
The estimate of J3
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By the definition of the set D and by the Hardy-Littlewood maximal theorem we have

J3 =

∫
D1

M2
B(|X2u0|)(x)1−δ

(
|X2u(x)|p−1 + bσ(x)

)
dx

≤

∫
D1

M2
B(|X2u|)(x)1−δ

(
|X2u(x)|p−1 + bσ(x)

)
dx

≤ δ1−δ
∫

B(x0,2Cr)
|X2u0|

p−δdx +

∫
B(x0,2Cr)

F p−δ
1 dx.

(2.30)

Final estimations
We get

δ L2 ≥ C2

∫
Br/2

|X2u|p−δdx −C2rQ

(?
B(x0,2Cr)

|X2u|tdx
)(p−δ)/t

−C2

∫
B(x0,2Cr)

F p−δ
1 dx −C(δ)rQ

(?
B
M2

B(|X2u|)(x)t̂dx
)(p−δ)/t̂

−C2δ
1−δ

∫
B(x0,2Cr)

|X2u0|
p−δdx

from (2.22), (2.25), (2.28) and (2.30). Therefore, since B(x0, 2Cr) ≈ rQ we can deduce

δr−QL2 ≥ C2

?
Br/2

|X2u|p−δdx −C2

(?
B(x0,2Cr)

|X2u|tdx
)(p−δ)/t

−C2

?
B(x0,2Cr)

F p−δ
1 dx −C2δ

1−δ
?

B(x0,2Cr)
|X2u0|

p−δdx.

Combining the above estimates, we have

δr−QK ≥ C2

?
Br/2

|X2u|p−δdx −C2(η1−δ + δ1−δ)
?

B(x0,2Cr)
|X2u(x)|p−δdx

−

3∑
k=1

?
B(x0,2Cr)

F p−δ
k dx −C2(η1−p + 1)

(?
B(x0,2Cr)

|X2u|tdx
)(p−δ)/t

by (2.18) and (2.21). Applying (2.17) which is the upper bounds of K, we obtain?
Br/2

|X2u|p−δdx ≤ C2

3∑
k=1

?
B(x0,2Cr)

F p−δ
k dx

+ C2(η1−δ + δ1−δ + δ)
?

B(x0,2Cr)
|X2u0|

p−δdx

+ C2(η1−p + 1)
(?

B(x0,2Cr)
|X2u|tdx

)(p−δ)/t

.

Now we take t, 0 < t < p − δ and denote f 1/t = c
∑3

i=1 Fi, q = (p − δ)/t. Applying Lemma 3.7
to |X2u|t, we have proved that the highest horizontal derivatives have the higher integrability.
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If Xσu(x) ∈ Lq(B(x0, 2R), for some q > p and the multiindex σ, |σ| = 2, then the Poincaré
inequality enables us to prove that both Xku and u have the higher integrability. Since u ∈
HW2,p−δ function u and its derivatives Xku are locally integrable. We have

‖Xku‖Lq(B) ≤ C(B, u) + ‖Xku − (Xku)B‖Lq(B)

≤ C(B, u) + C2

n1∑
j=1

‖X2u‖Lq(B) < ∞

for any ball B ⊂ Ω by the Poincaré inequality [36]. Moreover

‖u‖Lq(B) ≤ C1(B, u) + ‖u − uB‖Lq(B)

≤ C1(B, u) + C2

n1∑
j=1

‖X ju‖Lq(B) < ∞.

This completes the proof of Theorem 2.1.

2.2 Hardy Space Estimate for Weak Solutions of Sub-Laplace
Equations

Let {X1, . . . , Xm} be a set of real C∞-smooth vector fields on an open bounded domain Ω ⊂ Rn.
This set satisfies the Hörmander condition if there exists an integer s such that the family of
commutators of the vector fields up to the length s, i.e. the family of vector fields

X1, . . . , Xm, [X j1 , X j1], . . . , [X j1 , [X j2 , [. . . , X js]] . . .], jk = 1, . . . , s,

spans the tangent space TxRn at every point x ∈ Rn.
In [55], the authors define a (quasi)metric ρ on Ω. We say that an absolutely continuous curve

γ : [a, b]→ Rn is admissible, if there exist functions α j : [a, b]→ R, j = 1, . . . , k, such that

γ̇ =

m∑
j=1

α j(t)X j(γ(t)) and
m∑

j=1

α j(t)2 ≤ 1.

The distance ρ(x, y) between points x and y is defined as the infimum of those T > 0 for which
there exists an admissible curve γ : [a, b] → Rn such that γ(0) = x and γ(T ) = y. For x ∈ Ω

and δ > 0, let B(x, δ) = {y ∈ Ω : ρ(x, y) < δ} be the ball centered at x with radius δ with
respect to the metric ρ. In general it does not need to be a metric. When the family of vector
fields X1, . . . , Xk satisfies the Hörmander condition, then ρ is a metric and we say that (Rn, ρ) is
a Carnot-Carathéodory space. The set {X1, . . . , Xm} is often called the horizontal vector fields in
Ω.

It was shown in [55] that these balls satisfy doubling property for Lebesgue measure. More
precisely, for any compact subset K of Ω, there exist positive constants CK and δ′(K) such that
for all δ, 0 < δ < δ′(K) and all x in K

|B(x, 2δ)| ≤ CK |B(x, δ)|, (2.31)
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where | · | denotes the Lebesgue measure. We denote by Cd the best constant of the estimate
(2.31), then the Carnot-Carathéodory space (Rn, ρ) with a Lebesgue measure has the homoge-
neous dimension Q = log2 Cd. We define the local Hardy-Littlewood maximal function

MΩ( f )(x) = sup
0<δ<δ′

1
|B(x, δ)|

∫
B(x,δ)
| f (y)|dy.

It follows from (2.31) that the Hardy-Littlewood maximal function maps Lp(Ω) to Lp(K) for any
K compact subset of Ω and 1 < p < ∞.

Next, we are going to define the Hardy space H1(Ω). Fix a smooth bump function Φ in the
unit ball of the Carnot-Carathéodory space and let Φδ(y) = δ−nΦδ(δ−1y). For any x0 in Ω and
δ > 0 small enough, the push-forward of Φδ by any of the coordinate maps constructed in [55]
gives a smooth bump Φ

x0
δ supported in the ball B(x0, δ). One can check that for any compact

subset K of Ω and for arbitrary x ∈ K∣∣∣Φx0
δ (x)

∣∣∣ ≤ CK |B(x0, δ)|−1 and
∣∣∣Xk(Φ

x0
δ )(x)

∣∣∣ ≤ CKδ
−1|B(x0, δ)|−1, k = 1, . . . ,m, (2.32)

when 0 < δ < δ′′(K), where δ′′ is a small constant such that B(x0, δ
′′) ⊂ Ω.

For a function f on Ω and δ > 0, let

M̃δ( f )(x0) = sup
0<σ<δ

∣∣∣∣∣∫
Ω

f (y)Φx0
σ (y)dy

∣∣∣∣∣ . (2.33)

We say that f lies in H1(Ω) if for any compact subset K of Ω, there exists a δ0(K) > 0 such that
M̃δ0(K)( f )(x) is in L1(K). We define the Hardy space norm of f on K by setting

‖ f ‖H1(Ω) = sup
K⊂Ω

∥∥∥M̃δ0(K)( f )(x)
∥∥∥

L1(K)
. (2.34)

Given a first-order differential operator X = (X1, . . . , Xm), we define the Sobolev space
W1,p(Ω) in the following way:

W1,p(Ω) =
{
u ∈ Lp(Ω) : X ju ∈ Lp(Ω), j = 1, . . . ,m

}
,

where X ju is the distributional derivative. The W1,p-norm ‖ · ‖1,p is defined by

‖u‖1,p = ‖u‖Lp + ‖Xu‖Lp ,

where Xu = (X1u, . . . , Xmu) is the horizontal gradient and its length is given by

|Xu(x)| =

 m∑
k=1

|Xku(x)|2


1
2

.

We denote by X∗j the C∞-smooth vector field which is the formal adjoint to X j in L2, i.e.∫
Ω

f X∗j gdx = −

∫
Ω

gX j f dx for functions f , g ∈ C∞0 (Ω).
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We say that u(x) ∈ W1,p(Ω) is the weak solution of the p-Sub-Laplace equation

m∑
i=1

X∗i
(
|Xu|p−2Xiu

)
= 0,

if u satisfies the following identity

m∑
i=1

∫
Ω

|Xu|p−2XiuXiφdx = 0 (2.35)

for any φ ∈ C∞0 (Ω).
Our result states as follows.

Theorem 2.6. Let u be the weak solution of the p-Sub-Laplace equation (2.35) and Q+1
Q < p <

Q + 1.
(a) If u ∈ W1,q(Ω), Q

Q+1 p < q ≤ p, then we have

‖|Xu|p‖Hγ ≤ C‖u‖p
1,q

where γ =
q
p , Q

Q+1 < γ ≤ 1.

(b) If u ∈ W1,q(Ω), where Q
Q+1 p ≤ q < p then u ∈ W1,p(Ω).

Proof. Let t > 0 and x ∈ Ω, we set Bx = B(x, t) and uBx = |Bx|
−1

∫
Bx

u(y)dy. We find a smooth
function Φx

t such that Φx
t ≥ 0 and Φx

t ≡ 1 on B(x, t/2). We first write

Φx
t (y)|Xu(y)|p =

m∑
i=1

Xi(u − uBx)Xiu · |Xu|p−2Φx
t (y). (2.36)

Since

m∑
i=1

Xi
[
(u − uBx)Φ

x
t (y)

]
Xiu · |Xu|p−2 =

m∑
i=1

(u − uBx)Xiu · |Xu|p−2XiΦ
x
t (y)

+

m∑
i=1

Xi(u − uBx)Xiu · |Xu|p−2Φx
t (y),

by differentiating of product and from (2.36), we get

Φx
t (y)|Xu(y)|p =

m∑
i=1

Xi
[
(u − uBx)Φ

x
t (y)

]
Xiu · |Xu|p−2

−

m∑
i=1

(u − uBx)Xiu · |Xu|p−2XiΦ
x
t (y).
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It is easy to see that ũ = (u − uBx)Φ
x
t ∈ W1,p(Ω). Thus there exists a sequence φN ∈ C∞0 (Ω) such

that ‖φN − ũ‖1,q′ → 0 where q < q′ < p. We have
m∑

i=1

∫
Ω

Xi
[
(u − uBx)Φ

x
t (y)

]
Xiu · |Xu|p−2dy =

m∑
i=1

∫
Ω

Xi (ũ − φN) Xiu · |Xu|p−2dy

≤ ‖Xu‖p−1
Lq ‖X(φN − ũ)‖q′ → 0.

