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Preface

This dissertation is submitted as a partial fulfillment of the requirements for the
degree Doctor of Philosophy (PhD) at the University of Bergen. It is part of the
project Mathematical Modeling and Risk Assessment of CO2 storage, MatMoRA,
which is funded by the Norwegian Research Council, Statoil and Norske Shell
under grant no. 178013/I30 and lead by Professor Helge Dahle at the Depart-
ment of Mathematics, University of Bergen (UiB). The working environment has
been Uni Computing in Bergen. Research Director at Uni Computing, Klaus Jo-
hannsen, was the main adviser and Professor Jan M. Nordbotten at the Depart-
ment of Mathematics, UiB, was co-adviser. Professor Hamdi A. Tchelepi at the
Department of Energy Resources Engineering, Stanford University hosted the au-
thor during a six month research visit.

The objective of this thesis has been to contribute to the understanding of con-
vective mixing in porous media, and especially on its influence on safe geological
storage of carbon dioxide (CO2). The interactions between the buoyant migration
of supercritical CO2 and the negatively buoyant fingering of dissolved CO2 in ge-
ological formations is studied. Special focus is given to the capillary transition
zone in this context. The time- and length-scales of convective mixing are stud-
ied in the linear as well as the nonlinear regime, using stability analysis and also
statistical analysis based on multiple realizations of numerical simulations.

Outline

The thesis consists of two parts. The objective of Part I is to give a motivation
and background to geological CO2 storage and to introduce theory on multiphase
flow and stability of miscible displacement. An overview of methods for direct
numerical simulations is also presented. In addition, our results and conclusions
are summarized and hypotheses and suggestions for future work are given, based
on the collected results. A detailed description of our chosen methods, results
and conclusions is presented in three articles which are included in Part II of the
thesis:

Paper A: CO2 trapping in sloping aquifers: High resolution numerical simula-
tions. M.T. Elenius, H.A. Tchelepi and K. Johannsen. Proceedings of XVIII
International Conference on Water Resources, 2010. Contribution of thesis
author: implementation of of new initial condition procedure in the soft-
ware GPRS, performance of simulations, analysis of results, writing the
paper. Contribution of co-authors: ideas and suggestions for research and
paper.



Paper B: Effects of a capillary transition zone on the stability of a diffusive
boundary layer. M.T. Elenius, J.M. Nordbotten and H. Kalisch. Submit-
ted to IMA J. Appl. Math. Contribution of thesis author: stability analysis,
writing program for the full linear regime, performance of simulations for
linear and nonlinear regime, writing the paper. Contribution of co-authors:
ideas and suggestions for research and paper.

Paper C: On the time scales of non-linear instability in miscible displacement
porous media flow. M.T. Elenius and K. Johannsen. Submitted to Compu-
tational Geosciences. Contribution of thesis author: performance of sim-
ulations, post-processing and analysis of results including error analysis,
writing the paper. Contribution of co-author: performance of preliminary
simulations, development of some of the pre- and post-processing tools,
ideas and suggestions for research and paper.
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Abstract
The industrial era has seen an exponential growth in the atmospheric concentration
of carbon dioxide (CO2), resulting mainly from the burning of fossil fuels. This
can cause changes in the climate that have severe impacts on freshwater and food
supply, ecosystems and society. One of the most viable options to reduce CO2

emissions is to store it in geological formations, in particular in saline aquifers.
In this option, the carbon is again stored in the subsurface, from which it was
extracted. The first geological storage project was initiated in Norway, in 1996,
and CO2 has long before been injected to geological formations to enhance oil
recovery. Storage occurs with CO2 in a so-called supercritical state and this fluid
is buoyant in the formation. Four physical mechanisms help trapping the carbon
in the formation: the CO2 plume accumulates under a low-permeability caprock;
CO2 is trapped as disconnected drops in small pores; buoyancy is lost when CO2

dissolves into the water; and on longer time-scales chemical reactions incorporate
the carbon in minerals. Dissolution trapping is largely determined by convective
mixing, which is a rich problem that was first investigated almost 100 years ago.
We investigate the influence of convective mixing on dissolution trapping in geo-
logical storage of CO2.



Most formations that can be used for CO2 storage are slightly tilted. We show
with numerical simulations that dissolution trapping must in general be acknowl-
edged when questions about the final migration distance and time of the CO2

plume are to be answered. The saturations in the plume correspond well to tran-
sition zones consistent with capillary equilibrium. The results also show that the
capillary transition zone, in which both the supercritical CO2 plume and the water
phase exist and are mobile, participates in the convective mixing. Using linear
stability analysis complemented with numerical simulations, we show that the
interaction between convective mixing and the capillary transition zone leads to
considerably larger dissolution rates and a reduced onset time for enhanced con-
vective mixing compared to when this interaction is neglected. The selection of
the wavelength that first becomes unstable remains almost unchanged by the in-
teraction. A statistical investigation of the onset time of enhanced convective mix-
ing under the neglection of the capillary transition zone reveals that it is notably
larger than the onset time of instability for three example formations. However,
comparison of these simulation results with the investigations in a sloping aquifer
preliminarily suggest that the distance that the plume propagates during the on-
set time of enhanced convective mixing is negligible and that therefore this time
can be assumed to be zero, with the possible exception of aquifers that have steep
slopes.
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Chapter 1

Introduction

In this chapter we review the motivation and concept of carbon storage. First,
the development of the atmospheric carbon dioxide concentration in the industrial
era and its effects are reviewed. This is followed by a description of mitigation
strategies. An overview of the physical processes that occur in geological carbon
storage and their influence on storage safety is given and the contribution from
this thesis is presented.

1.1 Climate change

In 1958, Charles David Keeling initiated his now famous measurements of the
carbon dioxide (CO2) concentration in the atmosphere [50, 51]. Keeling’s mea-
surements on Mauna Loa in Hawaii show that the CO2 concentration has been
increasing rapidly since the 1950s. By means of isotope studies of 13CO2 [27]
and molecular oxygen (O2) [52, 3], it has been shown that this increase is largely
linked to anthropogenic emissions from the burning of fossil fuels. Figure 1.1
displays the CO2 concentration as obtained by measurements at Mauna Loa com-
pared to data from ice cores. Although there is some natural variability, there has
been a 35 % increase in the industrial era [57], leading to a level that is higher
than at any previous time during the last 650,000 years [69, 77].

Carbon dioxide together with water vapor and other gases like methane, ni-
trous oxide and ozone absorb heat radiated from the Earth’s surface [57]. An
enhanced concentration therefore contributes to global warming, referred to as
the greenhouse effect [57]. The most important greenhouse gas apart from wa-
ter is CO2 [57]. In past transitions from glacial to interglacial periods that have
been investigated, a warming of the climate preceded an enhanced CO2 concen-
tration [62, 5]. However, feedback from an increased level of greenhouse gases
contributed significantly to the transitions [45]. The enhanced CO2 concentration
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Figure 1.1: Atmospheric concentration of carbon dioxide. Reprinted
from http://www.britannica.com/EBchecked/media/69345/Carbon-dioxide-
concentrations-in-Earths-atmosphere-plotted-over-the-past, with permission of
Encyclopedia Britannica, Inc.

at present greatly exceeds this natural variation and continues to increase. This
can cause changes in the climate that have severe impacts on freshwater and food
supply, ecosystems and society [44].

Already today, recent climate change has caused changes in natural systems.
There is increasing ground instability in permafrost regions, increased runoff in
many glacier- and snow-fed rivers, earlier timing of spring events and poleward
shifts in ranges in plant and animal species. The oceans have also become slightly
more acidic [44]. Estimation of future impacts under the assumption of no mit-
igation is often performed based on projected changes in precipitation, temper-
ature and sea level [44]. Under these projections, heavy rainfalls and flooding
will increase in some regions and at the same time the extent of areas affected by
droughts also increase. Later in the century, meltwater from glaciers and snow-
cover decrease. Climate change and the rise in sea level lead to coastal erosion and
flooding of millions of people towards the end of the century. Continued ocean
acidification can lead to enhanced coral mortality, and also in general a reduced
biodiversity is expected. The health of millions of people is likely to be affected
through for example increased malnutrition and from heat-waves, floods, storms,
fires and droughts [44].
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Table 1.1: Examples of technologies and associated efforts to achieve one wedge,
as presented by Pacala and Socolow [65]. Note that “currently” refers to 2004
when their paper was written.

Option Effort required to achieve one wedge

Efficient vehicles Increase fuel economy from 30 miles-per-gallon (mpg)
to 60 mpg for 2 billion cars.

Nuclear power Add twice the currently installed nuclear capacity.
Wind power Scale up the 2004 installed capacity of wind-generated

electricity by a factor 50. This necessitates an area
equivalent to 80 % of Norway, some on land and
some off-shore. (Multiple land uses are possible.)

Carbon capture and storage Introduce CCS at coal-fired power plants and other
sources corresponding to injection of the current amount
used for enhanced oil recovery scaled up by a factor 100.

While all this is very alarming, one should also keep in mind that humans have
been able to reverse human-induced trends for global, albeit simpler problems be-
fore, regarding for example acid rains and the abundance of chloro-fluoro-carbons
that affect the ozone layer [57].

1.2 Mitigation strategies and carbon storage

The largest contribution to the anthropogenic emission of CO2 (85 %) is the com-
bustion of fossil fuels for energy use [41]. In order to mitigate CO2 emissions
from the energy sector, a variety of actions can be taken, including: use of nuclear
and renewable energy sources; use of different energy carriers; combined heat and
power; and carbon dioxide capture and storage (CCS) [79]. The effect of different
actions on CO2 mitigation can be illustrated by the use of so-called stabilization
wedges, introduced by Pacala and Socolow [65]. A stabilization wedge corre-
sponds to actions that reduce emissions gradually towards 1 Gt carbon per year in
the 50 year period following their paper in 2004 [65]. Implementing actions that
add up to seven wedges corresponds to stabilized annual emissions during this
period, rather than doubled annual emissions which are expected without these
special efforts, see Figure 1.2. After this, a decline in emissions is needed if stabi-
lization of atmospheric CO2 concentration shall be obtained at less than double of
the pre-industrial concentration. There is a substantial effort to reach one wedge,
some examples are listed in Table 1.1.



6 Introduction

Figure 1.2: Stabilization wedges. From [65]. Reprinted with permission from
AAAS.

This thesis treats certain aspects of the fluid dynamics and safety of carbon
dioxide capture and storage (CCS). In this technology, CO2 from predominantly
centralized sources like power-plants and large industries is captured and com-
pressed and thereafter transported and stored away from the atmosphere. An
overview of CCS is given here. More detailed information can be found in the spe-
cial report on CCS written by the International Panel of Climate Change, IPCC,
and the references therein [43].

There are several options for the capture of CO2: it can be captured in indus-
trial processes, as well as before and after the combustion of fossil fuels. If pure
oxygen is used for combustion, the flue gas contains mostly CO2 and water. In-
dustrial CO2 capture has taken place for more than 80 years from purification of
natural gas [54]. The separation of CO2 from other flue gases may involve sor-
bents, solvents, membranes or distillation. Extensive research is being undertaken
to improve the efficiency of these technologies, because capture and separation
constitute a large portion of CCS project economy [26].

If the containment system is not in the immediate proximity of the source of
CO2, the CO2 is transported in pipelines or with ships to the containment system.
Pipeline transport requires overpressure protection and leak detection especially
in populated areas. Pipelines are already being used for transport of CO2 from
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natural gas sites to sites for enhanced oil recovery. Liquefied CO2 can be trans-
ported in ships in the same way as liquefied natural gas and petroleum gases are
transported today.

