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Abstract  
 

Rapid reorganization of the ocean circulation in the Atlantic Ocean has been linked to widespread 

varations in climate on both millennial and glacial-interglacial timescales. The response of the 

tropical Atlantic upper ocean to such circulation changes, has been investigated in both proxy 

studies and modelling experiments. It is believed that reduction of the thermohaline overturning 

leads to decreased cross-equatorial northward transport of warm surface waters. Consequently, heat 

accumulates in the upper water column of the tropical Atlantic. 

 

In this thesis, temperature variability within the upper water masses of the western tropical Atlantic 

is investigated in six timeslices associated with different modes of overturning circulation. The 

timeslices represent the Last Glacial Maximum, Heinrich event 1, Bølling-Allerød, the Younger 

Dryas and the early and late Holocene. Changes in the thermal stratification of the upper water 

column are inferred from stable oxygen isotope- and Mg/Ca measurements on five species of 

planktonic foraminfera that live vertically dispersed in the upper water masses.  

 

The proxy measurements provide evidence that more heat was stored in western tropical Atlantic 

waters during the Last Glacial Maximum when the thermohaline overturning was reduced. Heat 

was released  in the present interglacial, which is associated with vigorous overturning. 

Concomitant to reductions in the overturning circulation, centred on the deglaciation, possible 

evidence is given that heat accumulated in the upper tropical water masses. However, on this scale, 

the results are not conclusive, and further investigation is needed. 
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1 Introduction 
 

The world ocean plays a fundamental role in the climate system. Due to it's heat capacity and 

circulation, substantial amounts of heat can be stored and redistributed before it is released to 

the atmosphere (Rahmstorf, 2002). The transfer of heat has great impacts on the global 

distribution of climate, and past changes in ocean circulation have been associated with major 

climatic shifts. In the Atlantic Ocean the Atlantic Meridional Overturning Circulation 

(AMOC) moves warm, saline tropical waters northward to the northern North Atlantic. This 

provides a net northward transport of heat from the South Atlantic Ocean (Delworth et al., 

2008). North of Iceland the tropical waters give off heat to the atmosphere, become denser 

and contribute to the formation of cool North Atlantic Deep Water (NADW) which flows 

southward. This latitudinal exchange of water masses maintains the relatively mild climate of 

northwestern Europe, making the region habitable all year around (Rahmstorf, 2002).  

 

For many years the AMOC has been a major research focus because of its climatic relevance. 

Several studies (McManus et al., 2004; Rahmstorf, 2002) have suggested that changes in the 

AMOC are connected to ocean-wide reorganizations in heat transport and climate 

distribution. Abrupt cooling events recorded in Greenland ice cores, have been linked to weak 

meridional overturning and reduced northward heat transport by upper water masses. These 

events have been related to abrupt changes in climate in many parts of the world. Hence, the 

meridional overturning circulation comprises a major uncertainty in the prediction of future 

climate (Rühlemann et al., 2004). 

 

To be able to reliably assess the ocean's vulnerability to future changes and the climatic 

repercussions such changes could have, it is important to improve our understanding of why 

and how the world's general ocean circulation has changed in the past. The tropics have long 

been regarded as a zone of weak environmental variations, and consequently few 

paleoceanographic studies have taken place there. Hence,  the role played by the tropics 

during changes in ocean circulation is not well understood, and, it is important to carry out 

more studies in this region. By reconstructing temperature variations in the upper ocean of the 

tropical Atlantic during key transitions of the AMOC, this thesis will contribute to  improve 
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our understanding of changes in tropical ocean circulation and the connections between 

climate variability at high and low latitudes.  

 

1.1 Project 

 

The present study is part of a collaborative research project within the framework of the 

program EuroMARC, initiated by the European Science Foundation (ESF). The project is 

called “Response of tropical Atlantic surface and intermediate waters to changes in the 

Atlantic meridional overturning circulation” (RETRO). It is a co-operation between the 

University of Bergen, the Bjerknes Centre for Climate Research, the Vrije University of 

Amsterdam, the Universidade Federal Fluminense and the Universidade Federal do Rio de 

Janeiro. The thesis has been supervised by Dr. Trond M. Dokken from the Bjerknes Centre 

for Climate Research in Bergen.  

 

The RETRO project aims to reconstruct variations in tropical Atlantic surface, thermocline, 

intermediate and deep waters through key transitions of the Atlantic Meridional Overturning 

Circulation. The project focuses on three work packages, which aims are: 

 

3. To reconstruct tropical ocean responses during millennial scale changes associated 

with Dansgaard/Oeschger (D/O) events between 60,000 to 30,000 years before 

present (BP). 

4. To investigate large changes in tropical ocean parameters during the transition from 

the last glacial maximum (19-21 kyrs BP) to the present interglacial (11,500 yrs BP). 

5. To detect the amplitude of the typical tropical ocean variability for the recent 

interglacial period (Holocene) between 11,500 years BP and present. 

 

 

1.2 Objective  
 
This thesis contributes to the RETRO project as a preliminary study of the tropical Atlantic 

upper-ocean response to variations in the AMOC during the last 20,000 years. It investigates 

the link between variations in upper-ocean temperature in the tropical Atlantic and abrupt 
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changes in climate  observed in Greenland ice cores. Several modelling studies (Dahl et al., 

2005; Manabe and Stouffer, 1997; Vellinga and Wood, 2002) have shown that freshwater 

induced reductions in the AMOC result in cooling in the North Atlantic and warming in the 

tropics and South Atlantic. The reduction in the strength of the AMOC is believed to have 

lead to weaker northward transport by tropical ocean currents. Hence, less heat is exchanged 

across the equator, and heat is believed to accumulate in the southern hemisphere. Modelling 

studies, as well as proxy reconstructions, concerning variations in ocean temperature and 

ventilation, have related variations in the strength of the AMOC to changes in the thermal 

stratification of the upper tropical Atlantic Ocean. 

 

Manabe and Stouffer (1997)  investigated the response of a coupled ocean-atmosphere model 

to the discharge of freshwater into the northern North Atlantic over a period of 500 years. 

They observed a weakening in the overturning while the surface air temperatures over the 

northern North Atlantic and surrounding continental areas were reduced. As the input of 

freshwater ceased, the AMOC stepped up and regained its original intensity within a few 

hundred years. The climate of the northern North Atlantic and surrounding regions quickly 

resumed its original distribution (1997) .  

 

As the overturning circulation slowed down, the model simulation showed a rise in 

temperature in the upper layers of the Atlantic in low to middle latitudes (Figure 1). The 

largest warming anomalies occurred in the Southern Hemisphere at low latitudes and were 

most pronounced at intermediate water depths between 200 and 1000 m. A maximum 

warming of 3-3.5°C is shown at depths of 300-700 m. The anomalies quickly weaken when 

the AMOC reintensifies (Manabe and Stouffer, 1997). 

 

   

 

Figure 1: Zonal mean temperature 
anomaly (°C) in the Atlantic Ocean 
averaged over the last 401st to 500th year. 
(After Manabe and Stouffer, 1997). The 
temperature anomalies are largest in low 
to middle latitudes in the Southern 
Hemisphere. The blue line indicates the 
approximate latitude of the study area 
(after Tisserand, 2009). 
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This study aims to test the hypothesis that the modelling study by Manabe and Stouffer 

(1997)  show a realistic picture of the tropical response to changes in overturning circulation. 

An attempt to reconstruct past thermal stratification of the upper water column is made for six 

time slices, thought to be associated with different modes of AMOC. The six time slices 

represent the Last Glacial Maximum (LGM), Heinrich event 1 (H1), Bølling-Allerød (B/A), 

the Younger Dryas (YD) and the early and late Holocene. In the periods where the AMOC is 

believed to be  weak, decreased upper ocean stratification is exptected, as heat is assumed to 

accumulate in tropical waters. In contrast, increased stratification of the upper waters is 

expected for periods with strong AMOC, when heat was transported northwards in the cross-

equatorial surface currents. A more detailed review of the hypothesis will be given in Chapter 

6 

 

1.3 Research approach 
 

In order to test the hypothesis, oxygen isotope and Mg/Ca ratios are obtained from five 

species of planktonic foraminfera that live vertically dispersed in the tropical upper ocean. 

The oxygen isotope and Mg/Ca composition of the foraminifera are used as paleotemperature 

proxies to reconstruct variations in temperature at different depths in the upper water column.  

A stratification proxy based on the difference in oxygen isotope and Mg/Ca ratios between 

shallow and deep dwelling species, is used to investigate changes in thermocline depth.   

The foraminfera are sampled from the six mentioned time 

slices in three cores placed along a depth transect on the 

continental margin off North-east Brazil (Figure 2).  

 

This area is directly influenced by the North Brazil 

Current (NBC) (Arz et al., 1998), which is an integrated 

part of the AMOC. Hence, changes in the NBC might be 

Figure 2: Chart of the Atlantic Ocean showing the location 
of the core transect and illustrating the cross-equatorial 
exchange of water masses. Northward-flowing surface and 
intermediate waters are shown by the red arrow, while 
southward-flowing NADW is depicted by the black arrow 
(after Tisserand (2009)). 
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related to global changes in ocean circulation and climate (Arz et al., 1999b). This makes the 

core sites ideal for detecting thermocline variability in response to changes in the AMOC. 

The approach of using samples from three cores is chosen because the data obtained in this 

study will be used in combination with paleotemperature data from benthic species in the 

same timeslice samples. With the benthic data, variations in the deepest part of the 

thermocline can be assessed by measuring specimens that lived at different depths. Hence, 

when the data from both planktonic and benthic species are combined, temperature variations 

in large parts of the water column can be assessed. 

 

1.4 Overview of the thesis 
 

In the following sections of Chapter 1 a short «state-of-the-art» is given. The Atlantic 

Meridional Overturning Circulation is explained, as well as it's major climatic impacts. 

Climatic extremes, believed to be associated with  AMOC variability during the last 20,000 

years are then presented. Finally, previous studies of the tropical response to changes in the 

AMOC are examined. Chapter 2 presents the geological and oceanograpic setting of the study 

area. The vertical distribution of water masses, well as the surface circulation are described. 

Furthermore, a short account of the air-sea interaction in the area is given. 

 

In Chapter 3 the foraminiferal species are described, and the proxy methods are discussed.  

Chapter 4 presents the age model used in the study and further explains how the cores were 

correlated using XRF element intensity records of the three cores. In Chapter 5 the oxygen 

isotope- and Mg/Ca measurements are presented, and the quality of the results is assessed. 

Chapter 6 provides a detailed account of the expectations of the study, as given by the 

hypothesis. Subsequently, the results are discussed and the hypothesis is evaluated. Finally, 

conclusions and a future perspective is given in the Chapter 7. 
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1.5 Background and previous work 
 

1.5.1  The Atlantic Meridional Overturning Circulation (AMOC) 

A simplified sketch of the global overturning circulation system is given in Figure 3. This 

circulation pattern is often referred to as the meridional overturning circulation (MOC), and 

the Atlantic branch of the system is called the Atlantic Meridional Overturning Circulation 

(AMOC) (Delworth et al., 2008). The AMOC is a system of vertical and horizontal currents 

with four key features: (1) deep water formation in a few localized areas at high latitudes 

where waters become dense and sink, (2) spreading of deep water away from the source 

regions toward lower latitudes, (3) upwelling processes that transport deep water masses to 

the ocean surface and (4) 

warm surface currents 

feeding the deep water 

formation areas with 

relatively light water, 

closing the circulation 

loop (Kuhlbrodt et al., 

2007; Rahmstorf, 2006).  

 

 

The thermohaline circulation (THC) is a concept related to the MOC, and the two terms are 

often mistaken to be synonymous with each other. The MOC is simply a geographical term 

used to describe the ocean circulation in the meridional-vertical plane, while the term THC 

refers to a driving mechanism behind the flow and is thus not an observational but a physical 

concept (Kuhlbrodt et al., 2007; Rahmstorf, 2006). Rahmstorf (2006) defines the THC as 

«that part of the ocean circulation which is driven by fluxes of heat and freshwater across the 

sea surface and subsequent interior mixing of heat and salt» and stresses the distinction 

between the bouyance-driven thermohaline circulation and wind-driven circulation. The term 

Figure 3:  Simplified representation of the global overturning circulation system. Surface currents are 
shown in red, deep waters in light blue, bottom waters in dark blue and deep water formation sites in 
orange. (after Kuhlbrodt et al., 2007). 
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MOC, however, includes clearly wind-driven parts and does not refer to any particular 

forcing mechanism (Rahmstorf, 2006). The term MOC (or AMOC) will be used consistently 

in this thesis, in order to avoid misunderstandings. 

 

The AMOC consists of 

two main overturning 

cells (Figure 4). In the 

«upper» cell warm, 

saline surface waters 

flow northward in the 

upper 1000 m 

supplying the formation 

of North Atlantic Deep 

Water (NADW) in the 

Nordic and Labrador 

Seas. This deep water 

then flows southward 

across the equator at 

depths of approximately 1500-4500 m. In the «deep» cell Antarctic Bottom Water (AABW) 

flow northward below 4500 m and ascends gradually into the NADW. The upper cell is the 

most important transporter of heat in the Atlantic due to the large difference in temperature 

(~15° C) between the northward-flowing surface waters and the southward-flowing NADW 

(Delworth et al., 2008). The overturning circulation thus results in a northward flux of heat 

from the Tropics and Southern Hemisphere toward the North-Atlantic, where heat is 

transferred to the atmosphere (Delworth et al., 2008; Richardson, 2008). In the North-Atlantic 

the maximum northward heat transport is reported to be about 1 PW (105 W) (Kuhlbrodt et 

al., 2007; Rahmstorf, 2006). 

1.5.2  Climatic impacts of the AMOC and changes in its mode of circulation 

Due to its ability to store and redistribute heat, the Atlantic Meridional Overturning 

Circulation has a profound impact on the distribution of climate. Substantial amounts of heat 

are transported from the South Atlantic and tropical North Atlantic to the subpolar and polar 

North Atlantic (Delworth et al., 2008). Large surface air temperature deviations from the 

zonal mean are found over the main regions of deep water formation, where surface water 

Figure 4: Side view of the circulation in the Atlantic Basin. The blue 
arrows represent the AMOC, while the  colour shading illustrates 
density differences. The waters with the highest density are coloured 
in yellow, while the lowest density waters are blue. The thermocline, 
the region where the temperature gradient is high, is indicated by a 
black line (after Kuhlbrodt et al., 2007). 
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sinks after releasing heat to the atmosphere (Rahmstorf, 2002). Over the northern North 

Atlantic the magnitude of that temperature anomaly is up to 10°C, while the effect of the 

oceanic heat transport decreases in land over the continents (Rahmstorf, 2002). The climatic 

impact is clearly evident in North-western Europe, where winters are relatively mild 

compared to other regions at similar latitudes.  

 

Because of the AMOC's role as a heat distributor in the climate system, variations in its 

strength or pattern have the potential to make significant and rapid changes in climate. 

Extensive evidence for abrupt climate change on various time scales during the last glacial 

period is found in marine and terrestrial climate records in many parts of the world. The 

variations are considered to reflect rapid reorganization of the atmosphere-ocean system. 

According to Broecker et al. (1985) the abrupt changes ensued from rapid shifts in the 

AMOC from one mode of circulation to another. The most widely accepted trigger behind 

these shifts is the release of glacial melt water from either ice-dammed lakes or ice surges. 

Rapid discharge of low-density freshwater into the North Atlantic capped the ocean surface 

water and prevented the formation of deep water The overturning circulation weakened 

rapidly, and the flow of warm water from the subtropical North Atlantic to the subpolar 

Atlantic was greatly reduced. As a consequence the North Atlantic region cooled and climate 

repercussions were widespread (Broecker et al., 1985; Seager and Battisti, 2006). 

 

Paleoceanographic data (e.g. Sarnthein et al., 1994) have shown that three distinct circulation 

modes have prevailed in the Atlantic Ocean (Figure 5): the interstadial mode, the stadial 

mode and the Heinrich mode, or the warm, cold and off mode, respectively. Switches 

between the modes have been rapid, and the climate changes associated with them have been 

abrupt. In the interstadial mode vigorous formation of NADW took place in the Nordic Seas 

as heat was released to the atmosphere, warming Greenland and northern Europe. In the 

stadial mode NADW formed in the subpolar open North-Atlantic (south of Iceland). The deep 

water’s penetration depth was shallower and gave room for Antarctic Bottom Water to flow 

further north. As a result, less heat was provided to heat Greenland and northern Europe 

during stadial times. During Heinrich modes the formation of deep water in the North-

Atlantic was greatly reduced or even shut down, and Antarctic Bottom Water filled the deep 

Atlantic basin. These periods were associated with especially cold climate in the North 

Atlantic. (Alley and Clark, 1999; Rahmstorf, 2002). 
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During the Last Glacial Maximum (LGM) 

(~23-19 kyr B.P) the AMOC was in a 

stadial mode, and although climate was a lot 

cooler than today, the period was 

characterized by relatively low climate 

variability. By contrast, the deglaciation that 

followed (11,5-19 ka B.P.) included several 

large and abrupt climate changes that have 

been attributed to changes in the AMOC. 

The two most pronounced types of climate 

variability during this period were 

Dansgaard-Oeschger (D/O) events and 

Heinrich (H) events (Figure 6). D/O events 

are recorded in Greenland ice-cores as rapid 

warmings by 5-10°C within a few decades 

followed by several centuries of slow 

cooling and then a more rapid drop back to 

cold stadial conditions. The events have an 

approximate spacing of 1500 years (Figure 

6) (Alley and Clark, 1999; Rahmstorf, 

2002).  

Figure 5: Sketch of the three modes of ocean 
circulation that have prevailed during different 
times of the last glacial period. The red line is 
representing North Atlantic overturning, and 
Antarctic Bottom Water is shown by the blue line 
(after Rahmstorf, 2002). 
 

Figure 6: Temperature reconstructions from ocean sediments and δ18O from Greenland ice. The D/O 
events are numbered and the timing of Heinrich events is marked in red. Grey lines at intervals of 
1470 years illustrate the tendency of D/O events to occur with this spacing, or multiples thereof (after 
Rahmstorf, 2002). 

 



10 

Heinrich events occurred mostly in the latter half of the last glacial. They are recognized in 

the North Atlantic sediment record as distinct layers of coarse material (Heinrich, 1988). 

These sediments must have been transported to the ocean by icebergs, and are therefore 

referred to as ice-rafted debris. The Heinrich layers are spaced at intervals of the order of 

10,000 years. The thickness of the layers decrease from several meters in the Labrador Sea to 

a few centimetres in the eastern Atlantic. This suggests that Heinrich events are massive 

episodic iceberg discharges from the Laurentide ice sheet through the Hudson Strait. 

Sediment data relate Heinrich events to the «off» mode of Atlantic Meridional Overturning 

Circulation, by showing that NADW formation ceased or was at least strongly reduced during 

these periods (Rahmstorf, 2002). 

The deglaciation started approximately 19 kyr ago as a result of increased northern summer 

insolation (Alley et al., 2002). A subsequent rise in atmospheric CO2 provided a global 

warming feedback, and the ice sheets started to melt. The melt water induced a reduction  in 

NADW formation, and at about 17.5 ka BP the AMOC switched to the «off» mode of 

Heinrich event 1 (H1) (Figure 1.4). During this event NADW was significantly reduced or 

even shut down (Boyle and Keigwin, 1987; Keigwin and Lehman, 1994; McManus et al., 

2004; Sarnthein et al., 1994). A northward shift in ocean circulation marked the onset of 

Bølling-Allerød at 14.6 ka BP, which represents D/O event 1 (Figure 1.4). During this period 

Greenland warmed abruptly, as the AMOC switched to the interstadial mode (Rahmstorf, 

2002).  

At about 12.9 ka BP this mode of circulation was disrupted as the Younger Dryas period 

began. This period has been associated to the first major retreat of the Laurentide ice sheet, 

during which the route of the melt water discharge switched from the Gulf of Mexico through 

the St. Lawrence spillway to the North Atlantic (Arz et al., 1999b; Rahmstorf, 2002). Hence, 

the melt water was released closer to the formation areas of NADW and could more 

effectively reduce the deep water production (Broecker et al., 1988; Teller, 1990). The YD 

has been called H0, but differ from other H-events because other forcing mechanisms than a 

change in ocean circulation might have been involved. Nevertheless, because of the high melt 

water influx NADW formation was greatly reduced, almost as during H-events (Rahmstorf, 

2002). The YD ended with an abrupt warming that is sometimes called D/O 0. This warming 

marks the end of the last glacial period and the beginning of the Holocene (11,5-0 ka B.P.), 

which is the interglacial period we are currently in. The Holocene has been characterized by 

relative climate stability compared to glacial climate and vigorous NADW formation 
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(Delworth et al., 2008; Rahmstorf, 2002). The only major northern cooling observed in the 

Holocene occurred 8,200 years BP. This event was also a result of a melt water-induced 

reduction in the AMOC (Kleiven et al., 2008).  

