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Abstract 

 

The history of the tectonic evolution in central Dronning Maud Land (cDML), East 

Antarctica can be inferred from various zircon grains for U-Pb zircon age determination 

with the Laser-Ablation Inductively-Coupled-Plasma Mass Spectrometry (LA-ICP-MS) 

technique. The zircons grain of the different rocks collected from different geographic 

location in cDML include the Shcherbakova area, the Holtedahlfjella and Zwiesel area. 

New zircon U-Pb ages have been used to establish relationships between ancient rocks, to 

obtain new insights into the Early Paleozoic orogenic collapse and contemporaneous 

voluminous late-tectonic intrusions in central Dronning Maud Land. Most of these results 

agree reasonably well with the supercontinent assemblage chronology of Gondwana 

within the cDML. The oldest ages of 1100 Ma to 910 Ma correspond to the final 

construction of the Rodinia. The ages of 900 Ma to 620 Ma are likely to represent a 

number of rifting events that are associated with the destruction of Rodinia. The U-Pb 

zircon ages of 610 Ma to 535 Ma corresponds with the re-assemblage of parts of E and 

W- Gondwana during the East-African orogeny. The youngest ages of 530 Ma to 458 Ma 

correspond to the Pan-African orogeny and thus the final amalgamation of Gondwana. 

Grenville-age rocks of ~ 1100Ma represent the oldest basement yet found in cDML that 

was during large-scale delamination intruded by the late-tectonic granitoids. A detrital 

zircon age of 950-680 Ma found in one sample of the cDML is reported from this area 

outside of the Schirmacher Oasis for the first time in this study. 

 

 
 
 
 
Key words: central Dronning Maud Land, East Antarctica, East Gondwana, West 
Gondwana, granitoids, amphibolite facies metamorphism, granulite facies metamorphism, 
Pan-African and Neoproterozoic-Cambrian times. 
 

 

 



 - II -  

Table of contents: 
 
Introduction....................................................................................................................... 1 

1.1 Research objective and previous work ..................................................................... 1 
1.2 Study area.................................................................................................................. 3 
1.3 Method ...................................................................................................................... 5 

2. Regional geology............................................................................................................ 6 
2. 1 Geological setting .................................................................................................... 7 

2.1.1The East African Antarctic Orogen (EAAO)...................................................... 7 
2.1.2 The Pan-African orogeny................................................................................... 7 

2.1.2.1 Arabian-Nubian Shield (ANS)............................................................................ 8 
2.1.2.2 Mozambique Belt (MB)...................................................................................... 8 
2.1.2.3 Dronning Maud Land (DML), East Antarctica................................................... 9 
2.3 Tectonic model........................................................................................................ 13 

2.3.1 Thrust faulting model into the north of the Lurio belt ..................................... 13 
2.3.2 Overthrusting model SE along the Lurio Belt ................................................. 13 
2.3.3 Thrusting and exhumation model .................................................................... 14 
2.3.4 Delamination model......................................................................................... 15 

3. Methodology ................................................................................................................ 16 
3.1 Sample preparation ................................................................................................. 16 
3.2 Preparation of sample mounts................................................................................. 16 
3.3 Grinding .................................................................................................................. 16 
3.4 Polishing ................................................................................................................. 16 
3.5 Microscope images ................................................................................................. 17 
3.6 Cathodoluminescence (CL) images ........................................................................ 17 
3.7 Zircon dating using LA ICP-MS method................................................................ 17 

4. Results .......................................................................................................................... 19 
4. 1 Sample JJ1684 ....................................................................................................... 19 
4.2 Sample JJ1825 ........................................................................................................ 22 
4.3 Sample JJ1821 ........................................................................................................ 25 
4. 4 Sample JJ1756 ....................................................................................................... 29 
4. 5 Sample JJ1759 ....................................................................................................... 30 
4. 6 Sample JJ1772 ....................................................................................................... 32 

5. Interpretation .............................................................................................................. 35 
5.1 Granitoids from central Dronning Maud Land ....................................................... 35 

5.1.1 Collapse and extension in Dronning Maud Land ............................................ 35 
5.1.2 continent-continent collision during Gondwana supercontinent assembly ..... 38 

5.1.2 Data from meta-sediments ................................................................................... 40 
5.1.3 Old ages and correlation with the Rodinia formation.......................................... 42 

7. Conclusion ................................................................................................................... 52 
Reference ......................................................................................................................... 53 
APPENDIX...................................................................................................................... 59 
 

 

 



 - III -  

ACRONYMS 

ANS                                Arabian-Nubian Shield 

CDML                            Central Dronning Maud Land 

CL                                   Cathodoluminescence  

EAAO                             East-African Antarctic orogen 

J                                       Jacobs 

JJ                                     Joachim Jacobs 

LA-ICPMS                     Laser-Ablation Inductively-Coupled-Plasma Mass Spectrometry 

MB                                 Mozambique Belt 

MSWD                           Mean Square Weighted Deviation 

SHRIMP                        Sensitive High Resolution Ion Microprobe 

TIMS                             Secondary Ion Mass Spectrometry 

Zrc                                  Zircon 

 

 

 

 

 

 

 

 



 - IV -  

 

ACKNOWLEDGMENT  
 

My great thanks to Department of Earth Science, Faculty of Mathematics and Natural 

Sciences, University of Bergen, for giving me opportunity to pursue my study. I would 

like also thank to the stastens Lånekassen, Norway, for the financial support. 

 I greatly appreciate to my main supervisor Prof. Joachim Jacobs, for his tireless efforts 

and guidance’s through all stages of my study, also to thanks him for giving me a great 

project, and for providing me with samples and thin sections. I would like to 

acknowledge my co-supervisors Prof. Jan Kosler and Dr. Ilka Kleinhanns, for their 

advices, helpings and encouragements. I also thank to Siv Hjorth who helped me with my 

samples analyses in the ICP-MS lab. I show gratitude to Egil Erichsen who helped me 

with my Cathodoluminescence images. I thank to Marile Andersson who helped me with 

preparing lab. I greatly thank to Kosuke Ueda, for being there with his advice and helps. I 

also thank to Anna Ksienzyk and Dr. Fabian Kohlmann. Great thanks to Department of 

Earth Science members, especially Caroline Ertsås. 

I am greatly appreciating to Dr. Salah Basheeri and Prof. Abd Alhalim Alnadee, 

Department of geology, Faculty of science, university of Khartoum, Sudan, for giving me 

the opportunity to be in the field of scientific research. Additionally I thank to A, Shama, 

Dr. Ensaf, Dr. Fath Albreer, Dr. Samia, Dr. Ebrahim and Dr. Amanee, for 

encouragements.   

I appreciate my collogues;  Kurnia Juli Utami, Irina Maria Dumitru, Helge Jorgensen, 

Karen Johannessen, Espen Torgersen and Anette Broch, at Department of Earth Science, 



 - V -  

University of Bergen, for a nice group work and for helpful discussion and great 

moments.  

I would like also to express my thankful to the Sudanese friends in Bergen; Hiba, Sara, 

Wijdan, and Gada, for all wonderful times we have shared. I also thank to Dr. Howiada 

and Wadia, for helping me and give me good advices.  

I would like to convey my heart felt appreciation to my family, my great mother Noor 

Alhwda, my Aunt Nafessa, my sister Mysoon, and my cousins Ayman, Eman and 

Mogbeel, for their encourages and supports. Special thanks to my husband Ehab for his 

care, continuous love, endless support and encouragements, which enabled me to 

complete this work.  My thanks extend to my mother in law, my sisters in law and my 

brothers in law. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 - VI -  

 
 



 - 1 - 

 
 

 Introduction 
 

1.1 Research objective and previous work  

In this study, zircons were dated with the Laser-Ablation Inductively-Coupled-Plasma 

Mass Spectrometry (LA-ICPMS) method to determine the age of granitoids and related 

rocks within East Antarctica. Six samples were selected from different localities in 

central Dronning Maud Land (cDML), East Antarctica (Fig. 1) to further constrain the 

tectonic history of A2-type granitoids and basement rocks of DML. The studied sample 

suite comprises metamorphic rocks (hornblende gneiss and amphibolites from the 

Shcherbakova area, grey gneiss from the Holtedahlfjella) and granitoids (biotite- 

hornblende granite from the Holtedahlfjella, charnockite and syenite from the Zwiesel 

area). Dronning Maud Land went through several major deformation events: (i) 

formation of Rodinia at ca. 1200 Ma (Grenville-age), (ii) destruction of Rodinia at 800-

700 Ma, (iii) formation of Gondwana from 650 Ma to 520 Ma and (iv) final stage of 

Gondwana assembly from 520 Ma to 480 Ma. The formation of Gondwana is 

characterised by collision of East (Africa and South-America) and West (India, East-

Antarctica and Australia) Gondwana leading to the so-called Pan-African orogeny around 

500 Ma. The resulting suture zone is more than 9000 km long, strikes in N-S-direction 

and is called the East-African Antarctic orogen (EAAO) (Figure 1). The EAAO shows a 

strong lateral variation with abundant A-type granitoids in its southern part (present 

Mozambique and Antarctica) that are the focus of this study and compared with their 

source rocks, i.e. the basement. The granitoids are typically peraluminous to 

metaluminous and subalkaline in composition. They probably crystallized at mid-crust 

levels during orogenic collapse and subsequent extension. Heat input to trigger granitoid 

magmatism is thought to result from delamination of the lithosphere root (Jacobs et al., 

2008). 

First studies of the central DML have been performed since1960 by Russian, Indian and 

East German geologists focusing on the Wohlthatmassivet, Orvinfjella and the Mühlig-
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Hofmannfjella. These studies provide some excellent petrological, structural and 

geochemical data by (Ravich and Solov’ev, 1966; Ravich and Kamenev, 1972; Kamenev 

et al., 1990). During the 90ies the area came into focus again by Indian and German 

geologists (Joshi et al., 1991; Bohrmann and Fritzsche, 1995; D’Souza et al., 1996). But 

they aren’t get geochronological data (U-Pb zircon) to describe the tectono-thermal 

evolution of the basement, (e.g. Mikhalsky et al., 1997). More recently, a number of 

geochronological results has been published (Jacobs et al., 1998; Paulsson and 

Austrheim, 2003; Jacobs et al., 2003a-b) that show that most of the exposed crust of 

cDML is of Grenvillian (~1200 Ma) age and was widely modified and reworked during 

the Pan-African orogeny (600–500 Ma). The oldest rocks in cDML yet found is 

represented by the grenvillian-age basement comprising a thick sequence of metaigneous 

and sedimentary rocks with banded orthogneisses, metapelites, metapsammites, 

calcsilicates, pyroxene granulites and amphibolites. The banded orthogneiss is interpreted 

as representing a bimodal volcanic sequence. Oldest ages found in these rocks are around 

1150–1100 Ma (Jacobs et al., 2003a-b) and a high grade metamorphic overprint is dated 

to the range of 1090-1050 Ma. During the Pan-African orogeny, associated with collision 

of East and West Gondwana about 550 Ma, the basement rocks were re-metamorphosed  

(Jacobs et al., 1998; Markl et al., 2003). The magmatic activity seems to continue during 

the entire period and climaxed with the construction of a post-collision extensional 

regime (530–510 Ma), which led to the creation of large volumes of granitic and syenitic 

rocks (Jacobs et al., 2003a-b). The formation of EAAO can be separated into two major 

periods; the first period (Pan-African I) occurred 560–550 Ma, and is characterized by 

upper amphibolite to granulite-facies. The second Period (Pan-African II), was between 

520 and 480 Ma, and characterized by magmatic intrusions (Jacobs et al., 2008).  
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1.2 Study area 

The study area is situated in central Dronning Maud Land (cDML) within E-Antarctica 

(Fig.3). The central Dronning Maud Land (cDML) includes the Wohlthatmassivet, 

Orvinfjella and the Mühlig-Hofmannfjella, where the samples analysed in this study are 

located. DML represents the southern part of the Late Neoproterozoic–Early Palaeozoic 

East African–Antarctic Orogen (EAAO) (Jacobs et al., 2008) and was formed during the 

the E and W Gondwana continent-continent collision. The EAAO shows a strong lateral 

variation with the northern part dominated by accretionary processes visible within the 

Arabian-Nubian Shield (ANS) and the southern part dominated by continent-continent 

collision. Within the southern part additionally high numbers A-type granitoids are 

described that point to different crustal regimes operating in these two parts. The Lurio 

Belt in Mozambique separates these two regimes of the EAAO (Jacobs et al., 2003a-b) 

(Fig.1).  
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Fig. 1: The East African–Antarctic orogen (EAAO) was formed when the parts of proto–East and 

West Gondwana collided to form Gondwana. Abbreviations: ANS—Arabian-Nubian shield; 

Da—Damara belt; EF— European fragments; LH— Lützow-Holm Bay; M—Madagascar; Z—

Zambesi belt after Stern (1994) & Jacobs and Thomas, (2004)  
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1.3 Method 

Six samples (J1684, J1756, J1759, J1772, J1821, and J1825) from late-to post-tectonic 

rocks of central Dronning Maud Land, East Antarctica were examined in this study. 

Zircon grains of these samples were analyzed by Laser ablation inductively coupled 

plasma mass spectrometry (LA-ICP-MS) at department of Earth Science at University of 

Bergen (February 2011) and U-Pb ages were calculated to further constrain their 

geodynamic history. Sample locations and their lithology lists are shown in (Fig.2).  

 

 

 

 

Fig. 2: geological map of central Dronning Maud Land, East Antarctica, showing the location of 

the analyses samples of this study 
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2. Regional geology 
 

The evolution of the East African–Antarctic orogen (EAAO resulted from the collision 

between various parts of East Gondwana (consisting of Antarctica, Australia, and India) 

and West Gondwana (consisting of Africa and South America) during late Neoproterzoic 

times until early Paleozoic times (Jacobs et al., 2008). Within the EAAO many 

lithotectonic units consisting of similar rock assemblages show the same complex 

deformational history with large thrust sheets or nappes.  

The Mozambique Belt and Dronning Maud Land represent the southern part of EAAO 

that was formed by continent-continent collision (Jacobs et al., 2008). The Arabian-

Nubian Shield represents the northern part of EAAO that was formed as a result of the 

accumulation of island arcs terranes. The northern and southern parts are divided by the 

E-W-trending Lurio belt (present Mozambique). Pan-African granitoids are abundant in 

the southern part whereas they are absent in the northern part. Formation of the high 

grade metamorphism rocks (granulite-facies metamorphism 700 and 550 Ma), related to 

the crustal thickening, associated with recumbent folds, flowed by late- to post-tectonic 

Cambrian magmatic province c. 530 and 485 Ma is known in the southern part of the 

EAAO, included minor gabbro intrusions c. 530-520 Ma, followed by the main 

charnockite-granitoid magmatic event c. 510- 500 Ma. 

The A2-type granitoids were emplaced at mid-crustal levels during collapse and 

extension of the orogeny (Jacobs et al., 2008) probably triggered by delimitation of the 

lithosphere root. The migmatization presumably resulted from water entering the system 

of dry and hot granulite conditions deep in the crust or by uplift of dry granulite into 

upper crustal levels. The latter possibility is more reasonable since PT constraints for 

retrogression show low pressure and temperature estimated from the co-existing mineral 

pairs in the migmatite and the temperature from rim composition of the garnets in the 

granulite.  
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2. 1 Geological setting 

2.1.1The East African Antarctic Orogen (EAAO) 
The ENE-WSW trending Lurio Belt divides EAAO into two different crustal segments. 

The southern part of EAAO, in the Dronning Maud Land in East Antarctica, comprises 

high grade metamorphic mesoproterozoic gneisses and migmatites of upper amphibolite 

facies from late Neoproterzoic-early Paleozoic times. These rocks are intruded by 

Neoproterzoic granitoids (Fig. 1) (Muhongo and Lenoir, 1994; Jacobs et al., 1998; 

Kröner, 2001). East Antarctica is continuing into the Mozambique belt in the north. The 

Mozambique belt in the Nampula Complex consists of Mesoproterozoic gneisses and 

migmatites of upper amphibolite facies (Pinna et al., 1993). The sequence of 

Neoproterozoic-Cambrian amphibolite-facies metamorphism and overlying sedimentary 

rocks in the Nampula Complex is 520-490 Ma (Bingen et al., 2006a; Bingen et al., 

2006b; Bingen et al., 2009). The granulite-facies metamorphism is dated at 615 ± 8 Ma 

(Kröner et al., 1997). The East Antarctica - and Mozambique belt represents the largest 

part of EAAO. The northern part is built up of the Arabian-Nubian Shield (ANS) that is 

composed of Middle-Neoproterzoic island arcs terranes including a number ophiolite 

assemblage. The ANS reached mid-low metamorphic grade (Stern, 1994). The EAAO is 

covered by Paleozoic sandstones, which represent the once voluminous molasse shed 

from the East African–Antarctic orogen (Burke and Kraus, 2000; Avigad et al., 2003). 

2.1.2 The Pan-African orogeny 
The Pan-African orogeny was a major Neoproterozoic orogenic event, which is 

associated to the formation of the supercontinents Gondwana about 500 Ma ago (Kröner 

and Stern, 2005). The Pan-African orogenic belts in Africa are a network encircling the 

older cratons and are probably due to the closure of several major Neoproterozoic oceans. 

The name “Pan-African” was first used by Kennedy, (1964). Now it is used to explain 

tectonic, magmatic, and metamorphic activity of Neoproterozoic to earliest Palaezoic age. 

It has two types of orogenic or mobile belts and can thus be classified into: 

1. Of juvenile origin composed of Neoproterozoic supracrustal and magmatic 

assemblages; dominated by structural and metamorphic histories that are same to those in 

Phanerozoic collision and accretion belts (Kröner and Stern, 2005). 
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2. High-grade metamorphic assemblages revealing middle to lower crustal levels, whose 

origin environment of formation and structural evolution are more complicated to 

reconstruct. The protoliths of these assemblages are composed mainly of greatly older 

Mesoproterozoic to Archaean continental crust that was strongly reworked during the 

Neoproterozoic, (Kröner and Stern, 2005). The most important orogenies of Pan-African 

orogeny are Arabian-Nubian Shield, Mozambique belt and Dronning Maud Land. 

 

2.1.2.1 Arabian-Nubian Shield (ANS) 
The ANS stretches about 3000 km from north to south and >500 km on either side of the 

Red Sea, see Fig.1. A large region was uplifted in association with Cenozoic rifting to 

form the Red Sea, revealing a huge area of typically juvenile Neoproterozoic crust. The 

Arabian-Nubian Shield (ANS) makes up the northern half of the EAAO and transitions 

into the Mozambique Belt (Kröner and Stern, 2005). The ANS is dominated by low grade 

metamorphism and comprises island-arc type rocks and ophiolites with juvenile ages. 

The final steps in the evolution of the ANS are post-tectonic 'A-type' granites, bimodal 

volcanics, and molassic sediments. These refer to strong extension happened during 

orogenic collapse at the end of the Neoproterozoic. Extension related metamorphic and 

magmatic core complexes are observed in lower numbers in the northern ANS than the 

southern ANS and the Mozambique Belt (Kröner and Stern, 2005). 

 

2.1.2.2 Mozambique Belt (MB) 
The Neoproterozoic Mozambique Belt (MB) is build up of Archaean and 

Paleoproterozoic rocks. MB characterizes the southern part of the EAAO and is 

composed mainly of medium to high grade gneisses and voluminous granitoid intrusions. 

It stretches south from the Arabian-Nubian Shield into southern Ethiopia, Kenya and 

Somalia via Tanzania to Malawi and Mozambique and also Madagascar belongs to the 

MB (Fig.1.). Southwards the MB has a continuation into Dronning Maud Land of East 

Antarctica (Fig.1.). The evolution of the MB resulted from collision between East and 

West Gondwana, (Kröner and Stern, 2005). 
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2.1.2.3 Dronning Maud Land (DML), East Antarctica  
      Dronning Maud Land located east Antarctica. It was continuity of Mozambique Belt to 

the south. DML comprise different geological events. The first event, the basement 

rocks in Dronning maud land are regionally metamorphosed through the collisional 

event. The oldest ages of ~1130 Ma match to a time of felsic volcanism which was 

followed by regional metamorphism (granulite facies metamorphism) and intrusion of 

granites. The regional metamorphism (high – grade metamorphic event) associated with 

high numbers of syntectonic granitoids, which intruded between 1090 and 1070 Ma 

(Jacobs et al., 1998). After the Mesoproterzoic event, there is little evidence for tectonic 

activity between c. 1050 and 650 Ma, with exclusion of Schirmacher Oasis area, where 

there is limited evidence for granitoid intrusions at c. 760 Ma (Jacobs et al., 2008). The 

basement is overlain by late Neoproterozoic -early Paleozoic rocks. The second event, 

the late Neoproterzoic until early Paleozoic collisional history can be divided into three 

major phases; the First phase is characterized by granulite facies at c. 620Ma (Henjes-

Kunst, 2004) associated with anorthosite magmatism at c. 600 Ma (Jacobs et al., 1998). 

The shallowly inclined structure characterizes this event, and it can be related to the 

emplacement of thrust sheets (Jacobs et al., 2008). The Second phase is characterized by 

medium- to high grade metamorphism, between c. 590 and 550 Ma (Jacobs et al., 1998; 

Jacobs et al., 2003b). During this event tight isoclinal, upright E-W- to ESE-WNW- 

trending folds were produced. In addition to this, a major shear zone was formed along 

the southern margin of the mountain range in Orvinfjella. There are also transpressive 

structures observed throughout the massive that are related to the collisional event (Bauer 

et al., 2004). This event was cut by extensional shear zone and unreformed intrusion of 

pegmatites and granite veins with a Cambrian age (Jacobs, Klemd et al. 2003b).  

The third event, the late-tectonic phase is associated with extension and magmatism 

between c. 530 and 485 Ma (Engvik and Elvevold, 2004; Jacobs and Thomas, 2004; 

Jacobs et al., 2003a-a). It comprises gabbros bodies emplaced at c. 530–520 Ma, the 

intrusion of major granite–charnockite plutons at c. 510–500 Ma and the introduction of 

small volumes of sheet-like granites at c. 485 Ma. These intrusions are interpreted to be 

related with the last two events and it is formed from magmatization of high to medium 

grade metamorphic rocks (Fig. 3.). 
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Geochronology studies (Frost and Bucher, 1993; Bucher and Frost, 1995) show PT 

condition of charnockites 900˚c and c.5 bar. Many of the charnockites are retrogressed 

partially to granite, especially at the contact with the late hydrous granite pockets. The 

geochemistry of charnockites and associated granitoids is quite heterogeneous, but they 

are characteristically peraluminous to metaluminous and subalkaline with a tendency into 

alkaline A-type granite compositions. However they are not typical A-type granites since 

low contents of Ca, Rb, Nb and Ga are observed and based on (Eby, 1992), they classify 

as A2-type granitoids, which are related to extensional geodynamic regimes. These 

granitoids form a voluminous and extensive magmatic suite, covering an area of least 

15000 km² in Dronning Maud Land, East Antarctica (Jacobs et al., 1998). All these 

events summarizing at (Fig. 4) 
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Fig. 3: Escape tectonics model for the southern termination of the East African–Antarctic orogen 

(EAAO). C—Coats Land; DML—Dronning Maud Land; EF—European fragments; EH—

Ellsworth-Haag; F—Filchner block; FI—Falkland Islands; G—Grunehogna; H—

Heimefrontfjella; K—Kirwanveggen; Na-Na—Namaqua-Natal; SR—Shackleton Range; ANS—

Arabian-Nubian shield; Da—Damarabelt; LH—Lu¨tzow-Holm Bay; M—Madagascar; Z—

Zambesi belt after Jacobs and Thomas (2004) 
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Fig. 4: Evolution of Magmatic and metamorphic basement in CDML as indicated by U-Pb 

SHRIMP zircon analyses (modified from Jacobs et al., 1998), also publish in ( Meier, 1999) 
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2.3 Tectonic model 
There are currently four contrasting tectonic models which can explain the existence of 

the observed granitoid suite in the southern EAAO (Klimov et al., 1964) that will be 

presented briefly in the following text. 