Storage options include underground geological storage, ocean storage, min-
eral carbonation and industrial uses. In ocean storage, the deep oceans are con-
sidered as storage sites for CO2. Although the storage potential is large, there
have been no large-scale operations of this alternative, primarily because of risk
of harming the marine ecosystem [43]. Mineral carbonation is still in the develop-
ment stage, and industrial use of CO2 is not expected to contribute much to CO2

mitigation, because the lifetime of the resulting products is often too short, and
the demand for CO2 is rather small [43].

In contrast to these alternatives, geological storage is an option that is cur-
rently in use and that has large potential to contribute to CO2 mitigation [43]. In
geological storage, CO2 is injected into the pores of sedimentary rocks deep under
the land surface or ocean floor. There is ample experience in the techniques from
the oil- and gas industry, from current CO2 storage operations and from storage of
acid gas. In addition to being used for for enhanced oil recovery, the CO2 can be
injected into depleted oil- and gas reservoirs, saline formations, unminable coal
formations and some other geological media, see Figure 1.3.

The by far largest storage potential is found within saline formations; esti-
mated to at least 1000 GtCO2 and possibly an order of magnitude larger [43].
These are deep sedimentary rocks where the pores are filled with salty water
(brine). Saline formations are distributed around the world and are thus in rela-
tive proximity of many large sources of CO2 emissions. The risks associated with
geological CO2 storage projects are related to leakage of CO2 from the storage
formation to other formations where it may pollute potable water, hydrocarbon
or mineral resources. Leakage to soils can affect plants and sub-soil animals and
leakage into the atmosphere may cause health and safety problems. The expected
rates of leakage are in general small but depend on careful site selection. The ma-
jor challenges of large-scale capture and geological storage are often summarized
as: CO2 capture cost, sequestration safety, legal and regulatory barriers and public
acceptance [12]. It is important to consider these challenges in light of the risk of
not undertaking CO2 sequestration.

In the remaining part of this thesis we shall focus on storage in saline forma-
tions.
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Figure 1.3: Options for storing CO2 in deep underground geological formations,
reprinted with permission from CO2CRC.

1.3 Processes of the injection and post-
injection periods

While a detailed description of porous media flow is given in the next chapter, an
overview of the transport processes and trapping mechanisms that are important
for CO2 storage in the subsurface are given here.

An understanding of the processes of CO2 migration in the injection formation
is important for the estimation of injectivity, storage capacity and leakage risk.
Injection occurs at high pressures to formations that are positioned at least 800 m
below the ocean floor or groundwater level. This ensures that CO2 is in a so-called
supercritical state, where it occupies a considerably smaller volume than it would
do as a gas at lower pressures [43]. The injection formation must be sealed from
above by a rock that fluids cannot easily penetrate, a so-called caprock.

Given that the pores of the injection formation are already filled with brine
before the injection of CO2, the injection process leads to elevated formation
pressures. One important aspect of the injection operation is therefore to avoid
unwanted fracturing, which could otherwise lead to escape of CO2 through the
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caprock. Careful monitoring is required and also facilitated during the injection
period since operations are still in place. Another aspect of the elevated pressures
is that the pressure pulse may reach much further than the ultimate transport of
CO2. This pressure “contamination” may interfere with other CCS projects and it
may also enhance the risk of pressure driven leakage of CO2 and brine [12]. In
some aquifers it will be necessary to produce brine to reduce the pressures and
this generates the question of how to manage the brine after production. For this
and other reasons, Court et al. [12] have suggested that water management should
be considered as one of the main challenges in geological CCS projects. In the
injection operation at InSalah, Algeria, small ground deformation has been noted
as an effect of injection, and it has been used to monitor CO2 movement with
satellite imaging [61].

The injected CO2 is initially mainly transported away from the injection
well by the pressure gradients, and upwards because it is lighter than the for-
mation brine. Low-permeability layers within the aquifer, and critically a low-
permeability seal above the formation (caprock), therefore control the early flow
behavior. Storage in the Utsira formation in the North Sea, for example, has shown
that the migration footprint follows the caprock topography (slope) [8]. CO2 may
also be stored in “anticlines” of the low-permeability layers or caprock. This is
called stratigraphic trapping.

Injection typically proceeds for a few decades, while the plume may continue
to migrate slowly for thousands of years [21]. When injection stops, the pressure
gradients will eventually decrease and the main driving force of the plume is its
buoyancy. Especially during this post-injection period, brine will replace the trail-
ing edge of the supercritical CO2 plume [49]. When brine enters pores that were
filled by CO2 it is not able to remove all CO2, some is left in small pores (see also
section 2.3). This is referred to as capillary or residual trapping, and its efficiency
increases when more of the aquifer volume is contacted by the plume, i.e. with a
larger sweep. Therefore, horizontal low permeable layers within the formation are
favorable in this aspect because they restrict the plume from ascending directly
towards the caprock. It is also possible to enhance the sweep with engineering
methods that reduce the buoyant flow by for example alternating the injection of
CO2 with injection of water. To get a feeling for the storage volumes needed for
residual trapping, consider the on-going injection operation into the Utsira forma-
tion. The formation extends over an area of approximately 450 km x 75-130 km
[30]. When the operation shuts down, some 20 Mt of CO2 will have been injected
[43]. The median of reported porosity values is 38 % [9] and the thickness of the
formation is up to 300 m [30]. Using a CO2 phase density of 700 kg/m3 and full
CO2 saturation over the entire thickness of the aquifer, the footprint area needed
to store this amount as mobile CO2 is 0.25 km2. Furthermore, assuming that 20
% of the pore space may be used for residual trapping over the entire thickness,
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Figure 1.4: Injection, transport and residual trapping of CO2 in an aquifer. From
[49] with permission from the American Geophysical Union.

a foot-print area a factor 5 larger is needed (approximately 1.3 km2) to store all
CO2 at residual saturation. The full thickness will not be available for residual
trapping because CO2 will tend to migrate preferentially in the upper portions
of the aquifer, as discussed above. Already in 2006, seismic imaging showed a
plume extent of approximately 2 km2 (see Figure 1 in [8]). After a long period of
storage of CO2 in the aquifer, the properties of the fluids (wettability, cf. section
2.2) may change [83] and once again the trapped CO2 may become mobile (if it
has not already dissolved at that time).

CO2 will dissolve from the mobile and residually trapped CO2 phase into the
brine [84]. In the Utsira formation, the solubility of CO2 is measured at 0.051
kgCO2/kg brine [75] and the brine density is approximately 1000 kg/m3. With
these values an area of 3.4 km2 is needed to evenly dissolve all CO2 to the sol-
ubility limit if the full aquifer thickness would be used. The full thickness may
however not be available to dissolution trapping due to low permeability layers.

The brine density increases around 1 % with dissolved CO2 content [22] and
therefore buoyancy is lost with dissolution and we refer to storage in the brine
phase as dissolution trapping. Typically, dense brine with CO2 will overlay lighter
brine without CO2, causing an unstable setting which may lead to convective mix-
ing [58]. Convective mixing is a major contributor to the dissolution rate [22]
because it efficiently provides new fresh brine to regions with high concentration,
thereby allowing more CO2 to dissolve. Over longer periods, the dissolved CO2

may also react with the formation minerals to produce new minerals that incorpo-
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rate the carbon. This is called mineral trapping.

1.4 Contribution of this thesis
This thesis contributes to the understanding of dissolution trapping, and the asso-
ciated convective mixing, in geological CO2 storage.

The saline aquifers where CO2 can be injected are often slightly tilted. There
is an up-dip migration of the buoyant CO2 plume and at the same time, part of
the CO2 is trapped in the water phase by dissolution. Convective mixing is impor-
tant for dissolution and it acts on a scale much smaller than the large-scale plume
migration. This poses difficulties for numerical simulations and hence, attempts
to include dissolution by means of up-scaling techniques have been undertaken.
There are however uncertainties when a problem that has not been solved is up-
scaled. We therefore solve the full problem with direct numerical simulations. The
results show that dissolution trapping is a first order trapping mechanism that must
in general be acknowledged because it reduces the plume speed and the maximum
up-dip extent of the plume. The saturations in the plume correspond well to tran-
sition zones consistent with capillary equilibrium and that the two-phase region in
the plume (capillary transition zone) participates in the convective mixing.

The influence of the capillary transition zone on convective mixing is studied
with linear stability analysis and with direct numerical simulations. The linear sta-
bility results show that the capillary transition zone has no significant effect on the
selection of the wavelength that first becomes unstable. However, the time until
instability begins (the linear onset time) is reduced. Direct numerical simulations
for the nonlinear regime show that also the time until enhanced convective mix-
ing begins (the nonlinear onset time) is reduced and that the dissolution rate can
be enhanced up to a factor four when the interaction with the capillary transition
zone is accounted for. Therefore, the contribution from dissolution to the safety
of geological storage of CO2 begins earlier and can be considerably larger than
shown by estimates that neglect the capillary transition zone.

Many investigations have focused on the linear onset time. However, in CO2

storage, the nonlinear onset time has much larger consequence, since it is not
until this time that the instability of the boundary layer leads to enhanced con-
vective mixing. We study the nonlinear onset time including its variations with
large ensembles of random initial perturbations. The investigation is performed
with direct numerical simulations. Detailed error estimates are given based on the
combined effect of discretization, domain size and the finite ensemble size. En-
hanced mixing is delayed by a factor 6-8 compared to the linear onset time in the
example formations.





Chapter 2

Multiphase, multicomponent
porous media flow

This chapter describes the governing features and equations by which the motion
of CO2 and water in a porous medium can be understood and predicted. We shall
focus on aspects important for the post-injection period and therefore neglect lo-
cal thermodynamic inequilibrium and geomechanical responses which are more
important during the injection period. The assumption of local thermodynamic
equilibrium is comprised of the following: all phases have the same tempera-
ture (which may vary in space); there is no other pressure difference between the
phases than the capillary pressure (cf. section 2.3); and the phases are in local
equilibrium with respect to the exchange of components. In addition, transfer of
mass between the rock and fluids (mineralization, adsorption etc) is beyond the
scope of this thesis. In the following, boldface symbols represent vectors and
matrices and other symbols represent scalars.

2.1 Scale considerations

The behavior and transport of compounds in the subsurface is ultimately deter-
mined by their molecular properties. For example, the dipole structure of the
water molecule makes water attracted to negatively charged grain surfaces. It is
not practically possible however, to study the transport over large volumes based
on the molecular scale. Rather, we shall describe the different scales and how
we arrive at the so-called macro-scale, which will be our focus. More thorough
explanations can be found in e.g. the book of Helmig [33].

First of all, from the molecular scale we wish to transform to a continuum. As
an example, in the case of water we now no longer look at the dipole structure
and other molecular properties of water but rather on their effects (boiling point
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Figure 2.1: The transition from micro- to macro-scale. Printed with permission
from Rainer Helmig, Department of Hydromechanics and Modeling of Hydrosys-
tems, University of Stuttgart.

etc) on a continuous phase called water. This consideration of the continuum
can be made on different scales; the micro-, macro- and mega-scales. On the
micro-scale we treat the phases as continuum but acknowledge the discontinuities
between the phases. For the fluids, the flow may then be described by Navier-
Stokes equations. This is still a difficult task for porous media flow because of the
complex geometries and associated effects. Therefore we most often need to move
further, to the macro-scale. At this scale we treat the porous medium and fluids as
one continuum with local properties defined by the average over a representative
elementary volume (REV) which is localized around the point of interest, see
Figure 2.1. It is important to choose the correct size of the REV: it should not be
too small so that it is sensitive to variation between the phases; and should not
be too large so that it averages over spatial variations that are important for the
flow we wish to study. Sometimes it is sufficient to account for spatial variations
as parameters of the problem and using larger averaging volumes. This has been
referred to as the mega-scale.
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2.2 Fundamentals of the macro-scale
CO2 is injected as a supercritical fluid into the medium where the pores are ini-
tially filled with water (brine). After injection there is a competition for the pore
space. The volume of pores relative to the total volume of grains and pores in an
REV is called the porosity, φ. The volume fraction of the pore space in the REV
that is occupied by one fluid is called the saturation of that fluid and it is denoted
Sα where α denotes the phase. In this competition, the tendency of water to be at-
tracted to the grains is usually larger than the tendency of the supercritical phase to
be attracted to the grains. Water is therefore called the wetting phase (denoted by
α = w) and the supercritical CO2 phase is called the nonwetting phase (α = n).
With this notation, we have:

Sw + Sn = 1. (2.1)

While the wetting phase consists mostly of water and the nonwetting phase con-
sists mostly of CO2, CO2 may also dissolve into the wetting phase and water may
dissolve into the nonwetting phase. We denote by XC

α the mass fraction of com-
ponent C in phase α and therefore:

XC
w + XC

n = 1, C ∈ (CO2, H2O). (2.2)

Under the assumption of local thermodynamic equilibrium, the properties of each
phase may be described by a small number of variables, called the state variables.
Equations of state describe fundamental thermodynamic relationships between
volume, pressure, composition and temperature. We can write it as:

ρα = ρα(pα, T, XC
α ). (2.3)

For CO2 problems, high accuracy can be obtained by use of relatively simple ex-
plicit relations. For example, the Span and Wagner EOS [82] is often used to
calculate ρn(pn, T ). In Paper C, other explicit relationships often used for densi-
ties, solubilities, and viscosities in CO2 storage applications are referenced.

In simulators developed for the study of oil-gas systems, the cubic Peng-
Robinson EOS [68] is often used. Care must be taken if this or other methods
of the Redlich-Kwong family of cubic EOS are applied to the system of brine
and supercritical CO2. The reason for this is that the mentioned methods assume
that molecules behave the same way in both phases, represented by using equal
so-called binary interaction parameters in both phases. This is not a good as-
sumption in the system of brine and supercritical CO2 because of the polarity of
the water molecule.

Under our local thermodynamic equilibrium constraint, phase transitions are
not modelled as transport processes but rather as instant equilibrium conditions.
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Transport is therefore only modelled as advection and dispersion. Advection is
the transport of compounds with the bulk flow of the fluid, described by Darcy’s
law [28]. Dispersion is the spreading of solutes from the path that would be given
by advection. It is due to mechanical dispersion and molecular diffusion [28].
While diffusion is the transport of solute from regions with high mass fractions
towards regions with low mass fractions, mechanical dispersion is a more complex
phenomena. It is due to velocity differences within pore channels and between
pore channels of different size. It is also due to the different inter-connections
between pore channels which result in flow paths of different lengths. On the
macro-scale we do not resolve these phenomena but rather use a dispersion tensor
D to describe the effect. There is also the possibility of dispersion related to
heterogeneities in the medium. This is called macro dispersion. In this case, D
varies with the size of the REV and there is no true REV.

2.3 Multiphase effects

So far we have described the wetting and nonwetting fluid phases. They interact
with the solid matrix and with each other. Since the fluids are immiscible (or at
least not fully miscible) there is an interface between them, from the viewpoint of
the continuous micro-scale. Molecular cohesion within the phases and adhesion
between the phases give rise to surface tension [33]. First consider a droplet of
wetting phase on a solid matrix which is otherwise covered by nonwetting phase
(Figure 2.2a). The wetting fluid is the fluid with an acute angle θ between the solid
and interface. If the system is in equilibrium the forces acting on the interface
are balanced. The surface tension σwn and angle θ are fixed for given fluid and
medium properties. A porous medium can simplistically be described as a bundle
of small tubes of different radii (Figure 2.2b). At equilibrium the interface has a
curvature of radius r which is proportional to the radius of the tube. The pressure
will then be largest on the concave (nonwetting phase) side of the interface, and
the pressure difference is called the capillary pressure pc = pn − pw. It can be
calculated by the Laplace equation [33]:

pc =
2σwn cos θ

r
. (2.4)

Therefore the capillary pressure is lowest in the tubes of large radius. It means that
even small induced pressure differences (capillary entry pressures) can drain (fill
with nonwetting phase) the large tubes. For a given distribution of pore sizes, i.e.
a given porous medium, and a given induced pressure difference, a certain number
of pores will be filled with wetting phase and on the macro-scale this corresponds
to a given wetting phase saturation. However, the relation between pressure and
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Figure 2.2: a) A droplet of wetting fluid. b) Wetting fluid below nonwetting fluid
in a tube. When surface tension σnw and other tensions are in balance the interface
is stationary.

saturation also depends on if the wetting phase saturation is increasing or decreas-
ing. To understand this hysteresis, we need to improve the approximation of the
porous medium. Let the tubes have varying cross sections and consider the case
when the wetting fluid flows along the walls of the tubes with nonwetting phase
in the tube centres. The varying cross sections lead to varying capillary pressures.
Therefore, even if the continuous wetting phase experiences a pressure gradient
leading to flow, the pressure gradient in the nonwetting phase can be zero. The
wetting phase therefore cannot completely displace the nonwetting phase. The
remaining nonwetting phase is trapped as disconnected drops in the pores.

Measurements in a matrix initially filled with wetting fluid and imposing larger
and larger pressure differences gives rise to a primary drainage curve, as shown in
Figure 2.3a, see e.g. [14]. The wetting phase cannot be removed from the smallest
pores or crevices no matter the induced pressure (in reasonable time). The corre-
sponding saturation on the macro-scale is called the residual, or immobile, wetting
phase saturation, Swi. If the capillary pressure is then reduced from its value at
this saturation, the wetting phase imbibes larger and larger pores and the relation
between capillary pressure and saturation follows the main imbibition curve. If
the process is reversed along this curve, a scanning curve leads to the primary
drainage curve and similarly back to the main imbibition curve. The volume frac-
tion trapped nonwetting phase is called the residual nonwetting phase saturation,
Snr. The value may be smaller than shown in the figure, if the drainage curve was
not completed before imbibition commenced. Residual trapping is important for
CO2 storage.

The relative permeability (krα, Figure 2.3b) accounts for the fact that the mo-
tion of each fluid is constrained by the co-existence with the other fluid. A larger
saturation of a fluid enhances its relative permeability and ability to flow. The
relative permeability is zero at the residual saturation of a fluid. The relationship
between saturation and relative permeability is also hysteretic.
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Figure 2.3: a) Primary drainage and main imbibition capillary pressure together
with scanning curves (thin lines). b) Primary drainage and main imbibition rela-
tive permeability.

2.4 Darcy’s law
We have seen that the relative permeability affects the flow rate in the case of
multiphase flow. In this section, an expression for the magnitude of the flow rate
is given and we shall begin with single-phase flow. The volumetric flux u is the
volume of a fluid that passes a unit cross-sectional area of porous medium per unit
time. It is described by Darcy’s law [28]:

u = −Kρg

μ
· ∇h, (2.5)

where

h =
p

ρg
− z (2.6)

is the hydraulic head. Here, z is the vertical coordinate increasing downward, K
is the permeability, ρ is the density, g is the size of the gravitational acceleration
constant, μ is the viscosity and p is the pressure of the fluid. Darcy’s law tells us
that fluids in a porous medium flow from large to low pressures and from high to
low elevations with a speed that is dictated by the fluid and medium properties. A
medium that has large resistance to flow (e.g. small pores) has low permeability.
If the resistance to flow varies in different directions, the medium is said to be
anisotropic, and the permeability must be described by a symmetric, positive def-
inite tensor. For heterogeneous media the permeability varies as a function of the
spatial location. From equation (2.5) we also note that a fluid with large viscosity
(like e.g. honey) has a larger resistance to flow compared with a fluid that has low
viscosity.
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Equations (2.5)-(2.6) may be rewritten as follows if spatial variability in the
density is ignored:

u = −K

μ
(∇p − ρg). (2.7)

Derivations show that this is the more generally applicable relation and that (2.5)-
(2.6) involve further assumptions which were fulfilled in Darcy’s experiments.
Equation (2.7) is valid for Newtonian fluids with relatively small fluxes [11]. In
this regime, which is usually applicable to porous media flow, inertia (resistance
to change the magnitude or direction of flow), turbulence (randomness in the ad-
vection term) and other high-velocity effects can be neglected [11].

When more than one fluid phase is present in the porous medium, a large
number of experiments have shown that the flux of each phase α can be described
by an extension to Darcy’s law [33]:

uα = −Kkrα

μα

(∇pα − ραg). (2.8)

2.5 Mass balance equations
To obtain a solution to the flow of CO2 and water in the subsurface, Darcy’s law
and the EOS must be complemented by equations that describe mass conserva-
tion of the components as well as initial- and boundary conditions. The mass
conservation equations are:

∂(
∑

α φSαραXC
α )

∂t
+ ∇ ·

∑
α

(ραXC
α uα − ραD

C
α · ∇XC

α ) − QC = 0. (2.9)

These equations (one equation for each component C) state that the change of
mass of a component within the REV, accounting for the presence in both phases,
is balanced by advective and dispersive fluxes through the volume boundaries as
well as by sources and sinks, QC . Note that for truly immiscible flow XC

α are
either 0 or 1 and the equations then describe mass balance of the fluids.

Depending on the state of the system and on the equations of state, the mass
balance equations show hyperbolic and/or parabolic characteristics. Hyperbolic
conservation laws (in our context) describe transport processes with finite speed.
In contrast, parabolic equations describe diffusion processes which in theory have
infinite speed, and elliptic equations such as ∇2p = 0 describe equilibrium.

A unique solution requires also the formulation of initial and boundary con-
ditions [33]. The initial condition describes the state variables at time zero, for
example hydrostatic pressure with small perturbations. The system is connected
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with its surroundings through its boundaries. Dirichlet boundary conditions de-
scribe the values of state variables at the boundary whereas Neumann conditions
describe normal derivatives at the boundary.



Chapter 3

Stability of miscible
displacement

3.1 Background

In the previous chapter we discussed the general features of simultaneous trans-
port of CO2 and water in the subsurface. It is common to focus on either the
transport of the two fluids and neglect transport within or between them (immis-
cible displacement), or to focus on the transport of the CO2 component within
the water phase once it has dissolved and been transported to the single-phase
water region (miscible displacement). Both of these settings may encounter in-
stabilities [84, 58]. This means that introduced perturbations grow in time such
that the systems progressively depart from the initial states [10]. When the small
perturbations grow, a pattern of the saturation (for immiscible displacement) or
concentration (miscible displacement) that looks like fingers forms, and the phe-
nomena is therefore called fingering. In this section we shall mainly focus on the
instability that occurs when the CO2 component is transported within the single-
phase water region. This instability has a large influence on dissolution trapping.
The theory that governs this instability is not unique to CO2 and water but gen-
eral for density-driven instability in miscible displacement problems. Here, the
density differences can be due to concentration or temperature differences. For
example, water density is enhanced with dissolved CO2 or salt and with reduced
temperatures, and the corresponding instability problems have applications to CO2

storage, flows around salt domes and geothermal energy production. In CO2 stor-
age, there is also an interplay between immiscible displacement and stability of
miscible displacement [20, 80].

Stability problems in viscous fluids (i.e. non porous media) were first stud-
ied by Rayleigh [72], in 1916. Horton and Rogers in 1945 [40] and Lapwood
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a) b)

Figure 3.1: Driving forces of viscous fingering displaying a) a stable system, and
b) an unstable system. The lines to the right in each figure show the pressure
gradients with the same color coding as the left part of the figures.

in 1948 [56] studied stability in porous media subject to vertical linear tempera-
ture gradients and performed the first linear stability analysis of these problems,
called Darcy-Bénard problems (or sometimes Rayleigh-Bénard when the porous
medium context is not given). The so-called Rayleigh-Taylor problem on the other
hand considers two fluids with a sharp interface and no diffusion [18]. There is
a large range of problems between these two classical problems, e.g. the Elder
problem [16, 17] in which part of the lower boundary is suddenly heated and the
base state (i.e. the state without perturbations) evolves in time.

