
Conserved BK Channel-Protein Interactions Reveal
Signals Relevant to Cell Death and Survival
Bernd Sokolowski1*, Sandra Orchard2., Margaret Harvey1., Settu Sridhar3, Yoshihisa Sakai1

1 Otology Laboratory, Department of Otolaryngology – Head and Neck Surgery, University of South Florida, College of Medicine, Tampa, Florida, United States of America,

2 European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom, 3 Department of Informatics,

University of Bergen, Bergen, Norway

Abstract

The large-conductance Ca2+-activated K+ (BK) channel and its b-subunit underlie tuning in non-mammalian sensory or hair
cells, whereas in mammals its function is less clear. To gain insights into species differences and to reveal putative BK
functions, we undertook a systems analysis of BK and BK-Associated Proteins (BKAPS) in the chicken cochlea and compared
these results to other species. We identified 110 putative partners from cytoplasmic and membrane/cytoskeletal fractions,
using a combination of coimmunoprecipitation, 2-D gel, and LC-MS/MS. Partners included 14-3-3c, valosin-containing
protein (VCP), stathmin (STMN), cortactin (CTTN), and prohibitin (PHB), of which 16 partners were verified by reciprocal
coimmunoprecipitation. Bioinformatics revealed binary partners, the resultant interactome, subcellular localization, and
cellular processes. The interactome contained 193 proteins involved in 190 binary interactions in subcellular compartments
such as the ER, mitochondria, and nucleus. Comparisons with mice showed shared hub proteins that included N-methyl-D-
aspartate receptor (NMDAR) and ATP-synthase. Ortholog analyses across six species revealed conserved interactions
involving apoptosis, Ca2+ binding, and trafficking, in chicks, mice, and humans. Functional studies using recombinant BK
and RNAi in a heterologous expression system revealed that proteins important to cell death/survival, such as annexinA5, c-
actin, lamin, superoxide dismutase, and VCP, caused a decrease in BK expression. This revelation led to an examination of
specific kinases and their effectors relevant to cell viability. Sequence analyses of the BK C-terminus across 10 species
showed putative binding sites for 14-3-3, RAC-a serine/threonine-protein kinase 1 (Akt), glycogen synthase kinase-3b
(GSK3b) and phosphoinositide-dependent kinase-1 (PDK1). Knockdown of 14-3-3 and Akt caused an increase in BK
expression, whereas silencing of GSK3b and PDK1 had the opposite effect. This comparative systems approach suggests
conservation in BK function across different species in addition to novel functions that may include the initiation of signals
relevant to cell death/survival.
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Introduction

BK channels are involved in a diversity of physiological

processes such as metabolism, signaling, phosphorylation, regu-

lation of neurotransmitter release, and modulation of smooth

muscle contractions (reviews in [1]). They are activated by the

cooperative effects of two distinct stimuli, membrane depolariza-

tion and the elevation in concentration of free cytoplasmic Ca2+.

The channels assemble as tetramers of pore-forming a-subunits,

with the enclosing transmembrane topology (S1, S2, S3, S4)

responsible for sensing voltage changes and the pore forming loop

structure (S5, S6) conducting K+ ions [2]. In addition to the

transmembrane domains, the BKa subunit has an extensive

cytoplasmic C-terminus (S7, S8, S9, S10), containing many

phosphorylation sites [3,4], two K+ conducting regulator (RCK1

and RCK2) domains, a string of aspartate residues known as the

Ca2+ bowl, and leucine zipper, heme, and caveolin binding motifs

(reviews in [5]).

The molecular mechanisms that regulate BK channel behavior

in the cochlea remain unclear. In the mammalian cochlea, BK

channels are localized basally in synaptic zones of inner (IHC) and

outer hair cells (OHC) and extrasynaptic zones located near the

apical portion of IHCs [6]. In non-mammals, BK channels are

found in close proximity to voltage-gated Ca2+ channels, where

they facilitate frequency tuning [7]. BK channels are involved in

noise-induced hearing loss [8], potentially through activation of

ROS pathways by the BK channel and associated proteins like

SOD, glutathione peroxidase, and GSTm [9]. The past decade has

revealed an unexpected number of protein-protein interactions

that basically modify our view of the localization and functional

association of previously identified intracellular proteins. The

functional interactions of BK channels with their associated

proteins are no exception. The pore-forming and C-terminus

domains of BK contain several protein kinase and phosphatase

binding motifs that associate with a number of partners to regulate

channel gating and signaling pathways. These effectors include
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cAMP-dependent protein kinase A (PKA), c-Src, proline-rich

tyrosine kinase 2 [5], cGMP-dependent PKG [10], PKC [11], and

Ca2+-dependent phospholipid-binding protein [12]. Moreover, the

BK leucine zipper region serves as an anchor for the regulation of

BK by a PKA-associated complex [5].

To define and compare BK cellular functions, we performed a

highly sensitive mass spectrometry analysis of BK complexes

isolated from chick cochlea, followed by validation using reciprocal

coimmunoprecipitations (coIPs), bioinformatics, and BK/BKAP

functional associations using partial knockdown by siRNAs.

Conservation of chick BKAPs was phylogenetically compared

with mouse [9] and other vertebrate and non-vertebrate data, by

using interactome and ortholog analyses. Major hubs in the BK

interactome suggested novel insights into BK-partners, pathways,

and cellular processes. Here, we report that there is some overlap

in BKAPs found in mouse and chicken. Moreover, BK is involved

with proteins and pathways of a survival/apoptotic nature. Some

of these proteins are conserved phylogenetically and likely serve a

purpose related to the mediation of cell death and/or survival.

Materials and Methods

Ethics Statement
Experiments described herein were approved by the University

of South Florida Institutional Animal Care and Use Committee

(Protocols 3931R, 3482R) as set forth under the guidelines of the

National Institutes of Health.

Coimmunoprecipitation and 2-D gels
A total of 12 cochleae were excised from 15 day-old chicks

(Gallus gallus) and sonicated in lysis buffer supplemented with

protease/phosphatase inhibitors, as described previously [9].