2.3.1 Thrust faulting model into the north of the Lurio belt  

An early French-Mozambiquan study summarized the northern Mozambique orogen 

related to thrust faulting into the north of the Lurio belt (Pinna et al., 1993), where these 

authors interpreted the thrust pile that was overthrusted SE along Lurio belt over the 

Nampula Province as the remains of major latest Mesoproterzoic-early Neoproterzoic 

(1100-950 Ma). In this model the various rocks late Neoproterzoic and early Paleozoic 

ages would be expected, but recent work shows that the Lurio Belt has Palaeozoic 

metamorphic ages. This model is therefore no longer defensible. 

 

 
Fig. 5:  Thrust model result of Mesoproterozoic collision with flat-lying suture and southwards 

nappe transport modify from Ueda (2011) after (Pinna et al., 1993). 

 

2.3.2 Overthrusting model SE along the Lurio Belt 
The second tectonic model is similar to the one described before but operated at different 

times resulting in a different age frame. Above the Nampula Complex to the south 

granulite-facies rocks were overthrust to the SE along the Lurio Belt between c.620 and 

550 Ma. The late granitoid magmatism could also be explained by crustal thickening 

through a SE-directed thrusting of nappes from the combined Damara-Zambesi mobile 

belt towards Dronning Maud Land (Grantham et al., 2008). Thrust faulting transported 

the granulite facies rocks from deeper level into upper levels. This model hampers to 
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explain the Klippen complex in Mozambique, which overlies the Nampula complex. In 

addition, typical crustal granitoid melts would be expected and not the observed A2-type 

compositional range for the Pan-African granitoids as described above. At last, the 

shearing along the Lurio Belt is evidenced at 530-500 Ma (Bingen et al., 2006a; Bingen 

et al., 2006b), which means the movement is younger than 620-550 Ma. This suggestion 

is more reasonable since PT condition for retrogression has lower pressure and 

temperature.  

 

 

 

Fig. 6: thrusting model of the Damara-Zambesi mobile belt towards Dronning Maud Land after 

Grantham et al. (2008). 

2.3.3 Thrusting and exhumation model 
(3) The third tectonic model includes thrusting and exhumation towards a NW direction 

to the north of the Lurio Belt. This model explains the granulite-facies rocks at c. 620-550 

Ma. This event was followed by the Mesoproterozoic to Neoproterozoic basement 

terranes at c. 530-490 Ma, northword of the Lurio Belt were as extensional shearing 

separate between the Nampula Province and the Lurio Belt. The young metamorphic ages 

which appear in this belt were a result of movement along this shear zone (Norconsult 

Consortium, 2007). 
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Fig. 7: Model of thrusting and exhumation modify from Norconsult Consortium (2007); also 

published in (Viola et al., 2008). Blue lines show the axial planes of the large scale folds. 

2.3.4 Delamination model 
Crustal thickening during orogen built-up may lead to delamination of the orogenic root. 

This is followed by upwelling of hot asthenosphere under a thinned continental crust. The 

limited special extend of the granitoid could be explained by a partial delamination, 

restricted to the area south of the Lurio belt, (Jacobs et al., 2008). 

 

 

 

Fig. 8: Delamination model of the area south of the Lurio belt, from northern Mozambique 

towards Dronning Maud Land, modify from Ueda (2011). It explains removal of lithospheric 

mantle from underneath the Nampula Complex and the subsequent formation of granitoids. 
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3. Methodology 

3.1 Sample preparation 
Samples (JJ1684, JJ1756, JJ1759, JJ1772, JJ1821, JJ1825, and JJ1940) were collected for 

the U-Pb zircon analysis from different areas in central Dronning Maud Land (cDML), E-

Antarctica during the GEOMAUD expedition 1995/1996. Two samples (JJ1684 and 

JJ1772) are from Holtedahlfjella, samples JJ1756 and JJ1759 are from 

Shcherbakova/Småskeidrista, and samples JJ1821 and JJ1825 are from the Zwiesel area 

(Fig.2). I was provided with zircon mineral separates that were prepared with standard 

procedures (crushing, Wilfley shaking table, magnetic separation, and heavy liquids). 

3.2 Preparation of sample mounts 
The first step in the sample preparation was to pick single zircon grains. The largest 

grains (between 90 and 450 µm in length) were selected for analysis to provide enough 

surface for laser ablation sampling. The grains were attached to a double-sided tape on a 

glass plate inside a plastic ring that was subsequently filled with epoxy resin. The epoxy 

resin was prepared by stirring hardener to resin at a ratio of 1:5. It was then heated to 

remove air bubbles trapped in the resin. The epoxy resin with embedded samples was 

then dried in an oven at 30 °C for ca. 24 hours. The glass plate was then detached and the 

relics of the tape were removed by ethanol.  

3.3 Grinding 
First the mounts were ground by hand in a mixture of water and 800 mesh alumina 

powder, followed by 1000 and 1200 mesh. The grinding continued until all zircons were 

exposed approximately in the middle of the grains. Between every step of grinding the 

mounts were cleaned with water in an ultrasonic bath to remove the grinding powder. 

3.4 Polishing 
This step involved polishing of the sample surface with diamond paste (3 µm). Then the 

alumina powder (0.05 µm) was used. Between all polishing steps the mounts were 

cleaned with water in an ultrasonic bath; then the mounts were dried at room temperature. 
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3.5 Microscope images 
Microscope images were taken for all grains in the mount. The images were used as a 

map during the analysis.  

3.6 Cathodoluminescence (CL) images 
Cathodoluminescence images were used to reveal the internal structure of zircon grains to 

choose the best grains for analysis, including suitable areas for analysis. First the mounts 

were covered by the thin carbon coating, and using a scanning electron microscope 

(ZEISS SUPRA 55 VP) equipped with a CL-detector at the University of Bergen to 

obtain the CL images. Two to three grains were taken in one image. Before analysis the 

carbon coating was removed from the mount surface by polishing with diamond paste 

(0.5 µm) for a few seconds. Post-analysis images were obtained in order to check the 

analyzed areas.  

3.7 Zircon dating using LA ICP-MS method 
First the mounts were cleaned with ethanol then dried and kept in containers. In the ICP-

MS lab, the mounts were cleaned by nitric acid to remove any potential surface Pb 

contamination. This was done by putting every mount in a small beaker which was filled 

with 5% HNO3 acid. Then the beaker was put in an ultrasonic bath for several minutes 

and the mount was subsequently cleaned with deionized water (18.2 MΩ). Finally the 

mounts were dried in a stream of air. Then the mounts were ready for analysis.  

All three samples were analyzed in the ICP-MS laboratory at Bergen University during 

21st and 22nd of March 2011 followed the technique described in (Kosler et al., 2002). A 

Thermo-Finnigan Element 2 sector ICP-MS coupled to a 193 Excimer Resonetics laser 

(RESOlution M50) was used to measure Pb/U element ratios and Pb isotopic composition 

in zircons. The sample introduction system of ICP-MS was modified to enable 

simultaneous nebulisation of trace solution and laser ablated material of the solid sample 

(Horn et al., 2000). Tl (205Tl/203Tl = 2.3871 - (Dunstan et al., 1980), 209Bi and enriched 
233U and 237Np (>99%) were used in the tracer solution, which was aspirated to the 

plasma in an argon - helium carrier gas mixture through an Apex desolvation nebuliser 

(Elemental Scientific) and a T-piece tube attached to the back end of the plasma torch. A 
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helium gas line, carrying the sample from the laser cell to the plasma, was also attached 

to the T-piece tube. 

The laser was set up to produce a repetition rate of 5 Hz. The laser beam was imaged on 

the surface of the sample placed in the ablation cell, which was mounted on a computer-

driven motorised stage of a microscope. During ablation the stage was moved beneath the 

stationary laser beam to produce a linear raster (c. 50-100×19 µm) in the sample, (c. 50-

100×26 µm) in zircon reference material 91500, (c. 50-100×26 µm) in zircon reference 

material sample GJ-1 and (c. 50-100×19 µm) zircon reference material Plešovice. Typical 

acquisitions consisted of a 35 second measurement of analytes in the gas blank and 

aspirated solution, particularly 203Tl - 205Tl - 209Bi -233U - 237Np, followed by 

measurement of U and Pb signals from zircon, along with the continuous signal from the 

aspirated solution, for another 150 seconds. The data were acquired in time resolved - 

peak jumping - pulse counting mode with 1 point measured per peak for masses 202 

(flyback), 203 and 205 (Tl), 206 and 207 (Pb), 209 (Bi), 233 (U), 237 (Np), 238 (U), 249 

(233U oxide), 253 (237Np oxide) and 254 (238U oxide). Raw data were corrected for 

dead time of the electron multiplier and processed off line in a spreadsheet-based 

program (Lamdate - (Kosler et al., 2002)) and plotted on concordia diagrams using 

Isoplot (Ludwig, 1999). Data reduction included correction for gas blank, laser-induced 

elemental fractionation of Pb and U and instrument mass bias. Minor formation of oxides 

of U and Np was corrected for by adding signal intensities at masses 249, 253 and 254 to 

the intensities at masses 233, 237 and 238, respectively. Details of data reduction and 

corrections are described in (Kosler et al., 2002) and (Kosler and Sylvester, 2003). Zircon 

reference material 91500 (1065 Ma - (Wiedenbeck et al., 1995) used to adjust the 

composition of the tracer solution. Zircon reference samples GJ-1 (Jackson et al., 2004) 

and Plešovice (Sláma et al., 2008) were periodically analysed during this study for study 

for quality control and they yielded concordia ages of 598 ±18Ma and 334 ±6 Ma, 

respectively. 
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4. Results 
 
The six samples (JJ1684, JJ1756, JJ1759, JJ1772, JJ1821, and JJ1825) were selected 

from different areas in center Dronning Maud Land, East Antarctic (Fig. 2) for U-Pb 

zircon age determination with LA-ICP-MS. The analyses were performed at the 

University of Bergen during February 2011. Results of the specific samples will be 

presented throughout the following, from younger to older ages. 

 

4. 1 Sample JJ1684  

This sample is classified as biotite-hornblende granite from the Holtedahlfjella area. It 

contains quartz, two types of feldspars (alkali feldspar and plagioclase), biotite, 

hornblende and an accessory minerals including zircon. Further, coarse grained perthitic 

textures with crystal sizes larger than 1 mm are observed (Fig. 9). 

1. 
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2. 

        

 

 

 

3. 

 

 

Fig. 9: Photomicrographs of sample JJ1684 (biotite-hornblende granite). (1.) The sample displays 

brown flaky biotite grains. It shows anhedral crystals of quartz, which have undulose extinction. 

The euhedral crystals of plagioclase show typical microtwinning. (2.) Greenish brown hornblende 

grains, which show two sets of cleavage with angle of 124º. The other accessory minerals 

observed are zircons (high interference color) occurring as inclusion in hornblende. (3.) This 

photomicrograph shows mesoperthitic texture, which is an intergrowth of two feldspars that 



 - 21 -  

caused by the high temperatures of a K-feldspar-bearing melt absorbing borders of some 

plagioclase crystals. 

 

This sample consists of yellowish brown to brownish elongated zircons with many 

inclusions. The CL imaging shows larger zircon grains between 250 and 450 µm in 

length. The CL imaging reveals a variety in U-content between a core and rim record as 

oscillatory zoning within most grains.  

 

 

 

Fig. 10: Post-analysis cathodoluminescence image of a typical elongated zircon from 

Holtedahlfjella (analyses number 1 (Table. 3), sample JJ1684) with internal zoning. In addition, 

the laser line of the LA-ICP-MS analysis can be seen.  

 

A total number of 19 zircon grains from JJ1684 were analyzed by laser ablation ICP-MS. 

Sixteen analyses were accepted and 3 results were rejected due to large uncertainty of 

calculated age 207Pb/235U (70.7, 63.4 and 66). The resulting 16 analysis gave a concordia 

age of 486 ± 7 Ma, and a probability (of concordance) was 0.17, and a MSWD (of 

concordance) was 1.9. 
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Fig. 11: The left side shows probability density distribution and histograms of detrital zircon 
206Pb/238U ages from the sample JJ1684. The age represents time interval from 458 Ma to 500 Ma. 