3.2 Forces driving instabilities

We shall here describe the driving forces for viscous and density driven instabil-
ity, based on the study by Hill in 1952 [38]. Hill considered an idealized porous
medium with two fluids separated by a sharp interface with a small perturbation.
The fluids were initially at rest and he ignored dispersive mechanisms, such as
mechanical dispersion, diffusion or surface tension (the Rayleigh-Taylor prob-
lem). Figure 3.1 displays some of the physical insights from his paper. In this
example the top (red) fluid is lighter than the fluid beneath. In Figure 3.1a the sys-
tem is initially at rest with a small perturbation. Since there is no capillarity the
pressure is continuous over the interface. Due to the reduced density of the upper
fluid, the pressure gradient within the perturbation is lower than that of the sur-
rounding fluid. Therefore, the perturbation disappears with time. This setting is
stable. In contrast, Figure 3.1b displays the same fluids and perturbation when the
top fluid is injected with flow rate u and the flow rate is assumed to be the same
in the lower fluid. The associated pressure gradients are lower than static. The
pressure gradient decreases most in the lower fluid, which has a higher viscosity.
Therefore, the flow is unstable above a critical flow rate, uc. Dumore [15] used
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similar arguments to obtain the critical flow rate. He also included a static tran-
sition zone. The critical rate with a sharp interface is obtained when the pressure
gradients in both fluids are equal:

u = −K

μα

(
dpα

dz
− ραg

)
, (3.1)

dpα

dz
= −μαu

K
+ ραg, (3.2)

uc =
ρ2 − ρ1

μ2 − μ1

Kg. (3.3)

We note that there are four combinations of stabilizing and destabilizing effects
of gravity and viscosity. In particular, if there is no induced velocity and ρ1 > ρ2

the system is unstable regardless of the viscosity contrast, although a viscosity
contrast may enhance or reduce the strength of the instability once flow has com-
menced. This is the case we shall focus on hereafter. However, we shall have
to include dispersion of the perturbation profile as well as dispersion of the base
state, because in our miscible displacement problems there is no static base state
[39].

3.3 Problem formulation

From this point we shall talk of instabilities caused by concentration differences
and apply a transient base state, which is the instability problem relevant for dis-
solved CO2. The theory is equivalent to instabilities driven by temperature dif-
ferences with exchange of concentration to temperature, molecular to thermal dif-
fusivity and setting porosity equal to 1, cf. [73]. Consider a two-dimensional
domain with uniform concentration c = 0 of CO2 in a system initially at rest.
Note that c = XCO2

w ρw although subscript w will be dropped in the sequel be-
cause we shall study the wetting phase only. At time zero, the concentration at the
top boundary is elevated and we assume that the density ρ increases with solute
concentration, see Figure 3.2. Apart for the occurrence of density in Darcy’s law,
density is assumed to be constant (the Boussinesq approximation). The viscosity
is here also assumed to be constant. The top boundary represents the interface to
the two-phase region. The sudden elevation of concentration and zero initial con-
centration represents arrival of the plume of supercritical CO2 to this region. We
also introduce small perturbations, e.g. close to the top boundary. The equations
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g

Figure 3.2: Boundary conditions.

that describe this system are:

u = −K

μ
(∇p − ρg), (3.4)

φ ∂tc = −u · ∇c + φD∇2c, (3.5)
∇ · u = 0, (3.6)

ρ = ρ0 + Δρc. (3.7)

The initial condition in 2D is c(x, z, t)=0 and u(x, z, t)=0, where u = (u, w),
apart from the small perturbations. The boundary conditions are c(x, 0, t)=1,
c(x, H, t)=0 and w(x, H, t) = 0, where we may assume a finite domain thick-
ness H or an infinite thickness. The constant concentration at the top bound-
ary condition is motivated by the fast establishment of equilibrium between the
phases [22]. The flow condition for the top boundary is yet to be described. A
general condition for this boundary assuming a constant effective permeability
of the upper layer may be described as a function of the permeability quotient
K = Kupper/K [80, 20]. For purely horizontal flux at the top boundary (infinite
resistance for water to flow in the two-phase region) we obtain w(x, 0, t) = 0 and
for zero resistance we obtain ∂zw(x, 0, t) = 0. The former condition has been the
most investigated.

Before turning to details of the base state and perturbations, the problem will
be rewritten in a non-dimensional formulation. When stability does not depend
on the domain thickness it is most natural to use a diffusive length-scale. Then,
we scale the problem with the characteristic velocity uc = KΔρg/μ, length
lc = Dφ/uc and time tc = Dφ2/u2

c . (We are here assuming isotropic perme-
ability and pure diffusion. The effects of anisotropic permeability and dispersion
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will be discussed in section 3.7.) In addition, the pressure is scaled such that the
dimensional pressure p is obtained from the non-dimensional pressure P by the
relation p = Dμφ/K(P + ρ0/Δρ z). The non-dimensional form of the equations
is:

u = −(∇P − cez), (3.8)
∂tc = −u · ∇c + ∇2c, (3.9)

∇ · u = 0. (3.10)

When perturbations are small it may be assumed that the modes are normal,
i.e. that they do not interact with each other. Therefore, each mode with horizontal
wavenumber k may be studied individually as is often done in linear stability
theory. Then the concentration, pressure and velocities are rewritten as a sum of
base states and perturbation components as shown here for the concentration:

c(x, z, t, k) = c0(z, t) + ĉ(z, t, k) eikx, (3.11)

where, ĉ(z, t, 0) = ŵ(z, t, 0) = 0. The finger wavelength is λ = 2π/k. The base
state (subindex 0) diffusive transport is described by:

c0(z, t) = 1 − erf
(
z/(2

√
t)

)
, (z > 0) (3.12)

c0(0, t) = 1, (3.13)
u0(z, t) = w0(z, t) = 0. (3.14)

3.4 Time- and length-scales in the linear
regime

Diffusion is initially very strong and therefore any perturbations in the system first
decay. After a time called the linear onset time, diffusion has diminished enough
that the first mode becomes unstable. At all later times, there will be a range of
wavenumbers with positive growth rate between the long-wave cutoff k = kL and
the short-wave cutoff k = kS . The long-wave cutoff (long wavelength) occurs
because the driving force is vertical and restricted to the diffusive boundary layer
thickness while momentum is lost over long lateral distances. The short-wave cut-
off (small wavelength) occurs because diffusion is most severe on perturbations
with small wavelengths. There would be no short-wave cutoff without diffusion,
and we would also not be able to describe the perturbations on the macro-scale
in that case. The dominant wavenumber decreases gradually in time. From the
analysis by Riaz et al. [74] it is also apparent that the nominal thickness of the
diffusion layer and the dominant wavelength are proportional. The instabilities
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prefer an isotropic shape. We also showed in Elenius et al. [20] that the nomi-
nal diffusion layer thickness at onset with vertical top boundary flux corresponds
well with an isotropic mode, where only the lower half is placed in the diffusive
boundary layer and the other half is placed in the two-phase region above.

An understanding of the time- and length-scales is important for practical pur-
poses, such as understanding the possibility of interference with structures in the
media, as well as for the performance of accurate numerical and physical experi-
ments. The selection of modes and the linear onset time depend on the properties
of the porous medium and fluid. It is often described by means of the Rayleigh
number:

Ra =
KΔρgH

φDμ
. (3.15)

The Rayleigh number is the fraction of destabilizing to stabilizing forces. The
larger the permeability and density difference, the easier it is for instabilities to
grow whereas large values of porosity, diffusion and viscosity will smear out and
slow down flow. In Darcy-Bénard problems, the initial solute (or temperature)
profile is linear. Convection cells are bounded by the upper and lower boundaries
of the domain and only develop for large enough H corresponding to Ra > 4π2

for layers that are unbounded in the horizontal direction [76]. On the other hand,
for transient base states developing from an initial homogeneous concentration in
deep domains, convection cells are bounded by the depth of the diffusion layer
only. In this case H does not influence stability and the Rayleigh number is
not well defined. As noted above, our non-dimensional equations do not depen-
dend on Ra or any other parameter. As a consequence we expect to observe
the same phenomena for any Ra, but changes in Ra due to factors other than
H would change the dimensional time- and length-scales for the observed phe-
nomena. However, if we were to account for mechanical dispersion, anisotropy,
heterogeneity or a finite domain thickness, it would not be possible to remove all
parameters from the problem.

Onset times and critical wavenumbers for transient base states have been sum-
marized in a review chapter by Rees [73]. Differences between the reported values
are attributed to different definitions of the growth rate, and varying assumptions
and placement of the initial perturbations. In Elenius et al. [20], the effect of
placement of initial perturbations is discussed in detail.

3.5 Solution strategies for the linear regime

At early times the perturbations are usually very small and the system can be
linearized. In this section we shall consider linear stability analysis of miscible
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displacement with a transient base state. We will limit the discussion to two spatial
dimensions. The analysis is often subdivided into the following steps:

1. Linearize the system and describe it in terms of a base state and perturbation
components,

2. Use the coordinate ξ = z/(2
√

t), which is self-similar for the base state
concentration profile: c0(ξ) = 1 − erf(ξ),

3. Solve the system numerically, or semianalytically with further assumptions.

This methodology was also presented in the review chapter by Rees et al. [73]
and we have used it in Elenius et al. [20]. Since the author has not found detailed
derivations of step 1 (or 2) in the literature, these are given in Appendix A. The
resulting linearized equations in (ξ, t) describe the dynamics of the concentration
perturbation ĉ and the perturbation in vertical velocity component ŵ, separately
for each horizontal wavenumber k:(

1

4t

∂2

∂ξ2
− k2

)
ŵ = −k2ĉ, (3.16)

∂ĉ(t)

∂t
− 1

t

(
1

4

∂2

∂ξ2
+

ξ

2

∂

∂ξ
− k2t

)
ĉ =

√
1

πt
e−ξ2

ŵ. (3.17)

Once these linearized equations are assembled, different strategies can be applied
to obtain the growth rate and from this the linear onset time, when the first mode
obtains a positive growth rate. The growth rate is exponential and has been defined
in several manners, e.g.

σ(ξ, t, k) =
∂ĉ(ξ, t, k)/∂t

ĉ(ξ, t, k)
. (3.18)

Apart from the linear onset time it is often of interest to obtain the range of modes
which have a positive growth rate at later times. From equation (3.18) we note
a dependence on ξ. An integral measure can be used, or a certain value based
on different arguments. A comparison of results based on different definitions is
presented in Elenius et al. [20].

The growth rate can be obtained directly by solving the system numeri-
cally. However, finding for example the largest growth rate for all times over
all wavenumbers of interest can be a tedious project and semianalytical methods
are a desirable alternative. In either case, the profile of the initial disturbance in
the streamwise direction is chosen implicitly or explicitly e.g. based on physical
insights of the problem at hand or by choosing the most unstable initial profile
[20, 80].
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One semianalytical method is the dominant mode method, which we have used
in Elenius et al. [20]. It assumes that only the streamwise mode exists, which is
shown to be dominant in the numerical solution of the initial value problem. The
method provides results that show good agreement with the solution of the full
linearized problem, especially for small wavenumbers at early times.

In the Quasi Steady State Approximation (QSSA) method, frozen time coef-
ficients are used which means that the growth of the diffusive boundary layer is
assumed to be negligible compared with the growth rate of the perturbations. This
method can be used for times that are sufficiently large such that the diffusion-
effect is not too strong, and sufficiently small such that the linearization is still
valid. Riaz et al. [74] showed that with self-similar coordinates, this method gives
good results also at early times. Rees [73] showed that the resulting equations
differ if the QSSA is applied before or after the coordinate transformation, but
information regarding which choice was made in [74] is missing.

In Energy methods, an energy functional c̄ =
(∫ ∞

0
ĉ2dz

)1/2 is defined and the
earliest time for which dc̄/dt = 0 is obtained with variational methods, see e.g.
[6, 73, 80]. Linearization is not undertaken.

In practice, a combination of different methods is often used.

3.6 Fingering in the nonlinear regime

After the linear onset time, there is a period where perturbations grow exponen-
tially. This period ends when the perturbations are so large that the modes begin
to interact with each other and we enter the nonlinear regime. After what we shall
refer to as the nonlinear onset time, the mass flux through the top boundary will
be enhanced compared with the case of purely diffusive redistribution within the
domain. With a closed top boundary, mass transfer through the boundary is still
diffusive, but convective motion removes water with high concentration from the
top, thus enhancing the diffusive flux there. Incropera et al. [42] define convec-
tion heat transfer as the energy transferred by the combined effect of diffusion
and advection, as opposed to transfer by conduction (heat transfer from more en-
ergetic to less energetic particles, proportional to the temperature gradient) and
radiation (emission of energy from matter by electromagnetic waves). Convective
heat transfer occurs between a fluid in motion and a bounding surface when the
two are at different temperatures [42]. When convective heat transfer is induced
by temperature differences within the fluid, leading to buoyancy forces, it is called
natural convection. We shall here use the term convection to also describe mass
transfer from the combined effect of diffusion and advection. In addition, we note
that the motion occurs in closed loops called convection cells within the domain
if the boundaries are closed.
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Figure 3.3: Vorticity contours and streamlines from Riaz et al. [74], reprinted with
permission from Cambridge University Press. The vorticity is ω = −∂c/∂x =
−∇2ψ, where ψ is the streamfunction. The vorticity contours overlap with the
corresponding concentration contours (not shown here).

The nonlinear onset time depends on the size of initial perturbations and can-
not be studied analytically. There is also some sensitivity to the exact shape of
the initial perturbations. Therefore it is instructive to perform multiple tests with
different initial conditions. If the shapes are varied randomly it is possible to make
conclusions about the mean and variation of characteristic parameters, cf. Elenius
and Johannsen [19].

The water moves downward in the fingers and upwards between the fingers.
When the top boundary is closed, Figures 3.3 and 3.4 show that the fingers form
from local feeding sites close to the top boundary. This is due to lateral move-
ment of water towards these feeding sites from both directions. Figure 3.3, when
compared to a concentration plot in [74] also shows that the convection cells are
closely localized around the visible fingers. The flow structure at the top bound-
ary is different when advective flow is allowed through the boundary, which cor-
responds to the case when the relative permeability of the water in the two-phase
region is above zero, see Figure 3.5. The latter case also gives rise to larger con-
centration in the fingers and larger mass transfer of solute into the domain.

In the review paper by Homsy [39] it was stated that the evolution of finger
shapes may be described by the processes of spreading, shielding and tip splitting.
Tip splitting was observed in Hele-Shaw experiments (flow between glass plates,
resembling porous media flow) performed by Wooding [87]. In the high-accuracy
numerical simulations performed by Riaz et al. [74], a close investigation showed
spreading, shielding and merging but no tip splitting. Here, spreading is the lateral
growth of fingers due to dispersion. Shielding is when a finger slightly ahead of
its neighbor outruns it and shields it from further growth. It occurs because fingers
grow in the direction of the pressure gradient, and this gradient is distorted by the
first finger.
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t = 2.6 · 103 t = 6.0 · 103 t = 8.0 · 103 t = 1.8 · 104

Figure 3.4: Concentration of CO2 in the domain with horizontal top boundary flux
at four non-dimensional times. From Elenius et al. [20]. Red values correspond
to high concentrations. At t = 0, random fluctuations in the concentration with
maximum amplitude 10−6 are inserted just below the top boundary. With the
given boundary conditions they give rise to non-dimensional velocity fluctuations
ut ≈ 10−8 at the linear onset time, cf. Figure 3.6.

t = 2.6 · 103 t = 6.0 · 103 t = 8.0 · 103 t = 1.0 · 104

Figure 3.5: Concentration of CO2 in the domain with vertical top boundary flux
and otherwise the same conditions as in the previous figure [20]. Note that the last
time shown differs from the previous figure.

Figure 3.6 from Elenius and Johannsen [19] displays the finger velocities and
mass transfer rate as a function of time. Note the exponential scale on the vertical
axes. It is observed that the fingers obtain an almost constant velocity shortly
after the nonlinear onset time, here defined as the time when the dissolution rate
reaches a minimum. Note also the large sensitivity of the nonlinear onset time on
the size of the initial perturbations.

Hesse [34] showed that the dissolution rate was nearly constant after the non-
linear onset time, with small fluctuations. Figure 3.6 shows that these small fluc-
tuations appear also in the average over a large ensemble. Together with the non-
linear onset time, the magnitude of the dissolution rate can have a large influence
on safe geological storage of CO2. Unfortunately, it is difficult to capture the
small scale (about 0.1-10 m [20]) fingers with numerical simulations that govern
large-scale CO2 migration over many kilometers. Therefore different attempts to
up-scale convective mixing in CO2 storage have been undertaken, see e.g. Pruess
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ut F

Figure 3.6: Mean values and standard deviations of non-dimensional finger ve-
locity ut and dissolution rate F , see definitions in Elenius et al. [19]. The lighter
blue color corresponds to the lighter green color and it is therefore observed that a
larger initial perturbation in the velocities gives rise to earlier nonliner onset. The
mean and standard deviation of the linear and nonlinear onset times are shown
in dotted lines for the larger initial perturbation and dashed lines for the smaller
initial perturbation.

et al. [70], and studies of simpler problems like the ones presented here can pro-
vide the necessary input data.

The dissolution rate decreases when the fingers reach the no-flow bottom
boundary and this decay rate is larger than in the initial diffusive regime [35]
(see also next section).

In the nonlinear regime the flow also becomes increasingly dependent on het-
erogeneities [29]. Here we have discussed fingering, which occurs in (nearly)
homogeneous aquifers. It results in preferential flow paths due to the density dif-
ferences. If the flow paths are largely affected by heterogeneities and remain also
with constant density, the flow is characterized as channeling [85]. According to
Waggoner et al. [85], fingering and channeling have fronts that move linearly in
time. Deviations from this linear behavior may however occur, due to nonlinear
interactions [74, 20]. For very pronounced heterogeneities with small correlation
lengths, the flow may become dispersive with a front that propagates as

√
t also

for an unstable density gradient [85, 24].
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3.7 Factors controlling convective mixing

Some of the important studies of factors that control or alter stability applicable
to miscible CO2 displacement are presented here and summarized in Table 3.1.
We define the linear onset time as the time when perturbations begin to grow and
the nonlinear onset time as the time when the dissolution rate becomes enhanced
compared with pure diffusion.

Lindeberg and Wessel-Berg [58] calculated stability numbers for typical high
permeability aquifers of the North Sea and concluded that density driven convec-
tion can occur related to CO2 storage. Riaz et al. [74] presented linear stability
solutions for homogeneous aquifers and performed numerical simulations. The
linear onset time and the critical-, most dangerous- and cutoff wavelengths as
continuous functions of time were obtained.

Ennis-King and Paterson [23] and Xu et al. [88] performed linear stability
investigations for anisotropic porous media. These were also combined with di-
rect numerical simulations by Ennis-King and Paterson. It was shown that the
linear and nonlinear onset times as well as the dissolution rate were affected by
anisotropy. Green et al. [29] showed that the dissolution rate in an aquifer with
horizontal low-permeability layers of small extent can be modelled approximately
based on an anisotropic permeability that uses the effective vertical permeability.
However, the onset was found to be determined by the local permeability only.
Earlier, Bjørlykke et al. [4] had shown that low-permeability layers may inhibit
thermal convection which given typical geothermal gradients require large vol-
umes to develop. Slim and Ramakrishnan [80] provided information about layer
thicknesses that are needed for convection, and also for which thicknesses the lin-
ear onset time becomes independent of layer thickness. The decay in dissolution
rate after interaction with the bottom boundary was described by [35, 31].

Effects of more general heterogeneous permeability fields for density-driven
convection were studied numerically by Farajzadeh et al. [24]. In most of their
simulations and for all three flow regimes - fingering, channeling and dispersive
flow -, they found that heterogeneity implied enhanced dissolution rates compared
with the homogeneous case.

Convective mixing in the presence of a capillary transition zone was studied
by e.g. Lu and Lichtner [59], but the influence of the capillary transition zone
on stability was not discussed in that paper. In a recent paper by Slim and Ra-
makrishnan [80], the stability in the linear and nonlinear regime was studied with
energy methods, including the effect of capillarity. We have also studied the effect
of capillarity in the linear and nonlinear regime [20] including the effect on up-
scaled parameters in the nonlinear regime. We found that the linear and nonlinear
onset times were reduced with this interaction and that the dissolution rate can be
greatly enhanced.
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Hidalgo and Carrera [37] performed numerical simulations to study the effect
of mechanical dispersion. The reported nonlinear onset time was reduced by up
to two orders of magnitude when dispersion was included in their model problem,
although the dissolution rate was not much affected. It is however difficult to
draw a firm conclusion about the effect of dispersion on the nonlinear onset time
from their paper, because the initial perturbations were introduced by means of
numerical errors, and it cannot be excluded that the magnitude of these errors
were affected by the changes in the model problem (changed dispersivity). Some
authors have stated that dispersion is negligible compared with pure diffusion. For
example, Farjazadeh et al. [24] with reference to Bear (1972) state that in their
case with Peclet number less than one, the mixing will mainly be determined by
molecular diffusion. Also, Slim and Ramakrishnan [80] argue that dispersion can
be neglected due to its small calculated size compared with pure diffusion.

Since density-driven instabilities are induced by gravity, the flow has a “sim-
ple” rectilinear structure, as opposed to instabilities induced by certain types of
forced flow. Therefore, the main areas of study regarding geometry are concerned
with wether the full three-dimensional problem is studied or if simplifications are
made to a two-dimensional problem, and wether the domain is considered to be fi-
nite or infinite (“deep pool”) in the vertical direction. Regarding dimensionality,
Pau et al. [66] showed that for homogeneous media, 3D simulations of convec-
tive mixing led to a dissolution rate that was 25 % larger than that estimated by
2D simulations, and to a slightly reduced nonlinear onset time. These changes
are small compared with the usual uncertainty of the aquifer permeability. How-
ever, the effect of dimensionality may differ for heterogeneous media; and when
interaction with the capillary transition zone is considered. In the case of ther-
mal convection, Simmons et al. [78] showed that there was a shift towards larger
instability in the 3D case.

Other approximations that are frequently employed especially in analytical
treatments are the Boussinesq approximation and the assumption of a linear re-
lation between the aqueous phase density and its CO2 content. The Boussinesq
approximation is valid if Kgρl∗/(μD) � 1, where l∗ is a characteristic length,
see [55]. Experimental data from Yang and Gu [89] confirm a linear relation be-
tween concentration and density for CO2 storage. It is also common to neglect
the effect of geothermal gradients on convection of CO2. Javaheri et al. [46]
noted that this effect is negligible in comparison with the effect of concentration
gradients, for CO2 storage.