Therefore, we obtain∫
Ω

Φx
t (y)|Xu(y)|pdy = −

m∑
i=1

∫
Ω

(u − uBx)Xiu · |Xu|p−2XiΦ
x
t (y)dy.

From (2.32), we get∣∣∣∣∣∫
Ω

Φx
t (y)|Xu(y)|pdy

∣∣∣∣∣ ≤ m∑
i=1

?
Bx

t−1|u − uBx ||Xiu| · |Xu|p−2dy.

Remind the Poincaré inequality on the Carnot-Carathéodory space [48]:(?
Bx

|u(x) −
?

Bx

udy|sdx
) 1

s

≤ Ct
m∑

i=1

(?
2Bx

|Xiu|rdx
) 1

r

for 1
Q < 1

r < 1, 1
r −

1
Q ≤

1
s ≤ 1. It follows that∣∣∣∣∣∫

Ω

Φx
t (y)|Xu(y)|pdy

∣∣∣∣∣ ≤ C
m∑

i=1

m∑
j=1

(?
2Bx

|X ju|rdx
) 1

r
(?

Bx

(
|Xiu| · |Xu|p−2

)s′
dx

) 1
s′

where 1
r = 1

Q + 1
s .

Since |Xiu| ≤ |Xu| for r =
Qp

Q+1 we have∫
B(x,t/2)

|Xu(y)|pdy ≤
∣∣∣∣∣∫

Ω

Φx
t (y)|Xu(y)|pdy

∣∣∣∣∣ ≤ C(n,Φ)
(?

Bx

|Xu|
Qp

Q+1 dx
) Q+1

Q

.

This proves part (b), and moreover,

sup
t>0

∣∣∣∣∣∫
Ω

Φx
t (y)|Xu(y)|pdy

∣∣∣∣∣ ≤ C(n,Φ)
[
MΩ|Xu|

Qp
Q+1 (x)

] Q+1
Q
. (2.37)

Therefore, we can get the Hardy space estimate as follows:

‖|Xu|p‖Hγ = C(n,Φ)
∥∥∥∥MΩ|Xu|

Qp
Q+1 (x)

∥∥∥∥ Q+1
Q

L
γ

Q+1
Q

≤ C(n,Φ)
∥∥∥∥|Xu|

Qp
Q+1 (x)

∥∥∥∥ Q+1
Q

L
γ

Q+1
Q

= C(n,Φ) ‖Xu(x)‖p
Lγp ≤ C(n,Φ) ‖u‖p

1,q ,

by boundedness of the Hardy-Littlewood maximal function. This finishes the proof of (a). �
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Remark 2.7. Notice that if u ∈ W1,p(Ω) then for any compact set K ⊂ Ω we have∫
K
|Xu|plog+

|Xu|dx < +∞.

This means that if the horizontal gradient Xu of a solution u belongs to Lp(Ω), then it has lo-
cally higher integrability Lplog+L(Ω). In fact, the author in [16, Theorem 1.2] actually proved a
stronger result that if u ∈ W1,p(Ω) then u ∈ W1,p+ε(Ω) for some ε > 0. Combining this result with
Theorem 2.6 (b), we come to the following proposition:

Proposition 2.8. If u is a weak solution of (2.35) and u ∈ W1,q(Ω), where Q
Q+1 p ≤ q < p, then

u ∈ W1,p+ε(Ω).

Remark 2.9. From the estimate (2.37), we have∣∣∣∣∣∣
{

x ∈ Rn : sup
t>0

∣∣∣∣∣∫
Ω

Φx
t (y)|Xu(y)|pdy

∣∣∣∣∣ > λ}
∣∣∣∣∣∣ ≤

∣∣∣∣∣∣
x ∈ Rn :

[
MΩ|Xu|

Qp
Q+1 (x)

] Q+1
Q
> C(n,Φ)λ


∣∣∣∣∣∣

≤ C(n,Φ)λ−
Q

Q+1 ‖Xu(x)‖qLq

for the end point case with γ =
Q

Q+1 . We conclude that |Xu|p belongs to the weak type Hardy

space H
Q

Q+1 , which was introduced by Grafakos [20] and

‖|Xu|p‖
weak−H

Q
Q+1
≤ C‖u‖p

1,q.

Remark 2.10. If we restrict the Carnot-Carathéodory space to the Heisenberg group, then from
the arguments in [22], we state without proof the following compactness result:

Proposition 2.11. Let uk be solutions of (2.35) and ‖uk‖1,p ≤ C for k ≥ 1. Then there exists some
subsequence uk j of uk such that |Xuk j |

p converges ∗-weakly in H1. Moreover if Xuk → Xu a.e. for
some u, then |Xuk|

p → |Xu|p converges ∗-weakly in H1.

Remark 2.12. Let uk be solutions of (2.35). We set

P = {q > 0: q < p and u ∈ W1,q(Ω) implies u ∈ W1,p(Ω)}.

It is of interest to know whether q =
Qp

Q+1 is the best lower bounds of the set P? In other words, is
it possible that the set P is an open set? If the answer is affirmative, the integrability property of
the solution of (2.35) is open-ended. Keith and Zhong [38] proved that the (1, r)-type Poincaré
inequality is open-ended. The proof of part (b) of Theorem 2.6 shows the investigation of open-
ended property for the Poincaré inequality in general case is rather important. For the definition
of open-ended property see Subsection 3.4.



Chapter 3

Self-Improving Regularity for Very Weak
Solutions of Degenerate Elliptic Systems

In this chapter, we consider degenerate elliptic systems in Euclidean space Rn. We aim to find a
result analogous to a result from [44] for degenerate elliptic equations. In comparison with [29,
Lemma 3.38, Theorem 3.58] our result reveals some new aspects of a measure µ defined by
Ap-weight.

Let (Rn, µ) be a measure space, where dµ = ω(x)dx and ω(x) is Ap-weight for some p ≥ 1.

i.e. 1
|Q|

∫
Q
ω

(
1
|Q|

∫
Q
ω1−p′

)p−1
≤ c, where Q is an arbitrary cube in Rn. Let m be an integer number

such that m ≥ 1. Denote P =
∏

0≤|I|≤m RN and Dmu = (u, ∂xu, · · · , ∂σx u) for all |σ| = m. Let Ω be
a bounded domain in Rn, A = (Aσ): Ω × P → RN be a function such that Aσ(·,Dmu(x)), x ∈ Ω,
is a measurable function on Ω satisfying the following conditions:∑

|σ|=m

Aσ(x,Dmu(x)) · ∂σx u(x) ≥ γω(x)|∂mu|p a.e. in Ω (3.1)

and
|Aσ(x,Dmu(x))| ≤ ω(x)|∂σx u(x)|p−1 a.e. in Ω, (3.2)

where |σ| ≤ m. We set H1,p(Ω, µ) to be the weighted Sobolev space defined in [29]. Similarly,
we introduce the definition of the higher order weighted Sobolev spaces.

Definition 3.1. For a function ϕ ∈ C∞(Ω) we let

‖ϕ‖m,p =

m∑
|σ|=0

(∫
Ω

|∂σϕ(x)|pω(x)dx
)1/p

.

The weighted Sobolev space Hm,p(Ω, µ) is defined to be the completion of{
ϕ ∈ C∞(Ω) : ‖ϕ‖m,p < ∞

}
.

In other words, a function u ∈ Hm,p(Ω, µ) if and only if u ∈ Lp(Ω, µ) and there are functions vσ,
such that for some sequence ϕi ∈ C∞(Ω) we have convergence∫

Ω

|ϕi − u|pω(x)dx→ 0
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and ∫
Ω

|∂σxϕi − vσ|pω(x)dx→ 0

as i→ 0. The function vσ is called σ-th derivative of u in Hm,p(Ω).

We say that a function u ∈ Hm,q(Ω, µ) is a weak solution of

m∑
|σ|=0

(−1)|σ|∂σx Aσ(x,Dmu(x)) = 0

on an open set Ω if q = p and

m∑
|σ|=0

∫
Ω

Aσ(x,Dmu(x))∂σxφdx = 0 (3.3)

for any test function φ = (φ1, · · · , φN) ∈ C∞0 (Ω). We say that u ∈ Hm,q(Ω, µ) is the very weak
solution if (3.3) holds and q < p.

Definition 3.2. For the locally integrable function u denote by ∂̃σx u the σ-th weak derivatives;
that is ∫

Ω

φ∂̃σx udx = (−1)|σ|
∫

Ω

u∂σxφdx

for any φ ∈ C∞0 (Ω). We say that u ∈ Wm,p(Ω, µ) if ∂̃σx u ∈ Lp(Ω, µ) for all |σ| ≤ m.

Observe that we have the identity ∂̃x ◦ ∂̃x = ∂̃2
x due to∫

Ω

φ∂̃x(∂̃xu)dx = −

∫
Ω

∂̃xu∂xφdx =

∫
Ω

φ∂̃2
xudx,

and moreover, we have the semigroup property

∂̃σx ◦ ∂̃
γ
x = ∂̃σ+γ

x (3.4)

for any multiindeces σ and γ.
In this chapter we follow the approach, developed in [44], to obtain a self-improving integra-

bility result for degenerate systems in the weighted space. Our principal result states as follows.

Theorem 3.3. Let Ω be a bounded domain in Ω, p > 1, and ω(x) is Ap-weight. Assume that
u ∈ Hm,r

loc (Ω, µ) and Aσ satisfies (3.56)-(3.3). Then there exists δ = δ(n,N, γ, p, [ω]Ap) > 0 such
that if r = p − δ, then u ∈ Hm,p+δ

loc (Ω, µ).

