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Figure 1: The vorticity magnitude on the top and the velocity magnitude on the bottom (volume-rendered in

both cases) of a wind simulation around a car as seen from the inside of a streamline and out radially. The

horizontal axis is arc-length of the streamline in meter.

Abstract

We present two visualization techniques for curve-centric volume
reformation with the aim to create compelling comparative vi-
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sualizations. A curve-centric volume reformation deforms a volume,
with regards to a curve in space, to create a new space in which the
curve evaluates to zero in two dimensions and spans its arc-length
in the third. The volume surrounding the curve is deformed such
that spatial neighborhood to the curve is preserved. The result of the
curve-centric reformation produces images where one axis is aligned
to arc-length, and thus allows researchers and practitioners to ap-
ply their arc-length parameterized data visualizations in parallel for
comparison. Furthermore we show that when visualizing dense data,
our technique provides an inside out projection, from the curve and
out into the volume, which allows for inspection what is around the
curve. Finally we demonstrate the usefulness of our techniques in the
context of two application cases. We show that existing data visual-
izations of arc-length parameterized data can be enhanced by using
our techniques, in addition to creating a new view and perspective
on volumetric data around curves. Additionally we show how vol-
umetric data can be brought into plotting environments that allow
precise readouts. In the first case we inspect streamlines in a flow
field around a car, and in the second we inspect seismic volumes and
well logs from drilling.
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Introduction

1 Introduction

Successful comparative visualizations build upon one or several shared axes as a
reference for attributes that should be compared. Tufte called this visual par-
allels: “Spatial parallelism takes advantage of our notable capacity to compare
and reason about multiple images that appear simultaneously within our eye-
span” [122]. Many 2D and 3D visualizations often provide a common reference
where comparison is readily available. However, there are numerous cases when
the quantities being visualized do not conform to a single shared axis or the com-
mon reference makes their comparison difficult. For example, production wells,
into oil reservoirs, are drilled with complex geometries and turns rather than,
previously common, straight vertical wells. In current operations, most prepa-
rations, i.e. well planning, etc., are done in 3D environments, whereas the end
product, the drill plan, and all drilling data, is produced in 1D, along well length.
Current data analysis with regards to measurements from the well, is done in reg-
ular graphs along well-length, but this technique is lacking the spatial 3D context,
something we address in this paper. Furthermore, the comparison between two
wells of disparate shape and length is difficult in the shared 3D space. Instead,
it becomes apparent that a more meaningful comparison is obtained when each
well is straightened and the visualized quantities are visualized along their arc-
length. Multiple wells of varying length and shape can now be contrasted in a
single shared space. A similar need emerges for the comparison of streamlines
in a flow simulation. Since individual streamlines can have an arbitrary shape,
quantities such as velocity magnitude and vorticity along the streamline, etc.,
they cannot be compared directly in 3D space due to inter-occlusion and dif-
ferences in curvature and length. Instead, we can generate a shared frame of
reference that straightens each streamline and lets us visualize a relevant quan-
tity in terms of their arc-length. An example is shown in Figure 1, where we
display the vorticity and velocity magnitude of a wind simulation around a car in
a 2D plane representing the space around a streamline. The visualization maps
the complex 3D shape around a streamline into a 2D view that plots the dis-
tribution of vorticity and velocity radially around a given point. With this new
type of visualization, one can easily quantify changes of a certain variable along
a streamline and correlate them to arc-length or radial angle. Furthermore, one
can correlate the behavior of a quantity among several streamlines.

To achieve these visualizations, we present a general notion of a curve-centric
reformation, which maps the space around a 3D curve onto a frame of reference
relating to the properties of the curve. We present two forms of such a reforma-
tion. In the more general sense of reformation, curve-centric volume reformation
is a mapping from the original 3D space to a 3D curve-aligned space, where one
axis represents the length of the curve, and the other two are the (adjusted) nor-
mal and binormal vectors. Unlike traditional visualizations, where objects and
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lines are shown in a given 3D space, curve-centric visualizations depict the given
space in the frame of reference defined by the curve.

Another type of curve-centric reformation is curve-centric radial raycasting,
which defines the mapping to a 2D plane, where one axis (in this paper always
the horizontal one) represents the arc-length of the curve and the other axis (here
the vertical one) represents the cylindrical angle around the curve. This type of
reformation is reminiscent of 3D flattening used for the visualization of virtual
colonoscopies [12, 58]. Unlike virtual colon flattening, where shapes and angles
are preserved for better diagnostics, our radial raycasting approach preserves
distances, essential for a meaningful quantitative comparison of variables along
the curve. This radial ray-casting therefore produces images of 3D volumes from
a novel inside-looking-out perspective. As the aim of both these reformations is to
accurately portray the neighborhood of the curve along arc-length, their intended
use is not directly comparable with existing space deformation techniques, that
are designed to create alternative (deformed) views of objects.

