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Figure 1: Interactive zooming towards SF Bay, where at first all the traffic from the Bay Area is aggregated, to

a view where we can separate traffic from the three major airports, and even the distribution of traffic in each

airports‘ cardinal direction. This interaction is enabled by automatically updating the bandwidth of the KDE when

the viewport changes.

Abstract

In this paper, we discuss the extension and integration of the statis-
tical concept of Kernel Density Estimation (KDE) in a scatterplot-

like visualization for dynamic data at interactive rates. We present a
line kernel for representing streaming data, we discuss how the con-
cept of KDE can be adapted to enable a continuous representation of
the distribution of a dependent variable of a 2D domain. We propose
to automatically adapt the kernel bandwith of KDE to the view-
port settings, in an interactive visualization environment that allows

This article was published in Proceedings of the IEEE Pacific Visualization Symposium 2011,
pages 171–178, March 1–4, 2011 and presented at PacificVis in Hong Kong by Ove Daae
Lampe.
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zooming and panning. We also present a GPU-based realization of
KDE that leads to interactive frame rates, even for comparably large
datasets. Finally, we demonstrate the usefulness of our approach in
the context of three application scenarios – one studying streaming
ship traffic data, another one from the oil & gas domain, where pro-
cess data from the operation of an oil rig is streaming in to an on-shore
operational center, and a third one studying commercial air traffic in
the US spanning 1987 to 2008.
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Introduction

1 Introduction

The scatterplot is one of the most prominent success stories in statistics and visu-
alization. Scientists and practitioners have used scatterplots for more than 100
years to study the distributional characteristics of multivariate data with respect
to two data attributes or dimensions [119]. However when datasets are large,
scatterplots are challenged by overdraw and cluttering. There are approaches
to improve this situation, e.g., by employing semi-transparency during rendering
or by subsetting prior to the visualization [34]. With such approaches the num-
ber of data items that can be effectively shown in a scatterplot can be pushed
by one or two orders of magnitude. Beyond a certain point, however, at least
when there are many more data items to be shown than there are pixels in the
scatterplot, the item-based approach is collapsing [90]. It has been shown that
switching to a frequency-based visualization metaphor is a useful solution in such
a case [90, 39, 87, 136]. Such frequency based visualizations are e.g., histograms
or density estimations.

While histograms are straightforward to implement and interpret, the param-
eterization of data introduce a significant variance in appearance, e.g.,the dis-
cretization of data into buckets/bins, may cause aliasing effects. Corresponding
interpretations depend on bin count and interval range along the axis. [116].
Fig. 2 illustrates one example of such a major change by showing two histograms
of the same data – one computed with 9 bins and the other one with 10. To
achieve a more truthful assessment of distributional data characteristics, Kernel
Density Estimation (KDE) [108] is commonly used in statistics. Assuming that
the distribution of the data items adheres to a certain probability density func-
tion (PDF), KDE allows estimating this PDF from the samples. The result is
a function that represents the distribution of the data items in terms of their
density in the data space. Years of research has made KDE into an important
tool for statistical data analysis [130]. One of the major advantages of KDE is
that it directly evaluates the data, without imposing a model onto it, which, con-
sequently has the advantage that the data speak for themselves. (as Silverman
says [108]).

Our goal of using interactive visual analysis on large amounts of dynamic and
streaming data, demanded a real-time KDE implementation. Fast update rates
for KDE is needed to highlight the coherency of the temporal correlations. To
support continuously updates of streaming data, rules out techniques relying on
pre-processing.

With this paper we follow up on this opportunity in utilizing KDE for visu-
alization, and in the following: We propose a line kernel for the KDE-based
visualization of streaming data, and an automatic adaptation of the bandwidth
used for KDE, according to the zoom level of the visualization. We present a
KDE-based interactive visualization, with real-time performance enabled by the
GPU. We demonstrate how to visualize the distributional characteristics of an-
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Figure 2: A kernel density estimation of petal width in the Iris dataset [40] and two corresponding histograms,

one with 9 bins and the other with 10 bins.

other data attribute (instead of sample frequency) by adapting KDE accordingly.
The usefulness of this approach is showed in three demonstrations, one on surveil-
lance data from the maritime traffic domain, one on real-time drilling data from
the petroleum industry, and one on air traffic data.

2 RelatedWork

Both scatterplots and histograms have become a commodity in data visualization,
even for the general mass market. Ericson (from the New York Times) even said
that the scatterplot is the most complex visualization technique that the general
public can appreciate [35].

An interesting subset of previous work, which also is of special relevance for our
work here, comes in the form of examples for this methodological change from an
item-based visualization approach (as the classical scatterplot) to a frequency-
based approach (such as the histogram). Fisher, for example, visualizes aggre-
gated numbers of downloads with the hotmap approach [39]. Novotný and Hauser
demonstrate how the transition to a frequency-based methodology can enable the
visualization of very large datasets in parallel coordinates [90] and Muigg et al.
show how this transition enables the visualization of hundreds of thousands of
function graph curves [87]. Artero et al., who also use a frequency-based approach
to visualizing large datasets with parallel coordinates [6], refer to kernel density
estimation as an approach to compute the density values (but eventually revert
to a box function as their reconstruction kernel). Kidwell et al. refer to KDE
for reconstructing a smooth and space-filling heatmap visualization of a small
number of data items [73]. For a more thorough discussion on the use of KDE in
visualization we refer to the work by Scott [104]. Whittaker and Scott presented
the use of the Average Shifted Histogram (ASH) i.e., an alternate and very effi-
cient density estimation, that approximates KDE, for the use in a geographical
context [135].
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Related Work

Very interesting related work is an approach called continuous scatterplots by
Bachthaler et al. [9]. Assuming data that are continuous with respect to a spatial
reference domain – such as the distribution of physical or chemical quantities
over a 2D or 3D reference space as acquired through measurements or numerical
simulation – a mapping is computed that represents the data in the form of an m-
dimensional continuous histogram. KDE-based visualization, as discussed in this
paper, is not a mapping from a continuous spatial domain, but rather a mapping
of sparesly sampled data, which is mapped into a spatial domain. Similar work
on the reconstruction of uniformly sampled data is done by Crawfis and Max [26],
where they investigate the use of texture splats with normal distributed values,
as means to reconstruct the continuous data field in 3D. Similarly, as in the work
by Bachthaler et al. [9], a requirement for this technique is the continuous spatial
domain. The work presented here also supports these continuous domains and
also extends to support streaming time-dependent data, attribute reconstruction,
and non-uniformly sampled data.

Jang et al. investigated the representation of non-uniform, tetrahedral volumet-
ric datasets, by weighted Radial Basis Functions (RBF) [61, 21]. They introduce
an algorithm on how to effectively render such 3D RBFs by applying a slice based
technique. In this work, we investigate the use of a broader category of kernels
than those available as RBFs, namely the product kernel and our extended line
kernel. We furthermore show that when applying kernels to dimensions with dif-
ferent units or of different scale, RBFs are impractical, e.g., when plotting meters
over tonnes.

Andrienko and Andrienko defined a generalized method on how to create ab-
stractions from geospatial movement data [5]. This abstraction technique gener-
ates, from unstructured and unrestricted movement data, potential nodes, where
traffic can be aggregated, similar to a node-link diagram. While, theirs and our
technique both share the same type of source data, the end result portray two
different images, with similar, but still, different usages. The result by Andrienko
and Andrienko [5] show the total volume of traffic, and how this volume is dis-
tributed, i.e., by counting all passing vessels. With our technique we display,
where the traffic spend its time, e.g., if a car stops, it will still contribute a kernel
at that position. The differences in these two techniques, as well as other tech-
niques that employ node-link diagrams for aggregation, are comparable to that
of the histogram on one side, and KDE on the other side. While the aggregation
techniques, similar to the histogram, provides a high level of abstraction, and
clear benefits in terms of quantitative readouts, they will potentially suffer alias-
ing effects and hide underlying details which only a continuous representation
can show.
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3 Kernel Density Estimation

In the following, we first briefly define kernel density estimation (KDE), before
we discuss KDE-based visualization.

KDE is a well-proven approach to achieve a non-parametric estimation of data
density that has been introduced to the field of statistics by Rosenblatt and
Parzen about 50 years ago [101, 93]. Given a set of n (1D) data samples xi,
1 ≤ i ≤ n, the kernel density estimator f̂h(x) is computed as

f̂h(x) =
1

nh

n∑
i=1

K

(
x − xi

h

)
=

1
n

n∑
i=1

Kh(x − xi), (1)

based on a kernel function K and a bandwidth parameter h. Often symmetric
kernels are considered as K, with K(x) ≥ 0 and

∫
K(x) dx = 1, also often

centered around 0. In such a case also f̂h(x) is also nonnegative and integrates to
1. This enables interpretation of f̂h(x) as a density function that approximates
the PDF f(x) of the data items xi from which it has been constructed. The
KDE of data attribute petal width in the Iris dataset, as shown in Fig. 2 on the
left, is considered to be a more truthful visualization of the distribution of the
considered data values, than a histogram.

A large variety of kernels has been studied, including the uniform kernel (based
on the normal, Gaussian distribution), the triangle kernel, the Epanechnikov
kernel [124], and many others. In many cases, however, the normal kernel,

K(x) =
1√
2π

e−x2/2, (2)

is used in KDE. Even though it has been concluded [130] that variations in
the choice of K are less important than variations of h, there still are strong
arguments for choosing the normal kernel [86], e.g., when calculating the modes
of f̂h.

Bandwidth h is a parameter which influences the smoothness of the density
reconstruction. Fig. 3 shows four results from a 2D KDE with increasing values
of h. Several authors have worked [124, 130] on (automatically) optimizing the
choice of bandwidth h, e.g., Silverman describes the normal scale rule [108] to
derive an optimal value for h as

h := 1.06 · σ · n− 1
5 . (3)

This rule is leading to an optimal estimation if the data is normal distributed.
It will lead to an over-smoothed result, however, if not [130]. There are also
several other approaches to globally optimize h (several covered by Wand and
Jones [130]), and in Sec. 6 we briefly discuss why these are not sufficient for
interactive visualization, and propose a new approach.
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Figure 3: 2D KDE for the Iris dataset [40] with increasing bandwidth.

Altogether, it is generally agreed that KDE is a very appealing tool to in-
vestigate the distributional characteristics of data. Gray and Moore write "In
general, density estimation provides a classical basis across statistics for virtu-
ally any kind of data analysis, including clustering, classification, regression, time
series analysis, active learning, . . . " [48].

Up to here, we have discussed KDE in the one-dimensional case. It is straight-
forward, however, to extend KDE to multiple dimensions [104]:

f̂H(x) =
1
n

n∑
i=1

KH(x − xi) (4)

with H being a symmetric and positive definite bandwidth matrix and KH being
defined as

KH(x) = |H|− 1
2 K(H− 1

2 x).

K is a multi-variate kernel function that integrates to 1. For the 2D case –
central to all of the following –, we will consider the following simplified form of
the bandwidth matrix

H2D =
∣∣∣∣ h1,1 0

0 h2,2

∣∣∣∣
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that leads to the following form of a 2D KDE:

f̂2D(x, y) =
1

nh1,1h2,2

n∑
i=1

K
(

(x − xi)
h1,1

,
(y − yi)

h2,2

)

Also in 2D, the kernel function K is usually chosen to be a probability density
function. There are two common techniques for generating a multivariate kernel
K from a symmetric univariate reference kernel K [130]:

KP(x) =
d∏

i=1

K(xi) and KS(x) = K(|x|)/ck,d

where ck,d =
∫

K(|x|) dx. KP is known as the product kernel and KS as the
radially symmetric isotropic kernel. The latter of these kernels is a radial basis
function (RBF), and should only be used when a single bandwidth can be devised
for all the plotted dimensions. When plotting two different units, or attributes
of different scale, we choose the product kernel with individual bandwidth values
for the two represented data dimensions. We have now defined kernel density
estimation, especially also in its 2D form, and we have compared KDE-based 2D
visualization with scatterplots. Later in this paper, as a technical contribution,
we present an approach to compute KDEs on the GPU, achieving a speed-up
factor of about 100 (compared to existing KDE algorithms), and thereby enabling
interactive frame rates needed for this visual data exploration and analysis; even
for large datasets.

4 Reconstructing the Distribution of a Third Attribute

In the following we discuss an extension of the KDE concept that allows the
visualization of the distribution of a third data attribute (with respect to two
other data attributes as in the scatterplot).

We first forgo the normalization in Eq. 4, i.e., we omit the division by the
number of data items n, and thereby achieve an estimate function that will
integrate to n, accordingly. Next, we introduce a weighting factor ci to each of
the accumulated kernels, that we make dependent on a third data attribute di,c.
The new estimate is then defined as

ĝH(x) =
n∑

i=1

ciKH(x − xi) (5)

Visualizing ĝH(x), e.g., as a height field over the 2D domain of x, will (as a
whole) communicate the accumulated sum of all values ci of data dimension di,c

since ∫
ĝH(x) dx =

n∑
i=1

ci . (6)
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Figure 4: Visualizing over 165 000 monetary contributions to the Obama campaign. Interesting areas with neg-

ative aggregates, i.e., locations where the returned amount exceeds that of the contributed, are shown as blue.