 

1.5.3 Response of the tropical Atlantic Ocean to AMOC variability 

 
 
Model results imply that the tropical and extratropical Atlantic are closely connected on 

decadal to glacial-interglacial timescales {Gu, 1997 #200;Bush, 1998 #201}. Variations in 

tropical Atlantic SST and trade winds appear to be tightly linked to ocean-atmospheric 

variability in higher latitudes associated with the AMOC. Paleoceanographic evidence seem 

to confirm this relationship. According to sediment records from the Cariaco Basin off 

Venezuela, changes in the tropical Atlantic Ocean and atmosphere correlate with variations in 

Greenland ice core records since the last glacial period (Hughen et al., 1996; Lea et al., 2003; 

Peterson et al., 2000). The records reveal that southward shifts of the Intertropical 

Convergence Zone (ITCZ) and associated changes in north-easterly trade winds are linked to 

cooling episodes recorded in Greenland ice cores. Model results suggest that the two regions 

may be connected through an atmospheric bridge, as changes in the extent of high latitude sea 

ice can affect meridional displacements of the ITCZ (Chiang et al., 2003). 

 
Today's seasonal migration of the ITCZ, which is a zone of low pressure, has large climatic 

impacts in tropical Atlantic regions. During boreal winter the Cariaco Basin cool and dry as 

the north-easterly trade winds lie directly overhead. In the summer, however, the ITCZ 

migrates north and is responsible for the annual rainfall maximum in the region. For the 

north-eastern Brazil, the effect is opposite as the ITCZ overlies the region during winter (Lea 

et al., 2003). Hence, winter is the time of maximum precipitation, while summer is associated 

with dry climate as the ITCZ has moved northward. Paleoceanographic proxies suggest that 

the modern system is an analogue for past long-term variability. During North Atlantic 

cooling the Cariaco Basin experienced dry climate (Peterson et al., 2000) , while north-

eastern Brazil was wet (Wang et al., 2004). The variations in rainfall is also reflected in the Ti 

and Fe content of marine sediments off the northern South American coast. High input of Fe 

and Ti is interpreted to reflect high input of fine terrigenous components as a result of 

increased runoff from the continent. In the Cariaco Basins the highest Fe and Ti 
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concentrations are found in sediments deposited during periods of northern warming (Lea et 

al., 2003). In contrast, increased runoff from north-eastern Brazil occurred during northern 

cooling (Arz et al., 1999a).          

The migration of the ITCZ is related to SST, and the SST in the Cariaco Basin and the north-

east Brazilian shelf area thus also differ from each other. In the Cariaco Basin SST variations 

demonstrate an in-phase relationship with variations in the northern North Atlantic. A little 

further east, however, the relationship is opposite. During Heinrich event H1 and the Younger 

Dryas, which were periods of intense cooling in the Northern Hemisphere, significant 

warming is detected in the western tropical Atlantic. The opposite variations in climate 

experienced by the two tropical locations, suggest that the atmospheric bridge is not the only 

pathway that has influenced tropical ocean changes in the past. The anti-phase response 

agrees more with what would be expected due to changes in the AMOC. Reduced North 

Atlantic deep water formation would result in a northern cooling, while the tropical 

thermocline and much of the southern hemisphere would experience concomitant warming 

(Crowley, 1992). This anti-phase relationship between the hemispheres has been documented 

by proxies for both SST and ocean ventilation (e.g. Arz et al., 1999b; McManus et al., 2004; 

Rühlemann et al., 1999) . 

Furthermore, it has been proposed that intermediate water formed in high southern latitudes 

can influence the tropical thermocline (Liu and Curry, 1999). Hence, an oceanic tunnel also 

connects high and low latitudes. The meridional transport of heat by intermediate water 

masses is similar to that of the deep water masses {Talley, 1999 #202}, and changes in the 

flux or properties of intermediate waters feeding the thermocline, could influence the 

temperature conditions in the tropical upper ocean both at intermediate depths and at the 

surface. The most important of the intermediate water masses is the Antarctic Intermediate 

Water. 
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2 Study area 
 

 

The study area is located around 4°S 37°W on the continental margin off North-eastern Brazil 

and is directly influenced by the North Brazil Current (NBC) (Arz et al., 1998). The 

sediments used in the geochemical analyses are sampled from three gravity cores taken along 

a transect at depths of 700 m, 898 m 

and 1000 m. Core locations and major 

water currents are indicated in Figure 

7. 

 

 

2.1 Geological setting 
 
The Northeast Brazilian coast consists of a 50 to 100 km wide belt of plains that borders a 

coastal mountain chain as high as 1500 m (Arz et al., 1999a). The climate is semi-arid 

(Knoppers et al., 1999), and only small rivers drain the area, with the exception of the Rio 

Jaguaribe which has a relatively wide drainage basin (Arz et al., 1999a). The continental shelf 

along the coast is narrow (30 km wide on average) and shallow (50-80 m) (Arz et al., 1998, 

1999a; Knoppers et al., 1999) with large erosional channels cutting into it. Due to little 

freshwater runoff, the shelf is mainly covered by biogenic carbonate sediments (Knoppers et 

al., 1999) with terrigenous sediments only occurring on the inner shelf area (Arz et al., 1998). 

The supply of terrigenous sediments to the shelf has, however, varied in the past depending 

Figure 7:  Chart of the western tropical 
Atlantic Ocean showing the surface 
circulation patterns and the location of 
the core transect (after Tisserand, 
2009). Abbreviated terms are CSEC = 
Central South Equatorial Current, 
SEUC = South Equatorial 
Undercurrent, SECC = South 
Equatorial Countercurrent, NBC = 
North Brazil Current and NADW = 
North Atlantic Deep Water 
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on changes in the continental climate. A study by Arz et al. (1999a) linked the Fe/Ca and 

Ti/Ca ratios in sediment cores to increased runoff from the Northeast Brazilian continent due 

to humid climate conditions during the repeated slowdown of the THC in the last deglacial 

period. 

 

The low gradient upper continental slope is characterized by smooth settling area incised by 

large canyons and channels. These morphological features were probably formed during 

periods of low sea level (Arz et al., 1998). At about 1000 m depth an escarpment marks the 

transition from the low gradient upper continental slope to a much steeper lower slope with a 

gradient of up to 11°. The depth of the base of the slope is 1600±3600 m. From here, the 

ocean basin stretches out, characterized by a chain of seamounts of which several pierce the 

surface (Knoppers et al., 1999) (Figure 7). A three-dimensional image of the core transect 

area is given in Figure 8. The image show the main coring transect of the third RETRO cruise 

(MD09-173). The core sites in this study are positioned along the same straight line. They are 

«twin cores» of the CASQ cores marked in pink. GS07-150-20/2-GC, GS07-150-18/2-GC 

GS07-150-17/1-GC are positioned on the transect, at 700 m, 898 m and 1000 m, respectively. 

As indicated by the 3D image, extensive site surveying was necessary in order to be able to 

place good coring sites, avoiding the many canyons or channels that split the sea floor. 

 

 

 

 

 

Figure 8: Three-dimensional image of 
the main coring transect of the MD09-
173 RETRO III coring expedition. In 
the figure, the shallowest core MD09-
3250 (04°16.22’S; 37°09.03’W) is from 
600 m, while the deepest core MD09-
3241 (04°12.98’S; 37°04.48’W) is from 
1000 m. As indicated in the figure, the 
cores used in this figure are «twin 
cores» of the CASQ cores marked in 
pink. GS07-150-20/2-GC, GS07-150-
18/2-GC GS07-150-17/1-GC are 
positioned on the transect, at 700 m, 
898 m and 1000 m, respectively. 
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2.2 Oceanographic setting 
 
The surface- and deepwater hydrography of the region off northeastern Brazil is an important 

part of the circulation of the tropical Atlantic Ocean. Considering that a large part of the 

Atlantic Meridional Overtuning Circulation (AMOC) passes through this region, changes in 

heat and volume transport by the water masses in this area would have a significant effect on 

North Atlantic climate.  

2.2.1 Vertical distribution of the water masses 

Figure 9 displays a schematic profile of the water column of the study area, showing the 

major water masses that are carried along the North East Brazilian shelf. Moving northwards 

in the upper 1200 meters are the Tropical Surface Water (TSW), South Atlantic Central 

Water (SACW), Antarctic Intermediate Water (AAIW) and upper Circumpolar Deep Water 

(uCDW). North Atlantic Deep Water (NADW) moves southward between 1200 and 4000 m 

(Stramma and Schott, 1999). North of the study area, between 0°40N and 1°40S Antarctic 

Bottom Water (AABW) is carried into the northern hemisphere at a depth of 4500m (Schott 

et al., 2003). A modern temperature profile based on measurements from a site close to the 

study area (Bainbridge, 2004) is shown to the right. A temperature profile associated with 

Figure 9: Vertical distribution of water masses in the study area (after Tisserand, 2009). Abbreviated 
terms are: TSW = Tropical Surface Water, SACW = South Atlantic Central Water, AAIW = Antarctic 
Intermediate Water and NADW = North Atlantic Deep Water. Planktonic foraminifera are observed 
to live in the TSW and SACW. The core locations are indicated by yellow rectangles. A modern 
temperature profile is drawn in red (Bainbridge, 2004), while past temperature, based on the model 
by Manabe and Stouffer (1997) is depicted in blue. The temperature anomalies are shown in grey. 
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weak AMOC is depicted in blue. This curve is based on the model by Manabe and Stouffer 

(1997). The temperature anomalies are shown in grey, highlighting the warming at 

intermediate depths. 

 

The TSW with temperatures of about 27°C is the surface mixed layer of the tropical Atlantic 

Ocean. Due to mixing this layer is characterized by uniform hydrographic properties. It 

constitutes an essential element of heat and freshwater transfer between the atmosphere and 

ocean. Below the mixed layer is a zone of rapid transition, called the seasonal thermocline, 

where temperature drops from 25°C to 15°C in approximately 50 m. The lower boundary of 

the TSW is considered to be the 20°C isotherm. Two types of SACW are found spreading 

northward underneath the TSW. The lighter type has its source in the southwestern 

subtropical South Atlantic and circulates in the subtropical gyre, while the denser type is from 

the southern South Atlantic and the South Indian Ocean and flows northward with the 

Benguela Current (Stramma and Schott, 1999). According to Sprintall and Tomczak (1993) 

and Tomczak and Godfrey (1994) most of the SACW found in the tropics originate from the 

Indian Ocean. The isopycnal, σ=27.1, at about 500 m indicate the transition between the 

SACW and the AAIW. The AAIW originates from a surface region of the Antarctic 

Circumpolar Current. Beneath the AAIW is the uCDW. Both these water masses flow from 

the South Atlantic towards the North Atlantic, and because of its small vertical extent near the 

equator the uCDW is included in the AAIW layer in Figure 9 (Stramma and Schott, 1999). 

Figure 10: Observed autumn temperature (°C) in the water column along a southwest-northeast 
transect off north-east Brazil, close to the study area. The data are provided by World Ocean 
Circulation Experiment (WOCE, 2002). 
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The subpolar gyre in the Greenland Sea is believed to be the main source region of the 

NADW, while AABW has two source areas; the continental shelf around Antarctica and deep 

levels in the Antarctic Circumpolar Current (Brown et al., 2001).  

 

Figure 10 and Figure 11 display profiles over the observed temperature and salinity in the 

water column along a depth transect off the northeastern Brazilian coast, close to the study 

area. The transect is shown in the lower left corners of each figure, and all the measurements 

are indicated by black dots and lines. The profiles are made by gridding the measurement 

data, and due the scarcity of measurements, parts of the profiles are left blank. It is still 

evident from both parameters that the upper waters are highly stratified. The AAIW and 

NADW can be recognized in both the temperature and the salinity profile. All three cores 

used in the study, are bathed in AAIW, and the mixed layer can be distinguished by the 

largest temperature gradient that seems to be around 200 m. 

 

 

 

 

Figure 11: Observed autumn salinity in the water column along a southwest-northeast transect off 
north-east Brazil, close to the study area. The data are provided by World Ocean Circulation 
Experiment (WOCE, 2002). 
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2.2.2 Surface hydrography 
 

The subtropical gyre of the South Atlantic lies beneath the subtropical high-pressure zone 

between 10°S and 40°S (Brown et al., 2001) and reaches depths of 500-1000 m (Peterson and 

Stramma, 1991). The gyral current system is related to the overlying anticyclonic wind 

system that blows around the subtropical high-pressure region and creates a geostrophic 

current in the anticlockwise direction. The centres of oceanic gyres tend to be displaced 

towards the western side of the oceans. Consequently, western boundary currents, which flow 

along the western sides of oceans, are fast, deep and narrow, while eastern boundary currents 

are slow, wide and shallow. The South Atlantic has the Brazil Current as its western 

boundary current and the Benguela Current as its eastern boundary current (Brown et al., 

2001). The Benguela Current carries TSW and SACW in a north-westward direction across 

the basin (Garzoli et al., 2004). It sets out as a northward flow off the Cape of Good Hope 

before it bends towards the northwest and separates from the African coast at around 30°S 

while widening quickly (Peterson, 1990). The current feeds into the South Equatorial Current 

(SEC) that flows westward towards the north-eastern coast of South America (Peterson and 

Stramma, 1991). The large-scale 

upper-level surface currents in 

the South Atlantic Ocean is 

illustrated in Figure 12. 

 

Near 10°S the southernmost of 

three branches of the SEC, the 

Southern South Equatorial 

Current (SSEC), splits into the 

northward-flowing North Brazil Current (NBC) and the southward-flowing Brazil Current 

(BC) (Stramma and Schott, 1999). The NBC is the stronger of the two. It continues its flow 

into the northern hemisphere and partly accounts for the net northward transport of warm 

surface water from the South Atlantic to the north (Peterson and Stramma, 1991). South of 

5°S the NBC is a weak surface current transporting only 3-5 Sv in the surface layer. Most of 

Figure 12: Schematic representation 
of the large-scale, upper-level 
surface currents and fronts in the 
South Atlantic Ocean (after Peterson 
and Stramma, 1991). 
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the transport occurs in the thermocline, in an undercurrent component called the North-Brazil 

Undercurrent (NBUC). The NBUC follows the coast carrying around 23 Sv above 1000 m 

depth with a velocity maximum near 100-200 m (Arz et al., 1998; Johns et al., 1998). Near 

5°S the northward transport is approximately 15-20 Sv (Peterson and Stramma, 1991; 

Stramma et al., 1995). At this latitude water from the Central South Equatorial Current enters 

the NBC system from the east at about 35°W, intensifying the transport. The NBUC rises to 

the surface and transforms the NBC into a more surface-intensified current as it moves 

towards the equator (Arz et al., 1999a; Johns et al., 1998).  At about 44°W, the NBC has 

become about 300 km wide and  transports approximately 32 Sv equatorward in the upper 

600 m (Schott et al., 1993). A schematic overview of the upper ocean circulation in the 

tropical Atlantic is shown in Figure 13. 

 

North of the equator 

the NBC looses water 

to a number of 

eastward flowing 

counter currents: the 

North Equatorial Counter current (NECC), the Equatorial Undercurrent (EUC) and the North 

Equatorial Undercurrent (Johns et al., 1998). The surface layer of the NBC retroflects 

seasonally into the NECC at 6-7°N from June to January. During the rest of the year, 

however, NBC surface water is assumed to continue northward along the coast and join the 

westward flow of the North Equatorial Current as it enters the Caribbean. In the thermocline 

layer a portion of the NBC retroflects around the equator to feed the EUC. Another portion 

separates from the flow at 3-4°N and seasonally feeds into the NEUC. Parts of this 

retroflected thermocline water may be recirculated back into the NBC (Johns et al., 1998).  At 

 

Figure 13: Modern oceanographic setting of the tropical Atlantic and 
Caribbean, showing major surface currents. Abbreviated terms are CC 
= Caribbean Current, NEC = North Equatorial Current, NECC = 
North Equatorial Countercurrent, NBC = North Brazil Current, BC = 
Brazil Current, GC = Guinnea Current, n(s;c) SEC = northern 
(southern; central) South Equatorial Current; SECC; South Equatorial 
Countercurrent and AC = Angola Current (after Steph et al., 2009). 
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retroflection rings are shed from the NBC (Figure 13). The shedding of rings represents a 

significant transfer of mass and heat. According to (Garzoli et al., 2004) it has been suggested 

that the rings might account for one third (ca. 3 Sv) of the total upper transport in the AMOC. 

Together with estimates of direct flow of NBC water to the Caribbean, the combined volume 

transport is in the order of 8 Sv/yr. This is about half of the volume needed to complete the 

upper interhemispheric loop of the MOC (Garzoli et al., 2004). 

 

2.2.3 Intermediate and deep hydrography 
 

A schematic figure of the main 

subsurface water masses in the 

Atlantic Ocean is presented in 

Figure 14. Only short 

descriptions of the AAIW, 

NADW and AABW are given, 

as focus in this research will be 

on the upper-ocean water 

masses.  

 

Antarctic Intermediate Water is 

the most widespread 

intermediate water in the 

oceans. The water mass forms 

in the Antarctic Polar Frontal Zone which is located between 50°S and 60°S. It is 

characterized by low salinity and a temperatures of 2 to 4°C. After sinking at convergences in 

the Frontal Zone, the water mass spreads northwards throughout the Southern Hemisphere 

and can be traced to at least 20°N in the Atlantic Ocean. Due to vertical mixing at 

intermediate depths in the Southern Ocean, the salinity slowly rises as it moves northward. 

Moreover, the thickness of the water mass decreases from about 1000 m in its formation area 

to a few hundred meters at the equator (Brown et al., 2001). 

 

North Atlantic Deep Water is primarily formed in the subpolar gyre in the Greenland Sea. 

Figure 14: Side view of the circulation in the Atlantic. AAIW 
flows from the south toward northern high latitudes. It 
supplies the deep water formation areas in the northern North 
Atlantic with relatively warm and saline waters. NADW is 
formed at high northern latitudes, and flows south at depth, 
eventually joining the waters circling eastwards around 
Antarctica. Here, dense AABW is formed before it flows 
northward over the ocean floor (after Ruddiman, 2001).  
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Cold, polar water and ice enter the region through the Fram Strait, while the Norwegian 

Current brings warm, saline surface water that has been transported from the Southern 

Hemisphere through the Gulf Stream and North Atlantic Current. In winter, the water 

becomes dense enough to sink and begins to flow south. The water mass can be followed 

around the southern tip of Greenland, before it flows along the coast of North-America at a 

depth of 2000-4000 meters. It continues southeastward, past the eastern tip of Brazil and 

across the South Atlantic before it ends up in the Southern Ocean where it mixes with 

Antarctic Circumpolar Deepwater (Brown et al., 2001).  

 

Antarctic Bottom Water is the densest and most widespread water mass in the open ocean. 

The densest variety of this water forms at various locations over the continental shelf around 

Antarctica, where water becomes sufficiently dense to sink as a consequence of winter ice 

formation and cooling, especially in coastal polynyas. The water circulates for some time 

over the shelf and mixes with toungues of water from the Antarctic Circumpolar Current. The 

mixtures then flow westward down the continental slope into the deep ocean. Some of these 

water masses flow north into the subtropics via the Atlantic western boundary current along 

the continental slope of eastern South America (Brown et al., 2001). 

2.2.4 Air-sea interaction 
 

Seasonal changes in the strength of the southeast trade winds lead to variations in the depth of 

the sharp thermocline that separates TSW from SACW. The trade winds drives a westward 

flow of water across the basin that results in upwelling of cold water in the east and a pile-up 

of warm surface water in the west. The equatorial mixed-layer thickness therefore displays an 

east-west asymmetry as the thermocline dips from the eastern part of the basin towards the 

western side (Figure 15) (Steph et al., 2009; Wolff et al., 1999).  
 

Trade wind strength is primarily forced by the atmospheric pressure gradient between tropical 

and subtropical latitudes. The pressure gradient is determined by the temperature contrast 

between the two regions, and changes in trade wind velocity is thus related to changes in the 

position of the Intertropical Convergence Zone (ITCZ) (Wolff et al., 1999). The ITCZ is a 

low pressure zone along which the northeast trades and southeast trades converge. It is 

generally related to the zone of highest surface temperature, and its position therefore varies 

seasonally (Brown et al., 2001). Following the march of the sun, the trade wind system moves 
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northward over land in the boreal summer and southward over land in the boreal winter 

(Figure 16).  
 

Northward migration of the ITCZ in boreal 

summer leads to a larger temperature 

constrast between the subtropical and 

tropical latitudes and an increase in the 

strength of the southeast trade winds. The 

SEC is accelerated resulting in a significant 

increase in mixed-layer thickness in the 

western tropical Atlantic (Wolff et al., 

1999). Consistent with this, Stramma et al. 

Figure 15: Annual temperature (°C) for the upper 1000 m of the tropical Atlantic and Caribbean 
water column along an east-west hydrographic section across the tropical Atlantic/Caribbean 
(13°E, 15°S – 83°W, 21°N). The westward-dipping thermocline is marked by yellow/orange 
colours (after Steph et al., 2009).  

 

Figure 16: Ship drift velocity vectors for 
February, August and November, 
illustrating the variation of surface currents 
in the tropical Atlantic Ocean throughout 
the year. The position of the ITCZ is marked 
by a solid line. Abbreviated terms are NEC 
= North Equatorial Current, SEC = South 
Equatorial Current, NECC = North 
Equatorial Countercurrent, NBC = North 
Brazil Current, BC = Brazil Current and 
GC = Guniea Current (after Stramma and 
Schott, 1999). 
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(1995) observed larger transport by the NBUC and NBC during boreal autumn. In boreal 

winter the east-west pressure gradient is smaller resulting in weaker trade winds and a smaller 

thermocline asymmetry across the basin (Wolff et al., 1999). Stramma et al. (1995) observed 

reduced transport by the NBC and NBUC in boreal spring. Hasenrath and Merle (1987) 

reported a deepening mixed layer from 60 m in the boreal winter to 100 m in summer. The 

western Atlantic/Caribbean thus constitutes a major seasonal heat reservoar with large 

seasonal variations in heat storage. The modern seasonal cycle of the trade winds in the 

tropical Atlantic has been suggested as an analog for changes in the late Quaternary trade 

wind system (McIntyre et al., 1989). Studies (e.g. McIntyre and Molfino, 1996) have 

proposed an eastern shallowing and a western deepening of the thermocline during glacials as 

a response to enhanced trade wind velocity. With such a long term change in the trade wind 

system the heat reservoir in the western Atlantic/Caribbean would have a great impact on the 

Atlantic Ocean heat distribution. 