In our approach, we use a variation of the well known Frenet frame [43] for
creating moving frames and provide an implementation that fits into a general
GPU-based visualization system. Furthermore we demonstrate the usefulness
of our approach in two scenarios. In one, we use a curve-centric reformation
to visualize quantities along the arc-length of log wells for oil exploration. In
the second, we visualize the vorticity and velocity magnitude of a wind flow
simulation around a car. We show that shape reformation provides hints about
the smoothness and curvature of streamlines. These quantities, which can be
cumbersome to represent in the 3D view at the same time, can now be provided
as a comparative visualization.

We make the following contributions: (1) We present a curve-centric deforma-
tion of volume data for the purposes of cross-comparison and easier quantitative
analysis. As such, our deformation preserves arc length and orthogonal distances
from the center. This is a departure from traditional curve-guided deformations
which preserve local shape but not distances. Although useful for generating
new views of an object, traditional deformation does not ensure the preserva-
tion of quantities essential for meaningful comparison. (2) We present a novel
raycasting view that provides unprecedented inside-looking-out views of complex
volume data. Current approaches for raycasting of deformed volumes exploit the
programmability of contemporary GPUs, but the resulting visualizations remain
essentially outside-looking-in views of the data. Our results provide novel views
that show quantities of interest along important curves.

2 RelatedWork

Curved planar reformation. An important issue in visualization is the ren-
dering of complex objects in simpler spaces. Some of these issues stem from the
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need to compare and measure areas and distances in a 2D plane rather than
an arbitrary 3D shape. One such example is curved planar reformation, which
maps a volumetric space around a curve to a plane. This idea has been used for
virtual colonoscopy and the visualization of other curved structures. Vilanova et
al. use nonlinear raycasting to flatten the internal view of a virtual colon [12].
Similar techniques have been proposed by Wang et al. [131], who unravel the
colon using a physics-based deformation of the centerline, and Hong et al. [58]
and Haker et al. [51], who use a conformal mapping [58]. These approaches use
nonlinear raycasting to compute a 2D inside-looking-out image of the colon. A
recent approach by Williams et al. [137] also unfolds the colon using multiplanar
reformation. However, their visualization is not a planar mapping, but instead
an orthogonal projection of the reformed volume. As such, although less effective
as a compact map, the result appears more familiar than the planar warping.

In a similar way to colon flattening, Kanitsar et al. presented (and later im-
proved) curved planar reformation for vascular structures [68, 69]. Unlike the
colon, vascular structures exhibit frequent bifurcations, which leads to 2D map-
pings that branch out along with the vascular structures. The reformation of
vascular structures was also explored by He et al. [56], who automate the defini-
tion of curves by extracting the medial axis of vessels of interest. Lee and Rasch
improved this method by considering topological invariant transformations that
lead to better visualizations with little artifacts due to reformation [79]. Curve
planar reformation also benefits the visualization of misaligned features. For
example, Vrtovec et al. [128] uses curve planar reformation to align the central
curve of the spine with the sagittal and coronal planes of the 3D images of the
spine. This alignment lets radiologists compare different vertebrae in a single
image.

In this paper, we are not bound to a particular mapping of a 3D volume, but
rather present a more general notion of reformation, called curve-centric refor-
mation, which maps the space around a curve to either a 3D volume or to a
2D plane. This enables us to create novel inside-out visualizations of complex
datasets, somewhat similar to planar mappings, from oil well exploration to ve-
hicle design.

Space warping. Curve-centric reformation can be also understood as a type
of space warping. Space warping is a general methodology for deforming com-
plex objects by warping the space surrounding them. Because volumetric models
often have no explicit geometry, this method is often associated to volume de-
formation. Some of the first attempts to use space warping to deform objects
include Barr’s global and local deformations, defined procedurally as geometric
transformations [11], and Sederberg’s free-form deformation [105], which deforms
solid geometric models by warping a tri-cubic lattice enclosing that object. To
overcome the need for possible dense control lattices, Sumner et al. [113] uses a
graph structure to deform the local space surrounding a number of nodes in an
object. Singh explores the use of domain curves or wires to deform the space
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near them [110]. For a complete survey in space deformation, refer to Gain et
al.’s paper [46]. Unlike curve-oriented space deformation, often oriented towards
obtaining new poses of a geometric model from a set of user defined curves, our
curves are not a means for defining deformation but a centerline along which the
user can visualize a certain quantity and the surrounding space.