Due to its close relation to KDE, we achieve a continuous reconstruction of the
distribution of this “value mass” with respect to the two other data attributes di,a

and di,b. This leads to very interesting visualization options for absolute quanti-
ties (not just relative densities as with KDE). In Fig. 4, for example, we visualize
the distributional characteristics (here with respect to longitude and latitude) of
more than 165 000 monetary contributions to the recent Obama campaign; data
acknowledged FEC [36]. We achieve a continuous reconstruction of a distribu-
tion function that tells in which places how much was contributed. One strange
result from this visualization is the identification of locations where the overall
aggregation of all ci values is negative (resulting in blue color), meaning that the
average contribution per square mile is a negative amount of dollars. The dataset
contains transactions that represent contributions that have not been accepted
(and therefore returned, accordingly). One valid explanation for these negative
areas is that the agencies have been more meticulously in registering the zip-code
for cash returns than the initial contribution (but additional analysis would be
required to fully understand this phenomenon).

5 Reconstructing Time

In many cases, and also later in our application context, we are confronted with
streaming data from different types of processes. To achieve a truthful visuali-
zation of time-dependent data of this type, we need to integrate KDE with a
proper representation of the continuous change over time. One approach could
be to super-sample the streaming data with respect to time, resulting in a recon-
struction based on a large set of kernels. Instead we suggest using a line kernel
that amounts to a pre-integrated continuous solution to this problem. Fig. 7
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Figure 5: Gaussian kernels with a bandwidth of 0.05 and their combined integral (orange). Left 10 kernels and

their sum, and right 15 kernels and their sum. These figures represents the super-sampling approach, whereas

Eq. 8 calculates the sum directly.

shows the proxy geometry needed to implement this super-sampling (left) and
our line kernel (right).

Accordingly, we adapt kernel density estimation to reflect this reconstruction
scheme. We suggest a kernel Lk to reconstruct the contribution of a line (instead
of just a point). Then, assuming a dataset of n in-streaming data items, the time
reconstruction estimate t̂(x) becomes

t̂(x) =
n−1∑
k=1

Lk(x) . (7)

For every two consecutively in-streaming data items di and di+1, and their as-
sociated point locations pi = p(di) and pi+1 = p(di+1) in the 2D KDE domain,
a line reconstruction kernel Lk is placed that is constructed as follows:

Lk(x) =
∫ 1

0
ciKH

(
x − ((1 − φ)p1 + φp2)

)
dφ (8)

KH is one of the kernels that otherwise are used for point reconstruction, in
our case we use the normal kernel here. And ci is a scaling factor for each
line segment, i.e., when reconstructing time, the time passed, especially also to
support uneven sampling. Eq. 8 is the converged result of distributing point
reconstruction kernels evenly along the line segment. The converged result of
super-sampling is detailed, as a 1D example, in Fig. 5, whereas Eq. 8 directly
evaluates the converged result. Fig. 6 illustrates the distribution of time, when
tracing a sequence of four points, or, three edges, each weighted with one second.
According to Eq. 8, these three line kernels each contribute a weight of one second,
to the total integral, but since the line on top has a shorter distance between
vertices, the density here is higher. Further below, in section 7, we present
examples from our application case, e.g., in Fig. 9, that was also reconstructed
with this approach.
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Figure 6: A line kernel density reconstruction of four samples, or three edges. Each edge is weighted by one,

e.g., one second, and thus the integral of this entire figure is three. The time density at the top edge is greater

than the diagonals, since this distance is smaller, and its weight is the same.

Figure 7: Reconstructing two connected samples in time, on left, super-sampling by filling the space with addi-

tional samples, and on right, by drawing a continuous rectangle and two end-caps. Both techniques produce the

same result, but our line kernel density estimate does so with a significant efficiency increase.

