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Abstract

The outcome of many infections depends on the initial interactions between agent and host. Aiming at elucidating the
effect of the M. tuberculosis Mce1 protein complex on host transcriptional and immunological responses to infection with M.
tuberculosis, RNA from murine macrophages at 15, 30, 60 min, 4 and 10 hrs post-infection with M. tuberculosis H37Rv or D-
mce1 H37Rv was analyzed by whole-genome microarrays and RT-QPCR. Immunological responses were measured using a
23-plex cytokine assay. Compared to uninfected controls, 524 versus 64 genes were up-regulated by 15 min post H37Rv-
and D-mce1 H37Rv-infection, respectively. By 15 min post-H37Rv infection, a decline of 17 cytokines combined with up-
regulation of Ccl24 (26.5-fold), Clec4a2 (23.2-fold) and Pparc (10.5-fold) indicated an anti-inflammatory response initiated by
IL-13. Down-regulation of Il13ra1 combined with up-regulation of Il12b (30.2-fold), suggested switch to a pro-inflammatory
response by 4 hrs post H37Rv-infection. Whereas no significant change in cytokine concentration or transcription was
observed during the first hour post D-mce1 H37Rv-infection, a significant decline of IL-1b, IL-9, IL-13, Eotaxin and GM-CSF
combined with increased transcription of Il12b (25.1-fold) and Inb1 (17.9-fold) by 4 hrs, indicated a pro-inflammatory
response. The balance between pro-and anti-inflammatory responses during the early stages of infection may have
significant bearing on outcome.
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Introduction

Tuberculosis (TB) is the most common cause of death worldwide

caused by a single infectious pathogen, killing approximately 2

million people each year [1]. The causative agent of TB,

Mycobacterium tuberculosis, is an intracellular pathogen which has

evolved to infect and persist inside the host macrophage, a cell

which is specialized for killing intracellular bacteria. M. tuberculosis

infection is primarily acquired by invasion across the mucosal

surfaces, most commonly by inhalation of the bacteria. Innate

immunity is the first line of defense against infections and one of the

first events in the innate resistance to intracellular bacterial infection

is activation of macrophages. Upon inhalation the bacilli enter the

lungs where they bind to the surface of alveolar macrophages, which

undergo activation upon stimulation with bacterial secreted

products or immune complexes. Activation of the macrophage

results in the transcription of a range of macrophage genes. In the

majority of cases (,90%), the cell-mediated immune response to M.

tuberculosis results in the formation of a granuloma, which is sufficient

to contain the infection and prevent disease. However, in 5–10% of

cases the bacilli may evade or subvert the host immune response

causing either a latent infection or active disease [2].

The outcome of an M. tuberculosis infection is dependent on both

host-specific and pathogen-specific factors [3]. The recognition of

M. tuberculosis or mycobacterial products is a crucial step in the

initiation of an effective host-response. Previous studies have

shown that mycobacterial secretory products trigger cytoskeletal

redistribution of the macrophage prior to the adherence of M.

tuberculosis [4]. Although several bacterial genes have been reported

to be important for the persistence of the M. tuberculosis in a mouse

model for TB, such as icl, pca, mprA [5–8], little is known about the

bacterial factors that influence the outcome of the infection.
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Structures in the mycobacterial cell envelope are important for the

ability of the M. tuberculosis to establish an infection and persist inside

its host. A group of proteins termed mammalian cell entry (Mce) 1,

encoded by the mce1 operon, localize to the cell wall of the

mycobacteria where they form a complex in the cell envelope [7,9].

There is increasing evidence to suggest that the Mce family of

proteins constitute beta-barrel outer membrane proteins responsible

for transport across the membrane [10–12]. Previous studies suggest

that the mce1 operon may act as a lipid importer [13,14] being

involved in lipid biosynthesis and/or lipid degradation [15].

Furthermore, disruption of the mce1 operon leads to alteration of

the lipid profile of the mycobacterium and to the accumulation of

free mycolic acids on its surface (S. A. Cantrell, personal

communication). A previous study in mice infected with either a

wild-type M. tuberculosis or with an mce1 mutant showed that the

number of colony forming units (cfu) recovered from lungs as early

as 2 weeks post-infection with the mutant strain was significantly

greater than the cfu recovered from mice infected with the wild-type

strain [7]. The same study also demonstrated that the infection with

an mce1 mutant resulted in an unusual host cell response with less

well-organized granuloma formation.

Given their triple role as host cell, antigen-presenting cell and

potential killer of invading mycobacteria, the initial interactions

between the cell wall of the pathogen and the host macrophage

may be critical in determining the outcome of infection. Little is

known about the transcriptional response by the macrophage to

an infection with M. tuberculosis earlier than 4 hrs following

infection [16,17], and the transcriptional events potentially

responsible for the inability of the host to effectively contain

infection by the mce1-deficient M. tuberculosis strain have not been

described. The objective of this study was therefore to closely

monitor the initial transcriptional and immunologic responses of

the macrophage following infection with a wild-type M. tuberculosis

H37Rv strain and a D-mce1 M. tuberculosis H37Rv strain.

Materials and Methods

Cell-culture conditions
Murine macrophage cell line J774A.1 (MW) was purchased from

The European Collection of Cell Cultures (ECACC). The cells

were maintained using Dulbecco’s modified Eagle’s medium

(DMEM, Lonza, Verviers, Belgium), supplemented with 10% fetal

calf serum (FCS), 2 mM glutamine and 100 units/ml penicillin

and 100 mg/ml streptomycin in a humidified atmosphere

containing 5% CO2. Cells grew with a doubling time of 2 days

and were split every 4 days. The last three sub-cultures prior to the

infection experiment were performed without the addition of

penicillin and streptomycin to the cell culture medium. Prior to

infection the cells were allowed to grow to 80% confluence and

gently washed twice with 10 ml pre-warmed (37uC) DMEM

containing 10% FCS and 2 mM glutamine (complete medium).

Cultivation of mycobacteria
Broth cultures of M. tuberculosis strains H37Rv and D-mce1 M.

tuberculosis H37Rv [7] were grown in Dubos broth with 10%

albumin dextrose complex (ADC) supplement. For the growth of

D-mce1 M. tuberculosis H37Rv the medium was supplemented with

50 mg/ml Hygromycine for maintaining the plasmid for the

mutation. Starter cultures of 10 ml M. tuberculosis H37Rv and D-

mce1 H37Rv were initially grown for 10 days with gentle shaking

until a cloudy suspension was achieved and added to 200 ml fresh

Dubos broth/ADC. These cultures were grown to a mid-log phase

(OD580 = 0.5). The final cultures before infection were initiated

with 20 ml of the mid-log phase suspension of H37Rv and D-mce1

H37Rv added to 180 ml of fresh Dubos broth with ADC

supplement, and incubated for 7–8 days until an OD of 0.5. To

minimize clumping of mycobacteria the cultures were shaken

gently during growth, and prior to infection, the bacterial

suspensions were vortexed for 1 minute, passed once through a

26G needle followed by 4615 sec sonication and vortexing again

for 1 minute.

Infection and RNA purification
J774A.1 macrophages (,107 cells) were infected with mid-log

phase H37Rv or D-mce1 H37Rv at a multiplicity of infection

(MOI) of 10. Three biological replicates were included for each

time-point for each strain. At 4 hrs post-infection, macrophages

were washed three times with pre-warmed DMEM to remove

extracellular bacteria. The number of cfu was measured by plating

100 ml onto 7H11 agar from the bacterial suspension prior to

infection, and from the cell medium at 60 min and 4 hrs post

H37Rv and D-mce1 H37Rv-infection and counted 14 days later.

After 15 min, 30 min, 60 min, 4 hrs and 10 hrs following

infection, the medium was removed and the cells were carefully

washed 3 times with pre-warmed complete medium. The

monolayers were lysed using 1.2 ml RLT/b-mercaptoethanol

(Qiagen Sciences Inc, Germantown, USA). Total RNA was

harvested from each flask using the RNAeasy Kit (Qiagen Sciences

Inc, Germantown, USA). The concentration was measured using

a NanoDrop scanning spectrophotometer (NanoDrop Technolo-

gies, Wilmington, USA) and the quality was measured using the

Eukaryote Total RNA Nano 6000 assay (Agilent RNA 6000 Nano

LabChip Kit) [Agilent Technologies, Santa Clara, USA].

Labelling of RNA
Total RNA was amplified and fluorescently labeled using the

Low Input Linear Amplification Kit (Agilent Technologies, Santa

Clara, USA) following the manufacturer’s description. Each

reaction contained 3 mg total RNA and 250 pg of RNA spike-in

control. Spike-in mix A was included in the cyanine 3 (Cy-3)

reactions and spike-in mix B in the cyanine 5 (Cy-5) reactions. The

labeled cRNA was purified using the RNAeasy Kit (Qiagen

Sciences Inc, Germantown, USA). Mass yields and specific

activities of the labeled cRNA targets were determined by

measuring absorbance using the NanoDrop scanning spectropho-

tometer (NanoDrop Technologies, Wilmington, USA). Quality of

the labeled cRNA was further assessed using the mRNA Nano

6000 assay on the Agilent 2100 Bioanalyzer (Agilent Technologies,

Santa Clara, USA).

Hybridization
A pooled common reference was prepared by mixing 10 ml of

total RNA isolated from each biological replicate of uninfected

MW. Eight-hundred-twenty-five ng of Cy-5 labeled cRNA from M.

tuberculosis H37Rv or D-mce1 H37Rv infected J774A.1 MW was

randomly hybridized against 825 ng Cy-3 labeled pooled common

reference cRNA onto 4644K 60-mer oligo whole mouse genome -

micro-arrays (Agilent Technologies, Santa Clara, USA) using the

Agilent Gene Expression hybridization kit (# 5188–5242) as

described in the Two-Color Microarray-Based Gene Expression

Analysis v5.5 manual (Agilent Technologies, Santa Clara, USA).

The arrays were hybridized at 65uC for 17 hrs/10 rpm. Following

hybridization, the arrays were washed using the Gene Expression

Wash Buffer 1 at room temperature and 2 at 37uC (Agilent

#5188–5325 #5188–5326) following the manufacturer’s descrip-

tion. Acetonitrile (Sigma-Aldrich, St. