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Abstract

Conformational changes in allosteric regulation can to a large extent be described as motion along one or a few coherent
degrees of freedom. The states involved are inherent to the protein, in the sense that they are visited by the protein also in
the absence of effector ligands. Previously, we developed the measure binding leverage to find sites where ligand binding
can shift the conformational equilibrium of a protein. Binding leverage is calculated for a set of motion vectors representing
independent conformational degrees of freedom. In this paper, to analyze allosteric communication between binding sites,
we introduce the concept of leverage coupling, based on the assumption that only pairs of sites that couple to the same
conformational degrees of freedom can be allosterically connected. We demonstrate how leverage coupling can be used to
analyze allosteric communication in a range of enzymes (regulated by both ligand binding and post-translational
modifications) and huge molecular machines such as chaperones. Leverage coupling can be calculated for any protein
structure to analyze both biological and latent catalytic and regulatory sites.
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Introduction

The concept of allostery was originally formulated to describe

cooperative ligand binding in oligomeric proteins. The first model

of positive cooperativity in binding of oxygen to hemoglobin was

proposed by Linus Pauling in 1935 [1], but the term allostery was

coined in connection with the phenomenological MWC (Monod-

Wyman-Changeux) and KNF (Koshland-Némethy-Filmer) mod-

els, developed in the 1960s [2,3,4]. Since then, there have been

numerous studies of the mechanisms of allosteric regulation [5,6],

applying different experimental [7,8] and computational ap-

proaches [9] to proteins as different as small single-domain

enzymes, motor proteins [10] and chaperones [11,12]. Although

much progress has been made, the dichotomy between the original

MWC and KNF models, or their modern counter parts,

conformational selection and induced fit, dominates the discussion

of allostery to this day [6]. The two models do however not

describe mutually exclusive scenarios [13,14,15]: in both cases

there is a shift in the population of different functional states upon

effector binding. The main difference between the two is whether

binding precedes conformational change or not [14]. Transition

pathway analysis is primarily a matter of kinetics, whereas the shift

in conformational equilibrium is one of thermodynamics: the

conformational states involved determine which binding sites are

allosterically connected, and their relative stability before and after

binding determines the effect of regulation [6]. The major task

therefore is to use this understanding to find structural determi-

nants and molecular mechanisms of allosteric communication

between distant binding sites [16].

Recently we developed the concept of binding leverage to measure

the ability of a generic ligand, binding at different sites, to couple

to conformational transitions, and thus its potential to have an

allosteric effect [15]. We showed that in the majority of the studied

cases, known allosteric and active sites had high binding leverage.

We treated each site individually under the assumption that a site

that has high binding leverage is connected to the global dynamics

of the protein, without any specification of what other sites could

be connected. Here we move on to investigate how allosteric

communication takes place between specific pairs of sites. We

introduce the concept of leverage coupling, which provides a

quantitative characteristic of allosteric communication. We will

also demonstrate how binding leverage and leverage coupling can

be used to analyze allosteric communication mediated by metal

binding and phosphorylation, as well as the function of three

chaperones (GroEL-GroES, CCT and thermosome).

Results

In this paper we will develop a molecular model of allosteric

communication based on the concept of binding leverage

(described in Methods). We recently showed that binding leverage

could identify key binding sites, and also potentially latent

allosteric sites, in a wide range of proteins [15]. Here we

investigate how specific pairs of sites are allosterically connected

via leverage coupling.

Leverage coupling
To study site-site communication, we make the following

assumption: sites that have high binding leverage for the same motion are

more likely to be allosterically coupled than sites that only have high binding

leverage for motion along independent degrees of freedom.
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To represent a set of independent degrees of freedom we will

use low frequency normal modes, which describe coherent motion

involving the whole protein, and thus allow communication across

large distances. We do not propose that protein dynamics is best

described by global harmonic motion, but recognize the fact that

the modes have repeatedly been shown to describe functional

conformational change for proteins [17,18]. We therefore use

them as a set of basis vectors describing the allowed directions of

motion around the folded state of a protein, and explore the

possibility that movement along a given mode can have an

independent functional relevance.

We have illustrated the role of independent degrees of freedom

in allostery for a toy protein in Figure 1. This protein has four

binding sites W, X, Y and Z, and we have included two normal

modes in the illustration, indicated by red and green arrows. The

green mode causes closing of site Z and opening of site X, and only

slight deformations of the other two sites. The red mode causes

opening of site X and closing of site Y. Small red and green arrows

indicate the deformation at each site for either mode. Site X and Y

both have high binding leverage under the red mode and sites X

and Z have high binding leverage under the green mode. This

means that the pairs X and Y and Z and X are allosterically

coupled, whereas the other pairs of sites are only weakly coupled

(indicated by the thickness of the lines crossing the protein,

connecting the corresponding sites). In practice, X could be a

catalytic site, Z an activator site and Y an inhibitor site. There is

only indirect competition between the effects of Z and Y, i.e. if an

activator is present at Z the effect of an inhibitor at Y might be

weaker, and vice versa. With other patterns of communication,

there can of course also be cases where activator and inhibitor

binding are mutually exclusive. Alternatively, if this protein was an

oligomer, X, Z and Y could be identical sites with positive or

negative binding cooperativity.

To quantify the strength of communication between two sites P

and Q, as described in the previous paragraph, we introduce the

leverage coupling DPQ. In the following, lower case roman indices (i, j )

will number residues, lower case greek indices (m, n) normal modes,

and upper case roman indices (P, Q ) sets of residues, such as probe

locations (see Methods) or biological binding sites. We denote the

binding leverage of probe location P due to normal mode m as LPm

(see Methods). The symbol DiP is 1 if residue i[P, and 0 otherwise.

The leverage lim for a given residue and normal mode is then

lim~

P
P

DiPLPm

P
P

DiP

:

This calculation is done because our simulations generate a

highly redundant set of probe locations, i.e. the denominator

above can be large. Similarly, for an arbitrary set of residues P, we

write

l�Pm~

P
i[P

lim

Pk k ,

where the norm of P is the number of elements in the set. Next, we

introduce the vector lP~ l�P1, . . . ,l�Pn

� �
, where n is the number of

modes considered. The scalar product

DPQ~lP
:lQ

is large only if the sets P and Q have high leverage for the same

normal modes. We will call the quantity DPQ the leverage coupling

between the two sites. For example, for the two normal modes in

Figure 1, DXY and DXZ are large, and DXW, DZY, DZW and DYW are

small. Similarly, the matrix CPQ~D2
PQ=DPPDQQ measures the

normalized leverage coupling and has the range 0#CPQ#1. Since

DPQ is based on normal mode vectors that represent infinitesimal

motion, and depends on the size of the probe used in the

calculation of LPm, the scale of leverage coupling values is arbitrary

and unique to each protein. We therefore always compare the

leverage coupling of specific sites to the average coupling between

the residues not belonging to any sites, i.e. the background

leverage coupling for a given structure.

Figure 1. Illustration of the concept of sites communicating
through leverage coupling.
doi:10.1371/journal.pcbi.1002301.g001

Author Summary

What are the molecular mechanisms of allosteric commu-
nication in proteins? We base our analysis on the
hypothesis that a folded protein has a number of
conformational degrees of freedom, which describe
fluctuations around the native conformation and switching
from/to functional states. Transitions between the protein
states involved in function and its regulation are based on
coherent conformational degrees of freedom. Motion of
one part of a protein along such a degree of freedom,
implies a correlated motion in other parts of the protein.
By determining which binding sites are simultaneously
affected by the same motion we find sites that are
allosterically coupled, i.e. where binding at one site can
cause a change in ligand-affinity at another. Leverage
coupling, the quantity introduced to measure this type of
connection, reflects allosteric communication between
different binding sites. We show how it can be used to
understand allostery in enzymes of different sizes as well
as in large protein complexes such as chaperones. Analysis
of leverage coupling provides guidance in targeting native
and latent regulatory sites.

Structural Basis for Allosteric Communication
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The leverage coupling DPQ gives a measure of the strength of

site-site coupling, but depends directly on the magnitude of

conformational change at the different sites. In molecular

machines like the chaperones, the conformational change at

binding sites is small compared to the large-scale functional

motions. Here, the measure CPQ can be used instead of DPQ to see

how binding sites are correlated with different modes of functional

motion. In this case we are interested in comparing the values

between different sites and look for the most correlated pairs of

sites for a given protein. The range of color bars in all figures

containing CPQ matrices is from 0 to 1, which reflects the span of

CPQ values. Finally, the special case where one of the sets only has

one residue can be used to see how one site couples to the rest of

the protein. We will denote this variant DPi, where P is the studied

site and the index i runs over all residues.

Analysis of allosteric enzymes
We study 15 enzymes regulated by ligand binding, 14 of which

were studied in our papers on binding leverage [15] and local

closeness [19]. The addition is the 20-meric enzyme GTP

cyclohydrolase I (GTPCHI), which is both activated and inhibited

allosterically by different substances [20,21]. These 15 enzymes

are supplemented by 5 additional proteins, to generalize the

analysis to other types of regulation and non-enzymes: Glycogen

phosphorylase (GP) is allosterically regulated by both phosphor-

ylation and ligand-binding [22]. The serine-protease thrombin is

allosterically regulated by sodium binding [23]. The type I

(GroEL-GroES) and type II (CCT, thermosome) chaperones are

molecular machines regulated by ATP binding and hydrolysis

[24]. The simulation parameters for the proteins discussed in the

main text are summarized in Table 1. The binding leverage was

calculated using the ten lowest frequency normal modes [15]. The

analysis of all the other proteins in this paper is based on the

calculations described in the above paper.

To begin with, we will briefly try to give the reader some

intuition of what the leverage profiles can look like and how they

relate to each other. The leverage profile similarity L�mn (defined in

Methods) for the 10 lowest frequency normal modes, excluding the

trivial first six modes, is plotted in Figure 2A for four different

proteins. A value of 1 indicates that the two corresponding modes

affect the exact same sites, and 0 that there is no overlap. Also

included in the same panel is the importance of each of these

normal modes, Lmm (see methods). Like for leverage coupling, the

scale of leverage profiles is arbitrary and only relative values are

relevant. For adenylate kinase (AdK), the most significant leverage

profiles correspond to modes 1, 2 and 3. Of these profiles, L1 and

L2 are very similar. Figure 2B shows that these two leverage

profiles peak at the same position, whereas the third is spread over

more residues. That the leverage profiles are similar means that

binding leverage is high for the same sites under the corresponding

normal modes, even though these modes are orthogonal. Also

included in the figure is the total binding leverage along the

sequence, which is the sum of lim over all modes m. Almost all

active site residues (involved in ATP and AMP binding) are

located at peaks in the total binding leverage.

