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Abstract

Background: Primary hyperparathyroidism (PHPT) is characterised by increased production of parathyroid hormone (PTH)
resulting in elevated serum calcium levels. The influence on bone metabolism with altered bone resorption is the most
studied clinical condition in PHPT. In addition to this, patients with PHPT are at increased risk of non-skeletal diseases, such
as impaired insulin sensitivity, arterial hypertension and increased risk of death by cardiovascular diseases (CVD), possibly
mediated by a chronic low-grade inflammation. The aim of this study was to investigate whether adipose tissue reflects the
low-grade inflammation observed in PHPT patients.

Methodology/Principal Findings: Subcutaneous fat tissue from the neck was sampled from 16 non-obese patients with
PHPT and from 16 patients operated for benign thyroid diseases, serving as weight-matched controls. RNA was extracted
and global gene expression was analysed with Illumina BeadArray Technology. We found 608 differentially expressed genes
(q-value,0.05), of which 347 were up-regulated and 261 were down-regulated. Gene ontology analysis showed that PHPT
patients expressed increased levels of genes involved in immunity and defense (e.g. matrix metallopeptidase 9, S100
calcium binding protein A8 and A9, CD14, folate receptor 2), and reduced levels of genes involved in metabolic processes.
Analysis of transcription factor binding sites present in the differentially expressed genes corroborated the up-regulation of
inflammatory processes.

Conclusions/Significance: Our findings demonstrate that PHPT strongly influences gene regulation in fat tissue, which may
result in altered adipose tissue function and release of pathogenic factors that increase the risk of CVD.
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Introduction

Primary hyperparathyroidism (PHPT) is one of the most

common endocrine disorders [1]. Worldwide PHPT is most often

seen in postmenopausal women [2] and in Scandinavia the

prevalence was found to be higher than 2% in elderly women

[3,4]. The diagnosis of PHPT is biochemically determined by

increased serum parathyroid hormone (PTH) levels leading to

increased concentrations of serum calcium. 85% of the cases of

PHPT are caused by a single, benign parathyroid adenoma.

Parathyroidectomy cures 90–95% of these patients, measured by

normalisation of PTH and calcium levels [5]. Elevated PTH levels

exert a well-described effect on bone metabolism, leading to

increased bone turnover and osteoporosis. Parathyroidectomy

reduces markers of bone turnover and increases bone density [6].

In the last decades there has been a shift in the clinical findings in

patients with PHPT. Due to improved diagnostic procedures and

analytical methods, mild PHPT is now often discovered in routine

health controls. Classical findings such as skeletal lesions and

nephrolitiasis have become rare.

Metabolic changes observed in patients with PHPT include

impaired insulin sensitivity, elevated LDL-cholesterol, decreased

HDL-cholesterol, and elevated circulating inflammatory markers

such as high-sensitive C-reactive protein and tumor necrosis

factor-alpha [7]. An increased risk of cardiovascular diseases

(CVD) in patients with PHPT has been reported [8]. In line with

this, patients with PHPT were shown to have an increased risk of

hypertension [9,10] and impaired glucose tolerance [11]. CVD

seems to be more evident in patients with severe PHPT, but also

PTH levels within the upper part of the normal range is associated

with an increased incidence of CVD [12]. Chronic low-grade

inflammation in PHPT may play an important role in the

development of CVD in these patients, since inflammation is a key

component in the pathogenesis of atherosclerosis [13].

Adipose tissue is an important endocrine organ with crucial

functions in the regulation of energy homeostasis, insulin

sensitivity, and lipid and carbohydrate metabolism [14]. Others

and we have described that adipose tissue in obesity shows a

marked increase in the expression of inflammatory genes and

release of adipocytokines [15,16]. To our knowledge the function
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of adipose tissue has not been described in patients with PHPT.

Through global gene expression profiling we identified potential

risk genes with differential expression in subcutaneous adipose

tissue of non-obese PHPT patients compared to a weight-matched

control group. The most pronounced finding was an up-regulation

of inflammatory genes in PHPT patients while genes with

functions in fatty acid and carbohydrate metabolism were down-

regulated.

Materials and Methods

Ethics statement
The study war performed according to the principles expressed

in the declaration of Helsinki and all enrolled subjects signed an

informed written consent. The Western Norway Regional

Committee for Medical Research Ethics (REK) approved the

study.

Subjects and study design
The study included 16 patients (14 females and 2 males)

undergoing surgery for PHPT and 16 control subjects (11 females

and 5 males) operated for benign thyroid hypertrophy. Subjects

were recruited in the period from September 2007 to September

2009. Subcutaneous adipose tissue was obtained from the neck at

the beginning of the surgery. All patients were operated at the

Department of Endocrine Surgery, Haukeland University Hospi-

tal, Bergen, Norway. The diagnosis of hyperparathyroidism was

based on elevated serum PTH (ref. range: 1.3–6.8 pmol/L) and

ionised calcium levels (ref. range: 1.13–1.28 mmol/L). Exclusion

criteria were body-mass index (BMI).29 kg/m2 and any kind of

known systemic inflammatory disease, such as inflammatory bowl

disease, rheumatological diseases and chronic obstructive lung

disease. Weight, height and medical history were recorded before

surgery.

Biochemical analysis
Blood samples were drawn the day before surgery from all

PHPT patients and within the first day after operation from the

control subjects. Ionised calcium, phosphate, creatinine, total

cholesterol, HDL-cholesterol and LDL-cholesterol were analysed

immediately by standard laboratory methods. PTH was measured

with a two-site chemiluminescent immunometric assay for intact

PTH (Immulite 2000, Siemens, UK). The inter-assay variation

was 6.3% at a concentration of 5.6 pmol/L and 8.8% at 40 pmol/

L.

Homogenisation and RNA extraction
Biopsies of subcutaneous adipose tissue obtained during surgery

were immediately frozen and stored in liquid nitrogen until

homogenisation and RNA extraction. Frozen adipose tissue was

transferred into 2 ml safe-lock eppendorf tubes with rounded

bottom. A 5 mm metal bead (Millipore, USA) and one ml quiazol

lysing buffer (Qiagen, Germany) were added and homogenisation

in a TissueLyser (Qiagen) followed immediately. RNA extraction

was performed using the RNeasy Lipid Tissue Midi Kit (Qiagen).

Samples were treated with the RNase-Free DNase Set and the

RNeasy MiniElute Cleanup Kit (Qiagen). Amount and quality of

the extracted RNA were measured by the NanoDropH ND-100

spectrophotometer (NanoDrop Technologies, USA) and the

Agilent 2100 Bioanalyzer (Agilent Technologies, USA).

Microarray analysis
Microarray analysis was performed using the Illumina Human-

Ref-8 v.3 Expression BeadChips, which targets about 24,500

annotated RefSeq transcripts and covers 18,631 unique curated

genes. In total, 32 microarrays from 16 biological replicates,

respectively 16 patients and 16 controls, were performed. 370 ng

of total RNA was used for the Illumina TotalPrep Amplification

Kit (version 27.07.09, Applied biosystems/Ambion, USA) to

generate biotin-labelled, amplified RNA. Quality of labelled

cRNA was measured using the NanoDropH ND-100 spectropho-

tometer and the Agilent 2100 Bioanalyzer. 750 ng biotin-labelled

cRNA was used for hybridisation to gene-specific probes on the

Illumina microarrays (product number BD-102.0203) according to

the Whole-Genome Gene Expression Direct Hybridization Assay

Guide (Illumina Inc, Nov 2006). The Illumina arrays were then

scanned with the iScan Reader, based on fluorescence detection of

the biotin-labelled cRNA. The Illumina microarray data are

MIAME compliant and the raw data have been deposited in the

database ArrayExpress (ArrayExpress accession: E-TABM-1119).

Analyses were performed at the Norwegian Microarray Consor-

tium (NMC) Core Facility, University of Bergen, Norway.

Microarray data extraction and analysis
Raw data were imported into the GenomeStudio Data Analysis

Software and quality controls were performed. Seven different

control categories were built into the Whole-Genome Gene

Expression Direct Hybridization Assay system, covering every

aspect of an array experiment. Looking at the technical controls in

GenomeStudio, one of the samples (sample C-111, a male control)

had a different distribution of signals in several control plots, such

as the box plot visualising the variation within an array and

between arrays, the line plot of detected genes, the line plot of

noise and the line plot of labelling control across samples. All

samples were included in further quality control, outlier detection,

and pre-processed using the J-Express software version 2009

(MolMine, Norway) [17]. Quality control and analysis in this

software was done on log2-transposed data. Correspondence

Analysis [18] and hierarchical clustering with Pearson Correlation

as a distance measure were used on both the un-normalised and

quantile normalised dataset [19]. The Correspondence Analysis

plot was used to look for greatest co-variance in the dataset.

Sample C-111 was an outlier in the un-normalised dataset in the

Correspondence Analysis plot, and together with the outlier

detection of control probes in GenomeStudio we decided to

exclude this sample before further analysis.

Significance Analysis of Microarrays (SAM) [20] was used to

look for differentially expressed genes, which were defined by q-

value,0.05. Protein Analysis Through Evolutionary Relationships

(PANTHER) (version 6.1, http://www.pantherdb.org) was used to

organise differentially expressed genes in categories representing

biological processes and molecular functions. We looked for over-

representation of differentially expressed genes in such categories,

relative to the expected representation in the whole genome. The

Bonferroni correction for multiple testing was used in the

calculation of p-values for the over-represented PANTHER

categories.

Validation of microarray data by qPCR
Nine genes of interest were selected for validation of the

microarray results by quantitative real time PCR (qPCR). qPCR

analyses were performed on all samples included in the study. The

SuperScript Vilo cDNA Synthesis Kit (Invitrogen GmbH,

Germany) was used for cDNA synthesis, followed by qPCR with

the LightCycler480 Probes Master kit and the LightCycler480

rapid thermal cycler system (Roche Applied Science, USA). Probes

and primers for target genes (Table 1) were designed using

Univeral ProbeLibrary (UPL) Assay Design Center (Roche

PHPT and Inflammatory Changes in Adipose Tissue
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Applied Science), software version 2.45. For genes with more than

one transcript variant (CD14 and FOLR2), primers and probes

were designed to cover all variants. The UPL human TATA box

binding protein (TBP) Gene Assay (Roche Applied Science) was

used for the reference gene. Target genes were amplified in duplex

with TBP except for IL8, CD14 and SCD since duplex affected

the amplification efficiency of their transcript. Instead, expression

levels were calculated relative to the mean TBP concentration

from four of the duplex runs. Data analysis was performed using

PASW Statistics 18 for Mac and the statistical package provided in

Excel (Microsoft). To assess differences between the two groups we

used the Mann-Whitney U Test. All tests were two-sided and

p,0.05 was considered to be statistically significant.

oPOSSUM binding site analysis
To analyse which transcription factors might regulate the

differentially expressed genes, we uploaded the lists of up- and

down-regulated genes to the oPOSSUM program online (http://

www.cisreg.ca/cgi-bin/oPOSSUM/opossum) [21]. oPOSSUM

uses a database of conserved transcription factor binding sites

(TFBS), and calculates significance values (Z-score and Fisher

score) for over-representation of TFBS in a list of co-expressed

genes. Transcription factors for which there are more binding sites

in the co-expressed genes than expected are over-represented. A

list of transcription factors predicted to regulate a significant

number of the co-expressed genes was retrieved. Top 10% of

conserved regions, 80% matrix match threshold, Z-score.5 and

Fisher score ,0.05 were chosen as output parameters (vertebrate

matrix).

Results

General data of the study population
The analysis included 31 individuals, thereof 16 PHPT patients

and 15 controls. Characteristics of the study population are listed

in Table 2. All patients had elevated serum PTH concentrations

due to a parathyroid adenoma. Six months after surgery all

patients had normalised serum PTH and ionised calcium levels.

One patient had serum PTH of 3.8 pmol/L (ref. range 1.3–

6.8 pmol/L). This patient had an elevated serum ionised calcium

level of 1.45 mmol/L (ref. range: 1.13–1.28 mmol/L), osteoporo-

sis and an adenoma in one of the parathyroid glands localised by

ultrasonography and scintigraphy. The diagnosis of an adenoma

in the parathyroid gland was histologically confirmed after

extirpation of the gland. Six months after operation this patient

had serum PTH of 2.8 pmol/L and serum ionised calcium was

normalised at 1.24 mmol/L. All control subjects had serum PTH

and calcium within the normal reference range. None of the

patients or controls had known diabetes mellitus or atherosclerotic

disease. Six of the patients with PHPT and one patient in the

control group used medication for hypertension.

To adjust for the influence of age and sex on our results we

selected a group of patients and controls including only females

aged 27–65 years. In the age- and gender-adjusted group the

average age for patients (n = 9) was 52.8 years (range 28–64) and

48.4 years (range 30–60) for controls (n = 9) (p = 0.4). In the

subgroup there were not statistically significant differences in

phosphate (p = 0.2) and ALP (p = 0.067). LDL-cholesterol was

significantly higher in patients (3.660.44 mmol/L) than in

controls (2.860.63 mmol/L) (p = 0.022). Levels of TSH, FT4,

creatinine, cholesterol and HDL-cholesterol were not different

between the groups.

Shift in global gene expression in PHPT patients
Microarray analysis revealed a difference in the adipose tissue

gene expression in patients with PHPT compared to controls.

Correspondence analysis showed that the two groups were

separated by distinct gene expression patterns, where the first

principal component represented 8.83% of the total variance and

the second principal component 6.69% (Fig. 1). Using Significance

Analysis of Microarray (SAM), we found 608 differentially

expressed genes with q-value,0.05, thereof 347 up-regulated

and 261 down-regulated genes in PHPT patients compared to the

control group. Several of the most up-regulated genes have

previously been implicated in inflammatory diseases whereas

many of the down-regulated genes play roles in lipid and

Table 1. Primers used in this study.

GeneBank ID Genes PCR primers (59-39) Probe nr (UPL) Product size (bp)

NM_004797.2 AdipoQ AGG GTG AGA AAG GAG ATC CAG
TCC TTT CCT TTG GAT T

41 113

NM_002982.3 CCL2 AGT CTC TGC CGC CCT TCT
GTG ACT GGG GCA TTG ATT G

40 93

NM_000591.2 (tv 1) NM_0010400211 (tv 2) CD14 GTT CGG AAG ACT TAT CGA CCA T
ACA AGG TTC TGG CGT GGT

74 95

NM_013402.4 FADS1 TCT CTC CTG ATT GGA GAA CTG TG
CCG GAA CTC ATC TGT CAG C

26 81

NM_004104.4 FASN CAG GCA CAC ACG CTG GAC
CGG AGT GAA TCT GGG TTG AT

11 92

NM_000803.4 (tv 1) NM_001113534.1 (tv 2)
NM_001113536.1 (tv 3) NM_001113535.1 (tv 4)