The idea of space deformation was later continued by True and Hughe [118] for
volume warping. More recent volume deformations exploit hardware acceleration
to obtain volume deformations in real-time, combining control lattices and vol-
ume rendering [133, 99]. As an alternative to proxy-based deformation, one can
attain the same results by warping the rays used for volume rendering. Nonlinear
ray tracing, for example, as proposed by Gröller [49] enables the rendering of non-
linear spaces such as the visualization of relativistic effects, geometric behavior
of dynamical nonlinear systems and visualizing particles in a force field. Contin-
uing this work, Löffelmann et al. generalized this technique on how to define a
more abstract camera [81], for use in raycasters. Kurzion and Yagel proposed ray
deflectors to accomplish volume deformation, which uses point sources to bend
rays as they are traced into the volume [78]. Chen et al. generalize this notion to
discontinuous deformations in the form of spatial transfer functions [23]. With
the advent of fully programmable GPUs, volume deformation has been embed-
ded directly into the raycasting process, enabling the creation of visualizations
that resemble surgical illustrations [25]. Deformed volume raycasting, however,
retains the outside-looking-in view common in volume rendering. In our paper,
we propose novel inside-looking-out curve-centric raycasting views. For a more
extensive description of these and other volume deformation techniques, see Chen
et al.’s survey [22].

3 Theory

In this section we first present the basis for our approach, in Section 3.1, which
is to create a moving coordinate frame, or a tensor consisting of orthonormal
vectors. When this foundation is laid, we continue to present our two different
curve-centric reformation techniques, in Section 3.2 and 3.3 before we investigate
how we can utilize these in comparative visualizations, in 3.4.

3.1 Moving Coordinate Frames

Creating curve-centric volume reformations relates very closely to the problem of
creating a local coordinate frame for every point along a curve. This coordinate
frame is a tensor, or in other words, a set of orthonormal vectors for every
point on a curve r(t). There are several techniques generating this frame basis
for curves, and what separates them is the different problems they solve. The
Frenet frame [43] uses the first and second derivate to create a frame that is
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intuitive and gives good geometric insight into the curve itself. This tensor is
defined by the curve alone, and leaves no control to the user in modifying the
tensor without changing the path of the curve. The Frenet frame is however,
not defined for curves where the second derivative is zero, e.g. straight sections,
or change of curvature. On positions where the sign of the second derivative
changes, the tensor "flips". Klok [75] introduced a solution to these sign changes,
by introducing a fixed up-vector, and by restricting the curve to those residing
in a plane. If we employ Klok’s technique on curves in 3D (even though they
were not intended for this), the tensor would collapse when the curves derivative
is parallel with the selected up vector, and potentially have a sign change ("flip")
afterwards. Another method, that can be used to generate frame tensors, is thin
plate splines, as introduced by Duchon [32]. With the analogy of bending sheets of
metal, this technique produces tensors along the curve where the radial rotation is
minimized. This method produces smooth tensors with no sign changes, but this
method leaves, similar to the Frenet frame, no control over the direction of the
tensor. In our applications we see that preserving a logical up-vector is producing
a better spatial reference. Additionally, since the thin plate splines optimizes the
global minimum, minor changes to the curve might radically change the result.
Because of this, we introduce a technique that allows the user to specify an up
vector, while not exhibiting any sign changes. Our technique is similar to that of
Klok [75], but allows curves in 3D and the complete tensor is smoothed to avoid
sign changes and high frequency changes in the tangent.

The Frenet frame defines the tensor using local derivatives [43]. Let L ∈ R

be a positive value and r(t) a parametric curve that is defined for the interval
t ∈ [0, L]. The Frenet frame then defines its axes as

T(t) =
r′(t)

||r′(t)|| , N(t) =
T′(t)

||T′(t)|| , B(t) = T(t) × N(t)

with T(t) being the unit tangent, N(t) the unit normal, and B(t) the unit bi-
normal. The Frenet frame is quite elegant as it can be explicitly computed for
every point on the trajectory, but restricts the selection of curves to only those
that are twice continuously differentiable, e.g., no curves with points of inflec-
tion. Klok’s modified Frenet frame [75] is defined for curves in a plane where
the normal m of the plane defines the binormal BK(t) = m, and the tangent of
the curve T(t) and completes the frame by NK(t) = BK(t) × T(t). The Frenet
frame, Klok’s modified Frenet frame, and thin plate splines, place the tangent
component of the vector, T(t), equal to that of the curve’s tangent. Figure 2
shows a 2D version of a straightened curve in two versions, the upper using the
tangent as a basis for creating the normal, and the lower using a constant normal.
In this example this makes a drastic difference on both the readability and the
mathematical complexity of the result. Following this we introduce a smoothing
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Figure 2: The blue box represents a volume, and the black line the curve to straighten. Two rows showing a)

curve-linear deform with tangential T(t) and b) the same curve-linear deform, but here with constant tangents.