Having verified that different sites have their highest binding

leverage for different normal modes, we move on to the analysis of

leverage coupling. Supplementary Figure S1 contains plots of the

leverage coupling matrix DPQ for the proteins not discussed in

detail in the main text. The figure illustrates that, with the

exceptions of ATCase and PTP1B, which we showed were difficult

to analyze with binding leverage [15], there is generally a stronger

coupling between at least some of the allosteric and active sites

(including homotropic communication) than between these sites

and the rest of protein. One can also see that some sites are more

strongly coupled than others are. We will however not analyze

these proteins in detail; instead, we will focus on a couple of

noteworthy cases.

The tetrameric enzyme phosphofructokinase (PFK) in Bacillus

stearothermophilus has one regulatory site where it is activated by

ADP binding and inhibited by phosphoenolpyruvate (PEP)

binding. The individual low frequency normal modes for this

protein are less similar to each other than for AdK and there are

also more modes that contribute significantly to binding leverage

(Figure 2A). In Figure 3 we display the leverage coupling DPQ for

the four effector sites (P = 1–4, ADP/PEP), the four active sites

(P = 5–8, F6P) and the remaining residues of the four chains

(P = 9–12, BG). As indicated by the color bars, the figure displays

values from 0 to the maximal value of leverage coupling measured,

in each matrix. Interactions between the effector sites dominate

the matrix, and interactions between effectors and active sites are

also strong, whereas interactions between the four active sites are

weak. The latter indicates that there could be cooperative binding

of effector but not of substrate. Experiments have shown that

substrate binding is only cooperative in the presence of PEP [25].

The normalized leverage coupling CPQ is high if the sites P and

Q have their peaks in binding leverage for the same modes. The

CPQ matrix in Figure 3 for PFK indicates that different sets of

modes affect the effector and active sites – the correlations are

strong within the two groups of sites, but weaker between them.

Table 1. Simulation parameters and results.

Protein PDB codes # residues Probe size # sim MC steps

AdK 4ake, 1ake 214 8 500 50 000

PFK 3pfk, 4pfk, 6pfk 1276 4 4 000 200 000

GFRP-GTPCHI 1wpl, 1is7, 1is8 2780 4 20 000 600 000

GTPCHI 1wpl (chains A–J) 1940 4 10 000 400 000

GP 1gpa, 1gpy, 1a8i 1594 4 8 000 400 000

Thrombin 1sgi, 1sg8 277 2 1 000 100 000

GroEL-GroES 1sx4 8014 4 30 000 1 500 000

CCT 3p9d 8370 4 30 000 1 500 000

Thermosome 1a6d, 1a6e 8040 4 30 000 1 500 000

‘‘# sim’’ refers to the number of simulations performed, i.e. the number of probe locations generated. ‘‘Probe size’’ refers to the number of atoms in the probe.
doi:10.1371/journal.pcbi.1002301.t001

Structural Basis for Allosteric Communication
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To demonstrate the validity of this interpretation we also included

the DPQ-matrices for four of the individual modes. The modes

were chosen from the dominating ones in Figure 2A. Modes 1 and

2 primarily affect the effector sites. Mode 1 also involves some

connections between effectors and substrate. Mode 4 essentially

only affects the active sites, and is probably responsible for any

(weak) substrate binding cooperativity. Mode 10 provides

relatively strong connections between the active site and the

allosteric site, and Figure 2A shows that this is the second most

important mode.

To illustrate the communication between sites we color the

surface of the protein by the leverage coupling between one site

and each residue of the protein, DPi (see Methods) in Figure 4, the

raw data can be found in Figure S2. The coloring in this figure,

and in similar ones below, uses cyan for DPi = 0, and magenta for

the maximal value of DPi over all residues i for a given site P, i.e.

the coloring gives the pattern of communication for a given site,

but no indication of coupling strength compared to other sites P.

The studied effector site in PFK communicates most strongly with

the other effector sites (Figure 4B), whereas the active site is

connected with the other active sites, as well as the allosteric site

(Figure 4C). This apparent asymmetry comes from the fact that

the interaction between effector sites is stronger than between

anything else, but the connection between the active site and the

effector site has approximately the same strength as the

connections between active sites. Noteworthy is also the fact that

neither site has any strong connections to sites other than the

functional ones.

GTPCHI catalyzes the first step in the production of

tetrahydrobiopterin (BH4) from GTP. It has positive coopera-

tivity with respect to GTP binding. Allosteric regulation depends

on the presence of the GTPCHI feedback regulatory protein

(GFRP). In combination with phenylalanine, GFRP reduces the

cooperativity of GTP binding, increasing the activity at low GTP

concentrations [20]. The GFRP-GTPCHI complex can also be

inhibited by BH4 [21]. Both BH4 and phenylalanine bind at

similar locations at the GTPCHI-GFRP interface. The archi-

tecture of the GFRP-GPTCHI complex is illustrated in

Figure 5B. GTPCHI is a homodecamer arranged in two

pentameric rings, and the regulatory GFRP pentamers bind

one to each ring.

