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Abstract  
 

Aquaculture are today one of the biggest food-producing sectors in the world. Over the recent 

decades there has been a great increase in intensity and commercialization of aquaculture 

production, which has led to an unavoidable growth in disease problems. This has again led to 

a global over consumption of antibiotics and other pharmaceuticals which have caused 

problems as pollution, resistance and enormous losses for the industry.  

Farming of Atlantic cod, Gadus morhua, was anticipated to be the new success in Norwegian 

aquaculture after salmon, but partly due to the global financial crisis, and partly to high 

mortality – including the early life stages – the success have not become as large as expected. 

The high density of marine larvae and biological waste during rearing might contribute to 

high growth of opportunistic pathogenic bacteria, which could result in high larval mortality. 

Due to the fact that treatments with antibacterial agents are not favourable, and since 

vaccination is not possible due to the immature immune system of larvae, there has been 

carried out various studies to find new alternative treatments for the early life stages of cod 

and other marine species.   

 

The aim of this thesis is to enhance the knowledge of probiotics and test the possibility to use 

probiotics as an alternative for antibiotics in cod larval rearing facilities.  

 

In the present work a multi-dish system was used as a model for bath challenge experiment, 

and the species challenged with Vibrio anguillarum HI610 and different types of probiotics 

were cod egg/larvae.   

Cod eggs delivered from a commercial hatchery were randomly selected and placed 

separately in wells in a multi-dish system.  Each well is seen as an independent unit and 

contained 2 ml of 80% aerated sterile seawater. After the eggs were placed in the wells, the 

wells were challenged with high dose (approximately 10
6 

CFU ml
-1

) of different probiotic 

strains alone, and together with high dose (approximately 10
6 

CFU ml
-1

) Vibrio anguillarum 

HI610. There were done experiments at 7°C and 13°C (15°C). The experiments did also 

include a negative control group consisting of unchallenged larvae and a positive control with 

only high dose Vibrio anguillarum HI610. The day hatching reached 50% was defined as day 

0, and every day from day 0 and for as long as the experiment carried on, the mortality was 

registered. 

 



  

  

 

 

In the present work there were used one pathogen Vibrio anguillarum HI610 and there were 

tested eight probiotics: Phaeobacter 27-4, the mutant JBB1001, Phaeobacter M23-3.1, 

Ruegeria F1926, Ruegeria M43-2.1, Phaeobacter gallaeciensis BS107-wt, the mutant 

Phaeobacter gallaeciensis BS107-Pda8 and AQ10 a Pseudoalteromonas citrea. 

The results are introduced in graphs made in Microsoft Office Excel 2007 showing 

cumulative mortality in percent (%) per days post hatch (dph) for every challenge group. 

The mortality data showed that the pathogenic bacteria Vibrio anguillarum HI610 gives a 

high and rapidly mortality soon post hatch. The probiotics alone did not harm the larvae and 

could show a slightly positive effect on the normal mortality. The use of the probiotics 

together with V.anguillarum HI610 enhanced an inhibitory effect against the pathogenic 

bacteria Vibrio anguillarum HI610 and/or almost eradication of the effect of the pathogenic 

bacteria when added at the same time or when the probiotics were added 48hours prior to the 

addition of the pathogen. Some of the probiotics showed a better probiotic effect than others, 

and the mutants showed little or no probiotic effect.  
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1 Introduction 

 

1.1 The Atlantic cod 

There are several stocks of Atlantic cod, distributed in different areas. Depending on the stock 

and the distribution, Atlantic cod can become up to 1,3meter and 40kilos (Holm, 1999). The 

Atlantic cod is widely distributed in the North Atlantic Ocean. In the western Atlantic it is 

found at the east coast of America to Cape Hatteras, at both sides of south Greenland and all 

around the coast of Iceland. In the east, it is found from the Bay of Biscay in the south to the 

northern part of the Barents Sea (Svåsand et al., 2004). Over the years there has been a 

decline in the wild stocks comparing with historical levels, and in the mid 1980s there was a 

collapse of cod population in the Barents Sea due to a lack of juvenile herrings and reduced 

capelin stock (Hamre, 1994). In 1992 the fisheries for Atlantic cod in some areas of Canada 

were stopped (Svåsand et al., 2004). Because of the decline in the wild stocks, the North Sea 

Cod and the Costal Cod south of 62°N have been included to the list of endangered 

populations in Norway and to the list of species needing special precaution by the Norwegian 

environmental authorities, Directorate of Fisheries (Anonymous, 2009). Cod as a species is 

not listed, but many stocks are endangered with declined stocks, little recruiting and the 

absence of proper regulation and precautions  (Storeng, 2010). Despite that the natural cod 

stocks are small and endangered compared to the historical levels, the total stock and 

spawning stock of the Northeast Arctic Cod is increasing and the spawning stock were 

estimated to be around 1 350 000tonnes in 2010, which is over the limit set by  the 

Directorate of Fisheries (Sunnana et al., (red.) 2010).  

Atlantic Cod is one of the most important fish stocks in Norway for commercial fisheries and 

export. In 2010, the Directorate of Fisheries reported that 283 312tonns were caught, about 

40tonns more than in 2009 (Anonymous, 2011a). The Norwegian Seafood Export Council 

could report an increase of exported value of cod from May 2010 to May 2011 by 768 million 

NOK or 12% due to the quota increase (Anonymous, 2011b). 
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1.2 Aquaculture of cod  

As early as in the 1880s it was showed that artificially hatched cod larvae were viable. These 

trials were conducted by Captain G. M. Dannevig in Flødevigen, Arendal, where he 

developed and used extensive (poll-) methods. This program was financed by public funds to 

strengthen the natural population of cod. This method was used for a long time despite there 

were no proofs of any benefits (Svåsand et al., 2004, van der Meeren and Naas, 1997). In the 

1970s, when the Flødevigen project was terminated, new efforts were put in to develop the 

extensive and semi-intensive systems, but the production results were to small and 

unpredictable. A hundred years after the first attempt with artificially hatched cod larvae, the 

development and use of intensive production took shape in the 1980`s. The live-food-culture 

based production on cod started. However, unpredictable production, low prices and year 

depending production resulted in poor outcomes and there were low interest. Around the late 

1990s and early 2000s there was an increase in the interest for cod larvae production due to 

reduced stocks and poor catches of wild cod, and also good development for the salmon 

farmers and few salmon cultivation permits available (Svåsand et al., 2004). Every year from 

1999 the production and sale of Atlantic cod has increased, until it reached a top in 2010. This 

has been achieved in spite of all the challenges this small part of the aquaculture industry has 

had to conquer. Some of them are:  

 low prices for finished product,  

 high production cost,  

 financial crises,  

 investors giving up,  

 few juvenile producers left,  

 challenging with diseases and  

 too early maturation.  

However, still the commercial cod aquaculture is not profitable, some due to the high 

production cost and the low prices per kilo sold cod.  The average price per kilo cod sold in 

2010 was 16,36NOK (Anonymous, 2011c) and the price to produce 1kilo cod filet, costs in 

average 30NOK (in 2009) (Eliassen, 2009). This comparison shows that there are still major 

obstacles for this industry to overcome.    
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1.3 Immunology of cod larvae 

Fish eggs hatches on different ontogenetic stages, some more primitive and less developed 

than others. Cod can be viewed as an intermediate case with respect to developmental stage at 

hatching, and the immune system of cod is not fully competent until 2–3 months after 

hatching (Magnadóttir et al., 2004, Schrøder et al., 1998, Vadstein et al., 2004). This means 

that before this stage, the specific immunity is not fully advanced and the larvae are fully 

reliant on their non-specific defence against infections. The non-specific defence or innate 

immune system is regarded as the first line of defence, and also probably the major defence 

against micro-organisms in larvae. The parameters of the non-specific defence do not require 

prior contact with a pathogen to elucidate a response (Vadstein et al., 2004). These parameters 

are the complement system, various lectins, lytic enzymes, antibacterial peptides, proteinase 

inhibitors and phagocytes (Magnadottir et al., 2005). The phagocytic activity is mainly 

associated with the gills, skin and gut. This is also the areas where the larva first comes in 

contact with pathogens. The gut is closed the first days post hatch, but the larvae are able to 

drink water via the intestine, as the pseudobranch is open. The specific immune system does 

require activation and a time delay before the protection is achieved. It is important that the 

immune system, especially the specific, is fully developed before vaccination, because too 

early vaccination may lead to reduced survival due to immunosuppression rather than 

immunoprotection (Vadstein et al., 2004).  

New important studies performed by the Centre for Ecological and Evolutionary Synthesis 

(CEES), Department of Biology, University of Oslo in cooperation with other Norwegian 

university and Norwegian research institutions have sequenced the genome for the Atlantic 

cod (Gadus morhua). The presentation of the genome sequence reveals that the cod genome is 

completely without the MHC II- genes, that notifies the immune system about infections by 

bacteria, parasites and fungi in all known vertebrates. The genome also lacks other 

immunresponse genes, making the cod genome characteristic and questioning the 

fundamental assumptions about the evolution of the adaptive immune system and its 

components in vertebrates (Star et al., 2011). These new revelations will probably give the 

immunology of cod larvae a new “structure”. 
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1.4 Bacterial diseases in cod 

Compared to a life in air, a life in water especially seawater is more hostile when it comes to 

microbial interactions. A fish has to handle bacterial concentrations of approximately 10
6
 

bacteria per ml
-1 

seawater,
 
and the concentration is considerably higher in environments with 

higher input of organic matter, like in aquaculture systems (Vadstein et al., in press 2011 , 

Vadstein et al., 2004). The high bacterial concentration is also the case in cod aquaculture and 

the bottleneck for this industry is especially the intensive production of egg and larvae 

(Svåsand et al., 2004). The intensive production of egg and larvae gives good growth 

conditions for bacteria some of it is because of the mucosal surface of eggs and larvae that 

have good adhesion for bacteria (Hansen and Olafsen, 1989  ). Bacteria that are dominant in 

the epiflora on eggs and early yolk sac period are mainly from the groups Flexibacter, 

Flavobacterium and Cytophaga, while Vibrio spp. are not that frequent (Hansen and Olafsen, 

1989  ) Disinfection may resolve many problems the bacteria on the egg surfaces might cause.  

At the time larvae starts feeding the microbial flora may have changed a lot, new challenges 

and new massive inflow of bacteria follows the alive feed and the organic waste from feeding, 

like Vibrios and Areomonas (Brunvold et al., 2007, Korsnes et al., 2006, Vadstein et al., 

2004).  

The biggest challenges of bacterial infections for the adult cod in the farming industry in 

general are classical vibriosis, Vibrio anguillarum, a-typical furunculosis, Aeromonas 

salmonicida and francisellosis, Francisella noatunensis. In 2010 there were proofs of 

vibriosis from Vibrio anguillarum in 6 locations, 5 locations showed proofs of a-typical 

furunculosis and 3 locations showed proofs of francisellosis, this is a decrease from earlier 

year’s registrations. The decrease is probably because of the decrease in numbers of active 

cod facilities, the decrease in samples sent to the Norwegian Veterinary Institute for 

examination, and that the active rearing sites are sited further north were the temperature is 

lover and less favourable for these pathogens (Hellberg, 2010). 

 

 

1.5 Vibrio anguillarum  

Vibrio anguillarum is probably the one bacterial fish disease that has been known the longest, 

as early as in 1718 there was a description of a disease called “red-pest” in eels. Later on in 

1893 Canestrinin gave the bacteria causing the “red-pest” disease the name Bacterium 

anguillarum, before Bergman in 1909 re-named it Vibrio anguillarum (Austin and Austin, 
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2007, Larsen and Pedersen, 1999). Vibrio anguillarum are Gram negative bacteria in the 

family Vibrionaceae and in the genus Vibrio. The genus Vibrio is mainly marine bacteria 

except from a few human and other vertebrates and invertebrates pathogenic bacteria. In the 

mid-80s due to 5s rRNA sequence analysis Vibrio anguillarum were reclassified as a member 

of the family Listonella by (MacDonell and Colwell, 1985), cited by (Holt and Bergey, 1994, 

Isachsen, 2009, Smith et al., 1991) but there is still some debate regarding this change in 

nomenclature so both names Vibrio anguillarum and Listonella anguillarum are valid today. I 

will use the name Vibrio anguillarum in this thesis.  

Vibrio anguillarum is a gram negative, straight or curved shaped rod with polar flagella, it is 

oxidize-positive, has optimum temperature for growth between 15-37°C and it requires 

addition of salt in the growth medium (Austin and Austin, 2007, Larsen and Pedersen, 1999). 

Iron accessibility plays an important role for the virulence of  Vibrio anguillarum (Larsen and 

Pedersen, 1999). V. anguillarum is a heterogeneous species divided into serotypes, and at 

least 23 O serotypes are described today (Pedersen et al., 1999). Serotype O2a and O2b are 

the ones associated and found in cod aquaculture (Hellberg, 2010).  

 

 

1.6 Vibriosis 

Vibriosis is a generic term for infections caused from different Vibrio species. In the marine 

fish, cod (Gadus morhua), it is the species Vibrio anguillarum that causes the specific 

infection, classical vibriosis, a classical gram negative hemorrhagic septicaemia that often 

occurs when water temperature rises quickly. When the disease, classical vibriosis is acute it 

gives acute hemorrhagic septicaemia, and the fish dies without any externally visible clinical 

signs. When it is sub acute/chronic it gives ulcerous hemorrhagic septicaemia with ulcer and 

fin rot. Typically outer clinical signs with a vibriosis infection are bleedings in the skin, 

around mouth, and on fins, ulcer, fin rot, exophtalmus and formation of abscesses. Typically 

inner clinical signs are bleedings in the peritoneum, bleedings and necrosis in the liver, 

swelled spleen and kidney, and ascites (Austin and Austin, 2007, Larsen and Pedersen, 1999).  

Many serotypes of the different Vibrio species exist. In the case of Vibrio anguillarum, 

serotypes O2a and O2b are known to cause outbreak of vibriosis in cod aquaculture 

(Hellberg, 2010). When there are bacterial infections the treatment used is antibiotics, before 

feeding it is usually bath-treatment. When the larvae feeds formulated feed the treatment can 

be administered orally by medicine pellets, if the appetite is any good, if not bath-treatment is 
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used (Samuelsen et al., 2006). Still there is yet not been registered any resistance against the 

used antibiotics that are used (Hellberg, 2010). However, water quality and good farming and 

not to high biomass could probably to a certain extent prevent stress and possible disease 

outbreaks. Vaccines are important tools to prevent infections, however, they cannot be used 

until the larvae are big enough and the immune system is fully developed. Vaccines against 

Vibrio anguillarum, vibriosis in salmonid fish have existed for almost 20 years with success, 

but the vaccine against vibriosis in cod that have existed for 10 years do not provide the same 

sufficient protection, so vibriosis is still a problem for the cod farmer (Samuelsen et al., 2006, 

Sommerset et al., 2005). In 2010 there were proofs of vibrio in 6 locations with cod farming. 

This is a major decrease from 2009 where there were proof of vibrio in 16 locations and in 

2008 when there were proofs of vibrio in 20 locations. This major decrease in outbreaks could 

have been positive, however, it must be seen in connection with the high reduction in active 

cod farms the recent years, and that the remaining locations are sited further north than earlier, 

with cod at lower temperatures possibly being less susceptible to Vibrio (Hellberg, 2010).  

 

 

1.7 Probiotic 

Probiotic means “for life” and originates from combining the Latin word pro (for) and the 

Greek word bios (life) (Zivkovic, 1999). Probiotics were first reported in 1908 by Elie 

Metchnikoff. Elie Metchnikoff observed that a large number of people in Bulgaria became 

more than 100-years old and linked this observation to large consumptions of yoghurt. He 

isolated bacteria from the yoghurt and concluded that the bacteria were the cause of a health 

promoting effect (referred in (Gillor et al., 2008)). Throughout time probiotics have had many 

definitions. The first widely accepted definition of probiotics for warm-blooded animals and 

the one definition most quoted was “a live microbial feed supplement which beneficially 

affects the host animal by improving its intestinal microbial balance” (Fuller, 1989). This 

definition associates the probiont with feed, but in aquaculture the culture water is also an 

important medium for exposing the fish to the probiont (Gomez-Gil et al., 2000). This 

resulted in several definitions trying to fit the aquatic environment and organisms (Gatesoupe, 

1999, Gram et al., 1999). In the most recently accepted definition, probiotics are defined as: 

“live microorganisms which when administered in adequate amounts, confer a health benefit 

on the host” (FAO and WHO, 2001). This definition is probably the most commonly quoted, 
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probably the most suitable for all environment including the aquatic and the one used in this 

thesis.  

The probiotics modes of action are: I) competition for attachment sites, II) competition for 

nutrients or chemicals and III) production of antagonistic compounds. However, it is also very 

likely that the mode of action is a combination of several mechanisms (Fuller, 1989, Porsby, 

2010, Verschuere et al., 2000b).   

I) Competition for attachment sites are a competition between a probiotic and a possible 

pathogen for an adhesion site on gut or other tissue sites. Such competition could prevent 

colonization and infection of pathogens (Porsby, 2010, Verschuere et al., 2000b). One 

example is given by (Vine et al., 2004) who found that a possible probiotic bacteria isolated 

from clownfish (Amphiprion percula) was able to prevent attachment of Vibrio alginolyticus 

and remove the pathogen from the surface. Also some studies have been done on biofilm 

making probiotics, probiotics that need to form biofilm to be effective probiotics (Bruhn et 

al., 2006, Brunvold, 2010, Hjelm et al., 2004, Porsby et al., 2008). Thus this is not directly 

attachment competition, it is rather about surface attachment and “getting in there first” 

(Irianto and Austin, 2002).  