The right side shows  concordia plot diagram of 206Pb/238U vs 207Pb/235U give a concordia age of 

486.3 ± 6.7 Ma, and a probability (of concordance) was 0.17, and a MSWD (of 

concordance) was 1.9. 

 

4.2 Sample JJ1825  

This sample is a synite from the Zwiesel area. It is coarse grained with crystal sizes of 

larger than 5 mm in diameter. It has a granophyric texture. The sample consists of small 

amounts of quartz, two types of feldspar (orthoclase and plagioclase), biotite, and biotitic 

symplectite.   
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2. 

 

 

 

3. 

 

 

Fig. 12: Photomicrographs of sample JJ 1825 (syenite) (1.) Sample viewed under cross polar 

light shows hornblende (dark green) and flaky biotite minerals with pale brown to dark brown 

color. The difference colors of biotite results from strong pleochroism. Also it presents a 

different kind of altered biotite called biotitic symplectite.  The breakdown of unstable biotite 

is probably the result of rapid cooling. The picture shows anhedral quartz grains, and repeated 

twinning of plagioclase (in the centre). Also, it presents a granophye texture, which is an 

200µm 
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intergrowth between quartz and plagioclase and orthoclase (in the upper part of picture). (2.) 

This picture shows a graphic texture with inclusions of quartz in the biotite). In the lower 

right corner a small crystal can be seen that looks like kyanite, which is characerised by a 

high interference color. 3.) Here a yellow elongated crystal is observed that is assumed to be 

staurolite. In addition, biotitic symplectite is visible. The big euhedral crystal of microcline 

shows cross hatch twinning. 

 

This sample contains large zircon grains between 250 µm and 450 µm in length as 

identified from CL imaging. This sample consists of clear colorless to pale brown 

elongated zircons with many inclusions. From cathodoluminescence images the zoning 

of elongated zircon is typical for zircon of igneous origin. Their similarity in size, 

morphology and internal zoning is interpreted to result from a relatively uniform 

igneous provenance.  

 

 

 

Fig. 13: Post-analysis cathodoluminescence images of selected zircons from Zwiesel area 

(analyses number 11 (Table.4), sample JJ1825).  Elongated zircon has internal zoning. 

 

A total number of 20 zircon grains from JJ1825 were analyzed by laser ablation ICP-MS. 

Sixteen analyses were accepted and 4 results were rejected due to large errors, one of 

them was rejected because it has the lower error about (0.0009), so the calculated age for 

this result is only 129.1 Ma. Three results were rejected due to having large uncertainty of 

calculated age 207Pb/235U (158.8, 72.1 and 60). The calculated concordia age gives 493 ± 

5 Ma with a probability (of concordance) of 0.036, and a MSWD (of concordance) of 4.4. 
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Most of the twenty analyses occur in the light rim, which is clearly in the 

cathodoluminescence image above (Fig.16), covering the time interval between 478 Ma 

to 504 Ma. 

 

 
 

Fig. 14: The left side shows probability density distribution and histograms of detrital zircon ages 

from the sample JJ1825. The age represents time interval from 478Ma to 504Ma. The right side 

shows concordia plot diagram of 206Pb/238U vs. 207Pb/235U give a concordia age of 493 ± 5 Ma 

with a probability (of concordance) of 0.036, and a MSWD (of concordance) of 4.4. 

 

4.3 Sample JJ1821  

This sample is a charnockite (two-pyroxene granitoid) from the Zwiesel area. This 

sample is medium grained with grain sizes between 0.5 to 1 mm. The mineral assemblage 

is dominated by quartz, plagioclase, K-feldspar (microcline), biotite, hornblende, and 

zircon. Within thin section myrmekitic and mesoperthitic texture can be observed 
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3. 

 

 

 

Fig. 15: Photomicrographs of sample JJ1821 (charnockite). (1.) Sample viewed under cross polar 

light shows second older interference color of pyroxene, anhedral crystals of quartz and subhedral 

crystals of microcline (crosshatch twinning). (2.) Two types of pyroxene are found, which are 

orthopyroxene (barrel extinction), and clinopyroxene (oblique extinction). The two types of 

pyroxene are related to the high P T condition during formation of this rock. Also myrmekite 

appears as an intergrowth between plagioclase and quartz. (3.)  In this picture the mesoperthitic 

are found, which shows intergrowths of microcline in the joins of plagioclase.  

 

This sample consists of yellowish brown to brownish elongated zircons with many 

inclusions. From the CL imaging it is seen that all zircon grains range in size between 90 

and 300 µm in length. These grains have elongated shapes indicating igneous origin or 

formation. The grains show dark cores surrounded by lighter rims. 
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Fig. 16: Post-analysis cathodoluminescence images of a typical zircon grain from Zwiesel area 

(analyses number 39 (Table. 5), sample JJ1821). The elongated zircon grain is dark in the center 

and light at the rim. 

 

A total number of 39 zircon grains from JJ1821 were analyzed by laser ablation ICP-MS. 

Thirty-eight analyses were accepted and only one result was rejected due to a large 

uncertainty, of calculated age 207Pb/235U (101.8). The concordia age provides an age of 

513± 4 Ma, and a probability (of concordance) was 0.021, and a MSWD (of 

concordance) was 5.3. Most of the thirty-eight analyses occur in the light rim that is 

clearly in the cathodoluminescence image above (Fig.14), covering the interval age 

between 491 Ma to 530 Ma. 
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 Fig. 17: The left side shows probability density distribution and histograms of detrital zircon 

ages from sample JJ1821. The age represents time interval from 491 Ma to 530 Ma. The right 

side shows concordia plot diagram of 206Pb/238U vs. 207Pb/235U give a concordia age of 513 ± 4 

Ma, and a probability (of concordance) was 0.021, and a MSWD (of concordance) was 

5.3. 

 

4. 4 Sample JJ1756 

This sample is a hornblende gneiss from the Shcherbakova area. From CL imaging, the 

zircon grains are between 95 and 270 µm in length. This sample consists of colorless 

brownish rounded zircons without inclusions. Most of the grains have a sub-euhedral to 

rounded morphology; stubby to rounded zircon grains indicate that zircon grains are 

similar to themetamorphic zircons. Some grains have zoning whereas others are 

homogeneous dark in CL image due to high U concentration.   

 

 

 

Fig. 18: Post-analysis CL images of selected zircons from Shcherbakova area (analyses numbers 

10 and 11 (Table. 6), sample JJ1756). Rounded zircon grains are similar to the metamorphic 

zircons. Laserlines from LA-ICP-MS can be observed. 

 

A total number of 25 zircon grains from JJ1756 were analyzed by laser ablation ICP-MS. 

Twenty-two analyses were accepted and 3 results were rejected. One of them was 

rejected due to large error (0.0102) and two results were rejected due to having large 

uncertainty of calculated age 207Pb/235U (67.4 and 48.4). The 22 analyses give concordia 
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age of 610 ± 6Ma, and a probability (of concordance) was 0.43, and a MSWD (of 

concordance) was 0.61. The fifteen analyses were carried out  in the core provide ages 

range from 535 Ma to 610 Ma and five analyses from the surrounding rim give an age from 620 

Ma to 680Ma. 

 

 

 

Fig. 19: The left side shows probability density distribution and histograms of detrital zircon ages 

from the sample JJ1756. The age pattern of this sample shows two different events at around 640 

Ma and 680 Ma. The observed age range is from 535 Ma to 610 Ma and age from 620 Ma to 680 

Ma. The right side shows concordia plot diagram of 206Pb/238U vs. 207Pb/235U give a concordia 

age of 610 ± 6 Ma, and a probability (of concordance) was 0.43, and a MSWD (of 

concordance) was 0.61. 

 

4. 5 Sample JJ1759  

This sample is an amphibolite from the Shcherbakova area. It has large zircon grains 

ranging from 200 µm to 400 µm in length. This sample consists of clear colorless to pale 

brown elongated zircons with many inclusions. Cl-images reveal perfect zoning in the 

elongated zircon. Morphologically all zircons from this sample are interpreted as igneous 

zircons. These grains are dark in the center and surrounded by light rim pointing to high 

concentrations of Uranium in the core and low U concentrations in the rim. 
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Fig. 20: Post-analysis cathodoluminescence images of a typical zircon from Shcherbakova area 

(analyses number 11 (Table. 7), sample JJ1759). The elongated zircon grain is dark in the center 

and shows a surrounding light rim. 

 

A total number of 22 zircon grains from JJ1759 were analyzed by laser ablation ICP-MS. 

Twenty analyses were accepted and two results were rejected due to large error (0.0108 

and 0.0183), and because they have large uncertainty of calculated age 207Pb/235U (196.3 

and 107). The obtained single grain ages fall into four distinct age groups: Ten analyses 

was analyzed in the cores present an age of 995-1050 Ma, four analyses taken in the wide 

rim give an age of (700-820 and 850-920) Ma and the two analyses from the edge of the 

rim yields an age of 500 Ma and 550 Ma . 

 

 

Fig. 21: The left side shows probability density distribution and histograms of detrital zircon ages 

from the sample JJ1759. The observed age pattern indicates that this sample has suffered at least 
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three different events: (i) 500 Ma, (ii) 550 Ma, (iii) 700 Ma to 820 Ma and (iv) 850 Ma to 920 Ma 

(v) 950 Ma to 1050 Ma. These events appear in the cathodoluminescence image above, starting 

with darkest in the core, lighter rim which surrounded by narrow very light edge (Fig.21).  The 

right side shows concordia plot diagram of 206Pb/238U vs. 207Pb/235U interpreted from the left 

diagram. 

 

4. 6 Sample JJ1772  

This sample is grey gneiss, which contains only small zoned zircon grains with a size 

between 95 and 350 µm in length (Fig. 15). This sample consists of clear colorless to pale 

brown zircons with many inclusions. In cathodoluminescence images the grains appear 

lighter in the core and darker at the rim, which means that it has low concentrations of 

Uranium in the centre and high concentrations of Uranium in the rim. This type of zoning 

generally shows a broadening of oscillatory zones that is characteristic of partial 

recrystallization. So, the dark rim is interpreted to be due to a new stage of crystallization. 

 

 

 

Fig. 22: Post-analysis cathodoluminescence images of a typical zircon grain from the 

Holtedahlfjella (analyses number 11 (Table. 8), sample JJ1772). The zircon grain shows a slight 

dark in the core, surrounded by light outer core, followed by a dark and light rim and finally 

surrounding by a darker edge rim. This grain has several stages of zoning. 
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A total number of 23 zircon grains from JJ1772 were analyzed by laser ablation ICP-MS. 

Twenty-one analyses were accepted and 2 results were rejected due to large errors, 

because of large uncertainty of calculated age 207Pb/235U (121.3 and 117.1). The 

concordia age falls into five different age groups: five analyses provide an age of 1050-

1100 Ma, six analyses yield an age of 910-1000 Ma, two analyses give an age of 870-900 

Ma, seven analyses of detrital zircon provide age of 750-850 Ma and only one analysis 

present age of 610 Ma. These difference groups appear clearly in the 

cathodoluminescence image above (Fig.23) start with the light core surrounding with 

dark, light rim and finish with the dark rim.  The probability (of concordance) was 0.005 

and a MSWD (of concordance) was 7.8. 

 

 

 

 Fig. 23: The left side shows probability density distribution and histograms of detrital zircon 

ages from the sample JJ1772. The age pattern of this sample indicates four different events with 

ages of 610 Ma, 750-850 Ma, 870- 900 Ma, 910-1000 Ma and 1050-1100 Ma. The right side 

shows concordia plot diagram of 206Pb/238U vs. 207Pb/235U interpreted from the left diagram 
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Table 1:  show the summary of the results of this study in the central Dronning Maud Land 
 
Sample Rodinia 1, 

Age (Ma) 
Rodinia 2, 
Age (Ma)  

Rifting 1, 
Age (Ma) 

Rifting 2, 
Age (Ma) 

Rifting 3, 
Age (Ma) 

Gondwana 1,  
Age (Ma) 

Gondwana 2, 
Age (Ma) 

JJ1684       458-500  

JJ1825       478-504  

JJ11821       491-530  

JJ1756     620-680 535-610  

JJ1759  950-1050 850-920 700-820  550 500 

JJ1772 1100-1050 910-1000 870-900 750-820  600-610   
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5. Interpretation  
 

The present study further constraints the occurrence and distribution of gneisses and 

granitoids in central Dronning Maud Land. The late-tectonic granitoid intrusions are 

interpreted to reflect the timing of the metamorphism during final Gondwana collision.  