We postpone the proof of Theorem 3.3 to Section 3.4 and start from some auxiliary results.
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3.1 Preliminary Lemmas
For ω(x) ∈ Ap, there exists a p0 < p such that ω(x) ∈ Ap0 (see for example [29, 25]). We set
q0 = q0([ω]Ap) = inf{p0 : ω ∈ Ap0 , 1 < p0 < p} and fix a positive number q0 < q < p.

It is important to introduce another weighted Sobolev space Wm,p(Ω, ω) as follows.

Definition 3.4. For the locally integrable function u denote by ∂̃σx u the σ-th weak derivatives;
that is

∫
Ω
φ∂̃σx udx = (−1)|σ|

∫
Ω

u∂σxφdx for any φ ∈ C∞0 (Ω). We say that u ∈ Wm,p(Ω, ω) if
∂̃σx u ∈ Lp(Ω, ω) for all |σ| ≤ m.

The author of [39] shows that Hm,p(Ω, ω) = Wm,p(Ω, ω) for m = 1. His arguments also can
be successfully applied for m ≥ 2. We sketch the proof of this lemma for the completeness.

Lemma 3.5. [39] Hm,p(Ω, ω) = Wm,p(Ω, ω).

Proof. We divide the proof into three steps.
Step 1. Let η(x) ∈ C∞0 (Ω), η(x) = η1(|x|) and

∫
Rn η(x) = 1, where η1(r) is a decreasing function.

If ω is Ap-weight and f ∈ Lp(Rn, ω), then η j ∗ f → f in Lp(Rn, ω).
Step 2. We show that Hm,p(Ω, ω) ⊂ Wm,p(Ω, ω). If D ⊂ Rn is a bounded domain recalling the
embedding property [39]

Lp(D, ω) ⊂ Lp/q0(D). (3.5)

So, for any u ∈ Hm,p(Rn, ω), we have u ∈ Hm,p/q0(D, dx) whenever D is a bounded open subset
of Ω. Moreover, any σ-th derivative of u that is in Hm,p(Ω, ω) is also the σ-th weak derivative.

Since this assertion is true for m = 1, we prove the assertion for higher order derivatives by
induction. If we have Hm−1,p(Ω, ω) ⊂ Wm−1,p(Ω, ω) and m ≥ 2, since u ∈ Hm,p(Ω, ω), there exists
ϕ j ∈ C∞0 (Ω), and ∂σxϕ j → ∂̃σx u in Lp(Ω, ω) with 0 ≤ |σ| ≤ m−1 and ∂τxϕ j → vτ where |τ| = m. We
set ek be the multiindex with k-th component 1 and 0 elsewhere. For any multiindex |σ| = m− 1,
from Definition 3.4 we can verify that ∂̃σ+ek

x u(x) = ∂̃xk(∂̃
σ
x u)(x). We take ψ ∈ C∞0 (Ω) and from

(3.5),∣∣∣∣∣∫
Ω

∂̃σx u∂xkψ − (−1)vσ+ekψdx
∣∣∣∣∣ ≤ max |Dψ|

(∫
Ω

|̃∂σx u − ∂σxϕ j|dx +

∫
Ω

|vσ+ek − ∂
σ+ek
x ϕ j|dx

)
→ 0 as j→ ∞.

It follows that ∂̃σ+ek
x u(x) = vσ+ek ∈ Lp(Ω, ω). This completes the proof of Step 2.

Step 3. We aim to show the inclusion Wm,p(Ω, ω) ⊂ Hm,p(Ω, ω). Let u ∈ Wm,p(Ω, ω) and D
be a bounded domain in Ω. It suffices to prove u ∈ Hm,p(D, ω), see [29, 1.15]. Since u j =

η j ∗ u ∈ C∞(Rn) and ∂σx u j = η j ∗ ∂̃
σ
x u(x) [64, Lemma 2.13], we have ‖u j − u‖m,p,ω → 0. Therefore,

u ∈ Hm,p(Ω, ω). �

Let (Rn, d, µ) be the metric space with doubling measure. Let f be a locally integrable func-
tion on this measure space. We introduce arbitrary maximal function with respect to the measure
µ which is defined by

M̃µ( f )(x) = sup
x∈Q

1
µ(Q)

∫
Q
| f |dµ,
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where the supremum is taken over all cubes Q ⊂ Rn containing x. We define the centered
maximal function

Mµ( f )(x) = sup
δ>0

1
µ(B(x, δ))

∫
B(x,δ)
| f |dµ

where B(x, δ) = {y ∈ Rn : d(x, y) < δ}. We start from the observation that, the doubling
condition of the measure µ implies the inequality Mµ( f )(x) ≤ CM̃µ( f )(x) for some constant
C > 0. We choose an arbitrary cube Q, containing x. Let r = 2

√
nl(Q) and Q′ = 100

√
nQ,

where l(Q) is the length of the edge of the cube Q. Then Q ⊂ B(x, r) ⊂ Q′ and therefore
µ(B(x, r)) ≤ µ(Q′) ≤ Cµ(Q). So we have

1
µ(Q)

∫
Q
| f |dµ ≤ C

1
µ(B(x, r))

∫
B(x,r)
| f |dµ ≤ CMµ( f )(x)

and, consequently, we know that these two maximal functions are pointwise comparable

C′Mµ( f )(x) ≤ M̃µ( f )(x) ≤ CMµ( f )(x). (3.6)

From Vitali lemma and Marcinkiewicz interpolation theorem, we have the following lemma

Lemma 3.6. [61] (1) If f ∈ L1(Rn, µ), then for every λ > 0,

µ{x : Mµ( f ) > λ} ≤
c
λ

∫
Rn
| f (y)|dµ(y)

(2) If f ∈ Lp(Rn, µ), 1 < p ≤ ∞, then Mµ( f ) ∈ Lp(Rn, µ) and∥∥∥Mµ( f )
∥∥∥

Lp(Rn,µ)
≤ Cp‖ f ‖Lp(Rn,µ)

where the bound Cp depends only on c, n and p.

More specifically, for dµ = ω(x)dx and d(x, y) is the Euclidean metric |x − y|, we define a
localized maximal operator with respect to any fixed subset B ⊂ Rn, MB( f )(x) = Mµ( fχB)(x),
where χB is the characteristic function of B. We let Mk

B( f )(x) to be the k times composition
operator of MB on f . That is if Mk−1

B ( f )(x) is defined, then

Mk
B( f )(x) = sup

r>0

1
ω(B(x, r))

∫
B(x,r)

Mk−1
B ( f )(y)χB(y)ω(y)dy

is defined inductively for k ≥ 2. We write

MB( f ) = sup
r>0

1
|B(x, r)|

∫
B(x,r)
| f |χBdy

be the classical Hardy-Littlewood maximal function. Since ω(x) ∈ Aq, we get(∫
B
ω(x)1/(1−q)dx

)q−1

≤ C
|B|q∫

B
ω(x)dx

≈ C
rnq

ω(B)
. (3.7)
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We can deduce the following estimate

1
|B(x, r)|

∫
B(x,r)
| f |χBdy ≤

1
|B(x, r)|

(∫
B(x,r)
| f |qχBω(y)dy

)1/q (∫
B
ω(y)−q/(q−1)ω(y)dy

)1−1/q

≤ MB(| f |q)(x)1/q.

(3.8)

Note that from (3.8) we actually proved

Mk
B( f )(x) ≤ Mk

B(| f |q)(x)1/q (3.9)

for k ≥ 1 and any locally integrable function f .
To simplify the notation, we write

>
B

f (x)ω(x)dx to be 1
ω(B)

∫
B

f (x)ω(x)dx and ∂σu to be theσ-
th derivative of u when u ∈ Hm,p(Ω, ω). We shall use a theorem of Gehring in doubling measure
space [16]. It is also worth to mention that Martin and Milman [50] extended the Gehring’s
lemma for non-doubling measures.

Lemma 3.7. [50, 16] Let q ∈ [q0, 2n], where q0 > 1. Assume that functions f , g, defined on
(Rn, ω), are nonnegative and g ∈ Lq

loc(R
n, ω), f ∈ Lr0

loc(R
n, ω) for some r0 > q. If there exist

nonnegative constants b > 1 and θ such that for every ball B ⊂ βB ⊂ Rn, β > 1, the following
estimate holds?

B
gqω(x)dx ≤ b

[(?
βB

gω(x)dx
)q

+

?
βB

f qω(x)dx
]

+ θ

?
βB

gqω(x)dx,

then there exist nonnegative constants θ0 and ε0, θ0 = θ0(q0,Q,Cd, β) and ε0 = ε0(b, q0,Q,Cd, β)
such that if 0 < θ < θ0 then g ∈ Lp

loc(R
n, ω) for p ∈ [q, q + ε0) and moreover(?

B
gpω(x)dx

)1/p

≤ C
(?

βB
gqω(x)dx

)q

+

(?
βB

f pω(x)dx
)1/p

for C = C(b, q0,Q,Cd, β).

3.2 Weighted Pointwise Sobolev Inequality
The following lemma extends [44, Lemma 2.1] to the case of the weighted Sobolev space.

Lemma 3.8. Let l > 0 be an integer, r > 0, x0 ∈ Ω, and B = B(x0, r) ⊂ Ω. If u ∈ W l,p(B, ω),∫
B
∂αu dx = 0 for 0 ≤ |α| ≤ l − 1, and x ∈ B, then there exists C1(n, l, p) > 0 such that

|u(x)| ≤ C1rlMl
B(|∂lu|q)(x)

1
q a. e. in B (3.10)

Moreover, if q ≤ s ≤ p, and ls < nq, then there exists C2(n, l, p) > 0 such that

|u(x)| ≤ C2rl

(?
B

Ml
B(|∂lu|q)(x)

s
qω(x)dx

) l
nq

Ml
B(|∂lu|q)(x)

s
qs∗ a. e. in B (3.11)
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(?
B
|u(x)|s

∗

ω(x)dx
) 1

s∗

≤ C2rl

(?
B

Ml
B(|∂lu|q)(x)

s
qω(x)dx

) 1
s

(3.12)

where s∗ =
nqs

nq−ls . Furthermore, if ls > nq, then

|u(x)| ≤ Ĉ2rl

(?
B

Ml
B(|∂lu|q)s/qω(x)dx

)1/s

a. e. in B (3.13)

where Ĉ2 = Ĉ2(n, l, s).