 



24 

3 Materials and methods 
 
 

3.1 Marine sediments 
 

The marine sediments used in this study are sampled from three gravity cores taken during 

the first RETRO cruise, GS07-150, from 7 to 20 December 2007. The cruise took place in the 

western Atlantic Ocean off North Brazil on the Norwegian research vessel G. O. Sars., which 

is owned by the Institute of Marine Research (IMR) and the University of Bergen (UoB). 

During the course of this site survey expedition, TOPAS and Multibeam survey lines as well 

as gravity cores and multicores were collected. The gravity cores used in this study are 

presented in Table 1, and the core sites are indicated in Figure 7 and 9. More information 

about the RETRO expeditions can be found on the RETRO website1. 

 

3.1.1 Cores GS07-150-20/2 GC, GS07-150-18/2 GC and GS07-150-17/1 GC 
 

Core GS07-150-20/2 GC was taken at 04°15.66S, 37°08.24W at a water depth of 700 m. 264 

cm of sediments were recovered, and the core was split in two sections. Section A (bottom) is 

150 cm and section B (top) is 114 cm. In the cruise report2 the top part of the core is 

described as carbonate clay that is very rich in foraminifera, while the bottom part is made of 

dark-grey clay.  

 

Core GS07-150-18/2 GC was taken at 04°13.80S, 37°05.95W at 898 m water depth. The core 

is 276 cm long, and was split in a section A, which is 150 cm and a section B which is 126 

cm. This core consists of brown/beige foraminifer rich clay in the top part and dark clay 

sediments with foraminifera in the bottom part.  

 

The deepest core, GS07-150-17/1 GC, was taken from a water depth of 1000 m at 04°12.98S, 

37°04.52W. 282 cm of sediments were retrieved, and the core was split in a 150 cm long A 

                                                
1 www.esf-retro.org 
2 http://www.esf-retro.org/page4/files/CR_RETRO_I_20080525.pdf   
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section and a 132 cm long B section. According to the cruise report, the top part of this core 

is made up of foraminferal ooze, and the bottom consists of foraminferal and pteropod rich 

medium grey clay. All the core sites are well above the present lysocline, defined as «the 

depth at which undersaturation of the carbonate ion occurs» (Takahashi et al., 1980). Hence, 

preservation of the carbonate material is good.       
             

   
Gravity core Latitude Longitude Water depth 

(m) 
Core length 
(cm) 

GS07-150-20/2 04°15.655S 37°08.243W 700 264 
GS07-150-18/2 04°13.801S 37°05.945W 898 276 
GS07-150-17/1 04°12.980S 37°04.515W 1000 282 

 
                
 

3.2 Sampling 

3.2.1 Sample preparation 
 

All three cores were split lengthwise in an archive half and a working half. The archive 

halves were scanned using the ITRAX XRF core scanner of the core scanner laboratory at the 

Department of Earth Science, UoB. Sedimentological preparations of the cores were done at 

the sediment lab. From the working halves sediment slides were sampled at intervals of 1 cm 

downcore. Teaspoon samples were taken from each slide to preserve some original material if 

needed later on. Wet and dry weights of the remains of the samples were registered, before 

the samples were soaked in distilled water and shaken for about 24 hours to disperse the 

material. Each sample was wet sieved in tap water in the fractions 63-150 µm and >150 µm. 

They were then put in a drying cabinet (ca. 55°C) until the water had evaporated, and finally 

weighed and put in sample glasses.  

 

3.2.2 Selection of timeslice samples 
 

In order to select the sampling depths representing the climatic events of interest in each core, 

the XRF intensity records of Fe, Ti and Ca were used. The connection of Fe/Ca and Ti/Ca to 

climate (Section 4.3.1) enabled determination of sampling depths before the age model for 

the cores was in place. The depths were chosen based on the recognition of prominent 

variations in Fe/Ca and Ti/Ca assumed to be connected to large climatic changes (Arz et al., 
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1999a). Samples were taken from core depths expected to be linked to the Last Glacial 

Maximum, Heinrich event H1, Bølling-Allerød, the Younger Dryas, the Early Holocene and 

the Late Holocene. The sample depths are given in Table 2.  
   

   
Core intervals (cm) 

 

Timeslices GS07-150 20/2 
GC 

GS07-150 18/2 
GC 

GS07-150 17/1 
GC 

Late Holocene 2 – 3 2 – 3 2 – 3 
Early Holocene 42 – 43 55 – 56 70 – 71 
Younger Dryas 90 – 91 75 – 76 96 – 97 
Bølling-Allerød 116 – 117 98 – 99 116 – 117 
Heinrich H1 150 – 151 120 – 121 140 – 141 
Last Glacial 
Maximum 185 – 186 150 – 151 165 – 166 

 

 

 

 

3.3 Foraminifera and proxy methods 

3.3.1 Foraminifera 
 

The paleoceanographic reconstructions in this study are based on geochemical measurements 

of the carbonate shells of various species of foraminfera. Foraminifera are single-celled 

marine protozoans that have been present in the geologic record from the early Cambrian to 

the present. They can be planktonic or benthic and inhabit all marine environments; from the 

intertidal zone to the deep ocean floor. Their geographical distribution ranges from the poles 

to the tropics (Culver, 1993), but the largest variety of species are found at subtropical and 

tropical latitudes (Bé and Tolderlund, 1971a). 4000 species of foraminfers are estimated to 

live in the oceans today, out of which 40 live in the planktonic realm (Culver, 1993). In this 

research only planktonic species are used. 

 

A foraminifer consist of a skeleton (or test) built of one or more chambers that surround the 

cytoplasm of the organism. The chambers are connected by holes called foramens from which 

the order Foraminiferida got its name. The walls of the chambers most commonly consist of 

Table 1: Timeslices in cores GS07-150 20/2 GC, GS07-150 18/2 GC and GS07-150 17/1 GC  
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secreted calcium carbonate or silica, or secreted organic matter, but they can also be made up 

of agglutinated particles. Through perforations in the test, some species extend thin organic 

filaments called rhizopodia. Rhizopodia are used in locomotion, anchoring and feeding, 

depending on the various species. Their diet consists of diatoms, algae, bacteria and dissolved 

organic material, and some species host symbiotic algea that provide them with steady 

nourishment (Culver, 1993).  

 

Planktonic foraminiferal species live in the upper parts of the ocean. However, observations 

have revealed that different species live and calcify at different depths in the water column. 

Three depth habitats are recognized:  shallow (0-50 m), intermediate (50-100 m) and deep 

(>100 m). Typically thin-walled, symbiont-bearing, spherical forms inhabite near-surface 

waters, while thicker-walled, keeled, symbiont-free forms are more plentiful deeper in the 

water column (Culver, 1993). The species-specific preferential depth habitat is considered to 

be a function of environmental and/or hydrographical conditions. 

 
Foraminifera make up a very important marine fossil group in geological studies. During 

sedimentation, the protoplasm of the foraminifera is dissolved, while their hard tests are 

preserved in the geologic record. The fossil tests have proven very useful in 

paleoclimatological studies. Past oceanic environments can be reconstructed based on the 

geographical distribution and geochemical properties of the foraminiferal tests. Oxygen and 

carbon isotopes, as well as trace elements like Mg and Sr, are incorporated into their 

carbonate shells and can be used to reconstruct past temperatures and ocean hydrography 

(Culver, 1993). In this study two geochemical temperature proxies are used: the Mg/Ca ratio 

and the oxygen isotopic composition of foraminiferal calcium carbonate tests. The study 

makes use of the observed depth stratification of various planktonic species in an attempt to 

reconstruct variations in temperature stratification in the upper water column. 

 

3.3.2 Presentation of the planktonic foraminferal species 
 

The selection of planktonic foraminiferal species was based on their respective preferred 

habitat depths in the water column and on which species were actually present in the samples. 

Emphasis was also put on choosing species that had previously been used in similar studies, 

so that comparison to the results in this study could be made. Two shallow dwellers, two 
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intermediate dwellers and one deep dweller were chosen: Globigerinoides ruber (white 

variety), Globigerinoides trilobus, Globigerinita glutinata, Globigerinella siphonifera and 

Globorotalia truncatulinoides (dextral). The species are presented below. The descriptions 

are based on an identification scheme by Bé (1967) which mostly agrees with the 

classification of Parker (1962). Scanning Electron Microscope (SEM) photographs of the 

different species (Figures 17, 18, 19, 20 and 21) are provided by Saskia Kars from the Vrije 

Universiteit in Amsterdam. The specimens photographed are from Multicore 24/3 MC-A, 

retrieved during the the first RETRO cruise (GS07-150). 

 

Globigerinoides ruber (d'Obrigny, 1839) 

 

 

G. ruber is found in 

subtropical and 

tropical surface 

waters, and is the 

second most abundant 

species of planktonic 

foraminfera in the 

tropical Atlantic 

Ocean. The species is 

trochospiral and 

spinose. It adds five 

chambers per whorl as 

a juvenile and three 

chambers per whorle as an adult (Bé, 1967). G. ruber is found over a surface temperature 

range of 13.3°C to 29.5°C, with the highest abundance occurring above 21.3°C. The optimum 

salinity range of the species is 34.5 to 36 psu (Bé and Tolderlund, 1971b).  

 

Plankton-tow studies have indicated that G. ruber is a good indicator of tropical surface water 

conditions (Anand et al., 2003; Field, 2004; Ravelo and Fairbanks, 1992). The species show 

little variation in depth habitat and is confined to the mixed layer. Since it has a nearly 

uniform annual occurrence (Tedesco and Thunell, 2003), G. ruber is a useful species for 

reconstructing annual conditions (Lin et al., 1997). Some specimens of G. ruber have a pink 

Figure 17: G. ruber (white). Spiral and umbilical view. The white line 
below each specimen represents a scale of 100 µm to indicate the size of 
the species. 
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to red coloration. The pink colour has been attributed to a pigment within the shells lamellae 

(Bé and Hamlin, 1967), which might be related to the presence of zooxanthellae. Studies have 

shown that the abundance maximum of the pink variety of G. ruber is related to warmer 

waters than that of the abundance maximum of the white specimens (e.g. Bé and Tolderlund, 

1971b). In agreement with this, Steph et al. (2009) observed lower δ18O values for G. ruber 

(pink) than for G. ruber (white) in the tropical Atlantic. In order to lower the variability in the 

proxy measurements for G. ruber, only white specimens are picked.  

 

Globigerinoides trilobus (Reuss, 1850) = Globigerinoides sacculifer (Brady, 1877 ) 

 

 

G. trilobus is the  dominant foraminiferal species in tropical surface waters, and is also 

commmon in the subtropics. The species is trochospiral and ovate with a spinose and 

honeycomb texture. Juveniles add six to seven chambers per whorl, while adult specimens 

add four (Bé, 1967). G. trilobus has a temperture range of 13 to 30°C (Boltovskoy and 

Wright, 1976) and a salinity range of  34.5 to 36 psu (Boltovskoy, 1981). Greatest 

abundances occur above a temperature of 22.1°C and above a salinity of 36.4 psu (Bé and 

Tolderlund, 1971b). Like G. ruber, G. trilobus calcifies in near surface conditions (Anand et 

al., 2003), and any differences in measured δ18O between the species have been attributed to 

vital-effects. The species is essentially considered to be an indicator of summer and autumn 

conditions in the upper part of the mixed-layer (Bé and Tolderlund, 1971b). G. trilobus is the 

equivalent to the species G. sacculifer without it's final sac-like chamber. Specimens of G. 

Figure 18: G. trilobus. Umbilical and spiral view. The white line below each specimen represents 
a scale of 100 µm to indicate the size of the species. The specimen to the right is a G. sacculifer 
with a sac-like final chamber. 
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sacculifer with the sac-like chamber are considered to have gone through gametogenesis and 

added a crust of gametogenic secondary calcite which severely affects the over-all 

geochemical composition of the test.  

 

Globigerinita glutinata (Egger, 1893) 

 

 

 

 

 

 

 

 

 

The distribution of G. glutinata extends from the subpolar regions to the tropics. The species 

is spherical and trochospiral with a smooth to finely hispid texture. It adds five chambers per 

whorl in juvenile stages of it's life-cycle and four chambers as an adult. Commonly a bulla 

covers the final aperture (Bé, 1967). G. glutinata lives in a temperature range of 0.3 to 30°C 

(Boltovskoy and Wright, 1976) with maximum abundance at 24 to 27°C (Bé and Tolderlund, 

1971a). The species encompasses nearly the entire range of average surface salinity, 

occurring from 34.5 to 36.6 psu. Increased population densities are noted between 35.9 and 

36.6 psu (Bé and Tolderlund, 1971b). G. glutinata is commonly confined to intermediate 

depths of about 50 to 100 m (Boltovskoy, 1981). It is rare throughout the year, with a 

possible peak in spring (Bé, 1960). 

 

Figure 19: G. glutinata. Umbilical and spiral view. The white line below each specimen represents a 
scale of 100 µm to indicate the size of the species. In the specimen to the right a bulla covers the final 
aperture. 
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Globigerinella siphonifera (d´Orbigny, 1839) = Globigerinella aequilateralis (Brady, 1879) 

 

 

 

 

 

 

G. siphonifera, which also goes by the name G. aequilateralis, is found in the tropics and 

subtropics. It has a nearly planispiral test with a spinose and hispid texture. The species adds 

five chambers per whorl as a juvenile and five to six chambers per whorle as an adult (Bé, 

1967). G. siphonifera has a temperature range of 12-30°C (Boltovskoy and Wright, 1976) and 

a salinity range between 35.8 and 36.6 psu. Maximum abundance is observed in the 

temperature range of 17.4 to 25.3°C and the salinity range of 36.5 to 36.6 psu (Bé and 

Tolderlund, 1971b). G. siphonifera also lives at intermediate depths of about 50 to 100 m 

(Boltovskoy, 1981). It is common throughout the year, but observations from the Sargasso 

Sea revealed peak summer and fall occurrences (Bé, 1960).  

 

Globorotalia truncatulinoides (d'Obrigny, 1839) 

 

 

 

Figure 20: G. siphonifera. The white line below each specimen represents a scale of 100 µm 
to indicate the size of the species. The specimen to the right demonstrates the near-
planispiral outline of the species. 

 

Figure 21: G. truncatulinoides 
(dextral). Umbilical and spiral 
view. The white line below 
each specimen represents a 
scale of 100 µm to indicate the 
size of the species. 
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G. truncatulinoides is most abundant in the subtropics, but is also found in tropical regions. 

The species has a trochospiral, conical test with a smooth to hispid texture and a well 

developed keel (Bé, 1967). G. truncatulinoides occurs over a broad range of temperatures and 

salinities. Boltovskoy and Wright (1976) reported a temperature range of  2.9 to 27.0°C, 

while optimum concentrations are registered between 15.4 and 22.0°C. It's tolerance of 

salinity ranges from 35.8 to 36.6 psu, but the speices is most abundant between 35.9 and 36.6 

psu (Bé and Tolderlund, 1971b).  

 

G. truncatulinoides has a sharply limited seasonal distribution which makes the species a 

good indicator for winter conditions (Bé and Tolderlund, 1971b). It is known to live at great 

depths, but migrates to shallower depths during spring for reproduction. The species shows a 

pronounced relationship with the vertical temperature or density gradients (Hilbrecht, 1996), 

and according to Mulitza et al. (1997) it lives beneath the thermocline in the western tropical 

Atlantic. Initial calcification occurs around 200 m, while secondary calcification happens at 

about 400 m depth. Hence, G. truncatulinoides can be assumed to record conditions in the 

central water masses, which in the tropical Atlantic is the SACW. Left and right coiling G. 

truncatulinoides constitute two different genetic species (de Vargas et al., 2001), which have 

different behavior with respect to trace element incorporation (Cléroux et al., 2008). Only 

right (dextral) coiling specimens were picked for this analysis.  

 

3.3.3 Picking of planktonic foraminfers 
 

The foraminifers were all picked from the >150 µm fraction using a brush to avoid crushing 

the shells. Prior to picking, the samples were split once, leaving one subset of complete 

samples and one subset to be picked from. Splitting was done with the use of a splitter that 

ensures random and equal division of samples. To minimize variability in isotopic values due 

to the ontogenetic fractionation effect (Section 3.4.2) (Ravelo and Fairbanks, 1995), the 

samples were dry sieved into narrower size fractions (150-250 µm, 250-400 µm and > 400 

µm). The size range for each species was selected in an effort to minimize the growth effect 

and at the same time ensure that the species was abundant enough to get the material needed 

for the geochemical analyses. All species and fractions are shown in Table 3. Whole, visually 

clean specimens of similar sizes within each fraction were preferred.  
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Name of species Depth 
habitat 

Minimum size 
(µm) 

Maximum size 
(µm) 

G. ruber (w) Shallow 250 400 
G. trilobus Shallow 250 400 
G. sacculifer (w/sac-like 
chamber) Shallow 250 400 
G. glutinata Intermediate 150 250 
G. siphonifera Intermediate 250 400 
G. truncatulinoides (dex) Deep 250 400 

 
 

To aquire a rough δ18O stratigraphy of each core, specimens of G. sacculifer (with the saclike 

chamber) were picked each 10 cm down core. Amandine Tisserand had previously done this 

for core 17/1, and the same was done in cores 18/2 and 20/2. For the upper-ocean 

stratification reconstruction, all five species described above, were picked for oxygen isotope 

measurements, and two species were picked for Mg/Ca measurements. In the samples the 

shallow-dwelling G. trilobus, G. sacculifer (w/ sac-like chamber) and G. ruber (w) generally 

occur in moderate to high amounts (5-10%  to 10-20 %), while the intermediate dwellers, G. 

siphonifera, and G. glutinata, occur in moderate amounts. G. truncatulinoides was the only 

deep dweller abundant enough to pick. It's abundance was low throughout the cores, and no 

specimens were found in the youngest timeslice samples of cores 18/2 and 17/1. In order to 

ensure some indication of the Holocene oxygen isotope development at depth, specimens of 

G. truncatulinoides were picked at deeper levels in these cores.  

 

For the Mg/Ca ratio analysis, one shallow dweller and one deep dweller were picked. G. 

ruber (w), which is regarded as the best recorder of tropical sea surface conditions (Ravelo 

and Fairbanks, 1992), was chosen along with G. truncatulinoides (dex).  Between 28 and 38 

individuals of G. ruber (w) and between five and 43 individuals of G. truncatulinoides (dex) 

were picked from the 250-400 µm fraction of each sample. Visually clean specimens of 

approximately the same size were preferred. The occurrence of G. truncatulinoides was very 

low in some samples, limiting the number of good specimens to pick. In the youngest 

samples, no individuals of this species were found. Due to the scarcity of this species, the 

individuals picked varied a lot in size within the 250-400 µm fraction. 

Table 2: Species, approximate depth habitat and size fractions of planktonic foraminifera 
used in this study with references used to determine size fraction for each species.  
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3.3.4 The use of proxy measurements in paleoceanographic reconstructions 
 

Most paleoceanographic reconstructions rely on the use of proxy measurements. «Proxy» is 

short for proxy variable and is commonly used to describe a stand-in. In paleoceanography a 

proxy is a measurable chemical, physical or biological parameter which «stands in» for an 

unobservable target parameter such as temperature or salinity. The target parameter is thus 

only measured indirectly, and «calibration» of the measured parameter to the desired 

parameter is needed (Wefer et al., 1999). The calibration is done by expressing the target 

parameter as a function of its proxy:  

  

 Targ = f(Prox)                                                                                                (Equation 1) 

 

The quality of the proxy is given by the confidence with which Equation 3.1 predicts the 

target. This is usually tested in calibration studies, for instance by using samples from core 

tops or sediment-traps to reconstruct observed present-day conditions in the water column 

(Wefer et al., 1999).  

 

The correlation between the target parameter and the proxy variable is never perfect. 

Commonly, a number of parameters influence the same proxy variable, and hence one proxy 

can have different targets. The oxygen isotopic composition of foraminiferal calcite 

(expressed as δ18Oc) is a good example (Wefer et al., 1999). This proxy is influenced by both 

temperature and changes in the seawater chemistry (Emiliani, 1955), so that the temperature 

estimate has to be corrected for seawater composition. The incorporation of the different 

oxygen isotopes is also influenced by a number of other factors, which further complicates 

the interpretation of the measurements. 

 

Moreover, since most proxy carriers are biological, natural variability should also be taken 

into account. Therefore, it is good practise to estimate the target parameter by using more 

than one proxy. Such a multiproxy approach gives a greater confidence in the reconstruction 

(Wefer et al., 1999). The combination of Mg/Ca and oxygen isotope composition has the 

advantage that temperature estimates can be acquired from the same foraminferal carbonate, 
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and calculation of the salinity influence on the oxygen isotope composition is sometimes 

possible (Barker et al., 2005). In Sections 3.4 and 3.5 the concepts of oxygen isotopes and 

Mg/Ca ratios are discussed, as well as their application in paleoceanographic studies in 

general and in this study in particular.  

 

3.4 Oxygen isotopes 

 

3.4.1 Stable isotopic fractionation 
 

Isotopes are atoms with the same number of protons, but differing numbers of neutrons 

within their nuclei. Both stable and unstable (radioactive) isotopes exist. The three isotopes of 

oxygen are stable, consisting of: 16O, 17O and 18O. Their relative natural abundances are 99.7 

%, 0.04 % and 0.20 %, respectively. As the abundances of 16O and 18O are the highest, and 

the mass difference between them the greatest, research on oxygen isotopes normally 

concerns 18O/16O ratios (Cooke and Rohling, 1999).  

 

Isotopes contain the same number and arrangement of electrons and thus display similar 

chemical behaviour. However, certain differences in physicochemical properties exist due to 

the mass difference between them. Consider the water molecules H2
18O and H2

16O: The first 

molecule contains an oxygen atom with two extra neutrons in its nucleus making it slightly 

heavier than the latter. Molecules vibrate with a fundamental frequency, which depend on 

their mass. Hence, molecules of the same chemical formula that have different isotopic 

species, will have different fundamental frequencies. As a result, the molecules have different 

dissociation energies, so that the bonds formed by the light isotope are weaker than those 

formed by the heavy isotope. Consequently, H2
16O molecules will generally react slightly 

more readily than H2
18O molecules (Hoefs, 2004). An example of this is given by the 

evaporation of water at the sea-air interface: 

  

 H2
16Oliquid +  H2

18Ovapor ↔ H2
18Oliquid +  H2

16Ovapor    (Equation 2) 

 

As molecules made up of lighter isotopes have higher vapour pressures, they will evaporate 

more easily. Thus the lighter molecular species are preferentially enriched in the vapour 

phase. Continuing evaporation causes the vapour to be enriched in 16O and depleted in 18O, 
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while the water becomes enriched in 18O and depleted in 16O. This effect is called isotopic 

fractionation (Cooke and Rohling, 1999). 

 

Isotopic fractionation refers to the process in which partitioning of isotopes between two 

substances or two phases of the same substance with different isotope ratios, occurs (Hoefs, 

2004). There are three types of fractionation: isotope exchange reactions, kinetic 

fractionation, and molecular diffusion fractionation (Sharp, 2007). Isotope exchange reactions 

constitute the most important type of fractionation in paleoceanographic studies. The term is 

used for situations where there is no net reaction, but where the distribution of isotopes 

changes between different chemical substances or different phases that are in equilibrium 

{Hoefs, 2004 #38;}. The exchange is therefore also called «isotopic equilibrium 

fractionation». Isotopic equilibrium fractionation is basically temperature dependent; a fact 

that is applied in paleotemperature reconstructions. At very high temperatures fractionation 

tends to become zero, and at low temperature it is much higher (Allègre, 2008). Kinetic 

fractionation is associated with incomplete, unidirectional processes like evaporation, 

biologically mediated reactions and diffusion (Hoefs, 2004). This type of fractionation causes 

deviation from equilibrium and happens due to different chemical reaction rates of the 

various isotopic species (Cooke and Rohling, 1999). The deviations complicate the 

interpretation of oxygen isotope ratios in paleoceanographic studies. 

 

Fractionation is expressed by the fractionation factor, α:  αA-B = RA/RB, where RA and RB are 

the ratios of the light and heavy isotopes in two chemical compounds, A and B, that exchange 

isotopes (Hoefs, 2004). However, in practice it is common to express isotopic composition in 

terms of delta (δ) values rather than the absolute value of the fractionation factor. For oxygen 

isotopes the per mil difference (δ) is measured between the 18O/16O ratio in the sample and in 

a fixed standard by measuring the sample and the standard in an alternating fashion through a 

mass spectrometer (Emiliani, 1955). It is expressed as: 

 

δ18O = (((18O/16O)sample - (18O/16O)standard)/ (18O/16O)standard ) x 1000                        (Equation 3)                  

(Emiliani, 1955) 
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3.4.2 Paleoclimatological applications of oxygen isotopes 
 

Most foraminiferal species precipitate calcium carbonate from the surrounding water and, 

thus, incorporate oxygen isotopes into their tests. The reaction involved in the precipitation is:  

 
      Ca2+ + 2HCO3 ⇔ CaCO3 + CO2 + H2O                                                                        (Equation 3.4)       

(Cooke and Rohling, 1999) 

 

The oxygen isotope ratio that is incorporated into the test of an individual, mainly depends on 

the temperature and oxygen isotope composition of the ambient seawater and the so-called 

«vital effects» of the different species. These three parameters are discussed below. 

 

During precipitation of calcium carbonate, equilibrium fractionation between CaCO3 and 

water occurs. The fractionation is, as mentioned, a function of temperature which was first 

shown by Urey in 1947. In 1948 he introduced the idea of oxygen isotope paleothermometry. 

He suggested that variations in the temperature of precipitation of CaCO3 from water should 

lead to measurable variations in the 18O/16O ratio of the calcium carbonate. Hence, if the δ18O 

of the calcite is well preserved, it should be possible to determine the temperature of ancient 

oceans by measuring the δ18O of carbonate fossils (Urey, 1947, 1948). The first empirical 

relationship between temperatures and δ18O was presented by Mc Crea (1950). Epstein 

(1953) revised the relationship, which became the classic paleotemperature equation: 

 

 T(°C) = 16.5-4.3(Oxc-Oxw)+0.14(Oxc-Oxw)2                                                                                 (Equation 4) 

 

where T is temperature, Oxc is the δ18O of the calcite and Oxw is the δ18O of the water which 

the carbonate precipitated from.  

 

The equation reveals that in order to obtain the temperature estimate, the δ18O of the water 

must be known. This value has fluctuated through geological time, depending largely on the 

amount of ice on the continents (Shackleton and Opdyke, 1973). Build-up of ice provides 

storage of water highly enriched in 16O due to fractionation during repeated evaporation and 

condensation as the vapour is transported from the tropics to higher latitudes. As a 

consequence the ocean water is enriched in 18O during ice-build up, and the δ18O of 
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foraminiferal calcite varies on glacial-interglacial timescales. Therefore, using the δ18O of 

foraminferal shells as a temperature proxy requires an estimation of ice volume (Lea, 2003). 

 

After a correction for ice-volume has been made, the residual δ18O signal, δ18OIca Volume Corrected   

(hereinafter δ18OIVC), is related to variations in temperature and salinity of the ambient water, 

and to so-called «vital effects» of the different foraminiferal species. Salinity is controlled by 

continental runoff and regional and temporal differences in the precipitation-evaporation 

balance that influence the δ18O signature of the ocean water. Increased salinity is reflected in 

the carbonate as an increase in δ18O, which could lead to a misinterpretation of the data as 

cooling of the water masses. Separating the salinity signal from the temperature signal is 

complicated, but in combination with Mg/Ca temperature estimates it is sometimes possible. 

 

The various vital-effects on δ18O are responsible for out-of-equilibrium fractionation during 

calcification of the foraminferal tests. Vital-effects are species-specific, and can be divided 

into four main sources of deviation from equilibrium: the ontogenic effect; the symbiont 

photosynthesis effect; the gametogenic effect; and the effect of changes in [CO3
2-] (Cooke 

and Rohling, 1999). The various effects are presented below. They may operate in opposite 

ways, masking one another. Correcting for vital-effects in this study is not very important as 

the reconstruction of the past ocean temperature stratification is based on differences in δ18O 

between different species. Hence, if the assumption is made that the vital-effects have exerted 

the same influence on the oxygen isotope incorporation by the respective species through 

time, the effects can largely be ignored. Still, some thoughts about the effects are given. 

 

The ontogenic effect 

Laboratory experiments have shown that the relationship between temperature and 

foraminiferal δ18O changes as the foraminifer grows. For each chamber the organism forms, 

δ18O increases, so that the juvenile chambers are much more depleted in 18O than the final 

chamber. The trend is also observed in data from fossils, although the difference is a lot 

smaller (Cooke and Rohling, 1999). To minimize this size dependent ontogenic effect, 

smaller grain size fractions were avoided when picking foraminifers for oxygen isotope 

measurements, and specimens of similar sizes within narrow fractions were preferred. This is 

done to ensure that only adult specimens are measured (Ravelo and Fairbanks, 1995). Still, 

for G. truncatulinoides (dex), the ontogenic effect might constitute a bias. In some samples, 

the occurrence of this species was scarce, and the specimens used for the oxygen isotope 
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analysis varied quite a lot in size within it's sieved sized fraction. This could result in 

increased intraspecific variability in the measurements. 

 

The symbiont photosynthesis and respiration effect 

Some planktonic foraminifera bear photosynthetic symbionts. In a laboratory experiment 

Spero and Lea (1993) observed an average δ18O decrease for increasing irradiance levels. 

This could reflect a relationship between light intensity, photosynthetic activity of the 

symbiont algae and δ18Ocalcite. Swart (1983) concluded that it is the respiration of the 

symbionts that causes the depletion in δ18O. Respiration makes the δ18O values of the water 

decrease, and if the foraminifera use these respiration products during calcification, they 

would incorporate less 18O (Cooke and Rohling, 1999). Of the species used in this study, the 

effect of symbiont photosynthesis could be a problem for the surface dwellers and maybe also 

for the intermediate dwellers. G. ruber and G. trilobus are known to bear symbionts, while G. 

glutinata and G. siphonifera are facultative symbiont-bearers. Deep dwellers like G. 

truncatulinoides do not carry any symbionts (Mulitza et al., 2003). As photosynthetic 

symbionts are associated with a decrease in δ18O, the δ18O difference between shallow and 

deep dwellers (Section 5.3) is probably exaggerated. However, since this study does not 

attempt to quantitatively estimate changes in temperature, the symbiont effect is not 

important for the interpretation of the results. 

 

Vertical migration/ the gametogenic effect 

Many species migrate vertically during their life-cycles and add a secondary crust of calcite 

in deep waters right before reproduction (gametogenesis). This veneer of calcite is more 

enriched in 18O (Bemis et al., 1998). The calcite make up quite a large share of the shell's 

mass, and is thus decisive for its over-all isotopic composition (Cooke and Rohling, 1999). Of 

the species used in the study, secondary crustification is mainly a problem for G. 

truncatulinoides. As observed in the tropical Atlantic, this species is believed to form it's 

initial calcite crust at a depth of about 200 m, and then secondary calcite is added at about 

400 m (Mulitza et al., 1997). The large depth range of the calcification makes it difficult to 

assign a particular depth to the temperature signal given by the δ18O of this species, and large 

intraspecific variability in δ18O can be expected. 

 

The effect of changes in [CO3
2-] 

The effect of carbonate ion concentrations has also been studied through laboratory 
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experiments. Spero et al. (1997) concluded that δ18O in foraminiferal carbonate decreases 

with increasing [CO3
2-] and that the magnitude is strongly species-specific. Carbonate ion 

concentration in the study area today is low as reported by Bainbridge (2004). Assuming little 

change since the LGM, this effect can be ignored. 

3.4.3 Mass spectrometry 
 
All stable isotope measurements were carried out in the Finnegan MAT 253 mass 

spectrometer of the Geological Mass Spectrometry (GMS) laboratory at the BCCR. This is a 

Nier type dual inlet gas source Isotope Ratio Mass Spectrometer (IRMS) that provides an 

effective method for measuring isotope abundances. The measurements are reported against 

the VDPD standard. The MAT 253 can measure 46 glass vials in one run, usually with 38 

samples and eight standards. In this study, 311 samples of whole foraminiferal tests were 

measured in total. Any cleaning procedures were skipped as they may cause removal of 

foraminiferal calcite as well as contaminants, and this may affect the isotopic values. The 

machine has shown good reproducibility if allowed to expand (Ulysses Ninnemann, personal 

communication, 2010). Hence, in order to achieve expansion, samples weighing more than 50 

µg were used. All the samples were weighed prior to the measurements to ensure that they 

were large enough.  

 

To reach the required weight, two shells of G. sacculifer, two shells of G. trilobus, four shells 

of G. ruber (w), three shells of G. siphonifera, 11-23 shells of G. glutinata and two shells of 

G. truncatulinoides (dextral) were, in general, used for the respective samples. All the 

foraminiferal 

species were 

measured in 

duplicates for every 

timeslice in each 

core.  

 

Figure 22: 
Schematic diagram 
of a modern 
spectrometer (after 
Sharp, 2007). 
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Duplicate measurements are used as a check on the results, based on the idea that if the two 

measurements are in reasonable agreement they can be accepted, and the average of the two 

readings is taken as the reported value (Tietjen and Beckman, 1974). For all 

G.truncatulinoides, (except those of Late Holocene age), an extra set of duplicate 

measurements were made. This species proved important for the interpretation in the upper-

ocean stratification analysis, and it was desireable to make the isotopic signal more robust. 

 

Figure 22 displays a schematic diagram of a mass spectrometer. The instrument consists of 

four essential parts: the inlet system, the ion source, the mass analyzer, and the ion detector. 

Before the samples can be introduced in the system, the carbonate has to be converted to 

CO2-gas. The Finnegan MAT 253 is equipped with a Kiel carbonate preparation device, 

which provides automatic generation of CO2 gas from the carbonate shells, and direct 

pumping of CO2 into the inlet system. By reacting 100 % phosphoric acid (H3PO4) with the 

carbonate at 70°C, as demonstrated by McCrea (1950), CO2 is generated: 

 

 CaCO3 + H3PO4 CaHPO4 + CO2 + H2O                                                       (Equation 5) 
 

A dual inlet system provides one inlet for the reference (standard) gas and one for the sample 

gas. The pressures of both gases are set to the same value by adjusting the volume of two 

bellows connected to the system. After the pressures are adjusted, the gases pass through a 

capillary with a crimp that helps reduce the flow rate and assure viscous flow. Viscous flow, 

in preference to molecular flow, ensures that isotopic fractionation in the capillary does not 

happen, and bias in the isotopic signal is avoided. The gases enter the switching block where 

rapid switching between the reference and sample gas allows for seqential measurements of 

the isotopic ratios of both gases under almost identical conditions. Hence, noise caused by 

electronic instability and other factors is eliminated (Hoefs, 2004; Sharp, 2007).  

 

Entering the ion source, sample molecules are ionized by bombardment with electrons. Outer 

electrons are stripped off, and the resulting positive ions are accelerated and focused into a 

narrow beam by a series of electric lenses. The ion beam enters the mass analyzer, which is a 

magnetic field generated by an electromagnet. Here, the ions are deflected into circular paths 

whose radii are proportional to their mass/charge ratios. Light ions are deflected more 

strongly than heavier ions of the same charge. In this way, ions are separated into beams 

according to their ratio of mass to charge. After passing through the magnetic field, the 
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separated ions are collected simultaneously by multiple Faraday cups, and the inputs are 

converted into electrical impulses and recorded. The intensities of the recorded voltages are 

proportional to the amount of gas being collected.  The difference between the recorded 

voltage ratio of the sample and that of the standard is recorded as per mil deviation from the 

isotopic composition of the standard gas, given as the delta value, δ (Hoefs, 2004; Sharp, 

2007).  

 

3.4.4 Standards 
The isotopic composition of a sample is measured relative to a working standard. However, 

the values measured are reported relative to an international standard. Calibration to such 

international reference standards makes it possible to compare isotopic data from different 

laboratories. These standards are only available in small quantities, but they can be used to 

establish larger supplies of working standards. The first international calcite standard was the 

PeeDee Belemnite (PDB), a powdered specimen of Belemnita americana from the Upper 

Cretaceous Peedee formation in South Carolina. The original supply of PDB is now 

exhausted,  but new standards, such as the Vienna PeeDee Belemnite (VPDB) have been 

carefully calibrated against the isotopic composistion of the PDB (Sharp, 2007). The 

International Atomic Energy Agency (IAEA) and the National Institute of Standards and 

Technology (NIST), formerly known as the National Bureau of Standards (NBS), provides 

international standards for use in mass spectrometry.  

 

At the BCCR the GMS laboratory calibrates its own internal Carrera Marble working 

standard (CM03), which is used in the mass spectrometer. External reference standards NBS 

19 and NBS 18 are used to convert the measured values to the VPDB reference scale. The 

long term reproducability of CM03 and NBS 19 is better than 0.1 for δ18O for all samples 

running between 6 and 90 µg. In order to compare the δ18O values of carbonate foraminfera 

reported relative to VPDB with the oxygen isotopic composition of ocean water which is 

reported relative to VSMOW, conversions have to be made (Equations 3.7 and 3.8) (Coplen 

et al., 1983). 

 

 δ18OVSMOW = 1.03091 ·  δ18OVPDB + 30.91                                                      (Equation 6) 

 

 δ18OVPDB = 0.97002 ·  δ18OVSMOW – 29.98                                                      (Equation 7) 
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3.5 Mg/Ca 
 

3.5.1 Mg/Ca paleothermometry 
 

Mg/Ca paleothermometry is a relatively new method for reconstructing past ocean 

temperatures. In 1954, Chave reported that the Mg content in marine microfossils decreased 

towards higher latitudes. He drew the conlusion that the Mg/Ca ratio in biogenic calcium 

carbonate is sensitive to temperature, and thus supported early observations of this 

relationship from the 1920s (Clarke and Wheeler, 1922). Cronblad and Malmgren (1981) 

suggested the potential application of foraminiferal Mg content in paleoclimatic studies, and 

in recent years planktonic foraminiferal Mg/Ca thermometry has come about as a powerful 

proxy to reconstruct past changes in ocean temperature (Barker et al., 2005; Dekens et al., 

2002; Elderfield and Ganssen, 2000; Lea et al., 2000; Martin and Lea, 2002; Mashiotta et al., 

1999; Nürnberg, 1995; Nürnberg et al., 1996; Skinner and Elderfield, 2005). 

 

The basis for Mg/Ca thermometry is that the substitution of Mg2+ into calcite is endothermic 

and consequently favoured at higher temperatures (Erez, 2003). As a result Mg/Ca ratios in 

foraminiferal calcite is influenced by the temperature of the surrouding seawater during 

growth, and will increase with increasing temperature. In calibration studies an exponential 

relationship has been observed between the calcification temperature and Mg/Ca ratio of 

foraminfera (Barker et al., 2005). Exponential functions have been fitted to empirical data 

from core-top (Cléroux et al., 2008; Dekens et al., 2002), sediment trap (Anand et al., 2003; 

McConnell and Thunell, 2005) and culturing studies (Lea et al., 1999; Nürnberg et al., 1996), 

expressing the calibrations in the following form: 

 

 Mg/Ca = B exp(A x T)                                                                                 (Equation 8) 

 

Here T is the calcification temperature in °C, and A and B are constants dependent on the 

species in question. Almost all foraminiferal species seem to share a similar Mg/Ca 

temperature sensitivity. A is normally found to be around 0.09-0.1, reflecting a temperature 

sensitivity of ca. 10 % per °C (Barker et al., 2005; Elderfield and Ganssen, 2000; Lea et al., 

1999). Still, differences in uptake of Mg between species do exist, and species-specific 

calibrations are statistically preferable giving more accurate tempererature estimates (Barker 
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et al., 2005). 

 

3.5.2 Secondary effects 
 

Other parameters than temperature also affect the Mg/Ca ratio in foraminiferal shells. This 

complicates the interpretation of Mg/Ca results and calls for corrections of the measurements 

before any temperature signal can be extracted. Dissolution, salinity, gametogenesis and 

changes in seawater Mg/Ca are the major secondary effects. A short overview of the 

influence they can excert on Mg/Ca is given below, and the parameters that might have 

affected the measurments in this study are discussed in Chapter 5. 

 

Dissolution 

Dissolution of calcite can occur within the water column, at the water-sediment interface and 

within the sediments (Dekens et al., 2002). It systematically reduces the Mg/Ca ratios of the 

foraminiferal tests due to the preferential dissolution of calcite with high Mg/Ca ratios, which 

is calcite formed in relatively warm waters (e.g. surface waters) (Rosenthal et al., 2000). This 

causes a bias towards colder temperature estimates (Barker et al., 2005). Typically, the 

dissolution effect is ignored unless the core locations are situated below the lysocline. 

However, dissolution can affect Mg/Ca at shallower depths if the water is undersaturated with 

respect to carbonate ions, CO3
2-. Foraminferal tests are built from a mixture of HCO3

- and 

CO3
2-. In cases where the carbonate ion concentration at the site, [CO3

2-]in-situ, is less than the 

saturation concentration of carbonate ion, [CO3
2-]satureation, seawater will dissolve calcite in an 

effort to reach a saturated state. The effect of the carbonate ion concentration on the Mg/Ca 

ratio in specific samples can be evaluated by comparing the observed carbonate ion 

concentration at the site with the saturation concentration of carbonate ion:  

 

 ΔCO3
2- = [CO3

2-]in-situ – [CO3
2-]satureation                                                           (Equation 9) 

 

If the ΔCO3
2- is a negative value, the water at the site is underaturated with respect to 

carbonate ions, and a dissolution effect on the foraminiferal Mg/Ca can be assumed. 

 

Salinity 

Large salinity changes also appear to influence the Mg/Ca ratios of biogenic calcite. 
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Especially in cases where Mg/Ca-derived temperatures are used to extract the salinity signal 

from oxygen isotope measurements, it is important to assess the salinity affect on Mg/Ca. A 

culturing experiment by Nürnberg et al. (1996) showed that a salinity increase of 10 % gave 

an increase of 110 % in Mg/Ca. Variations smaller than 3 % showed no systematic impact, 

however. Hence, salinity is thought to mostly effect Mg/Ca uptake by foraminifera in closed 

basins where large salinity variations occur (Nürnberg et al., 1996). In an open ocean, like the 

Atlantic, it can be assumed that the foraminiferal Mg/Ca ratios are not affected by salinity.  