FOLR2 CTA TGA GTG CTC ACC CAA CCT
CCA GGA AGC GTT CTT TGC

81 74

NM_000584.2 IL8 AGA CAG CAG AGC ACA CAA GC
ATG GTT CCT TCC GGT GGT

72 62

NM_004994.2 MMP9 GAA CCA ATC TCA CCG ACA GG
GCC ACC CGA GTG TAA CCA TA

6 67

NM_005063.4 SCD CCT AGA AGC TGA GAA ACT GGT GA
ACA TCA TCA GCA AGC CAG GT

82 65

UPL, Universal ProbeLibrary probes (Roche Applies Science); tv, transcript variant.
doi:10.1371/journal.pone.0020481.t001
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carbohydrate metabolism (Table 3). Analysing the data including

only females aged 27–65 years we found 162 differentially

expressed genes with q-value,0.05. Of these, 113 genes were

up-regulated and 49 genes were down-regulated. Correspondence

Analysis of this age-matched subgroup showed equally marked

differences in gene expression, with first and second principle

component variance of 11.38% and 9.851%, respectively.

Increased inflammatory response and reduction of
metabolic processes

To gain further insight into the potential functions of the

differentially expressed genes, we analysed their ontology based on

PANTHER functional categories (Fig. 2). Analysis of the up-

regulated genes showed that the Biological Process categories

Immunity and defense (e.g. S100 calcium binding protein A9

(S100A9, Entrez gene 6280), S100 calcium binding protein A8

(S100A8, Entrez gene 6279), CD14 molecule (CD14, Entrez gene

929)) and Signal transduction (e.g. integrin, beta2/CD18 (ITGB2,

Entrez gene 3689), macrophage receptor with collagenous

structure (MARCO, Entrez gene 8685)) were strongly over-

represented in the PHPT patients compared to controls. Analysing

the down-regulated genes in PHPT patients we found an over-

representation of the Biological Process categories Lipid, fatty acid

and steroid metabolism (e.g. fatty acid synthase (FASN, Entrez

gene 2194), stearoyl-CoA desaturase (SCD, Entrez gene 6319)),

Coenzyme and prosthetic group metabolism (e.g. acetyl-CoA

carboxylase alpha (ACACA, Entrez gene 31), enoyl Ca-A hydratase

domain containing 1 (ECHDC1, Entrez gene 55862)), and

Carbohydrate metabolism (e.g. aldolase C, fructose-bisphosphate

(ALDOC, Entrez gene 230), citrate synthase (CS, Entrez gene

1431)). Over-represented Molecular Function categories for the

up-regulated genes included Defense/immunity protein (Comple-

ment component (e.g. CD55 molecule (CD55, Entrez gene 1604),

complement factor B (CFB, Entrez gene 629)), Immunoglobulin

receptor family member (e.g. leukocyte immunoglobuline-like

receptor, subfamily B, member 5 (LILRB5, Entrez gene 10990),

TYRO protein tyrosine kinase binding protein (TYROBP, Entrez

gene 7305)), Extracellular Matrix (e.g. matrix metallopeptidase 9

(MMP9, Entrez gene 4318), collagen, type VIII, alpha 2 (COL8A2,

Entrez gene 1296)), and Receptors (e.g. CD14, folate receptor 2

(FOLR2, Entrez gene 2350), colony stimulating factor 1 receptor

(CSF1R, Entrez gene 1436)). For the down-regulated genes there

Table 2. Anthropometric and biochemical measurements of the PHPT patient and control groups.

PHPT
(n = 16, 14 female)

Control
(n = 15, 11 female)

Median (IQR) Median (IQR) P-value

Age (years) 60.0 (49.3–69.2) 47.0 (38.0–56.0) 0.01

BMI (kg/m2) 25.4 (23.5–27.2) 25.0 (22.9–26.9) 0.78

PTH (1.3–6.8 pmol/L) 11.5 (9.6–15.6) 3.3 (2.1–4.2) ,0.001

iCa (1.13–1.28 mmol/L) 1.47 (1.41–1.54) 1.24 (1.21–1.25) ,0.001

Phosphate (0.85–1.50 mmol/L) 0.87 (0.70–1.01) 1.08 (0.91–1.23) 0.02

ALP (35–105 U/L) 93.0 (74.0–119) 68.0 (51.5–82.0) 0.01

TSH (0.4–4.5 mIE/L) 1.40 (0.75–1.82) 1.12 (0.57–1.83) 0.90

FT4 (9.5–22.0 pmol/L) 16.6 (15.2–18.1) 17.8 (15.3–19.1) 0.45

Creatinine (45–90 umol/L) 60.5 (52.8–63.8) 69.5 (54.5–78.3) 0.24

Cholesterol (3.3–6.9 mmol/L) 5.6 (5.1–5.9) 4.7 (4.2–6.2) 0.23

LDL-cholesterol (1.8–5.7 mmol/L) 3.6 (3.2–3.9) 2.9 (2.5–3.9) 0.13

HDL-cholesterol (1.0–2.7 mmol/L) 1.5 (1.2–2.4) 1.5 (1.2–1.7) 0.68

Reference values are shown in parentheses. P-values are based on Mann-Whitney U test. PHPT, primary hyperparathyroidism; Control, patients operated for benign
thyroid disease without known parathyroid or inflammatory disease; IQR, interquartile range; BMI, body-mass index; iCa, ionised calcium; APL, alkaline phosphatase;
TSH, thyroid stimulating hormone; FT4, free thyroxin; LDL-cholesterol, low-density lipoprotein cholesterol; HDL-cholesterol, high-density lipoprotein cholesterol.
doi:10.1371/journal.pone.0020481.t002