Special focus on the dissolution rate was also attained by Hesse [34] and
Pruess and Zhang [71]. Recently, Neufeld et al. [64] presented a new scaling
between the mass transfer rate and the Rayleigh number, verified by experiments
and numerical simulations. A combination of experimental and numerical work
was also performed by Kneafsey and Pruess [53], related to Hele-Shaw cells.
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Table 3.1: Features important for convective mixing. “Dissolution rate” refers
to the (dimensional) rate after the nonlinear onset time and before influence of
the bottom of the aquifer or layer. X denotes that the feature has an important
influence, (X) denotes a moderate influence and - denotes an insignificant influ-
ence. “Rayleigh number” refers here to the effect of all parameters in the Rayleigh
number apart from depth. Note that [29] study the effect of horizontal layers of
small lateral extent and that in [66], the effect of dimensionality was studied for
homogeneous aquifers with no interaction with the capillary transition zone.
Feature Linear onset time Nonlinear onset time Dissolution rate

Rayleigh number X [74] X [19] X [19]
Initial size
of perturbations - [19] X [66, 19] - [66, 19]
Anisotropy X [88, 23] X [23] X [23]
Finite thickness of
formation or layer (X) [80] ?
Heterogeneity ? X [29] X [29, 24]
Interaction with the
two-phase regime X [80, 20] X [20] X [20]
Mechanical
Dispersion ? ? -(?) [37]
Dimensionality ? (X) [66] (X) [66]

We have studied the time-scales and dissolution rates in the linear and nonlinear
regime using statistical measures from multiple realizations [19]. Finally, we note
that the dissolution rate can be enhanced in some cases by means of engineering
design, see e.g. [32].



Chapter 4

Direct numerical simulations

We have performed direct numerical simulations for the full compositional two-
phase problem (2.1, 2.2, 2.8, 2.9), and for the miscible problem (3.8-3.10). We
shall here review some common numerical methods for these problems. First
recall the mass balance equation given in differential form:

∂(
∑

α φSαραXC
α )

∂t
+ ∇ ·

∑
α

(ραXC
α uα − ραD

C
α · ∇XC

α ) − QC = 0. (4.1)

For the discrete solution the variables must be described on a discrete grid and the
derivatives in time and space must be discretized. Furthermore, methods must be
chosen for the solution of the resulting large system of equations.

4.1 Time discretization and stability
The discrete solution is advanced with time step Δt following an implicit or
explicit treatment or a combination of the two. In explicit methods the time-
derivatives are obtained as functions of the variables at the old time step only,
whilst implicit methods also consider the unknown values of the variables at the
new time step. Pressure has an elliptic behavior and therefore its value at any point
shows strong dependence on the values at all other points in the domain. For this
reason pressure must be treated implicitly. In the fully implicit methods (FIM),
all other primary variables are also treated implicitly. For example, in the fully
implicit Euler scheme the time-derivative of the full vector of primary variables x
is approximated as:

f(xt+Δt) ≈ xt+Δt − xt

Δt
. (4.2)

Fully implicit methods are unconditionally stable, i.e. they are stable for any Δt.
The time-step size in these methods is instead controlled by the accuracy of the
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nonlinear solver. Here, stability has the same interpretation as discussed in the
previous chapter, but the interest is on the impact of the time-discretization on
perturbation growth rates. Therefore, perturbations are not magnified in time due
to the discretization with fully implicit methods, no matter the time-step size. Sta-
bility of the numerical scheme is of coarse a very important property for numerical
investigations.

The computational cost of large problems can in many cases be reduced if
some variables are treated explicitly, which is possible for all variables apart from
pressure. The stability of variables treated explicitly is controlled by the CFL
(Courant-Friedrichs-Lewy) condition which sets a limit of the time-step size. The
condition is that for a hyperbolic partial differential equation (PDE) the domain
of dependence of the finite difference scheme must contain the domain of depen-
dence of the PDE [67]. Here the domain of dependence refers to the regions in
space-time that have influenced the solution at a given point. The CFL condition
is necessary but not always sufficient for stability [67]. It is also possible in the
case of hyperbolic and parabolic PDEs to do a Fourier decomposition of the errors
and study the growth rate of each mode individually [67].

In the IMPES-formulation (Implicit Pressure Explicit Saturation) all variables
apart from pressure are treated explicitly. Sometimes, different time discretization
schemes are applied in different parts of the domain depending on the degree of
complexity of the flow. This is called AIM, the Adaptive Implicit Method. A
larger degree of implicitness is then typically used in regions with high flow rates.

4.2 Space discretization

In numerical simulations, the solution lives on a discrete grid. The space dis-
cretization of PDEs is typically done by the finite difference method, FDM, the
finite element method, FEM, or the finite volume method, FVM [67]. While the
FDM uses the differential form of the equations the FEM and FVM use the in-
tegral form which is advantageous for the treatment of Neumann boundary con-
ditions, complex geometries, unstructured grids etc. In the FEM, the variational
form is used, see e.g. Aavatsmark [1]. This class of methods allows for flexible
gridding and generic discretization but is not locally mass conservative.

We shall focus on the FVM which is most commonly used in commercial
reservoir simulators and also used for the simulations performed in this thesis.
There are several versions of the method but we shall restrict our attention to the
common features here. The FVM conserves mass locally, because the integral
form of the equations is applied to each cell Ωi of the domain Ω. The cells are
therefore called control volumes. Integration of (4.1) in each cell with considera-
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tion of the divergence theorem leads to:∫
Ωi

∂(
∑

α φSαραXC
α )

∂t
dV +

∫
∂Ωi

∑
α

(ραXC
α uα − ραD

C
α · ∇XC

α ) · n dS =

∫
Ωi

QCdV,

where V refers to volume and ∂Ωi is the boundary of control volume i. It is
divided into several sides ∂Ωi,j . The variables to be integrated in the volume in-
tegrals are described at the cell centres and the time-derivatives are discretized
according to the previous section. Spatial derivatives are needed to calculate the
flux over each side ∂Ωi,j . Consider first horizontal flux ui+1/2 between two cells
i and i + 1 as in Figure 4.1a and denote the permeability components in the hor-
izontal direction K1,i and K1,i+1 in the two cells. (We assume single-phase flow
here for simplicity.) Expressions for the flux through the side are first obtained
individually from each connected cell, based on the pressures at the cell centres
and on the unknown pressure at the side:

pi+1/2 − pi = −ui+1/2
μi

K1,i

(xi+1/2 − xi), (4.3)

pi+1 − pi+1/2 = −ui+1/2
μi+1

K1,i+1

(xi+1 − xi+1/2). (4.4)

Then, by requiring continuity of the flux at the side and adding these two equa-
tions, an expression for the flux is obtained:

ui+1/2 = − pi+1 − pi
μi

K1,i
(xi+1/2 − xi) + μi+1

K1,i+1
(xi+1 − xi+1/2)

. (4.5)

For flow with vertical components, the total potential must be used rather than
simply the pressure, cf. Figure 4.1b. Denote ψ = p − ρgz where z as before
points in the direction of gravity. Then, undertaking similar derivations as in [1],
we obtain a generalized expression for the flux:

ui+1/2 = − ψi+1 − ψi

μi
‖xi+1/2−xi‖2

‖wi‖2
+ μi+1

‖xi+1−xi+1/2‖2

‖wi+1‖2

. (4.6)

Here, w = Kn where n is the outward pointing normal at the side. We have used
the two-point flux approximation (TPFA) which includes only two points in the
flux calculation. It is valid if, as in Figure 4.1b, the two cell centres and a point
on the side can be connected through wi and wi+1. This condition must hold for
all connections in the domain. If the condition is not fulfilled, a multi-point flux
approximation is needed (MPFA).
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a) b)

xi xi+1/2 xi+1

xi
xi+1/2 xi+1

wi wi+1

Figure 4.1: Control volumes i and i + 1 connected by a side ∂Ωi,j . a) The flux
between the cells is purely horizontal. b) The flux has horizontal and vertical
components. Parameters needed for the flux calculation are shown. Modified
from [1].

The flux is assumed to be constant over each side and integration over the side
therefore only involves a multiplication with the side length. The coefficients of
the advective flux are often evaluated in the upstream direction (full upwinding)
in order to obtain stable solutions. Sometimes, weighted averages are used for
pressure dependent variables such as μ and ρ. The upstream cell is the cell with
the largest total potential of the two cells considered.

4.3 Consistency, accuracy and convergence
Apart from stability which was discussed above there are three other important
general properties of numerical schemes: consistency; accuracy; and conver-
gence. We shall follow [63] and study these concepts for the simple one dimen-
sional diffusion model problem:

∂c

∂t
=

∂2c

∂z2
. (4.7)

A simple explicit finite difference scheme with central differences in space is:

Ct+Δt
i − Ct

i

Δt
=

Ct
i+1 − 2Ct

i + Ct
i−1

(Δz)2
. (4.8)

Here Ct
i is the approximate solution at node i at time t. The equation would no

longer hold if we were to insert the true solution c at the nodes. The difference
between the left and right hand side is then called the truncation error T :

T (z, t) =
c(z, t + Δt) − c(z, t)

Δt
− c(z + Δz, t) − 2c(z, t) + c(z − Δz, t)

(Δz)2

(4.9)
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Now we shall use Taylor expansions around c(z, t), for example:

c(z, t + Δt) = c(t) +
∂c

∂t
Δt +

1

2!

∂2c

∂t2
(Δt)2 +

1

3!

∂3c

∂t3
(Δt)3 + ... (4.10)

to arrive at:

T (z, t) =

(
∂c

∂t
− ∂2c

∂z2

)
+

(
1

2

∂2c

∂t2
Δt − 1

12

∂4c

∂z4
(Δz)4

)
+ ..., (4.11)

T (z, t) =
1

2

∂2c

∂t2
Δt − 1

12

∂4c

∂z4
(Δz)2 + ... (4.12)

where we have used the fact that c solves (4.7). First of all, note that the truncation
error tends to zero as the step sizes in time and space tend to zero regardless of the
relation between them, the scheme is unconditionally consistent. If there would
be a requirement for this relation the scheme would be said to be conditionally
consistent. Any scheme to be used must be consistent.

In our example problem, the highest power of Δt and Δz by which we can say
that the truncation error tends to zero is 1 and 2 respectively, cf. equation (4.12).
Therefore, the scheme is first order accurate in time and second order accurate in
space. A specified accuracy can be obtained with larger step sizes when using a
scheme with higher order of accuracy. On the other hand, a higher order scheme
in general leads to a more dense matrix which makes each iteration of the linear
solver slow down. Also, oscillatory solutions may result from using larger than
first order approximations in nonlinear advection terms. As an example, we could
not use central differences in [20] with certain boundary conditions.

On a convergent scheme, arbitrarily high accuracy of the solution can be at-
tained by use of a sufficiently fine mesh (if there were no rounding errors). Lax
equivalence theorem states that consistency and stability are the necessary and
sufficient conditions for convergence of a linear finite difference approximation to
a well-posed linear initial-value problem [67].

4.4 Nonlinear solver
In reservoir simulations the nonlinear system of equations is most often solved
with Newton-Raphson’s method, also called Newton’s method. First, the model
equations are written in the form:

F(xt+Δt) = 0, (4.13)

where we wish to find the solution xt+Δt that fulfills this equation with good
accuracy at our new time step. The idea behind Newton’s method is to start with an
initial guess x0,t, which is usually the solution at the previous time step, calculate
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the corresponding value of F, then following its derivative (Jacobian when x is a
vector) to where F = 0. This is the new guess for the solution, x1,t. If the solution
is not accurate enough, i.e. F(x1,t) is too far from 0, we proceed as before. If the
method has not converged after a certain number of iterations, a smaller time-step
size is used. Finally, the converged solution at iteration number N is xt+Δt = xN,t.
Formally, the procedure may be written:

F(xn+1,t) ≈ F(xn,t) +
∂F(xn,t)

∂x
Δx, (4.14)

where Δx = xn+1,t − xn,t. Now for every iteration n this system must be solved,
i.e. we wish to find xn+1,t such that F(xn+1,t) = 0. The system to solve is:

∂F(xn,t)

∂x
Δx = −F(xn,t). (4.15)

In the next section we shall present different methods to solve this linear equation.