Figure 3. DPQ and CPQ matrices for PFK. The single mode matrices
for PFK were calculated like DPQ but only using one normal mode. The
color runs from 0 (cyan) to the maximal measured value (white) for DPQ

and from 0 to 1 for CPQ.
doi:10.1371/journal.pcbi.1002301.g003

Figure 2. Leverage profile properties. (A) The matrix L�mn measuring
similarity between leverage profiles for different normal modes m and n,
for 4 of the proteins studied. The magnitude of the leverage profiles Lmm

are also plotted to indicate which are the most important modes. (B) The
total leverage profile and the three most important individual leverage
profiles for AdK (L1, L2, and L3). The average total binding leverage for
the residues at the active site are indicated by black circles.
doi:10.1371/journal.pcbi.1002301.g002

Structural Basis for Allosteric Communication
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We analyze three sites in the GFRP-GTPCHI complex, the

BH4 site (BH2 in the crystal structure), the phenylalanine site

(PHE) and the catalytic site (CAT). We define the catalytic site as

all residues interacting with the catalytic Zn, and also His-134 and

His-201 as defined in the catalytic site atlas [26]. The two allosteric

sites have overlapping locations at the GFRP-GTPCHI interface

and therefore have large mutual leverage coupling, as can been

seen in Figure 5A, but both also couple strongly to the active site.

The coupling between catalytic sites is not very strong in this

complex, which is consistent with the fact that GFRP and Phe

reduce cooperativity. To test the role of GFRP in modifying

cooperativity in terms of binding leverage we removed GFRP

from the structure and redid the calculations. The bottom two

panels of Figure 5A show the coupling between the 10 different

catalytic sites with and without GFRP. The effect is not very

strong, but it is clear that the GTPCHI catalytic sites in the

structure without GFRP are more strongly coupled compared to

the background, than in the structure with GFRP.

The connections DPi between one of the allosteric BH4-sites and

the rest of the protein are illustrated in Figure 5C (raw data in

Figure S3). Similarly, the coupling to one of the active sites, with

and without GFRP present, is shown in Figure 5D and E. In the

GFRP-GTPCHI complex the regulatory sites and their surround-

ing residues have the strongest leverage coupling, as was also seen

for the site-site coupling matrix DPQ. This figure however clearly

illustrates that communication with the ‘‘background’’ only

involves the surroundings of the effector binding sites, and does

not involve any other distinct sites.

Allosteric regulation involving metal binding and
phosphorylation

The concepts of binding leverage and leverage coupling can be

generalized to study other forms of allosteric communication.

Therefore, we consider cases of regulation involving metal binding

and phosphorylation.

We study glycogen phosphorylase (GP) as a case of allosteric

regulation via covalent modification. Glycogen phosphorylase has

two main conformations: the inactive dimeric T state and the active

tetrameric R state [22,27]. In addition, it has two forms, GPa and

GPb, where the former is phosphorylated at Ser14. Crystal

structures are available for both R and T state forms of GPa and

GPb, but the R state is favored for unliganded GPa, and the T state

for unliganded GPb. Both GPa and GPb are heterotropically

activated by AMP, and inhibited by ATP and other metabolites.

Upon phosphorylation, residues 1–20 become more ordered and

move to a new position, 30 Å or so away, as can be seen in Figure 6B.

Figure 4. Phosphofructokinase (PFK). All 3D structures in this paper were drawn with PyMol. (A) Structure of PFK (PDB entry 3pfk). The effector
ADP is drawn with orange spheres, and the substrate F6P with yellow spheres, ligand coordinates were taken from PBD entry 4pfk. (B) Leverage
coupling DPi between ADP site of one chain (lower right ADP) and the rest of the protein. The surface is colored in a gradient from cyan to magenta
where cyan represents the lowest measured value of DPi and magenta the highest value. (C) Same as (B) but for one of the F6P sites (lower right one).
doi:10.1371/journal.pcbi.1002301.g004

Structural Basis for Allosteric Communication
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In our calculations we use crystal structures of rabbit muscle

GP. PDB entry 1gpa, representing unliganded GPa, is used for

normal mode calculations; in addition we use T state GPb (1a8i)

and AMP-activated R state GPb (3e3n) to define different binding

sites. To be able to analyze phosphorylation using binding

leverage, we treat residues 10–20 as a peptide ligand binding at

two different sites, P1 (T state GPb) and P2 (R state GPa), and

calculate the normal modes without the 20 first residues. Figure 6A

shows DPQ for P1 and P2, and also the active (PLP) and allosteric

sites (AMP). It is clear that the connections are strongest between

P1 and the PLP site. There is an unexpectedly weak interaction

between the AMP and PLP site. Since P1 seems more important

than P2 we hypothesize that release of residues 1–20 upon

phosphorylation from P1 is more important for allostery than

binding to P2. The role of P1 is however somewhat uncertain

given that residues 1–20 are relatively disordered in GPb. The

connections are more or less symmetric between chains indicating

that phosphorylation of one chain can trigger a global conforma-

tional change. To illustrate the connections between the active site

and the rest of the protein we have drawn DPi for the active site in

Figure 6C and D (raw data in Figure S4). This figure clearly shows

strong connections between the active sites themselves and with

P1, but also towards one side of the dimer interface, opposite to

P2, which could contain latent allosteric sites.