Figure 1. Correspondence analysis showing projection of
samples. Patients with primary hyperparathyroidism are shown with
red dots and the control group are shown with blue squares. The first
principal component shows the largest variance in the dataset with
8.83% and the second principal component represents the second
largest variance with 6.69%. Patients with primary hyperparathyroidism
are separated from the control group along both axes.
doi:10.1371/journal.pone.0020481.g001
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was an over-representation of the Molecular Function groups

Lyase (e.g. carbonic anhydrase (CA4, Entrez gene 762), malic

enzyme 1 (ME1, Entrez gene 4199)) and Oxidoreductase (e.g.

SCD, Entrez gene 6319, FASN, Entrez gene 2194).

In principle the same categories of genes were differentially

expressed in the age-matched group of females aged 27–65 years

as in the entire dataset. Differentially up-regulated genes were

represented in the Biological Process groups Immunity and

defense and Signal transduction, and several of the up-regulated

genes in the whole group were also found significantly up-

regulated in the subgroup (e.g. S100A9, S100A8, MMP9, CD14

and LILRB5). As for the main group, the down-regulated genes in

the age-matched group were dominated by genes mapped to

metabolic processes, including lipid metabolism. Genes that were

differentially expressed in the main group showed similar mean

fold changes in the age-matched subgroup, though many of the q-

values for differentially regulated genes in the subgroup were

above 0.05. Possibly, the lack of significance for specific genes in

the age-matched subgroup may have been due to the reduced

sample size.

Validation of results by qPCR
The expression levels of nine selected genes of interest were

validated by real time qPCR (Table 4). The five up-regulated

genes (chemokine ligand 2 (CCL2, Entrez gene 6347), CD14,

FOLR2, IL8 and MMP9) were selected as representative genes of

inflammatory processes and the three down-regulated genes (fatty

acid desaturase 1 (FADS1, Entrez gene 3992), FASN and SCD) were

selected as representative genes of fatty acid and steroid

metabolism. In addition, adiponectin (ADIPOQ, Entrez gene

9370) was measured to verify a gene that was unchanged between

the patient and control group. Adiponectin is an adipokine that is

specifically expressed in and released from mature fat cells, and

that negatively correlates with BMI, insulin resistance, inflamma-

tion, and atherosclerosis [22]. The qPCR results were highly

consistent with the microarray results, showing significant

differences in expression for these genes between patients and

controls, except for adiponectin that was unchanged between the

groups (Table 4).

Analysis of transcription factor binding sites
To elucidate the transcriptional networks altered in the PHPT

group, we used the web-based program oPOSSUM to identify

frequent transcription factor binding sites in the differentially

expressed genes. Analysis of up-regulated genes showed a

significant enrichment of binding sites for the ETS class of

transcription factors (Spi-B transcription factor (Spi1/PU.1

related), GA binding protein transcription factor (GABPA), ETS

domain-containing protein Elk-1 (ELK1)), the basic leucine zipper

domaine (bZIP) transcription factor activator protein 1 (AP-1/

FOS), and the nuclear receptor RAR-related orphan receptor A

(RORA) (Z-score.5, Fischer score ,0.05) (Table 5). For the

down-regulated genes, there was a significant enrichment of

binding sites for the nuclear receptors estrogen receptor alpha

(ESR1) and hepatocyte nuclear factor 4, alpha (HNF4A), members

of the CTH2 zinc finger family (Myeloid zinc finger 1 (MZF1),

Sp1 transcription factor (SP1), ras responsive element binding

protein 1 (RREB1)), and the REL transcription factor NF-kappaB

Table 3. Top 10 up-regulated and down-regulated genes in patients with PHPT compared to controls, based on Significance
Analysis of Microarrays (SAM-analysis) (q-value,0.05).