 

Changes in the seawater Mg/Ca 

Changes in the Mg/Ca ratio concentration in the ocean could potentially affect the uptake of 

Mg by foraminifera. However, since both Ca and Mg have relatively long oceanic residence 

times (106 and 107 years, respectively), the Mg/Ca ratio of seawater can be considered 

constant over glacial-interglacial timescales (Rosenthal et al., 2000). Hence, variations in 

foraminiferal Mg/Ca are mainly due to physical fractionation factors like temperature. 

 

Vertical migration/gametogenesis 

As mentioned, many planktonic foraminfera migrate vertically in the water column during 

their life-cycle. As they mature, they commonly descend to deeper waters often forming 

calcite over a large depth- and temperature range (Barker et al., 2005). Moreover, many 

species add a secondary crust of calcite in deep waters right before reproduction 

(gametogenesis). Due to biophysiological controls, this gametogenic calcite may have a 

Mg/Ca ratio which is distinct from the primary calcite even when formed under similar 

temperature conditions (Nürnberg et al., 1996). The Mg/Ca ratio of the test of an individual 

thus reflect the average ratio incorporated througout the life-cycle of the organism at different 

times, depths and temperatures (Barker et al., 2005). 

 

3.5.3 Cleaning methods 
 

It is important that the carbonate samples are clean in order to avoid bias in the measurements 

caused by clays or other contaminants that can influence the Mg/Ca ratios. Following the 

cleaning procedures described by Barker et al. (2003), contaminants were removed from the 

foraminiferal calcite before any measurements were made. The cleaning process involves five 

steps and is carried out in a clean-lab. A short overview of the steps are given below: 
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1. Crushing of foraminfera 

In order to open all the chambers and allow chamber fill to escape, the foraminferal tests are 

carefully crushed between two glass plates and transferred to a clean sample vial. It is 

important to avoid over-crushing, because powdered carbonate will stay in suspension and be 

removed during cleaning instead of settling at the bottom of the vial.  

 

2. Removal of clay materials 

Test fill is brought into suspension by adding ultrapure water (UHQ) to the samples. After the 

carbonate has settled, most of the overlying solution is removed. The samples are placed in an 

ultrasonic bath in order to encourage the separation of clay which is still bound to the test 

surfaces. UHQ is again added to the sample to bring loose clays into suspension. The sample 

is briefly allowed to settle and the overlying solution is removed. These water cleaning steps 

are repeated a minimum of four times, before ethanol is used instead of water for further clay 

removal. Ethanol has lower viscosity than water and can better separate clays still attached to 

the tests. The ethanol cleaning steps are repeated once. 

 

3. Removal of organic matter 

Alkali buffered 1% H2O2 solution is added to each vial. The tubes are secured in a rack with a 

lid to prevent them from opening while under pressure. The rack is placed in boiling water in 

ten minutes to dissolve organic material. At 2.5 and 7.5 minutes it is taken out of the bath, 

and shaken to release any gas bubbles, and at 5 minutes the rack is placed in ultrasonic bath 

for the same reason. These steps are performed to maintain contact between reagent and 

sample. The vials are then centrifuged and the overlying solution removed, before all the 

steps are repeated. Any remaining oxidizing reagent is removed by water cleaning. 

 

4. Weak acid leach 

The dilute acid, 0.001 M HNO3, is then added to remove any adsorbed contaminants from the 

test fragments. The samples are ultrasonicated and the acid is replaced with UHQ. Brief 

settling is allowed before the overlying water is removed. The water cleaning step is repeated, 

and any remaining solution is removed from each sample. 

 

5. Dissolution 

Finally, the samples are dissolved in 350 µl 0.1 M HNO3. To aid dissolution, the vials are 
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placed in ultrasonic bath, and a vortex is used to remove CO2 gas bubbles. The samples are 

then centrifuged to allow settling of any remaining silicate particles, and 300 µl of the 

solution is transferred to a clean sample sube, leaving any particles to be discarded in the 

residual 50 µl. 

 

3.5.4 Element analysis 
 

The Mg/Ca ratios of the samples are determined through element analysis using an ICP-AES 

device. Inductively coupled plasma atomic emission spectrometry is a method used to 

identify elements in a sample and quantify their concentration. The method provides accurate 

and precise measurements of the Mg/Ca content in carbonates, and is an effective tool for the 

production of high-resolution paleoceanographic data (deVilliers et al., 2002). The procedure 

basically concerns three steps: atom formation, excitation and emission. Before going into the 

plasma, the dissolved sample is converted to an areosol consisting of tiny droplets by using a 

nebulizer with a nebulizing gas. Water is driven off, and the remaining sample is converted 

into gaseous form. The plasma has a temperature of 6000 to 10 000°C, and as the sample 

enters, gas phase bonds are broken and only atoms remain present. The atoms gain energy 

from collisions, and excitation of electrons to a higher energy level takes place. When an 

electron returns from its excited state, light with a distinctive wavelength for that particular 

element is emitted. By measuring the wavelengths of the emitted light on specific «lines», the 

elements present in the sample can be identified. The quantity of each element is given by the 

light intensitiy (Manning and Grow, 1997).  

 

Mg/Ca measurements in this study were performed with the use of the ICP-OES Thermo 

IRIS Radial View of the ICP-lab at the Department of Earth Science (UoB). The 

concentration of Mg is measured on line 279 nm, and the Ca concentration is measured on the 

line 315 nm. Two runs of each sample are required. For the first run, 280 µl of 0.1 M HNO3 

are added to 70 µl of sample solution and vortexed. The diluted samples are run in the ICP-

OES to determine their Ca concentrations. Using these concentrations, a second set of 

samples is made from the remaining sample solutions. The sample solutions are diluted to 

gain an optimum Ca concentration of 40 ppm for the intensity calibration of Mg/Ca 

{deVilliers, 2002 #120;}. 
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During the analysis a standard solution with the same Ca concentration as the sample 

solutions are run for every ten sample. The elemental concentrations in the standard solutions 

are known, and can therefore be used to evaluate the precision of the measurements. The 

reproducability of the measurements given by the drift of these «quality checks» is better than 

0.01. Finally, an intensity ratio calibration of the analysed samples is performed. The 

measured Mg/Ca intensity ratios of the known standards are regressed against the Mg/Ca 

concentration ratios of the known standard solutions. As a result, linear calibration curves are 

obtained enabling simple conversion from intensity ratios to concentration ratios. The 

concentrations are given in millimol per mol (mmol/mol) (deVilliers et al., 2002). 

 

3.5.5 Mg/Ca temperature equations 
 

A number of species-specific Mg/Ca:temperature calibration studies have been carried out 

over the last decade. Since G. ruber is frequently used for reconstructing sea surface 

temperatures, many temperature equations have been made for this species.  To select which 

temperature equation to use for G. ruber, several equations were considered (Cléroux et al., 

2008; Dekens et al., 2002; McConnell and Thunell, 2005; Regenberg et al., 2009). The 

calibrations of Dekens et al. are based on core-top sediments from the Rio Grande Plateau in 

the western South Atlantic. McConnell and Thunell base their calibrations on sediment-trap 

material from the Bay of California in the eastern Pacific Ocean, Regenberg et al. use tropical 

Atlantic and Caribbean sediment-surface samples, while the calibrations by Cléroux et al. is 

based on core-top sediments from all over the North Atlantic Ocean.  

 

Each equation was used to estimate modern ocean temperature based on the measured Mg/Ca 

ratios in the youngest sample in each core (2-3 cm). The estimates are expected to represent 

the temperature at 25 m; the assumed fixed habitat depth of G. ruber. These temperatures 

were compared to observed modern temperatures at this depth given by temperature data 

from a station located near the core sites, at 37.33°W, 03.87°S (WOCE, 2002). Hence, an 

indication of which equation is best suited for estimating modern sea surface temperatures at 

the three core-sites is provided. Ideally Mg/Ca ratios of core-top samples from a multicore 

should have been used for this comparison, as they would better represent modern conditions. 

However, the samples used are from the Late Holocene so the estimates should roughly 

correspond with modern temperatures. Fewer calibrations studies have concerned the deep-
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dwelling G. truncatulinoides, which has a complicated life-cycle with vertical migration of up 

to several hundred meters (Mulitza et al., 1997). Temperature equations do exist for this 

species as well (Cléroux et al., 2008; Regenberg et al., 2009), but with fewer equations to 

compare, the selection was more random. 

 

3.6 Reconstruction of upper-ocean temperature stratification 

 

The difference in δ18O between planktonic foraminiferal species with different habitat depths 

can be used as a proxy for the temperature stratification in the upper ocean. Mulitza et al. 

(1997) demonstrated the usefulness of this method by successfully reconstructing the 

latitudinal change in upper-ocean stratification in the Atlantic ocean from 60°S to 10°N. They 

compared the measured δ18O of two mixed-layer species with the δ18O values of the deep-

dwelling G. truncatulinoides (dex). Their results showed a clear increase in Δδ18O towards 

the tropics, interpreted to reflect the increased surface-to-deep temperature gradient in the 

upper part of the water column. Capable of reflecting various modern conditions, the method 

can be applied to reconstructions of changes in upper-ocean stratification in the past. 

Increased Δδ18O between shallow- and deep-living species is taken as an indication of 

increased stratification of the upper ocean with shallower mixing and a decrease in 

thermocline depth. In contrast, decreasing Δδ18O suggests low-stratified surface waters with 

deeper mixing and a smaller vertical temperature gradient. In other words, thermocline depth 

increases as Δδ18O drops. In this study, the method of Mulitza et al. is used in an attempt is to 

reconstruct upper-ocean stratification in the western tropical Atlantic associated with specific 

climatic extremes in the North Atlantic. The differences in both δ18O and Mg/Ca between the 

shallow dwellers, G. ruber and G. trilobus and the deep dweller, G. truncatulinoides are 

calculated for each timeslice. The results are used to investigate the link between variations in 

the Atlantic thermohaline circulation and changes in the tropical thermocline depth.  



50 

4 Chronology 
 

In order to compare the three cores with each other, a chronology is developed allowing time 

to be the common axis for all the cores. The chronology is based on Accelerator Mass 

Spectrometry (AMS) 14C datings of monospecific foraminiferal samples from core GS07-

150-17/1 GC. Amandine Tisserand picked the foraminifers, and the AMS 14C measurments 

were performed at Poznan Radiocarbon Laboratory in Poland. An age model for the dated 

core is constructed with the use of linear interpolation between the 14C dates. Using down-

core variations in X-ray Fluorescence (XRF) intensities of iron (Fe), titanium (Ti) and 

calcium (Ca), core 18/2 and 20/2 are correlated with core 17/1, and a common chronology is 

established. 
 

4.1. Radiocarbon (14C) dating 

 
Radiocarbon is produced in the upper atmosphere by neutron bombardment of cosmic 

nitrogen atoms:  

 
 14

7N + 10n → 14
6C + 11H               (Equation 10) 

 

The 14C atoms quickly combine with oxygen to form 14CO2. Along with the rest of the carbon 

dioxide they are mixed throughout the atmosphere and absorbed by oceans and by living 

organisms through photosynthesis and respiration. Living organisms use carbon to build new 

tissues that are more or less in equilibrium with atmospheric CO2, and t he 14C that decays to 
14N is continuously replaced by new 14C atoms. Upon death, however, the decay of 14C within 

the organism continues without replacement of new 14C. Hence, if the rate at which the 

radiocarbon decays is known, the time passed since the organism died can be calculated 

(Lowe and Walker, 1997; Walker, 2005). 

 

AMS 14C dating can be used to measure the age of very small samples. To obtain the 

radiocarbon age of a sample, the 14C/12C ratio is measured in an accelerator mass 

spectrometer and compared to a standard ratio of modern material. Because of temporal 
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variations in 14C production in the atmosphere, however, 14C ages deviate from calendar ages. 

Reduced production of 14C in the atmosphere leads to plateaux of constant 14C age and an 

underestimation of the true age of samples. To obtain the «true» age, calibration from 

radiocarbon ages to calendar ages is necessary (Lowe and Walker, 1997). Such calibrations 

are done using calibration curves based on absolutely dated tree-ring chronologies and other 

archives (Reimer et al., 2009; Stuiver et al., 1998).   

 

Before calibration, the 14C ages of marine samples also have to be corrected for the marine 

reservoir effect. The radiocarbon content of a given sample depends on the organism's source 

of carbon, and due to differences between atmospheric and oceanic radiocarbon content, the 

ages of marine samples are overestimated. Mixing of old deep water into upper-ocean water 

affects the radiocarbon content of the surface water, as deep water is depleted in 14C due to its 

isolation from the atmosphere. Hence, organisms living in these waters are seemingly older 

than they really are and a reservoir age has to be substracted from the radiocarbon age 

(Walker, 2005).  

 

From core GS07-150-17/1 GC, seven AMS 14C dates were obtained (Table 4). They were all 

measured from tests of G. sacculifer in the size range of 250-400 µm. The weight of each 

sample was approximately 8 – 10 mg. The dates were corrected for a marine reservoir age of 

400 years (Arz et al., 1999b; Bard, 1988; Hughen et al., 1998), and conversion to calendar 

years was performed using the calibration program Calib 6.0 with the Marine09 calibration 

data set (Reimer et al., 2009). The ages are given in years before 1950 (BP 1950). 
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Depth 
(cm) Lab.no. 

Dated 
material 

C-14 yrs 
(BP 1950) 

Error 
± 

Cal. yrs (BP 
1950) 

Age range ± 
1σ 

Sed. rate 
(cm/1000 yrs) 

0 
Poz-

34998 G.sacculifer 1255 30 796 746 – 846  

10 
Poz-

34999 G.sacculifer 3060 30 2816 2772 – 2859 4,95 

50 
Poz-

35000 G.sacculifer 8570 50 9210 9127 – 9293 6,26 

100 
Poz-

35002 G.sacculifer 11680 80 13183 
13106 – 
13260 12,58 

150 
Poz-

35003 G.sacculifer 15450 80 18194 
18065 – 
18322 9,98 

200 
Poz-

35004 G.sacculifer 21840 120 25669 
25420 – 
25918 6,69 

250 
Poz-

35005 G.sacculifer 27110 180 31180 
31081 – 
31278 9,07 

 

4.2 Age model 

 
An age model for core GS07-150-17/1 GC (Figure 23) has been constructed using linear 

interpolation between the calibrated dates from Table 4. The age model is based on the 

assumption that the sedimentation rate 

has been constant between two dated 

levels. The sedimentation rate between 

two datings is given by the difference 

quotient of the linearly interpolated 

line between the dates. The 

sedimentation rates for each interval 

are given in Table 4, and the mean 

sedimentation rate is ~8.23 cm/1000 

years. The sedimentation rates are 

used together with the radiocarbon 

dates to calculate a «running age» 

for the core, giving an approximate 

age to every cm downcore.  

Table 4: AMS 14C datings from core GS07-150-17/1. All ages were measured from tests of 
G.sacculifer. Depth and Laboratory reference number are given in the two leftmost columns. A 
marine reservoir age of 400 years was subtracted from the AMS 14C dates before calibration. The 
calibrated ages are given in calendar years before year 1950 (BP 1950) 

Figure 23: Age model for core GS07-150 17/1 GC based 
on linear interpolation of the calibrated ages in Table 4. 
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4.3 Correlation 

 
Core GS07-150-18/2 GC and core GS07-150-20/2 GC are stratigraphically linked to the 14C 

AMS dated core by correlation of X-ray Fluorescence (XRF) derived intensities of calcium 

(Ca), titanium (Ti) and iron (Fe). The three cores were scanned at the Department of Earth 

Science (UoB) with the use of the ITRAX Core scanner developed by Cox Analytical 

Systems (Croudace et al., 2006). Correlation between the cores was carried out in the 

computer program AnalySeries 2.0 (Paillard et al., 1996). 

 

4.3.1 XRF analysis 

 

X-ray Fluorescence is an analytical method used to determine the chemical composition of 

materials (Brouwer, 2003). The application of XRF analysis to paleoclimate research 

provides a very efficient way of establishing lateral elemental variations in sediment cores. 

Variations in element content along core profiles can be used to infer changes in the 

sedimentary environment and to provide a basis for correlation between cores (Croudace et 

al., 2006). In XRF spectrometry, X-rays produced by a source irradiate a sample, and the 

elements present in the sample emit energy in the form of fluorescent light. Each element 

releases radiation with a distinctive wavelength. By measuring the wavelengths of the emitted 

radiation, it is possible to find out which elements are present in the sample. The amount of 

each element is given by the intensity of their radiation (Brouwer, 2003).  

 

The ITRAX Core scanner used in this study, produces high-resolution XRF elemental 

profiles at a maximum resolution of 200 µm. The scanning is carried out without disturbing 

the sediments, leaving the cores intact for further analysis (Croudace et al., 2006). A 

molybdenum X-ray tube was used as the source to irradiate the cores. This tube gives good 

results for both transition and heavy elements. The alternative was the chromium tube which 

is best suitable for analysing lighter elements only (Croudace et al., 2006), and would not 

have given optimal results for the intensity of titanium and iron which are used for the 

correlations. The resolution was set to 500 µm which is high, but less than maximum. It was 

chosen to lower the measuring time. The exposure time of each measuring point was set to 10 
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seconds and the Mo X-ray source was set to set to 30 kV and 55 mA. 

 

The elemental intensities of Ti and Fe in marine sediments provide a chemical proxy for the 

input of terrigenous material from continental areas by fluvial and eolian transport. The 

carbonate content in the sediments, represented by the Ca intensity, is mainly related to 

marine biogenic production. Thus, the Ti/Ca and Fe/Ca ratios can be used to quantify the 

dilution of marine carbonate by terrigenous sediments (Arz et al., 1999a; Haug et al., 2001; 

Peterson et al., 2000). The supply of terrigenous material to the ocean is mainly controlled by 

river discharge, which is linked to the continental climate. Hence, variations in the ratios of 

Ti/Ca and Fe/Ca give indications of changes in the climate of the continental source areas 

(Arz et al., 1998). The precipitation regime of the North East Brazilian coast is of major 

importance to the river discharge and sediment supply to the continental margin where the 

cores in this study are from. Hence, increased humidity over the continent may have 

increased the river runoff and sediment supply to the continental slope.  

 

Several studies from the western tropical Atlantic relate periods of increased terrigenous input 

to the continental margin, reflected by higher Ti/Ca and Fe/Ca ratios, to more humid 

conditions in the adjacent coastal areas (Arz et al., 1998, 1999a; Haug et al., 2001; Peterson et 

al., 2000). Arz et al. (1998) demonstrate that warming of the surface water off NE Brazil 

concurred with pulses of land-derived sediments which suggest humid conditions on the 

north-eastern Brazilian continent. XRF measurements from their cores show high ratios of 

Fe/Ca during the YD and especially during H1. Low ratios of Fe/Ca occurred during the 

Bølling-Allerød and the Holocene with very low ratios during the late Holocene. A similar 

pattern was also demonstrated by Arz et al. (1999a) for Fe/Ca and Ti/Ca ratios. Hence, 

according to Ti/Ca and Fe/Ca NE Brazil was warm and humid during stadial times, and less 

so during the Bølling-Allerød interstadial and the Holocene. The results of the XRF analysis 

of the cores in this study show similar development in Fe/Ca and Ti/Ca to those presented by 

Arz et al. (1999a) and Arz et al. (1998). The results are, however, not used for climatic 

interpretation. They are mainly used as a tool for the correlation of the three cores. 

 



55 

 

 

4.3.2 Correlation of the cores 

 
The correlated down-core Ca, Ti/Ca and Fe/Ca variations in the three cores from this study 

are shown in Figure 24. Climate periods are marked with grey and white bars, while the black 

dotted lines indicate the mean age of the respective timeslice samples. The yellow dotted line 

represents the late Holocene timeslice in core 20/2. This particular timeslice sample deviated 

a lot in age from the 

corresponding timeslices in the 

two other cores. The purple 

dotted lines marks the age of 

two samples from which G. 
truncatulinoides was picked, as 

this species could not be found 

in the youngest timeslice in core 

18/2 and 17/1. The Fe/Ca and 

Ti/Ca records show several large 

peaks in ratio values, and a 

rough pattern is recognized in all 

three cores. The pattern 

resembles that of the Fe/Ca and 

Ti/Ca ratios from the cores of 

Arz et al. (1999a). Fe variations 
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Figure 24: Correlated Ca, 
Ti/Ca and Fe/Ca variations in 
gravity cores GS07-150-20/2, 
GS07-150-18/2 and GS07-
150-17/1. Climate periods are 
marked with grey and white 
bars, while the black dotted 
lines indicate the mean age of 
the respective timeslice 
samples. The yellow dotted 
line represents the late 
Holocene timeslice in core 
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marks the age of two samples 
from which G. 
truncatulinoides was picked. 

 



56 

alone could be attributed to redox changes in the sediment, while Ti is insensitive to 

environmental redox variations (Haug et al., 2001; Yarincik et al., 2000). Since Fe and Ti 

seems to vary with similar patterns, Fe is considered as not diagenetically controlled, and 

both Fe and Ti are interpreted to reflect changes terrigenous input to the study area. 