5.1 Granitoids from central Dronning Maud Land  

The granitoids can be discriminated into two groups: (i) intrusions related to the 

formation of Gondwana and (ii) Post intrusions during Pan-African II.  

5.1.1 Collapse and extension in Dronning Maud Land  
Compared to previous studies mentioned in Table 2, the general results of this study 

shows strong similarities to the known main magmatic/metamorphic episodes from 

Dronning Maud Land. Most of these results further confirmed the occurrence of granitoid 

intrusions in central Dronning Maud Land during 450 Ma to 530 Ma related to the Pan-

African orogeny (late Gondwana assembly 2). The Pan-African II event (Fig. 29) 

occurred between ca. 520 Ma to 480 Ma (Cambrian events), (Jacobs et al., 2003a) and is 

interpreted as the time of orogenic collapse, which was followed by large-scale extension 

that started at ca. 530 Ma. As the result of this collapse and extension, voluminous large 

number of small intrusions of post-tectonic mostly A2-type granitoids were placed into 

the crust now exposed in central Dronning Maud Land (Jacobs et al., 2008).  

 

The Concordia age of sample JJ1684 is 486 ± 6 Ma that can also be understood as 

magmatic intrusion occurred during final Gondwana collision.  

 

This result is almost similar to the age of a post-tectonic granite sheet with 487 ± 4 Ma, 

which was investigated by Jacobs et al., (2003a (Timing)), from the Gygra in Gjelsvik-

Fjella (Fig. 25). This granite was formed by fluidated charnokites, using U-Pb SHRIMP 

method (Table. 3). Additionally, Engvik and Elvevold, (2006) describe an U-Pb titanite 
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age of 486 ± 6 Ma for a charnokite from the Trollslottet in Filchnerfjella (Fig. 25) that 

they interpret as time of fluidisation (Table. 3).  

 

Thus the result for sample JJ1684 is interpreted to indicate formation during the Pan-

African II event. 

 

The concordia yields an age of 493 ± 5 Ma was obtained from the sample JJ1825. This 

data is somewhat similar to the concordia ages of the gabbro (527 ± 6 and 521 ± 6 Ma) 

was obtained from the Zwiesel area in Wohlthatmassiv (Fig. 25), using U-Pb SHRIMP 

method (Table 2), (Jacobs et al., 2003b). This result is agrees nicely with the date of a 

Post-tectonic granite (age of 499 ± 4 Ma) from the Gjeruldsenhøgda in Orvinfjella (Fig. 

25), which was found by Jacobs et al., (2008) (Table 2), (Using U-Pb SHRIMP method). 

This age of 494 ± 5 Ma can also be interpreted as magmatic intrusion during final 

Gondwana collision.  It corresponds with the Pan-African II event which covers the time 

interval between 520 Ma and 480 Ma (Fig. 29). 

 

The evidence for extension and collapse was stated on the previous study (Jacobs et al., 

2008). The occurrence of the high grade granulite-facies root which also, indicates that 

exhumation of the deepest crustal levels occurred during the extension and collapse. 

Persistently, the results of this study showed that timing of high-temperature 

metamorphism can be recognized. This timing is recognized by two kinds of pyroxenes 

in the charnockite from the Zwiesel area which have age of 513 ± 5, which was revealed 

from the data of sample JJ1821.  

 

Further more, similar age were found in previous studies (Table 2), (Jacobs et al., 1998). 

This author recognizes as age for a high- metamorphic overprint ca. 522 ±10 Ma in the 

felsic gneiss from the Dallmannberge in Orvinfjella (Fig. 25), (using U-Pb SHRIMP 

method). In addition, the age of ca. 521 ± 3 Ma resulted from charnockitised orthogneiss 

from the Hochlinfjellet in Mühlig-Hofmanngebirge east of central Dronning Maud Land 

(Fig. 25) was investigated using U-Pb SHRIMP, (Jacobs et al., 2003a (Timing)) (Table 2). 
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The present result of sample JJ1821 shows a similar age to the intruded gabbro (527 ± 6 

and 521 ± 6 Ma) derived from Zwiesel area in Wohlthatmassiv (U-Pb SHRIMP (zircon 

Crystallisation (Table 2)) (Jacobs et al., 2003b). 

 

One result measure age of 500 Ma was obtained from the sample JJ1759, This sample is 

an amphibolite also can be explained as the last stage of the magmatization it was 

happened during Pan African II.  

  

The high grade metamorphism was interpreted to be associated with the magmatic 

intrusion during the period of Pan-African II was between 520-480 Ma which, 

characterized by high grade metamorphism intruded by magmatic intrusions (Jacobs et al., 

2008). 

 

The similarities were obtained by comparing the results of the current study during 450-

530 Ma and the previous mentioned studies (Table 2) that indicated the reliability of the 

ages measured. Central Dronning Maud Land was established to be characterized by the 

metamorphisms event associated with the late-tectonic magmatic intrusion. Moreover the 

collapse and extension of supercontinent Gondwana during Pan-African II event was 

followed by late-tectonic magmatic intrusion. 

    

These all the ages were mentioned above is nice good agreement with date of ca. 530-495 

Ma found in the Nampula complex. The Nampula complex is characterized by 

Mesoproterozoic gneisses and granulites that were intruded by relatively large volumes of 

late-to post-tectonic alkali granitoids of the Murrupula Suite, (Macey et al., 2007; 

Grantham et al., 2008; Jacobs et al., 2008).  

 

Furthermore, it seems that the tectonic evolution of Nampula complex in northern 

Mozambique and central Dronning Maud Land, East Antarctica, were similar during the 

Pan-African II event, which indicates the continuity of Mozambique Belt southwards into 

East Antarctica in central Dronning Maud Land  as proposed example by the previous 

study of (Jacobs et al., 1998). 
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 5.1.2 continent-continent collision during Gondwana supercontinent 
assembly 
In this study, the age of 550 Ma in one zircon grain that is revealed from the data of 

sample JJ1759, can be interpreted as overgrowth of zircon rim caused by magmatization 

during the Pan-African I event. There is strong agreement between this age and other 

similar studies describing the same age pattern (Jacobs et al., 1998; Jacobs et al., 2003a 

(Timing); Jacobs et al., 2003b; Bisnath et al., 2006; Jacobs et al., 2003a). 

The age of 550 Ma, which is identified in this study, from metamorphic rocks in cDML is 

a typical result of its kind (Jacobs et al., 1998; Jacobs et al., 2003a). This author 

interpreted it as the timing of metamorphism related to collision and following post-

collisional magmatism.  

 

Comparison with a previous study (Table 2), this has shown that the age of ca. 557 ±11 

Ma are obtained felsic gneiss from the Dallmannberge in Orvinfjella in the central 

Dronning Maud Land, and located to the west of it (Fig. 25). The method applied by that 

study was U-Pb SHRIMP methods (Jacobs et al., 1998). The result from that study was 

explained as metamorphism event between ca. 590 and 550 Ma which represents the 

collision phase of East-west Gondwana assemblages (Jacobs et al., 1998; Jacobs et al., 

2003b). Furthermore, an age of 559 ± 6 Ma revealed in an intrusive leucosome from the 

Hochlinfjellet in Mühlig-Hofmanngebirge west of central Dronning Maud Land (Fig. 25) 

was obtained by Jacobs et al., (2003a (Timing)) using the U-Pb SHRIMP method (Table 

2). In addition, an age of 566 ± 42 Ma in a banded gneiss from the von Essenkarvet in 

Gjelsvik-Fjella was obtained by applying the method of U-Pb SHRIMP (zircon) (Bisnath 

et al., 2006).  This age was represented as zircon overgrowth during magmatization. This 

was examined by applying U-Pb SHRIMP methods (Table 2), to determine the age of 

570 ± 3 Ma for the felsic gneiss in the Conradgebirge in the Orvinfjella west of the 

central Dronning Maud Land (Fig. 25) (Jacobs et al., 1998).  In a leucocratic 

metavolcanic from Trapezberg in the Sivorg west of the Dronning Maud Land (Fig. 25), 

age was measured as 555 ± 4 Ma by Jacobs et al., (2003a (Timing)). By using SHRIMP 
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methods, this age was explained as metamorphic zircon rim during the Gondwana 

assemblages.  

 

The tectonic evolution of the central Dronning Maud Land is further constrained by the 

result of the current study and supports earlier interpretations and conclusions from 

previous studied (Table 2). Central Dronning Maud Land (Fig. 2) illustrated by magmatic 

and metamorphic overprinted during Pan-African I event. This event correlated with 

collision of the East-West Gondwana (Fig. 26). Early Pan-African episode (early stages 

of the Gondwana assembly) started with the granulite facies and the amphibolite facies 

then followed with granitoids intrusion. 

 

One of the results of zircon grain which, measure the age of 610 Ma that was obtained 

from the sample JJ1772 that indicates to occurring is coeval to the Early Pan-African 

(early Gondwana assembly I). 

 

This metamorphic episode is most probably correlated to the age of 610 ± 7 Ma that was 

revealed from the data of sample JJ1756. This age is typical to the charnockite from the 

Early Pan-African (early Gondwana assembly 1) from the Petermannketten in 

Wohlthatmassiv (Fig. 25) reported by Jacobs et al., (1998) using U-Pb SHRIMP method 

(Table 2); and also likely correlated to the age of 600 ± 12 Ma (Table 2) reported by 

(Jacobs et al., 1998) from the Grubergebirge anorthosite in Wohlthatmassiv (Fig. 25). 

The intrusions of anorthosite and charnockite from Wohlthatmassiv was at approximately 

605 Ma, then followed by deformation and metamorphism between 580 Ma and 540 Ma 

((Jacobs et al., 1998; Board et al., 2005; Jacobs et al., 2003a), (Table 2)). 

 

Furthermore this age is comparable with ages obtained from metapelites Schirmacher 

Oase (Fig. 25) age of 629 ± 3 Ma and 639 ± 5 Ma was done by Ravikant et al., (2007), 

using U-PB ID TIMS (monazite) method (Table 2). This age can also be interpreted as 

representing two different events, namely age from 535 Ma to 610 Ma and age from 620 

Ma to 680 Ma.  The time range of 535-610 Ma is represented by the formation of the 

amphibolite facies in the early steps of Gondwana assembly 2. The hornblende gneiss 
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from the Shcherbakova area is related with partial melting and magmatisation of the 

granulite facies that was related to the formation of the supercontinent Gondwana during 

Early Pan-African episode (Fig. 26). This event between c. of 530 Ma to 620 Ma is 

perhaps a result of the crustal convergence it was attained by high-temperature 

metamorphism, which was characterized by decompression from moderate to high 

pressures (Board et al., 2005; Jacobs et al., 2003a) related with collision of East-West 

Gondwana (Fig. 28). That was followed by magmatic character and was marked by the 

intrusion of large volumes of post-tectonic granite between 490 Ma and 530Ma (Ohta et 

al., 1990; Mikhalsky et al., 1997; Jacobs et al., 1998; Roland, 2002; Paulsson and 

Austrheim, 2003; Jacobs et al., 2003b (New); Jacobs et al., 2003a).  

 

The timing of high pressure metamorphism is constrained to the age between 585-660 Ma 

(John et al., 2004b) and is interpreted as a pre-collision subduction beneath the Kalahari 

Craton (John et al., 2004a).  In the present study the hornblende gneiss was obtained in 

JJ1756 (535-680 Ma) from the Shcherbakova is nice agree with the Kalahari Craton. The 

interval time of 620-680 Ma obtained from this sample can be explained as pre-collision 

subduction region.  

5.1.2 Data from meta-sediments  

So far there is no data from meta-sediments. In contrast with a previous study (Table 2) in 

DML, the new age was obtained in Dronning Maud Land for the first time. It included 

the time range of ca. 620-680 Ma which was obtained from sample JJ1756, 750-850 Ma 

and 820-920 Ma which was revealed within the sample JJ1759 and times interval of 750-

850 Ma and 870-900 Ma that was revealed by same JJ1772. ‘The crystallization ages of 

basement rocks from central DML fall into two broad age groups between 1130 to 1070 

Ma and 600-510 Ma’ (Jacobs et al., 1998). This, together with the last evolution of 

magmatic and metamorphic basement in CDML (Fig.4) is not agreeing with the results 

obtained in the present study.  