Signal Intensity FC

Gene Definition PHPT Ctr PHPT/Ctr

S100A9 S100 calcium binding protein A9 (calgranulin B) 2429 699 3,13

S100A8 S100 calcium binding protein A8 (calgranulin A) 2367 660 2,97

MMP9 matrix metallopeptidase 9 647 229 2,55

CCL8 chemokine (C-C motif) ligand 8 2187 941 2,31

CSF3R colony stimulating factor 3 receptor (granulocyte), transcript variant 4 653 290 2,25

TYROBP tyrosine kinase binding protein, transcript variant 1 1917 693 2,20

ALOX5AP arachidonate 5-lipoxygenase-activating protein 2476 940 2,16

CCL13 chemokine (C-C motif) ligand 13 824 387 2,16

THBS1 thrombospondin 1 2133 1068 2,13

CD163 CD163 molecule, transcript variant 2 1295 450 2,11

FADS1 fatty acid desaturase 1 627 1461 22,18

CD300LG CD300 molecule-like family member g 6838 9423 21,76

KIF25 kinesin family member 25, transcript variant 1 394 598 21,74

ALDOC aldolase C, fructose-bisphosphate 6331 8326 21,72

SCD stearoyl-CoA desaturase (delta-9-desaturase) 18728 27771 21,68

CA4 carbonic anhydrase IV 2516 3334 21,66

THBS4 thrombospondin 4 2738 3779 21,66

PPP1R1B protein phosphatase 1, regulatory (inhibitor) subunit 1B, transcript variant 2 2320 3908 21,66

GPIHBP1 glycosylphosphatidylinositol anchored high density lipoprotein binding protein 1 2882 3732 21,65

ATP1A2 ATPase, Na+/K+ transporting, alpha 2 (+) polypeptide 1107 1722 21,60

PHPT, primary hyperparathyroidism; Ctr, patients operated for benign thyroid disease without known parathyroid or inflammatory disease; FC, fold change (based on
log-transformed data).
doi:10.1371/journal.pone.0020481.t003
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Figure 2. Functional categorization of differentially expressed genes (Biological Process and Molecular Function). Gene expression in
subcutaneous adipose tissue in patients with primary hyperparathyroidism was compared to a control group. Over-represented Biological Processes
categories and Molecular Function categories among the differentially expressed genes (q-value,0.05) were found using PANTHER. Bonferroni
correction for multiple testing was done and a p-value,0.01 was used as inclusion criterion for categories. The colour intensity displays the statistical
significance (2log p-value) of over- and under-represented PANTHER functional categories. Numbers in the table presents the percentage of genes
mapping to a given category, e.g. 23% of the 347 up-regulated genes belonged to the Biological Process category Immunity and defense. The overall
distribution of a term among all human NCBI genes (25,431) are stated in the first column, e.g. 5% of the genes are expected to map to the Biological

PHPT and Inflammatory Changes in Adipose Tissue
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(Table 5). The microarray analysis showed that the mRNA levels

of the transcription factors themselves were not significantly

altered in PHPT patients compared to controls.

Discussion

Patients with PHPT are at increased risk of CVD, which may be

due to a chronic low-grade inflammation. In the present study we

investigated the gene expression profile of PHPT patients in

subcutaneous adipose tissue from the neck. Our results indicate

that patients with PHPT have inflammatory and metabolic

changes in their adipose tissue.

Pro-inflammatory stimuli alter the expression of adhesion

molecules on the endothelium, mediating endothelial attachment

of circulating lymphocytes and monocytes and initiating early steps

of atherosclerotic lesions [23]. It has previously been shown that

the subcutaneous adipose tissue in morbidly obese bariatric

patients expresses high levels of inflammatory genes, particularly

in stromal vascular cells [15,16]. Adipose tissue releases several of

these inflammatory factors in obese subjects, which may contribute

to elevated blood levels and diseases pathogenesis. Thus, it is

possible that the inflammatory changes we have observed in

adipose tissue of PHPT patients may result in increased circulating

levels of pro-inflammatory factors, thereby increasing the risk of

CVD.

S100A8 and S100A9 were the most up-regulated genes in the

adipose tissue of PHPT patients compared to controls. These

genes belong to a subgroup of the S100 family termed

calgranulins, which are highly expressed in monocytes. Calgranu-

lins mediate the induction of neutrophil chemotaxis and adhesion

and have an important role in tissue inflammation [24]. Elevated

levels of calgranulin are found in a wide range of acute and

chronic inflammatory diseases such as rheumatoid arthritis,

inflammatory bowl disease and asthma as well as in cancer [25].

It has been shown that calcium-mediated signalling is necessary for

the release of S100A8/A9 [26], suggesting that their expression

and possible release from adipose tissue may be increased due to

elevated calcium levels in PHPT patients.

Several genes encoding the complement cascade were up-

regulated in PHPT patients, including complement component 1

(C1) and the s-, q- and r- subcomponents of C1. The complement

cascade comprises more than 30 proteins produced by various cell

types, mainly hepatocytes but also monocytes and macrophages in

various tissues. Activation of the complement cascade is often

antibody-mediated, although antibody-independent mechanisms

can act as initiators. Cleavage of C1 into C1Q, C1R and C1S

further activates the cascade. This complement activation leads to

production of biologically active molecules contributing to

inflammation [27].

In our study MMP9 was one of the most up-regulated genes in

adipose tissue in PHPT patients compared to controls. Matrix

metallopeptidases (MMPs) are a family of zinc-dependent

endopeptidases involved in the degradation and reorganisation

of extracellular matrix [28]. Elevated circulating levels of MMP-9

may play a role in the development of hypertension [29] and

increased risk of death by CVD [30]. Moreover, MMP-9 has been

implicated in atherosclerosis and atherosclerotic plaque stains

positive for MMP-9 by immunhistochemistry [31]. In one study of

473 subjects, blood levels of MMP-9 were associated with grade of

atherosclerosis in the femoral artery [32]. The increased

expression of MMP9 in the adipose tissue of PHPT patients may

potentially contribute to the elevated risk of CVD.

An altered expression of monocyte/macrophage-related genes

appears to be a hallmark of adipose tissue inflammation. Several

studies have demonstrated an increased infiltration of pro-

inflammatory macrophages in adipose tissue in obese patients,

which may largely underlie the pathogenic potential of adipose

tissue [15,33]. Interestingly, our results indicate an increased

Table 4. Validation of selected genes by qPCR.

Illumina, Signal Intensity qPCR, Target gene/TBP

PHPT
(n = 16)

Control
(n = 15) q-value

PHPT
(n = 16)

Control
(n = 15) P-value

Median Median Median (range) Median (range)

ADIPOQ 2512 3182 0.191 1.69 (0.66–2.59) 1.75 (1.29–2.88) 0.252

CCL2 1404 638 0.066 0.54 (0.10–12.89) 0.19 (0.06–0.92) 0.016

CD14 2092 909 ,0.001 1.00 (0.25–3.22) 0.35 (0.18–0.72) ,0.001

FADS1 627 1461 0.029 0.45 (0.05–2.29) 1.18 (0.16–3.96) 0.040

FASN 19111 28686 0.028 2.35 (0.61–9.21) 4.58 (1.33–8.0) 0.016

FOLR2 970 423 0.054 0.47 (0.09–1.29) 0.15 (0.04–0.56) 0.001

IL8 307 190 0.109 1.02 (0.01–84.96) 0.08 (0.01–5.25) 0.022

MMP9 647 229 ,0.001 3.33 (0.22–11.54) 0.53 (0.06–2.51) 0.001

SCD 18728 27771 0.028 0.35 (0.05–1.75) 0.70 (0.19–2.13) 0.030

Signal intensity measured by Illumina and median values of target genes relative to the control gene TATA-binding protein (TBP) is shown. P-values are based on Mann-
Whitney U test. PHPT, primary hyperparathyroidism; Control, patients operated for benign thyroid disease without known parathyroid or inflammatory disease; q-value,
adjusted p-values found using an optimised false discovery rate (FDR) approach.
doi:10.1371/journal.pone.0020481.t004

Process category Immunity and defense, hence this category is significantly over-represented among the up-regulated genes in patients with PHPT
compared to controls. Ref, Reference (based on all human NCBI genes); PHPT patients with primary hyperparathyroidism; Ctr, patients operated for
benign thyroid disease without known parathyroid or inflammatory disease; Arrow up, up-regulated/higher expressed genes in patients with PHTP
compared to controls; Arrow down, down-regulated/less expressed genes in patients with PHPT compared to controls.
doi:10.1371/journal.pone.0020481.g002
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macrophage activity in the adipose tissue of PHPT patients.

Macrophage related genes that were up-regulated in PHPT

patients included CCL2 /MCP-1 (monocyte chemoattractant

protein 1), FOLR2 and CD14. CCL-2 acts as an important

chemotactic substance that induces infiltration of monocytes into

adipose tissue [34]. CD14 is expressed on monocytes/macrophag-

es, and activated macrophages also express an increased level of

the FOLR2 [35]. The analysis of transcription factor binding sites

present in the differentially expressed genes suggested that many of

the up-regulated genes in PHPT might be targets of the ETS

transcription factors, which have an important role in the

regulation of inflammation [36]. Although mRNA levels of the

transcription factor themselves are not up-regulated in PHPT

patients compared to controls, the increase in genes with

promoters containing binding sites for certain transcription factors

possibly indicates an altered regulation by these factors. The ETS

factors SpiB (PU.1 related) and PU.1 bind to almost identical ETS

binding sites [37]. PU.1 may play an important role in the

macrophage-related signalling cascades [38]. Binding sites for the

cFOS/AP-1 transcription factor were also increased in our patient

group. It has been shown that the engagement of cFOS to binding

sites in macrophages up-regulates the expression of pro-inflam-

matory genes [39]. Together, our findings suggest that macro-

phage activation and infiltration contributed to the adipose tissue

inflammation in the PHPT patients.