 

The inter-core similarity between the elemental and ratio records provides a rational for 

making correlations based on the curves. The records of core 20/2  and 18/2 are therefore 

«tied» to the records of 17/1 using AnalySeries 2.0 (Paillard et al., 1996). Tie points are 

chosen manually based on matching prominent features in the records. They are placed where 

relatively large shifts in elemental intensities occur, assuming that these transitions represent 

regional changes in the sedimentary environment and are thus time parallel. The fitting of tie 

points allows stretching and squeezing of the records so that time can be the common axis for 

all the cores. A simple quality control for the correlation is the computer program's automatic 

display of downcore changes in sedimentation rates. Tie points are chosen as to avoid sudden 

changes to very high or very low sedimentation rates within brief time intervals. As a result 

of the correlation, the three cores receive the same «running age» with an approximate age for 

each cm. Hence, the age of each sample is estimated (Table 5). 

 

 

 

 

 

 

 

 

 

Table 5: Timeslices in cores GS07-150 20/2 GC, GS07-150 18/2 GC 
and GS07-150 17/1 GC. Depth and age 
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5 Results 
 

In this chapter the results of the oxygen isotope and Mg/Ca measurements are presented, as 

well as the steps taken to reconstruct the paleo upper-ocean thermal stratification at the core-

sites. Several factors complicate the use of foraminferal δ18O and Mg/Ca as temperature 

proxies, and it is important to evaluate how these potential sources of error might have 

affected the geochemical composition of the shells. Therefore, the quality of the 

measurements is assessed, and any corrections made are described.  

 

5.1 Age control 
 

When estimating climate variability and correlating records, age control is of key importance. 

This is particularly critical in timeslice studies as they only concern short intervals of the 

climate record. If the selected samples do not actually represent the time periods of the 

climatic events, the study fails to detect the proxy targets at the times of interest. Hence, in 

order to assess the quality of the timeslice study, an evaluation of the age control on the 

samples is necessary. The age model of core 17/1 is based on linear interpolation between 

seven radiocarbon ages. The sedimentation rate seems to have been quite steady throughout 

the whole period of deposition, and the age model is considered to be acceptable. The age 

models for core 18/2 and 20/2 are based on correlations of the high-resolution XRF intensity 

records with the dated core. The records of Fe, Ti and Ca all reveal the same major variations. 

Hence, the deglacial climatic extremes were easily recognized i all cores, but the tuning 

proved problematic for the Holocene. In this epoch climatic variability has occurred on a 

smaller scale, and specific climatic events are more difficult to distinguish. Since no fine 

tuning was done, the Holocene ages may include large errors.  

 

In order to save time, the sample depths in each core were chosen before the radiocarbon ages 

were estimated and the age models were made. Instead, the XRF intensity records of Fe, Ti 

and Ca were used. The selection was based on the recognition of prominent variations in 

Fe/Ca and Ti/Ca ratios assumed to be connected to the Last Glacial Maximum, Heinrich 

event H1, Bølling-Allerød, the Younger Dryas, the Early Holocene and the Late Holocene. 

Figure 24 show the tuned element records of the three cores with the time span of the samples 

from each timeslice marked with bars. The samples seem to cover the targeted climatic events 
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well, though problems might be expected in the short-lasting Bølling-Allerød timeslice, 

which is bound by abrupt excursions on both sides. Hence, a sample that deviates slightly 

from the age of the timeslice could yield proxy measurements with values very different from 

those representative for Bølling-Allerød.  

 

Although the samples seem to cover the timeslices well, basing the sample selection on Fe/Ca 

and Ti/Ca records instead of an age model might be problematic. Even though Fe/Ca and 

Ti/Ca respond to the same climatic forcing as Mg/Ca and δ18O, the signal might be delayed 

differently in different proxies. Therefore, there is a risk that the selected samples are not 

quite representative for the timeslices of interest, and the measurements might not actually 

represent the climatic extremes as well as intended. Furthermore, even if the samples do 

represent the timeslices well, many of the timeslices are from periods of large changes in 

climate. Hence, a one cm thick sediment slice could include foraminiferal specimens, which 

calcified under very different climatic conditions. It is therefore difficult to assess if the 

average measurements from i.e. the B/A timeslice is indicative of the Bølling period, the OD 

or the Allerød period. A futher evaluation of the timeslices is made in the Chapter 6. 

 

5.2 Oxygen isotope measurements 
 

5.2.1 General δ18O stratigraphy 
To obtain preliminary indications of the 

oxygen isotope development in the three 

cores, the δ18O of the planktonic 

foraminifer, G. sacculifer (with the final 

sac-like chamber), was measured every 10 

cm downcore. The resulting δ18O 

stratigraphies are plotted in Figure 25. As 

G. sacculifer is a surface-dweller, the 

records are believed to represent mixed-
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Figure 25: General δ18O stratigraphies of 
cores GS07-150 20/2, 18/2 and 17/1 plotted 
against age.  
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layer conditions. All three cores display several large shifts in δ18O superimposed on a 

negative glacial-interglacial trend that is evident also when the ice-volume effect is taken into 

account (Appendix A, Figure A.1). 

Most of the major shifts are recognized in all the cores, but deviations in timing and 

amplitude are observed. Core 17/1, which has the best age control, shows the following 

development: A negative shift of about 0.7 ‰ occurs in the isotopic residuals between 18 and 

16 ka BP. From about 15 ka BP an increase of about 0.4 ‰ is followed by a decrease of 

almost 1 ‰ starting around 14 ka BP and reaching its minimum around 12 ka BP. Between 

12 and 10 ka BP the δ18O residuals increase by about 0.9 ‰, and through the Holocene 

several shifts of up to 0.3 ‰ occur.  

 

5.2.2 δ18O raw data for the timeslice study 
 

Figures 26, 27, 28, 29 and 30 show the respective δ18O values of planktonic foraminifers G. 

trilobus, G. ruber (w), G. glutinata, G. siphonifera and G. truncatulinoides (dex) plotted 

against age. The measurements from core 17/1, 18/2 and 20/2 are given in red, green and 

blue, respectively. Yellow curves are drawn between the average δ18O values for each 

timeslice. In the following section the integrity of the raw data is evaluated. 
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Figure 26: Measured 
δ18O for G. trilobus in 
the six timeslices. Each 
timeslice is given a 
mean age for all the 
three cores. Values 
from cores 20/2, 18/2 
and 17/1 are marked in 
blue, green and red, 
respectively. The 
yellow line marks the 
average δ18O for each 
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drawn around outliers, 
identified based on the 
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Section 5.2.3. 
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Figure 27: Measured 
δ18O for G. ruber (w) in 
the six timeslices. Each 
timeslice is given a 
mean age for all the 
three cores. Values from 
cores 20/2, 18/2 and 
17/1 are marked in 
blue, green and red, 
respectively. The yellow 
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Figure 28: Measured 
δ18O for G. glutinata in 
the six timeslices. Each 
timeslice is given a mean 
age for all the three 
cores. Values from cores 
20/2, 18/2 and 17/1 are 
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Figure 29: Measured 
δ18O for G. siphonifera 
in the six timeslices. 
Each timeslice is given 
a mean age for all the 
three cores. Values 
from cores 20/2, 18/2 
and 17/1 are marked in 
blue, green and red, 
respectively. The yellow 
line marks the average 
δ18O for each timeslice. 

 

Figure 30: Measured 
δ18O for G. 
truncatulinoides (dex) in 
the six timeslices. Each 
timeslice is given a mean 
age for all the three 
cores. Values from cores 
20/2, 18/2 and 17/1 are 
marked in blue, green 
and red, respectively. 
The yellow line marks 
the average δ18O for 
each timeslice. Circles 
are drawn around 
outliers which were 
identified based on the 
criterion described in 
Section 5.2.3. 
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5.2.3 Intraspecific variability in the oxygen isotope measurements 
 

Duplicate measurements were acquired for the shallow and intermediate species in each 

sample, and four replicate measurements were obtained for most samples of the deep-

dwelling G. truncatulinoides. While the replicate measurements for some of the species are 

well in agreement with each other, the replicates of other species show significant deviations. 

In order to reduce the intraspecific spread in the measurements, a composite data set is made 

with the δ18O values from all three cores. It is assumed that the correlations between the cores 

are good, and that the core-sites have experienced the same environmental conditions through 

time. Still, although the composite plot reduces the spread in the data, the intraspecific 

variability is high for some species. This affects the precision of the paleotemperature 

reconstruction.  

 

A few measurements deviate a lot from the rest of the data. Using Chauvenet's criterion, ten 

measured values are identified as outliers and removed from the dataset (marked in Figures 

26, 28 and 30). Chauvenet's criterion states that if there is less than 0.05 probability that the 

suspect value occurs among the measurements recorded, it should be rejected. Removing 

outliers without external evidence that the measurement is incorrect is controversial, and 

repeated measurements of the suspect values would be preferrable to rejecting data without 

further investigation. However, as time does not allow for more measurements, Chauvenet's 

criterion provides an objective and quantitative method for dealing with strongly deviating 

data.  

 

The δ18O values of deep dwelling G. truncatulinoides show an especially high scatter. This 

could be a result of the ontogenic effect or the large depth range over which the species 

califies (Section 3.4.2). However, the variability might also reflect seasonal changes in the 

ambient water temperatures, which are best expressed in the subsurface waters below the 

mixed layer. The changes are caused by vertical migration of the thermocline in response to 

seasonal changes in the ITCZ and the trade wind strength. G. truncatulinoides lives and 

calcifies in this depth range of high seasonal temperature variability, and incorporates the 

seasonal signal in their shells. Berben (2010) also observed large variability in δ18O values for 

this species in samples from cores close to the study area in the present study.  
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Post depositional processes can also influence the intraspecific variability in the oxygen 

isotope measurements. This can affect the preservation of the original signal by changing the 

over-all geochemical composition of the tests after deposition or otherwise contaminate the 

samples. The major parameters in this respect are post-depositional dissolution, post-

depositional calcification and contamination by clays and other materials. Measured [CO3
2-] 

from GEOSECS station 46 shows that the seawater in the region is saturated with respect to 

carbonate ions (Bainbridge, 2004). Moreover, the samples used in this study are from cores 

collected well above the lysocline. Together this indicates that little post-depositional 

dissolution occurs at the core-sites, so no attempts to correct for dissolution are made. Post-

depositional calcification is not a problem either, as indicated by the Mn/Ca ratios measured 

in the element analysis (Section 5.2.2). Contamination by clays and other materials could, 

however, be a bias in the measurements as some of the samples were visually dirty and no 

cleaning steps were performed before the measurements were done. G. siphonifera and G. 

truncatulinoides were quite rare in some samples. Therefore, dirty specimens were used for 

some of the measurements, and this could have affected the results.  

 

To decrease the intraspecific variability in the measurements, more replicate measurements 

would be of interest. Alternatively, the number of specimens used in each measurement could 

be increased. As demonstrated by the results, the amount of scatter in the data for a given 

species, seem to be related to the number of specimens measured for each δ18O value. The 

lowest intraspecific variability is shown for the smallest species, G. glutinata, for which up to 

23 specimens were picked for each sample. Higher variability is displayed by the larger 

species, for which only a few specimens were used per measurement. Despite the large scatter 

in data displayed by some species, there is a certain consistency between the cores in the 

repsective δ18O developement of the different species. For each measurement, various sources 

of error might be influencial. However, if focus is put on the glacial-interglacial trends in the 

data, which are recognized in all cores, the spread in the oxygen isotope measurements is 

considered acceptable. 

 

5.2.4  Corrected oxygen isotope data 
 

In Figure 31 the mean ice volume corrected δ18O (δ18OIVC) is plotted against age for all 

species. In each plot, standard deviations are indicated with black bars, and a red dotted line 
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shows the glacial-interglacial trend in the δ18OIVC values. The uppermost panel displays the 
231Pa/230Th data of McManus (2004)  and N-GRIP data over the last 24, 000 years. 231Pa/ 
230Th is a kinematic proxy for the MOC, where decreasing ratios are interpreted as an 

increase in overturning. The N-GRIP data represent a δ18O record from an ice core from 

Greenland. The different climate periods are marked through all the plots, and temperature 

change represetenting approximately 1°C (Shackleton, 1974)  is indicated for all the species. 
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Figure 31: Average corrected 

δ18O values for all species. 

Standard deviations are 

indicated by blue bars, and the 

over-all trends are depicted by 
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The ice-volume effect on δ18Ow for a particular time is estimated based on studies of fossil 

coral reefs in the Barbados and Tahiti which give a detailed record of the global sea-level 

during the last deglaciation (Fairbanks, 1989) As global sea-level is related to the amount of 

ice stored on the world's continents, such a record has been used to construct a curve 

reflecting the global ice effect on the δ18O of ocean water since the last glacial maximum 

(Peltier and Fairbanks, 2006). Correction of the foraminferal δ18O measurements can, thus, 

easily be made. Naturally, larger corrections have to be made to the measurements from time 

periods with large build-up of ice than to those from times of less continental ice. As a result, 

the δ18O values representing the timeslices from the last glacial are lowered by up to 1.1 ‰, 

while the late Holocene values remain unchanged. The glacial-deglacial trends in the data are 

thus altered. Less steeply decreasing δ18O gradients from the LGM to the Holocene are 

revealed for the shallow-dwelling and intermediate-dwelling species, while the δ18O of G. 

truncatulinoides show an increasing trend in the same time period. 

 

After the corrections for the ice-volume effect have been made, the residual δ18OIVC reflect 

variations in temperature, the δ18O of the ambient water and potential vital effects. Vital-

effects are responsible for out-of-equilibrium fractionation of the oxygen isotopes during 

calcification.  As mentioned in Section 3.4.2, correcting the δ18OIVC for vital-effects is not 

considered crucial for the interpretation of the results. Since the study ultimately concerns 

changes in δ18O gradients between different species, vital effects can be ignored if assumed to 

be constant through time. However, it can be noted that the difference in δ18OIVC betweem 

shallow and deep dwellers  is probably exaggerated due to the symbiont effect on the shallow 

dwellers. 

 

Variations in water mass properties can be a major bias for the temperature proxy. Such 

variations can result from changes in salinity and/or a change in the influence of different 

water masses at the depth at which a given foraminiferal species lives. As mentioned, the 

combination of Mg/Ca and oxygen isotope measurements can potentially be used to estimate 

salinity changes through time, but due to the large scatter in the Mg/Ca measurements such 

calculations are not made. The area of investigation is characterized by excess evaporation 

and, consequently, high sea surface salinity (SSS). In a study from the western tropical 

Atlantic, Arz et al (1999b) supposed near-constant SSS since the LGM, and Wolff et al. 

(1998) assigned only 0.2 ‰ change in δ18O to local SSS changes in the area. Furthermore, 

Arz et al. (1999b) claim that the variations in SSS due to direct riverine input are negligible, 
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because only small rivers discharge from the adjacent continent. Hence, it is more likely that 

variations in the δ18OIVC values were caused by changes in temperature than changes in 

salinity.  

 

5.3 Mg/Ca measurements 
 

5.3.1 Mg/Ca raw data 
 

The Mg/Ca ratio results from the element analysis of the timeslices in cores GS07-150 20/2, 

18/2 and 17/1 are presented below. Figure 32 shows the Mg/Ca ratios of G. ruber (w) plotted 

versus age after the  intensity calibration. The measurements from core 17/1, 18/2 and 20/2 

are indicated by red, green and blue triangles, respectively. Three outliers are marked with 

circles, and Mg/Ca G. ruber (mean) with and without the outliers are indicated by orange and 

blue line. The late Holocene measurement from core 20/2 is also not included by the blue 

line. The dotted lines (orange and blue) indicate the glacial-interglacial trends in the data 

(with and without outliers). The equivalent results for G. truncatulinoides (dex) are displayed 

in Figure 33. No outliers were identified in these data, and Mg/Ca G. truncatulinoides (mean) 

is illustrated by the orange line. An evaluation of the raw data is presented in the following 

section. 
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Figure 32:  Mg/Ca ratios 
of G. ruber (w) plotted 
versus age. The Mg/Ca 
ratios are given as 
intensity concentrations 
(mmol/mol). The red, 
green and blue triangles 
show the results for 
cores GS07-150 17/1, 
18/2 and 20/2, 
respectively. The orange 
line indicates the mean 
results from all the 
cores. The blue line 
indicates the mean 
result, not including the 
results from three 
measurements indicated 
by circles and also 
excluding the late 
Holocene measurement 
of core 20/2. The dotted 
lines (orange and blue) 
indicate the linear 
regression (trend) lines. 

 

Figure 33: Mg/Ca ratios 
of G. truncatulinoides 
(dex) plotted versus age. 
The Mg/Ca ratios are 
given as intensity 
concentrations 
(mmol/mol). The red, 
green and blue triangles 
show the results for 
individual cores GS07-
150 17/1, 18/2 and 20/2, 
respectively. The orange 
line indicate the mean 
result from all the cores. 
The dotted orange line 
indicates the linear 
regression (trend) line. 
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5.3.2 Evaluation of the Mg/Ca measurements 
 

The possible sample contamination by clays and other materials is evaluated by the measured 

Fe/Ca ratios in the samples. During element analysis, the iron (Fe) content of the samples is 

measured on line 259. If the Fe/Ca ratio is higher than a critical value, it is possible that 

contaminants in the samples have affected the measured Mg/Ca concentrations. Barker et al. 

(2003) reject measured sample Fe/Ca ratios of >0.1 mmol/mol as potentially significantly 

contaminated by silicate clays. Figure B.1 and B.2 in Appendix B show the Fe/Ca ratios for 

G. ruber (w) and G. truncatulinoides (dex), respectively. They reveal that many of the 

measurements have a Fe/Ca ratio higher than 0.1 mmol/mol. However, silicate contamination 

of the samples can also be highlighted by a covariance between Mg/Ca and Fe/Ca (Barker et 

al., 2003). As indicated in Figure B.3 (Appendix B), there is no evident correlation between 

Mg/Ca and Fe/Ca in this study. Therefore, despite high Fe/Ca concentrations, none of the 

measurements are discarded, and possible contaminants are assumed to have been 

successfully removed.   

 

Post-depositional calcification can occur when carbonate react with the sediment pore water. 

Secondary calcite is precipitated as Mn-oxide rich «coatings» on the foraminiferal shells. The 

high content of Mn oxide is caused by anoxic breakdown of organic matter deeper in the 

sediments. Hence, secondary calcification is indicated by increasing manganese (Mn) content 

with sediment depth. The secondary calcite can affect the Mg content in the samples. To 

avoid such influence in the dataset, Barker et al. (2003) reject samples with Mn/Ca ratios of 

>0.1 mol/mol as potentially significantly influenced by secondary calcification. None of the 

samples in this study showed Mn/Ca exceeding this limit (Figure B.4 and B.5, Appendix B), 

so post-depositional calcification is not considered a problem. 

 

As previously mentioned, many planktonic foraminfera migrate vertically in the water 

column during their life-cycle. As they mature, they commonly descend to deeper waters 

often forming calcite over a large depth- and temperature range (Barker et al., 2005). 

Moreover, many species add a secondary crust of calcite in deep waters right before 

reproduction (gametogenesis). Due to biophysiological controls, this gametogenic calcite may 

have a Mg/Ca ratio which is distinct from the primary calcite even when formed under 

similar temperature conditions (Nürnberg et al., 1996). The Mg/Ca ratio of the test of an 

individual thus reflect the average ratio incorporated througout the life-cycle of the organism 
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at different times, depths and temperatures (Barker et al., 2005). While this is not considered 

a problem for G. ruber, the Mg/Ca values of G. truncatulinoides are most likely affected by 

vertical migration over great depths. Hence, part of the interspecific variability in the Mg/Ca 

data for this species, can be attributed to this. 

 

With only one measurement per sample, it is very difficult to assess the reliability of the 

Mg/Ca measurements. However, the mean Mg/Ca values of the measurments from all three 

cores, enable some evaluation of the measurements in each timeslice. As seen in Figure 32 

and Figure 33, both species display large spread in Mg/Ca values, and three outliers are 

removed for G. ruber. Due to the large scatter in the data, a detailed study of the Mg/Ca 

development through time is far-fetched. The focus will thus be on the main trends. 

 

5.3.3 Temperature estimates 
 

A temperature equation by Dekens et al. (2002) (without any dissolution corrections) was 

chosen for the estimation of temperatures based on the Mg/Ca results of G. ruber. This 

equation provides estimates for the youngest timeslice that are well within the range of 

Holocene temperatures, and gives the over-all closest estimates to the modern temperature at 

25 m. Their calibration is based on core-tops from the sub-tropical South-Atlantic. The 

advantage of core-top calibrations over sediment-trap and culture-based calibrations is that 

they are based on foraminifers that are part of the sediment record and have gone through a 

complete life-cycle including gametogenesis and any secondary calcification. A disadvantage 

is that post-depositional alteration of the material can introduce errors to the calibration (Lea 

et al., 2003). Moreover, in contrast to culture studies, core-top calibrations are based on 

temperatures that must be estimated. Hence, temperature becomes a dependent variable, 

which can cause large errors (Anand et al., 2003). Post-depositional dissolution and 

calcification are not likely to have affected the samples, as shown in Section 5.3.2. A culture-

based study would provide a calibration with an independent temperature variable, but this 

method also has disadvantages. All taken into consideration, the calibration equation of 

Dekens et al. is preferred. This equation is able to reconstruct modern sea surface temperature 

well, and is based on material from a subtropical South-Atlantic core from a location fairly 

close to the study area. The calibration shows the following relationship between Mg/Ca and 

temperature: 
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 Mg/Ca = 0.38 exp (0.09T)  R2 = 0.70                                          (Equation 11) 

 

The derived temperature equation is as follows: 

 

 T = 1/0.09*ln (MgCa/0.38)                                                                         (Equation 12) 
 

 

Since the depth habitat of G. truncatulinoides is not precisely known, it is difficult to evaluate 

different temperature equations based on the comparison of core-top Mg/Ca:temperature 

estimates and modern temperature profiles. Moreover, no Mg/Ca measurements were done on 

recent samples of G. truncatulinoides because of the scarcity of this species in the Holocene 

samples. Hence, estimating modern ocean temperatures is not possible, and the selection of a 

temperature equation for G. truncatulinoides is more random. An equation by Cléroux et al. 