We also analyzed yeast glycogen phosphorylase (yGP), which is

structurally very similar to rabbit muscle GP, but differently

regulated. The N-terminal strand in yGP is 40 residues longer

than in rabbit muscle GP. In the GPb form the strand binds to the

active site instead of P1, and in the GPa form it folds at the dimer

interface, at a position similar to P2 above [28]. The differences in

regulatory mechanism between these two proteins are thus

primarily due to the differing length of the N-terminal strand.

This strand is excluded in our calculations and we therefore do not

expect any qualitative differences between the two variants. We

analyzed yGP using the same parameters as above, based on PDB

entry 1ygp, having removed all residues before position 22 (using

the 1ygp numbering). We found that the leverage coupling

between the active site and the rest of the protein is essentially

identical to that of rabbit muscle GP, indicating that P1 is a latent

allosteric site in yGP (data now shown).

As an example of metal binding-induced allostery we study the

serine protease thrombin which is allosterically regulated by

sodium binding [23]. It is also controlled by two other allosteric

sites: exosite I (EX1) interacts with several different protein

partners, and exosite II (EX2) interacts with several polyanionic

substrates [23]. We divide the active site into three groups, the

catalytic triad (CAT) and two of the substrate recognition pockets

P2 and P4. The leverage coupling of this protein is shown in

Supplementary Figure S5. The binding leverage of the sodium site

is very low, and coupling to other sites weak. The sodium-induced

conformational change primarily involves side-chain rearrange-

ments, which are not modeled by our procedure. The concept of

Figure 5. GTP cyclohydrolase I (GTPCHI) with feedback regulatory protein (GFRP). (A) Top: the matrix DPQ for the whole protein. Bottom
left: selected sections of the top matrix. Bottom right: same section as left panel, but calculated for structure without GFRP. (B) Structure (1wpl). The
GTPCHI decamer is drawn in cyan, and the two GFRP pentamers in white. The inhibitor BH2 is drawn with orange spheres and the Zn at the catalytic
site in yellow. (C) Communication DPi between one BH2-site and the rest of the protein. The color scheme is the same as in Figure 4. (D)
Communication between one of the active sites and the rest of the protein. (E) Same as (D) but normal modes and docking calculations were done
without GFRP.
doi:10.1371/journal.pcbi.1002301.g005

Structural Basis for Allosteric Communication
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binding leverage could be expanded to include side-chains at a

significant computational cost. Single side-chain rearrangements

are however not expected to be modeled by low frequency normal

modes, which means that a more refined description of motions

would probably also be required to model the sodium regulation.

Analysis of chaperones
Above, we analyzed a set of enzymes, some of them very large

with up to 3 000 residues (GTPCHI-GFRP, ATCase and GDH),

and found that leverage coupling gives an understanding of

allosteric communication in these enzymes. To push the envelope

even further we will now move to the chaperonins, molecular

machines with about 8 000 residues. These large molecules are

quite challenging to study, the main bottleneck in our analysis

being the time required to generate the very large number of

probe locations needed, and the calculations took roughly 30–40

CPU hours for each chaperone on a modern desktop PC.

Chaperonins represent a different type of allostery compared to

the homo- and heterotropic regulation seen in enzymes. These

molecular machines cycle through a set of conformations to

provide a protected chamber for protein folding. ATP binding and

hydrolysis cause large conformational changes to facilitate

substrate capture, folding and release [24]. We will analyze and

compare the bacterial group I chaperonin (GroEL-GroES) and

eukaryotic and archaeal group II chaperonins (CCT, Thermo-

some) to investigate differences in regulatory mechanisms.

The concepts developed in this paper were designed to analyze

coupling between distinct ligand binding sites in enzymes, but,

given a regulatory site, we can detect which parts of the protein are

likely to have conformational change coupled to binding at that

site. When a domain is deformed, the domain itself does not have

high binding leverage, but many of the domain’s hypothetical

binding sites do. In this context binding leverage is therefore rather

a measure of the degree of deformation of a section of the protein.

By computing the leverage coupling DPQ for a site P and a domain

Q, we can see how binding at the site P couples to conformational

change in domain Q, making it possible to analyze allosteric

communication in molecular machines such as chaperones.

The GroEL-GroES chaperone consists of two heptameric rings

(GroEL) and a heptameric lid (GroES) attached to one of the

GroEL rings (see Figure 7). The ring closest to GroES is called the

cis-ring and the other the trans-ring. Each GroEL ring provides a

folding chamber. The functional cycle roughly goes through the

following steps [24,29]: After substrate has bound to one of the

open GroEL rings, ATP binds cooperatively to the GroEL ring

[30] and increases affinity for GroES [31]. GroES binding causes a

large conformational change increasing the volume of the cis

folding chamber and changing it from hydrophobic to hydrophilic

[24], allowing folding to take place [32]. ATP hydrolysis weakens

the affinity for GroES and when substrate and ATP have bound to

the trans ring GroES and substrate are released from the cis

subunit. In addition to intra-ring communication, there is also

inter-ring signaling, which (i) adjusts the trans ring to accept

substrate after cis ATP hydrolysis; (ii) leads to the ejection of cis

substrate as a result of trans ATP binding [33]; (iii) accelerates the

ejection of cis substrate by simultaneous binding of ATP and

polypeptide to the open trans ring [34]. According to cryo-EM

analysis, the equatorial domains play a key role in the inter-ring

signaling [35]. Here, we will study the allosteric communication

between the cis ATP sites and the rest of the protein.