Columns left to right show, tangents, normals, and lastly the deformed box.

kernel Kh, with width h. This smoothing kernel is then applied to the original
tangent by the following convolution:

T̂(t) = (T ∗ Kh)(t) =
∫ L

0
T(τ)Kh(t − τ) dτ

When applying this convolution to create the smoothed vector T̂(t) we can expe-
rience, with some selections of Kh, a degeneration, where this vector, in a worst
case scenario, can evaluate to a zero vector. To avoid this we apply the above
convolution/weighted sum after converting the vectors to quaternions.

Another property we would like to translate to the deformed volume is a sense
of the up direction. Many datasets have logically defined up/down directions, and
in these cases we consider a “desired up vector” u. In all other cases, a consistent
vector is chosen instead, as we would like comparable results over several curves.
With this vector u, we can now define our new normal Nm(t) and a binormal
Bm(t) according to the rule,

Bm(t) =
u × T̂(t)

||u × T̂(t)|| and Nm(t) = T̂(t) × Bm(t)

This rule is very simple, and it is very similar to the one proposed by Klok [75],
but unlike his technique this one is not constrained to curves residing in a plane.
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Figure 3: Surfaces following the normal N(t) as red, and the binormal B(t) as green. Figure a) shows the

modified Frenet frame, experiencing a sign change that the smoothed version, b), handles gracefully.

However, it has two major issues that need to be addressed. The first issue is the
obvious case when T̂ ‖ u, and the cross product is 0, accordingly. The second
issue is to avoid a sudden sign change of the normal and binormal that can
follow such a parallel segment. We solve both these issues by applying a similar
smoothing kernel as with T̂(t). Even more important here than with the tangent,
because of previously mentioned sign changes, spherical interpolation must be
applied for smoothing, achieved by kernel averaging on the tensors quaternions.
From this definition of B̂(t) we define our normal vector as N̂(t) = T̂(t) × B̂(t).
Figure 3 shows how this smoothing applies to a curve that experiences two sign
changes with the modified Frenet frame.

We have now defined a function creating a tensor of orthonormal vectors at
each point r(t) along the curve. In the next section we present two techniques
that rely on such a moving frame. To ease the notation and to present that the
next techniques are independent of a specific form of frame construction, we will
hereby refer to the tangent as t(t), the normal as n(t) and the binormal b(t).
However, it is fair to assume that for all practical applications, these vectors are
the same as the smoothed versions introduced in this section.

3.2 Curve-Centric Reformation

In curve-centric reformation we aim to create a new volume, parameterized by a
curve’s arc-length and two terms indicating neighborhood in a distance preserving
manner. Unlike several other deformations, the goal of curve-centric reformation
is neither to preserve shape, nor angles of external objects, but to correctly
portray distances to features and to use these features to provide a spatial frame
of reference for the curves trajectory. As shown in the previous section, we make
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Figure 4: Left, a test volume with a curve in it, and right the result of Curve-Centric reformation. This curve is,

after the reformation, the straight line shown in the middle of the volume to the right.

sure that no smoothing is applied to the curve’s position, as we would like to
strictly enforce these positions as the center of the resulting volume.

We define this reformed volume Y by means of a mapping to the original
volume X, or a function f : Y → X. Given a curve r(t) and a defined frame
set for this curve, we utilize only the normal n(t) and the binormal b(t) in the
construction of f . We thus define the inverse transformation, from our reformed
volume and back to the original as:

f(x, y, z) = r(z) + x n(z) + y b(z), for z ∈ [0, L] (1)

which satisfies our initial definition of f(0, 0, t) = r(t). It can easily be proven
that for any curve other than a perfect line, this mapping is not one-to-one, and
will usually contain singularities. An important property of this transformation,
besides that it preserves the distance of arc-length, is that it preserves distances
orthogonally out from the center, i.e., given two points p1, p2 in a given plane
orthogonal to Y ’s z plane:

||p2 − p1|| = ||f(p2) − f(p1)|| (2)

the right hand term is, by decomposing p1 to [x1, y1, z1], and similarly with p2,
equal to:

|| (r(z2) + x2n(z2) + y2b(z2)) − (r(z1) + x1n(z1) + y1b(z1)) ||
which we reduce to, since z1 = z2:

||f(p2) − f(p1)|| = ||(x2 + y2) − (x1 + y1)||
since, our initial condition stated, the two points (pp1 and p2) share their z
component, the left hand side of Eq. 2 can also trivially be reduced to the same
term.
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From Eq. 1 it follows that the Z plane denoted by z in Y equals a plane
in X defined by the point r(z) and the tangent vector t(z). We utilize this
planar coherence to create a fast implementation of curve-centric reformation
by using render to 3D texture, rendering slice by slice fetching samples from X.
Rendering these slices z plane after plane, n(z) and b(z) is constant per plane,
and the evaluation of f is done after selecting a width w around the curve to
straighten, by linear interpolation between four points, f(w, w, z), f(−w, w, z),
f(−w, −w, z), and f(w, −w, z) with sufficiently large w. The result after such a
reformation, is a regular 3D texture which can be visualized using, e.g., a regular
volume ray-caster as shown in Figure 4.