Isolation of the membrane/cytoskeletal fraction was accomplished

by centrifuging the lysate at 100 k6g for 1 h at 4uC, removing the

cytosolic fraction, and solubilizing the pellet with 1% ASB-14

(Calbiochem), which proved to be the most effective in isolating

membrane proteins [9]. Fractions were pre-cleared briefly with

protein G beads (Invitrogen) and each fraction was set aside for

analyses of the total and BK-immunoprecipitated proteomes.

Controls for the latter included the use of an irrelevant antibody of

the same type (polyclonal antibody to vesicular stomatitis virus,

Bethyl Laboratories, Montgomery, TX) and unbound beads.

Immunoprecipitation using a polyclonal antibody to BKa
(Chemicon, Temecula, CA) was performed using the immuno-

complex-capture method, as described previously [9]. Briefly, after

capture, beads were washed several times and complexes eluted

for subsequent isoelectric focusing (IEF) using pH 3-10 immobi-

lized pH-gradient (IPG) strips (Bio-Rad, Hercules, CA). Proteins

were fractionated in the second dimension by SDS-PAGE with

12% gels, Coomassie-stained, and molecular weights approximat-

ed using Precision Plus (Bio-Rad) as the protein standard. Spot sets

were processed, compared and selected for analysis as described

previously [9]. Results from at least two of four replicate

experiments were sent for MS analysis.

Mass Spectrometry
Tandem mass spectrometry sequencing was achieved using an

Agilent Technologies (Santa Clara, CA) 1100 liquid chromato-

graph coupled to an HCT Ultra mass spectrometer (Moffitt

Proteomics Facility, Moffitt Cancer and Research Center, Tampa,

FL), as described previously [9]. Briefly, peptides were captured

and analyzed using 5 mm SB-Zorbax C-18-packed columns on an

Agilent Protein ID Chip (G4240-62002). Samples were loaded at

the rate of 4 ml/min followed by LC-MS/MS at 300 gl/min. Five

spectra were acquired for each scan and prior precursors were

excluded for 60 s.

DataAnalysis software (v. 3.4 Bruker Daltonic GmBH, Bremen,

Germany) was used to generate peaklists. Sequences were assigned

using the MASCOT search engine (v.2.1.03, Matrix Science,

Boston, MA) against the National Center for Biotechnology

Information non-redundant database (NCBInr 2006.12.05) select-

ed for bony vertebrates (276,256 entries). The details included

accession number, MASCOT score, number of peptides matched,

molecular weight, sequence coverage, e-value, delta, score, rank,

charge, number of missed cleavages, p value, and peptide

sequences. Precursor mass tolerance was 62.5 Da (monoisotopic)

and fragment ion tolerance was 60.8 Da (monoisotopic). No fixed

modifications were selected and variable modifications consisted of

carbamidomethylation (C), carboxymethylation (C) and oxidation

(M). A maximum of two missed tryptic cleavages was allowed.

Peptide assignments were manually verified by inspection of the

tandem mass spectra and consistency with expected gas phase

fragmentation patterns. Scaffold (v. 01 07 00, Proteome Software,

Portland, OR) was used to validate MS/MS peptides and for

protein identification (ID). A 95% confidence level was assigned

for the score values of individual spectra and peptides were

selected as specified by the Peptide Prophet algorithm. In addition,

a false discovery rate was determined for the obtained spectra by

sampling the file against a reversed database of bony vertebrates

using Scaffold for the analysis.

Database Analyses
The search for additional proteins (i.e., secondary) that interact

with primary BKAPs was performed using the Envision tool (www.

ebi.ac.uk/enfin-srv/envision) to search the molecular interaction

database IntAct (www.ebi.ac.uk) [13], a central repository of

manually curated literature data generated by many different

experimental techniques. Colocalization data (e.g., cosedimenta-

tion) were not included in the final results. Interaction networks

were visualized, modeled, and analyzed using Cytoscape (www.

cytoscape.org) [14]. Proteins in the network were labeled

according to UniProtKB nomenclature and color-coded according

to the fraction from which they were obtained (membrane/

cytoskeleton vs. cytoplasmic) as well as the database (i.e., IntAct)

and subcellular localization.

Clusters of Orthologous Groups Analyses
Primary and secondary BKAP interactions, for both chicken

and our recently published mouse data [9], were analyzed for their

conservation of interacting Clusters of Orthologous Groups

(iCOGs) across six eukaryotic species including, E. cuniculi, S.

cerevisiae, A. thaliana, C. elegans, D. melanogaster, and H. sapiens. Protein

IDs in UniProt nomenclature were converted to their correspond-

ing euKaryotic Orthologous Group ID (KOG_ID) by searching

the STRING (string-db.org/) database. If either or both proteins

of a pair were not identifiable by a KOG, they were removed from

the list. Each KOG_ID, of an interacting protein pair, was used to

search the NCBI KOG protein database, for a corresponding

KOG cluster [15] using BLASTO [16]. The database was

searched for the presence/absence of each KOG_ID among the

aforementioned six species and a matrix table generated to

determine conservation. Values were assigned as follows: 0 if

neither of the pair was found, 0.5 if one of the pair was found, and

1 if both members were present. Scores for all six species were used

as input to generate three dendrograms (chick, mouse, chick/

mouse interologs) using R language to geneate a heatmap (http:

//www2.warwick.ac.uk/fac/sci/moac/students/peter_cock/r/

heatmap).

Conserved BK Protein-Protein Interactions
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Reciprocal Coimmunoprecipitation
This procedure was accomplished using chick cochleae as

described previously [17], with the appropriate antibody (Table

S1) to 14-3-3c, annexin A5 (Anxa5), CTTN1, glucose-related

protein 78 (GRP78), hippocalcin1 (Hpcal1), heat shock protein

(HSP) 60, 70, and 90, lamin A (LMNA), lin-7 homolog C (Lin7c),

PHB, ras-proximate 1 (RAP1), synaptosomal-associated protein 25

(SNAP25), superoxide dismutase 1 (SOD1), VCP, and STMN.

Briefly, 2.5–6 mg of antibody was used in the immunocomplex-

capture technique. Immunocomplexes were eluted from protein G

beads by heating at 70uC for 10 min in sample buffer (Sigma-

Aldrich, St. Louis, MO). Following fractionation on 10% SDS-

PAGE gels and transfer to nitrocellulose membrane (Protran BA;

Schleicher & Schuell, Keene, NH), blots were probed with an anti-

BKa polyclonal antibody (Chemicon) at 1:275, followed by

donkey anti-rabbit HRP-conjugated secondary antibody at

1:5000 (Amersham, Piscataway, NJ). The positive control

consisted of immunoprecipitating BK using 6 mg of anti-BK

antibody, whereas negative controls included preadsorption of

antibody with antigen and uncomplexed beads. Immunoreactive

bands were developed using enhanced chemiluminescence (ECL;

Amersham) and Magic Mark XP (Invitrogen, Carlsbad, CA) was

used as the protein standard to estimate relative mobilities.

Six mg of a polyclonal anti-BK antibody (Chemicon) was used to

coIP Akt1, GSK3b, or PDK1. To probe for Akt1, a western blot

was performed with a rabbit monoclonal anti-Akt1 antibody at

1:1000 followed by a mouse anti-rabbit secondary antibody (Cell

Signaling Technology, Beverly, MA) at 1:2000. GSK3b immuno-

blotting was performed with an anti-GSK3b antibody at 1:1000

followed by a monoclonal anti-rabbit light-chain-specific second-

ary antibody (Jackson ImmunoResearch, West Grove, PA) at

1:5000. PDK1 immunoblotting was performed with an anti-PDK1

antibody at 1:750 followed by the same secondary used for

GSK3b at 1:5000. Additionally, each of these three proteins was

immunoprecipitated for comparison to the coIP using BK. To

immunoprecipitate each protein Akt1, GSK3b, and PDK1 were

used in amounts of 0.52, 12, and 5 mg, respectively, followed by a

western blot as described above. The same amounts were used for

a reciprocal coIP of BK followed by immunoblotting with an anti-

BK antibody at 1:150 followed by a donkey anti-rabbit HRP-

conjugated secondary antibody at 1:5000 (Amersham).

HA-tagging of a BKa Splice Variant from Chick Cochlea
A tandem hemagglutinin- (HA) tagged cSlo1 (a-subunit, DEC

type, Acc. No. U23821) vector was constructed using pcDNA3.1-

cSlo1 as a PCR template. The forward primer, 59-CGCGGATC-

CACCATGGGAT ACCCTTACGACGTTCCTGATTACGC-

TTACCCTTACGACGTTCCTGATTACGCTATGAGTAAC-

AATATCAACGCCAA-39, included a BamHI (59) site and a

tandem HA-tagged sequence for linkage to the N-terminus of BK-

DEC. The reverse primer, 59- CGCGGATCCCCTGAGTTC

TCCACCAAATGT-39, was set for the cSlo1 BamHI site. PCR

(MJ Thermocycler, Bio-Rad) was accomplished using Taq DNA

polymerase (Invitrogen) under the following conditions: 94uC for

2 min, 35 cycles at 94uC for 30 sec, 55uC for 30 sec, 68uC for

2 min, and a final cycle at 72uC for 10 min. The PCR product

was purified (PCR Purification Kit, QIAGEN, Valencia, CA) and

cut with BamHI (New England Biolabs, Ipswich, MA) at 37uC
overnight. This fragment was gel-purified (StrataPrep DNA gel

extraction kit, Stratagene, Santa Clara, CA) and ligated to the

BamHI site of pcDNA3.1-cSlo1 using T4 ligase (Roche, India-

napolis, IN). All primers were acquired from Integrated DNA

Technologies (San Diego, CA).

BKAP siRNA Studies
Prior to initiating these experiments, a manual review of the

literature showed that partial knockdown of these RNAs was not

lethal to the cell. RNAi experiments used custom-designed siRNAs

to target endogenous 14-3-3c, Anxa5, c-actin, LMNA, VCP,

SOD, Akt1, PDK1, and GSK3b (Stealth Select RNAi, Invitro-

gen). Negative controls consisted of scrambled RNAs (scRNA) for

low-, medium-, and high-GC content RNAi. Transfections were

performed using 8 ml/plate of Lipofectamine2000 (Invitrogen),

1 mg of HA-tagged cSlo/pcDNA 3.1 and pooled siRNAs of

300 nM 14-3-3c, Akt1, Anxa5, c-actin, and GSK3b, or 450 nM

LMNA, SOD1, VCP, and PDK1. SiRNAs were mixed in a 1:1:1

ratio targeted to the sense strands (59-39, Table S1). scRNAs were

transfected in a similar manner using equal concentrations. Cells

were harvested and processed for electrophoresis and immuno-

blotting as described previously [9].

Results

Proteomic analysis of BKAPs and reciprocal coIP
verification

BKAPs were identified from chick membrane/cytoskeletal and

cytoplasmic fractions using BK co-IP, 2-D gel electrophoresis, and

LC-MS/MS analysis. This procedure involved the removal of

non-specific binding proteins, and isolation of BKAPs with

controls using non-immunoprecipitated matrix assays and irrele-

vant antibody of the same type [9]. Different fractionated protein

extracts of chick cochleae were resolved across a broad range of

pH and weights by 2D gel electrophoresis for both immunopre-

cipitated and non-immunoprecipitated gels. BK-immunoprecipi-

tated 2D gels had a high gel-to-gel reproducibility with a total of

73 discrete spots from membrane/cytoskeleton fractions and 52

from cytoplasmic fractions (Figure 1A, 1B). Non-immunoprecip-

itated gels, which reflected the total cochlear proteome, showed a

total of 253 and 196 features from membrane/cytoskeletal and

cytoplasmic fractions, respectively, including minor variants

(Figure S1A, S1B). Comparisons of total proteome with BK-

immunoprecipitated gels revealed that nearly 32.4% and 29% of

the protein spots were contributed from membrane/cytoskeletal

and cytoplasmic fractions, respectively. In contrast, 2-D gel

electrophoresis of matrix and antibody specificity controls showed

no protein spots (Figure S1C–F), inferring that our immunopre-

cipitation assay had few if any false positive proteins.