(2008) is chosen. Cléroux et al. provide a recent study concerning the Mg/Ca-temperature 

calibration for G. truncatulinoides (dex), and the temperature equation used is based on core-

top sediments from the Atlantic ocean. The equation provides temperature estimates that are 

well within the range of Holocene temperatures. It shows the following relationship between 

Mg/Ca and temperature: 
 

Mg/Ca = 0.62 ± 0.16 exp (0.074 ± 0.017 Tiso),  R2 = 0.65                              (Equation 13) 
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Figure 34: G. ruber Mg/Ca-
derived temperature estimates 
based on the calibration of 
Dekens et al., 2002. The red, 
green and blue triangles show 
the estimates for individual 
cores GS07-150 17/1, 18/2 and 
20/2, respectively. The orange 
line indicate the mean result 
from all the cores, excluding the 
outliers. The dotted orange line 
indicates the linear regression 
(trend) line, excluding the 
outliers. Modern observed 
temperature at 25 m is also 
included in the plot. 
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The derived temperature equation is as follows: 

 

 T = 1/0.074*ln (MgCa/0.62)                                                                       (Equation 14) 

 

The Mg/Ca-derived temperature estimates based on the equations of Dekens et al.  (2002) and 

are presented in Figure 34 and Figure 35. Figure 34 shows the Mg/Ca-derived temperature 

estimates of G. ruber (w) based on the calibration of Dekens et al. (2002) for each core 

plotted versus age. The equivalent results for G. truncatulinoides (dex) are shown in Figure 

35. Cléroux et al. (2008) 

 

 
 
 

 

 

 

 

5.3.4 Glacial-interglacial trends 
 

Figure 34 and Figure 35 show the estimated temperature development of G. truncatulinoides 

and G. ruber for core GS07-150 17/1, 18/2 and 20/2, respectively. The observed modern 

temperatures at the assumed mean calcification depths of G. ruber is included in Figure 34. 
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Figure 35:  G. truncatulinoides 
(dex) Mg/Ca-derived 
temperature estimates based on 
the calibration of Cléroux et al., 
2008. The red, green and blue 
triangles show the estimates for 
individual cores GS07-150 17/1, 
18/2 and 20/2, respectively. The 
orange line indicate the mean 
result from all the cores, 
excluding the outliers. The 
dotted orange line indicates the 
linear regression (trend) line, 
excluding the outliers. 
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This temperature was measured at 37.33°W, 3.87°S (WOCE, 2002), where the observed 

November temperature at 25 m is 28.67°C. In agreement with the trends of the of the shallow 

and intermediate dwelling species in the oxygen isotope analyses, the shallow-dwelling G. 

ruber show a rising trend in SST from the LGM to the Holocene. The deep-dwelling G. 

truncatulinoides show the opposite trend in the same time period, just as in the oxygen 

isotope analyses. These temperature trends are evident in all three cores.  

 

5.4 Stratification index 
 

Downcore variations of interspecific planktonic foraminiferal Δδ18O are thought to reflect 

vertical migration of the thermocline through time. The δ18O difference between deep and 

shallow dwellers is a proxy for the stratification of surface waters, and has been used to 

estimate both temporal and spatial variations in thermocline depth (Mulitza et al., 1997). A 

deepening of the thermocline would produce higher Δδ18O values, while a shallower 

thermocline would be reflected by lower Δδ18O values. In Figure 36, this approach is applied 

using G. ruber, G. trilobus and G. glutinata as shallow-dwellers and G. truncatulinoides as a 

deep-dweller. The plots reveal a glacial-interglacial trend of increasing Δδ18O. 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 36: 
Stratification 
proxy: Δδ18O 
between shallow 
and deep species. 
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6 Discussion 
 

In this chapter the results presented in Chapter 5 are analysed and put into a paleoclimatic 

perspective. Assuming that δ18OIVC is predominantly a function of temperature, variations in 

the oxygen isotope measurements of the different foraminiferal species are used to indicate 

changes in the upper-ocean thermal stratification. The δ18O values are not translated into 

temperature estimates, but are used as a tool to indicate relative changes in temperature, 

taking the Mg/Ca results and various other parameters into consideration. As mentioned, 

large spread in the oxygen isotope measurements complicates the interpretation of the 

temperature signal for the different timeslices. In order to reduce the scatter in the data, it 

would be of interest to get more measurements per species for each timeslice. Still, several 

inferences can be made from the measurements that have been obtained. Focus is put on the 

large glacial-interglacial trends in δ18O developement which are evident in all three cores, but 

variations centred on the different timeslices are also discussed. In the first section, the 

expectations, given by the hypothesis formulated in Chapter 1, are described. In the next 

sections the results are compared to the expected temperature developement, and the 

hypothesis is assessed. 

 

6.1 Expectations 
 
As explained in Chapter 1, it is believed that different modes of circulation prevailed in the 

Atlantic Ocean during the transition from the last glacial to the present interglacial (Figure 5). 

Shifts between the different modes have been linked to abrupt changes in climate at a variety 

of locations on Earth, and several studies have related variations in tropical climate and 

oceanography to changes in ocean circulation. Manabe and Stouffer (1997)  suggest an 

accumulation of heat in tropical waters during times of weak AMOC. This is believed to be a 

response to the reduced transport of warm surface and intermediate waters through the tropics 

to the Northern Hemisphere. The positive temperature anomalies shown by their model, are 

highest at intermediate depths, while changes in sea surface temperatures are less pronounced 

(Figure 1).  

 

If Manabe and Stouffer (1997)  presents a realistic picture of the relationship between ocean 
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circulation and the thermal stratification in the tropical Atlantic, it should be possible to 

detect similar temperature variations in the δ18O records obtained, as well as in the Mg/Ca 

derived temperature estimates. Figure 37 shows a simplified illustration of the temperature 

developement expected from surface and intermediate waters of the western tropical Atlantic 

from the LGM to the present. The black lines show the expected over-all glacial-interglacial 

temperature trends at the surface and at subsurface to intermediate depth. Superimposed on 

these trends, the temperature development reflecting deglacial temperature shifts in response 

to changes in 

overturning, is drawn 

in dark grey. The 

different climatic 

extremes 

investigated, are 

separated with 

lighter grey lines, 

and the strength of 

the MOC is noted for 

each period.  

 

 

As indicated in 

Figure 37 and Figure 

1, the shallow-

dwelling 

foraminiferal species are expected to reveal a slight increase in SST from the last glacial to 

the present interglacial. This development was described by Mix et al. (1986) in a study 

concerning the spatial variability in SST inferred for the tropical Atlantic during the last 

20,000 years. Their findings suggest that the tropical surface waters were characterized by 

cold glacial conditions and warm interglacial conditions. Hence, on a glacial-interglacial 

scale, tropical SST variations are believed to be in agreement with SST changes in the North-

Atlantic.  

 

Figure 37: Simplified illustration of the temperature development 
expected from surface and intermediate waters of the western 
tropical Atlantic from the LGM to the present. The black lines show 
the expected temperature trends at the surface and subsurface to 
intermediate depth. Deglacial temperature shifts are depicted by 
dark grey lines. Green diamonds indicate the age of the timeslice 
samples. 
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At intermediate depths, however, the glacial-interglacial temperature trend is thought to be 

different. Lynch-Stieglitz et al. (1999) suggest that the AMOC was reduced to about 2/3 of 

the present circulation during the LGM. As a consequence, the northward cross-equatorial 

heat transport was reduced, and heat is believed to have accumulated in the southern 

hemisphere and the upper-ocean of the tropical Atlantic. This response is related to the 

interhemispheric see saw effect (Stocker, 1998). As shown by Manabe and Stouffer (1997), 

accumulation of heat is thought to be best expressed at subsurface to thermocline depths. 

Hence, the deep dweller, G. truncatulinoides, and perhaps also the deepest intermediate 

dweller, G. siphonifera, are considered as potential recorders of this heat storage. Through the 

transition to interglacial conditions, when the AMOC is strong, a general increase in the 

northward transport of heat is expected. Accumulated heat is believed to have been released, 

and as a consequence, a temperature developement opposite to that of the surface-dwellers is 

expected at intermediate depths from the LGM to the Holocene (Figure 37).  

 

Superimposed on the long-term trends, shifts in temperature are expected for the different 

timeslices. The temperature extremes centred on the deglaciation are believed to have been 

hemispherically asymmetrical (Mix et al., 1986). The modelling results of Manabe and 

Stouffer (1997) show the same pattern for both sea surface and sub surface temperatures, only 

with higher anomalies at depth. The deglacial variations are assumed to reflect changes in 

MOC strength believed to result in variations in heat storage in the upper ocean of the tropical 

Atlantic. For the LGM, H1 and the YD when the overturning slowed down (McManus et al., 

2004), a relatively deep thermocline is expected as heat accumulated. During the B/A and the 

Holocene, more vigorous deepwater formation and deeper overturning prevailed (McManus 

et al., 2004). This is expected to have caused a shoaling of the thermocline as heat was 

released northwards. Hence, the temperature variability on this timescale is expected to be 

opposite to that of the North Atlantic. This anti-phase relationship between the high-latitude 

North Atlantic and the western tropical Atlantic has been documented in several studies (Arz 

et al., 1999b; Mix et al., 1986; Rühlemann et al., 1999). 

 

In Figure 37, the green diamonds mark the approximate age of each set of timeslice samples. 

This gives a better indication of what temperature developement can be expected between the 

timeslices, as large changes in climate characterize several of the climatic extremes that are 

investigated. For instance, the B/A, YD and early Holocene timeslices represent early stages 



76 

in these three periods. Hence, the paleotemperature data from these timeslices reflect 

conditions that are more similar to the end of the previous periods: H1, B/A and YD, 

respectively. Taking this into account, the temperature developement expected to be reflected 

in the data, can be formulated more precicely: 

 

The shallow-dwellers are expected to reveal small variations in temperature close to the sea 

surface, as indicated by Manabe and Stouffer's model (Figure 1). An increase in SST is 

expected from the LGM timeslice to the B/A timeslice, reflecting heat accumulation through 

the LGM and especially H1. This development has been observed in alkenone data from the 

Caribbean (Rühlemann et al., 1999). A decrease in temperature is then expected between the 

B/A- and YD timeslice, reflecting the release of heat through the B/A period. Accumulation 

of heat is exptected during the YD, indicated by an increase in temperature from the YD 

timeslice to the early Holocene timeslices. Such a development was also show by the SST 

proxy of Rühlemann (1999). The Holocene developement is assumed to reveal a decrease in 

SST as the MOC became strong and heat was released northwards across the Equator. G. 

truncatulinoides and G. siphonifera are expected to display the same developement as the 

other species. However, since the shifts in temperature are believed to have been stronger at 

intermediate depths, larger amplitudes in the records of one or both of these two species can 

be predicted. 

 

6.2 Preliminary indications 
 

The general δ18O records of the three cores give a preliminary indication that western tropical 

Atlantic SST variations through the last deglacial period can be linked to changes in North 

Atlantic climate. Figure 25 reveals a glacial-interglacial decrease in the δ18O of the surface-

dweller G. sacculifer, which is consistent with the expected SST development. Furthermore, 

pronounced shifts in the δ18O values seem to concur with deglacial climatic extremes that 

have been documented in the North Atlantic. Assuming that changes in δ18O primarily reflect 

temperature variations, the records are largely in agreement with the studies of Arz et al. 

(1999b) and Ruhlemann et al. (1999)  which indicate that the deglacial temperature variations 

in the western tropical Atlantic were opposite of the temperature variations in the North 

Atlantic. If good age control is assumed, the δ18O records in Figure 25 show an increase in 
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SST during H1, followed by cooling in the Bølling-Allerød period. A subsequent warming is 

implied for the Younger Dryas before another cooling  occurred in the beginning of the 

Holocene. 

 

6.3 Preferential habitat depths of the different species 
 

No attempt is made to estimate the calcification depths of the different species in this study. 

Still, to some extent, the measured δ18OIVC can be used as an indication of the depth range 

and water mass in which each species lives (Figure 31). If the δ18OIVC is primarily a function 

of temperature, the shallow dwellers are expected to give lower δ18OIVC values than the 

intermediate dwellers, and the deep dweller is expected to record the highest values. It is 

obvious that the deep-dwelling G. truncatulinoides records a very different δ18OIVC signal 

than the other species, and G. siphonifera seems to live in subsurface water. This intermediate 

dweller is expected to primarily record temperature conditions of the TSW, but has been 

known to migrate deeper to the SACW (Field, 2004). As mentioned, the δ18OIVC values of 

intermediate dweller G. glutinata does not express the expected  δ18OIVC relative to the 

shallow dwellers. The isotopic values of this species are more similar to those of shallow 

dweller, G. ruber. Hence, in this study G. glutinata, G. ruber and G. trilobus are all 

considered to be confined to the upper part of the Tropical Surface Water. 

 

G. truncatulinoides is known to calcify in deeper waters. As seen in Figure 31, G. 

truncatulinoides deviates a lot in δ18OIVC and glacial-interglacial trend when compared to the 

results of the other species. The relative positive offset from the values of the other species is 

taken as a confirmation that G. truncatulinoides indeed is a recorder of deeper waters. Since 

the offset is so large and the over-all trend opposite to those of the other species, it is believed 

that the species record conditions below the mixed-layer as suggested by Ravelo and 

Fairbanks (1992) and Mulitza et al. (1997) . G. truncatulinoides is thus expected to primarily 

record the temperature conditions of the SACW, the water mass underlying the mixed layer. 

In the tropical Atlantic the SACW today extends to about 500 m. A shallowing of the 

underlying AAIW might potentially have affected G. truncatulinoides over time.  
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6.4 Stratification proxy 
 

The use of interspecific δ18O gradients as a proxy for the vertical temperature gradient in the 

upper water column, has been proposed by several authors for well-stratified regions of the 

tropical ocean (e.g. Mulitza et al., 1997; Ravelo and Fairbanks, 1992; Steph et al., 2009). The 

difference in δ18O between species with different preferential habitat depths, provides a useful 

tool for monitoring variations in thermocline depth (TCD). Since the proxy is based on 

differences in δ18O between species, it is independent of the global ice volume. From the 

recontructed variations in TCD, changes in heat storage in the tropical upper ocean water, can 

be inferred. The method assumes little vertical migration of the foraminfera in response to 

changes in TCD, and salinity gradients are also presumed to be relatively constant. 

 

As mentioned in Chapter 3, increased Δδ18O between shallow- and deep-living species is 

taken as an indication of increased stratification of the upper ocean with shallower mixing 

and shoaling of the thermocline. Decreasing Δδ18O suggests low-stratified surface waters 

with deeper mixing and a smaller vertical temperature gradient. In other words, the 

thermocline deepens as Δδ18O drops. If the climate model of Manabe and  Stouffer (1997) 

shows a realistic image of the response of the tropical Atlantic ocean to changes in the THC, 

lower Δδ18O values would be expected for periods associated with a reduced AMOC. In 

times of more vigorous ocean circulation, a shallower thermocline would be reflected by 

higher Δδ18O values. 

 

The over-all glacial-interglacial trends displayed in Figure 36 show an increase in δ18O 

difference between the shallow-dwelling species and the deep-living G. truncatulinoides 

(dex). The positive glacial-interglacial trends are interpreted as a shoaling of the thermocline 

through the deglacial period. In other words, the amount of heat stored in the upper-ocean of 

the western tropical Atlantic decreased from the LGM to the Holocene period. This 

development concurs with the general strengthening of the AMOC through the transition 

from glacial to interglacial conditions (McManus et al., 2004)  (Figure 31), as the northward 

transport of heat through the tropical Atlantic increased. Hence, the observed development in 

the stratification proxy supports the hypothesis on the glacial-interglacial scale. 

 

On the timeslice level, the results of the stratification proxy do not agree with the anticipated 

development (Figure 36). This might be linked to the abruptness and short duration of the 
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climatic shifts. While the long glacial-interglacial δ18OIVC trends show large differences 

between the inferred surface and subsurface temperatures, the abrupt temperature changes 

centred on the deglaciation, are expressed equally in the upper water column. Both surface 

and subsurface seem to experience an instant repsonse to AMOC changes, and all species 

display temperature variations opposite to those documented in the northern hemisphere 

(Figure 31). Since the difference in the temperature response to short-lasting interruptions of 

the AMOC is small between the surface and subsurface, the heat accumulation in the tropical 

upper ocean is not reflected by the stratification proxy. The difference between surface and 

subsurface temperatures seems build up over longer periods, such as the glacial-interglacial 

period for which the stratification proxy expresses the expected signal. 

 

6.5 Glacial-interglacial trends 
 
To aquire a more detailed assessment of the long-term temperature developement, the δ18OIVC 

values of the different species are examined. As seen in Figure 31 a clear glacial-interglacial 

decrease in δ18OIVC is evident for G. trilobus, G. ruber and G. glutinata. The change is 

considered to mostly reflect an increase in temperature. G. ruber is regarded as the best 

foraminiferal recorder of SST (Ravelo and Fairbanks, 1992) , and since the two other species 

also display similar temperature evolutions, changes in preferential habitat depth of the 

shallow dwelling species are considered less important for the interpretation of the long-term 

δ18O developement than temperature variations. The average difference between the LGM 

and Late Holocene δ18OIVC values for the three species is 0.4‰. Assuming that the δ18OIVC 

can be attributed to temperature alone, a glacial-interglacial shift in surface water temperature 

of  almost 2°C can be inferred using the δ18O-temperature relationship estimated by 

Shackleton (1974) . The trend in δ18OIVC for the surface living species is consistent with the 

study of Mix et al. (1986)  which suggest an interhemispheric symmetry in the SST 

development on this time scale- It also agrees with the δ18O data from N-GRIP  shown in 

Figure 26.  

 

The trend of intermediate-dwelling G. siphonifera only shows a slight decrease in δ18OIVC 

from the LGM to the Holocene, although (as discussed below) large variations are associated 

with this species between the timeslices. Hence, only a small over-all change in temperature 

in the depth range of this species is inferred from the LGM to present. G. truncatulinoides, 
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however, displays a clear glacial-interglacial increase in δ18OIVC from the LGM to the 

Holocene. Assuming that temperature constitutes the only control on the oxygen isotopic 

signal, a temperature decrease of about 1.5°C can be inferred in the depth range of G. 

truncatulinoides (Shackleton, 1974). Changes in preferential habitat depths over time have 

been proposed for this species in the western Atlantic (Cléroux and Lynch-Stieglitz, 2010). 

As discussed in Section 6.3 and Section 6.7, such changes would severely complicate the 

interpretation of the isotopic measurements. 

 
The Mg/Ca-derived temperatures for G. ruber show a glacial-interglacial trend that is in very 

well agreement with the mean δ18OIVC of the same species (Figure 38). Figure C.1 in 

Appendix C also reveals the good correlation between the two variables. This implies that G. 

ruber is a suitable species for Mg/Ca paleotemperature reconstructions, and that the changes 

in δ18OIVC are mainly dependent on temperature. The difference in Mg/Ca-temperatures for 

G. ruber between the LGM and the Late Holocene is about 1.6°C. Although this estimate is 

uncertain, the good agreement with the temperature difference inferred from the δ18OIVC 

values, can be noted.  

 

The Mg/Ca-derived temperatures for G. truncatulinoides does not display the same degree of  

covariance with the species' mean δ18OIVC values Figure 39. However, the Mg/Ca 

temperature estimates do indicate a decreasing glacial-interglacial trend. For G. 

truncatulinoides the calculation of the glacial-interglacial temperature shift is a lot more 

uncertain than for G. ruber. Since no late Holocene Mg/Ca measurements were obtained, a 

comparison can only be made between the Mg/Ca-temperature from the LGM and the 

observed modern temperature at an assumed fixed habitat depth (Bainbridge, 2004). This 

gives a glacial-interglacial temperature difference at intermediate depths of almost 4°C. The 

estimate is probably not realistic, but at least the expected negative trend in temperature at 

intermediate depth is confirmed in the Mg/Ca as well. 