3.3 Radial Ray-Casting

As presented in the previous section, curve-centric reformation creates a new
regular volume, which has to be visualized using a particular method; we now
introduce a direct projection of the original volume called radial curve-centric ray
casting. Given a function that creates a unit normal n(t) and a unit binormal
b(t) from a curve defined by r(t), traversing the arc-length t we cast rays starting
at r(t) in the direction

sin(φ) n(t) + cos(φ) b(t), φ ∈ [0, 2π]

In its simplest form, by using a straight line, this radial ray-casting technique is
reduced to a cylindrical projection, which form a projection that lies in between
perspective, having a viewpoint, and an orthogonal projection, having a plane
of view, with a line as its starting point. Using this technique one creates 2D
projections that have no perspective distortion in the horizontal direction, i.e., the
direction along the line, but with perspective distortion in the vertical direction,
i.e. the angular rotation around the curve. However in addition to the perspective
distortion, for curves, other than those of a perfect line, the curvature of this
curve, or rather the torsion of its moving frame tensor, will further distort objects
and features as seen from the curve.

A common strategy for ray-casting is to first render the texture coordinates
of the exit points for rays, and then to store them. Next the ray casting is
initiated by rendering the starting location of these rays, and iterating the ray-
casted volume using the line between start and exit. This technique is depcited
in Fig. 5, where the left part shows a box used as proxy-geometry for rendering
the entry and exit buffer. The strength of this technique is its simplicity and
that it is independent of perspective and proxy geometry, and as we will show,
also compatible with our radial ray-casting. Generating the exit points is usually
done by rendering the proxy geometry, culling front faces, but we will use a
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Figure 5: Regular ray-casting uses proxy geometry, generating the entry and exit positions for ray traversal. Our

radial ray-casting technique mimics this behavior by setting the entry buffer to the curve’s position, and the exit

buffer as the curve’s position plus an angular rotation around this curve.

more direct method. The exit points in radial ray-casting are defined as, over
normalized screen-space u, v, using a far "plane", or tube, with radius far :

r(uL) + far · (sin(2vπ) n(uL) + cos(2vπ) b(uL))

For efficiency concerns, this exit point should also be clipped, at the intersection
point to the texture cube, to stay within existing volume coordinates. After this
exit buffer is established, we can start our radial ray-casting, using the start
position r(uL). This start/entry and exit buffer is shown, on the right of Fig. 5.
Given the exit position buffer and the starting position, this radial ray-casting
technique is theoretically compatible with shader code written for any other ray-
caster employing the same strategy, and will thus render at real-time speeds,
and be able to perform advanced dynamic transfer functions. When applying
proven shader techniques to this type of rays, one of course needs to keep in
mind the aliasing issue, produced by the fact that the projection will sample the
surrounding space with an uneven number of rays, due to the curvature, and the
combination of almost parallel rays in the direction of the curve and an extreme
perspective, 360 degrees (like in fisheye projections), in the rays orthogonal to
the curve. Figure 1 (the teaser image) shows two examples of radial ray-casting,
where a regular color map transfer function has been used, in addition to edge
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Figure 6: The curve from Figure 4 shown as a curve-centric radial projection, top, as a reformed volume visualized,

middle, and a curve plot, showing the sampled intensities from the volume along the curve. This comparative

visualization allows accurate comparison of intensity values to their spatial origin.

enhancement. Another example is shown in Figure 6, where the top image shows
a radial ray-casting, and because of properties in our generation of the moving
frame, we can read out the direction around the curve, as 0 degrees corresponds
to the left of the curve, looking in the direction of the trajectory (left to right),
90 degrees up, 180 right and 270 is below the curve.

Unless the curve is dynamic, this rendering produces images with a fixed "view",
but one can still implement an interactive exploration of the volume around the
curve, by constraining to either a subsegment of L or a subset of the angular radii.
An interaction scheme would then allow for zooming, a reduction of segments in
both dimensions, and panning, which would translate this segment.