Our approach to identifying proteins with high confidence from

their peptide matches was defined in two steps: 1) proteins identified

by MS had a molecular weight variance of 65 kDa between

observed (gel) and theoretical (MS) and 2) protein ID was dependent

on a minimum of four peptide sequences with MASCOT score

values greater than 150 [18]. Consequently, from the original 663

unique proteins assessed by Scaffold, there remained a total of 60

and 50 distinct proteins from membrane/cytoskeletal and cytoplas-

mic fractions, respectively. These final numbers excluded protein

duplication, of which ,10 proteins were common to both fractions

and included actin cytoplasmic-2, c-enolase, and HSP70, among

others. From these 110 proteins, 91 (82.7%) had $7 peptides and 99

(94.3%) had a MASCOT score $200 with $7% sequence coverage

(Table S2A, S2B). A comparison of the chick 2D-gel profile with

that of the previously published mouse profile [9] revealed an

overlapping, but not identical pattern. Thirty-seven percent of the

BKAPs are common to both chick and mouse, while the remaining

63% are novel to chick. These results further confirm that our

fractionated 2D-gel proteome profile did not identify any protein G

Sepharose sticky proteins. The Scaffold reverse database approach

was used to determine the false-positive discovery rate, which was

Conserved BK Protein-Protein Interactions
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,0.5% for all sequence collections. The assigned sequences had

both b and y ions present in the tandem mass spectra and there

were#three modifications on the peptide. Moreover, none of the

proteins identified in the reverse database achieved the MASCOT

cutoff score set as a positive ID.

To corroborate the results obtained by the LC-MS/MS

approach, we selected 16 representative examples of BKAPs and

confirmed their BK association by reciprocal coIP (Figure 1C),

using commercially available antibodies. Some of these proteins

associate with BK in other systems, whereas others are new

associations. All BKAPs were able to coIP a protein that was

comparable to an IP of BK at ,90 or 120 kDa, depending on the

splice variant [19], while pre-adsorption controls were clean.

Biological properties and functional composition of BK
interaction networks

Protein-protein interaction networks complemented our original

proteomic data. Secondary interactors with primary BKAPs were

identified using the IntAct [13] database, since evidence of

multiple interactions, as found in IntAct, support high confidence

interaction [20]. To accomplish these analyses, murine (Mus

musculus) interologs in the database were used, due to a lack of

available chick interaction data. Interolog mapping, that is, the

transfer of interaction annotation from one organism to another

using comparative genomics, is an accepted technique in cases

where there is limited or no data on the organism of interest,

enabling the expansion of an interaction network. While it is

Figure 1. BK interactions resolved by two-D gel electrophoresis and reciprocal coIP. (A,B) Chick membrane/cytoskeletal and cytoplasmic
fractions show 60 and 50 distinct numbered spots from the immunoprecipitated gels that were subjected to LC-MS/MS analysis. Regions delimited by
ovals represent proteins common to both fractions. (C), Sixteen representative examples of BKAP reciprocal coIPs (lane 2; +, 2) and BK IPs (lane 3;
+,2) reveal immunoreactive peptide species of ,90 or 120 kDa for BK in chick cochlea. The negative control in which anti-BK antibody was
preadsorbed with peptide, did not produce immunoreactive bands for either the BKAP reciprocal coIPs (lane 5; +,+) or the BK IPs (lane 6; +,+). The
55 kDa bands correspond to heavy immunoglobulin (IgG), resulting from cross-reactivity or the use of antibodies of the same clonality. Bead controls
consisted of lysate mixed with protein G beads without antibody (lanes 4 and 7; 2,2). Lane ‘‘M’’ is the molecular weight marker.
doi:10.1371/journal.pone.0028532.g001
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accepted that these secondary interactors can only be regarded as

predictions, there is good evidence that protein–protein interac-

tions can be transferred when a pair of proteins has a joint

sequence identity .80% [21]. Therefore, it is reasonable to expect

that the majority of these interactions will be conserved between

mouse and chicken.

This search resulted in a total of 193 proteins involved in 190

binary interactions, including complementary A-B and B-A

interactions, when limiting the search to only those interactions

classified as physical, thus, excluding cosedimentation (i.e.,

colocalization) data (Table S3). Visualization with Cytoscape

[14] shows that the majority of proteins (61.5%) is linked and

forms one large interaction network (Figure 2A). The remaining

38.5% are dispersed among 18 smaller networks with fewer than

19 nodes (Figure 2B). The larger global network has 8 major hubs,

containing a central protein connected to six or more partners,

some of which are linked to the larger global network. Four of

these tightly linked hubs can have a role in apoptosis, including

transitional ER (TER) ATPase (aka VCP), ATP synthase b protein

SET, and protein kinase Ce [22–25]. Three major hubs contribute

to neuronal function and include serine/threonine protein

phosphatase 1a, NMDA receptor, and nucleoside diphosphate

kinase [26–28], while the remaining hubs, Na/K-transporting

ATPase a-1 and calmodulin [29,30] are involved in metabolic

processes and Ca2+ binding, respectively (Figure 2B, 2C). Nearly

23% of these binary interactions are common to both chick and

mouse and contain two major hubs, ATP synthase and NMDAR

(Figure 2C).

BKAPs were classified according to prior ion channel

associations, subcellular localization, and cellular processes

(Figure 3A–C; Table S4). To better determine BKAP involvement

with other ion channels, we manually mined curated literature

annotations (Figure 3A). These data reveal that for both

membrane/cytoskeletal and cytoplasmic fractions, ,76% of

BKAPs have a prior association with various types of ion channels,

whereas the remaining 24% are novel protein-ion channel

interactions. These data do not reflect the previous interactions

reported in mouse [9]. The majority of BKAP interactions are

with Ca2+ (30%, 26%) and K+ (10%, 24%) channels. Remaining

interactions for each respective membrane vs. cytoplasmic

fractions are in descending order, BK (6.7%, 10%), TRP (10%,

6%), Na+ (6.7%, 4%), voltage-dependent anion channel (VDAC)

(10%, 0%), Cl2 (3.3%, 4%), and nucleic acid (0%, 2%).