II) Competition for nutrients or chemicals is probiotics that can interfere with the composition 

of the microbiota in culture water or on surfaces on the host. The microbiota is generally 

dominated by heterotrophs, which compete for organic substrates as carbon and energy 

sources (Verschuere et al., 2000b). There is no research that can document the competition for 

nutrients for a fact, but there are researches where they use empirical approaches and 

conclude with a competition theory (Rico-Mora et al., 1998, Verschuere et al., 2000a). 

Competition for iron has showed to be a possible inhibitor for pathogens. Iron is largely 

unavailable since it is limited in the tissues and body fluids of animals and in the insoluble 

ferric Fe
3+

 form (Verschuere et al., 2000b). Most bacteria need iron for growth and iron-

binding agents called siderophores allow acquisition of iron suitable for microbial growth. 

Production of siderophores and uptake of iron are mechanisms of virulence in some 

pathogens (e.g. Vibrio anguillarum (Tolmasky and Crosa, 1991)) and if a probiotic uses 

siderophores as a mode of action it will clear the environment for iron and thereby limit 

growth of pathogenic bacteria (Gram et al., 1999).  

III) Production of antagonistic compounds, also called inhibitory compounds is production of 

chemical compounds by microbial organisms that have a bactericidal or bacteriostatic effect 

on other microbial organisms. If such antagonistic producing organisms are present in rearing 

waters, in intestine or surfaces of the host it is believed that they could either prevent 
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proliferation of pathogenic bacteria, or kill them (Porsby, 2010, Verschuere et al., 2000b). 

Examples of factors that in general give antibacterial effect are: production of antibiotics 

(Williams and Vickers, 1986), bacteriocins (Bruno and Montville, 1993, Pybus et al., 1994, 

Vandenbergh, 1993), siderophores, lysozymes, proteases, and/or hydrogen peroxide, 

ammonia and diacetyl (Vandenbergh, 1993) and the alteration of pH values by the production 

of organic acids (Sugita et al., 1997). If antagonistic compounds are the mode of action of 

probiotics that outcompete different pathogens, the possibility of developing resistance 

against these compounds has to be taken into account just like resistance for antibiotics, and 

experiments needs to be done.  

There have been many in vitro experiments to test different bacteria antagonistic effects 

against fish pathogens (Gatesoupe, 1999, Gram et al., 1999, Hjelm et al., 2004, Robertson et 

al., 2000), but only a few possible probionts have been tested in in vivo challenge trails (Gram 

et al., 1999, Planas et al., 2006, Porsby et al., 2008), therefore more tests have to be carried 

out for the preference bacteria/probiont.   

One group with potential probiotics that lately have received increasing attention in marine 

aquaculture, are the so-called Roseobacter clade and include 38 different genera (Brinkhoff et 

al., 2008). Bacteria in the Roseobacter clade are commonly found in marine environment 

(Moran et al., 2003, Wagner-Döbler and Biebl, 2006) and Phaeobacter spp. and Ruegeria 

mobilis, which belong to the Roseobacter clade, are to be found in marine larval rearing 

systems. These bacteria are known to inhibit growth of or kill different fish pathogenic 

bacteria in vitro (e.g. Vibrio anguillarum) and have shown to reduce mortality of fish larvae 

infected with pathogenic bacteria (Hjelm et al., 2004, Porsby et al., 2008). It has been 

suggested and tried in challenge trials that it is TDA, a secondary metabolite tropodithietic 

acid, which work like an antagonistic compound and inhibit the pathogen growth for some 

Roseobacters (Brinkhoff et al., 2004, Bruhn et al., 2005, Porsby et al., 2008). It has been 

showed that the production of TDA is related with stagnant growth conditions, the ability to 

grow in rosette-like structures and production of brown pigment. The Ruegeria strains were 

not able to display these phenotypes at shaking conditions as in stagnant condition like the 

Phaeobacter strains could, except Phaeobacter strain 27-4 that behaves like a Ruegeria 

(Bruhn et al., 2005, Hjelm et al., 2004, Planas et al., 2006, Porsby et al., 2008). There have 

been performed challenging trials that showed that it most likely not will occur any resistance 

among pathogens against TDA and it showed that TDA is bactericidal against both Gram-

negative and Gram-positive bacteria (Porsby, 2010). These results make TDA producing 

bacteria interesting for control of unwanted bacterial growth in aquaculture.  
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1.8 Probiotics in aquaculture 

Vaccination has shown to be a successful protective immunity against fish- pathogen, but for 

fish larvae, crustaceans and molluscs the use of vaccines against pathogens are not possible. 

Because of this, and that antibiotics are not favourable because of the risk for resistant 

bacteria and pollution in the environment, the possible effects of using probiotics has been the 

focus of several experiments (D'Alvise et al., 2010, Gram et al., 2010, Planas et al., 2006).  

For some extent probiotic in formulated feed (Robertson et al., 2000) and in live feed, artemia 

and rotifers (Harzevili et al., 1998), have already been in use in aquaculture. Also probiotics 

added directly in the rearing water have been tried (Austin et al., 1995, Ringø and Birkbeck, 

1999). Using probiotic bacteria in aquaculture seems like a promising way to control diseases 

and there have been showed good effects in several experiments, especially in molluscs 

rearing, but there is still much work and research that needs to be done before probiotic can be 

used commercially with documented economics effects. In order to aid in correct 

establishment of new, effective and safe products there has been proposed some (Kesarcodi-

Watson et al., 2008, Verschuere et al., 2000b) properties that the probiotic should possess, 

these are:  

 the probiotic should not be harmful to the host it is desired for, 

 it should be accepted by the host, for example through ingestion and potential 

colonization and replication within the host, 

 it should reach the location where the effect is required to take place, 

 it should actually work in vivo as opposed to in vitro findings, 

 it should preferably not contain virulence resistance genes or antibiotic 

resistance genes.   

 

These properties could be incorporated into an overall including question: “does the potential 

probiotic provide an overall health benefit when given to the animal?” This must be proved 

out by experiments that prove the different probiotics benefits to the host: Experiments in vivo 

as well as in vitro, and experiments that proves the ability the probiotic has to colonise, and in 

a positive way effect the microbiological environment in the gastrointestinal tract (Kesarcodi-

Watson et al., 2008). 

In addition to the different probiotics actuall effect/benefit, the delivery routes used for adding 

the probiotic organism to the aquaculture rearing system has to be improved for what the 

different probiotic requires, and for which host and pathogen the probiotic works for. Today  
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the delivery routes are : Bath of the host in a suspension of the probiotic organism, addition of 

the probiotic organism to the culture water in the tanks, administered as addition to the 

artificial diet and addition via live feed (Verschuere et al., 2000b). The addition direct to the 

water are only possible for larva stages or other situations with tank rearing or low-flow-

through rates (Makridis et al., 2000b, Ringø et al., 1996, Ringø and Vadstein, 1998), and 

encapsulated in feed is the only possible method of administration in open or high-flow-

through systems. The administration of probiotic through encapsulated feed only works for 

the probiotic where the strains can be kept dry for a while or where the probiotic strains can 

be added/fed via live feed (Gatesoupe, 1999, Makridis et al., 2000a). Bath/suspension of the 

host in a suspension of the probiotic organism is rarely used due to the stress on the host, and 

the amount of bacteria that would have to be cultivated. All these routes require validation 

because of the differences between various strains of bacteria and because of the variation 

among the different cultured species.  

 

 

 

1.9 Global warming/climate change 

The terms global warming and climate change are often used synonymously, but have 

different meanings. While “global warming” are commonly used on humanly caused 

alterations by discharge of greenhouse gases, that among others leads to acidification of the 

environment and changes in temperature, climate change is statistical variation in the global 

or regional weather, as temperature or precipitation, lasting over periods for months, years, 

decades or more (Nodvin, 2010, Anonymous, 2011e).   
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Figure 1.9.1: Shows the Global Mean Temperature over Land and Ocean (Jan-Dec) from the 1880’s 

until 2009, presented of NCDC/NESDIS/NOAA at the internet page The Encyclopedia of Earth 

(Nodvin, 2010). http://www.eoearth.org/article/Global_warming?topic=49491 

 

Measured data illustrated in figure 1.9.1 made by the NCDC (National Climatic Data Center, 

U.S Department of Commerce), NOAA (National Oceanic and Atmospheric Administration) 

and NESDIS (The National Environmental Satellite, Data, and Information Service) presented 

at the internet page to The Encyclopedia of Earth (Nodvin, 2010) shows that from the late 

1800’s until 2009 there have been an increase in the global mean temperature, and the decade 

2000 (2000-2009) shows the warmest temperatures on record. These temperature data is 

presentable with figure 1.9.2 that the Norwegian Meteorological Institute present on their 

internet page (Anonymous, 2011d) that shows an increase of the Norwegian temperature over 

the last 100 years.   

http://www.ncdc.noaa.gov/oa/ncdc.html
http://www.nesdis.noaa.gov/
http://www.noaa.gov/
http://www.eoearth.org/article/Global_warming?topic=49491
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Figure 1.9.2: Shows the smooth temperature increase in Norway from the beginning of the 1900’s and 

until 2010. Years that deviate from the normal, are marked. (Anonymous, 2011d). 

http://met.no/Klima/Klimautvikling/Klima_siste_150_ar/Hele_landet/ 

 

These climate changes and the global warming will have an impact on the global ocean 

temperature and environment. During the 21
st
 century the temperature at the sea of the coast 

of Norway is expected to rise with 1,5-2,0°C and the water environment will, because of the 

high CO2 and other greenhouse gas emissions, become more acidified (Bergh et al., 2007). 

These changes will again have significant effect on the aquaculture industry and aquaculture 

locations might have to relocate or modify the farming technology to fit the changing 

environments. The higher temperatures will force the fish farmer (especially in the south) to 

move the locations further north to get lower temperatures (particular in the summer months). 

In addition the salinity in the fjords might decrease and there will become a clearer 

stratification between freshwater and saltwater due to increased rainfall and higher levels of 

runoff from land, forcing the fish farmer to move the locations further out from the fjords and 

into open sea. Further on, the climate change might lead to extreme weather and storm 

activity that could damage the fish farms and more fish could escape (Bergh et al., 2007).  

A temperature increase would also cause a biological impact on the different fish species in 

aquaculture, some as benefits and others as disadvantages. 

http://met.no/Klima/Klimautvikling/Klima_siste_150_ar/Hele_landet/
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As higher temperature have shown reduced disease resistance and many fish pathogens have a 

higher optimum temperature than the fish in the Norwegian aquaculture, it is natural to think 

that the climate change with a temperature increase will create more outbreaks of diseases. 

Good examples are the fish diseases furunculosis and vibriosis (vibriosis chemotactic and 

optimums temperatures (Larsen et al., 2004) ) that often occurs in the summer months and 

early autumn. Higher temperature reduces the amount of oxygen in the water, and this 

combined with high biomass increases the stress level, which again reduces disease resistance 

(Bergh et al., 2007).  

The temperature around hatching is important for the embryo development and variation over 

or under optimum could give high frequency of deformed larvae. The tolerance for higher 

temperature is dependent on natural habitat and species.  

Some temperatures experiments have been performed to find out the temperature column for 

optimum growth of cod (Moksness et al., 2004, Otterlei et al., 1999), and these have showed 

that growth is dependent on temperature, but also on feed availability and size. Similar results 

apply to the immune system, which becomes less functional outside certain species-dependent 

temperature limits (Bowden, 2008, Bowden et al., 2007).   

    

 

1.10 Background and aim 

Atlantic cod, Gadus morhua, has become an important species in Norwegian and European 

aquaculture. But the production has been limited by unstable production of juveniles due to 

high mortality in the early life stages (Bricknell and Dalmo, 2005, Samuelsen et al., 2006). 

The high mortality is partly caused by opportunistic pathogenic bacteria and since the 

immune system of larvae is so immature, prophylactic and/or therapeutic use of antibiotics is 

the main option for protection against bacterial infection. Due to the increase of antibiotic 

resistance in bacteria the use of probiotics has been proposed as a possible substitute for 

preventing or reducing bacterial diseases (Gatesoupe, 1999, Hjelm et al., 2004, Holzapfel and 

Schillinger, 2002, Irianto and Austin, 2002, Verschuere et al., 2000b).  

The general aim of this study was to enhance our knowledge of a probiotic used as a health 

benefit for the cod larvae and as an antagonist against Vibrio anguillarum. 

The ultimate test and further research, when one know for sure that the probiotic is not 

harmful, would be big field trials or trials at a rearing facility for cod or halibut. One will also 
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need to find a reasonable way of cultivating the probiotic in large scale and a method or pump 

system to add the probiotic to the rearing water.  

 

Specific aims for this study were:  

 To perform in vivo competition experiment with cod yolk larvae between a range of 

tentative probiotic bacteria and one pathogen, Vibrio anguillarum strain HI610, 

modelled from Hjelm et al. (2004) but with cod larvae instead of turbot larvae. 

 

 To add a temperature gradient (13°C and 15°C) to the in vivo competition experiment 

in order to describe the impact of temperature increase on the pathogen-probiont 

competition. This will be done with Vibrio anguillarum based on the assumption that 

this pathogen is associated with high temperatures (Bergh, 2007, Samuelsen et al., 

2006), and that the immune defence is affected by temperature (Bowden, 2008, 

Bowden et al., 2007). 

 

 To register mortality against days post hatching in all groups: pathogens alone, 

probiotic alone, pathogen and probiotic together, probiotic first and pathogen later, 

pathogen first and probiotic later, and the same groups but at different temperatures. 

To perform statistical calculations to emphasize or eliminate significantly differences 

between groups. 
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2 Materials and methods 

 

2.1 Eggs 

Eggs were collected from the breeding programmes of two commercial cod hatcheries, named 

hatchery A and B in this thesis. The origin of the broodstocks was coastal cod and “skrei”, 

(Northeast Arctic Cod). Before transferred to our lab at Høyteknologisenteret in Bergen, the 

eggs from hatchery A delivered in time for experiment 4 and 5 were treated with Buffodine 

(Evans Vanodine International Plc), disinfection used for fish eggs, while there was no 

treatment with disinfection agents at the eggs for experiment 3, delivered from hatchery A, 

and at the eggs from hatchery B, delivered in time for experiment 2 and 5.  

Transportation of the eggs from hatchery A to Høyteknologisenteret in Bergen took around 4-

5 hours in total, by boat and by car. The transport of eggs from hatchery B took in total 3-4 

hours by plane and by car. The eggs were transported in polystyrene containers with cooling 

elements and the average temperature under transport was around 8°C. 

 

 

2.2 Bacteria 

The bacteria used in these challenge experiments were: The Vibrio anguillarum strain, HI610 

a serotype O2α, which was used as a positive control in these experiments. The strain was 

originally isolated from vibriose-infected cod juveniles from the closed seawater basin at The 

Institute of Marine Research in Parisvatnet, Øygarden, Norway. The strain has been routinely 

stored in the culture collection at -80 °C at The Institute of Marine Research until the 

experiment started, and has previously been used in a range of challenge experiments 

(Samuelsen and Bergh, 2004, Seljestokken et al., 2006, Vik-Mo et al., 2005). 

The probiotics that were tested in these challenge experiments were mainly from the genera 

Phaeobacter and Ruegeria (clade Roseobacter).  These probiotics have been used and tested 

in earlier experiments (Hjelm et al., 2004, Porsby et al., 2008)  

One of the probiotics used in all the challenge experiments, Phaeobacter 27-4 is known to 

enhance the survival of turbot egg yolk sac larvae and to be highly active against several 

Vibrio spp. (Hjelm et al., 2004, Planas et al., 2006). It has been showed that Phaeobacter 27-4 

behaves more like a Ruegeria because it needs static condition to grow in rosette shape and 



 Materials and methods 
 

16 

 

make brown pigment, unlike the other Phaeobacter strains tested in these challenge 

experiments (Bruhn et al., 2006, Bruhn et al., 2005, Hjelm et al., 2004, Porsby et al., 2008). 

Phaeobacter 27-4 was isolated from a turbot larvae (Scophthalmus maximus) rearing unit in 

North Western Spain during a study of selection and identification of autochthonous potential 

probiotic bacteria (Hjelm et al., 2004). It has like the Vibrio strain been kept in the culture 

collection at -80 °C at The Institute of Marine Research until experiment started. 

Phaeobacter strain JBB1001 is a tdaB mutant of Phaeobacter 27-4 and do not produce 

hampering substance TDA, tropodithietic acid that is a secondary metabolite that is likely to 

cause the antagonistic effect against other pathogenic bacteria. TDA is known as an 

antimicrobial in aquaculture (Geng et al., 2008).  

The probiotic Phaeobacter M23-3.1 was also used. This strain was isolated from a Danish 

turbot larvae rearing unit, and it has been shown to be highly active against Vibrio (Hjelm et 

al., 2004, Porsby et al., 2008). 

Ruegeria M43-2.3 was another strain that likewise with Phaeobacter M23-3.1, was isolated 

from a Danish turbot larvae rearing unit, and has also shown to be highly active against Vibrio 

(Hjelm et al., 2004, Porsby et al., 2008). 

Ruegeria F1926 was isolated in the Indian Ocean at the Galathea-expedition (Gram et al., 

2010, Porsby, 2010)   

Later in the experiment I received two Phaeobacter gallaeciensis strains that we used in the 

third, fourth and fifth challenge experiment. One was the Phaeobacter gallaeciensis BS107 

wt, the wild strain. The other was a TDA deficient mutant of the strain, Phaeobacter 

gallaeciensis BS107-Pda8. (Transposon-insertion mutant) The wild type has been 

demonstrated to be able to inhibit growth of, or kill a variety fish pathogenic bacteria (Ruiz-

Ponte et al., 1998). While the mutant that lack TDA was used like a positive control, to show 

that it is TDA that works like a pathogen inhibitor. All these probiotic strains were received 

from The Technical University of Denmark, the department DTU Food, by Professor Lone 

Gram. 

In addition to the seven probiotics there were also challenged and made growth curve with a 

bacteria called AQ10, a Pseudoalteromonas citrea. This bacterial strain was isolated from a 

wall surface of a sea-water pool in the public Bergen Aquarium (Norway) and have since then 

been kept at 20% glycerol and at -80°C at The Institute of Marine Research until the 

experiment started. AQ10 has showed a strong antagonistic activity against some marine 

pathogens, and one of them is Vibrio anguillarum (Brunvold, 2010, C. Lambert, IFREMER, 

Brest; France, unpublished data) 
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Table 2.2: Overview of the different bacterial strains used in these experiments, the species or place 

from which they were isolated and references. 

Bacteria Origin References 

Vibrio anguillarum strain HI610 Cod larvae 

(Samuelsen and Bergh, 2004, 

Seljestokken et al., 2006, Vik-Mo et al., 

2005) 

 
  Phaeobacter strain 27-4 Turbot larvae (Hjelm et al., 2004) 

 
  Phaeobacter strain M23-3.1 Turbot larvae (Hjelm et al., 2004, Porsby et al., 2008) 

 
  Phaeobacter gallaeciensis BS107-wt Scallop larvae (Ruiz-Ponte et al., 1998) 

 
  

Phaeobacter gallaeciensis BS107-Pda8 Scallop larvae 

The Technical University of Denmark, 

the department DTU Food, and 

Professor Lone Gram’s program 

 
  Ruegeria strain M43-2.3 Turbot larvae (Hjelm et al., 2004, Porsby et al., 2008) 

 
  

Ruegeria strain F1926 
in the Indian 

Ocean 
(Gram et al., 2010) 

 
  Phaeobacter mutant JBB1001 Turbot larvae (Geng et al., 2008) 

 
  

Pseudoalteromonas citrea AQ10 
Wall surface 

Bergen 

Aquarium 

(Brunvold, 2010) 

 

 

 

2.3 Cultivation and growth curve 

Cultivation and measurement of the growth curve of the Vibrio anguillarum HI610 were 

carried out by Kristian Dam, Department of Biology, University of Bergen, Norway. (More 

information about the procedure in Appendix 7.3) 

Cultivation of the probiotics was based on methods used in the PhD Thesis by Porsby (2010). 

The probiotics were cultivated in 20ml Marine Broth in 250ml Erlenmeyer bulbs, in an 

incubator (Memmert GTR0214) at 20°C and in the dark without shaking. 

The growth curves for all the probiotics were set up based on the master thesis by Kolstø 

(2008), who described a method for growth curves for F. philomiragia subsp. noatunensis, 

and further development and adjustment were made by me and my supervisor to fit the 

growth of the probiotics.  
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A preculture was made by inoculating bacteria, that were grown on agar plates, to a 250ml 

Erlenmeyer bulb with 20ml Marine Broth. The bulb was covered with tinfoil and stored for 5 

days without shaking at 20°C. After 5 days, 2% volume/-volume from the preculture were 

transferred to 10 (17 for P.g wt and P.g Pda8) 250ml Erlenmeyer bulbs with 20ml Marin 

Broth. These bulbs were also covered in tinfoil before they were stored at 20°C in an 

incubator without shaking, until it was time to measure. Before measuring, one bulb were 

taken out of the incubator and well shaken before 1000µl of the culture were putted over in a 

cuvette (Semi-micro, PS, Styrofeam raek with lid of 100, Germany) and the optical density, 

OD, of the bacterial cultures was measured at 600 nm in a Hitatchi U-1100 

Spectrophotometer. The OD was measured each 12 hour for 4 days, using a new bulb for each 

measuring, and the last bulb with bacteria suspension was measured at day 7. 

At three points in the growth curve, a CFU, Colony Forming Units or plate-count was made. 

This was done in order to have a growth curve based on two different varieties. However, 

plate-count turned out to be problematic due to the probiotics stickiness and rosette 

formations, causing underestimation of cell numbers, discussed under Discussion. The results 

of the growth curve are shown in growth curves figures 3.1 a) to 3.1 i) under Results. 

 

 

2.4 Plate-count, CFU or Colony Forming Units  

Plate-counts of CFU or Colony Forming Units are a way to estimate a concentration of viable 

bacteria in a suspension. CFU estimate were made by a series of dilutions were autoclaved 

distilled water with 2%NaCl was used as dilution medium. Seven or eight ten-fold dilutions 

were made. From the three rearmost dilutions tubes three times 100µl on (in total) 9 Marine 

agar -plates was plated out. The Marine agar -plates with diluted suspension were then placed 

in the incubator (Memmert GTR0214) at 20°C for 3 days. Plates with 50 to 150 colonies were 

counted and the CFU per ml of culture were calculated by using the following formula:   
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The results for the growth curves and the challenging dose in the challenging experiment 

showing OD and CFU are showed in figures 3.1 a) – 3.1 i) and tables 3.2 a) – 3.2 c) under 

Results, and in table 7.8 a) and b) in Appendix 7.8. 

 

 

2.5 Counting bacteria 

The first time the challenge doses were defined, and the first time the growth curves were 

implemented, a Tiefer counting chamber (depth 0,02mm, square-net) was used to decide the 

concentration of bacteria in the cultures. 

The bacterial suspension until one had 10 cells in each “small square” or 60-70 cells in each 

“big square”, often a 1:10 dilution. To make sure that there were no other objects that could 

derange the counting, the counting chamber and cover-slip was cleaned with 70% lab alcohol. 

The cover-slip was putted over the square-net and one drop of diluted bacterial suspension 

was putted at the side of the cover-slip so the capillary-force dragged the suspension under the 

cover slip. A Nikon Alphaphot-2 YS2 microscope was used to find the square-net and to 

count the bacteria. The number of squares and the numbers of bacteria were counted until 

200-300 bacteria had been counted.  

The number of counted bacteria was divided on the number of counted squares. This gave the 

number of bacteria in each square and this number was then multiplied with the volume for 

one cell in each square, and one got the total number of bacteria in the diluted suspension. 

This answer multiplied with the times the suspension was diluted, gave the number of bacteria 

for each millilitre in the original bacterial suspension, the concentration of bacteria in the 

suspension. The counting chamber method had some uncertainties because dead and alive 

cells are both counted. 

This method cannot be used to count the probiotics like Phaeobacters or Ruegeria because 

they cluster together in rosettes with individual cells that can be hard to distinguish. It was not 

judged a good method for counting the AQ10 either, even though they were not forming 

rosettes, they were too small to distinguish properly with the equipment that we used.  
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2.6 Optical density in NaOH, lye 

Since the probiotics that were used were making rosettes and were difficult to separate, the 

counting chamber technique was inappropriate. Thus, another method to decide the 

concentration of the challenge doses was needed.  

The bacteria were washed and diluted as when the challenge doses were made. Then 1,5ml of 

the diluted bacterial suspension was added to a 1,5ml Microtube (AXYGEN) and centrifuged 

in an Micro centrifuge (Beckman Microfuge, Lite Centrifuge) at 12min
-1

 (x1000) for 10 

minutes. After centrifugation the suspension was tilted so just the pellet with bacteria was left 

in the tube and 1,5ml 0,1M NaOH were added to dissolve the pellet. Then 1ml (1000µl) of 

this solution was putted into a cuvette and the OD was measured at 600 nm in a Hitatchi U-

1100 Spectrophotometer. In the next challenge experiment one could now compare the OD in 

lye with the ones already done. 

 

 

2.7 Freezing down bacteria 

In order to ensure that there were enough bacteria for future studies I cultivated bacterial-

suspension for freezing in Cryo tubes (à 1,8ml) at -80°C. First a preculture was made, in the 

exact same way as for the growth curves, which was incubated at 20°C for 5 days (or 3 days 

for P.g wt and P.g Pda8). Then 2% volume:- volume of the preculture was transferred into a 

new 250ml Erlenmeyer bulb with 20ml Marine Broth, this new culture was stored in the 

incubator until optimum OD was reached. The OD was measured at 600 nm in the Hitatchi U-

1100 Spectrophotometer. After optimum OD was reached the culture was transferred to a 

50ml blue centrifuge-tube with 4ml of autoclaved glycerol (added 20% glycerol to 80% 

bacterial suspension). The new suspension was well mixed, before 1ml was distributed to 

each of the 6 Cryo tubes, à 1,8ml. The tubes were named and marked with date before they 

were stored at -80°C. 
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2.8 80% aerated sterile seawater 

In these challenge experiments, 80% aerated sterile seawater was used. Seawater was brought 

to the laboratory in several 5 litre bulbs from the Elab inflow of seawater. At the laboratory 

20% of the seawater was replaced with distilled water before filtering the water trough a 

vacuum filter (Sarstedt No.83.1822, Filtropur V25 0,45 250ml). Then the 80% seawater was 

autoclaved (TOMY SX-700E) for 15 minutes. Before the water was distributed into the wells 

it was aerated to full gas saturation. We used 80% aerated sterile seawater (80% seawater, 

20% distilled freshwater) because one would get precipitation of NaCl, salt-crystals, with 

regular (100%) seawater. Such 80% autoclaved aerated sterile seawater (28‰) or diluted 

seawater until 30‰ has been commonly used in other similar experiment (Hjelm et al., 2004, 

Sandlund and Bergh, 2008, Sandlund et al., 2010).  

 

 

2.9 Challenge dose 

The Vibrio anguillarum HI610 challenge dose were made by Kristian Dam, Department of 

Biology, University of Bergen, Norway. (More information about the procedure in Appendix 

7.3)  

To prepare the probiotic challenge doses one started with stopping the cultures as close to 

optimum OD as possible. Then a proper washing procedure had to be carried out, in order to 

avoid excess bacterial growth. The washing procedure started with transferring a proper 

amount (2x20ml) of probiotic culture from the 250ml Erlenmeyer bulbs to a 50ml sterile 

centrifuge tubes. Then the culture was centrifuged at 1500rpm in 8 minutes at 10°C in an 

Allegra X-15R Centrifuge (Beckman Coulter). The supernatant was poured out and the pellet 

was well mixed with the same amount, 80% autoclaved sterile seawater, as there was culture. 

Then the suspension was centrifuged a second time in the centrifuge at 1500rpm in 8 minutes 

at 7°C in an Allegra X-15R Centrifuge (Beckman Coulter) (12°C if the challenge dose are for 

13°C or 15°C). The supernatant was poured out and the pellet was well mixed with the same 

amount, 80% autoclaved sterile seawater, as there was culture. After washing, the 

approximate number of bacteria in the suspension and the challenge dose had to be estimated. 

I tried to estimate the number of bacteria in the suspension by looking in the microscope and 

use the Tiefe counting chamber. This number had too high uncertainty, therefore a 

standardized procedure were worked out were OD in lye, NaOH, and CFU, plate-count were 
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used to set the concentration for the challenge doses. In all the challenge experiments there 

were used a 1:10 dilution of the main growth culture as challenge dose. See table 3.2 a) until 

3.2 c) under Results for the challenge dose concentrations.  

 

 

2.10 Challenge experiment 

These challenge experiments were based on earlier studies from Bergh (2000) with some 

modifications. In the present challenge experiments, we tested different probiotic strains alone 

and together with the pathogen Vibrio anguillarum HI610 at 7°C and 13°C (15°C).  

  

2.10.1 Standardised challenge experiment 

The standardised method for each experiment was as follows: When the eggs arrived at 

Høyteknologisenteret in Bergen they were randomly selected and placed separately in wells in 

a 24-wells polystyrene multi-dish (Nunc, Roskilde, Denmark), each well with one egg is seen 

as an independent unit. Before the eggs arrived the wells were filled with 2 ml of 80% aerated 

sterile seawater. After the eggs were placed in the wells, the wells were challenged with V. 

anguillarum strain HI610 and/or the probiotic strains according to the protocol of the different 

challenge experiments. To each well 100μl of each used bacterial suspensions were added. 

For negative control 100μl of 80% aerated sterile seawater was added instead of bacterial 

suspension. For each experiments setup see table 7.6 a) – 7.6 c) in Appendix 7.6. The ideal 

final concentration of each bacterium in the wells were set to be “high dose”, i,e. 

approximately 10
6
 bacteria ml

-1
 based on total cell count, CFU or estimates by counting 

chamber technique. For the probiotics the final concentration in the well were a bit 

complicated to estimate, because of the uncertainty around CFU, but an approximately 

concentration are presented in table 3.2 c) under Results. These challenge experiments 

included one negative control group consisting of unchallenged larvae, one positive control 

group challenged with high dose, 10
6
 CFU ml

-1
 V.anguillarum strain HI610, groups 

challenged with the different probiotics and groups challenged with the different probiotics 

and HI610 at the same time, probiotics 48hours before HI610 and HI610 48hours before the 

probiotic. It was used three plates for each challenge group. This gave a total of 72 larvae for 

each 24 treatment group to register mortality. The mortality was registered every day. The day 
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hatching reached 50%, was defined as day 0. Each group of three plates were placed on top of 

each other, and held at the same position throughout the experiment.  

The eggs/larvae were kept in dark in a cooling room that kept the temperature 7°C +/- 1°C 

from the challenge day and for 14 days after hatching. We measured the temperature in the air 

conditioned room throughout the experiment and for 5 days, 2 times per day, before the 

experiment started to see that there was stabile temperature. The eggs/larvae were only 

disposed for light for a short time when we registered mortality. 

Also a parallel challenge experiments at 13°C +/- 1°C (15°C) was carried out with the same 

procedures, but some differences were done because of the difficulties with the temperature 

increase of the water. 

After finishing the 7°C challenge we transferred the eggs to 1liter beakers with 34‰ sterile 

seawater and oxygenating. Then the beakers with eggs were putted in an incubator for interval 

increase of the temperature from 7°C to 13°C, over a period of 24hours. After 24hours we 

used a climate room at 12°C were we randomly selected and placed the eggs separately in 

wells in a 24-wells polystyrene multi-dish (Nunc, Roskilde, Denmark) and carried out the 

same procedure as at the 7°C experiments. The challenged groups were put 6 and 6 on top of 

each other in an incubator (infors HT Minitron) set for 13°C. The day hatching reached 50%, 

was defined as day 0 and the mortality was registered every day like the 7°C experiments. The 

13°C experiments I only had going for 10 days post hatch and not for 14 days like the 7°C 

experiments, as development of the poikilothermic larvae is faster at higher temperatures.  

 

2.10.2 Challenge experiment number one 

The set up for challenge experiment number one is to be found in table 7.6 a) in Appendix 7.6 

The first experiment was carried out at one temperature only, 7°C and the eggs were delivered 

from hatchery A. In this challenge experiment there was a negative control group, and in 

addition to the high dose 10
6
 CFU ml

-1 
V. anguillarum HI610 control group, a control group 

that were challenged with low dose 10
4
 CFU ml

-1
 V. anguillarum HI610.  There were also 

several groups challenged with different (high dose 10
6
 CFU ml

-1
) high doses of the different

 

probiotics, high doses of the different probiotics and low dose of 10
4
 CFU ml

-1
 V. 

anguillarum HI610, and groups with the different probiotics added 48hours before the low 

dose of 10
4
 CFU ml

-1
 V. anguillarum HI610 was added.   
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2.10.3 Challenge experiment, number two 

The set up for challenge experiment number two is to be found in table 7.6 b) in Appendix 7.6 

Some setup changes from experiment number one to number two. One change was the 

parallel to 7°C at 15°C, and another change was that the eggs that were used were delivered 

from hatchery B. In these two parallels only two probiotics were used, Phaeobacter strain 27-

4 and Phaeobacter strain M23-3.1, and a high challenge dose, 10
6
 CFU ml

-1
, with Vibrio 

anguillarum strain HI610. In addition there were a challenge group where high dose V. 

anguillarum HI610 were added 48hours before the probiotics were added. To do the 15°C 

experiment the temperature in the seawater with eggs were increased over two days, 48hours. 

The increase in temperature was achieved by transferring the transport water and eggs over in 

1liter beakers with aerating. The beakers were then stored in an incubator were the 

temperature were gradually increased in intervals from 7°C to 15°C over 48hours. After 

48hours when the eggs and water had reached 15°C we randomly selected and placed the 

eggs separately in wells before the different challenge doses were added. The distributions of 

the eggs were done in an air-conditioned room, set to 15°C. These parallels were ended 10 

days post day 0. 

 

2.10.4 Challenge experiment, number three 

The set up for challenge experiment number three is to be found in table 7.6 c) in Appendix 

7.6.  In challenge experiment 3 there were in addition to Phaeobacter strain 27-4 and 

Phaeobacter strain M23-3.1 used two other probiotics, Phaeobacter gallaeciensis BS107-wt 

and the mutant Phaeobacter gallaeciensis BS107-Pda8, but with the same setup for challenge 

groups. The eggs were delivered from hatchery A. This time, the eggs were suppose to arrive 

closer to hatching than the earlier experiments, which resulted in shorter time to increase the 

temperature from 7°C to 15°C. The increase in temperature was done gradually over 24hours.  

 

2.10.5 Challenge experiment number four and five 

The set up for challenge experiment number four and five are to be found in table 7.6 c) in 

Appendix 7.6.  

Challenge experiment 4 and 5 were done exactly as the standardized challenge experiment, 

described first in this section under 2.10.1 Standardised challenge experiment. The eggs used 

in challenge experiment number four were delivered from hatchery A, and the eggs used in 

challenge experiment number five were delivered from hatchery B. 
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2.11 Statistical analyses of mortality rates 

 

Pairs of treatment groups were tested against each other to elucidate differences in mortality 

between the larval groups challenged with probiotics, the larval negative control group, the 

larval positive control group, the challenged larval groups at different temperatures and the 

challenged larval groups from the two different hatcheries. Group comparisons were planned 

before the experiment was carried out. Due to earlier studies (Sandlund et al., 2010) and the 

knowledge about when the yolk sac period ends and when starvation would have an impact 

(Holm, 1999, Kjørsvik et al., 1991) the multiple tests were performed at 10 days post hatch 

for the 7°C challenge experiments and at 8 days post hatch for the 13°C (and 15°C) challenge 

experiments. When the test were used to elucidate differences in mortality between the 

challenged larval groups at different temperature (7°C vs. 13°C) I chose to test the difference 

at 8 days post hatch for both groups. For each pair of treatment groups that was tested against 

each other I first created a frequency table describing the number of dead and alive larvae in 

the two groups. The H0 that there is no difference in mortality between the two groups was 

then tested by using a Chi-square test for 2x2 contingency tables. These tests were performed 

using R, version 2.13.1 (R Foundation for Statistical Computing, Vienna, Austria) and the 

results are presented as “red marks” in the cumulative mortality graphs under Results, as a p-

value in table 7.8 a) in Appendix 7.8 and as examples of matrix setup in Appendix 7.7. 

 

 

2.12 Gram staining 

 

In order to obtain pictures of the rosettes formed by the probiotic bacteria, Gram staining and 

fluorescent microscopy (ZEISS, Axioskop 2plus) was done. 

A thin smear of broth culture, with growth around optimum OD, on a slide was made. The 

smear was air dried before it was heat-fixed. This was done by taking the slide, with the 

sample-side facing away from the flames, trough the flame a few times. The smear was 

flooded with Crystal Violet solution for 1 minute. Then it was briefly washed with water and 

all the excess water was drained off. The sample-side was facing down from the water flow. 

Once again the smear was flooded, this time with Iodine solution for 1 minute, before it was 

washed off with water. The smear was destained with ethanol until no more colour flows off 
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the smear. Before the smear was counter-strained with Safranin for 10 seconds, the ethanol 

was washed off. The smear was washed in water one last time, and then air-dried before a 

cover-slip was fastened over the sample area so one could examine the smear under oil-

immersion. Then I looked at the stained material in a fluorescent microscopy (ZEISS, 

Axioskop 2plus) with bright-field illumination and took pictures. Gram (-) bacteria stains red 

and Gram (+) bacteria stains blue. Mine bacteria were mainly Gram (-) and stained red.  

Pictures of some of the different rosettes making probiotics are showed in the Results section 

in figure 3.5. 
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3 Results 

 

3.1 Growth curves   

Growth curves for the different bacteria used in the challenge experiments are shown in the 

following figures 3.1 a) – 3.1 i). All the growth curves have a slope upwards, with exponential 

growth, before the bacteria goes into stationary phase. For the bacteria where I managed to 

grow CFU, Colony Forming Units on Marine agar -plates, the CFU logarithms are plotted 

slightly higher than the measured OD. From these curves one decided where and when the 

optimum OD would appear, and used this information to take out/stop the challenge dose 

when the bacteria cultures were around optimal growth. In general the maximum growth rate 

for the Vibrio anguillarum HI610 was achieved after 300-360 min (Fig. 3.1 a)), whereas for 

the probiotics (Figures 3.1 b) -3.1 i)), growth was slower. 

 

 

Figure 3.1 a): Growth over time in a Vibrio anguillarum strain HI610 and Tryptic Soy Broth culture, 

measured at optical density, OD, at 600nm in a Hitatchi U-1100 Spectrophotometer. Carried out by 

Kristian Dam, Department of Biology, University of Bergen, Norway. 
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Figure 3.1 b): Growth over time in a Phaeobacter strain 27-4 and Marine Broth culture measured at 

optical density, OD, at 600nm in a Hitatchi U-1100 Spectrophotometer. After 46h, 58h and 70h there 

were also made CFU-plate estimate. 

 

 

Figure 3.1 c): Growth over time in a Phaeobacter strain M23-3.1 and Marine Broth culture measured 

at optical density, OD, at 600nm in a Hitatchi U-1100 Spectrophotometer. After 34h, 46h and 58h 

there were also made CFU-plate estimate. 
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Figure 3.1 d): Growth over time in a JBB1001 (mutant) and Marine Broth (with kanamycin) culture 

measured at optical density, OD, at 600nm in a Hitatchi U-1100 Spectrophotometer. After 36h, 48h 

and 60h there were also made a counting chamber estimate. The CFU-plate was inappropriate. 

 

 

Figure 3.1 e): Growth over time in a Phaeobacter gallaeciensis BS107-wt and Marine Broth culture 

measured at optical density, OD, at 600nm in a Hitatchi U-1100 Spectrophotometer. After 6h, 12h, 

18h and 24h there were also made CFU-plate estimates. 
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Figure 3.1 f): Growth over time in a Phaeobacter gallaeciensis BS107-Pda8 and Marine Broth culture 

measured at optical density, OD, at 600nm in a Hitatchi U-1100 Spectrophotometer. After 6h, 12h, 

18h and 24h there were also made CFU-plate estimates. 

 

 

 

Figure 3.1 g): Growth over time in a Rugeria strain M43-2.3 and Marine Broth culture measured at 

optical density, OD, at 600nm in a Hitatchi U-1100 Spectrophotometer. After 36h, 48h and 60h there 

were also made CFU-plate estimates. 
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Figure 3.1 h): Growth over time in a Rugeria strain F1926 and Marine Broth culture measured at 

optical density, OD, at 600nm in a Hitatchi U-1100 Spectrophotometer. After 36h, 48h and 60h there 

were also made CFU-plate estimates. 

 

 

Figure 3.1 i): Growth over time for a Pseudoalteromonas citrea strain AQ10 and Marine Broth 

culture measured at optical density, OD, at 600nm in a Hitatchi U-1100 Spectrophotometer. The 

bacteria were too small to count in the microscope, thus OD was used. 
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3.2 Challenge dose  

The Vibrio anguillarum HI610 challenge dose were made by Kristian Dam, Department of 

Biology, University of Bergen, Norway. Except from in challenge experiment number one 

where I used both high (10
6
 CFU ml

-1
) and low (10

4
 CFU ml

-1
) dose V.anguillarum HI610, I 

only used high dose (10
6
 CFU ml

-1
) in the rest of the challenge experiments 2, 3, 4 and 5.  

 

Table 3.2 a): Challenge doses, challenge experiment one. In challenge experiment number one, 

challenge doses were made for one challenge (one point on the time scale) and the measured optical 

densities, OD, at 600nm for the washed suspensions is given:  

washed bacteria suspension  optical density, OD 

Phaeobacter 27-4 0,183 

Phaeobacter M23-3.1 0,216 

Rugeria F1926 0,181 

Rugeria M43-2.1 0,185 

 

 

Table 3.2 b): Challenge doses, challenge experiment two. In challenge experiment number two I used 

a gentler washing procedure than in the first challenge experiment, and there were two challenges for 

each temperature with a time laps between them at 48 hours. The optical densities, OD, for the washed 

suspensions at 600nm and the OD in NaOH at 360nm in the 1:10 dilution are given: 

washed bacteria suspension  optical density, OD 
OD in NaOH                         

(in 1:10 dilution) 

first challenge dose for 7°C: 

  Phaeobacter 27-4 1,000 0,064 

Phaeobacter M23-3.1 1,226 0,076 

 second (48hours after) challenge dose 7°C and first challenge dose for 15°C: 

Phaeobacter 27-4 1,051 0,066 

Phaeobacter M23-3.1 1,387 0,069 

 second (48hours after) challenge dose 15°C: 

Phaeobacter 27-4 1,051 0,066 

Phaeobacter M23-3.1 1,387 0,069 
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Table 3.2 c): Challenge doses, challenge experiment 3-5. Table of measured OD in start culture, OD 

in NaOH in the 1:10 dilution, concentration or CFU in the 1:10 dilution (challenge dose), log CFU and 

final concentration in well for all the challenge doses in challenge experiments 3, 4 and 5.   

experiment no. Probiont 
OD in start 

culture 

OD in NaOH 

(in 1:10 

dilution) 

concentration in 

1:10 dilution 
(the challenge 

dose) 

log 
CFU 

final 

concentration 

in well 

3 day 1 27-4 1,833 0,115 7,83E+08 8,89 3,92E+07 

7°C M23-3.1 2,244 0,190 1,20E+10 10,08 6,00E+08 

 
P.g wt 1,864 0,178 8,00E+07 7,90 4,00E+06 

 

P.g Pda8 1,894 0,162 2,63E+09 9,42 1,32E+08 

       3 day 2 27-4 1,658 0,114 3,69E+09 9,57 1,85E+08 

15°C M23-3.1 2,155 0,167 1,20E+08 8,08 6,00E+06 

 

P.g wt 1,838 0,186 8,67E+08 8,94 4,34E+07 

 

P.g Pda8 1,731 0,223 3,70E+08 8,57 1,85E+07 

       3 day 3 27-4 1,809 0,114 1,04E+09 9,02 5,20E+07 

7°C M23-3.1 2,209 0,188 9,67E+07 7,99 4,84E+06 

 

P.g wt 1,982 0,225  -   -   -  

 

P.g Pda8 1,811 0,289 7,20E+08 8,86 3,60E+07 

       3 day 4 27-4 2,252 0,148 8,00E+09 9,90 4,00E+08 

15°C M23-3.1 2,310 0,238 4,67E+07 7,67 2,34E+06 

 

P.g wt 2,220 0,251 2,40E+08 8,38 1,20E+07 

 

P.g Pda8 2,177 0,342 2,76E+09 9,44 1,38E+08 
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      4 day 1 27-4 2,219 0,132 1,11E+08 8,05 5,55E+06 

7°C M23-3.1 2,300 0,217 8,67E+07 7,94 4,34E+06 

 
P.g wt 2,122 0,176 6,97E+08 8,84 3,49E+07 

 

P.g Pda8 1,911 0,236 1,00E+10 10,00 5,00E+08 

       4 day 2 27-4 2,230 0,145 7,20E+08 8,86 3,60E+07 

13°C M23-3.1 2,307 0,158 1,83E+08 8,26 9,15E+06 

 

P.g wt 2,145 0,212 4,08E+09 9,61 2,04E+08 

 
P.g Pda8 1,848 0,253  -   -   - 

       4 day 3 27-4 2,179 0,115  -  -  - 

7°C M23-3.1 2,189 0,232 1,00E+08 8,00 5,00E+06 

 
P.g wt 2,068 0,207 8,35E+08 8,92 4,18E+07 

 

P.g Pda8 1,920 0,254 3,50E+08 8,54 1,75E+07 

       4 day 4 27-4 2,278 0,130 3,85E+09 9,59 1,93E+08 

13°C M23-3.1 2,269 0,200 8,67E+07 7,94 4,34E+06 

 

P.g wt 2,222 0,208 1,07E+08 8,03 5,35E+06 

 
P.g Pda8 2,160 0,270 4,57E+08 8,66 2,29E+07 

              

       5 day 1 27-4 2,290 0,131 4,00E+09 9,60 2,00E+08 

7°C M23-3.1 2,316 0,151 1,47E+08 8,17 7,35E+06 

 

P.g wt 2,211 0,250 1,03E+09 9,01 5,15E+07 

 
P.g Pda8 1,976 0,242 3,12E+09 9,49 1,56E+08 

       5 day 2 27-4 2,113 0,111  -  -  - 

13°C M23-3.1 2,294 0,168 3,77E+08 8,58 1,89E+07 

 
P.g wt 2,226 0,225 2,61E+09 9,42 1,31E+08 

 

P.g Pda8 1,998 0,271 1,31E+09 9,12 6,55E+07 

       5 day 3 27-4 2,051 0,141  -  -  - 

7°C M23-3.1 2,184 0,204 4,04E+09 9,61 2,02E+08 

 

P.g wt 2,085 0,231 5,49E+09 9,74 2,75E+08 

 
P.g Pda8 1,837 0,264 8,00E+09 9,90 4,00E+08 

       5 day 4 27-4 2,037 0,106 2,60E+08 8,41 1,30E+07 

13°C M23-3.1 2,459 0,251 1,57E+08 8,20 7,85E+06 

 
P.g wt 2,398 0,228 1,26E+09 9,10 6,30E+07 

  P.g Pda8 2,295 0,280  -  -  - 
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3.3 Hatching  

3.3.1 Challenge experiment number one 

Six days (144 hours) after arrival and transferred into wells there were over 50% hatching. 

This day was defined as day 0. A total of 75% of the eggs hatched successfully.  

 

3.3.2. Challenge experiment number two 

In challenge experiment number two there was a parallel to the one at 7°C, at 15°C. In the 

parallel at 7°C the eggs had 50% hatching, or more precisely 60,4%, seven days 

(approximately 168 hours) after arrival and transferred into wells. This day was considered as 

day 0. A total of 86,5% of the eggs hatched successfully at 7°C. In the 15°C parallel, hatching 

was around 50% five days (120 hours) after arrival and transferred into wells. This day was 

defined as day 0. A total of 80% of the eggs hatched successfully. 

 

3.3.3. Challenge experiment number three 

Seven days (168 hours) after arrival and transferred into wells there were over 50% hatching, 

approximately 81% hatching, in the 7°C parallel. This day was defined as day 0. The total of 

eggs that hatched successfully was around 89,9%. 

In the 15°C parallel the hatching never reached day 0 as defined by 50% hatching. The total 

of eggs that hatched successfully was 34%. 

 

3.3.4. Challenge experiment number four 

Seven days (168 hours) after arrival and transferred into wells there were over 50% hatching 

in the 7°C parallel. This day was defined as day 0. A total of 86% of the eggs hatched 

successfully. In the 13°C parallel the hatching was around 50%, or more precisely 79,7%, six 

days (144 hours) after arrival and transferred into wells. This day was then defined as day 0. 

A total of 85,4% of the eggs hatched successfully.  

 

3.3.5. Challenge experiment number five 

The eggs in challenge experiment number five were delivered closer to hatching, and while 

we were working a few eggs hatched. Three days (72 hours) after arrival and transferred into 

wells there were over 50% hatching, as much as 93,7% of the eggs were hatched, in the 7°C 
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parallel. At day two (48 hours) there were only 21,4% hatching. Day three (72 hours) was 

defined as day 0. A total of 94% of the eggs hatched successfully. In the 13°C parallel the 

hatching were over 50% only two days after arrival and transferred into wells. This day was 

defined as day 0. A total of 88,5% of the eggs hatched successfully.  

 

 

3.4 Cumulative mortality  

The percentage of cumulative mortality was calculated and plotted against dph (days post 

hatch) for all the different challenge groups. See graphs in figures under part chapter 3.4.1 to 

3.4.7. All 72 eggs in each group, also the once that did not hatch, are concluded in the 

cumulative mortality calculations. The mortality was registered for 10, 12 or 14 days post 

hatch. The groups challenged with high dose (10
6
 CFU ml

-1
) V.anguillarum HI610 showed a 

high and rapid mortality, reaching near 100% cumulative mortality, in all the challenge 

experiments. In the negative control groups and the groups were probiotics are the only 

bacteria added there is minimal mortality. The different probiotics that are used in 

combination with V.anguillarum HI610 showed a variety of mortality, in the grade they have 

probiotic effect. The challenge experiments at 13°C (15°C) showed overall a higher mortality 

and mortality at an earlier stage (in terms of time) after day 0.    

 

3.4.1: Challenge experiment number one 

From challenge experiment number one only some of the results are shown in figure 3.4.1. 

This is because the first challenge experiment was a preliminary experiment, where the 

method was tested. There was higher mortality in all the challenge groups in challenge 

experiment number one because of fewer successfully hatched eggs and some wells were 

missing eggs. This is shown in the graph under figure 3.4.1, with more mortality at day 0. The 

graph shows high mortality in the high dose positive control group, and lower mortality in all 

the other groups. The results for this challenge experiment could only be used to tell that the 

probiotics did not have any negative or lethal effect on the larvae. No further statistical 

calculations were done for this experiment.  
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Figure 3.4.1: Percentage of cumulative mortality of non-feeding cod larvae challenged with Ruegeria 

F1926, Ruegeria M43-2.3 and V.anguillarum HI610, alone, one probiotic and the pathogen together at 

the same time and with a time laps of 48hours. The challenge doses are approximately high doses (10
6
 

CFU ml
-1

) and one low dose (10
6
 CFU ml

-1
) PC, positive control. NC, negative control has no 

challenge dose added. Day 0: day of hatching.  

 

3.4.2: Challenge experiment number two 

In challenge experiment number two all the different challenge groups are included in one 

graph for the 7°C experiment, figure 3.4.2 a) and one graph for the 15°C experiment, figure 

3.4.2 b). The cumulative mortality is registered from day 0 to 10 days post hatch. The 

cumulative mortality in the 7°C experiment is high and rapid mortality in positive control, 

little mortality in negative control, little mortality in challenge groups with only probiotic and 

in the challenge groups were the probiotic was added 48 hours before the pathogen. The 

challenge groups where V.anguillarum HI610 was added 48 hours before the probiotic, had 

high mortality for the Phaeobacter 27-4, but for the challenge group with Phaeobacter M23-

3.1 there was minimal mortality. No statistical calculation was done for this experiment as the 

same challenge groups and the 7°C temperature are done with statistical calculations in 

challenge experiment number, 3, 4 and 5.  
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The cumulative mortality in the 15°C experiment shows an exponential cumulative mortality 

for all the challenge groups. No statistical calculations were done for this experiment, due to 

the fact that the graph indicates mortality for all larvae if several days with registration were 

done.  