6 Interactivity and Analysis

Defining interaction with a system requires one to first identify the internal pa-
rameters that can be modified, and second, on a higher level, identify the tasks
that users would perform on that system. The parameters available in a KDE-
based visualization are only data-samples, bandwidth, and viewport. Shneider-
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man listed a set of tasks [106] that fit the information visualization workflow,
"Overview first, zoom and filter, then details-on-demand". Creating an overview
from a KDE is simply ensuring that the shown range of the two dimensions is
spanning all samples and choosing an appropriate bandwidth. Zooming and pan-
ning are direct manipulations of the viewport, and is closely related to filtering
out those samples out of view. Since data investigated often have different units
or scale, we suggest that zooming should be allowed individually per axis; how-
ever there are cases where an enforced aspect ratio is desired. When the unit of
both axes is the same, and the scale is comparable, keeping an aspect ratio of
1:1 would help to not introduce any misleading scale impression. Another case
where an enforced aspect ratio is useful is when displaying maps, or lat-lon axes.
In this case we enforce an equidistant cylindrical ratio, which is ratio varying on
the current viewport’s latitude. This ratio ensures that at least the area around
the latitude line in the center of the viewport is equal-area [111].

Often, the automatic generation of parameters is more important than inter-
action, and two examples of automatic parameter generation are (1) generate
decent initial / default values, and (2), have parameters generated optimally,
creating a nonparametric functionality, and even removing the need for user-
interaction. Visualizing large datasets often makes it impossible to create an
optimal viewport, showing all the data, which is why zooming and panning is
introduced. There are works trying to globally optimize the bandwidth, e.g., the
normal scale rule [108], but we find that this factor is highly dependent on the
viewport, e.g., if the bandwidth in either dimension is less than a pixel, nothing
is shown. Instead of calculating an optimal bandwidth based on the data-sample
distribution, we propose a method that is tightly coupled with the viewport, that
will update the bandwidth when the viewport changes. In a right-hand system,
a viewport is defined by two points, the lower-left p1 and upper right p2. The
range, r, of this viewport is then r = p2 − p1. We then define the pixel size,
s, as r divided by the screen size. We then have two observations. One, if the
bandwidth H is less than s, i.e., less than a pixel, the sample is not shown, and
thus we recommend H > s. Second, if the bandwidth is larger, by a factor k,
than the range r of the viewport, the observed result will be a near constant sum
of the kernels within, and around, the view. By defining that k · r > H > s we
can assert a viewport independent density estimation of the prominent visible
features. If we continue to enforce a bandwidth tied to s, i.e., a pixel bound
bandwidth, throughout interaction, we can zoom out to aggregate more features
for an overview, and zoom in for a more detailed view. An example of this inter-
actively changing bandwidth is shown in Fig. 1, and in the supplementary video.
It our experiences, a bandwidth from approx 2 to 20 times that of a pixel, works
well, and is in fact representative for all the figures in this paper, relying on line
kernels.

The next task is filtering, i.e., showing only a subset of the samples. When
dealing with time dependent data, the most common filter allows temporal se-
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lection and animation. Animating temporal trends can be achieved by setting
three attributes, namely, time, time window and time step. Time is the current
point in time that samples are shown until. Time window is the how far back
in time from time samples should be visible, and time step is the increment per
animation step. E.g., when showing weekday trends, the time window should be
set to 24 hours, but the time step could be set to one hour, so that one would, in
a video with 24 fps, get a smooth animation from day to day with a day lasting
a second in the animated visualization.

The last task we facilitate is details on demand, however since KDE is not an
item based visualization, selection is not available. Instead we propose a simple
integration scheme where a bounding box is drawn, and the area within this box
is integrated. From Eq. 6 we see that the open integral is the sum of all sample-
weights, and similarly the bounded integral gives a sum of the selected region.
This interaction enables accurate quantitative analysis of the distribution of this
third attribute.

7 Demonstration

In this section we cover three different cases involving streaming data. The first
case covers ship traffic off the coast of Norway, the second case investigates data
from drilling operations in the petroleum industry, and the third all commercial
air traffic in the US spanning two decades from 1987 to 2008.