 

The interval time of 620-680 Ma which is located between ca. 600 and 750 Ma, the date 

of the accumulation took place among the Arabian-Nubian Shield (ANS), (Abdelsalam et 
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al., 2002; Johnson and Woldehaimanot, 2003). Thus this age may be of some magmatic 

intrusion within the rifting associated with the opening of the ocean. This was equivalent 

to the accommodation among the ANS.   

 

The age of 750-850 and 700-820 Ma revealed from the detrital zircon within JJ1772 and 

JJ1759, which are comparable to be the age of some zircon grain formation in another 

region, and then deposit there in Holtedahlfjella that took place during the collapsibility 

and extension related with ocean opening. So far this sample faced some stage of 

deformation due to high grade metamorphism, also the disconcordia age of JJ1759 (Fig. 

21) is also explain that. Furthermore the disconcordia age of JJ1772 (Fig. 23) is also 

explain that. Also detrital zircon in (Fig. 24) can be interpreted that. 

 

 

Fig. 24: Post-analysis cathodoluminescence images of a typical zircon grain from the 

Holtedahlfjella (sample JJ1772). The zircon grain shows a slight dark in the core, surrounded by 

light outer core, followed by a dark and light rim and ultimately surrounded by a darker edge rim. 

This grain looks very deformed interpreted detrital zircon. 

 

The time interval 870-900 Ma and 820-920 Ma, can be interpreted as the timing of the 

metamorphism phase occurred during the collapsed and extension related to the rifting of 

Rodinia (Fig. 27 & 28). 
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Finally we can conclude these times range mention above as the several metamorphism 

phase happened in the central Dronning Maud related to the great rifting  associated to 

the ocean opening, see (Fig. 27 & 28).   

 

These ages are a Known phase of rifting and short-time break-up of Gondwana after 

Rodinia break-up and before final assembly of Gondwana. It is new that they are 

occurring with wider areas of central Dronning Maud land. They are known only in the 

Petermannketten, Grubergebirge and Schirmacher Oasis before. 

5.1.3 Old ages and correlation with the Rodinia formation 

The age of 950-1050 Ma was revealed from the sample JJ1759 and the age of 910-1000 

Ma and ca. 1050-1100 Ma come from the sample JJ1772.  These respectively well agree 

with the Grenvillian metamorphosed felsic volcanic episode interpreted in the literature  

(Bisnath et al., 2006; Jacobs et al., 1998; Jacobs et al., 2003a (Timing)), (Table 2).  

 

Previously study in the DML was done by (Jacobs et al., 1998), using the U-Pb Shrimp 

method on zircon, revealed concordant ages of felsic gneiss 1073 ± 9 Ma, 1076 ± 14 Ma 

and orthogneiss age 1087 ± 28 Ma in the Dallmannberge from Orvinfjella (Fig. 26). They 

interpreted as corresponding with the magmatic episode responsible for the Rodinia 

formation (Fig, 27). In the Grenville province felsic metavolcanic episode was occurred 

in this study area. Furthermore from a grey migmatitic gneiss ages of 1142 ± 21 and 1061 

± 56 Ma (Table 2) were obtained from Festninga in Mühlig-Hofmanngebirge in central 

Dronning Maud Land, and located to the west of it, see (Fig. 26), which was obtained by 

detrital zircon SHRIMP, (Jacobs et al., 2003b (New)).  These results are not agreement 

the high grade metamorphism from the Nampula block, which has an age of ca. 1130 to 

1100Ma (Macey et al., 2010). But it is slightly agreement with the magmatic phase ages 

range between 1095-1090 Ma, and medium to high grade metamorphism during interval 

time 1090-1070 Ma, (Bingen et al., 2009).  

 

Thus the central Dronning Maud land in this study can be responsible with the Grenville 

province felsic metavolcanic episode.  
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Table 2: some literature review from Dronning Maud Land 

Locality1  Lithology sample 
Date (1200-

600 Ma) 
Date (600-
486 Ma) Reference 

websterite 
metapelite MS 1/23 629±3   (Ravikant et al., 2007) 

websterite 
metaquartzite MS 2/23 639±5   (Ravikant et al., 2007) 

Grubergebirge anorthosite J1955 600±12 555±11 (Jacobs et al., 1998) 

Petermannketten felsic gneiss J1838 1130±12 ~575 (Jacobs et al., 1998) 

Petermannketten charnockite J1886 608±9 544±15 (Jacobs et al., 1998) 

Petermannketten 
posttectonic 
charnockite J1870   501±7 (Jacobs et al., 2008) 

Zwiesel gabbro J1818   527±6 (Jacobs et al., 2003b) 

Zwiesel gabbro J1817   521±6 (Jacobs et al., 2003b) 

Zwiesel charnockite JJ1821   513±4 Present study 

Zwiesel syenite JJ1825   493±5 Present study 

Gjeruldsenhøgda granite J1670   499±4 (Jacobs et al., 2008) 

Småskeidrista 
qtz-fsp-grt-

gneiss JJ1756 610.4±6.8   Present study 

Småskeidrista amphibolite JJ1759 ~1000   Present study 

Dallmannberge felsic gneiss 
J1671 

1073±9   (Jacobs et al., 1998) 

Dallmannberge felsic gneiss 
J1704 

1137±21 522±10 (Jacobs et al., 1998) 

Dallmannberge felsic gneiss 
J1795 

1076±14 557±11 (Jacobs et al., 1998) 

Dallmannberge orthogneiss 
J1797 

1087±28   (Jacobs et al., 1998) 

Conradgebirge leucosome J1745   516±5 (Jacobs et al., 1998) 

Conradgebirge orthogneiss J1736 1086±20 ~570 (Jacobs et al., 1998) 

Conradgebirge metagranodiorite J1698   530±8 (Jacobs et al., 1998) 

Conradgebirge metaleucogranite J1695 ~1200 527±6 (Jacobs et al., 1998) 

Holtedahlfjella 
coarse-grained 

granite JJ1684   486±6 Present study 

Holtedahlfjella 
grey migmatitic 

gneiss JJ1772 ~950   Present study 

Trollslottet charnockite locality 3 
  

486±6 (Engvik and Elvevold, 2006) 
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Locality1  Lithology sample 
Date (1200-

600 Ma) 
Date (600-
486 Ma) Reference 

Habermehlgipfel charnockite GM733 

  

~540 (Markl and Henjes-Kunst, 2004) 

Hochlinfjellet 
Charnockitised 

orthogneiss 
1301/2 

  

521±3 (Jacobs et al., 2003a (Timing)) 

Hochlinfjellet 
intrusive 

leucosome 
0801/3 

  

559±6 (Jacobs et al., 2003a (Timing)) 

Festninga Hornblende 
leucosome 

1801/1 1088 510±14 (Jacobs et al., 2003a (Timing)) 

Festninga grey migmatitic 
gneiss 

1701/2 1142±21 528±10 (Jacobs et al., 2003b (New)) 

Festninga grey migmatitic 
gneiss 

1701/3  1061±57 528±11 (Jacobs et al., 2003b (New)) 

Gygra 
Post-tectonic 
granite sheet 

3112/2  487±4 (Jacobs et al., 2003a (Timing)) 

Risemedet  
Late tectonic 
lamprophyre 

2312/2  528±10 (Jacobs et al., 2003a (Timing)) 

Risemedet 
Late tectonic 
lamprophyre 

2312/2  508±7 (Jacobs et al., 2003a (Timing)) 

Risemedet 
migmatitic 

augen gneiss 
2412/4 1096±8   (Jacobs et al., 2003b (New)) 

Risemedet augen geniss 1512/1 
1123±21/  
1049±19 

  (Jacobs et al., 2003b (New)) 

Risemedet 
migmatitic 

augen gneiss 
1812/5 

1137±14/  
1072±12 

  (Jacobs et al., 2003b (New)) 

Stabben Gabbro ABA/64 ~1100 487±4 (Bisnath et al., 2006) 

Stabben Gabbro 0501/2   483±11 (Jacobs et al., 2003b) 

Jutulhogget migmatite gneiss ABA/81 
1130±19/  

1070 
530 (Bisnath et al., 2006) 

Jutulhogget 
migmatite gneiss 

(leucosome 
domain) 

WBJS3 
1133±15 
(core at 

1206±19) 
526±6 (Bisnath et al., 2006) 

Armlenet 
sheared felsic 

gneiss 
J3012 1098±25 507±9 (Jacobs et al., 2008) 

Armlenet 
grey migmatitic 

gneiss 
2712/4 1115±12   Jacobs et al (2003b) 

Terningskarvet 
grey migmatite 

gneiss 
ABA/21   529 ± 4 (Bisnath et al., 2006) 
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Locality1  Lithology sample 
Date (1200-

600 Ma) 
Date (600-
486 Ma) Reference 

von Essenkarvet Augengneiss ABA/10A 1124±11 417±95 (Bisnath et al., 2006) 

von Essenkarvet aplite dyke ABA/69   497±5 (Bisnath et al., 2006) 

von Essenkarvet banded gneiss ABA/32 1120 566±4 (Bisnath et al., 2006) 

von Essenkarvet banded gneiss ABA/33   1091 ± 17  527±5 (Bisnath et al., 2006) 

      

comment      

Locality     Methods Age Age Reference 

Schirmacher Oase Metamorphic 

zrc for 
Amel MSc 
ICP--MS 1200-950 Ma 

570-530 Ma 
Pan-African 

I  

Wohlthatmassiv   

U-PB ID 
TIMS 

(monazite) 640-610  Ma 

530-415  Ma 
Pan-African 

II  

Orvinfjella intrusion   

U-Pb 
SHRIMP 
(zircon)  

NO age 
NO age  

Filchnerfjella   

U-Pb 
SHRIMP 
(zircon)     

Mühlig-
Hofmanngebirge  

U-Pb 
Method    

Gjelsvikfjella      
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Fig. 25: Geological map of Dronning Maud Land, East Antarctica, showing the location of the samples of 

this study and the some samples of the previous study, modify from  Bauer et al. (2003). 
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6. Discussion 

All of the six analyzed samples with LA-ICPMS method showed similar distribution with 

majority of ages range between 1100 Ma to 910 Ma, 900 Ma to 620 Ma, 610 Ma to 535 

Ma, 530 Ma to 458 Ma (Fig. 26). However, the small variations among the samples of 

zircons detritus are almost certain, but there were some differences in the number of 

analyzed grains and their quality.  The oldest ages of 1100 Ma to 910 Ma correspond with 

the Rodinia formation (Fig. 27). The age of 900 Ma to 620 Ma occurrence is due to the 

number of rifting associated with the destruction of Rodinia (Fig. 27 & 28). The ages of 

610 Ma to 535 Ma can corresponds with the supercontinent Gondwana assembly (Fig. 

28).  The youngest age of 530 Ma to 458 Ma corresponds with the final stage of 

Gondwana assembly (Fig. 29). Most of these results reasonable well agree with the 

chronology of supercontinent Gondwana assembly in the cDML. 
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Fig. 26: Majority of Samples age’s distribution in central Dronning Maud Land, results are from 

the present study.     
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Fig. 27: destruction of Rodinia between 1100 Ma to 1000 Ma in the right side. In the left side 

shows when the Rodinia start destruction from 900 Ma, modify from Li et al. (2008). 
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Fig. 28: Shows the several step of rifting during destruction of Rodinia in the left side. In the 

right side, shows that Gondwana assemblage starts from 600 Ma modify from Li et al. (2008). 
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Fig. 29: after the supercontinent Gondwana assemblages took place, final stage of Gondwana 

assembly from 530 Ma to 500 Ma. Modify from Grunow et al. (1996) 
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7. Conclusion 
 

1. Data presented in this work brings out a different thermal history for the central 

Dronning Maud Land. 

2. The structure of major shear zones were not investigated in the present study, however, 

voluminous late tectonic intrusions in central Dronning Maud Land seem to be related to 

theses structures result of the collapse and extension association.  