4.5 Linear solvers and preconditioners

The largest computational cost in reservoir simulations is related to the solution
of the linear system (4.15). Because the system is very large, direct solvers are
not appropriate. Instead, iterative solvers (often preconditioned Krylov methods)
are used and therefore several linear iterations are performed in every iteration
of Newton’s method. An overview of some linear solvers is given here. More
detailed descriptions can be found in e.g. [2]. For simplicity let us rewrite (4.15)
as:

Ax∗ = b (4.16)

where x∗ is the true solution. If we knew A−1 we could directly solve the prob-
lem x∗ = A−1b. Instead, an initial guess by means of a preconditioner B is
established:

x = Bb. (4.17)

The performance of the iterative linear solvers largely depends on the quality of
preconditioners, where any iterative solver can be used as a preconditioner for
other iterative solvers.
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Jacobi’s and Gauss-Seidel’s methods The perhaps simplest iterative
solver is Jacobi’s method. First note that:

Dx∗ + (L + U)x∗ = b, (4.18)
Dx∗ = b − (L + U)x∗, (4.19)

where the matrix A has been decomposed into its diagonal D, lower triangular L
and upper triangular U parts. Jacobi’s method solves the left hand side for a new
estimate of x using the previous estimate on the right hand side:

xm+1 = D−1(b − (L + U)xm). (4.20)

Iterations proceed until the residual r = b − Ax is small enough. A very similar
method is Gauss-Seidel’s method, in which the previously computed entries of
xm+1 are used for the right hand side as they become available. These methods
have slow convergence but can be applied as preconditioners for Krylov methods.

The Conjugate Gradient method The Krylov methods build on orthogo-
nality principles that in some measure minimize the error of every new iteration
m + 1 in the space x0 + Sm+1 where x0 is the initial guess and Sm+1 is a Krylov
subspace:

Sm+1 = span(r0,Ar0, ...,A
mr0), m ≥ 1. (4.21)

The oldest and most famous Krylov method is the Conjugate Gradient method
(CG). It is efficient for real, symmetric (AT = A) systems that are also positive
definite (xTAx > 0 for x �= 0). For every new iteration m + 1, a search direction
vector dm+1 is found such that it is conjugate to all previous search direction
vectors. Here conjugate refers to orthogonality with respect to A, i.e. dm+1Adl =
0 for l < m + 1. The next estimate xm+1 is searched for in the direction of dm+1

with a distance αm+1 that minimizes the error along that direction:

xm+1 = xm + αm+1dm+1. (4.22)

The Generalized Minimum Residual method If A is not symmetric (as it
most often will not be) there are other Krylov methods better suited. An example
is the Generalized Minimum Residual (GMRES) method. The iterate xm+1 is
found in the subspace x0 + Sm+1 such that the residual is minimized:

min
xm+1∈x0+Sm+1

‖b − Axm+1‖2. (4.23)

This problem is not solved directly. Instead, vectors in Sm+1 are written as vectors
q ∈ R

m+1 projected into the subspace by a projector V. We can then write:

xm+1 − x0 = Vm+1qm+1. (4.24)



42 Direct numerical simulations

The residual is:

b − Axm+1 = b − Ax0 − AVm+1qm+1 = r0 − AVm+1qm+1, (4.25)

and the least squares problem is rewritten as:

min
qm+1∈Rm+1

‖r0 − AVm+1qm+1‖2. (4.26)

It is quite inexpensive to find the minimizer qm+1.

Domain decomposition methods In domain decomposition methods, the
full problem is decomposed into smaller problems on overlapping (Schwarz meth-
ods) or non-overlapping (Substructuring methods) subdomains [81]. The subdo-
mains can be handled independently which is favorable for parallel computing.
As an example, in the Schwarz methods a first iterate of the solution is obtained in
subdomain 1, the subset of this solution that lies on the boundary of subdomain 2
is used as a boundary condition for the iteration in subdomain 2. This again gives
a boundary condition for the next iteration in subdomain 1 and so on.

Multigrid methods are a special case of overlapping domain decomposition
methods. The motivation for the development of these methods was to improve the
reduction of low-frequency errors, compared to simpler iterative methods. After a
few iterations with the basic method, the problem is projected to successive levels
of coarser grids and solved there. On the coarse grids a direct solver might be
used. Finally, the solution is interpolated back to the original grid where a few
more iterations are performed with the basic method.

Choice of method(s) Multigrid methods are well suited for the elliptic (pres-
sure) part of the problem which has a global domain of dependence. For the
hyperbolic or parabolic part of the problem (saturation and mass), other methods
are better suited. There is a very attractive solver available that treats the elliptic
and hyperbolic parts of the problem separately according to their different nature.
This is the Constrained Pressure Residual method, CPR [86], which performs well
on all kinds of problems but in particular on fully implicit methods.
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Summary of results and outlook

Saline aquifers provide a large potential to store CO2 for long times, thereby con-
tributing to combat climate change. One of the mechanisms by which CO2 can
become trapped in these aquifers is by dissolution into the brine. This is accom-
panied by convective mixing. An overview of the relative importance of different
storage mechanisms was given in the IPCC Special Report on Carbon Dioxide
Capture and Storage [43]. A more detailed understanding of the time and length
scales related to the trapping of CO2 is important for the assessment of potential
storage sites. Questions that must be answered are for example: How long will it
take until CO2 is trapped? What is the likelihood that CO2 reaches regions with
faults or leaking wells before it is trapped?

This thesis examines the effect of dissolution trapping. The purpose has been
to improve the understanding of the related convective mixing in the linear and
nonlinear regimes and its interaction with the mobile plume. The results can also
partly be used in directly answering questions such as the above mentioned and
are useful as input to models that treat the dissolution implicitly by up-scaling.

5.1 Summary of our results

In this section, we summarize the results and conclusions that the research of this
PhD has lead to. The results are presented with a larger level of detail for the
investigations of a sloping aquifer than for the other investigations, because the
sloping aquifer results have not been presented fully in the corresponding article.

CO2 trapping in sloping aquifers: High resolution numerical simula-
tions Most saline aquifers are slightly tilted and the buoyant CO2 plume has a
tendency to migrate up-dip. Detailed semi-analytical investigations of the migra-
tion of a supercritical CO2 plume under a sloping caprock were performed by e.g.
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Hesse et al. [36] and by MacMinn et al. [60]. Focus was on the long post-injection
period and residual trapping was accounted for. Dissolution was disregarded. A
similar problem was studied by Pruess et al. [70] with direct numerical simu-
lations. They accounted for dissolution as a sink term. Due to computational
limitations, it is very difficult to capture the small-scale convective mixing in the
large domains that are needed to study the full development of the plume until
it is trapped, and to the knowledge of the author nobody has attempted it before.
However, there are uncertainties when up-scaling techniques are applied to a prob-
lem that has never been solved. Our purpose in Paper A was therefore to resolve
the physics of the full problem to study the importance of dissolution as well as
residual trapping in the presence of a capillary transition zone. Simulations were
performed using the software GPRS from Stanford University [7, 47]. A finite
volume representation was used with cell sizes 3 x 3 m, which is significantly
smaller than used in the literature for studies of large-scale plume migration. The
fully coupled problem was investigated, apart from dispersion which was not in-
cluded in the model equations although believed to be more than accounted for
by numerical dispersion. The Peng-Robinson EOS was calibrated to give realis-
tic density enhancement with dissolved CO2 concentration but the solubility was
then almost twice as large as would be expected from [13], cf. section 2.2. This
leads to an overestimation of the dissolution. Hysteresis in capillary pressure and
relative permeabilities was not included, apart from accounting for residual satu-
rations. In order to highlight the fluid dynamics, the aquifer was assumed to be
homogeneous with a simple rectangular geometry of length 30 km and thickness
50 m, tilted 1 %. The supercritical CO2 was placed at the lower end of the aquifer
at initialization. Also, because of the very large computational demand, the study
was performed in two dimensions. Hydrostatic pressure was applied for the up-
dip (right) boundary and all other boundaries were closed. Perturbations leading
to fingers arouse from numerical effects.

Compared to simulations with residual trapping only, when dissolution was
accounted for, the trapping efficiency was nearly doubled and the speed and max-
imum up-dip extent of the plume were reduced. The saturations in the plume
corresponded well to transition zones consistent with capillary equilibrium. The
pressure gradients slightly ahead of the leading tip of the current remained at the
initial hydrostatic values, and that opens up the possibility to use a simple moving
boundary to model extremely long aquifers.

After writing Paper A we also performed simulations with cells of size 1.6 x
1.6 m. It was too computationally expensive to proceed until the end of plume
migration. The mass fraction of CO2 in the water phase in a 50 x 50 m section
of the aquifer is shown in Figure 5.1. We see that the capillary transition zone
participates in the convective mixing and that the brine has an undulating move-
ment under the plume due to the combined effect of convective mixing and the
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Figure 5.1: Mass fraction of CO2 in the brine 200 m behind the plume tip. The
red color at the top corresponds to the large mass fractions in the two-phase region
where also CO2 phase is present. The CO2 plume moves to the right in the up-dip
direction. The small tilt (1 %) is not shown. Arrows show the direction of brine
movement.

down-dip movement to replace the plume.
The effect of dispersion was studied separately in a small domain. Figure 5.2

shows that fingering with the model problem and cell sizes used in the sloping
aquifer simulations is weaker than with converged simulations of the full problem
including molecular diffusion. We have also seen that there is a delay in the
nonlinear onset time with the sloping aquifer case, although the dissolution rates
after onset are similar. Therefore, the effect of dissolution is likely underestimated
with respect to dispersion. The dissolution-effect is overestimated with respect to
the solubility limit but dissolution trapping is thought to be important also with a
solubility limit that is a factor two smaller.

Effects of a capillary transition zone on the stability of a diffusive
boundary layer In our next paper we investigated the influence of the cap-
illary transition zone on convective mixing. Traditionally, the interface to the
two-phase region has been modeled as a no-flow top boundary in detailed finger-
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Figure 5.2: Mass fraction of CO2 in the brine in a small domain 40 years after ini-
tialization with saturations consistent with capillary equilibrium at the upper part.
Three different initial random perturbations (A, B and C) of the mass fractions
were used. The case D = 0 corresponds to the performed simulations in the large
domain with no dispersion in the model problem and cell sizes 1.56 x 1.56 m,
whereas molecular diffusion in the other two cases is included in the model prob-
lem (D = 1 · 10−9 m2/s) and the overall fingering behavior is (almost) converged
with respect to numerical dispersion.
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ing investigations. Our idea was that the convective flux that we had observed in
the lower parts of the transition zone could make the system more unstable and
increase the mixing compared to what investigations with no-flow boundary had
shown.

The early period with transition from stable to unstable modes was studied by
means of linear stability analysis. We assumed constant permeability for the brine
region and constant effective permeability for the brine in the transition zone.
We then gave an expression for the interface conditions and also translated this
condition to the dominant mode method. After this, we showed results for the full
linearized problem and the dominant mode solution that apply for the end-point of
infinite permeability in the transition zone. This corresponds to vertical velocities
at the interface rather than horizontal velocities as traditionally used. We found
that the influence of the capillary transition zone had no significant effect on the
selection of the critical mode. However, the linear onset time was reduced by a
factor five, corresponding to instability at thinner diffusive boundary layers.

The nonlinear regime, which cannot be studied with stability analysis, was in-
vestigated by means of direct numerical simulations. We used the software d3f
[25, 48] from Gesellschaft für Anlagen- und Reaktorsicherheit (GRS). The results
show that the dissolution rate can be enhanced up to four times when the interac-
tion with the capillary transition zone is accounted for, and that also the nonlinear
onset time is reduced. This is related to advective inflow of CO2 saturated wa-
ter across the interface. Therefore, the contribution from dissolution to the safety
of geological storage of CO2 begins earlier and can be considerably larger than
shown by estimates that neglect the capillary transition zone.