Along with the increased inflammation, our results indicate that

metabolic processes are down-regulated in the adipose tissue of

PHPT patients. Both anabolic and catabolic pathways of lipid

metabolism seemed to be influenced. Our data suggest that

adipose tissue expression of genes that are important for normal

metabolic functions (e.g. SCD, FASN and FADS1) may be reduced

in patients with PHPT. Genes encoding lipogenic enzymes such as

FASN and ACACA are regulated by the transcription factors sterol

regulatory element binding proteins (SREBP) [40]. However,

mRNA levels of these transcription factors were not significantly

changed in adipose tissue of patients with PHPT compared to the

control group. It is worth noting that some of the metabolic genes

that were down-regulated in the main group have been linked with

altered insulin sensitivity and risk of CVD. Mice with a disruption

in SCD-1 (stearoyl-CoA desaturase 1) have reduced adiposity,

resistance to diet-induced weight gain, reduced hepatic steatosis,

and increased insulin sensitivity [41]. Despite the metabolically

beneficial effects, these mice developed atherosclerosis, possibly

due to a macrophage inflammatory response in the artery wall

[42]. In humans an increased SCD activity in adipose tissue was

found to correlate with enhanced insulin sensitivity [43]. Reduced

mRNA levels of FASN in human visceral adipose tissue were

shown to correlate with higher BMI and increased metabolic

dysfunction, as measured by elevated values of HbA1c, glucose

levels, triglyceride and homeostasis model assessment (HOMA-IR)

[44]. Together, the observations suggest that down-regulation of

metabolic genes in PHPT patients may confer, or at least reflect,

metabolic dysregulation.

The mechanisms that promote the altered gene expression

profile in PHPT patients may involve a combined effect of

elevated levels of PTH and calcium. Our gene expression data

showed that adipose tissue expresses the PTH receptor, suggesting

that PTH may directly induce inflammatory genes and metabolic

changes in adipose tissue. A direct action of PTH on 3T3-L1

adipocytes showed a dose-dependent decrease in insulin-stimulat-

ed glucose uptake [45]. Stimulation of osteoblasts with PTH leads

to an up-regulation of inflammatory proteins including interleu-

kins [46] and MMP-9 [47]. Microarray analyses performed on

parathyroid gland tissue, cultured in hypo- or hypercalcemic

medium, revealed a number of genes that were consistently up-

regulated or down-regulated [48]. Some of these calcium-induced

genes, such as CCL8, were similarly affected in patients with PHPT

in the present study. MMP9 and CFB were down-regulated in the

parathyroid gland tissue cultured in hypercalcemic medium, while

these genes were up-regulated in the adipose tissue of patients with

PHPT. This could be due to a suppression of PTH in the

hypercalcemic cultured tissue, rather than an effect of the elevated

calcium level [48]. Furthermore, the inflammatory and metabolic

responses in adipose tissue of PHPT patients may have been, at

least in part, secondary to the influence of PTH and calcium on

other tissues.

Table 5. Enrichment of transcription factor binding sites in the differentially expressed genes.

TF TF Class TF Supergroup BG hits BG non-hits TG hits TG non-hits Z-score
Fisher
score

TF binding site in upregulated genes

SPIB ETS vertebrate 13162 1988 274 28 15.02 0.026

GABPA ETS vertebrate 5381 9769 122 180 7.85 0.046

RORA_1 Nuclear receptor vertebrate 7024 8126 161 141 5.43 0.010

FOS bZIP vertebrate 9677 5473 208 94 5.22 0.041

ELK1 ETS vertebrate 10697 4453 229 73 5.02 0.026

TF binding sites in down-regulated genes

ESR1 Nuclear receptor vertebrate 439 14711 13 226 7.79 0.025

ELK1 ETS vertebrate 10697 4453 189 50 6.91 0.002

MZF1_1-4 Zn-finger, C2H2 vertebrate 13090 2060 216 23 6.90 0.041

SP1 Zn-finger, C2H2 vertebrate 9192 5958 170 69 6.36 0.001

NF-kappaB REL vertebrate 5960 9190 111 128 6.19 0.016

HNF4A Nuclear receptor vertebrate 5541 9609 112 127 5.92 0.001

RREB1 Zn-finger, C2H2 vertebrate 817 14333 20 219 5.69 0.037

TF, transcription factor; BG, background gene (expected randomly); TG, target gene.
doi:10.1371/journal.pone.0020481.t005
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A potential confounder in our study is that the patient group

was not perfectly age-matched with the control group. Inflamma-

tion and metabolic changes could possibly be influenced by age.

However, when analysing the microarray and qPCR data on age-

matched subgroups we found the same patterns of differential gene

regulation. Another limitation of the study is that circulating

inflammatory markers or biochemical parameters indicating

insulin resistance were not available. This could have given

additional information concerning the changes observed in this

study. It should also be noted that the control group consisted of

patients operated for benign thyroid diseases. For ethical reasons

these patients were the healthiest group possible to obtain as

controls for our study.

Our findings highlight potentially important non-skeletal effects

of elevated PTH levels in patients with PHPT. In recent years the

importance of increased cardiovascular risk factors in these

patients has been discussed. Our study shows highly significant

alterations in gene expression in adipose tissue of PHPT patients

compared to controls in regards to inflammatory and metabolic

processes. The data suggest an increase in monocyte/macrophage

activation in the adipose tissue. Elevated PTH and calcium may

directly mediate the alterations in adipose tissue gene expression,

which may in turn promote the release of pathogenic factors. Our

data shed new light on inflammatory and metabolic alterations in

adipose tissue in patients with PHPT that are independent of BMI,

and which may confer increased risk of CVD.
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