Conformational changes in GroEL involve the equatorial,

intermediate and apical subdomains (see Figure 7). ATP binds to

the equatorial domain and GroES to the apical domain. ATP

binding controls the expansion of the folding chamber which takes

place when the intermediate domain swings away from the

equatorial domain. The apical domain follows the intermediate

domain in this motion, largely as a rigid body. ATP hydrolysis

mainly induces an increased flexibility of the intermediate and

apical domains [29], which probably explains the looser attachment

of GroES to GroEL-ADP7 than to GroEL-ATP7. ATP binding and

hydrolysis is positively cooperative within each ring and negatively

cooperative between the rings, providing tight ATP binding to only

one ring at a time [36]. Figure 8A shows the leverage coupling DPQ

and the normalized CPQ, for the ATP sites, the three subdomains of

the cis ring, the trans ring and GroES. The strongest connections are

between the chains of GroES. Second in strength are the

connections between the apical and intermediate domains and

GroES, and between the apical and intermediate domains

Figure 6. Glycogen phosphorylase (GP). (A) DPQ matrix with AMP
and PLP sites, plus the locations for the segment 1–20 in GPb (P1) and
GPa (P2). (B) Structure of GPa (1gpa). The segment 1–20 that moves
upon phosphorylation of Ser14 is green in the GPb form and red in the
GPa form. The slightly hidden coenzyme PLP and the substrate GLS are
drawn as yellow spheres. (C) and (D) Two views of the coupling DPi

between active site and the rest of the protein. The color scheme for DPi

is the same as in Figure 4.
doi:10.1371/journal.pcbi.1002301.g006
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themselves. The ATP site is also only weakly connected to the

protein, a result of the fact that the equatorial domain and the ATP

site undergo much smaller conformational change than the other

two domains. The normalized leverage coupling CPQ however

shows that the ATP site is more correlated with the apical and

intermediate domains than with the equatorial domain to which it

belongs. Correspondingly, there are strong correlations within the

trans ring, where the magnitude of leverage coupling is much lower.

The high degree of symmetry of the subsquare of the CPQ matrix

describing interactions between the ATP site and the intermediate

domain, and partly also the apical domain, is consistent with the

positive cooperativity observed for ATP binding within one ring.

Finally, there is a weaker correlation between the trans equatorial

and intermediate domains, and the cis ring, particularly between the

equatorial domains of either ring. These connections could be

involved in the negative cooperativity between the two rings.

We also analyzed the coupling DPi for one of the ATP sites, two

views of this measure are provided in Figure 7A (raw data in

Figure S7). The coloring indicates that the inside of the cis cavity,

the GroEL-GroES interface and the interface between apical and

intermediate domains are most strongly communicating with the

cis ATP site. There is hardly any connection to the trans ring.

These findings should be related to the fact that the main function

of ATP is to regulate the cis cavity and the interactions with

GroES, and also to the positive cooperativity of ATP binding.

The human chaperone CCT has a similar function to GroEL,

but does not utilize an analog to GroES. It consists of octameric

rings, with similar but non-identical chains, instead of heptameric

ones. It is also regulated by ATP binding and hydrolysis with steps

similar to those of GroEL [24]. ATP binding is not cooperative,

regulation has been described as sequential rather than concerted

[37]. This is also reflected in the fact that only a fraction of the 16

ATP pockets were populated in crystal structures (13 in the one we

use). The leverage-coupling matrix in Figure 8B shows that some

of the apical domains are strongly coupled to each other, but

coupling between intermediate domains is weaker. The normal-

ized leverage coupling matrix in the same figure, CPQ, indicates

that ATP has a weaker correlation with the apical and

intermediate domains in CCT than it does in GroEL. In this

plot the chains are ordered alphabetically, i.e. the first eight

elements along either axis for each domain (apical, intermediate,

equatorial) belong to the same ring, and the last eight to the other.

This means that for CCT, interactions between the rings are as

strong as within them, which is clearly different from what we saw

for GroEL where the trans ring was only weakly connected to the

rest of the protein. On the other hand, in CCT there is a greater

asymmetry in the allosteric connections within one ring than in

GroEL-GroES, in particular between the ATP site and the

intermediate domain. This asymmetry is seen from the anisotropy

of the different subsquares of the CPQ matrix, and is consistent with

the sequential regulation of this chaperone [37].

Figure 7B shows the leverage coupling DPi for one of the ATP

sites of CCT (raw data in Figure S7). As for GroEL-GroES

(Figure 7A), the ATP site is more strongly connected to the inside

of the cavity than the outside, but in this case the pattern is

relatively symmetric between the rings. The strongest deviation

from symmetry, and also the strongest visible leverage coupling, is

to a nearby interface between intermediate and apical domains

(magenta area in the middle panel of Figure 7B).