3. The juvenile ages are not recognized in this study.  

4. The setting of the central Dronning Maud Land from this study can be summarized as 

follows: 

a) Metamorphism following by magmatic phase during Rodinia formation, 

b)  Metamorphism phase intrude by magmatic intrusion among destruction of Rodinia, and 

c) Gondwana assemblage of: 

• Granulite facies and the amphibolite facies then followed with granitoid intrusion, 

associated with collision-collision during supercontinent during Pan-Africana I. 

•  High grade metamorphism and the magmatic intrusion during Pan-Africana II 

that is related to the collapse and extension during supercontinent. 

5. The granitoids intrusions results from the delamination of the root of the lithosphere,   

following by extension among the crust.   

6. The continuity of Mozambique Belt southward into East Antarctica in central 
Dronning Maud Land 
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APPENDIX 
 
Table. 3 Analytical results JJ1684 

  ISOTOPIC RATIOS CALCULATED AGES (Ma) 

Analysis 207Pb/235U ± 1 sigma 206Pb/238U ± 1 sigma 207Pb/206Pb ± 1 sigma 207Pb/235U ± 1 sigma 206Pb/238U ± 1 sigma 207Pb/206Pb ± 1 sigma 

1 0.6544 0.0708 0.0777 0.0022 0.06109 0.005924 511.2 43.5 482.3 13.3 642.4 208.5 

2 0.6331 0.0322 0.0792 0.0013 0.058008 0.003127 498.0 20.0 491.1 7.9 530.1 118.1 

3 0.6405 0.0589 0.0779 0.0035 0.059614 0.004799 502.6 36.4 483.7 21.0 589.6 174.6 

4 0.7329 0.1207 0.0752 0.0033 0.070727 0.012627 558.3 70.7 467.2 19.6 949.5 365.4 

5 0.5351 0.0959 0.0738 0.0055 0.052607 0.009782 435.2 63.4 458.8 32.7 311.9 423.2 

6 0.6847 0.0593 0.0770 0.0034 0.064515 0.00605 529.6 35.7 478.0 20.4 758.6 197.8 

7 0.5741 0.0668 0.0772 0.0030 0.05397 0.007052 460.7 43.1 479.1 17.8 369.8 294.3 

8 0.6049 0.1063 0.0601 0.0036 0.072963 0.013007 480.3 67.3 376.4 22.2 1012.9 361.3 

9 0.5938 0.0604 0.0769 0.0028 0.056016 0.005705 473.3 38.5 477.5 16.8 453.0 226.1 

10 0.6350 0.0539 0.0765 0.0024 0.060196 0.005247 499.2 33.5 475.3 14.4 610.6 188.4 

11 0.5856 0.1043 0.0794 0.0026 0.053505 0.008519 468.0 66.8 492.4 15.7 350.3 359.9 

12 0.5705 0.0902 0.0754 0.0064 0.054884 0.006825 458.4 58.3 468.6 38.1 407.5 278.3 

13 0.6318 0.0501 0.0787 0.0018 0.05822 0.004803 497.2 31.2 488.4 10.8 538.0 180.5 

14 0.6421 0.0452 0.0803 0.0017 0.057981 0.00418 503.6 28.0 498.0 10.3 529.0 158.0 

15 0.6259 0.0542 0.0746 0.0039 0.060825 0.005329 493.5 33.9 464.0 23.6 633.1 188.6 

16 0.6549 0.0464 0.0765 0.0033 0.062078 0.005786 511.5 28.4 475.3 19.6 676.8 199.2 

17 0.6412 0.0602 0.0797 0.0023 0.058322 0.005328 503.0 37.3 494.5 13.9 541.9 199.8 

18 0.5969 0.0462 0.0774 0.0015 0.055955 0.004758 475.3 29.3 480.4 8.8 450.6 188.9 

19 0.6519 0.0665 0.0787 0.0028 0.060072 0.005703 509.6 40.9 488.4 16.5 606.2 205.3 

The data with strikethrough are being rejected         
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APPENDIX 
 
Table. 4 Analytical results JJ1825 

Analysis ISOTOPIC RATIOS CALCULATED AGES (Ma) 

  207Pb/235U ± 1 sigma 206Pb/238U ± 1 sigma 207Pb/206Pb ± 1 sigma 207Pb/235U ± 1 sigma 206Pb/238U ± 1 sigma 207Pb/206Pb ± 1 sigma 

1 0.6684 0.0586 0.0790 0.0020 0.061391 0.005774 519.7 35.7 489.9 11.9 653.0 201.8 

2 0.6630 0.0412 0.0801 0.0022 0.060061 0.004155 516.5 25.2 496.5 13.4 605.8 149.6 

3 0.6041 0.0435 0.0787 0.0017 0.055669 0.004382 479.9 27.5 488.4 10.0 439.2 175.2 

4 0.6180 0.0440 0.0796 0.0018 0.056342 0.003594 488.6 27.6 493.4 10.9 465.9 141.3 

5 0.6496 0.0249 0.0801 0.0031 0.05885 0.001947 508.2 15.3 496.5 18.8 561.6 72.1 

6 0.6335 0.0463 0.0786 0.0014 0.058478 0.004451 498.3 28.8 487.6 8.5 547.7 166.3 

7 40.2080 2.9277 0.4077 0.0249 0.715266 0.044806 3775.8 72.1 2204.4 113.8 4761.7 89.9 

8 0.6297 0.0434 0.0782 0.0017 0.058399 0.004126 495.9 27.0 485.4 10.2 544.7 154.4 

9 0.6512 0.0430 0.0796 0.0016 0.059352 0.004076 509.2 26.5 493.6 9.3 580.0 149.2 

10 0.4501 0.2268 0.0777 0.0038 0.041993 0.015799 377.4 158.8 482.6 22.7 -226.9 947.7 

11 0.6455 0.0382 0.0813 0.0020 0.057572 0.003372 505.7 23.6 504.0 12.2 513.5 128.7 

12 0.7194 0.0621 0.0812 0.0018 0.064288 0.005098 550.3 36.6 503.1 11.0 751.1 167.5 

13 0.6821 0.0665 0.0799 0.0022 0.061937 0.005553 528.0 40.1 495.4 13.0 671.9 191.8 

14 0.6857 0.0628 0.0202 0.0009 0.245802 0.021034 530.2 37.8 129.1 5.6 3157.9 135.8 

15 0.7049 0.0525 0.0809 0.0029 0.063226 0.004937 541.7 31.3 501.3 17.1 715.8 165.9 

16 0.5665 0.0926 0.0772 0.0049 0.053227 0.007808 455.7 60.0 479.3 29.3 338.5 332.3 

17 0.7067 0.0636 0.0780 0.0026 0.065742 0.006196 542.8 37.9 484.0 15.3 798.2 197.5 

18 0.6013 0.0503 0.0778 0.0022 0.056026 0.003824 478.1 31.9 483.3 13.2 453.4 151.5 

19 0.6816 0.0437 0.0790 0.0021 0.062597 0.004752 527.7 26.4 490.0 12.6 694.6 161.8 

20 0.5633 0.0495 0.0773 0.0026 0.052869 0.004373 453.7 32.2 479.8 15.4 323.2 187.9 

The data with strikethrough are being rejected         
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APPENDIX 
 
Table. 5 Analytical results JJ1821 
Analysis ISOTOPIC RATIOS CALCULATED AGES (Ma) 

  207Pb/235U ± 1 sigma 206Pb/238U ± 1 sigma 207Pb/206Pb ± 1 sigma 207Pb/235U ± 1 sigma 206Pb/238U ± 1 sigma 207Pb/206Pb ± 1 sigma 

1 0.6291 0.0661 0.0809 0.0035 0.06 0.005073 495.6 41.2 501.4 21.1 468.9 199.1 
2 0.6876 0.0714 0.0830 0.0049 0.06 0.003877 531.4 43.0 513.7 29.3 607.9 139.4 
3 0.7515 0.0796 0.0845 0.0016 0.06 0.007244 569.1 46.2 523.0 9.7 758.0 236.9 
4 0.7669 0.0539 0.0856 0.0016 0.06 0.004932 578.0 31.0 529.6 9.5 773.1 159.8 
5 0.6537 0.0448 0.0831 0.0022 0.06 0.003191 510.8 27.5 514.4 13.1 494.7 123.2 
6 0.6941 0.0518 0.0818 0.0024 0.06 0.004751 535.3 31.0 506.8 14.5 658.7 165.5 
7 0.5973 0.0880 0.0819 0.0045 0.05 0.004312 475.5 55.9 507.7 26.8 322.8 185.3 
8 0.6091 0.0713 0.0820 0.0030 0.05 0.005038 483.0 45.0 507.8 17.7 366.8 210.6 
9 0.6757 0.0565 0.0826 0.0035 0.06 0.003915 524.2 34.2 511.5 21.0 579.7 143.3 
10 0.6944 0.0343 0.0806 0.0020 0.06 0.003563 535.4 20.6 499.5 12.2 691.4 121.6 
11 0.5959 0.0539 0.0831 0.0030 0.05 0.004015 474.6 34.3 514.3 17.7 287.2 176.4 
12 0.6444 0.0578 0.0799 0.0052 0.06 0.003178 505.0 35.7 495.4 31.1 548.9 118.6 
13 0.6964 0.0550 0.0827 0.0064 0.06 0.003223 536.6 32.9 512.0 38.4 642.9 113.4 
14 0.6661 0.0383 0.0849 0.0016 0.06 0.0033 518.3 23.3 525.1 9.8 488.7 127.9 
15 0.7224 0.0458 0.0832 0.0019 0.06 0.004823 552.1 27.0 515.3 11.4 707.0 162.9 
16 0.6595 0.0391 0.0825 0.0025 0.06 0.003861 514.3 23.9 511.3 15.2 527.8 146.0 
17 0.7263 0.0549 0.0817 0.0030 0.06 0.004263 554.4 32.3 506.0 18.1 758.3 139.4 
18 0.6886 0.0798 0.0836 0.0033 0.06 0.005271 531.9 48.0 517.4 19.4 594.8 191.1 
19 0.6844 0.0511 0.0835 0.0037 0.06 0.003335 529.5 30.8 516.8 21.8 584.2 121.8 
20 0.6558 0.0411 0.0839 0.0030 0.06 0.003158 512.0 25.2 519.1 18.0 480.8 123.0 
21 0.6663 0.0501 0.0818 0.0031 0.06 0.004508 518.5 30.5 506.8 18.3 570.4 166.0 
22 0.6578 0.0298 0.0830 0.0019 0.06 0.002479 513.3 18.3 514.0 11.3 510.3 94.8 
23 0.6052 0.0747 0.0822 0.0038 0.05 0.003923 480.5 47.3 509.0 22.8 346.8 166.1 
24 0.6745 0.0560 0.0831 0.0029 0.06 0.004335 523.5 34.0 514.6 17.2 562.5 160.4 
25 0.6303 0.0512 0.0816 0.0038 0.06 0.003045 496.3 31.9 505.9 22.9 452.1 120.8 
26 0.6646 0.0522 0.0807 0.0028 0.06 0.00369 517.4 31.9 500.4 16.9 593.4 133.9 
27 0.7003 0.0442 0.0799 0.0034 0.06 0.004215 539.0 26.4 495.7 20.3 726.5 140.7 
28 0.6518 0.1082 0.0812 0.0064 0.06 0.005592 509.6 66.5 503.1 38.0 538.7 210.0 
29 0.6952 0.0421 0.0802 0.0025 0.06 0.004232 535.9 25.2 497.0 15.1 705.0 143.2 

The data with strikethrough are being rejected         
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APPENDIX 
 
Table. 5 Analytical results JJ1821 continued 
Analysis ISOTOPIC RATIOS CALCULATED AGES (Ma) 

  207Pb/235U ± 1 sigma 206Pb/238U ± 1 sigma 207Pb/206Pb ± 1 sigma 207Pb/235U ± 1 sigma 206Pb/238U ± 1 sigma 207Pb/206Pb ± 1 sigma 