 

The fact that both the oxygen isotope results and the Mg/Ca data reveal the same glacial-

interglacial trends, strengthens the hypothesis that more heat was stored in the upper ocean in 

of the western tropical Atlantic during the LGM than today. When comparing the obtained 

data with the 231Pa/ 230Th data of McManus (2004)  in Figure 31, further support for the 

hypothesis is gained. 231Pa/ 230Th is a kinematic proxy for the AMOC, where decreasing 

ratios are interpreted as an increase in overturning. Both McManus et al. (2004)  (Figure 31) 
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and Lynch-Stieglitz et al. (1999) indicate that the strength of the AMOC increased from the 

LGM to the present. The increase in AMOC strength occurs alongside the decrease in 

inferred heat accumulation in the western tropical Atlantic, supporting the idea that variations 

in tropical Atlantic heat storage is related to AMOC strength. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 38: Comparing Mg/Ca temperature estimate of G. 
Ruber with δ18O 

Fig. 39: Comparing Mg/Ca temperature estimate of G. 
Truncatulinoides  with δ18O 
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6.6 Timeslice reconstructions 

 

As seen in Figure 31, an over-all temperature increase from the LGM to the B/A is indicated 

by a decrase in δ18OIVC. The drop in oxygen isotope composition is evident for all species 

between the H1 and the B/A timeslices, while the δ18OIVC developement from the LGM to the 

beginning of H1 is more variable. During the LGM, G. truncatulinoides (and G. siphonifera) 

show an increase in δ18OIVC. This might reflect the onset of the deglaciation as the AMOC 

increased in strength and heat was released northwards across the equator before the AMOC 

was interupted in H1. In H1 the AMOC is believed to have been strongly reduced, causing 

heat to accumulate in the upper tropical Atlantic. From the B/A timeslice to the timeslice 

representing early YD, an increase in δ18OIVC is shown for all species. Therefore, a drop in 

temperature can be inferred through the B/A. This is in agreement with the expected 

developement for B/A, where a stronger AMOC causes the accumulated heat to be released 

as it is transported north across the Equator.  

 

During the YD, accumulation of heat is again believed to have happened. The records of G. 

ruber, G. glutinata and G. siphonifera supports this expectation. These species show a 

decrease in δ18OIVC through the YD. However, G. glutinata and G. truncatulinoides display 

an increase in δ18OIVC during the same period. This could partly be a result of the selection of 

timeslices. The timeslices are not optimal for the temperature reconstructions as they do not 

capture the minimum or maximum temperatures of all of the different climatic extremes 

(Figure 31 and Figure 37). This is particularly problematic for the B/A-YD transition. 

Through the Holocene a general increase in δ18OIVC is shown for all species. This is 

interpreted to reflect a decrease in temperature as accumulated heat is transported northwards 

with the surface and intermediate currents of the strong interglacial AMOC. 

 

Although the timeslice developements in δ18OIVC for the different species are not completely 

in agreement with each other, the records are consistent with the hypothesis to a large extent. 

For the most part, all the species indicate similar temperature developements for each 

timeslice, regardless of their habitat depths. Hence, the previously described anti-phase 

relationship with North-Atlantic SST is demonstrated. G. siphonifera shows shifts in δ18OIVC 

with very large amplitudes in some of the timeslices. This might imply that the large changes 
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in temperature, occurred at the depth where G. siphonifera calcifies. This agrees with the idea 

that the temperature anomalies associated with changes in the AMOC are best expressed in 

subsurface waters.  

 

As mentioned, the Mg/Ca-derived temperatures of G. ruber agree very well with the inferred 

temperatures from the δ18OIVC results. The species reflect a SST developement that largely 

confirms the expectations given in Section 6.1. Figure 38 displays the mean δ18OIVC and the 

Mg/Ca temperature estimates of G. ruber versus age in one plot, where both y-axes span 3°C. 

Hence, the difference in the amplitudes of the fluctuations of Mg/Ca temperatures and 

δ18OIVC can easily be observed. While the over-all LGM – Holocene development is very 

similar, the fluctuations of δ18OIVC display larger amplitudes than the Mg/Ca temperature in 

the timeslices. This might indicate that the δ18OIVC values are influenced by δ18O varations in 

the water mass which are not related to temperature. The difference in the signal is largest for 

H1 and the YD. Decreased salinity during these periods could explain the difference in 

amplitudes. Such changes in salinity could be related to increased freshwater input caused by 

a southward migration of the ITCZ during H1 and the YD. As described in Chapter 1, such 

migrations of the ITCZ have been suggested by several authors (e.g. Peterson et al., 2000; 

e.g. Wang et al., 2004) . The migrations have been linked to variations in rainfall, reflected in 

the Ti and Fe content of marine sediments off the northern South American coast. Arz 

(1999a) linked increased runoff from north-eastern Brazil to periods of northern coolings 

(Arz et al., 1999a). This is consistent with the salinity variations that could possibly be 

inferred from Figure 38, and also with the XRF intensity records obtained for the correlation 

of the cores in this study (Figure 24).  

 

As mentioned, in contrast to G. ruber, the Mg/Ca results of G. truncatulinoides show a very 

poor correlation with the δ18OIVC values. Through H1 the temperatures develop in the 

opposite direction of what is expected. For B/A and the YD, however, the results support the 

temperature developement inferred from the δ18OIVC values. The large scatter in the data, 

makes the interpretation very uncertain, so no conclusions based on the Mg/Ca 

measurements, are drawn about the subsurface temperature variations between the timeslices. 
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6.7 Paleoceanographic implications 
 

 
As discussed in Section 6.5 the δ18OIVC values are in well agreement with the expected 

glacial-interglacial temperature trends. Hence, the hypothesis that changes in heat 

accumulation in the tropics is related to AMOC strength, seems viable. However, the changes 

in δ18OIVC could be a result of other influences. As mentioned, changes in the preferential 

habitat depth of G. truncatulinoides have been suggested by (Cléroux and Lynch-Stieglitz, 

2010). Moreover, changes in water mass properties by increasing influence of AAIW could 

also alter the oxygen isotopic composition of the deep-dweller. Since G. truncatulinoides is 

the species recording the glacial-interglacial temperature shift at intermediate depth, the 

change in δ18OIVC of species is investigated more closely below. 

 

6.7.1 Changes in preferential habitat depth 
 

The reconstruction of upper ocean temperature stratification is based on the observation that 

different species of planktonic foraminifera live vertically dispersed in the water column. The 

previous interpretations of the foraminiferal δ18OIVC values are made, assuming that the 

variations in the data reflect temperature changes within a relatively fixed depth range. The 

preferential habitat depths of the various species are assumed to be constant through time, so 

that each species record temperature variations within a particular range of water depths. 

However, as preferential habitat depth depends on various properties of the water column, 

such as salinity, temperature, density and nutrients, the preferential habitat of a given species 

most likely varies through time. Changes in the depth habitats of several species in the 

tropical Atlantic have been indicated by Steph et al. (2009). Their results suggest that most 

species do not maintain a fixed habitat depth under different hydrographic conditions. Hence, 

variations in the preferential habitat depths of the various species potentially constitute a 

major bias in the paleotemperature reconstructions in this study, as hydrographic conditions 

are likely to have varied on glacial-interglacial timescales.  



85 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 40: Plot to the left: vertical temperature profiles for the western tropical 

Atlantic. The red curve represents modern conditions, while the blue curve 

depicts LGM temperatures inferred from the oxygen isotope results. Four 

scenarios that might have caused changes in the δ18OIVC of G. truncatulinoides, 

are illustrated. Plot to the right: the temperature shifts from the LGM to the 

present, inferred from the δ18OIVC of the different species, are illustrated by the 

grey line. The approximate glacial-interglacial change in the δ18OIVC of the 

shallow-dwellers and G. truncatulinoides are given by the grey arrows. For G. 

siphonifera the shift in δ18OIVC is about zero. The modern vertical stratification of 

water masses is given by the colour bar. 
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6.7.2 The glacial-interglacial shift in δ18OIVC of G. truncatulinoides 
 

Figure 40 displays two vertical temperature profiles given for the western tropical Atlantic. 

The red curve represents modern conditions, while the blue curve depicts LGM temperatures 

inferred from the oxygen isotope results. Compared to the modern profile, the LGM curve 

show cooler SST and a deeper thermocline. The LGM temperatures at depth are not 

necessarily realistic, as they are merely based on the temperature anomalies found by Manabe 

and Stouffer in their model experiment. As indicated by the glacial-interglacial difference in 

the oxygen isotope results of the shallow dwellers, the LGM SST temperature is almost 2°C 

lower than the present SST. At subsurface depths, where G. siphonifera lives, the temperature 

difference is about zero. Around the habitat depth of G. truncatulinoides the LGM 

temperature is about 1.5°C higher than at present. The anomalies are depicted in the plot at 

the right. The δ18OIVC of the shallow and intermediate dwellers are considered to primarily 

reflect temperature change at a relatively constant depth  range. However, four different 

scenarios that could result in the observed glacial-interglacial shifts in the δ18OIVC of G. 

truncatulinoides, are illustrated in the plot. The various scenarios are explored below to see 

which of them could produce the glacial-interglacial difference in δ18OIVC that agrees with the 

results. 

 

Scenario A 

Scenario A is illustrated by the horisontal arrow in Figure 40. In this scenario, the preferential 

habitat depth of G. truncatulinoides is assumed to be relatively constant through time and any 

variations in δ18OIVC are governed by temperature only. SST increases from the LGM to the 

present, and the temperature at intermediate depths decrease in the same time interval. The 

glacial warming of subsurface waters supports the hypothesis that heat is accumulated at 

intermediate water depths in the tropical Atlantic during periods of weaker AMOC. This is 

the scenario described in Section 6.5 which agrees well with the expectations for the results.  

 

Scenario B 

Scenario B is illustrated by the downward arrow. In this scenario G. truncatulinoides 

migrates to greater depths, while temperature conditions in the water column stays the same. 

The change in habitat depth does not, however, result in the positive temperature anomaly 



87 

expected from the hypothesis and reflected by the measured δ18OIVC of G. truncatulinoides. In 

order to account for the higher LGM temperature indicated by the δ18OIVC, the thermocline 

would have to be even deeper. Hence, this scenario does not support the hypothesis. 

 

Scenario C 

Scenario C is illustrated by the upward arrow. Any changes in δ18OIVC are attributed to 

upward vertical migration of G. truncatulinoides to warmer waters. Cléroux and Lynch-

Stieglitz (2010) suggested large changes in the preferential depth habitat of G. 

truncatulinoides based on oxygen isotope analyses on samples from the Gulf of Mexico and 

the western Atlanic. Their study proposed a much shallower habiatat for G. truncatulinoides 

between 8 and 10 ka BP compared to the deglaciation and the late Holocene. An shallower 

preferred habitat depth of G. truncatulinoides, would result in a temperature increase. 

Therefore, Scenario C could give the expected change in δ18OIVC without implying any 

temperature changes. 

 

Scenario D 

Scenario D is illustrated by the light blue arrow. Here, the preferential habitat depth of G. 

truncatulinoides is assumed to be relatively constant through time, and the changes in δ18OIVC 

are considered to be a response to changes in watermass properties due to an increased 

influence of Antarctic Intermediate Water. AAIW taking up more of the upper water column, 

could explain the relatively higher LGM δ18OIVC values of G. truncatulinoides as this water 

mass has a lower δ18O signature than the TSW and SACW. In todays water column AAIW 

δ18O at the site is about 0-0.2 ‰, while the δ18O of the surface waters is about 0.8-1 ‰ 

(Schmidt et al., 1999) . Hence, as a rough estimate, the influence of AAIW could account for 

a decrease of up to 1 ‰ in δ18OIVC between the LGM and the Holocene, which is a lot more 

than the glacial-interglacial difference given by the measurements. However, one would 

expect AAIW to be colder than the TSW and SACW. Therefore, the thermocline would be 

pushed upwards and the cold water would cause a relative lowering of the δ18OIVC in G. 

truncatulinoides. Hence, the measured δ18OIVC values could be explained by the joint 

influence of change in the temperature and the isotopic signature of the water.  

  

As a near-independent temperature proxy, the measured Mg/Ca ratios of G. truncatulinoides 

can be used to assess the chance that AAIW acutally caused the trends seen in the oxygen 

isotope data. As mentioned, the Mg/Ca results cannot be regarded as very robust for each 
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timeslice due to few measurements and large scatter in the data. Still, the decreasing deglacial 

temperature trend seen in all the three records, implies that the LGM temperature was in fact 

warmer at intermediate depths. Since the Mg/Ca trends are considered trustable, Scenario D 

can most probably be discarded. To check further, the effect of AAIW could be evaluated by 

Mg/Ca measurements of benthic foraminfera, and changes in δ13C can indicate if any change 

in water mass influence took place at the preferential habitat depth range of G. 

truncatulinoides. 

 

6.8 Paleoceanographic implications inferred from the timeslice 
reconstructions 

 

Manabe and Stouffer's modelling study tries to simulate a Younger Dryas-like event. Hence, 

the hypothesis that they present a realistic picture of the tropical response to AMOC 

variability, is best evaluated by comparing the model results with the timeslice 

reconstructions since they represent changes on the same timescale as the modelling study. 

Because of the large scatter in the data, the timeslice reconstructions are not conclusive. 

However, some indications about the temperature developement are found. Figure 41 show 

the temperature anomalies with depth as given by Manabe and Stouffer (1997). The model 

show an increase of 0.5°C in SST and an increase of about 3°C in the depth range where G. 

truncatulinoides is assumed to calcify. In the figure, the approximate temperature change 

inferred through the YD are indicated by grey arrows for surface and subsurface waters by 

the δ18OIVC G. ruber and G. siphonifera. Although the magnitudes of the temperature changes 

are uncertain, the oxygen isotope results reveal a similar temperature response in the YD as 

shown by the model results. Both SST and subsurface temperature respond in the same 

direction, and the largest variations are shown in the habitat depth range of intermediate-

dwelling G. siphonifera. For H1 (not illustrated), a similar pattern is seen. Hence, in addition 

to supporting the hypothesis on the glacial-interglacial scale, the results also indicate a 

possible heat accumulation in the western tropical upper ocean during shorter interruptions of 

the AMOC. 
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Figure 41: Temperature 

anomalies with depth as given by 

Manabe and Stouffer (1997). The 

approximate temperature change 

inferred by δ18OIVC through the 

YD are indicated by grey arrows 

for surface and subsurface waters 

by the G. ruber and G. 

siphonifera. The modern vertical 

stratification of water masses is 

given by the colour bar.  
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7 Conclusion  
 

This study sets out to test the hypothesis that variations in the strength of the AMOC are 

related to  changes in the thermal stratification of the upper tropical Atlantic Ocean, as 

suggested in Manabe and Stouffer's (1997) modelling study. During periods of weak AMOC, 

reduced cross-equatorial heat transport by tropical ocean currents is believed to result in heat 

accumulation in the southern hemisphere, expressed by a warmer upper tropical water 

column. An attempt to reconstruct past thermal stratification of the tropical upper ocean is 

made for six time slices, believed to be associated with different modes of AMOC. The six 

time slices represent the Last Glacial Maximum, Heinrich event 1, Bølling-Allerød, the 

Younger Dryas and the early and late Holocene. Using the oxygen isotope composition and 

Mg/Ca ratios of the tests of five species of planktonic foraminfera, changes in temperatures at 

various depths in the upper water column are inferred.  

 

On a glacial-interglacial timescale, the results of the oxygen isotope analysis support the 

hypothesis that AMOC strength is linked to thermal stratification in the western tropical 

Atlantic. Variations in the species' preferential habitat depths could contribute to the observed 

variations in δ18O. However, whether the species' habitat depths are constant through the 

climate transitions, remains an unsolved question, and the conclusion drawn here is based on 

the assumption that the species maintained a relatively constant habitat depth during the 

deglaciation. For the LGM, which has been associated with weak AMOC, a relatively deep 

thermocline can be inferred by the oxygen isotope stratification proxy. In contrast, the 

stratification proxy implies stronger thermal stratification during the Holocene when strong 

AMOC prevailed. The glacial-interglacial trends in the δ18OIVC values of the different species 

indicate that SST was lower during the LGM than at present, while subsurface temperatures 

were higher. G. truncatulinoides appear to be a good recorder of temperature variability at 

intermediate depths on this timescale. The Mg/Ca measurements support the oxygen isotope 

results, as the same trends are shown in these data. Together both the stratification proxy and 

the trends in the data given by the two paleotemperature proxies, suggest that more heat was 

stored in the western tropical Atlantic during the LGM than during the present interglacial.  

 

On the timeslice level the stratification proxy is not useful since the difference in surface and 

subsurface temperatures seem to build up over longer time periods. The oxygen isotope 
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results for the LGM and YD are not conclusive as the temperature developments shown by 

the different species, are not in agreement with each other. However, the temperature induced 

changes in δ18OIVC agree with the expected developement for the other time periods. All 

species reveal an increase in temperature during H1, and a drop in temperature during B/A 

and through the Holocene. G. siphonifera displays the largest amplitudes, indicating that the 

largest variations in temperature happened in the habitat depth range of this species. Hence, 

G. siphonifera might be the best recorder of thermocline variations on this timescale. The 

Mg/Ca results for G. ruber strongly support the SST developement suggested by the δ18OIVC. 

However, higher amplitudes in the δ18OIVC values compared to the Mg/Ca-inferred 

temperatures suggest that the δ18OIVC values are influenced by an other component than 

temperature. If this component is salinity, the results indicate lower salinity during H1 and 

YD, and increased freshwater runoff related to a southward migration of the ITCZ during 

these periods is suggested. The Mg/Ca results of G. truncatulinoides support the  δ18OIVC 

results for some timeslices, but the interpretation of the temperature developement is 

uncertain. 

 

All taken into account, the hypothesis of the study can not be rejected. The results suggest 

that more heat was stored in the western tropical Atlantic upper ocean during the LGM when 

the AMOC was reduced, than during the Holocene, when vigorous overturning prevailed. 

Stronger uncertainty is tied to the link between tropical heat storage and the deglacial 

interuptions of the AMOC. However, the results of the study give incentive for further 

investigation of the topic. The optimal approach would be a full oxygen isotope stratigraphy 

with replicate measurements of all species from each cm down-core. However, a less time 

consuming alternative would involve the introduction of a few more time slices in order to 

capture the minimum and maximum temperatures for each climate period. Better tuning of 

the cores would be helpful in the selection of the new time slices.  

 

The oxygen isotopes of G. ruber proves to be a good indicator of temperature change, and G. 

truncatulinoides and G. siphonifera appear to record subsurface temperature variations. 

Therefore, further studies could focus on obtaining a more robust signal these three species. 

Additional Mg/Ca measurements are also needed in order to reduce the scatter in these data 

and acquire a more robust temperature signal. Finally, it would be useful to estimate the 

apparent calcification depths of each species, and hence, better constrain the temperature 

estimates to certain depth ranges. 
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Appendices 
 
 
Appendix A Stable oxygen isotope measurements 
 
 
Table A.1 Stable oxygen isotope measurements of G. sacculifer from cores GS07-150 20/2, 
GS07-150 18/2 and GS07-150 17/1. 
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Table A.2 Stable oxygen isotope measurements of G. trilobus from cores GS07-150 20/2, 
GS07-150 18/2 and GS07-150 17/1. 
 
 

 
 
Table A.3 Stable oxygen isotope measurements of G. ruber (w) from cores GS07-150 20/2, 
GS07-150 18/2 and GS07-150 17/1. 
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Table A.4 Stable oxygen isotope measurements of G. glutinata from cores GS07-150 20/2, 
GS07-150 18/2 and GS07-150 17/1. 
 
 

 
 
 
Table A.5 Stable oxygen isotope measurements of G. siphonifera from cores GS07-150 20/2, 
GS07-150 18/2 and GS07-150 17/1. 
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Table A.6 Stable oxygen isotope measurements of G. truncatulinoides (dex) from cores 
GS07-150 20/2, GS07-150 18/2 and GS07-150 17/1. 
 
 

 

Figure A.1 Ice-volume corrected δ18O stratigraphies of cores GS07-150 20/2, 18/2 and 17/1 
plotted against age. 
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Appendix B Mg/Ca, Fe/Ca and Mn/Ca results 
 
 
 
Table B.1 Mg/Ca, Fe/Ca and Mn/Ca ratios of G. ruber (w) from cores GS07-150 20/2, 
GS07-150 18/2 and GS07-150 17/1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



97 

 
 
Table B.1 Mg/Ca, Fe/Ca and Mn/Ca ratios of G. truncatulinoides (dex) from cores GS07-150 
20/2, GS07-150 18/2 and GS07-150 17/1. 
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Figure B.1 Fe/Ca ratios of G. ruber (w) plotted versus age. The Fe/Ca ratios are given as 
intensity concentrations (mmol/mol). The red, green and blue lines show the results for cores 
GS07-150 17/1, 18/2 and 20/2, respectively. 
 

Figure B.2 Fe/Ca ratios of G. truncatulinoides (dex) plotted versus age. The Fe/Ca ratios are 
given as intensity concentrations (mmol/mol). The red, green and blue lines show the results 
for cores GS07-150 17/1, 18/2 and 20/2, respectively. 
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Figure B.3 Fe/Ca versus Mg/Ca of G. ruber (w) and G. truncatulinoides (dex) for cores 
GS07-150 17/1, 18/2 and 20/2. 

 
 
 

Figure B.4 Mn/Ca ratios of G. ruber (w) plotted versus age. The Mn/Ca ratios are given as 
intensity concentrations (mmol/mol). The red, green and blue lines show the results for cores 
GS07-150 17/1, 18/2 and 20/2, respectively. 
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Figure B.5  Mn/Ca ratios of G. truncatulinoides (dex) plotted versus age. The Mn/Ca ratios 
are given as intensity concentrations (mmol/mol). The red, green and blue lines show the 
results for cores GS07-150 17/1, 18/2 and 20/2, respectively. 
 
 

 
 
Figure C.1  G. ruber δ18OIVC versus Mg/Ca. Pearson's correlation coefficient, r =-0.69.  
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Figure C.2  G. truncatulinoides (dex) δ18OIVC versus Mg/Ca. Pearson's correlation 
coefficient, r =-0.04. 
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