3.4 A Common Axis for Comparative Visualization

Two objects sharing one or more axes have a basis for comparison. A shared axis
is simply one that has the same unit, e.g., two physical objects share size, and
can thus be compared in terms of size. Moreover, the display of those shared
axes should be shown in scale to each other, optimally sharing the exact same
scale, to avoid producing deceptive visualizations. In this paper, we present two
techniques that create visualizations, by deforming or projecting space, that are
aligned with the arc-length of a curve in space. The strong rationale for pursuing
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this alignment is to be able to create visualizations that combine well with existing
techniques, like graphs, 2D plots, or even images. These are techniques that are
not always well imported into a 3D environment, e.g., Figure C.7(a) shows 1D
graphs for multiple wells drawn in 3D space, enabling coherence between values
and their spatial position, but is not suited for accurate readouts. By reversing
this strategy we instead investigate how well we can display information from
volumetric models with a correct alignment to the 1D space of these 1D and 2D
techniques. One way to look at this reformation is that one renders the physical
space in the logging space, instead of rendering the logs in the physical space. A
strong argument for this reformation, in Figure C.7(a)’s case, is that the function
shown on a single well here is actually only one of several production related
parameters that the production team is interested in analyzing. By straightening
a single well, all of the different production values can be shown in its own graph,
without the inherent occlusion problems that would exist in a 3D visualization.
Another argument for exactly this reformation of space, is to provide accuracy in
display, e.g., in a plotting environment one has a direct readout of values. Figure
6 shows such a plotting environment, where the two separate displays share the
horizontal axis, and one could theoretically use a ruler to match peaks in the
bottom curve to features in the two above. The curve-centric radial projection
makes sure to preserve a required orthogonality in the direction of the 1D axis of
the plot. This orthogonality is also enforced in the visualization of the deformed
volume by simply rendering it with an orthogonal projection.

The curve-centric visualization techniques are only fully utilized when actually
shown in the same space as important arc-length parameterized metrics. It is
not within the scope of this paper to create other novel visualization of these
metrics, but to show how one can create comparative visualizations by com-
bining deformed and curve-centric projected, with existing and well established
techniques. In the next section we show several examples of arc-length parame-
terized data, but these are just some of the many that actually exists. As good
examples for these data sources, we can imagine most of the sensing devices that
are attached to moving objects. These sensing tools are logging data by time,
but indirectly they are also portraying information about their surroundings as
a function of where they are. Other data sources are, e.g., 1D simulations or
trajectory simulations.

4 Application Cases

In this section we show how we successfully applied our techniques to cases of two
different industries. In Section 4.1 we investigate two cases with application to the
petroleum industry; the first case where we show how curve-centric reformations
can help show the multiple data sources gathered when drilling exploration wells;
and in the second, we show its application in a real-time drilling scenario, looking
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closer into well-bore uncertainty at a certain strategic depth, motivated by an
actual incident. In Section 4.2 we similarly investigate two cases with application
to the car industry. In both of these two we investigate parameters around
streamlines, but in the first one we investigate multiple parameters of a single
streamline, whereas in the second we compare several different streamlines on a
single parameter.

4.1 Well-Centric Visualizations for the Petroleum Industry

The petroleum industry uses drilling in part for exploration and in part for cre-
ating or expanding production in oil and gas reservoirs. Where vertical wells are
almost the norm for exploration wells, an increasing number of horizontal wells
and even those with more complex geometry, are used to extend the lifetime of
aging reservoirs. While drilling these wells, operators apply several sensing tools
to learn about the surrounding formation, to get situational awareness, to pre-
dict potential problems, and to maximize the drilling parameters, e.g., rotation
speed, how much pressure should be applied to the drilling bit, and more. These
sensing tools can measure down-hole pressure, electric conductivity of the for-
mation wall and a number of other physical parameters. These provide output
with a timestamp, or streaming data in time, but for many of these physical
parameters, different representations make more sense. E.g., a sensing device
measuring the physical properties of the rock outside the drill-string will provide
a measurement as a function of measured depth (arc-length, not true depth)
and to a lesser extent rotational position, rather than time. Similarly there are
many other parameters that are best shown as a function of depth rather than
time graphs, e.g., rate of penetration, hook-load, electric logs, and more. When
these logs, all having the common axis of arc-length, are shown to explore their
relation to seismic volume data, existing techniques usually put these logs into
the 3D seismic space, as shown in Figure C.7(a). We argue that this technique
highlights the seismic volume as the important feature, showing the logs in a
contextual manner. We propose to invert this display, and to show the seismic
in the space of the logs instead. This is done by a reformation of the volume
around the wells, and thus the seismic volume share arc-length as the axis with
logs. An example of this is shown in Figure 8 where different measures along the
drill-string are compared for coherence, as is a common operation in exploration
drilling. This figure shows a volume visualization of the deformed volume on top,
containing the well, an orange line, in the middle. The next is a graph of seismic
reflectance sampled along the wellpath. As expected we see a strong correlation
between this and the one above and below, which is the radial ray-casted volume
as seen from the well. The final image, at the bottom, is a physical measured
value, called an UBI image, or Ultrasonic Borehole Image. This imaging device
produces 360 degree images of the formation around the well, very much like our
radial raycaster, and we would thus expect to see a very tight correlation be-
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(a) (b)

Figure 7: (a): Multiple production wells shown as tubes, where color indicate a single physical measured variable

along the well length. All these wells reside in the reservoir, some injecting fluids while others receiving fluids.