30 0.6111 0.0748 0.0805 0.0045 0.06 0.004503 484.2 47.2 499.3 26.9 413.6 182.9 
31 0.6581 0.0356 0.0802 0.0029 0.06 0.003164 513.4 21.8 497.4 17.2 585.6 115.4 
32 0.5841 0.1634 0.0804 0.0072 0.05 0.009263 467.1 104.8 498.5 42.7 315.6 399.8 
33 0.7138 0.0426 0.0808 0.0022 0.06 0.003582 547.0 25.2 501.0 13.3 743.6 118.2 
34 0.6423 0.0294 0.0816 0.0016 0.06 0.002376 503.7 18.2 505.7 9.4 494.7 91.7 
35 0.7078 0.0452 0.0816 0.0019 0.06 0.004202 543.4 26.9 505.4 11.1 706.3 142.0 
36 0.6811 0.0783 0.0830 0.0059 0.06 0.004441 527.4 47.3 514.2 35.3 585.4 162.0 
37 0.6386 0.0340 0.0813 0.0022 0.06 0.002713 501.4 21.1 503.7 13.4 491.4 105.0 
38 0.6504 0.0497 0.0817 0.0040 0.06 0.003354 508.7 30.6 506.0 23.8 520.9 127.4 

39 0.6949 0.0380 0.0837 0.0023 0.06 0.003403 535.7 22.7 518.1 13.7 611.8 122.1 
The data with strikethrough are being rejected 
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Table. 6 Analytical results JJ1756 
Analysis ISOTOPIC RATIOS CALCULATED AGES Ma 

  207Pb/235U ± 1 sigma 206Pb/238U ± 1 sigma 207Pb/206Pb ± 1 sigma 207Pb/235U ± 1 sigma 206Pb/238U ± 1 sigma 207Pb/206Pb ± 1 sigma 

1 0.5018 0.0280 0.0599 0.0036 0.060807 0.001388 412.9 18.9 374.7 22.1 632.4 49.2 
2 0.7505 0.0283 0.0936 0.0028 0.05816 0.001727 568.5 16.4 576.7 16.2 535.8 65.0 
3 0.8598 0.0419 0.1059 0.0037 0.058892 0.002242 630.0 22.9 648.8 21.5 563.1 83.0 
4 0.8532 0.0282 0.0987 0.0025 0.062705 0.00297 626.4 15.5 606.7 14.5 698.2 100.9 
5 0.7392 0.0439 0.0866 0.0058 0.061913 0.00191 561.9 25.6 535.3 34.6 671.1 66.0 
6 0.8110 0.0320 0.0962 0.0034 0.061131 0.002361 603.0 18.0 592.2 20.1 643.8 83.0 
7 0.8253 0.0328 0.0985 0.0029 0.060775 0.002331 611.0 18.2 605.6 17.2 631.3 82.6 
8 0.8579 0.0330 0.0996 0.0031 0.062459 0.002626 628.9 18.0 612.1 18.1 689.9 89.7 
9 0.7865 0.0211 0.0957 0.0021 0.059628 0.001515 589.2 12.0 589.0 12.2 590.1 55.1 
10 0.8017 0.0309 0.0970 0.0029 0.059925 0.001812 597.8 17.4 597.0 17.2 600.9 65.5 
11 0.8218 0.0440 0.0977 0.0046 0.061034 0.002995 609.1 24.5 600.7 26.8 640.4 105.5 
12 0.8172 0.0389 0.0974 0.0047 0.060874 0.002054 606.5 21.7 598.9 27.3 634.8 72.6 
13 0.8352 0.0323 0.0983 0.0026 0.061592 0.002583 616.5 17.9 604.7 15.5 660.0 89.9 
14 0.8139 0.0275 0.0965 0.0022 0.061143 0.002048 604.7 15.4 594.2 12.9 644.3 72.0 
15 0.7745 0.0354 0.0929 0.0035 0.060456 0.003173 582.4 20.3 572.8 20.6 619.9 113.2 
16 0.9464 0.0559 0.1124 0.0048 0.061044 0.002586 676.2 29.2 686.9 27.7 640.8 91.1 
17 0.5469 0.1027 0.0669 0.0102 0.059309 0.002055 443.0 67.4 417.3 61.5 578.5 75.3 
18 0.7037 0.0813 0.0810 0.0032 0.062972 0.006718 541.0 48.4 502.4 19.0 707.3 226.9 
19 0.8458 0.0390 0.1042 0.0021 0.058874 0.001397 622.3 21.5 638.9 12.5 562.4 51.7 
20 0.8971 0.0423 0.1047 0.0028 0.062142 0.002706 650.2 22.6 641.9 16.5 679.0 93.0 
21 0.8885 0.0390 0.1036 0.0028 0.062217 0.003237 645.6 21.0 635.3 16.4 681.6 111.1 
22 0.8320 0.0558 0.0961 0.0040 0.062769 0.002537 614.7 30.9 591.7 23.8 700.4 86.1 
23 0.8466 0.0650 0.0968 0.0024 0.063401 0.003675 622.8 35.7 595.9 14.2 721.7 123.0 
24 0.7725 0.0752 0.0987 0.0043 0.05675 0.003776 581.2 43.1 606.9 25.5 481.8 147.0 
25 0.8634 0.0419 0.1051 0.0032 0.059583 0.001933 632.0 22.8 644.2 18.6 588.5 70.4 

The data with strikethrough are being rejected 
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Table. 7 Analytical results JJ1759 continued 
Analysis ISOTOPIC RATIOS CALCULATED AGES (Ma) 

  207Pb/235U ± 1 sigma 206Pb/238U ± 1 sigma 207Pb/206Pb ± 1 sigma 207Pb/235U ± 1 sigma 206Pb/238U ± 1 sigma 207Pb/206Pb ± 1 sigma 

1 0.6768 0.0317 0.0843 0.0017 0.05822 0.00281 524.8 19.2 521.8 10.2 538.0 105.6 

2 1.7891 0.0459 0.1690 0.0050 0.076797 0.001899 1041.5 16.7 1006.4 27.8 1115.9 49.4 

3 1.4816 0.0697 0.1451 0.0056 0.074066 0.002184 922.9 28.5 873.4 31.5 1043.3 59.5 

4 1.5727 0.0781 0.1530 0.0072 0.074543 0.001924 959.5 30.8 917.8 40.1 1056.2 52.0 

5 1.2512 0.0369 0.1299 0.0030 0.069841 0.002101 824.0 16.6 787.5 17.0 923.7 61.8 

6 1.3571 0.1124 0.1265 0.0069 0.07781 0.002277 870.6 48.4 767.8 39.6 1142.0 58.2 

7 1.6302 0.0470 0.1629 0.0046 0.072601 0.001613 981.9 18.2 972.6 25.2 1002.8 45.1 

8 1.6871 0.0543 0.1679 0.0042 0.072885 0.001734 1003.7 20.5 1000.4 23.0 1010.7 48.2 

9 1.6803 0.0868 0.1673 0.0057 0.072837 0.011424 1001.1 32.9 997.3 31.3 1009.4 318.1 

10 1.7469 0.0503 0.1758 0.0036 0.072072 0.001641 1026.0 18.6 1044.0 20.0 988.0 46.3 

11 1.5825 0.0608 0.1570 0.0068 0.073094 0.001621 963.4 23.9 940.2 37.7 1016.6 44.9 

12 0.7265 0.0491 0.0885 0.0025 0.059552 0.019875 554.5 28.9 546.5 14.7 587.3 724.1 

13 1.3490 0.0808 0.1363 0.0079 0.071754 0.031026 867.1 34.9 824.0 44.8 979.0 881.0 

14 1.7640 0.0793 0.1685 0.0060 0.075925 0.003316 1032.3 29.1 1003.9 33.0 1093.1 87.5 

15 1.4704 0.0844 0.1476 0.0089 0.072229 0.002603 918.3 34.7 887.7 49.8 992.4 73.3 

16 1.5264 0.0537 0.1515 0.0053 0.073088 0.00177 941.1 21.6 909.2 29.9 1016.4 49.0 

17 2.9670 0.7670 0.1477 0.0108 0.145709 0.058172 1399.2 196.3 888.0 60.5 2296.2 686.3 

18 1.0440 0.2154 0.1135 0.0183 0.066689 0.001975 725.9 107.0 693.3 106.1 828.1 61.8 

19 1.5896 0.1038 0.1606 0.0093 0.07177 0.001726 966.1 40.7 960.3 51.8 979.4 49.0 

20 1.6430 0.0535 0.1615 0.0031 0.073788 0.001747 986.9 20.6 965.1 17.2 1035.7 47.8 

21 1.6101 0.1168 0.1461 0.0093 0.079936 0.013898 974.2 45.4 879.0 52.1 1195.4 343.0 

22 1.6997 0.0332 0.1704 0.0024 0.072356 0.001266 1008.4 12.5 1014.2 13.2 996.0 35.6 
The data with strikethrough are being rejected 
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Table. 8 Analytical results JJ1772 
Analysis ISOTOPIC RATIOS CALCULATED AGES (Ma) 

  207Pb/235U ± 1 sigma 206Pb/238U ± 1 sigma 207Pb/206Pb ± 1 sigma 207Pb/235U ± 1 sigma 206Pb/238U ± 1 sigma 207Pb/206Pb ± 1 sigma 

1 1.8484 0.0627 0.1703 0.0042 0.078725 0.078725 1062.8 22.3 1013.7 23.3 1165.2 348.6 

2 2.5111 0.4194 0.2144 0.0232 0.084958 0.084958 1275.3 121.3 1252.0 123.1 1314.6 87.3 

3 1.2960 0.1629 0.1302 0.0158 0.072172 0.072172 844.0 72.1 789.2 90.1 990.8 72.0 

4 1.2178 0.1019 0.1245 0.0075 0.070932 0.070932 808.8 46.6 756.5 42.8 955.5 92.5 

5 1.4126 0.0809 0.1300 0.0071 0.078783 0.078783 894.3 34.1 788.1 40.6 1166.7 61.7 

6 1.9528 0.1562 0.1747 0.0041 0.081061 0.081061 1099.4 53.7 1038.1 22.6 1222.9 185.1 

7 1.1207 0.1020 0.1179 0.0084 0.068967 0.068967 763.3 48.9 718.2 48.3 897.7 229.6 

8 1.5157 0.0889 0.1561 0.0063 0.070415 0.070415 936.7 35.9 935.1 35.4 940.5 66.5 

9 1.7098 0.1338 0.1596 0.0084 0.077693 0.077693 1012.2 50.1 954.6 47.0 1139.0 185.0 

10 1.6486 0.0722 0.1589 0.0049 0.075236 0.075236 989.0 27.7 950.8 27.1 1074.8 110.3 

11 1.8383 0.0960 0.1755 0.0064 0.07598 0.07598 1059.3 34.3 1042.2 35.0 1094.5 54.0 

12 2.3802 0.4897 0.1380 0.0092 0.125107 0.125107 1236.7 147.1 833.3 51.9 2030.3 685.8 

13 1.4070 0.1610 0.1448 0.0137 0.07049 0.07049 891.9 67.9 871.5 77.1 942.7 429.7 

14 0.8814 0.1539 0.0982 0.0145 0.065079 0.065079 641.7 83.1 604.0 85.0 776.9 92.4 

15 1.2905 0.1654 0.1307 0.0155 0.071613 0.071613 841.5 73.3 791.8 88.3 975.0 129.0 

16 1.7121 0.1616 0.1581 0.0173 0.078522 0.078522 1013.1 60.5 946.4 96.2 1160.1 425.8 

17 1.3726 0.1957 0.1239 0.0165 0.080368 0.080368 877.3 83.7 752.8 94.5 1206.0 153.9 

18 1.7236 0.1154 0.1571 0.0080 0.079586 0.079586 1017.4 43.0 940.5 44.5 1186.8 71.7 

19 1.4211 0.0907 0.1395 0.0093 0.073903 0.073903 897.8 38.0 841.6 52.6 1038.8 73.8 

20 1.8745 0.0586 0.1790 0.0047 0.075948 0.075948 1072.1 20.7 1061.5 25.9 1093.7 59.8 

21 1.8909 0.1269 0.1875 0.0111 0.073154 0.073154 1077.9 44.6 1107.7 60.2 1018.2 58.3 

22 1.5911 0.0857 0.1613 0.0064 0.071523 0.071523 966.7 33.6 964.3 35.8 972.4 52.1 

The data with strikethrough are being rejected         
 