7.1 AIS Ship Traffic

The Automatic Identification System (AIS) is a radio based system used by ships
and other vessels for collision detection and identification. The International
Maritime Organization requires all ships with a gross tonnage of 300 or more,
in addition to all passenger ships, regardless of size, to be equipped with this
system. With the KDE-based visualization approach described here, we enable
the real-time filtering, analysis, and rendering of large sets of stored as well
as of streaming AIS data. The AIS signals that we study are picked up by
the Norwegian shore based network. Here we visualize 14 days of AIS data in
which a total of 5000 ships are registered, sending 850 thousand position updates.
Willems et al. recently presented a technique for convolving kernels along AIS
ship paths [136]. Our visual results are similar to theirs in terms of AIS data.
Their implementation, however, takes approx. 10 minutes to compute (data for
one day, i.e., 100 000 line segments). Our technique calculates similar results for
14 days (850,000 line segments) in 43 ms (23fps). Because of the rendering speeds
we achieve, and since we do not need pre-processing, we can connect to the live
feed for streaming AIS data. Fig. 8 shows a small section of the area covered by
the Norwegian AIS system, outside the south-western coast. These two figures
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Figure 9: A side by side comparison: an overpopulated scatterplot with semi-transparent points (left) vs. our

visualization with line KDE (right). Compared, the bottom of these two gives a clear overview of where time is

distributed with regards to hook-load and depth. The dark blue areas to the left indicate non-productive time.

clearly show the advantage of our line kernel reconstruction. On both images, the
traffic close to the coast, enclosed by headlands, are clearly defined, but out in the
open sea, where the radio signals are weaker, the samples become so sparse that it
is hard to detect where the ships move. By zooming to a smaller region, with the
sample bandwidth reduced automatically, this sparseness increase even to affect
the dense areas in this figure. Using this side by side visualization highlights
where the dead zones of the AIS radio system is, and thus where perhaps this
could be extended.

Statistics on AIS data have several times proven useful, e.g., when calculating
the risk new offshore installations face with respect to collisions. Using our
technique we have increased the speed of calculating these probability plots to
such a degree that one can interact with them (i.e., recalculate them) at real
time speeds (for this dataset, 23 fps). As Norway aims to invest in several new
offshore windmill parks, our techniques will enable both manual investigations,
and faster and more complex automated placement algorithms.

7.2 Drilling operations

In a project with partners from the Oil and Gas industry we investigate the
distribution of time in drilling operations. The dataset that we visualize here
contains several measured and derived attributes from this process. In this con-
text we look closer at three of these, namely, depth, hook load, and time. Depth
is the length of the drill string that is in the bore hole (and not true vertical
depth) and hook load is the measured weight of this drill string. In Fig. 9 we
present the visualization of these three attributes in two different versions, a
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Figure 10: Three line kernel density estimates, showing the distribution of time over depth in a drilling hole

(wellbore) and hook-load, the weight of the entire drill string. The leftmost image is a detailed view, with a small

kernel, showing the curve with varying tons on the hook, used e.g., to calculate friction. The user then zooms

out, and goes to an overview mode with a large kernel, on right, and selects an overwhelming time density,

integrates and finds that over an hour was nonproductive at this depth.

regular scatterplot using transparency and a KDE-based visualization using line
kernels. The vertical scale is depth, down being deeper, and the horizontal scale
is hook load. The most prominent visible features are the two bands, one ver-
tical and one diagonal. The vertical band, at approx. 35 tons, is the weight of
the hook when the drill string is not attached to it, and is thus an indicator of
the time spent attaching or detaching a new pipe segment to/from the string.
The diagonal band is the weight when the drill string is attached to the hook,
indicating weight increasing with depth, since there are more pipes attached to
the hook. This dataset was acquired when the drilling crew decided to pull the
entire string up, from 3500 meters down. This operation is performed every time
there is something wrong, or, they want to set a new casing, or change the drill
bit. It is important to do this as fast as possible, as time efficiency is paramount
to have a good return on investment. When presented to the domain engineers,
the first feature discussed was the visualization of unscheduled stops, shown as
local peaks. To analyze further, the biggest of these, at about 1000 meters, was
zoomed onto (see Fig. 10) and the integral shows a total of one hour, as compared
to normally approx. two minutes for removing a 90 feet pipe. One scenario that
makes good use of this tool is for the onshore team that monitors the ongoing
process, or for the change of shifts, where a new team takes over the drilling, and
they would need to get an overview of the recent history of progress and events.

7.3 Commercial Air Traffic

In this section we show how our line kernel density estimate enables insights into
a dataset containing all commercial air traffic in US, from October 1987 to April
2008. This dataset [7] contains 120 million flights and makes out 12 gigabytes.
The distances flown are calculated by Haversine distance from airport to airport,
and goes from 16 trips to the sun and back in 1987 to 28 round-trips in 2007.
One interesting note about the summary of all flights is that while the total flight
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hours shows an increase of 172% from 1988 to 2007, the number of takeoffs only
increased by 142% in the same period, i.e., the more recent average flights travels
longer.