Primary BKAPs were consigned to a subcellular compartment

based on information from Swiss-Prot and GoPubMed databases

(Figure 3B; Table S4). The majority are membrane (30%) and

cytoplasmic (46%) proteins, whereas 18.3% and 16% are localized

to the mitochondrial membrane and matrix, respectively. The

second major compartment determined for each fraction was the

Golgi (10%, 10%), followed by proteins related to the ER (15%,

4%), cytoskeleton and microtubules (13.3%, 6%), and nucleus

(5%, 10%). The fewest number of BKAPS were secretion- (3.3%,

4%), ribosomal- (3.3%, 2%), and endosomal-related (1.7%, 2%).

These results support our previous findings [9], especially in

regard to mitochondrial associations, suggesting evolutionary

conservation in avia and mammals.

BKAPs were classified according to their cellular processes by

manual data mining of PubMed literature annotations and Gene

Ontology databases (Figure 3C, Table S4). BKAPs were associated

with eight specific cell processes. From both membrane/

cytoskeletal and cytoplasmic fractions, a majority of proteins were

involved in signal transduction- (33.3%, 14%) and metabolism-

(11.7%, 24%) related processes, while remaining proteins were

consigned to development/differentiation (10%, 18%), apoptosis

(13.3%, 14%) trafficking/scaffolding (20%, 6%), phosphorylation

(6.7%, 16%), transport (3.3%, 8%), and transcription/translation

(1.7%, 0%).

Conservation of interactions
To further determine the conservation of primary/secondary

BK interactions, we constructed a phylogenetic profile using data

from chick and the previously published dataset for mouse [9]

(Figure 4A–C). The binary interaction datasets from an IntAct

analysis of chick (199) and mouse (256) totals 455, of which we

were able to assign each member of 303 interacting pairs a

KOG_ID, available via the STRING database. Of the 303

interacting pairs, 48 are common to both chick and mouse,

whereas 66 and 141 are present in chick and mouse, respectively.

A phylogenetic profile of iCOGs was generated, using the six

different species available at the NCBI KOG, to determine which

binary interactions are conserved in both chcicken, mouse, and

their interologs (Figure 4; Table S5A–C). Results of a matrix

cluster analysis, plotted as dendrograms, showed that one or both

KOGs of a pair was primarily absent in non-vertebrates such as E.

cuniculi, S. cerevisiae, and A. thaliana. Additionally, these plots show

distinctly conserved clusters of iKOGs with a common function,

numbered 1–6; clusters of protein pairs with disparate functions

are not numbered. The most conserved functional iKOGs across

all six species are 2 (chick only) and 4 (mouse only), which are

composed of Ca2+-binding/chaperonins and trafficking/scaffold-

ing proteins, respectively (Figure 4A–C). Moreover, cluster 2

shares protein pairs common to both chick and mouse, while

cluster 4 is composed of different pairs of proteins for both of these

species (Figure 4A–C). The second most functionally conserved

clusters of iKOGs are 5 and 6 (chick) and 1 (mouse) (Figure 4B,

4C). These clusters contain transport, development/differentia-

tion, and apoptotic proteins, respectively, and are phylogenetically

conserved across 5 species. Moreover, clusters 1 and 6 contain

functional proteins common to both chick and mouse. Signal

transduction proteins comprise most of functional cluster 3, which

is common to both mouse and chick as well as to C. elegans, D.

melanogaster, and H. sapiens (Figure 4A). These analyses demonstrate

the biological relevance of these interactions, since many are

conserved phylogenetically and define essential sets of protein

activities in relation to the BK channel.

The BK interactome reflects cell life/death events
An HA-tagged BK-DEC variant, cloned from cochlear tissues,

was designed to determine the effect of selected BKAPs on BK

expression. CHO cells were transfected with this variant and

selected BKAPs knocked down using RNAi. Six BKAPS were

chosen, representing different aspects of cellular processes and

location such as survival (14-3-3), trafficking (Anxa5), cytoskeletal

(c-actin), nucleus/structural (LMN), mitochondrial (SOD), and

proteasomal (VCP). HA-BK was measured in response to BKAP

silencing (Figure 5A–F). Using siRNAs, a knockdown of

endogenous 14-3-3c (33%) and AnxA5 (23%) resulted in a

respective 25% and 17%, increase in HA-BK expression,

compared to scRNA controls. Silencing of c-actin (21%), LMN

(19%), VCP (32%), and SOD1 (38%) caused BK to decrease by

31%, 48%, 38%, and 51%, respectively.

BK sensitivity to Ca2+ can be regulated through channel

phosphorylation by serine-threonine and tyrosine kinases [5].

Thirty putative phosphorylation sites were identified from seven

different BK splice variants [4]. Our BK-DEC variant has an

additional 60 amino acids, containing 11 serine/threonine and

tyrosine residues at the extreme end of the C-terminus (Figure 6A).