The archaeal thermosome is homologous to CCT, but has a

higher degree of symmetry than CCT [38]. The results of the

analysis of this protein can be found in Figures S6 and S7. The

leverage coupling DPQ and the normalized CPQ in Figure S6A

shows a pattern similar to CCT; the communication between

Figure 7. Chaperones GroEL-GroES and CCT. (A) Left: Structure of GroEL-GroES colored by the different domains (PDB entry 1sx4). Middle and
right: surface and cross-section of GroEL-GroES displaying coupling between one ATP site and the rest of the protein DPi. ADP molecules are
displayed as orange spheres throughout. The ATP site used for the calculation is the second one from the left in the present view of the cis ring (B)
Left: Structure of CCT chaperone (PDB entry 3p9d) with subdomains and ligands colored analogously to GroEL-GroES. Middle and right: DPi for the
second ATP site from the left in the upper ring. The color scheme for DPi is the same as in Figure 4.
doi:10.1371/journal.pcbi.1002301.g007
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apical domains is strong, and ATP is more strongly connected to

the intermediate domain than the equatorial domain. The

thermosome however displays a higher degree of symmetry (as

indicated by the uniformity of subsquares in the matrices). The DPi

surfaces for one of the ATP sites in Figure S6B also shows a higher

degree of symmetry than for CCT; in particular, the coupling to

the neighborhood of the studied site is not stronger than to the rest

of the protein. The difference in the symmetry of DPi is especially

clear when comparing the two corresponding curves in Figure S7.

Symmetry is usually associated with positive cooperativity: the

difference in symmetry between CCT and the thermosome might

therefore reflect a difference in cooperativity, within the rings.

Comparing to previous computational works [11,12,29,39,40],

we analyze allosteric communication between subunits in

complete structures of both group I and group II chaperonins. It

allows us to detect symmetry in the interactions between subunits

of the cis ring of GroEL-GroES and its absence in CCT. We show

that leverage coupling helps to understand positive cooperativity in

the cis ring and negative cooperativity in the inter-ring

communication in GroEL-Gro-ES, non-cooperative mechanism

in human CCT, as well as positive intra-ring cooperativity in

archaeal thermosome.

Discussion

Despite the almost half-century long studies of allostery, the

majority of the works represents analysis of individual proteins (or

groups of homologs) and mechanisms of allostery characteristic for

individual structures. In this work, we sought a structural

characteristic that can be used to understand allosteric commu-

nication in proteins of different types and sizes, from small single-

domain proteins to large multi-chain oligomers and chaperones.

We resort here to the thermodynamic aspect of allosteric

regulation, where the conformational equilibrium between

different structural states and their relative stability determine

allosteric communication between sites and effect of regulation.

We developed the concept of leverage coupling based on the idea

that long-range communication between allosteric sites can be

mediated by coherent motion along independent conformational

degrees of freedom. We have studied the allosteric regulation of a

number of proteins controlled by ligand binding, phosphorylation,

or metal binding. The analysis has provided new insight into the

allosteric mechanisms involved. Two approaches to the problem

have been applied, first an analysis of known biological sites, to see

how they are connected to each other, and how coupling between

them compares to the background. Second we have selected

specific sites and analyzed how these are coupled to the rest of the

protein, thus being able to identify important functional regions of

the protein, that are communicating with these specific sites, and

in some cases see how different sites are coupled to different parts

of the protein.

We began our analysis by showing that leverage coupling

largely captures the important connections in a number of

Figure 8. Site-site communication in chaperons. (A) Matrices DPQ and CPQ for GroEL-GroES complex. Equatorial, intermediate and apical
domains are marked CE, CI, CA and TE, TI, TA for the cis and trans rings respectively. (B) Similar to (A) but for CCT. All 16 subunits have been divided
into three subdomains, but there were only 13 ATP analogs bound to the crystal structure.
doi:10.1371/journal.pcbi.1002301.g008
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enzymes, and exemplified this for phosphofructokinase (PFK) and

GTP cyclohydrolase I (GTPCHI). We also showed that the role of

GFRP in regulating homotropic cooperativity in GTPCHI was

described well by leverage coupling. In the case study of allostery

by phosphorylation in glycogen phosphorylase, we found indica-

tions that the active sites had high leverage coupling with the site

where the unphosphorylated N-terminal segment binds (in a low

temperature crystal structure), and hypothesize that the release of

this segment upon phosphorylation causes the functional regula-

tion. Allosteric regulation by metal binding in thrombin can

however not be explained by leverage coupling, at least not in the

coarse-grained version employed here. Finally, we have demon-

strated that leverage coupling can be used to analyze allosteric

communication in three different chaperones, and captures the

differences in cooperativity between CCT and GroEL-GroES. We

were able to describe allosteric communication between structural

subunits providing positive cooperativity within each ring and

negative cooperativity between the rings via inter-ring communi-

cation.

The concept of allosteric communication mediated by collective

degrees of freedom, as presented here, is based on our

understanding of the physical principles determining protein

dynamics. Using normal modes and coarse-grained docking

simulations is a crude approximation of these principles – a

complete description of the processes involved requires a statistical

mechanics analysis based on a reliable energy function and proper

conformational sampling. However, our analysis is successful in

identifying communicating pairs of sites in the majority of the

studied proteins, supporting our assumption that allosteric

regulation relies on coherent conformational changes of oligomer-

ic proteins and their domains. We have furthermore demonstrated

that different regulatory sites have different patterns of commu-

nication (see for instance the difference between active and

allosteric sites in PFK), which are determined by motion along

independent structural degrees of freedom, in our case different

normal modes. This finding gives strong support to the idea that

the ability of particular sites to couple to certain modes of motion,

and not others, as illustrated in Figure 1, can provide directed and

differential allosteric communication and regulation. We have thus

moved beyond the framework defined by the classical KNF and

MWC models, both in that we propose a molecular mechanism

for connecting different sites, and in that we are able to predict and

identify many functional sites. Using normal modes to represent

independent conformational degrees of freedom, we find that

these motions can be used not only to describe the allosteric

transition geometrically – as many have done before – but also to

explain allosteric connections between different binding sites and

to identify latent allosteric sites. Novel allosteric connections

predicted by leverage coupling can be used as targets in

experimental inhibitor/activator design.

Methods

The calculation of binding leverage involves two main steps,

generation of possible ligand conformations through coarse-

grained Monte Carlo simulations, and analysis of the generated

binding sites with respect to motions deduced from one or more

crystal structures [15]. Probe conformations in which the probe is

highly stressed, under a given protein motion, have high binding

leverage. Binding leverage models allostery based on the

assumption that binding to sites where ligand-protein interactions

are connected to important degrees of freedom can affect the

conformational equilibrium. We used binding leverage to rank

probe locations (defined below) and found that high-ranking probe

locations matched active and allosteric sites in a wide range of

proteins. Here, we will give a brief overview of the procedure,

which was described in detail previously [15].

Ligand binding is simulated with a completely fixed Ca-

representation of the protein chain and a freely moving probe

ligand in the form of a peptide with one or more Ca-atoms. The

probe and protein interact via a square well potential which is

attractive for Ca-Ca distances between 5.5 and 8 Å. Distances

shorter than 4.5 Å are forbidden. Potential binding sites, called

probe locations, are generated by running a number of short

docking simulations. A probe location is defined as the residues

interacting with the probe at the end of a given simulation.

Binding leverage measures the ability of a probe ligand to resist a

given motion, for example that of a normal mode. A spring is

placed between all residue pairs in a probe location whose

interconnecting lines pass through the ligand. The binding

leverage of a probe location is then calculated as the total change

in spring potential energy U due to a given motion, i.e.

LPm~
X

k

DUkm,

where summation is over all springs, and the additional index m
numbers the motion vectors used, i.e. one leverage is calculated for

each vector. If more than one motion is considered the binding

leverage can be summed to a total binding leverage for the probe

location.

Ca normal modes were calculated using MMTK with default

parameters for all cases [41]. For the large proteins GTPCHI,

GroEL-GroES, CCT and the thermosome we used the Fourier-

basis approximation [42], in all other cases vibrational modes are

used.

The binding leverage lim of residues i under mode m (defined in

the main text) can be grouped into leverage profiles

Lm~ l1m, . . . ,lmm

� �
, where m is the number of residues. We write

the scalar product between two profiles as

Lmn~Lm
:Ln:

The magnitude Lmm of a leverage profile indicates the

importance of the corresponding normal mode in the total

binding leverage, and the normalized scalar product

L�mn~
Lmnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LmmLnn

p

is close to one when the corresponding modes involve the same

binding sites, and close to zero when the overlap is small.

Supporting Information

Figure S1 Leverage coupling DPQ for the proteins not described

in the main text. The data is based on our work on binding

leverage, where simulation parameters for the respective proteins

can be found [15]. The label ‘‘BG’’ corresponds to the

background, which is an average leverage coupling calculated

over all residues not belonging to any site. The other abbreviations

designate allosteric and functional sites, using the three letter codes

found in the PDB-files for ligands binding at those sites.

Anthranilate synthase (1i7s): BEZ/PYR - substrate; ILG -

substrate; TRP - inhibitor. ATCase (3d7s): ATP and CTP -

effectors; PAL - substrate. DAHPS (1gg1): PGA - substrate; PHE -
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inhibitor. G6PD (1cd5): 16G - activator; AGP - substrate. GDH

(1nr7): ADP - activator; GLU - substrate; GTP - inhibitor; NDP -

coenzyme. NADME (1gz3): ATP – active site ligand; FUM -

activator. PGDH (1yba): AKG - substrate; NAD - coenzyme; SER

- inhibitor. PTP1B (2hnp): 892 - inhibitor; BPM - substrate.

SSUPRT (1xtt): CTP - inhibitor; U5P - substrate. Threonine

synthase (1e5x): LLP - coenzyme; SAM - activator. Tryptophan

synthase (1bks): G3H - substrate; IDM - substrate; PLP -

coenzyme; SRI - substrate. The color runs from 0 (cyan) through

magenta to the maximal measured value (white).

(TIFF)

Figure S2 The leverage coupling DPi for PFK, for one of the

ADP sites, and one of the F6P sites (same as in Figure 4B and C).

The filled circles indicate the residues binding either substance (in

all four chains).

(EPS)

Figure S3 The leverage coupling DPi for GTPCHI with and

without GFRP, as in figure Figure 5C, D and E, but also including

an analysis of one of the regulatory phenylalanine binding sites

(third panel).

(EPS)

Figure S4 The leverage coupling DPi for glycogen phosphory-

lase, analyzed for the active site (PLP), the regulatory AMP site,

and the two sites P1 and P2 (described in main text).

(EPS)

Figure S5 The leverage coupling DPQ for thrombin.

(TIFF)

Figure S6 Leverage coupling analysis of the thermosome,

similar to Figure 7 and Figure 8 for the other chaperones. The

coloring of the protein surfaces indicates DPi for one of the ATP

sites, using the same scheme as in Figure 4.

(TIFF)

Figure S7 Leverage coupling DPi for the three chaperones,

analyzed for one of the 14 or 16 ATP sites in each protein.

(EPS)
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