This dataset is particularly interesting to investigate using line kernel density
estimation (as opposed to regular KDE) because of both the large spatial distance
between points. As defined here, one flight is a scheduled takeoff; this dataset
contains the origin and destination airport of all flights. From the airport codes
and all actual takeoff and landing times we created a new dataset. This dataset is
a temporal line-segment dataset. A temporal line-segment consists of two points
with values for latitude, longitude and time, each.

Our prototype can show temporal animations at real time, concurrently with
interaction, which both require reconstruction of the KDE for every frame. An
example interaction is shown in Fig. 1, where the kernel size/bandwidth of the
estimate is tied to pixel size, instead of, e.g., km. This bandwidth enables the
user to zoom in, while simultaneously refining spatial information. This Fig. 1,
contains the automatic aggregated flight hours over the Bay Area at the initial
zoom level, and after zooming in, can determine the distribution among the
different airports, and their respective distributions along the different cardinal
directions as such.

The top row of Fig. 11 shows hour by hour as dusk moves over the US, the
air traffic picks up from east to west, a pattern that repeats itself at night, as
well. The bottom row of Fig. 11 shows a more dramatic pattern, at September
11th, 2001.

8 Technical Details and Accuracy

In the following, we discuss how we implemented the above presented approach
on graphics hardware and discuss performance and accuracy of this solution.

8.1 Kernel Density Estimation on the GPU

The use of modern GPU-accelerated techniques in data visualization is a promis-
ing step [37], especially since interactive visual analysis relies on interaction, and
thus on interactive rendering. In our prototype we developed a two step technique
for computing and visualizing KDE. The first step is to generate a floating point
field by evaluating the 2D KDE equation, and the second step is to appropriately
visualize this KDE field with one of several options.

Calculating KDE on the GPU requires the support of floating point, or double
precision textures, as we need to store results with an appropriate precision.
Evaluating the 2D KDE function to a 2D matrix (a texture), can be done in
one of two ways, with one cell being one element/texel in our matrix with the
properties of a value v and a position p:
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a)
for c in cells:
for k in kernels:
c.v+=k.eval(c.p)

b)
for k in kernels:
for c in cells:
c.v+=k.eval(c.p)

I.e., we can either first iterate over the grid cells, or over the kernels, respectively.
The latter case is identical to rasterizing on the GPU, and thus this is our selected
approach. To create the result, we first allocate a grid, as a 2D frame buffer object
(FBO), with floating point precision. Then, with this FBO bound, we render all
the kernels. All of them are then aggregated with an additive blend operator.
To create an optimized implementation, we allow for an approximation of KDE
by limiting the extent of all kernels (we will return to this subject in the next
section). To further optimize this implementation as well as, to enable distinctive
kernels, we pre-compute the kernel and store them as a floating point texture.
The geometry needed for point kernels can be created by either using the point
sprite extension, drawing quads, or more efficiently using geometry shaders. The
use of point sprites or geometry shaders reduces the necessary vertices to one.
Fig. 7 shows the necessary vertices needed to construct a line kernel, which we
construct out of three quads. Here the use of a geometry shader reduces the
necessary vertices to two, p1 and p2.

To enable a fair comparison to other KDE algorithms, we have created a
Python interface, that stores the result as NumPy arrays. Fig. 12 shows the
result of a comparison of three different algorithms for the 2D kernel density
estimation in the Iris dataset, containing 150 samples. The three different im-
plementations we used are the SciPy [67] implementation, a MatlabTM file imple-
mented by Botev [15], and our implementation on the GPU. As this table shows,
there is a significant, up to approx 300 times large speed-up, e.g., compared to
the Matlab implementation for the 10242 grid.

8.2 Error Estimation

In this section we investigate the computational accuracy of our GPU-based KDE
(based on a Gaussian kernel as discussed in Sec. 3), in addition to an overall
discussion on the errors or drawbacks that can arise using KDE. As a kernel
with infinite extent, the Gaussian is defined over the entire real line R. As an
approximation, a windowed kernel can be considered, e.g., by truncation [26]. To
investigate how good bounded approximations are, we look at their integral for
comparison. The finite integral of the Gaussian 2D product kernel, N(x, y) =
1

2π e−((x2+y2)/2), is:

∫ n

−n

∫ n

−n

N(x, y)dydx = erf
(

n√
2

)2

(9)

where erf is the “error function” (encountered when integrating the normal dis-
tribution). Using Eq. 9, we can calculate that the use of a texture with interval
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Technique 162 642 2562 5122 10242

KDE-plot GPU 6.1 E –4 8.5 E –4 3.9 E –3 1.9 E –2 7.9 E –2
matlab KDE2D 6.2 E –2 9.3 E –2 0.5 1.6 5.8

SciPy 2.4 E –2 0.19 2.1 6.5 22.4

Figure 12: Run times (in seconds) for evaluating grids of different sizes, for three different implementations of

kernel density estimation, all using same dataset, kernel and bandwidth. KDE-plot GPU is our proposed technique.

n/interval 1 2 3 4 5
error 0.53 8.9 E –2 5.39 E –3 1.27 E –4 1.15 E –6

Table 1: Error introduced by using a truncated Gaussian.

Technique 22 42 82 642 1282

Central 0.97 0.163 1.33 E –5 1.12 E –6 1.14 E –6
Preintegrated 0.0 0.0 0.0 0.0 0.0

Table 2: Error introduced by integrating (summing) textures of different sizes. Results show one minus integral.

[−n, n]2 will result in an error as shown in table 1. In cases were normalized
kernels are used, the interval [−5, 5]2 with an error of 1.15E − 6 is sufficient.
However since we are scaling every kernel by a factor, this error would also be
scaled linearly.

When representing a kernel K as a discretized texture, the integral is the sum
of all texels, multiplied by the texels’ size (e.g., on an interval [−5, 5]2 and on
an 1282 texture: 102/(1282)). Using a discretized 2D Gaussian in the interval
[−5, 5]2 can ideally never achieve a better integral than eq. 9, but we now look into
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the actual integrals using different techniques. We compare two techniques for
creating and integrating kernel textures. The first, called central, gives every texel
its value after evaluating K with its central position. In the second technique,
called preintegrated, the integral over the the area spanned by the texel is assigned
to the texel. Table 2 shows the errors introduced using different techniques and
texture sizes. The errors presented for the central technique will, for larger
texture sizes, converge towards the error presented in table 1.

Kernel Density Estimates, reconstruct a continuous distribution from a discrete
set of samples, essentially by smoothing. In several cases, this smoothing can
introduce errors. As an example of this smoothing error, we can think of a
shipping lane, where the vessels are passing through a very narrow straight. If
we smooth out these vessel paths, we have a low tolerance, before we introduce
a probability of finding vessels on land. While not covered in this paper, there is
several existing works, on variable kernel density estimation, on how to specify
an individual, and optimal bandwidth, for every sample. In our implementation
of the line kernel, defined in Eq. 8, we allow for an individual bandwidth per
sample, enabling support for varable kernel density estimation. However, for
purposes on streaming data, without pre-processing, this individual bandwidth
cannot be implmented, in a trivial fashion.

Another source of errors lies in our restriction to a simple bandwidth matrix,
in Eq.4. If the data modeled contains a diagonal distribution, the correct kernel
to use would be one with skew, and thus cannot be modeled using our simplified
bandwidth. It is however trivial to extend, the line kernel to allow the full
bandwidth matrix. Our rationale for not utilizing this however, lies in the lack
of preprocessing, so, we, because of streaming data, cannot pre-process to find
this optimal bandwith matrix.

9 Summary and Conclusions

In this paper, we discuss the challenge of intuitively visualizing large amounts of
discrete data samples. We discuss a KDE-based visualization, defined from the
statistical concept of kernel density estimation (KDE), as an elegant solution. We
adapt this concept to also allow for investigating the distributional characteristics
of an additional, third attribute over two dimensions. Additionally, we show how
KDE-based visualizations can be extended to visualize the distribution of time
in the context of streaming data (with a new type of a line kernel). We explain
and demonstrate how KDE-based visualizations can be computed on the GPU,
leading to speed-up factors around 100 (and up to approx 300 in one of our cases).
We briefly report on our prototype in the maritime, the oil & gas domain, and
air traffic and show that useful results are achieved.

We demonstrate that due to our improvements to both regular and streaming
KDE-based visualizations, utilizing modern GPUs, it is now possible to utilize

65



Paper A Interactive Visualization of Streaming Data with Kernel Density Estimation

advanced concepts from statistics for improved visual data exploration and anal-
ysis, for large data at interactive speeds. With respect to KDE, in particular, it
would be great to see more interesting related future work in visualization.
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