 

 

 

Figure 3.4.2 a): Percentage of cumulative mortality of non-feeding cod larvae challenged with 

Phaeobacter 27-4, Phaeobacter M23-3.1 and V.anguillarum HI610, alone, one probiotic and the 

pathogen together at the same time and with a time laps of 48hours. The challenge doses are 

approximately high doses (10
6
 CFU ml

-1
). Negative control has no challenge dose added. Day 0: day 

of hatching. 
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Figure 3.4.2 b): Percentage of cumulative mortality of non-feeding cod larvae challenged with 

Phaeobacter 27-4, Phaeobacter M23-3.1 and V.anguillarum HI610, alone, one probiotic and the 

pathogen together at the same time, and with a time laps of 48hours. The challenge doses are 

approximately high doses (10
6
 CFU ml

-1
). Negative control has no challenge dose added. Day 0: day 

of hatching. 

 

3.4.3. Challenge experiment number three 

The graphs for the 7°C challenge experiment are shown in figures 3.4.3 a) – 3.4.3 d). 

In the 7°C parallel in challenge experiment number three the positive control show a 

significant higher mortality than all the other challenge groups tested, except from the 

“V.HI610 first and 27-4 48hrs after” group and the “V.HI610 first and P.g Pda8 48hrs after” 

group. The negative control group show some mortality (30 % 5dph) but were still significant 

(p<<0,001) different from the positive control group.  

For the 15°C challenge experiment there are no results in graphs. The short time and leap for 

increase in temperature, in addition to incubator problems resulted in an earlier termination of 

the 15°C experiment and inconclusive results. There were only 34% hatching and the eggs 

that hatched died just few (2-3) days after hatching. The experiment was ended five days after 

the first registrations of hatching and lesser than 34% of the hatched larvae were alive.  
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Figure 3.4.3 a): Percentage of cumulative mortality of non-feeding cod larvae challenged with 

Phaeobacter 27-4 and V.anguillarum HI610, alone, together at the same time and with a time laps of 

48hours. All challenge doses are approximately high doses (10
6
 CFU ml

-1
). Negative control has no 

challenge dose added. Day 0: day of hatching. Red symbols (4): mortality rates 10dph significantly 

different from the positive control group, p-value (p<<0,001). 

 

 

Figure 3.4.3 b): Percentage of cumulative mortality of non-feeding cod larvae challenged with 

Phaeobacter M23-3.1 and V.anguillarum HI610, alone, together at the same time and with a time laps 

of 48hours. All challenge doses are approximately high doses (10
6
 CFU ml

-1
). Negative control has no 

challenge dose added. Day 0: day of hatching. Red symbols (5): mortality rates 10dph significantly 

different from the positive control group, p-value (p<<0,001). 
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Figure 3.4.3 c): Percentage of cumulative mortality of non-feeding cod larvae challenged with 

Phaeobacter gallaeciensis BS107-wt and V.anguillarum HI610, alone, together at the same time and 

with a time laps of 48hours. All challenge doses are approximately high doses (10
6
 CFU ml

-1
). 

Negative control has no challenge dose added. Day 0: day of hatching. Red symbols (5): mortality 

rates 10dph significantly different from the positive control group, p-value (p<<0,001). 

 

 

 

Figure 3.4.3 d): Percentage of cumulative mortality of non-feeding cod larvae challenged with 

Phaeobacter gallaeciensis BS107-Pgd8 and V.anguillarum HI610, alone, together at the same time 

and with a time laps of 48hours. All challenge doses are approximately high doses (10
6
 CFU ml

-1
). 

Negative control has no challenge dose added. Day 0: day of hatching. Red symbols (4): mortality 

rates 8dph significantly different from the positive control group, p-value (p<<0,001). 
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3.4.4. Challenge experiment number four 

The graphs for challenge experiment number four at 7°C are shown in figures 3.4.4 a) – 3.4.4 

d). The negative control group shows some mortality (over 40% 2dph) but are still 

significantly (p<<0,001) different from the positive control group mortality. The groups with 

only probiotics and the groups with probiotic added 48 hours before V.anguillarum HI610 

shows little mortality and are significant (p<<0,001) different from the positive control group 

and some, especially the groups M23-3.1 only, P.g wt only and P.g Pda8 only have 

significantly lower mortality than the negative control group . In the groups were the probiotic 

is added at the same time as the pathogen there is differences in the cumulative mortality. 

Phaeobacter M23-3.1 and V.anguillarum HI610, and Phaeobacter gallaeciensis BS107-wt 

and V.anguillarum HI610 shows a lower mortality and are significant (p<<0,001) different 

from the positive control group, in contrast to Phaeobacter 27-4 and V.anguillarum HI610, 

and Phaeobacter gallaeciensis BS107-Pda8 and V.anguillarum HI610 which shows no 

significant (p >1) difference from the positive control group. In the groups were the 

V.anguillarum HI610 are added 48 hours before the probiotic the mortality is high and there is 

no significant (p >1) difference from the positive control group where the V.anguillarum 

HI610 is added 48hrs before the Phaeobacter 27-4 and the Phaeobacter gallaeciensis BS107-

Pda8. For the groups were V.anguillarum HI610 are added 48 hrs before the Phaeobacter 

M23-3.1 and the Phaeobacter gallaeciensis BS107-wt, the mortality are significant lower 

than the mortality in the positive control group.  

The graphs for challenge experiment number four at 13°C are shown in figures 3.4.4 e) – 

3.4.4 h). In challenge experiment number four at 13°C all the challenge groups, except one 

were significant different from the positive control at 8dph. Some of the p-values were not 

that distinct, but even though significant. The challenge group that did not show significant 

difference from the positive control was the challenge group V.HI610 first and 27-4 48hrs 

after.  
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Figure 3.4.4 a): Percentage of cumulative mortality of non-feeding cod larvae challenged with 

Phaeobacter 27-4 and V.anguillarum HI610, alone, together at the same time and with a time laps of 

48hours. All challenge doses are approximately high doses (10
6
 CFU ml

-1
). Negative control has no 

challenge dose added. Day 0: day of hatching. Red symbols (3): mortality rates 10dph significantly 

different from the positive control group, p-value (p<<0,001). 

 

 

Figure 3.4.4 b): Percentage of cumulative mortality of non-feeding cod larvae challenged with 

Phaeobacter M23-3.1 and V.anguillarum HI610, alone, together at the same time and with a time laps 

of 48hours. All challenge doses are approximately high doses (10
6
 CFU ml

-1
). Negative control has no 

challenge dose added. Day 0: day of hatching. Red symbols (5): mortality rates 10dph significantly 

different from the positive control group, p-value (p<<0,001).  
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Figure 3.4.4 c): Percentage of cumulative mortality of non-feeding cod larvae challenged with 

Phaeobacter gallaeciensis BS107-wt and V.anguillarum HI610, alone, together at the same time and 

with a time laps of 48hours. All challenge doses are approximately high doses (10
6
 CFU ml

-1
). 

Negative control has no challenge dose added. Day 0: day of hatching. Red symbols (5): mortality 

rates 10dph significantly different from the positive control group, p-value (p<<0,001). 

 

 

Figure 3.4.4 d): Percentage of cumulative mortality of non-feeding cod larvae challenged with 

Phaeobacter gallaeciensis BS107-Pgd8 and V.anguillarum HI610, alone, together at the same time 

and with a time laps of 48hours. All challenge doses are approximately high doses (10
6
 CFU ml

-1
). 

Negative control has no challenge dose added. Day 0: day of hatching. Red symbols (3): mortality 

rates 8dph significantly different from the positive control group, p-value (p<<0,001). 
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Figure 3.4.4 e): Percentage of cumulative mortality of non-feeding cod larvae challenged with 

Phaeobacter 27-4 and V.anguillarum HI610, alone, together at the same time and with a time laps of 

48hours. All challenge doses are approximately high doses (10
6
 CFU ml

-1
). Negative control has no 

challenge dose added. Day 0: day of hatching. Red symbols (4): mortality rates 8dph significantly 

different from the positive control group, p-value (p<<0,001). 

 

 

Figure 3.4.4 f): Percentage of cumulative mortality of non-feeding cod larvae challenged with 

Phaeobacter M23-3.1 and V.anguillarum HI610, alone, together at the same time and with a time laps 

of 48hours. All challenge doses are approximately high doses (10
6
 CFU ml

-1
). Negative control has no 

challenge dose added. Day 0: day of hatching. Red symbols (5): mortality rates 8dph significantly 

different from the positive control group, p-value (p<<0,001). 
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Figure 3.4.4 g): Percentage of cumulative mortality of non-feeding cod larvae challenged with 

Phaeobacter gallaeciensis BS107-wt and V.anguillarum HI610, alone, together at the same time and 

with a time laps of 48hours. All challenge doses are approximately high doses (10
6
 CFU ml

-1
). 

Negative control has no challenge dose added. Day 0: day of hatching. Red symbols (4): mortality 

rates 8dph significantly different from the positive control group, p-value (p<<0,001). 

 

Figure 3.4.4 h): Percentage of cumulative mortality of non-feeding cod larvae challenged with 

Phaeobacter gallaeciensis BS107-Pgd8 and V.anguillarum HI610, alone, together at the same time 

and with a time laps of 48hours. All challenge doses are approximately high doses (10
6
 CFU ml

-1
). 

Negative control has no challenge dose added. Day 0: day of hatching. Red symbols (5): mortality 

rates 8dph significantly different from the positive control group, p-value (p<<0,001). 
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3.4.5. Challenge experiment number five 

In challenge experiment number five at 7°C the cumulative mortality is shown in figure 3.4.5 

a) – 3.4.5 d). The negative control group shows little mortality and is significant (p<<0,001) 

different from the positive control group. The groups with only probiotics and the groups with 

probiotic added 48 hours before V.anguillarum HI610 shows little mortality and are 

significantly (p<<0,001) different from the positive control group. In the groups were the 

probiotic is added at the same time as the pathogen there are differences in the cumulative 

mortality. Phaeobacter M23-3.1 and V.anguillarum HI610, and Phaeobacter gallaeciensis 

BS107-wt and V.anguillarum HI610 shows a lower mortality and are significantly (p<<0,001) 

different from the positive control group, in contrast to Phaeobacter 27-4 and V.anguillarum 

HI610, and Phaeobacter gallaeciensis BS107-Pda8 and V.anguillarum HI610 which shows 

no significant (p >1) difference from the positive control group. In all the groups were the 

V.anguillarum HI610 are added 48 hours before the probiotic the mortality was high and there 

were no significant (p >1) differences from the positive control group. 

In challenge experiment number five at 13°C the cumulative mortality is shown in figure 3.4.5 

e) – 3.4.5 h). The results in the 13°C parallel follows the 7°C parallel with only two 

deviations. The challenge group M23-3.1 and V.HI610 have high mortality and was not 

significant different from the positive control, the same result were for the challenge group 

P.g wt and V.HI610.   
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Figure 3.4.5 a): Percentage of cumulative mortality of non-feeding cod larvae challenged with 

Phaeobacter 27-4 and V.anguillarum HI610, alone, together at the same time and with a time laps of 

48hours. All challenge doses are approximately high doses (10
6
 CFU ml

-1
). Negative control has no 

challenge dose added. Day 0: day of hatching. Red symbols (3): mortality rates 10dph significantly 

different from the positive control group, p-value (p<<0,001).  

 

 

 

Figure 3.4.5 b): Percentage of cumulative mortality of non-feeding cod larvae challenged with 

Phaeobacter M23-3.1 and V.anguillarum HI610, alone, together at the same time and with a time laps 

of 48hours. All challenge doses are approximately high doses (10
6
 CFU ml

-1
). Negative control has no 

challenge dose added. Day 0: day of hatching. Red symbols (4): mortality rates 10dph significantly 

different from the positive control group, p-value (p<<0,001).  
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Figure 3.4.5 c): Percentage of cumulative mortality of non-feeding cod larvae challenged with 

Phaeobacter gallaeciensis BS107-wt and V.anguillarum HI610, alone, together at the same time and 

with a time laps of 48hours. All challenge doses are approximately high doses (10
6
 CFU ml

-1
). 

Negative control has no challenge dose added. Day 0: day of hatching. Red symbols (4): mortality 

rates 10dph significantly different from the positive control group, p-value (p<<0,001).  

 

 

Figure 3.4.5 d): Percentage of cumulative mortality of non-feeding cod larvae challenged with 

Phaeobacter gallaeciensis BS107-Pgd8 and V.anguillarum HI610, alone, together at the same time 

and with a time laps of 48hours. All challenge doses are approximately high doses (10
6
 CFU ml

-1
). 

Negative control has no challenge dose added. Day 0: day of hatching. Red symbols (3): mortality 

rates 10dph significantly different from the positive control group, p-value (p<<0,001).  
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Figure 3.4.5 e): Percentage of cumulative mortality of non-feeding cod larvae challenged with 

Phaeobacter 27-4 and V.anguillarum HI610, alone, together at the same time and with a time laps of 

48hours. All challenge doses are approximately high doses (10
6
 CFU ml

-1
). Negative control has no 

challenge dose added. Day 0: day of hatching. Red symbols (3): mortality rates 8dph significantly 

different from the positive control group, p-value (p<<0,001). 

 

Figure 3.4.5 f): Percentage of cumulative mortality of non-feeding cod larvae challenged with 

Phaeobacter M23-3.1 and V.anguillarum HI610, alone, together at the same time and with a time laps 

of 48hours. All challenge doses are approximately high doses (10
6
 CFU ml

-1
). Negative control has no 

challenge dose added. Day 0: day of hatching. Red symbols (3): mortality rates 8dph significantly 

different from the positive control group, p-value (p<<0,001). 
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Figure 3.4.5 g): Percentage of cumulative mortality of non-feeding cod larvae challenged with 

Phaeobacter gallaeciensis BS107-wt and V.anguillarum HI610, alone, together at the same time and 

with a time laps of 48hours. All challenge doses are approximately high doses (10
6
 CFU ml

-1
). 

Negative control has no challenge dose added. Day 0: day of hatching. Red symbols (3): mortality 

rates 8dph significantly different from the positive control group, p-value (p<<0,001). 

 

Figure 3.4.5 h): Percentage of cumulative mortality of non-feeding cod larvae challenged with 

Phaeobacter gallaeciensis BS107-Pgd8 and V.anguillarum HI610, alone, together at the same time 

and with a time laps of 48hours. All challenge doses are approximately high doses (10
6
 CFU ml

-1
). 

Negative control has no challenge dose added. Day 0: day of hatching. Red symbols (3): mortality 

rates 8dph significantly different from the positive control group, p-value (p<<0,001). 
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3.4.6. Challenge experiment number five, comparing 7°C versus 13°C 

To compare possible differences between the 7°C experiments and the 13°C experiments the 

groups positive control, negative control, M23-3.1 only, M23-3.1 and V.HI610, M23-3.1first 

and V.HI610 48 later and V.HI610first and M23-3.1 48h later groups from both temperature 

regimes were put up against each other in an graph, figure 3.4.6 and in statistical analysis, p-

value in table 3.4.6. There were not found any statistical differences between the different 

temperature groups, except from in two of the groups. The 7°C M23-3.1 and V.HI610 group 

is significant different (p<<0,001) from the 13°C M23-3.1 and V.HI610 group. The results 

indicates that the 7°C M23-3.1 and V.HI610 group has much lower cumulative mortality than 

the 13°C M23-3.1 and V.HI610 group, at 8 days post hatch. There are also significantly 

differences (p<0,05 / p=0,035) between the 7°C “V.HI610first and M23-3.1 48h later” group 

and the 13°C “V.HI610first and M23-3.1 48h later” group. The results show that the 7°C 

“V.HI610first and M23-3.1 48h later” group has significant lower mortality than the 13°C 

“V.HI610first and M23-3.1 48h later” group. 

 

 

Figure 3.4.6: Percentage of cumulative mortality of non-feeding cod larvae against days post hatch in 

experiment number five. Comparison between cumulative mortality in the 7°C and 13°C positive 

control, negative control, M23-3.1 only, M23-3.1 and V.HI610, M23-3.1first and V.HI610 48h later 

and V.HI610first and M23-.3.1 48h later groups at 8 days post hatch. Day 0: day of hatching. Red 

symbols (4): significantly difference between the “M23-3.1 and V.HI610” groups (p<<0,001) and the 

“V.HI610first and M23-3.1 48 later” groups (p<0,05 / p=0,035). 
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Table 3.4.6: Table of the calculated p-value for the comparisons between temperatures and for the 

comparisons between hatchery A and hatchery B. C.m.% = Cumulative mortality in %. χ2
 = Yates-

corrected Chi square values, p-value is significant if p < α < 0,05. All significant p-values are showed in bold. 

Strain C.m. (%)  C.m. (%) χ2 p-value 

temp vs. temp,   7°C vs. 13°C 

    NC vs. NC 9,72 20,83 2,63 0,1049 

PC vs. PC 100 100 Inf  -  

M23-3.1 only vs. M23-3.1 only 11,11 19,44 1,34 0,2468 

M23-3.1 and HI610 vs.                           

M23-3.1 and HI610 
5,56 88,89 96,99 2,2 x 10

-16
 

M23-3.1first and HI610 48h after vs.    

M23-3.1first and HI610 48h after 
12,50 5,56 1,35 0,2448 

HI610first and M23-3.1 48h after vs. 

HI610first and M23-3.1 48h after 
86,11 97,22 4,45 0,0348 

hatchery A vs. hatchery B temp. 7°C     
NC vs. NC 20,84 11,11 1,86 0,1723 

PC vs. PC 100 100 Inf  - 

hatchery A vs. hatchery B temp. 13°C 

    NC vs. NC 43,06 20,83 7,19 0,0073 

PC vs. PC 100 100 Inf  - 

     

      

3.4.7. Challenge experiment number five, comparing hatchery A versus hatchery B 

In order to eliminate if there were differences between the egg quality from the two different 

hatcheries, A and B, there was done a comparison between the hatcheries negative control 

groups and between the positive control groups at the different temperatures 7°C and 13°C, at 

respectively 10days post hatch and 8days post hatch. In the 7°C comparison there were no 

significant differences between the positive control groups or the negative control groups. In 

the 13°C comparison there were no significant differences between the positive control 

groups, bur for the negative control groups there were significant differences in mortality at 8 

days post hatch. The hatchery B negative control group had a slightly lower mortality than the 

hatchery A negative control group. Statistical calculations in table 3.4.6. 



 Results 
 

54 

 

 

Figure 3.4.7 a): Percentage of cumulative mortality of non-feeding cod larvae in challenge 

experiment number five at 7°C. Negative and positive control groups from hatchery A versus negative 

and positive control groups from hatchery B. The positive control is high dose (10
6
 CFU ml

-1
). 

Negative control has no challenge dose added. Day 0: day of hatching. Mortality rates 10dph, there 

were no significantly differences between the hatcheries, p-value (p = 0,17) and (p > 1). 

 

Figure 3.4.7 b): Percentage of cumulative mortality of non-feeding cod larvae in challenge 

experiment number five at 13°C. Negative and positive control groups from hatchery A versus 

negative and positive control groups from hatchery B. The positive control is high dose (10
6
 CFU ml

-

1
). Negative control has no challenge dose added. Day 0: day of hatching. Red symbols (2): mortality 

rates 8dph, there were significantly difference between the negative controls from hatchery A and B, 

p-value (p<0,05) (p =  0,007). There was no significantly difference between the positive controls. 
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3.4.8 Other statistical comparisons 

Table of the other statistical comparisons results are to be found in table 3.4.8 after this text.  

Statistical comparisons were performed between the negative control group and the groups 

with only probiotics for the challenge experiments 3, 4 and 5 at 7°C and 13°C. The results 

shows that there are significant differences (p<0,03 and p<<0,001), lower mortality, in the 

groups which have probiotic present than in the negative control group, in experiment 3 and 

4. However, there were no significant difference between these groups in experiment five and 

the 13°C experiments.  

There were done statistical comparison between the groups were V.anguillarum HI610 were 

added 48hrs before the probiotic, and where the probiotics were added 48hrs before the 

V.anguillarum HI610 for experiments 3, 4 and 5 at both 7°C and 13°C. These results 

indicated that there were significant differences (p<<0,001) between those groups in 

experiment number five, both at 7°C and 13°C. In experiment number four at 7°C there were 

significant differences between 3 out of 4 groups, there is no significant differences between 

the “V.HI610 first and M23-3.1 48h later” group and the “M23-3.1 first and V.HI610 48h 

later” group. In experiment number four at 13°C there were significant differences (p<<0,001) 

between 2 out of 2 groups, there are no significant differences between the “V.HI610 first and 

M23-3.1 48h later” group and the “M23-3.1 first and V.HI610 48h later” group and between 

the “V.HI610 first and P.g wt 48h later” group and the “P.g wt first and V.HI610 48h later” 

group.  

In challenging experiment number 3, 7°C (there were no 13°C/15°C experiment) there were 

significant difference (p<<0,001) between 3 out of 4 groups. There is no significant difference 

between the “V.HI610 first and M23-3.1 48h later” group and the “M23-3.1 first and V.HI610 

48h later” group.  

 

 

 

Table 3.4.8: Table of statistical differences in cumulative mortality between the challenge groups in 

experiment 3, 4 and 5 at 10 days post hatch for 7°C and 8 days post hatch for 13°C. C.m.(%) is 

cumulative mortality in percent.  χ2 
= Yates-corrected Chi square values, p-value is significant if α < 0,05. 

All significant p-values are showed in bold. 
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Strain 

challenge experiment no. 3  10/8 dph challenge experiment no. 4  10/8 dph challenge experiment no. 5  10/8 dph 

C.m. 

(%) 

C.m. 

(%) 
χ2

 p-value 
C.m. 

(%) 

C.m. 

(%) 
χ2

 p-value 
C.m. 

(%) 

C.m. 

(%) 
χ2

 p-value 

Temperature 7°C 

   
  

    

  

   NC vs. only 27-4 30,56 12,50 5,92 0,01 44,44 27,78 3,64 0,06 11,11 8,33 0,08 0,78 

NC vs. only M23-3.1 30,56 19,44 1,81 0,18 44,44 11,11 18,31 1,88 x 10
-5

 11,11 11,11 0,07 0,79 

NC vs. only P.g wt  30,56 11,11 7,12 0,01 44,44 9,72 20,25 6,78 x 10
-6

 11,11 8,33 0,08 0,78 

NC vs. only P.g Pda8  30,56 13,89 4,86 0,03 44,44 16,67 11,81 0,0006 11,11 13,89 0,06 0,80 

HI610first and 27-4 48h after vs.                 

27-4first and HI610 48h after 
97,22 50 38,93 4,389 x 10

-10
 97,22 23,61 78,52 2,2 x 10

-16
 100 15,28 102,39 2,2 x 10

-16
 

HI610first and M23-3.1 48h after vs.   
M23-3.1first and HI610 48h after  

16,67 13,89 0,05 0,8168 19,44 12,50 0,83 0,36 87,50 12,50 78,03 2,2 x 10
-16

 

HI610first and P.g wt 48h after vs.    

P.g wt first and HI610 48h after 
73,61 16,67 44,87 2,107 x 10

-11
 69,44 13,89 43,46 4,33 x 10

-11
 98,61 22,22 84,67 2,2 x 10

-16
 

HI610first and P.g Pda8 48h after vs.    

P.g Pda8 first and HI610 48h after 
100 40,28 58,49 2,045 x 10

-14
 100 15,28 102,39 2,2 x 10

-16
 100 29,17 75,90 2,2 x 10

-16
 

Temperature 13°C 

   

  

    

  

   NC vs. only 27-4 

   

  48,61 41,67 0,45 0,50 20,83 22,22 0,00 1 

NC vs. only M23-3.1 

   

  48,61 31,94 3,49 0,06 20,83 19,44 0,00 1 

NC vs. only P.g wt  

   

  48,61 43,06 0,25 0,62 20,83 11,11 1,86 0,17 

NC vs. only P.g Pda8  

   

  48,61 45,83 0,03 0,87 20,83 12,50 1,25 0,26 

HI610first and 27-4 48h after vs.                  

27-4first and HI610 48h after 

   

  
86,11 58,33 12,50 0,0004 100 25 83,23 2,2 x 10

-16
 

HI610first and M23-3.1 48h after vs. 

M23-3.1first and HI610 48h after  

   

  
65,28 50 1,00 0,32 97,22 5,56 117,45 2,2 x 10

-16
 

HI610first and P.g wt 48h after vs.    
P.g wt first and HI610 48h after 

   

  
50 45,83 2,84 0,09 100 16,67 99,46 2,2 x 10

-16
 

HI610first and P.g Pda8 48h after vs. 
P.g Pda8 first and HI610 48h after 

   

  
98,61 54,17 37,00 1,181 x 10

-9
 98,61 19,44 90,05 2,2 x 10

-16
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3.5 Gram staining pictures 

In order to obtain pictures of the rosettes formed by the probiotic bacteria, Gram staining and 

fluorescent microscopy (ZEISS, Axioskop 2plus) was done. 

Gram staining preparation were made out of 6 of the 8 probiotics that are included in this 

thesis, Phaeobacter 27-4, mutant JBB1001, Pseudoalteromonas citrea AQ10, Phaeobacter 

M23-3.1, Phaeobacter gallaeciensis BS107-wt and Phaeobacter gallaeciensis BS107-Pda8.  

In figure 3.5 each probiotic that were Gram stained are shown. In all the pictures, except 

picture c), distinct rosette shaped clusters of bacteria are shown. In picture c) there are single 

rod shaped bacteria, this is the Pseudoalteromonas citrea, which is not known to make 

rosettes or cluster together. 

 

 

 

Figure 3.5: Pictures of gram staining preparations of 6 probiotics taken with a fluorescent microscopy 

(ZEISS, Axioskop 2plus) with bright-field illumination and a connected camera. a) Phaeobacter 27-4, 

b) mutant JBB1001, c) AQ10 Pseudoalteromonas citrea, d) Phaeobacter M23-3.1, e) Phaeobacter 

gallaeciensis BS107-wt, f) Phaeobacter gallaeciensis BS107-Pda8. 
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4 Discussion  

The cultivation of marine larvae is known to struggle with high mortality due to high density 

of larvae and have high density of opportunistic pathogens. Today, globally, antibiotics are 

still used to prevent and treat bacterial infections in marine fish larvae, because the larvae 

have an immature immune system, and cannot be vaccinated. The antibiotic consumption is 

not favourable for the environment and there is a high risk for developing resistant bacteria. 

Due to this there is a need for alternative treatments against bacterial pathogens in the early 

life stages of marine larvae. The use of probiotics as an alternative to prevent and reduce 

bacterial diseases has become a current interest and there is intense research around the 

evaluation and use of probiotic bacteria. 

  

The so-called Roseobacter clade commonly found in the marine environment include the 

genera Phaeobacter and Ruegeria which both include species that have been suggested as 

probiotic organisms.  

 

The aim of the present study was by in vivo challenge experiments to enhance our knowledge 

of different probiotic used as a health benefit for the cod larvae, and as an antagonist against 

Vibrio anguillarum. The probiotic tested against Vibrio anguillarum were mainly 

Phaeobacters, but also Ruegeria and one Pseudoalteromonas citrea. Results from the 

different challenge experiments showed that the probiotics tested had a positive effect of the 

survival of the cod larva in general without V.anguillarum added, and with the pathogen 

present.   

 

As a starting point it is highly important that the eggs used in a challenge experiment are of 

good quality and have good hatching percent and survival percent, because low quality could 

affect the results of the experiments.  

The egg batches for the five challenge experiments were delivered from two different 

hatcheries, hatchery A and hatchery B. For challenge experiment 1, 3 and 4 the eggs were 

delivered from hatchery A and for challenge experiment 2 and 5 the eggs were delivered from 

hatchery B. The eggs were transported by car, plane and/or boat over several hours. Cod eggs 

are known to have varying percentage of hatching (Kjørsvik, 1994, Moksness et al., 2004) 

this in addition to the stress from the transport time, transport vehicle, possible temperature 
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changes under transport, the possibility for physical damage from handling the eggs after 

arrival and the temperature leap from the transport water and the water temperature in the 

wells could have an impact on the hatching percentage and give a delay in the hatching 

process. Stress and higher water temperatures results in lower oxygen and higher nitrogen, 

and the embryo development are highly temperature dependent and big differences in 

temperatures could result in higher mortality and deformed larvae (Kjørsvik, 1994, Moksness 

et al., 2004). To avoid that the intra-batch varieties could show in specific groups with an 

effect in the hatching percent and cumulative mortality, the eggs were randomized.  

 

The challenge doses used during this experiment were approximately 10
6
 colony forming 

units (CFU) ml
-1

, which caused high mortality in the positive control groups with Vibrio 

anguillarum HI610. For the probiotics the exact challenge doses were difficult to estimate as 

exactly as the one for the Vibrio, but all the probiotic doses are estimated to be approximately 

high dose 10
6
 CFU ml

-1 
or higher.  

 

The difficulties to estimate the exact challenge dose concentration for the probiotics might be 

because of the lack of a good and certain procedure to estimate probiotic in a medium and on 

agar plates. Much of the difficulties might be due to the characteristic that many of the 

probiotics cluster together in rosette formations (Porsby et al., 2008). The clustering and 

rosettes formations were the reason that the counting chamber technique could not be used 

properly. We also experienced difficulties when trying to separate the bacteria. There were 

difficulties separating the bacteria, with EDTA, Ethylenediaminetetraacetic acid. Due to the 

rosette formations, the colony forming units on Marine agar-plates probably underestimated 

the CFU in some cases. However, the CFU protocol together with OD in lye, NaOH, was 

used as the procedure to perform the probiotic challenge dose. The procedure was done by 

exactly the same protocol in each experiment, to reduce the uncertainty for different challenge 

dose concentrations. However, even with the exact same procedure every time we 

experienced some differences in challenge dose concentration as measured by OD. The 

differences might be due to the rosettes and that they are hard to separate, this makes the OD 

measuring difficult. 

There are other uncertainties with the challenge dose concentration, as contamination and 

viability of the bacteria after being washed and handled, if the challenge dose is the same in 

each well and the leap in concentration when challenge doses for the same experiment are 

made two times with an interval of 48 hours. These uncertainties make it even more important 
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to follow the exact same procedure every time and use proved sterile lab techniques, to limit 

the source of error. Another thing that could explain the challenge dose concentrations 

difficulties are that the growth curves are difficult to establish with good optimal OD, because 

of the cultivations properties, no shaking and a new bulb with culture at each new measure.  

When one of the challenge bacteria, the pathogen or the probiotic are added 48hours before 

the other, the first bacteria added has an advantage with the extra time to settle in the 

environment. The first bacteria added would have a higher possibility to “succeed”. If the 

pathogen was added first it would have a higher possibility to infect and kill the cod larvae, 

while when the probiotic was added first the probiotic would have a better possibility to 

outcompete the pathogen added 48 hours after.  

  

The multi-well dish system is an easy and uncomplicated way to do in vivo challenge 

experiments, but some complications could occur. When the eggs are incubated in the wells 

some water will follow from the transport container, and as the method used to transfer the 

eggs is not sterile, and the eggs possess an epibiotic microflora (reviewed by (Hansen and 

Olafsen, 1999), this microflora could inoculate the water in the wells and “compete” with the 

bacteria added by challenge. The epibiotic microflora following the eggs might have an 

impact on the mortality results of the challenge experiments. Two of the batches delivered 

from hatchery A, (the once for challenge experiment number four and five) were treated with 

Buffodine (Evans Vanodine International Plc) before they sent the eggs from the hatchery, 

and this might have had some effect minimizing the bacterial flora already established in the 

rearing water. It is likely that development of gnotobiotic protocols, as done for sea bass 

larvae cited by Dierckens et al., 2009 would help to overcome this problem.  

The early day post hatch mortality registered in challenge experiment number one could be 

explained by the following microflora, the handling of the eggs, transportation and the 

distribution to wells (first time distributing eggs to wells, therefore missed having eggs in 

some wells).  

Any challenge method is to some extent artificial. However the bath challenge method 

mimics the natural challenge situation, where the larvae hatches in an environment to which 

bacteria has already been added (experimental situation) - or are present (natural situation).   

 

In our experiments the positive control groups larvae were challenged with Vibrio 

anguillarum strain HI610 added through water, a method that previously has shown to cause 

mortality of Atlantic Cod, (Gadus morhua) (Samuelsen and Bergh, 2004, Seljestokken et al., 
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2006, Vik-Mo et al., 2005). High and rapid mortality was also the results for all of the 

positive control groups for all the challenge experiments performed here. As early as 3 days 

post hatch nearly 100% of the larvae were dead in the positive control groups. This was a 

significantly higher mortality than all the other challenging groups except the groups where 

the Vibrio strain were added 48hours before the probiotic strains. These challenge groups 

indicated the same high and early cumulative mortality as the positive control groups when 

the V.anguillarum were challenged together with the Phaeobacter 27-4 and the Phaeobacter 

gallaeciensis BS107-Pda8 (mutant) in the respective experiments. In the group where the 

Vibrio strain were added 48 hours before the probiotic strain Phaeobacter M23-3.1, the 

mortality were significantly lower than the other similar groups, where the Vibrio strain were 

added 48 hours before the probiotics Phaeobacter 27-4, Phaeobacter gallaeciensis BS107-wt 

and Phaeobacter gallaeciensis BS107-Pda8 (mutant) . In the group where the Vibrio strain 

were added 48 hours before the probiotic strain Phaeobacter gallaeciensis BS107-wt the 

mortality were also significantly lower (except from in challenge experiment number five) 

than the positive control, but not as low as with the probiotic strain Phaeobacter M23-3.1. 

This indicates that some probiotic strains may have a more potent probiotic effect than others. 

 

Challenge experiment number one where in some extent a test experiment, a first trial. 

Therefore I reduced the presented results in one figure, figure 3.4.1 under Results. From the 

graph one could see high cumulative mortality early (in time aspect) after 0dph for the high 

dose positive control, as wanted. The low dose positive control shows a much lower 

mortality, indicating that the 10
4
 CFU ml

-1
 might be too low to cause the wanted significantly 

mortality. Because of these results the low dose positive control were excluded from the next 

experiments. All the probiotic challenge doses were high doses, approximately 10
6
 CFU ml

-1
. 

The challenge groups with probiotics alone Ruegeria F1926 and Ruegeria M43-2.3 showed a 

generally low cumulative mortality, in line with the negative control. The probiotics F1926 

and M43-2.3 were tested up against the low dose V.anguillarum HI610 at the same and with 

the probiotic 48hrs before the low dose V.anguillarum HI610. These groups all showed a low 

cumulative mortality. This became no surprise when the low dose showed such low mortality 

alone. The probiotics Ruegeria F1926 and Ruegeria M43-2.3 were only tested in this first 

challenge experiment due to that other probiotics were of more interest, and I had to choose 

which once I wanted to work with.    
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It is has previously been showed that larvae starved longer than 9 days post hatch cannot 

survive (Kjørsvik et al., 1991) and it is known from earlier studies using a multi-dish based 

protocol (Sandlund et al., 2010) that larvae which are not fed during the experiment will have 

a natural increase in mortality after 10 days post hatch, due to starvation. Since the larvae 

were not fed during these challenge experiments it is reasonable to conclude that the increase 

in mortality after 10 days post hatch is due to starvation.   

 

In challenge experiment number two there were performed a 7°C challenge experiment and a 

parallel at 15°C, figures 3.4.2 a) and 3.4.2 b). In the 7°C challenge experiment the positive 

control and the challenge group with V.HI610 first and Phaeobacter 27-4 48hours after 

showed a high cumulative mortality, actually the group with V.HI610 first and Phaeobacter 

27-4 48hours after shows a slightly higher mortality than the positive control 4dph and 

throughout the experiment, 8dph. There were some problems with the mortality registration 

for the 7°C experiment, and therefore the experiment was ended at 8dph. Because of the early 

conclusion, I did not do any statistical calculation for this experiment. However, the graph for 

the 7°C experiment clearly shows that all the other groups: negative control, 27-4 only, 27-4 

and V.HI610, 27-4 first and V.HI610 48hrs after, M23-3.1 only, M23-3.1 and V.HI610, M23-

3.1 first and V.HI610 and V.HI610 first and M23-3.1 48hrs after have much lower cumulative 

mortality than the positive control and the V.HI610 first and 27-4 48hrs after groups.  

In challenge experiment number two the first parallel on 15°C was tested. In figure 3.4.2 b) 

one could see that all the challenge groups have an exponential increasing cumulative 

mortality. It seems like all the groups would end up in a 100% cumulative mortality some 

time after 10dph. The positive control and the groups with pathogen and Phaeobacter 27-4 

are the groups reaching the 100% mortality first. This exponential increase in cumulative 

mortality might be due to the temperature leap and/or the extra handling of the eggs when 

increasing the temperature. In addition the increase of temperature on the eggs were done in 

the original transport water with aeration over 48hours, this increase in temperature over a 

short time leap could have boosted any bacteria flora already present and effected the embryo 

development and reduced the larvae capability of survival. In the later experiments 50% of the 

transport water was changed with 50% autoclaved sterile filtered and aerated diluted seawater 

(32‰) to see if this could reduce mortality after the temperature increase.   
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In challenge experiment number three at 7°C four probiotics were tested, Phaeobacter 27-4, 

Phaeobacter M23-3.1, Phaeobacter gallaeciensis BS107-wt, Phaeobacter gallaeciensis 

BS107-Pda8, figure 3.4.3 a), b) c) and d). The positive control showed a significantly higher 

mortality than all the other challenge groups tested, except from the “V.HI610 first and 27-4 

48hrs after” group and the “V.HI610 first and P.g Pda8 48hrs after” group. The challenge 

groups with Phaeobacter M23-3.1 showed the most significant difference with the positive 

control followed by the challenge groups with Phaeobacter gallaeciensis BS107-wt. This 

result again, proves that the Phaeobacter M23-3.1 is a more potent probiotic. 

The 15°C parallel in challenge experiment number five failed. The temperature was increased 

a whole eight degrees in only 24 hours. This was probably a much too fast increase and an 

increase that might have influenced the embryo development that caused a low hatching 

percent and a high number of deformed larvae in the few hatched eggs. The deformed larvae 

could again have an effect on the infection grade and the high cumulative mortality.  

 

In challenge experiment number four at 7°C, figures 3.4.4 a), b), c) and d) there is “high” 

mortality in the negative control, over 40% cumulative mortality at 2dph while the challenge 

groups 27-4 only, 27-4 first and V.HI610 48hrs after, M23-3.1 only, M23-3.1 and V.HI610, 

M23-3.1 first and V.HI610 48hrs after, V.HI610 first and M23-3.1 48hrs after, P.g wt only, 

P.g wt and V.HI610, P.g wt first and V.HI610 48hrs after, P.g Pda8 only and P.g Pda8 first 

and V.HI610 48hrs after shows a significantly lower mortality. Earlier studies has also 

showed high mortality in the negative control groups (Hjelm et al., 2004). However, this 

result clearly shows that the probiotics have a positive effect on the survival when these 

groups show significantly lower mortality than the negative control that are supposed to be 

“bacteria free” and the group with the highest survival numbers.   

In the 13°C parallel in challenge experiment number four the temperature increase did not 

seem to highly successful for the cumulative mortalities. The positive control group showed 

significantly higher mortality than all the other challenge groups at 8dph, except one, the 

V.HI610 first and 27-4 48hrs after, which cumulative mortality percent are almost the same as 

the positive control at 8dph. Despite the significantly higher mortality in the positive control 

the temperature increase were no good, since all the challenge groups’ cumulative mortality 

curves have an exponential growth and seem to reach 100% mortality before, near or after 

10dph. One conclusion is that the procedure for increasing the temperature on eggs has to be 

advanced to give the eggs a smoother transition between temperatures. 
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In challenge experiment number five, figures 3.4.5 a) – 3.4.5 h) we got some problems 

because of the too early hatching. Some eggs were already hatched when we randomised the 

eggs into wells the day of arrival. This resulted in that some eggs were hatched when I 

challenged the second time at 7°C, and a lot of eggs were hatched when I challenged the first 

time at 13°C, and over 50% were hatched when I challenged the second time at 13°C. This 

hatching before I finished the challenging might have an effect on the cumulative mortality, 

higher, lower or as the other experiments. 

In the 7°C parallel it seems that the pathogen V.anguillarum HI610 had got a small advantage 

by the early hatching, when the Vibrio were added 48hrs before the probiotics. And the 

groups “27-4 and V.HI610” and “P.g Pda8 and V.HI610” were not significant different from 

the positive control. 

In the 13°C parallel the V.anguillarum HI610 again seems to have a small advantage by the 

early hatching, when the Vibrio were added 48hrs before the probiotics and at the same time 

as the probiotics (see table 7.8 b) in Appendix 7.8 for significantly p-values). This could 

indicate that the infection rate for Vibrio is higher when the cod larva hatches earlier, or, 

alternatively, that the higher mortality rather is because of the handling/challenging (stress) of 

larvae instead of eggs. 

 

There were done comparisons between the two temperature regimes in challenge experiment 

number five, showed in figure 3.4.6 under Results, with the groups’ positive control, negative 

control, only M23-3.1, M23-3.1 and V.HI610, M23-3.1first and V.HI610 48hrs after and with 

V.HI610 first and M23-3.1 48hrs after. The results indicated that there were no significantly 

differences in mortality between the parallel temperature groups 7°C and 13°C, except from 

two groups. M23-3.1 and V.HI610 had a significantly lower mortality at 7°C than at 13°C. 

The group “V.HI610 first and M23-3.1 48hrs after”, also indicated a significantly lower 

mortality at 7°C than at 13°C. This difference in mortality could be because of a natural lower 

hatching percentage or/and a natural higher mortality of larvae with increasing temperature, or 

that the higher temperature is nearer the Vibrio optimum temperature and the Vibrio got more 

virulent (Larsen et al., 2004). Despite some higher general mortality at 13°C the results from 

groups with probiotic added, still indicates good effect.  

There were done visual observations of the eggs from hatchery A and hatchery B. The 

registrations were that the eggs from hatchery A were smaller, with lesser pigmentation and 
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they seemed to have lower hatching percent and shorter lifespan than the eggs from hatchery 

B. The hypotheses about the hatching percent and shorter lifespan was rejected by statistical 

comparisons of the two hatcheries in challenge experiment number five in both 7°C and 13°C. 

In challenge experiment number five we included two batches with cod eggs, one from 

hatchery A and one from hatchery B. The batch from hatchery B was used to perform the 

entire challenge experiment number five, i.e. all challenged groups were using eggs from this 

hatchery. The eggs from hatchery A were used to perform parallels of negative and positive 

control groups at both 7°C and 13°C against the negative and positive control groups in 

challenge experiment number five, thereby comparing the two egg batches. The graph, shown 

in figure 3.4.7 a) under Results, and the statistical comparisons, in table 3.4.6 under Results, 

indicated no differences between the positive or negative control groups at 7°C. At 13°C, 

figure 3.4.7 b) and table 3.4.6 under Results, there were no differences between the positive 

control groups, but a small but significant difference was found between the two negative 

control groups. There was a slightly higher mortality in the negative control group from 

hatchery A. This difference might have been due to the temperature leap and not to the quality 

of the eggs. The eggs from hatchery A had a lower transport temperature and cultivation 

temperature than the eggs from hatchery B, which gave a higher temperature leap for the eggs 

from hatchery A. Other conditions that could affect the results in the experiments are the 

transportation time, the transportation vehicle, the fact that the eggs derive from two different 

hatcheries and broodstocks populations with distinctly different genetic origin that gives them 

different morphology.   

The time for registering mortality ought to be done at the same time every day, especially for 

the 13°C (15°C) because of the biological processes that are known to go faster at higher 

temperatures (Moksness et al., 2004) and to get a more precisely curve for cumulative 

mortality. It could sometimes be difficult to see the difference between dead and alive, and 

registration two times on 24 hours might have been a good idea to get a more precisely 

mortality curve. However, the extra handling could be a stress factor and cause sooner and 

higher mortality.  

All the bacteria, the pathogen and the probiotic have different optimums that could affect the 

mortality rates, the pathogen, Vibrio anguillarum have high optimum temperatures, higher 

than 15°C (Larsen and Pedersen, 1999, Larsen et al., 2004) and the antimicrobial activity of 

TDA in probiotics is degraded at higher temperatures (Porsby, 2010). 
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In the performed challenge experiments a Phaeobacter gallaeciensis BS107-Pda8 mutant of 

the Phaeobacter gallaeciensis BS107-wt was tested. This Phaeobacter gallaeciensis BS107-

Pda8 lack the gene for TDA, and theoretically the following antimicrobial activity and 

pigmentation ability (like the JBB1001 mutant in (Geng et al., 2008)). The lack of 

pigmentation was seen under cultivation, while the lack of antimicrobial activity should show 

under results in the graphs over cumulative mortality in figure 3.4.3 d), 3.4.4 d) and 3.4.5 d). 

These results shows that the challenge group P.g Pda8 only and the challenge group where the 

P.g Pda8 was added 48hrs before the V.HI610 was significantly lower in mortality than the 

positive control. While the challenge group where the P.g Pda8 is added together with 

V.HI610 at the same time and the challenge group where the V.HI610 is added 48hrs before 

the P.g Pda8 has no significant difference in mortality from the positive control.   
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5 Conclusion and suggestions for further work 

In conclusion this study has demonstrated that the use of different strains of probiotics against 

the pathogen Vibrio anguillarum HI610 in an experimentally multi-dish bath challenge with 

cod yolk sac larvae, Gadus morhua, has an inhibitory effect against the pathogen  measured in 

terms of impact of cod larvae survival following challenge. Furthermore, no negative or 

harmful effects of the probiotic additions could be found. This confirms and establishes 

earlier studies of the possible probiotic effect these strains Phaeobacter 27-4, Phaeobacter 

M23-3.1 and Phaeobacter gallaeciensis BS107-wt were believed to have. The study also 

demonstrated that some probiotic might have stronger probiotic effect than others. In this 

study, the probiotic Phaeobacter M23-3.1 that showed a higher probiotic effect with the 

lowest cumulative mortality days post hatch.  

 

It seems that if this experiment had been allowed to continue longer there would be a 

continuance in high survival in the challenge groups were there were added probiotics alone, 

before and at the same time as the pathogen V.anguillarum HI610. This would have 

demanded feeding of the larvae and a subsequent change in bacteria flora following onset of 

feeding. The change in bacterial flora might have been a challenge for the probiotic bacteria, 

and the effect of this remains to be investigated.   

Further investigation of the probiotic effect of these strains against pathogens has to include 

other pathogens, maybe pathogens that are considered as a bigger problem at the early larvae 

stages like the bacteria Flexibacter, Flavobacterium and Cytophaga, (Moksness et al., 2004), 

bath challenge of fed larva and maybe inoculation via live feed and challenge experiment in 

“normal” sized rearing facilities with water in circulation.   

Literature and studies cited in (Porsby, 2010) have indicated that the some of the probiotics 

have lower probiotic effect when there are too much movement and circulation in the 

cultivation medium. Because of this it is important to investigate if there is any reduction in 

the probiotic effect in some like “normal” sized larvae cultivations.  There must be done 

studies and work to adapt a technology that is suitable for the probiotic strains in question. 

 

It could be interesting to study in vitro challenging experiments with the same pathogen and 

probiotics to see if the probiotics would give any internal effects and if there are temperature 

differences in mortality in such an experiment. By use of confocal microscopy and  
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GFP-transformed bacteria there might be a possibility to study if there is any uptake of 

pathogen and probiotic in vitro in the larvae.  

However, the most interesting prospect in an economical and biological context is that the 

probiotics seem to be capable to outcompete pathogens and be utilised in the role as an 

antagonistic or antibiotics in regular larval rearing facilities.  
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7 Appendix 

 

 

7.1 Cultivation of the probiotics 

 

Growth medium, Marine Broth 

37,4gram (Difco
TM

 2216, Becton, Dickinson and Company) of the powder in 1liter with dH2O 

(distilled water), mix well and heat or boil for 1min while stir. 

Spread the broth in several 250ml Erlenmeyer bulbs, each containing around 20 ml medium. 

Use a batting top and tinfoil to cover the top of the Erlenmeyer bulb, and then put the bulbs 

with broth in the autoclave at 121 °C in 15min. 

 

CFU plate, Marine Agar 

55,1gram (Difco
TM

 2216, Becton, Dickinson and Company) of the powder in 1liter with dH2O 

(distilled water), mix well and heat or boil for 1min while stir. Autoclave at 121 °C in 15min.  

Work in the ventilation cabinet when pouring out 20-25ml Marin Agar in each petri-dish, just 

enough to cover the bottom of the petri-dish. Put the lid on when the agar have stiffened.  

 

7.2 Cultivation of the Vibrio 

 

Growth medium, TSB, Tryptic Soy Broth 

30gram (Bacto
TM

 Tryptic Soy Broth, Soybean-Casein Digest, Medium, Becton, Dickinson 

and Company) of the powder in 1liter with dH2O (distilled water or osmosis water), added 

0,5% extra NaCl, mix well and heat slightly to completely dissolve the powder. Spread the 

broth in several 250ml Erlenmeyer bulbs, each containing around 100 ml medium. Use a 

batting top and tinfoil to cover the top of the Erlenmeyer bulb, and then put the bulbs with 

broth in the autoclave at 121 °C in 15min. 

 

Agar plate, TSA, Tryptic Soy Agar 

40gram (Difco
TM

 Tryptic Soy Agar, Soybean-Casein Digest Agar, Becton, Dickinson and 

Company) of the powder in 1liter with dH2O (distilled water or osmosis water), added 0,5% 

extra NaCl, mix thoroughly and heat with frequent agitation and boil for 1min to completely 
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dissolve the powder. Autoclave at 121°C in 15min. Work in the ventilation cabinet when 

pouring out 20-25ml Tryptic Soya Agar in each petri-dish, just enough to cover the bottom of 

the petri-dish. Put the lid on when the agar have stiffened. 

 

7.3 Challenge dose protocol for Vibrio anguillarum/Listonella anguillarum 

 performed by Kristian Dam at the University of Bergen 

 

Cultivation 

V. anguillarum cultured in 250ml Erlenmeyer bulbs holding 100ml Tryptone Soy Broth added 

0,5% extra NaCl. Incubated at 60RPM and 20°C until the cultures reach about 0,7-0,8 in 

OD600 value (0,5-0,6 for HI610). Estimated generation time is 90min for NB10 types  

Washing  

1. 24ml growth culture is taken out at OD600 about 0,7 – 0,8. (For HI610 the OD600 

values are 0,5 – 0,6) 

2. It is centrifuged with 1825xg (2800RPM using an Allegra X-15R Centrifuge from 

Beckman coulter) at 20°C for 8min. 

3. The supernatant is poured of, leaving a viscous pellet at the bottom of the centrifugal 

tube. 20ml of autoclaved and aerated 80% seawater at 20°C is transferred into the 

centrifugal tube using a pipette. The pellet is re-suspended by gentile shaking of the 

tube by hand.  

4. Step nr. 2 and 3 are repeated twice, giving a total of three centrifugations. The final re-

suspension of the pellet is done using a whirl-mixer. 

 

Bacterial count 

Counting chamber info: depth 0,02mm, square-net 0,0025mm
2
, 1cell/large square equals 

1,25x10
6
 cells/ml, 1 cell/small square equals 20x10

6
 cells/ml 

1. About 20µl of stock-suspension is placed upon the countingchamber and a 

necessary dilution is evaluated. 

2. The countingchamber is rinsed using 70% ethanol. Appropriate volume of stock 

suspension is taken out and diluted to suitable stock-suspensions in 8% formalin. 

3. About 20µl diluted stock-suspension is placed on the countingchamber and is 

counted (I usually count all the bacteria within the chosen squares. I count the 4 

large squares in each corner and the 4 large squares in the middle) 

4. The counting error is rectified using: n
(1/2)

, meaning that if I count 400 cells the 

counting error is 20 cells or 5%, these 20 cells are added to the outcome of the 

count. 
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5. The cell count should be performed at least 3 times for each bacterial suspension, 

this so that average, standard deviation and standard error can be calculated. 

6. Average number of counted cells is multiplied with amount of cells/ml/large 

square specified for the counting chamber. This is then multiplied with the 

dilution used. 

Now the bacterial concentration in the stock suspension is known  

Making the challenge dose 

1. Find all necessary details; well-volume, desired challenge dose concentration in the 

well, desired challenge dose volume to add to each well, and desired challenge dose 

stock volume. 

2. The challenge dose is produced using this algorithm:  

C1 x V1 = C2 x V2  

I want to find V1, which is the amount of stock-suspension that is to be transferred into V2 

(prior to adding V1 into V2 an equal volume as V1 must be taken out of V2) 

V1 = (C2 x V2)/C1 

V2 = desired challenge dose stock 

C1 = counted bacterial concentration  

C2 = desired dose concentration within the well, this must be multiplied with the well-volume 

V1 = volume stock suspension to transfer, this concentration must increase as much as the 

challenge dose volume is decreased.  