Proof. Recalling the embedding property (3.5), we conclude that∣∣∣∣∣u(x) −
1
|B|

∫
B

u(y)dy
∣∣∣∣∣ ≤ C(n)

∫
B

|∇u(y)|
|x − y|n−1 dy

≤ CrMB(|∇u|)(x) ≤ CrMB(|∇u|q)(x)1/q a. e. in B

where ∇u = (∂x1u, · · · , ∂xnu) is the distributional derivatives of u. From an iteration argument,
we have

|u(x)| ≤ C1rlMl
B(|∂lu|q)(x)1/q a. e. in B.

Next, making use of arguments from [29, page 306] for q < s < nq, we can write

|u(x)| ≤ C1ηMB(|∇u|)(x)+C2η
(s−nq)/s

(∫
B
|∇u|sω(x)dx

)1/s (∫
B
ω(x)1/(1−q)dx

)(q−1)/s

= I+II. (3.14)

Thus we have

|u(x)| ≤ CMB(|∇u|)(x)(nq−s)/nq

(∫
B
|∇u|sω(x)dx

)1/nq (∫
B
ω(x)1/(1−q)dx

)(q−1)/nq

(3.15)

by taking

η =


(∫

B
|∇u|pω(x)dx

)1/s (∫
B
ω(x)1/(1−q)dx

)(q−1)/s

MB(|∇u|)(x)


s/nq

.

Combining (3.7) with (3.15), we obtain

|u(x)| ≤ CrMB(|∇u|)(x)(nq−s)/nq

(?
B
|∇u|sω(x)dx

)1/nq

≤ CrMB(|∇u|q)(x)(nq−s)/nq2

(?
B

MB(|∇u|q)s/qω(x)dx
)1/nq

.

The last step is followed by the fact |∇u| ≤ MB(|∇u|q)(x)1/q, ω−a. e. in B. As a result, we have
proved (3.11) for the case l = 1. Now, we need only to show (3.11) since the inequality (3.12) is
an immediate consequence of (3.11).
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Applying the induction argument we show that if (3.11) already holds for l − 1, then it also
holds for l. We repeat the arguments above, for x ∈ B and (l − 1)s < ls < nq, observing that
s̄ =

nqs
nq−ls+s > s and s̄ < nq. Replace s̄ by s in (3.14) and get the estimate of I

I = C1ηMB(|∇u|)(x)

≤ Cηrl−1
(?

B
Ml−1

B (|∂lu|q)(x)s/qω(x)dx
)(l−1)/nq

MB(Ml−1
B (|∂lu|q)(·)s/qs̄)(x)

≤ Cηrl−1
(?

B
Ml−1

B (|∂lu|q)(x)s/qω(x)dx
)(l−1)/nq

Ml
B(|∂lu|q)(x)s/qs̄

by (3.11), and the induction hypothesis where the last step is follows from (3.9) and Hölder
inequality. On the other hand, we estimate II as follows:

II = C2η
(s̄−nq)/s̄

(∫
B
|∇u|s̄ω(x)dx

)1/s̄ (∫
B
ω(x)1/(1−q)dx

)(q−1)/s̄

≤ C2ω(B)1/s̄η(s̄−nq)/s̄rl−1
(?

B
Ml−1

B (|∂lu|q)(x)s/qω(x)dx
)1/s (∫

B
ω(x)1/(1−q)dx

)(q−1)/s̄

≤ C2rnq/s̄η(s̄−nq)/s̄rl−1
(?

B
Ml−1

B (|∂lu|q)(x)s/qω(x)dx
)1/s

.

by (3.7) and induction procedure. Choosing

η = r
(?

B
Ml−1

B (|∂lu|q)(x)s/qω(x)dx
)1/nq

Ml
B(|∂lu|q)(x)−s/nq2

,

we get I = II in this case and we obtain

|u(x)| ≤ C2rl

(?
B

Ml
B(|∂lu|q)(x)s/qω(x)dx

)l/nq

Ml
B(|∂lu|q)(x)s/qs∗ ,

that proves (3.11) for the general case. To prove (3.13), observe that (s/q)′ < n/(n − 1), we have∫
{y∈B:|x−y|≤r}

|x − y|(−n+1)(s/q)′dy ≤ C(s, n)rn−(n−1)(s/q)′. Therefore,

|u(x)| ≤ C(n)
∫

B

|∇u(y)|
|x − y|n−1 dy

≤ C(s, n)
(∫
{y∈B:|x−y|≤r}

|∇u(y)|s/qdy
)q/s

rn/(s/q)′−(n−1)

≤ C(s, n)r
(?

B
|∇u(y)|sω(x)dy

)1/s

.

This proves (3.13) for l = 1, and it is easy to prove the general case by induction. This completes
the proof of Lemma 3.8. �
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As an application of Lemma 3.8, we have the following lemma which will be used later. We
fix a q1 > 1 such that q < q1 < p

Lemma 3.9. Let λ > 0. If h ∈ Wm,q1(Ω, ω), supph ⊂ 1
2 B = {x ∈ Ω : |x − x0| < r}, and

F(λ) = E(λ) ∩ B̄ , ∅ where E(λ) =
{
x ∈ Rn : Mm

B (|∂mh|q1)(x)1/q1 ≤ λ
}
,

then h |F(λ) has an extension H to Rn satisfying
(i) H = h on F(λ) and supp H ⊂ B(x0, 4r),
(ii) H ∈ Wm,∞(Rn) with ‖∂σH‖L∞(Rn) ≤ cλrm−|σ|, 0 ≤ |σ| ≤ m,
(iii) |∂σ(H − h)(x)| ≤ cλd(x)m−|σ| a. e. for 0 ≤ |σ| ≤ m − 1, where d(x) denotes the distance

from x to F(λ).

Proof. From (3.5), we know that h ∈ Wm,q1/q0(Ω). Observe that∫
B
∂σhdx = 0 when 0 < |σ| ≤ m,

and, by Lemma 3.8, we have |∂σh(x)| ≤ cλrm−|σ| for any x ∈ F(λ) and 0 < |σ| ≤ m. On the other
hand, ∣∣∣∣∣h(x) −

1
|B|

∫
B

h
∣∣∣∣∣ ≤ crmMm

B (|∂mh|q1)(x)1/q1 a. e. in B. (3.16)

Therefore we can find a point x1 ∈ {
4r
3 < |x−x0| <

3r
2 } such that 3.16 holds for x1. Since h(x1) = 0,

we get

∣∣∣∣∣ 1
|B|

∫
B

h
∣∣∣∣∣ ≤ crmMm

B (|∂mh|q1)(x1)1/q1 ≤ crm

 1
ω(B(x1,

3r
4 ))

∫
B(x0,r)

|h|q1ω(x)dx
1/q1

.

Since ω(B(x0, r)) ≤ ω(B(x1, 5r)) ≤ Cω(B(x1,
3r
4 )), we get∣∣∣∣∣ 1

|B|

∫
B

h
∣∣∣∣∣ ≤ c′rm min

x∈B
M̃m

B (|∂mh|q1)(x1)1/q1 ≤ c′rm min
x∈B

Mm
B (|∂mh|q1)(x1)1/q1

where M̃B is the localized arbitrary maximal function and the last step is followed by (3.6). This
implies |∂σh(x)| ≤ cλrm−|σ| for any x ∈ F(λ) and 0 ≤ |σ| ≤ m. From a similar argument of [44,
Lemma 2.2] and Lemma 3.8, for any z0 ∈ F(λ) and s > 0 we have

|∂σ(u − Qm−1)(y)| ≤ cλsm−|σ| y ∈ F(λ), 0 ≤ |α| ≤ m

where Qm−1 is the Taylor polynomial of degree m−1. So h |F(λ) satisfies the conditions of Whitney
extension theorem. �
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3.3 The Ap weight on metric space with doubling measures
Consideration is given to Ap weight the metric space (Rn, d, µ) with doubling measures. More
specifically, the measure µ satisfies a so-called doubling Db condition which states as follows.

Definition 3.10. [62] We say that µ ∈ Db, if there are a constant k > 0 and a number b > 0 with
the property that for all x ∈ Rn, t ≥ 1 and r > 0 we have

µ(B(x, tr)) ≤ ktbµ(B(x, r)).

We follow the definition of Ap weight on the metric space (Rn, d, µ) which was introduced in
[62, page 4].

Definition 3.11. [62] The Ap(µ) condition for ω with respect to the measure µ, that is

1
µ(B)

∫
B
ωdµ

(
1

µ(B)

∫
B
ω−1/(p−1)dµ

)p−1

< c

for all the ball B ⊂ Rn.

We will also need the following lemma.

Lemma 3.12. [62] Let p > 1. The estimate ‖Mµ( f )‖Lp(v) ≤ Cp‖ f ‖Lp(v) holds for every f ∈ Lp(v)
if and only if v is a weighted measure with respect to µ and the weight ω ∈ Ap(µ).

We are going to prove the following lemma which in analogue with [25, Theorem 9.2.7].

Lemma 3.13. Let f be a locally integrable function on (Rn, µ), 1 ≤ q < p and 0 < δ < p − q.
Then Mµ(| f |q)(x)−δ/q is the Ap/q(µ) weight.

Proof. The proof is divided into several parts.
Step 1. Recalling the Kolmogorov theorem on the measure space [61, page 43]. Let S :
L1(Rn, µ)→ L1,∞(Rn, µ) be a weak-(1, 1) type operator and A is a finite measurable set. Then∫

A
|S ( f )(x)|ε

′

dµ ≤ (1 − ε′)−1‖S ‖ε
′

L1→L1,∞µ(A)1−ε′
(∫

Rn
| f |dµ

)ε′
. (3.17)

for all 0 < ε′ < 1. From Lemma 3.6, we have (3.18) is true when S replaced by Mµ.
Step 2. Let 0 < ε < q. We prove that Mµ(| f |q)(x)ε/q is an A1(µ) weight. The assertion is reduced
to showing that

1
µ(Q)

∫
Q

Mµ(| f |q)(y)ε/qdµ(y) ≤ C(n, ε, q)Mµ(| f |q)(x)ε/q µ a.e. (3.18)

for arbitrary cube Q ⊂ Rn containing x.
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We split the function f (x) = f (x)χ3
√

nQ + f (x)χ(3
√

nQ)c := f1 + f2. On the one hand, we have

1
µ(Q)

∫
Q

Mµ(| f1|
q)(y)ε/qdµ(y) ≤ C(n, ε)

(
1

µ(Q)

∫
Rn
| f1|

qdµ
)ε/q

≤ C(n, ε)
(

1
µ(Q)

∫
3
√

nQ
| f |qdµ

)ε/q
≤ C(n, ε)Mµ(| f |q)(x)ε/q

by (3.17). On the other hand, observe that Mµ(| f2|
q)(y) ≤ CM̃µ(| f2|

q)(x) for any x, y ∈ Q. Com-
bining this estimate and (3.6), we have Mµ(| f2|

q)(y) ≤ CMµ(| f2|
q)(x) ≤ CMµ(| f |q)(x). Therefore,

1
ω(Q)

∫
Q

Mµ(| f2|
q)(y)ε/qω(y)dy ≤ C(n)Mµ(| f |q)(x)ε/q.

This proves (3.18).

Final Step. We show that ξ(x) = Mµ(| f |q)(x)−δ/q is an Ap/q(µ) weight..
Denote by B an arbitrary ball in Rn and obtain

1
µ(B)

∫
B
ξ(x)−

q
p−q dµ =

1
µ(B)

∫
B

Mµ(| f |q)(x)δ/(p−q)dµ

≤ C(n, p, q)Mµ(| f |q)(x)δ/(p−q)

from (3.18). Then we get

ξ(x)
(

1
µ(B)

∫
B
ξ(x)−q/(p−q)dµ

)(p−q)/q

≤ C(n, p, q)

and thus (
1

µ(B)

∫
B
ξ(x)dµ

) (
1

µ(B)

∫
B
ξ(x)−q/(p−q)dµ

)(p−q)/q

≤ C(n, p, q).

This completes the proof. �

Since the Ap weight ω(x) satisfies the Db condition (see, for example [25, page 284]), from
Lemma 3.12 and Lemma 3.13 we get the estimate∫

Ω

MB(|h|q)p/qMB(| f |q)(x)−δ/qω(x)dx ≤ C
∫

Ω

|h|pMB(| f |q)(x)−δ/qω(x)dx, (3.19)

for any function h ∈ Lp(Rn, η(x)dx) where η(x) = MB(| f |q)(x)−δ/qω(x).
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3.4 Proof of Theorem 3.3

Let u, Ω be as in Theorem 3.3. Suppose B(z0,R) is any ball in Ω. We fix a point x0 ∈ B(z0,R/2).
Let 0 < r < R/32 and Br = B(x0, r). There exists a smooth function ϕ ∈ C∞0 (B), where
B = B(x0, 2r), such that ϕ ≡ 1 on B(x0, r), supp ϕ ⊂ B and |∂σϕ(x)| ≤ Cr−|σ|, |σ| ≤ m. There
exists a polynomial P such that

∫
B(x0,8r)

∂I(u−P)dx = 0 for any |I| ≤ m−1. Denote u0 = (u−P)ϕ(x)
and v̄ be the Whitney extension of u0 |F(λ). We assert that (3.3) holds if we substitute φ by v̄; that
is

m∑
|σ|=0

∫
Ω

Aσ(x,Dmu(x)∂σx v̄(x)dx = 0.

In fact, we choose a sequence φi ∈ C∞0 (Ω) such that ‖φi − v̄‖Hm,(p−δ)/(1−δ)(Ω, µ) → 0 as i → ∞.
Therefore∣∣∣∣∣∣∣

m∑
|σ|=0

∫
Ω

Aσ(x,Dmu(x))∂σx v̄(x)dx

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
m∑
|σ|=0

∫
Ω

Aσ(x,Dmu(x))
(
∂σx v̄(x) − ∂σxφi(x)

)
dx

∣∣∣∣∣∣∣
≤

m∑
|σ|=0

∫
Ω

|∂σx u(x)|p−1
∣∣∣∂σx v̄(x) − ∂σx φi(x)

∣∣∣ω(x)dx

≤

m∑
|σ|=0

∥∥∥∂σx u
∥∥∥p−1

Lp−δ(Ω, µ)

∥∥∥∂σx v̄ − ∂σxφi

∥∥∥
L(p−δ)/(1−δ)(Ω, µ)

→ 0.

The last step follows from the Hölder inequality.
We split Ω into two sets Ω = F(λ) ∪ (Ω − F(λ)) and obtain

m∑
|σ|=0

∫
F(λ)

Aσ(x,Dmu(x))∂σx u0(x)dx = −

m∑
|σ|=0

∫
Ω−F(λ)

Aσ(x,Dmu(x))∂σx v(x)dx

≤

m−1∑
|σ|=0

∫
B(x0,8r)−F(λ)

Aσ(x,Dmu(x))∂σx (u0 − v)(x)dx

−

m−1∑
|σ|=0

∫
B(x0,8r)−F(λ)

Aσ(x,Dmu(x))∂σx u0(x)dx

+ cλ
∫

B(x0,8r)−F(λ)
|∂m

x u(x)|p−1ω(x)dx

= J1 + J2 + J3.

(3.20)

We need to verify that F(λ) is a nonempty set. We assert that there exists λ0 > 0 such that
E(λ) = F(λ) for any λ > λ0. Notice that if x ∈ Rn − B(x0, 3r), then

ω(B(x0, 2r)) ≤ ω(B(x, 7r)) ≤ Cω(B(x, r)).
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This implies

Mm
B (|∂m

x u0|
q1)(x) ≤ c

1
ω(B(x0, 4r))

∫
B(x0,4r)

Mm−1
B (|∂m

x u0|
q1)(x)ω(x)dx

≤ c min
B(x0,8r)

Mm
B (|∂m

x u0|
q1)(x).

(3.21)

We denote

λ0 = c
(?

B(x0,4r)
Mm−1

B (|∂m
x u0|

q1)(x)ω(x)dx
)1/q1

,

We find that the assertion is true and F(λ) , ∅ for λ > λ0. Multiplying both sides of (3.20) by
λ−1−δ, integrating on (λ0,∞), and interchanging the order of integration on both sides, we get

δ−1K

= δ−1
m∑
|σ|=0

∫
Rn−F(λ0)

Mm
B (|∂mu0|

q1)(x)−δ/q1 Aσ(x,Dmu(x))∂σx u0(x)dx

+ δ−1λ−δ0

m∑
|σ|=0

∫
F(λ0)

Aσ(x,Dmu(x))∂σx u0(x)dx

≤

3∑
i=1

∫ ∞

λ0

λ−(1+δ)Jidλ =

3∑
i=1

Ki.

(3.22)

If we set

λ′0 = c
(?

B(x0,4r)
|∂m

x u0|
q1(x)ω(x)dx

)1/q1

,

we conclude that λ0 ≥ λ
′
0.

The estimate of K1

Let 0 ≤ l ≤ m − 1. We define the following quantities:

α =
(p − 1)ε

100n(p + ε)2 ,

p̃ = 1 −
(m − l)(1 − α)p

nq1
,

γ1 =

∫
B(z0,

3R
4 )

M2m
B (|∂mu|q1)

n(1−α)
m−l ω(x)dx

 1
q1 |B(z0,

3R
4 )|

ω(B(z0,
3R
4 ))

1
q1


m−l

n

,

γ′1 =

[
1

ω(B(x0, 4r))

∫
B(x0,4r)

|∂m
x u0|

p−δ(x)ω(x)dx
](1−α)/(p−δ)

,

(3.23)
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γ2 =

∫
B(z0,

3R
4 )

M2m
B (|∂mu|q1)

p(1−α)
q1 ω(x)dx

 1
q1 |B(z0,

3R
4 )|

ω(B(z0,
3R
4 ))

1
q1


m−l

n

,

τ1 =

∫
B(z0,

3R
4 )

Mm
B (|∂mu0|

q1)
n(1−α)

m−l ω(x)dx
 1

q1 |B(z0,
3R
4 )|

ω(B(z0,
3R
4 ))

1
q1


m−l

n

,

τ′1 =

[
1

ω(B(x0, 4r))

∫
B(x0,4r)

|∂m
x u|p−δ(x)ω(x)dx

](1−α)/(p−δ)

,

τ2 =

∫
B(z0,

3R
4 )

Mm
B (|∂mu0|

q1)
p(1−α)

q1 ω(x)dx
 1

q1 |B(z0,
3R
4 )|

ω(B(z0,
3R
4 ))

1
q1


m−l

n

.

We can write

∂mu0 =
∑
α+β=m

∂α(u − P)(x)∂βϕ(x)

= ϕ(x)∂m(u − P)(x) +
∑

α+β=m, |α|<m

∂α(u − P)(x)∂βϕ(x)

= ϕ(x)∂mu(x) +
∑

α+β=m, |α|<m

∂α(u − P)(x)∂βϕ(x).

We have

|∂α(u − P)(x)| ≤ Crm−|α|Mm−|α|
B (|∂mu|q)(x)

1
q ≤ Crm−|α|Mm−|α|

B (|∂mu|q1)(x)
1

q1

from (3.10) and by ∂mP = 0. Combining this estimate with the fact that |∂βϕ(x)| ≤ Cr−|β|, we get

|∂α(u − P)(x)∂βϕ(x)| ≤ CMm
B (|∂mu|q1)(x)

1
q1

for all multiindices α and β, 0 ≤ |α| < m, 0 < |β| ≤ m. Since ϕ is a bounded function, we know
that

|∂mu(x)| ≤ CMm
B (|∂mu|q1)(x)

1
q1 . µ − a. e,

see, for example [61]. Therefore,

|∂mu0| ≤ CMm
B (|∂mu|q1)(x)

1
q1 µ − a. e. (3.24)

and

|J1| ≤ cλ
m−1∑
l=0

∫
Rn−E(λ)

|∂mu|p−1dm−l(x)ω(x)dx
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from (3.57). Observe that dm−l(x) ≤ C|B(x0, 8r)− E(λ)|
m−l

n . We fix 0 < t < (p− δ)/q1 and deduce

λdm−l(x) ≤ Cλ1−m−l
n t

∫
B(z0,

3R
4 )

Mm
B (|∂mu0|

q1)
t

q1 dx
m−l

n

≤ Cλ1−m−l
n t


∫

B(z0,
3R
4 )

Mm
B (|∂mu0|

q1)tω(x)dx
 1

q1
∫

B(z0,
3R
4 )
ω(x)−

1
q1−1

 q1−1
q1


m−l

n

≤ Cλ1−m−l
n t

∫
B(z0,

3R
4 )

Mm
B (|∂mu0|

q1)tω(x)dx
 1

q1 |B(z0,
3R
4 )|

ω(B(z0,
3R
4 ))

1
q1


m−l

n

≤ C min{λατ1, λ
p̃τ2} ≤ C min{λαγ1, λ

p̃γ2},

(3.25)

where the last step is followed from (3.24). Using (3.25), we get

|J1| ≤ c
m−1∑
l=0

∫
Rn−E(λ)

|∂mu|p−1 min{λαγ1, λ
p̃γ2}ω(x)dx.

If p ≥ q1n
m−l , then we choose λαγ1 that provides the minimum in (3.25). In this case,

K1 ≤ C
m−1∑
l=0

γ1

∫
B(x0,8r)−E(λ0)

∫ Mm
B (|∂mu0 |

q1 )
1

q1

0
λα−δ−1dλ|∂mu|p−1ω(x)dx

≤ C
m−1∑
l=0

γ1

∫
B(x0,8r)

Mm
B (|∂mu0|

q1)
α−δ
q1 |∂mu|p−1ω(x)dx

≤ C
m−1∑
l=0

γ1

∫
B(x0,8r)

M2m
B (|∂mu|q1)

α−δ
q1 |∂mu|p−1ω(x)dx,

where the last step follows from (3.24). While in the case p < q1n
m−l , the quantity λp̃γ2 should be

taken into account, and thus,

K1 ≤ C
m−1∑
l=0

γ2

∫
B(x0,8r)−E(λ0)

∫ Mm
B (|∂mu0 |

q1 )
1

q1

0
λp̃−δ−1dλ|∂mu|p−1ω(x)dx

≤ C
m−1∑
l=0

γ2

∫
B(x0,8r)

Mm
B (|∂mu0|

q1)
p̃−δ
q1 |∂mu|p−1ω(x)dx

≤ C
m−1∑
l=0

γ2

∫
B(x0,8r)

M2m
B (|∂mu|q1)

p̃−δ
q1 |∂mu|p−1ω(x)dx.

We use arguments similar to [44], and conclude that

K1 ≤

∫
B(x0,8r)

F p−δ
1 ω(x)dx, with F1 ∈ Lp+α′(B(x0, 8r), µ), (3.26)
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provided (p + α′)(p −min{α, p̃} − δ)/(p − δ) < p − δ and thus

δ < min{α, p̃} − α′ + α′min{α, p̃}/p. (3.27)

The estimate of K2

We write

|J2| ≤

m−1∑
l=0

∫
B(x0,8r)−F(λ)

|∂mu|p−1∂l
xu0(x)ω(x)dx

and distinguish several cases. First of all, we assert that

|∂lu0|(x) ≤ C(m, l, s,Ω)λαMm
B (|∂mu0|

q1)(x)(1−α)/q1 . (3.28)

for all the 0 ≤ l ≤ m − 1. If (m − l)q1 > nq, we use inequality (3.11) with s = q1, and from the
fact that q1 > q > 1, Hardy-Littlewood maximal theorem and Hölder inequality, we obtain

|∂lu0|(x) ≤ C2rm−l

(?
B

Mm
B (|∂mu0|

q)(x)
q1
q ω(x)dx

)(m−l)/nq

Mm
B (|∂mu0|

q)(x)(1/q)(1−q1(m−l)/nq)

≤ C2rm−l

(?
B
|∂mu0|(x)q1ω(x)dx

)(m−l)/nq

Mm
B (|∂mu0|

q)(x)(1/q)(1−q1(m−l)/nq)

≤ C2rm−lλ′0
(q1/q)(m−l)/nMm

B (|∂mu0|
q1)(x)(1/q1)−(m−l)/nq

We can take a small 0 < α < 1 < (q1/q)(m − l)/n, from the fact λ′0 < λ0 < Mm
B (|∂mu0|

q1)(x)1/q1

and λ0 ≤ λ, we conclude that

|∂lu0|(x) ≤ C2rm−lλαMm
B (|∂mu0|

q1)(x)(1−α)/q1

≤ C2(m, l, s,Ω)λαMm
B (|∂mu0|

q1)(x)(1−α)/q1 .
(3.29)

If (m − l)q1 = nq, we use Hölder inequality and apply the argument with q1 replaced by q̄1

where q < q̄1 < q1. If (m − l)q1 > nq, we apply (3.13) with s = q1 to conclude that

|∂lu0|(x) ≤ Crm−lλ′0 ≤ Ĉ2(m, l, s,Ω)λαMm
B (|∂mu0|

q1)(x)(1−α)/q1 . (3.30)

This proves the assertion (3.28).
If p − δ > nq

m−l , we assert that

|∂lu0|(x) ≤ C′(m, l, s,Ω)τ′1(l)Mm
B (|∂mu0|

q1)(x)α/q1 . (3.31)

From (3.4), we get

|∂lu0|(x) ≤ Crm−lλ′0

≤ Ĉ2(m, l, s,Ω)
(?

B
|∂mu0|(x)q1ω(x)dx

)(1−α)/q1

Mm
B (|∂mu0|

q1)(x)α/q1

≤ Ĉ2(m, l, s,Ω)γ′1(l)Mm
B (|∂mu0|

q1)(x)α/q1

≤ Ĉ2(m, l, s,Ω)τ′1(l)Mm
B (|∂mu0|

q1)(x)α/q1 ,



60 Self-Improving Regularity for Very Weak Solutions of Degenerate Elliptic Systems

which implies that (3.31) is true for the case (m − l)q1 > nq. In case (m − l)q1 ≤ nq, we can
choose q < s < nq/(m − l) < p − δ so that (m − l)s/nq = 1 − α. We apply Lemma 3.8 (3.11) to
the l derivative of u0, from Hardy-Littlewood maximal theorem, we have

|∂lu0|(x) ≤ C2rm−l

(?
B

Mm
B (|∂mu0|

q)(x)
s
qω(x)dx

)(m−l)/nq

Mm
B (|∂mu0|

q)(x)(1/q)(1−s(m−l)/nq)

≤ C2rm−l

(?
B
|∂mu0|(x)sω(x)dx

)(m−l)/nq

Mm
B (|∂mu0|

q)(x)α/q

≤ C2(m, l, s,Ω)γ′1Mm
B (|∂mu0|

q)(x)α/q ≤ C2(m, l, s,Ω)τ′1Mm
B (|∂mu0|

q)(x)α/q.

This proves the assertion (3.31). Therefore,

|∂lu0| = |∂
lu0|

α|∂lu0|
1−α ≤ C(l)λατ′1Mm

B (|∂mu0|
q)

α−α2
q (3.32)

from inequalities (3.28) and (3.31) evaluated in the power α and 1 − α, respectively. We proceed
to estimate K2:

|K2| ≤

m−1∑
l=0

C(l)τ′1

∫
B(x0,8r)

|∂mu|p−1

∫ Mm
B (|∂mu0 |

q1 )
1

q1

0
λβ0α−1−δdλ

 Mm
B (|∂mu0|

q1)
α−α2

q1 ω(x)dx

≤

m−1∑
l=0

C(l)τ′1

∫
B(x0,8r)

|∂mu|p−1Mm
B (|∂mu0|

q1)
α−α2−δ

q1 ω(x)dx

≤

m−1∑
l=0

C(l)τ′1

∫
B(x0,8r)

|∂mu|p−1M2m
B (|∂mu|q1)

α−α2−δ
q1 ω(x)dx.

(3.33)

In the case p − δ ≤ nq
m−l , using (3.11) once again, we obtain

|∂lu0| ≤ Crm−lγ2|B(z0, 3R/4)|−
m−l

n Mm
B (|∂mu0|

q1)
1

q1
(1− p(m−l)(1−α)

q1n )

≤ Cγ2Mm
B (|∂mu0|

q1)
1

q1
(1− p(m−l)(1−α)

qn )
= Cγ2Mm

B (|∂mu0|
q1)

p̃
q1 .

(3.34)

We write |∂lu0| = |∂
lu0|

α × |∂lu0|
1−α and get

|∂lu0| ≤ C(n,R)γ1−α
2 λβ0αMm

B (|∂mu0|
q1)

(1−β0/q1)α+(1−α) p̃
q1 (3.35)

from (3.29) and (3.34). We finish to estimate K2 in this case:

|K2| ≤ C
m−1∑
l=0

γ2(l)1−α
∫

B(x0,8r)
|∂mu|p−1

∫ Mm
B (|∂mu0 |

q1 )
1

q1

0
λβ0α−1−δdλ

 Mm
B (|∂mu0|

q1)
(1−β0/q1)α+(1−α) p̃

q1 ω(x)dx

≤ C
m−1∑
l=0

γ2(l)1−α
∫

B(x0,8r)
|∂mu|p−1Mm

B (|∂mu0|
q1)

c2(β0)α−δ+(1−α) p̃
q1 ω(x)dx

≤ C
m−1∑
l=0

γ2(l)1−α
∫

B(x0,8r)
|∂mu|p−1M2m

B (|∂mu|q1)
c2(β0)α−δ+(1−α) p̃

q1 ω(x)dx.