Image used with permission by StatoilHydro ASA. (b): The well we investigate in this case. This figure shows the

seismic volume in the close vicinity to the well, before and after reformation.

tween these. Initial seismic volumes are often quite uncertain, and to minimize
these uncertainties they are compared to results from exploration wells. We see
the techniques of curve-centric reformation as a natural addition to the already
existing techniques for studying these results.

Real-Time Drilling Data is the second case in which we introduce a novel
view on drilling. The contractors that drill wells have to follow a strict plan of
where the drill string should be on the way to the target. In the preparation, to
create a drill plan, the close proximity to the well is mapped out and simplified
into a 1D plan of different properties that the wellbore passes through. These
properties are, e.g., pressure gradients, lithology (rock type), and where stops,
logs, and casings should be positioned, all of which share the axis of arc-length.
A case using some of these drilling properties is shown in figure 9, in which we
inspect the properties of the well as shown in Figure C.7(b) before and after
reformation. In this case we show an important part of a drilling operation, in
which we are drilling the final stretch before we enter the reservoir, denoted by the
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Figure 8: The above images show different measures along a well-path. From top, an orthogonal ray-casted

view of a curve-centric deformed seismic, second graph shows the volume intensity (seismic reflectance), third

shows an angular ray-casted view from the wellpath and out into the surrounding seismic, and lastly the final

image shows an ultrasonic borehole image, an angular view into the formation.

blue limestone. Because of very different properties of the shale (green) and the
limestone it is very important to stop drilling as close as possible to this horizon,
and insert a casing to protect the wellbore and formation from changing pressures.
In addition to providing spatial awareness, this figure highlights an important
detail our petroleum industry partners has expressed interest in, namely the
wellbore uncertainty. The red ellipse, shown in the same figure (9), represents
the area, or rather the volumetric ellipsoid, in which the drill-bit is positioned
with 95.4% accuracy. Notice that the 1D lithology column shows the limestone
to start at the wellbore’s intersection with a major horizon at 5.45 which is
diagonal. It is fair to assume that everything below this diagonal horizon is
included in the reservoir. This shows that the 1D lithology is only accurate if
the wellbore traverses where it was planned to. The 1D lithology column fails
to incorporate the uncertainty of wellbore positioning, eg., the wellbore could
be positioned deeper, and the reservoir would encountered earlier. In fact, the
ellipse shows that given a 95.4% probability safety margin, one cannot guarantee
that we have not already entered the reservoir. Projecting this ellipsoid into the
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Figure 9: Deformed seismic can provide spatial reference for real time drilling data as well as showing uncertainty

in the 1D lithology column. Image on top is the full length deformed wellbore, below a zoom-in of the section

currently drilled, which also contains the 1D lithology with the current drill bit position, and a real time graph

showing the rate of penetration (ROP) for the section. The red ellipse in the center shows positional uncertainty.

1D lithology column would not reveal this. As mentioned earlier, this example
is motivated by an actual incident, where wellbore uncertainty led to the wrong
assumption that one had a good clearing before entering the horizon. Secondary
measures (gas show) did in fact even show signs that the reservoir was entered,
but was ignored due to the believed clearing, and drilling was resumed. We
contest that if our display would have been used in this case, then the secondary
sign would not have been ignored, since the probability is already shown to be
below the threshold for entering the horizon.

4.2 Streamline-Centric Visualization

In this section we investigate a dataset containing velocity and pressure from a
single time step in a wind simulation for vehicle design. Additionally we created
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a distance field from a geometry file. From the velocity field, we extracted two
scalar fields, velocity magnitude and vorticity magnitude. An overview of these
datasets are shown in Figure 10. From the original velocity field we further
extracted several streamlines, from which we selected a few streamlines that
shared an interesting property in that they traverse in close proximity to a side
mirror, an overview of these streamlines are shown in Figure 11. Inspecting one of
these streamlines is enabled in our shared axis view, where multiple views on the
streamline are provided for comparison. This comparative visualization display,
as shown in Figure 12, is well suited for understanding how the streamline is
affected by the different fields, in addition to looking at the correlations between
the different fields. The deformed car on the top of Figure 12 acts as a spatial
reference, additionally to reveal information on the curvature, the higher the
curvature the bigger the deformation on the car. In this view (still Figure 12)
we can see that there is a very good correlation between velocity magnitude and
pressure in front of the car. At 1.5 meters into the streamlines arc-length, the
streamline passes through a positive pressure, which is aligned with a slight drop
in velocity. More interesting is the low pressure the streamline passes through at
2 meters, which interestingly enough does not seem to affect the velocity. Right
behind the car, at 5.5 meters, we can see a drop in velocity (the blue vertical
feature), that does not seem to correspond with any of the other views. One
possible explanation might be the vorticity and low pressure feature right in
front of it. Studying correlations in this manner does provide a new perspective
into the study of flow fields that our industry partners found intriguing.