The effects on BK in relation to the six different BKAPs led us to
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Figure 2. The BK interactome of the cochlea. (A) Visualization of primary and secondary BKAPs using Cytoscape revealed 19 networks involving
193 proteins and 190 interactions. Of these proteins, 119 are nodes linked with 136 edges to form a single global network. Within this network are 8
major hubs consisting of a single node connected to 6 or more nodes that may or may not be linked to the larger network. The central nodes in these
major hubs include protein kinase C, ATP synthase b, c-actin, protein SET, Na/K- transporting ATPase, transitional ER ATPase (VCP), calmodulin, and
NMDA receptor. (B) The remaining BKAPs consist of 71 nodes and 53 edges that form 18 smaller, distinct modules with 19 or fewer nodes. There are
two hubs consisting of a central node with 6 or more proteins. The central nodes consist of ser/thr phosphatase PP1a and nucleoside diphosphate
kinase B. (C) The interactome containing BKAPs common to both mouse and chick consists of a single global network with 45 nodes linked with 47
edges. Within this network are 2 major hubs consisting of a single node connected to more than 6 nodes that may or may not be linked to the larger
network. Central nodes in these hubs include NMDA receptor, and ATP synthase. The remaining BKAPs consist of 14 nodes and 9 edges that form 5
smaller modules with 5 or fewer nodes. Different-colored nodes represent contributions from either membrane/cytoskeletal or cytoplasmic fractions,
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examine an important survival hub protein, the serine/threonine

kinase, Akt/PKB (reviews in [31]). This line of reasoning was

underscored by previous evidence showing that BKAPs, such as

14-3-3, LMN, and VCP interact or are part of the Akt pathway

[31–33]. Sequence analysis of BK revealed that aa 1122–1128

contain an RxxRxxS/T motif (Figure 6B), which is a potential

Akt1 substrate binding site [31]. This motif is conserved in BK

mouse and rat orthologs, and can vary between aa 1079 and 1169

in other mammalian species. Akt1 substrate binding sites are not

found in reptiles, amphibians and fishes, suggesting that this motif

is relegated to mammals. To further examine the possibility that

BK may associate with other pro-/anti-apoptotic kinases, the BK-

DEC sequence was examined for motifs binding 14-3-3, GSK, and

PDK, the latter two of which can regulate Akt effects. Depending

on the species, sequence analyses showed a 14-3-3 binding site

(RXXS/T) between aa 1091–1164, a GSK3b site (SXXS)

between aa 239–314, and a PDK1 site (FXXF) between aa 156–

314 (Figure 6B).

We determined whether the BK/Akt effect was a result of direct

interactions between these proteins, given these putative binding

sites (Figure 6C). Reciprocal coIPs revealed that BK coimmuno-

precipitated Akt (56 kDa) and vice-versa, suggesting a direct

physical interaction. Similar interactions were revealed for GSK3b
(47 kDa) and PDK1 (63 kDa) using reciprocal coIPs. We then

tested whether silencing Akt, GSK3b, and PDK1 affects BK

expression (Figure 6D–F). The result was a 57% increase in BK

expression with a 54% decrease in Akt1, whereas BK decreased

45% and 30% with a decrease in PDK1 (31%) and GSK3b (46%)

(p,0.05), respectively. The loading control, b-actin, showed no

differences between sc- and siRNA-treated conditions (p.0.05).

Figure 3. BKAP relationships to ion channels, subcellular localization, and cellular process. (A) The manual mining of PubMed revealed
ion channel partners for BKAPs isolated from membrane and cytoplasmic fractions of chick cochlea. Two major partners are Ca2+ and K+, whereas
,24% are new associations and 9–10% were reported previously as BKAPs. Fewer than 10% are found as partners of channels such as Na+, TRP, Cl2,
and VDAC. (B) A search of UniProtKB found BKAPs localized in different subcellular compartments. While a majority are found in the membrane,
cytoplasm and mitochondrion, .10% are localized to the ER, Golgi, and cytoskeleton. (C) Mining of Gene Ontology, GOSlim, and PubMed revealed
that .15% are relegated to cellular processes that include signaling, metabolism, development/differentiation, trafficking/scaffolding, and
phosphorylation.
doi:10.1371/journal.pone.0028532.g003

or from the IntAct database. Different-colored edges indicate interactions derived from the BK coIP assays or from IntAct. Colored fields represent
portions of the network that are located in different subcellular locations. BKAPs involved in deafness/NIHL are indicated by a star symbol.
doi:10.1371/journal.pone.0028532.g002
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Discussion

We have taken a systems-biology approach using coIP with 2-D

gels, mass spectrometry, and bioinformatics to identify BK

interactions that contribute to cochlear metabolism, signal

transduction, phosphorylation, and apoptosis. The limitations of

coIP-based assays and mass spectrometry include false positive and

false negative discovery rates. Therefore, when we set out to

develop the BK interaction network, we implemented several

strategies to reduce these limitations. For example, non-specific

antibody and bead controls, Scaffold analysis against a reversed

database, high peptide coverage (minimum of four) for protein ID,

and high MASCOT score cut-off values minimize the likelihood of

false positive interactions [34,18]. The guidelines of these

parameters produced a high-confidence BK interactome.

Conservation of interactions across species
A phylogenetic profile for interacting protein families was

constructed using the eukaryotic (orthologous group) ortholog

database. The BK interaction network contains protein interac-

tions that are conserved from microsporidia to mammals,

including conservation between chicken and mouse. This result

suggests that certain parts of these interactomes have evolved

through the preferential addition of interactions between lineage-

specific proteins [35]. Clusters 2 and 4, which were highly

enriched for Ca2+-binding and trafficking/scaffolding BKAPs,

respectively, were among the most highly conserved. Common

Ca2+-binding proteins were found across all six species. These

protein families appeared very early in the history of cells to

maintain extra- and intracellular Ca2+ homeostasis, mediating

Ca2+-induced cell damage and maintaining cell survival [36]. The

Figure 5. Characterization in vitro of BK and BKAPs using siRNA. (A,B) Transfection of CHO cells with HA-BK and siRNAs reveals that a
knockdown of endogenous 14-3-3c and AnxA5, increases BK expression compared to scRNA controls. (C–F) Silencing c-actin, VCP, SOD1, and LMNA
reduces BK expression compared to scRNA controls. Densitometry measurements were normalized to the highest densitometric value (normalized to
100%) within a given set of lanes, consisting of triplicates for sc- and siRNA-treated cells. Statistical significance was determined using an unpaired,
two-tailed t-test to obtain **, p,0.001. Error bars represent the S.D.
doi:10.1371/journal.pone.0028532.g005