(3.36)
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Combining (3.36) with (3.33) we deduce

K2 ≤

∫
B(x0,8r)

F p−δ
2 ω(x)dx, with F2 ∈ Lp+α′(B(x0, 8r), µ). (3.37)

by the Muckenhaupt theorem, provided

(p + α′)(p −min{c2(β0)α + (1 − α)p̃, c1(β0)α − α2} − δ)/(p − δ) < p − δ

and thus

δ < min{c2(β0)α+(1−α) p̃, c1(β0)α−α2}−α′+α′min{c2(β0)α+(1−α)p̃, c1(β0)α−α2}/p. (3.38)

The upper bound of K
Since we have

K3 ≤ C
∫

B(x0,8r)
|∂mu|p−1Mm

B (|∂mu0|
q1)

1−δ
q1 ω(x)dx

≤ C
∫

B(x0,8r)
|∂mu|p−1M2m

B (|∂mu|q1)
1−δ
q1 ω(x)dx

≤ C
∫

B(x0,8r)
M2m

B (|∂mu|q1)
p−δ
q1 ω(x)dx ≤ C

∫
B(x0,8r)

|∂mu|p−δω(x)dx,

where the last step follows from the Muckenhaupt theorem under the condition q1 < p − δ. We
conclude that

K ≤ δ
∫

B(x0,8r)
F p−δ

3 ω(x)dx + δ

∫
B(x0,8r)

|∂mu|p−δω(x)dx,

with F3 ∈ Lp+α′(B(x0, 8r), µ).
(3.39)

The lower bounds of K
Since supp u0 ⊂ B(x0, 2r), we can write

K =

m∑
|σ|=0

∫
Rn−F(λ0)

Mm
B (|∂mu0|

q1)(x)−δ/q1 Aσ(x,Dmu(x))∂σx u0(x)dx

+ λ−δ0

m∑
|σ|=0

∫
F(λ0)

Aσ(x,Dmu(x))∂σx u0(x)dx

≥
∑
|σ|=m

∫
B(x0,2r)

Mm
B (|∂mu0|

q1)(x)−δ/q1 Aσ(x,Dmu(x))∂σx u0(x)dx

− c
m−1∑
|σ|=0

∫
B(x0,2r)

Mm
B (|∂mu0|

q1)(x)−δ/q1 |∂mu|p−1|∂σx u0(x)|ω(x)dx

− c
∫

E(λ0)
Mm

B (|∂mu0|
q1)(x)−δ/q1 |∂mu|p−1|∂mu0(x)|ω(x)dx

= L1 − L2 − L3.

(3.40)
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We start from estimates of L2 and L3.
The estimate of L2

Following the same method we used above, we obtain that

L2 ≤

∫
B(x0,8r)

F p−δ
1 ω(x)dx, with F1 ∈ Lp+α′(B(x0, 8r), µ), (3.41)

from (3.4) and (3.34).

The estimate of L3

Suppose 0 < η ≤ 1
2 and split E(λ0) = E1(λ0) ∪ (E(λ0) − E1(λ0)), where

E1(λ0) = {x ∈ E(λ0) : |∂mu| ≥ η−1λ0}.

We have the estimate

L3 ≤

∫
E(λ0)

Mm
B (|∂mu0|

q1)(x)(1−δ)/q1 |∂mu|p−1ω(x)dx.

We also know that
Mm

B (|∂mu0|
q1)(x)1/q1 ≤ λ0 ≤ η |∂

mu|

for any x ∈ E1(λ0). We continue and for |∂mu| ≥ η−1λ0 we get

L3 ≤ η
1−δ

∫
E1(λ0)

|∂mu|p−δω(x)dx. (3.42)

On the other hand, |∂mu| < η−1λ0 for any x ∈ E(λ0) − E1(λ0). Applying (3.21) and (3.24), we get
the pointwise estimate

Mm
B (|∂mu0|

q1)(x)−δ/q1 |∂mu0(x)||∂mu(x)|p−1 ≤ Mm
B (|∂mu0|

q1)(x)(1−δ)/q1η1−pλ
p−1
0

= ηδ−pλ
p−δ
0 ≤ ηδ−p

[
min

B(x0,8r)
Mm

B (|∂m
x u0|

q1)(x)1/q1

]p−δ

.

Since for a fixed t0 such that t0 > q, the following inequalities

min
B(x0,8r)

Mm
B (|∂m

x u0|
q1)(x)1/q1 ≤

(?
B(x0,8r)

Mm
B (|∂m

x u0|
q1)(x)t0/q1ω(x)dx

)1/t0

≤

(?
B(x0,8r)

M2m
B (|∂m

x u|q1χB(x0,8r))(x)t0/q1ω(x)dx
)1/t0

≤

(?
B(x0,8r)

|∂m
x u|t0ω(x)dx

)1/t0

,

hold by the Muckenhaupt theorem, we obtain the estimate

L3 ≤ η
1−δ

∫
B(x0,8r)

|∂mu|p−δω(x)dx + ηδ−pω(x0, 8r)
(?

B(x0,8r)
|∂m

x u|t0ω(x)dx
)1/t0

(3.43)
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from (3.42).
Decomposition of L1

In order to estimate L1, we need to decompose L1 in a more suitable way. Denote by D1 the
set

D1 = {x ∈ B(x0, 2r) − B(x0, r) : Mm
B (|∂mu0|

q1)(x)1/q1 ≤ δ Mm
B (|∂mu|q)(x)1/q1}

and set D2 = B(x0, 2r) − (D1 ∪ B(x0, r)). We get

L1 =
∑
|σ|=m

(∫
B(x0,2r)−D1

+

∫
D1

)
Mm

B (|∂mu0|
q1)(x)−δ/q1 Aσ(x,Dmu(x))∂σu0(x)dx

≥
∑
|σ|=m

∫
B(x0,2r)−D1

Mm
B (|∂mu0|

q1)(x)−δ/q1 Aσ(x,Dmu(x))∂σu0(x)dx

−
∑
|σ|=m

∫
D1

Mm
B (|∂mu0|

q1)(x)−δ/q1 |∂mu0(x)||∂mu(x)|p−1ω(x)dx.

Denote the second term by H3 and decompose the first term into two parts,

L1 ≥
∑
|σ|=m

∫
B(x0,2r)−D1

Mm
B (|∂mu0|

q1)(x)−δ/q1 Aσ(x,Dmu(x)) · ϕ∂σu(x)dx

−
∑
|σ|=m

∫
B(x0,2r)−D1

Mm
B (|∂mu0|

q1)(x)−δ/q1 Aσ(x,Dmu(x)) · (ϕ∂σu(x) − ∂σu0(x))dx − H3

= H1 − H2 − H3.

Consider H1 first. Since B(x0, 2r) = D1 ∪ D2 ∪ B(x0, r), we have the following estimate

H1 =
∑
|σ|=m

∫
B(x0,r)∪D2

Mm
B (|∂mu0|

q1)(x)−δ/q1 Aσ(x,Dmu(x)) · ϕ∂σu(x)dx

≥
∑
|σ|=m

∫
B(x0,r)

Mm
B (|∂mu0|

q1)(x)−δ/q1 Aσ(x,Dmu(x)) · ∂σu(x)dx

≥ γ

∫
B(x0,r)

Mm
B (|∂mu0|

q1)(x)−δ/q1 |∂mu(x)|pω(x)dx := J1

To estimate H2 we use the estimate (3.24) and the equality u0(x) = u(x) on B(x0, r). We
rewrite H2 as follows

H2 =
∑
|σ|=m

∫
B(x0,r)∪D2

Mm
B (|∂mu0|

q1)(x)−δ/q1 Aσ(x,Dmu(x)) · (ϕ∂σu(x) − ∂σu0(x))dx

≤
∑

0≤|α|<m

r−m+|α|

∫
D2

Mm
B (|∂mu0|

q1)(x)−δ/q1 |∂mu(x)|p−1|∂α(u(x) − P(x))|dx.

Denote by J2 the last term of the above inequality. We continue and estimate H3:

H3 =

∫
D1

Mm
B (|∂mu0|

q1)(x)−δ/q1 |∂mu0(x)||∂mu(x)|p−1ω(x)dx

≤

∫
D1

Mm
B (|∂mu0|

q1)(x)(1−δ)/q1 |∂mu(x)|p−1ω(x)dx := J3.
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Then we arrive at the following relation

L1 ≥ J1 − J2 − J3. (3.44)

The estimate of J1

Let Br = B(x0, r). We can write

MB(|∂mu0|
q1)(x)1/q1 = M(|∂mu0χB|

q1)(x)1/q1

≤ M(|∂mu0χBr |
q1)(x)1/q1 + M(|∂mu0χB−Br |

q1)(x)1/q1

≤ MBr (|∂
mu0|

q1)(x)1/q1 +

(?
B(x0,8r)

|∂mu0|
q1ω(x)dx

)1/q1

for any x ∈ B(x0,
r
2 ). Moreover, by the same arguments as (2.24), we have

M2
B(|∂mu0|

q1)(x)1/q1 ≤ M
(
MBr (|∂

mu0|
q1)(x)χB

)1/q1 +

(?
B(x0,8r)

|∂mu0|
q1ω(x)dx

)1/q1

≤ M2
Br

(|∂mu0|
q1)(x)1/q1 +

(?
B(x0,8r)

|MBr (∂
mu0)|q1ω(x)dx

)1/q1

+

(?
B(x0,8r)

|∂mu0|
q1ω(x)dx

)1/q1

≤ M2
Br

(|∂mu0|
q1)(x)1/q1 + c

(?
B(x0,8r)

|MB(∂mu0)|q1ω(x)dx
)1/q1

.

Since ∂mu0(x) = ∂mu(x) on B(x0, r) we get the estimate

Mm
B (|∂mu0|

q1)(x)1/q1 ≤ Mm
Br

(|∂mu|q1)(x)1/q1 + c
(?

B(x0,8r)
M2m

B (|∂mu|)q1ω(x)dx
)1/q1

(3.45)

by induction. Next, we construct the set G:

G =

x ∈ B(x0,
r
2

) : Mm
Br

(|∂mu|q1)(x)1/q1 ≥ C1

(?
B(x0,8r)

M2m
B (|∂mu|q1)ω(x)dx

)1/q1
 .

We see at once that if x ∈ G, then

Mm
B (|∂mu|q1)(x)−δ/q1 ≤ cC1Mm

Br
(|∂mu|q1)(x)1/q1 . (3.46)

It is known from Lemma 3.13 that the quantity Mm
Br

(|∂mu0|
q1)(x)1/q1 is Ap/q1-weight in the measure
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space (Rn, µ) if δ < p − q1. Since t0 > q1, we can find the lower bound for J1:

J1 = γ

∫
B(x0,r)

Mm
B (|∂mu0|

q1)(x)−δ/q1 |∂mu(x)|pω(x)dx

≥ Cγ
∫

B(x0,r)
Mm

B (|∂mu0|
q1)(x)−δ/q1 Mm

Br
(|∂mu|q1χBr )(x)p/q1ω(x)dx

≥ C
∫

G
Mm

Br
(|∂mu|q1)(x)(p−δ)/q1ω(x)dx

= C
∫

Br/2

Mm
Br

(|∂mu|q1)(x)(p−δ)/q1ω(x)dx −C1

∫
Br/2−G

Mm
Br

(|∂mu|q)(x)(p−δ)/q1ω(x)dx

≥ C
∫

Br/2

|∂mu|p−δω(x)dx −C1ω(B(x0, 8r))
(?

B(x0,8r)
Mm

Br
(|∂mu|q1)(x)ω(x)dx

)(p−δ)/q1

≥ C
∫

Br/2

|∂mu|p−δω(x)dx −C1ω(B(x0, 8r))
(?

B(x0,8r)
|∂mu|t0ω(x)dx

)(p−δ)/t0

.

(3.47)

The estimate of J2

To estimate J2, we set t̂ = max
{
q1, p − q1

(
m−l
nq

)
− δ, p − δ − 1

}
and we consider three cases.

If q1(m − l) < nq, we apply Lemma 3.8 (3.11) to the l derivative of u − P with s = q1,

|∂l(u − P)(x)| ≤ C2rm−l

(?
B

Mm
B (|∂mu|q)(x)q1/qω(x)dx

)m−l
nq

Mm
B (|∂mu|q)(x)(1/q)(1−(m−l)q1/nq),

From Hölder inequality and x ∈ D2,

Mm
B (|∂mu0|

q1)(x)−δ/q1 ≤ C(δ)Mm
B (|∂mu|q1)(x)−δ/q1

≤ C(δ)Mm
B (|∂mu|q)(x)−δ/q.

From Hardy-Littlewood maximal theorem, we get

rl−mMm
B (|∂mu|q1)(x)−δ/q1 |∂mu|p−1|∂l(u − P)|(x)

≤ C(δ)
(?

B
Mm

B (|∂mu|q)(x)q1/qω(x)dx
)m−l

nq

Mm
B (|∂mu|q)(x)(1/q)[p−δ−(m−l)q1/nq]

≤ C(δ)
(?

B
Mm

B (|∂mu|q)(x)t̂/qω(x)dx
)q1

m−l
nqt̂

Mm
B (|∂mu|q)(x)(1/q)[p−δ−(m−l)q1/nq].

Therefore, by Hardy-Littlewood maximal theorem, we have the estimate for J2

J2 ≤ C(δ)ω(B)
(?

B
Mm

B (|∂mu|q)(x)t̂/qω(x)dx
)(p−δ)/t̂

≤ C(δ)ω(B)
(?

B
|∂mu|(x)t̂ω(x)dx

)(p−δ)/t̂

.

(3.48)
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In case q1(m − l) = nq, we may take 1 < t̄ < t and define ˆ̄t similarly. We can get (2.27) once
again. If q1(m − l) > nq, we apply Lemma 3.8 (3.13) to l derivative of u − P. We get in this case

|∂l(u − P)(x)| ≤ C2rm−l

(?
B

Mm
B (|∂mu|q)(x)q1/qω(x)dx

) 1
q1

≤ C2rm−l

(?
B

Mm
B (|∂mu|q)(x)t̂/qω(x)dx

) 1
t̂

.

Therefore we have

J2 ≤ C(δ)ω(B)
(?

B
Mm

B (|∂mu|q)(x)t̂/qω(x)dx
) 1

t̂
?

B
Mm

B (|∂mu|q)(x)(p−δ−1)/qω(x)dx

≤ C(δ)ω(B)
(?

B
|∂mu|(x)t̂ω(x)dx

)(p−δ)/t̂

.

(3.49)

Summing over l, we conclude that

J2 ≤ C(δ)ω(B)
(?

B
|∂mu|(x)t̂ω(x)dx

)(p−δ)/t̂

(3.50)

by (3.48) and (3.49).
The estimate of J3

By the definition of the set D1 and by the Hardy-Littlewood maximal theorem we write

J3 =

∫
D1

Mm
B (|∂mu0|

q)(x)(1−δ)/q|∂mu(x)|p−1ω(x)dx

≤ δ1−δ
∫

D1

Mm
B (|∂mu|q)(x)(1−δ)/q|∂mu(x)|p−1ω(x)dx

≤ δ1−δ
∫

B(x0,8r)
|∂mu(x)|p−δω(x)dx.

(3.51)

Final Estimations
The estimations (3.47)-(3.51) imply?

B(x0,r/2)
|∂mu|p−δω(x)dx ≤ Cω(B(x0, 8r))−1L2 +

?
B(x0,8r)

F p−δ
4 ω(x)dx

+ cδ1−δ
?

B(x0,8r)
|∂mu|p−δω(x)dx + c

(?
B(x0,8r)

|∂mu|t0ω(x)dx
)(p−δ)/t0

+ C(δ)
(?

B
|∂mu|(x)t̂dx

)(p−δ)/t̂

.

(3.52)

On the other hand, since K = L1 − L2 − L3, it follows from (3.51), (3.42) and (3.43) that?
B(x0,r/2)

|∂mu|p−δω(x)dx ≤ cω(B(x0, 8r))−1K +

?
B(x0,8r)

(F p−δ
1 + F p−δ

4 )ω(x)dx

+ c(δ1−δ + η1−δ)
?

B(x0,8r)
|∂mu|p−δω(x)dx

+ cηδ−p

(?
B(x0,8r)

|∂mu|t0ω(x)dx
)(p−δ)/t0

.

(3.53)
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Combining (3.53) with (3.39), we get?
B(x0,r/2)

|∂mu|p−δω(x)dx ≤
?

B(x0,8r)
F p−δω(x)dx

+ c(δ1−δ + η1−δ)
?

B(x0,8r)
|∂mu|p−δω(x)dx

+ cηδ−p

(?
B(x0,8r)

|∂mu|t0ω(x)dx
)(p−δ)/t0

,

(3.54)

where F p−δ =
∑

F p−δ
i . We take the quantity c(δ1−δ + η1−δ) in (3.54) to be sufficiently small, for

instance, less than 1/2. This leads to?
B(x0,r/2)

|∂mu|p−δω(x)dx ≤
?

B(x0,8r)
F p−δω(x)dx

+
1
2

?
B(x0,8r)

|∂mu|p−δω(x)dx + C0

(?
B(x0,8r)

|∂mu|t0ω(x)dx
)(p−δ)/t0 (3.55)

for some large C0 > 0.
In view of (3.55), we can use Lemma 3.7 by letting g = |∂mu|t0 , f = F t0 and θ = 1

2 . We apply
Theorem 3.3 for the value of δ satisfying (3.27), (3.38) and δ < p − q.

Remark 3.14. In the Euclidean case, [44] is the classical paper regarding the very weak solutions
of elliptic systems. But there is a mistake in that paper. From Sobolev inequality, we should
restrict s ≥ 1, but in the page 1528 of that paper, s may be less than 1 when we set s = αn

m−l .
The Lemma 2.2 (2.10), Lemma 3.8 (3.13), estimates of J2 in chapter 2, estimates of K2 and J2 in
chapter 3 were suggested by Lewis [45], these modifications are very efficient to overcome these
difficulties in the estimates of the lower order terms. In fact, the E(λ) in [44] should be defined
by

E(λ) =
{
x ∈ Rn : Mm(|∂mu|t)(x)1/t ≤ λ

}
where t is fixed and we should take 1 < t < p.

If we modified the techniques of chapter 3, it is not hard to establish the same result for the
elliptic systems in the following more general form:∑

|σ|=m

Aσ(x,Dmu(x)) · ∂σx u(x) ≥ γω(x)|∂mu|p − a(x) a.e. in Ω (3.56)

and

|Aσ(x,Dmu(x))| ≤ ω(x)|∂σx u(x)|p−1 + bσ(x) a.e. in Ω, (3.57)

where a(x) ∈ Lr(Rn, ω) and bσ(x) ∈ Lpσ(Rn, ω). But, as indicated by Lewis [45], we shall write
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the lower bounds of K differently:

K =

∫
B(y0,2r)

Mm
B (|∂mu0|

q1)(x)−δ/q1 < A(x,Dmu(x)) − Â(x,Dmu(x)),Dmu0(x) > dx

≥ c
∫

B(y0,r)
Mm

B (|∂mu0|
q1)(x)−δ/q1 |∂u(x)|pω(x)dx − c

∫
D1

Mm
B (|∂mu0|

q1)(x)(1−δ)/q1 |∂u(x)|p−1ω(x)dx

− c
m−1∑
l=0

rl−m
∫

D2

Mm
B (|∂mu0|

q1)(x)−δ/q1 |∂u(x)|p−1|∂l(u − P)|(x)ω(x)dx

−

∫
B(y0,2r)

a(x)ω(x)dx − c
∫

B(y0,2r)
Mm

B (|∂mu0|
q1)(x)(1−δ)/q1bσ(x)ω(x)dx

= L1 − L2 − L3 − L4 − L5.

Remark 3.15. In the situation when dµ = ω(x)dx is defined by a quasiconformal map, namely
ω(x) = (det D f )1−p/n, where f is a quasiconformal map, one needs to find a different approach to
this problem.

Remark 3.16. We hope that this kind of techniques could shed some light on the study of self-
improving regularity problem of the degenerate elliptic equation with double weight, namely let
Aσ(x,Dmu(x)) be a measurable function satisfies∑

|σ|=m

Aσ(x,Dmu(x)) · ∂σx u(x) ≥ γω1(x)|∂m
x u(x)|p a.e. in Ω (3.58)

and
|Aσ(x,Dmu(x))| ≤ ω2(x)|∂σx u(x)|p−1 a.e. in Ω, (3.59)

where |σ| ≤ m and ω1(x), ω2(x) are two weights. For example, we can assume that (ω1, ω2)
satisfies the following two-weight Muckenhaupt condition:

1
|Q|

∫
Q
ω1(x)dx

(
1
|Q|

∫
Q
ω2(x)1−p′

)p−1

dx ≤ c.

This kind of degenerate elliptic equations was initiated by Chanillo and Wheeden [7].

Remark 3.17. It is an interesting problem to understand whether the main results in [5, 40, 41]
can be extended to the degenerate parabolic systems

∂tu − ω3(x)divA(x,∇u) = 0,

where ω3(x) is an admissible weight and A(x,∇u) satisfies (3.58) and (3.59) for m = 1.
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[47] G. Lu, Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander’s
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