3.  The challenge dose suspension is finished 
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7.4 Information about the egg batches from hatchery A 

 

Eggs for challenge experiment number 3 

Incubator number: 220 

    

       Generation: 2008 

 

Incubation date: 18.03.2011 

 Buyer: Øivind Bergh 
 

Incubated: 600ml 
  Age when transported: 44,1 Fertilisation / % OK cells: 54/82 

  Disinfection: No 
 

Sediment out unfertilisated eggs before 
incubation  

    

       

Date Temp. 

Day 

degrees ml dead eggs 

ml of eggs in 

incubator 

total 

mortality in 

% 

daily 

mortality in 

% 

00.jan 3,5     600     

01.jan 3,8 7,3 35 565 5,8 5,8 

02.jan 3,6 10,9 90 475 15,9 15,9 

03.jan 4,0 14,9 37 438 22,5 7,8 

04.jan 3,5 18,4 40 398 29,6 9,1 

05.jan 3,3 21,7 30 368 34,9 7,5 

06.jan 3,2 24,9   368 34,9 0,0 

07.jan 3,1 28,0 55 313 44,6 14,9 

08.jan 3,2 31,2   313 44,6 0,0 

09.jan 3,3 34,5 15 298 47,3 4,8 

10.jan 3,2 37,7   298 47,3 0,0 

11.jan 3,2 40,9 3 295 47,8 1,0 

12.jan 3,2 44,1   295 47,8 0,0 

13.jan   44,1   295 47,8 0,0 

14.jan   44,1   295 47,8 0,0 

15.jan   44,1   295 47,8 0,0 

16.jan   44,1   295 47,8 0,0 

17.jan   44,1   295 47,8 0,0 

18.jan   44,1   295 47,8 0,0 

19.jan   44,1   295 47,8 0,0 

20.jan   44,1   295 47,8 0,0 

21.jan   44,1   295 47,8 0,0 

22.jan   44,1   295 47,8 0,0 

23.jan   44,1   295 47,8 0,0 

24.jan   44,1   295 37,9 0,0 
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Egg for challenge experiment number four and five 

Incubator number:  220 
    Buyer: Øivind Bergh  

     Age group: 2008 

     Incubated: 01.04.2011 

     Amount (ml) egg incubated: 700  

    Age  (day degrees) at 1.delivery, experiment no. 4:  ca 45 

  Age  (day degrees) at 2.delivery, experiment no. 5:  ca 47,9  

  Fertilisation percent:82 

     % ok cells: 91 

     Disinfection: Buffodine 

    Sediment  out unfertilisated egg before incubation: No at first delivery 

  Sediment  out unfertilisated egg before incubation: Yes at second delivery 

 

       

       

Date Temp. day degrees ml dead eggs 

ml egg in 

incubator 

total 

mortality in 
% 

dayli 

mortality in 
% 

01.apr 3,5     700     

02.apr 3,5 7 145 555 20,7   

03.apr 3,5 10,5 25 530 4,5 4,5 

04.apr 3,7 14,2 25 505 9,0 4,7 

05.apr 3,7 17,9 35 470 15,3 6,9 

06.apr 4,0 21,9 10 460 17,1 2,1 

07.apr 3,7 25,6   460 17,1 0,0 

08.apr 3,7 29,3 60 400 27,9 13,0 

09.apr 3,8 33,1   400 27,9 0,0 

10.apr 3,7 36,8 12 388 30,1 3,0 

11.apr 3,7 40,5   388 30,1 0,0 

12.apr 3,7 44,2   388 30,1 0,0 

13.apr 3,7 47,9   388 30,1 0,0 

14.apr   47,9   388 30,1 0,0 

15.apr   47,9   388 30,1 0,0 

16.apr   47,9   388 30,1 0,0 

17.apr   47,9   388 30,1 0,0 

18.apr   47,9   388 30,1 0,0 

19.apr   47,9   388 30,1 0,0 

20.apr   47,9   388 30,1 0,0 

21.apr   47,9   388 30,1 0,0 

22.apr   47,9   388 30,1 0,0 

23.apr   47,9   388 30,1 0,0 
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7.5 Information about the egg batches from hatchery B 

 

Eggs delivered for experiment number two: 

Delivered: 6/12-10: 

 

Fertilisation 28/11-10,  Temperature 7,0 °C, Fertilisation % were 80 

 

 

Eggs delivered for experiment number five: 

Delivered 13/4-11: 

 

Fertilisation 5/4-11,  Temperature 7,0 °C, Fertilisation % were 85  
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7.6 Tables of the challenge experiment designs 

 

 

Table 7.6. a): Table for challenge experiment number 1, only experiment at 7°C 

Group no. Bacteria 1 Dose bac 1 Bacteria 2 Dose bac 2 No. trays 

1 27-4 High dose 

  

3 

1B 27-4 High dose V. HI610 Low dose 3 

1C 27-4 High dose V.HI610 mm Low dose 3 

1D 27-4 High dose V. GFP Low dose 3 

1E 27-4 High dose V. mCherry Low dose 3 

2 M23-3.1 High dose 

  

3 

2B M23-3.1 High dose Vibrio Low dose 3 

3 M43-2.3 High dose 

  

3 

3B M43-2.3 High dose Vibrio Low dose 3 

4 F1926 High dose 

  

3 

4B F1926 High dose Vibrio Low dose 3 

5 JBB1001 High dose 

  

3 

5B JBB1001 High dose Vibrio Low dose 3 

6 Aq10 High dose 

  

3 

6B Aq10 High dose Vibrio Low dose 3 

7 Positive V. HI610 High dose 

  

3 

7B Positive V. HI610 Low dose 

  

3 

8 V. HI610mm High dose 

  

3 

8B V. HI610mm Low dose 

  

3 

9 Negative control 

   

3 

     60 
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Table 7.6 b): Table for challenge experiment number 2 

 

 

  

Temp. Gr.no. Bacteria 1 Dose bac 1 Bacteria 2 Dose bac 2 No. trays 

7°C 1 Negative control 

   

3 

7°C 2 Positive con. V.HI610 High dose 

  

3 

7°C 3 27-4 High dose 

  

3 

7°C 4 27-4 High dose V. HI610 High dose 3 

7°C 5 27-4 first High dose V.HI610 48h High dose 3 

7°C 6 V. HI610 first High dose 27-4 48h High dose 3 

7°C 7 M23-3.1 High dose 

  

3 

7°C 8 M23-3.1 High dose V.HI610 High dose 3 

7°C 9 M23-3.1 first High dose V.HI610 48h High dose 3 

7°C 10 V. HI610 first High dose M23-3.1 48h High dose 3 

15°C 1B Negative control 

   

3 

15°C 2B Positive con. V.HI610 High dose 

  

3 

15°C 3B 27-4 High dose 

  

3 

15°C 4B 27-4 High dose V. HI610 High dose 3 

15°C 5B 27-4 first High dose V.HI610 48h High dose 3 

15°C 6B V. HI610 first High dose 27-4 48h High dose 3 

15°C 7B M23-3.1 High dose 

  

3 

15°C 8B M23-3.1 High dose V.HI610 High dose 3 

15°C 9B M23-3.1 first High dose V.HI610 48h High dose 3 

15°C 10B V. HI610 first High dose M23-3.1 48h High dose 3 

      

64 
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Table 7.6 c): Table for challenge experiment number 3, 4 & 5 

Temp. Gr.no. Bacteria 1 Dose bac.1 Bacteria 2 Dose bac.2 No. trays 

7°C 1 Negative control 

   

3 

7°C 2 Positive con. V.HI610 High dose 

  

3 

7°C 3 27-4 High dose 

  

3 

7°C 4 27-4 High dose V. HI610 High dose 3 

7°C 5 27-4 first High dose V. HI610 48h High dose 3 

7°C 6 V. HI610 first High dose 27-4 48h High dose 3 

7°C 7 M23-3.1 High dose 

  

3 

7°C 8 M23-3.1 High dose V.HI610 High dose 3 

7°C 9 M23-3.1 first High dose V. HI610 48h High dose 3 

7°C 10 V. HI610 first High dose M23-3.1 48h High dose 3 

7°C 11 P.g wt High dose 

  

3 

7°C 12 P.g wt High dose V. HI610 High dose 3 

7°C 13 P.g wt first High dose V.HI610 48h High dose 3 

7°C 14 V. HI610 first High dose P.g wt 48h High dose 3 

7°C 15 P.g Pda8 High dose 

  

3 

7°C 16 P.g Pda8 High dose V.HI610 High dose 3 

7°C 17 P.g Pda8 first High dose V.HI610 48h High dose 3 

7°C 18 V. HI610 first High dose P.g Pda8 High dose 3 

15°C 1B Negative control 

   

3 

15°C 2B Positive con. V.HI610 High dose 

  

3 

15°C 3B 27-4 High dose 

  

3 

15°C 4B 27-4 High dose V. HI610 High dose 3 

15°C 5B 27-4 first High dose V.HI610 48h High dose 3 

15°C 6B V. HI610 first High dose 27-4 48h High dose 3 

15°C 7B M23-3.1 High dose 

  

3 

15°C 8B M23-3.1 High dose V.HI610 High dose 3 

15°C 9B M23-3.1 first High dose V.HI610 48h High dose 3 

15°C 10B V. HI610 first High dose M23-3.1 48h High dose 3 

15°C 11B P.g wt High dose 

  

3 

15°C 12B P.g wt High dose V.HI610 High dose 3 

15°C 13B P.g wt first High dose V.HI610 48h High dose 3 

15°C 14B V. HI610 first High dose P.g wt 48h High dose 3 

15°C 15B P.g Pda8 High dose 

  

3 

15°C 16B P.g Pda8 High dose V.HI610 High dose 3 

15°C 17B P.g Pda8 first High dose V.HI610 48h High dose 3 

15°C 18B V. HI610 first High dose P.g Pda8 High dose 3 

      

108 
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7.7 Example of statistical matrixes  

 

Example of statistical matrixes used in R, examples from Challenge experiment 5, 7°C. 

 
#Challenge experiment 5 7°C mortality 10dph# 
 

#PC vs. NC  

mortality <- matrix(c(72, 0, 8, 64), ncol=2) 
chisq.test(mortality) 

 

#PC vs. only 27-4 
mortality <- matrix(c(72, 0, 6, 66), ncol=2) 

chisq.test(mortality) 

 

#PC vs. 27-4 and HI610 
mortality <- matrix(c(72, 0, 68, 4), ncol=2) 

chisq.test(mortality) 

 
#PC vs. 27-4first and HI610 48h after 

mortality <- matrix(c(72, 0, 11, 61), ncol=2) 

chisq.test(mortality) 
 

#PC vs. HI610first and 27-4 48h after 

mortality <- matrix(c(72, 0, 72, 0), ncol=2) 

chisq.test(mortality) 
 

#PC vs. only M23-3.1 

mortality <- matrix(c(72, 0, 8, 64), ncol=2) 
chisq.test(mortality) 

 

#PC vs. M23-3.1 and HI610 

mortality <- matrix(c(72, 0, 5, 67), ncol=2) 
chisq.test(mortality) 

 

#PC vs. M23-3.1first and HI610 48h after 
mortality <- matrix(c(72, 0, 9, 63), ncol=2) 

chisq.test(mortality) 

 
#PC vs. HI610first and M23-3.1 48h after 

mortality <- matrix(c(72, 0, 63, 9), ncol=2) 

chisq.test(mortality) 
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7.8 Tables of the p-values for experiment 3, 4 and 5 at 7°C and 13°C 

 

Table 7.8 a): temperature 7°C 

Strain 

challenge experiment no. 3  10 pdh challenge experiment no. 4  10 pdh challenge experiment no. 5  10 pdh 

C.m. 

(%) 

C.m. 

(%) 
χ2

 p-value 
C.m. 

(%) 

C.m. 

(%) 
χ2

 p-value 
C.m. 

(%) 

C.m. 

(%) 
χ2

 p-value 

PC vs. NC 98,61 30,56 69,95 2,2 x 10
-6

 100 44,44 52,65 3,98 x 10
-13

 100 11,11 111,63 2,2 x 10
-16

 

PC vs. only 27-4 98,61 12,50 104,7 2,2 x 10
-6

 100 27,78 78,29 2,2 x 10
-16

 100 8,33 118,18 2,2 x 10
-16

 

PC vs. 27-4 and HI610 98,61 63,89 26,26 2,99 x 10
-7

 100 88,89  -  - 100 94,44  -  - 

PC vs. 27-4first and HI610 48h after 98,61 50,00 42,05 8,91 x 10
-11

 100 23,61 85,78 2,2 x 10
-16

 100 15,28 102,39 2,2 x 10
-16

 

PC vs. HI610first and 27-4 48h after 98,61 97,22  -  - 100 97,22  -  - 100 100 Inf  -  

PC vs. only M23-3.1 98,61 19,44 90,05 2,2 x 10
-6

 100 11,11 111,6 2,2 x 10
-16

 100 11,11 111,63 2,2 x 10
-16

 

PC vs. M23-3.1 and HI610 98,61 16,67 95,68 2,2 x 10
-6

 100 9,72 114,9 2,2 x 10
-16

 100 6,94 121,59 2,2 x 10
-16

 

PC vs. M23-3.1first and HI610 48h after 98,61 13,89 101,59 2,2 x 10
-6

 100 12,50 108,5 2,2 x 10
-16

 100 12,50 108,47 2,2 x 10
-16

 

PC vs. HI610first and M23-3.1 48h after 98,61 16,67 95,68 2,2 x 10
-6

 100 19,44 93,79 2,2 x 10
-16

 100 87,50  -  - 

PC vs. only P.g wt  98,61 11,11 107,80 2,2 x 10
-6

 100 9,72 114,9 2,2 x 10
-16

 100 8,33 118,18 2,2 x 10
-16

 

PC vs. P.g wt and HI610 98,61 13,89 101,59 2,2 x 10
-6

 100 11,11 111,6 2,2 x 10
-16

 100 40,28 58,49 2,1 x 10
-14

 

PC vs. P.g wt first and HI610 48h after 98,61 16,67 95,68 2,2 x 10
-6

 100 13,89 105,4 2,2 x 10
-16

 100 22,22 88,39 2,2 x 10
-16

 

PC vs. HI610first and P.g wt 48h after 98,61 73,61 16,78 4,196 x 10
-5

 100 69,44 23,66 1,15 x 10
-6

 100 98,61 0 1 

PC vs. only P.g Pda8  98,61 13,89 101,59 2,2 x 10
-6

 100 16,67 99,46 2,2 x 10
-16

 100 13,89 105,39 2,2 x 10
-16

 

PC vs. P.g Pda8 and HI610 98,61 47,22 45,57 1,47 x 10
-11

 100 90,28  -  - 100 95,83  -  - 

PC vs. P.g Pda8 first and HI610 48h after 98,61 40,28 55,01 1,196 x 10
-13

 100 15,28 102,4 2,2 x 10
-16

 100 29,17 75,90 2,2 x 10
-16

 

PC vs. HI610first and P.g Pda8 48h after 98,61 100  -  - 100 100 Inf  -   100 100 Inf  -  
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Table 7.8 b): temperature 13°C 

Strain 
challenge experiment no. 4  8 pdh challenge experiment no. 5  8 pdh 

C.m. % C.m. % χ2 p-value C.m. % C.m. % χ2
 p-value 

PC vs. NC 87,50 48,61 23,29 1,40 x 10
-6

 100 20,83 91,06 2,2 x 10
-16

 

PC vs. only 27-4 87,50 41,67 31,09 2,46 x 10
-8

 100 22,22 88,39 2,2 x 10
-16

 

PC vs. 27-4 and HI610 87,50 47,22 24,76 6,48 x 10
-7

 100 100  -  - 

PC vs. 27-4first and HI610 48h after 87,50 58,33 14,07 0,00018 100 25,00 83,23 2,2 x 10
-16

 

PC vs. HI610first and 27-4 48h after 87,50 86,11 0 1 100 100  -  - 

PC vs. only M23-3.1 87,50 31,94 43,91 3,44 x 10
-11

 100 19,44 93,79 2,2 x 10
-16

 

PC vs. M23-3.1 and HI610 87,50 44,44 27,84 1,317 x 10
-7

 100 88,89  -  - 

PC vs. M23-3.1first and HI610 48h after 87,50 45,83 26,28 2,95 x 10
-7

 100 5,56 125,1 2,2 x 10
-16

 

PC vs. HI610first and M23-3.1 48h after 87,50 55,56 16,50 4,86 x 10
-5

 100 97,22  -  - 

PC vs. only P.g wt  87,50 43,06 29,44 5,76 x 10
-8

 100 11,11 111,6 2,2 x 10
-16

 

PC vs. P.g wt and HI610 87,50 45,83 26,28 2,95 x 10
-7

 100 91,67  -  - 

PC vs. P.g wt first and HI610 48h after 87,50 50,00 21,85 2,95 x 10
-7

 100 16,67 99,46 2,2 x 10
-16

 

PC vs. HI610first and P.g wt 48h after 87,50 65,28 8,66 0,0032 100 100  -  - 

PC vs. only P.g Pda8  87,50 45,83 26,28 2,95 x 10
-7

 100 12,50 108,5 2,2 x 10
-16

 

PC vs. P.g Pda8 and HI610 87,50 70,83 5,095 0,024 100 98,61  -  - 

PC vs. P.g Pda8 first and HI610 48h after 87,50 54,17 17,78 2,48 x 10
-5

 100 19,44 93,79 2,2 x 10
-16

 

PC vs. HI610first and P.g Pda8 48h after 87,50 98,61 5,27 0,022 100 98,61  -  - 

 