Figure 4. Phylogenetically conserved patterns of iKOGs across six species. Dendrograms are shown for interologs common to (A) chick
only, (B) mouse only, or (C) both chick and mouse. Each row in a plot corresponds to one of six eukaryotes and each column corresponds to the iKOG
pairs. Both (+,+), neither (2,2) or either (+,2 or 2,+) member of an iKOG pair is conserved for each eukaryote. Some profiles are separated into
conserved functional clusters such as transport, Ca2+ binding and chaperonin, signal transduction, etc.
doi:10.1371/journal.pone.0028532.g004

Conserved BK Protein-Protein Interactions

PLoS ONE | www.plosone.org 9 December 2011 | Volume 6 | Issue 12 | e28532



trafficking/scaffolding iKOGs of mouse were found to have

common ancestors across all six species examined, whereas those

of the chick were common only to three. This outcome suggests a

possible divergence between chick and mouse with regard to

trafficking/scaffolding protein-protein interactions. Numerous

trafficking/scaffolding proteins evolved to dominate the mode of

multiple protein interactions found in a complex assembly at the

plasmalemma and excitatory synapses [37]. Further investigations

of, for example, their domains may provide insights into

underlying interactome evolution, as evidence suggests domains

can take evolutionary jumps associated with changes in function

[37].

Two primary hub proteins shared by both chick and mouse are

NMDA2B receptors and the enzyme, ATPase, which is found in

the inner mitochondrial membrane. These hubs connect 45

proteins in a conserved network of primary and secondary

interactions. The NMDA receptor, which acts as a secondary

partner, colocalizes with BK, as they interact via Ca2+ influx

through NMDARs, which activates the BK channel [38].

Presently, there is no evidence for a direct physical interaction,

nor is there one suggested by the interactome. NMDA2B receptors

are present in spiral ganglion cells and adjacent to inner and outer

hair cells of human cochlea [39]. Similarly, BK channels are found

in ganglion cells and at the base of outer hair cells [19].

ATP synthase, an enzyme that converts ADP to ATP using

inorganic phosphate, is found on the inner mitochondrial

membrane, as is the BK channel (reviews in [40]). Presently,

there is no evidence for a direct physical interaction, although the

interactome described herein suggests a relationship. ATPase may

be part of a larger multiprotein complex that forms the

permeability transition pore (PTP), which is linked to apoptosis

that commences with Ca2+ overload. Both BKmito and KATP

channels are thought to protect against ischemia by inhibiting the

PTP, either by direct physical interaction or by inhibiting the

Figure 6. Putative binding sites for life/death signals alter BK expression. (A,B) The BK C-terminus of 10 different vertebrates has putative
binding sites for Akt1, 14-3-3c, GSK3b, and PDK1. (C) Akt1, PDK, and GSK3b interact with BK, as verified by reciprocal coIP using total cochlear lysate.
Label above photos indicate antibody used for coIP, whereas the label below photos indicate the protein coimmunoprecipitated. Akt1
coimmunoprecipitated one isoform of BK (130 kDa), whereas GSK3b and PDK1 coimmunoprecipitated multiple isoforms (90–130 kDa). In the
reciprocal experiment, BK coimmunoprecipitated Akt1 (56 kDa), GSK3b (47 kDa), and PDK1 (63 kDa). The IgG band is signified by an (*). (D–F) CHO
cells were transfected with HA-BK and scRNA, or HA-BK and siRNAs for Akt1, PDK, and GSK3b. HA-BK increased with knockdown of Akt and decreased
with knockdowns of GSK3b and PDK1. Densitometry measurements were normalized and statistical significance determined in D–F as in Figure 5 to
obtain *, p,0.01, **, p,0.001. Error bars represent the S.D.
doi:10.1371/journal.pone.0028532.g006
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factors that initiate the opening of the PTP [40]. Recent evidence

suggests the presence of BKmito in the cochlea [9,19], although its

relation to ATP synthase and the PTP requires further studies.

Silencing of apoptotic-related BKAPs alters BK expression
BKAPs chosen from the interactome have functions related to

pro- or anti-apoptotic events. Knockdown of VCP, LMNA,

SOD1, and c-actin decreased BK expression. VCP is a hub in the

BK interactome and a member of the ATPase-associated (AAA)

family that binds ubiquitin and acts as a chaperone of proteins

marked for degradation in the proteasome. Similar to nucleoside

diphosphate kinase (NDK), another BK hub protein, VCP has a

role in ER stress-induced apoptotic execution [41]. While NDK

was found outside the large interactome, previous evidence

suggests that NDK participates in this network by virtue of the

ER-associated SET complex found in the large network. Protein

SET is an inhibitor of NDK/NM-23 [42] and when removed

allows cell death via DNA degradation [43]. Consequently, when

considered together, these interactions generate at least 18 BKAPs

potentially involved in apoptosis, including ubiquitin regulatory X

(UBX) -containing proteins and Fas-associated Factor (FAF).

Interestingly, NDK increases the activity of a Ca2+-activated K+

channel (KCa3.1) in CD4 cells, by directly binding and

phosphorylating histidine 358 at the C-terminus [44]. Here, as

in vascular smooth muscle, a Ca2+-activated K+ channel regulates

Ca2+ influx. In the inner hair cells of mammals, BK channels are

found in extrasynaptic regions, at the apex of the cell, and near the

sites of Ca2+ influx via transduction channels in the stereocilia.

Thus, the regulation of Ca2+ as well as K+ via these channels might

have a role in not only signal processing but also cellular

homeostasis.

BK decreased with the silencing of LMNA, SOD1, and c-actin

in CHO cells. All three are important to cell viability since they are

antiapoptotic. The nuclear lamina, a network of lamins and

membrane-associated proteins, is attached to the inner face of the

nuclear membrane. Lamins are among the first apoptotic targeted

proteins during the breakdown of the nuclear structure [45]. In

contrast, SOD1 resides both in the cytosol and mitochondria and

is an antioxidant isoenzyme that dismutates superoxide anions to

H2O2 in response to oxidative stress. Its mimetic, tempol, can

activate BK channels [46]. Future studies are needed to examine

these relationships, since BK may reside in the nuclear envelope

[47] and/or nucleus [48,19] as well as in the mitochondria of

cochlear cells [9,19]. Finally, as with LMNA and SOD1, actins

play a role during apoptosis, since they are targeted by caspases,

leading to their disassembly [49]. BK associates with both a- and

c-actin, which with leptin can cluster BK channels at synapses

[50,51].