Our application partner, a team of engineers who use computational fluid dy-
namics simulations for all aspects of automobile design, was intrigued by the
alternative views that we are able to create with deformation and the curve-
centric radial projection. The concept of applying deformation on the car body
to reveal a secondary effect outside of the car is very enticing to them. This
deformation would then be a tangible communication between the bodywork de-
signers and them for shape optimization. In particular, they pointed out that
by choosing the appropriate flow quantities other than velocity, such as vorticity
vector or helicity density, the deformed surface could actually suggest the location
and extent of the shape change needed to achieve optimal performance. Addi-
tionally, the curve-centric radial projection of the flow structure with respect to
a straighten field line may display information hard to reveal with conventional
flow visualization techniques, such as drag force acting on the car.

5 Summary and Conclusion

In this paper we have presented a general solution on how to create new curve-
centric parameterizations of volumetric space. Additionally we have presented
how to use this new parameterization in creating two visualizations that are
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Figure 10: Top, velocity magnitude, middle, vorticity magnitude, and below pressure, all from a vehicle design

simulation.

aligned with the arc-length of the curve. We have shown that we can use this
alignment to create comparative visualizations, where 3D spatial positions are
shown directly overlapping with 1D, or 2D arc-length parameterized functions.

We have successfully created a prototype using a combination of C++ and
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Figure 11: Showing five selected streamlines with a close proximity to the side mirror, that provides interesting

features to study.

Python, which implements the creation of a moving frame given a curve, an
optional up vector and a smoothing factor. Using this moving frame and sup-
plying a volume, 3D texture or array, and a width, the prototype creates a
deformed volume either as a 3D texture or as an array. This prototype sup-
plies methods for creating images rendered either offline or real-time of both
the deformed cube, as an outside in view, and the radial 2D projection, giving
inside out views. Using this prototype we have created two case specific appli-
cations, one to investigate streamlines, and one to investigate well data from the
petroleum industry. To avoid reinventing existing visualization techniques we
have integrated our techniques with matplotlib: A 2D Graphics Environment as
presented by Hunter [59], which enables the use of existing 1D and 2D visuali-
zation techniques, along the aligned axis of our result. Our test system has an
Intel Core2 Quad CPU and a GeForce 8800 GTX. Creation of a deformed volume
with dimensions [128,128,512], from an original volume [600,300,750], takes 19
milliseconds. Rendering a radial ray-casted image with dimensions [2048,512] of
the original volume takes 51 milliseconds.

Limitations and Future Work: The presented algorithm requires a user
specified up vector and smoothing factor, and for the volume deformation, also a
user specified width. While this user input provides flexibility, it does represent
a limitation for complete automation. There is a correlation between the fre-
quency of changes of the curve, the width of the box surrounding the curve, and
the smoothing factor. This correlation is not explored in this paper, but could
potentially give some interesting automation of these parameters. The radial
ray-casting technique does not duplicate any of the original data, but the vol-
ume deformation does. When straightening curves with high frequency changes,
which will then have a large arc-length within a small section of the original
volume, this duplication of voxels becomes very apparent. Another limitation, is
when sections of the curve, larger than the smoothing kernel, are parallel with
the up-vector. We proposed to solve this by modifying the up vector, or by in-
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Figure 12: A plot showing streamline 5 as shown in Figure 11. The deformed car is shown on top, which then

acts as a spatial reference for the measurements below. The three measurements below are radially ray-casted

streamline-centric views, and below a graph tracing a value on the streamline.
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creasing the smoothing factor, but the smoothing kernel could be expanded to
take these longer sections into account, and smooth over them by using a varying
smoothing factor.

In cooperation with our application partners we have used our prototype appli-
cations to show how curve-centric visualizations, combined with application spe-
cific data, can create effective and compelling comparative visualizations. More-
over, we have produced a more general approach, without the same application
specific requirements as shown in previous techniques such as virtual colonoscopy
or curve planar reformation, one that ideally could be used for numerous other
applications as well.
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