Comparison to a paper by Slim and Ramakrishnan [80] show that the method
of choosing the initial perturbations has a large influence on the results. Our
method using a variable that is self-similar for the diffusion corresponds to in-
sertion of initial perturbations close to the interface. In [80], the most unstable
initial perturbation was chosen and it was not restricted to the interface. While
the latter choice leads to faster onset times, perturbations localized at the interface
will for many physical settings be a better approximation.

On the time scale of non-linear instability in miscible displacement
porous media flow Many investigations have focused on the linear onset
time. However, in CO2 storage, the nonlinear onset time has much larger con-
sequence, since it is not until this time that the instability of the boundary layer
leads to enhanced convective mixing. In Paper C, the focus is primarily on the
identification of the nonlinear onset time. Direct numerical simulations with the
simulator d3f were performed of the miscible displacement problem in a two-
dimensional domain with boundaries that were closed to flow. Perturbations were
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initiated adjacent to the top boundary. Then the three regimes of the dynamics
were identified, namely the development of the stable diffusive boundary layer,
the onset and growth of instabilities (linear regime) and the fully non-linear dy-
namics. The results are generic in the sense that there are no parameters in the
non-dimensional model problem. Large ensembles were studied and detailed er-
ror estimates are given based on the combined effect of discretization errors in
time and space, domain size and the finite sample size. The nonlinear time scales
show a dependence on the size of initial perturbations. We estimated this size for
three formations that are used for CO2 sequestration, based on their variations in
porosity, and found that the onset of enhanced convective mixing was delayed by
a factor 6-8 compared with the linear onset time.

5.2 Outlook

This section begins with a claim and a statement of five hypotheses about the
importance of dissolution in CO2 storage. After this, suggestions to further work
are proposed.

Claim

• The effect of trapping mechanisms must be evaluated both with respect to
their effect on the distance a plume travels before it is trapped, and with
respect to the effect they have on the time it takes until the plume reaches
that distance.
The distance travelled tells us if the plume reaches zones with for exam-
ple fractures or abandoned wells by which it can escape. A given amount
of CO2 that returns to the atmosphere is likely to have less impact on the
environment if it is spread over long times. In hundreds or thousands of
years from today, unforeseeable changes in the environment might change
the perspective from an elevated atmospheric CO2 concentration to other
issues.

Hypotheses

1. Dissolution is an important trapping mechanism in at least all sloping
aquifers with slope ≤ 1 % and available aquifer thickness ≥ 50 m, unless
injection occurs directly into a stratigraphic trap where all CO2 is trapped.
In Paper A we concluded that dissolution trapping is important in compar-
ison with residual trapping under the conditions of slope and aquifer thick-
ness mentioned here, and with respect to both migration distance and time.
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The permeability is usually the parameter with largest variation between
aquifers. Neglecting diffusion, a change in permeability can be thought of
as a scaling of the time, which applies equally to residual- and dissolution
trapping. Under this assumption, the relative impact from these mecha-
nisms on the time for plume entrapment does not change with the perme-
ability and also the final migration distance is unchanged by altered per-
meabilities. Dissolution trapping is also generally assumed to be important
relative to mineral trapping. The relative importance of dissolution over
residual trapping might decrease with increased slope and also when the
depth available for dissolution is reduced by e.g. lateral low-permability
layers within the aquifer. If injection on the other hand occurs directly into
a tight stratigraphic trap, all trapping mechanisms apart from stratigraphic
trapping may be disregarded.

2. The distance that the plume propagates during the nonlinear onset time is
negligible and therefore the nonlinear onset time can be assumed to be zero,
with the possible exception of aquifers with slope considerably larger than
1 %.
In Paper A, the plume speed in an aquifer with permeability 100 mD and
slope 1 % was approximately 1 m/year. Using a permeability a factor 5
larger, as for the Tubåen formation, would give a plume speed of approxi-
mately 5 m/year, assuming the same slope and CO2 phase relative perme-
ability. In Paper C we estimated the nonlinear onset time for the Tubåen
formation to be 2 months. With a speed of 5 m/year, the plume would then
migrate a distance of less than 1 m during the nonlinear onset time. This
distance is very small compared to e.g. a total plume migration of several
kilometers, and neglecting dissolution over this small distance will most
likely not influence the effect of dissolution trapping. The non-dimensional
nonlinear onset times vary within a factor 2 in the example formations stud-
ied in Paper C, and this variation would not alter the conclusion. Different
permeabilities would not change the migration distance given above be-
cause both the (dimensional) nonlinear onset time and the plume speed are
proportional to the permeability. The magnitude of the relative permeability
affects the plume speed but is not thought to vary enough to change this con-
clusion. A considerably larger slope could perhaps change the conclusion
however.

3. When the caprock has a homogeneous tilt, the most important factor for the
total dissolution rate G (mass CO2 dissolved per unit time in the aquifer) is
the speed at which the footprint area of the plume is increased.
The dissolution rate G in Paper A was nearly constant at 1000 kg/year
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despite the fact that the areal extent of the plume increased over time. The
brine becomes saturated with CO2 at some distance behind the tip. The
value of the maximum dissolution intensity F (mass CO2 dissolved per unit
footprint area and time) has been frequently studied but will not affect G,
other than through its effect on the plume speed, see Figure 5.3.

4. Dissolution trapping is most efficient in aquifers that have irregular caprock
topography or where the plume is transported partly in fractures within the
aquifer. Under these conditions there is a stronger dependence of the dis-
solution rate G on the maximum dissolution intensity F than described in
hypothesis 3.
Hypothesis 3 was based on the assumption that only the water beneath the
plume is used for dissolution. On the other hand, under the conditions de-
scribed here, the plume propagates heterogeneously in the horizontal (lat-
eral) direction and therefore more surrounding water can be used. If this
leads to a state where the water does not become saturated under the plume,
the dissolution intensity can be maintained at the value F (or at least above
zero) which corresponds to an influence of F on G.

5. a) Horizontal low-permeability layers can shield brine deep in the aquifer
from dissolution, thereby reducing the impact of dissolution trapping.
b) In addition, these layers may impede the development of convection cells
especially in aquifers with low permeability, because the wavelengths of im-
portance may not fit between the layers.
a) A reduced water volume will permit less CO2 to dissolve per footprint
area of the plume.
b) As a first approximation we use stability theory developed under the as-
sumption of infinite aquifer thickness. Then from Figure 4 in Paper B it is
seen that wavelengths considerably shorter than the critical wavelength do
not become unstable at any time. Therefore, the critical wavelength must
fit between the structures for convection to occur. The critical wavelength
for the Krechba formation is 10 m under the same assumption and the most
unstable wavelength grows in time.

Further work Related to the results and conclusions presented, and consider-
ing the hypotheses stated above, the following further investigations are proposed:

• The interaction between the plume and fingering deserves more attention,
especially since it was shown in Paper A to have significant influence on
both plume speed and final migration distance. It would be very good to
have one benchmark solution to the full problem that is converged with
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Figure 5.3: a) A plume of supercritical CO2 advances under the caprock (to the
right in the figure). Beneath the plume, CO2 dissolves into the brine and the
brine eventually becomes saturated. Here, this is shown at times t1 and t2 as a
concentration which is either zero or at the solubility limit. The mass of CO2 that
dissolves between these times in a cross-section of width W is the concentration
at the solubility limit multiplied by the volume, V = L H W . b) In this case, the
maximum dissolution intensity is smaller, but the same amount of CO2 dissolves
between times t1 and t2 since the volume has not changed. This assumes that L is
the same, i.e. that the plume speed is not affected by the dissolution intensity.

respect to discretization errors. Simplified models could then be compared
to this solution. Simpler expressions for the solubilities than used in Paper
A should be used to facilitate comparison. A numerical method must be
developed for this particular problem to speed up simulations. For example,
a moving boundary can be used and possibly equilibrium of the CO2 phase
can be assumed in the direction perpendicular to the slope.

• More attention should be given to the isolated effect of the capillary tran-
sition zone. The factor 4 larger dissolution rate that we found as an upper
end-point of the influence of the capillary transition zone should be deter-
mined in more detail.

• The effect of low-permeability structures on dissolution trapping needs
more attention than it has been given in the literature so far.
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medien. Professorial dissertation (habilitation), Heidelberg, Germany,
2004.

[49] Juanes, R. and E.J. Spiteri and F.M. Orr Jr and M.J. Blunt. Impact of rel-
ative permeability hysteresis on geological CO2 storage. Water Resources
Research, 42(W12418):doi:10.1029/2005WR004806, 2006.

[50] C.D. Keeling. The concentration and isotopic abundances of carbon dioxide
in rural and marine air. Geochim. Cosmochim. Acta, 24:277–298, 1961.

[51] C.D. Keeling. Rewards and penalties of monitoring the Earth. Annu. Rev.
Energy Environ., 23:25–82, 1998.

[52] R.F. Keeling and S.R. Shertz. Seasonal and interannual variations in at-
mospheric oxygen and implications for the global carbon-cycle. Nature,
358:723–727, 1992.

[53] T.J. Kneafsey and K. Pruess. Laboratory flow experiments for visualizing
carbon dioxide-induced, density-driven brine convection. Transp. Porous
Med., 82:123–139, 2010.

[54] A.O. Kohl and R.B. Nielsen. Gas purification. Gulf Publishing Co., Houston,
TX, USA, 1997.

[55] A.J. Landman and R.J. Schotting. Heat and brine transport in porous me-
dia: the Oberbeck-Boussiesq approximation revisited. Transp Porous Med.,
70:355–373, 2007.

[56] E.R. Lapwood. Convection of fluid in a porous medium. Proc. Camb. Philos.
Soc., 44:508521, 1948.

[57] H. Le Treut, R. Somerville, U. Cubasch, Y. Ding, C. Mauritzen, A. Mokssit,
T. Peterson, and M. Prather. Historical overview of climate change. In: Cli-
mate Change 2007: The physical science basis. Contribution of Working
Group I to the Fourth Assessment Report. Cambridge University Press, 2007.

[58] E. Lindeberg and D. Wessel-Berg. Vertical convection in an aquifer column
under a gas cap of CO2. Energy Convers. Mgmt, 38:229–234, 1997.



58 Bibliography

[59] C. Lu and P.C. Lichtner. High resolution numerical investigation on the
effect of convective instability on long term CO2 storage in saline aquifers.
Journal of Physics, Conference Series 78:012042, 2007.

[60] MacMinn, C.W. and M. L. Szulczewski and R. Juanes. CO2 migration in
saline aquifers. Part 1: Capillary trapping under slope and groundwater flow.
J. Fluid Mech., 662:329–351, 2010.

[61] A. Mathieson, I. Wright, D. Roberts, and P. Ringrose. Satellite imaging
to monitor CO2 movement at Krechba, Algeria. Energy Procedia, 1:2201–
2209, 2009.

[62] E. Monnin, A. Indermühle, A. Dällenbach, J. Flückiger, B. Stauffer, T.F.
Stocker, D. Raynaud, and J-M. Barnola. Atmospheric CO2 concentrations
over the last glacial termination. Science, 291(5501):112114, 2001.

[63] K.W. Morton and D.F. Mayers. Numerical solution of partial differential
equations. Cambridge University Press, 2005.

[64] J.A. Neufeld, M.A. Hesse, A. Riaz, M.A. Hallworth, H.A. Tchelepi, and
H.E. Huppert. Convective dissolution of carbon dioxide in saline aquifers.
Geophysical Res. Letters, 37:L22404, 2010.

[65] S. Pacala and R. Socolow. Stabilization wedges: Solving the climate prob-
lem for the next 50 years with current technologies. Science, 305:968–972,
2004.

[66] G.S.H. Pau, J.B. Bell, K. Pruess, A.S. Almgren, M.J. Lijewski, and
K. Zhang. High-resolution simulation and characterization of density-driven
flow in CO2 storage in saline aquifers. Adv Water Resour, 33:443–455, 2010.
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