In contrast to the previous four proteins, silencing of Annxa5

and 14-3-3 increased BK expression. Trafficking and cytoskeletal

proteins, such as annexin and actin, work in concert to maintain

membrane complexes regulated by Ca2+, which alters the

conformation of Annxa5 [52]. One of these complexes consists

of apolipoprotein A1 (ApoA1) and annexin, which form in a Ca2+-

dependent manner [53] and of which apolipoprotein, found in

cochlear hair cells, alters the biophysical characteristics of BK

[54]. In comparison, 14-3-3 reportedly interacts with dSlo via the

accessory subunit dSlob in Drosophila [5]. Our data, however,

suggest a direct relationship with a putative binding site for 14-3-3.

A template for this interaction is the TASK K+ channel/14-3-3

relationship, where the C-terminus of TASK directly interacts

with multiple isoforms of 14-3-3. However, unlike the TASK/14-

3-3 interaction, where 14-3-3 increases TASK cell surface

expression [55], 14-3-3 decreases BK. These differences may

hinge on other BKAP kinases, since 14-3-3 interacts with kinases

such as GSK [56]. Interestingly, GSK activation via phosphor-

ylation increases cell viability, but is moreover correlated with the

coupling of GSK to 14-3-3 [56]. How these kinases might affect

each other and their interactions with BK may be related to a

kinase central to survival, Akt.

Life/death signals alter BK expression
The BK channel has a long C-terminus with a number of

phosphorylation sites [4]. Primary and secondary partners of BK

revealed apoptosis-related signals, leading us to examine kinase

effectors that may bind to this channel. Central to these life/death

effectors is the serine/threonine kinase Akt. Akt has a central role in

cell survival, inhibiting apoptosis by phosphorylating and inactivating

targets such as BAD [31], and caspase-9 [31]. Moreover, Akt binds to

phosphatidylinositol (3,4,5)-trisphosphate at the plasma membrane,

initiating activation by phospholipid binding and phosphorylation

and using 14-3-3 as a substrate. [31]. Previous studies suggest Akt

regulates BK activity as part of an estrogen transduction-signaling

component, where estrogen stimulates nNOS via the PI3 kinase/Akt

pathway [57]. Akt can also mediate plasmalemma expression of BK

through neuregulin [58]. However, our data suggest direct Akt/BK

interaction via Akt and 14-3-3 binding sites that overlap at the C-

terminus of BK. Knockdown of Akt1 and 14-3-3 increases BK

expression, suggesting that BK is kept in check by these kinases. In

contrast, GSK3b and PDK1 knockdown resulted in decreased

expression of BK in CHO cells. Interestingly, Akt inhibits GSKb, an

initiator of apoptosis whereas PDK1 partially activates Akt via

phosphorylation [31]. These results, when taken in concert with

putative binding sites for GSK3b, PDK, 14-3-3, and Akt implicate

the phosphorylation of BK in cell death/survival. Moreover, they beg

the question of whether these kinases act separately or in concert to

activate/deactivate BK directly and whether their relationship to

their counterparts in the larger cell death/survival pathways regulates

cell viability via BK?

The outcome of our study reveals a highly connected protein

network that forms several functional regulatory pathways whose

interactions are conserved across a number of eukaryotes.

Intriguingly, we found putative BKAPs that are involved in both

BK phosphorylation, and cell survival/apoptosis. Thus, the BK

channel may have a role not only in excitation, but possibly cellular

homeostasis, as a function of possessing motifs that bind death/

survival kinases. BK channel participation in saving cells from

ischemia is well documented in relation to its role in mitochondria,

as is the regulation of cellular homeostasis by K+ efflux through

channels in the plasmalemma (reviews in [59]). Given these

findings, the importance of BK in hair cells under stress, as would

occur during noise-induced hearing loss, cannot be underestimated,

especially in light of studies that show BK knockouts are protected

from such a loss [8]. Our data provide a foundation for future

studies of an expanded network and its relation to where and when

interactions take place, how they are regulated, and the logic of this

complex biological network in relation to hearing.

Data Availability
The interactions in this study have been submitted to the IMEx

consortium (http://imex.sourceforge.net) through the IntAct

database (http://www.ebi.ac.uk/intact/, accession number IM-

9475).
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Figure S1 Images of 2-D gel electrophoresis of chick
cochlear proteome and controls. Two-dimensional gel
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electrophoresis of the total proteome for the (A) membrane/

cytoskeletal and (B) cytoplasmic fractions shows 253 and 196

visible features, respectively. (C) Results for membrane/cytoskel-

etal and (D) cytoplasmic fractions of mouse cochleae incubated

with protein G beads without anti-BK antibody. The non-specific

proteins were washed and eluted from the beads as in the

experimental groups. (E,F) Fractions, as before, were incubated

with beads bound with a non- specific antibody to the cochlea,

anti-VSV-G antibody. Any non-specific proteins captured were

washed, eluted, and analyzed, as described previously.

(TIF)

Table S1 List of antibodies and primers used in the study.

(XLS)

Table S2 List of BKAPs identified by LC-MS/MS from the

membrane/cytoskeletal and cytoplasmic fractions.

(XLS)

Table S3 List of BKAPs from membrane and cytoplasmic

fractions and their interactions with binary partners, as deter-

mined by IntAct. These proteins appear in the interactome.

(XLS)

Table S4 Primary BKAPs, from membrane/cytoskeletal and

cytoplasmic fractions, categorized according to organelle location,

ion channel association, and cellular process.

(XLS)

Table S5 UniProt IDs of primary and secondary partners with

their corresponding KOG_IDs common to mouse alone, chick

alone, and mouse and chick together.

(XLS)
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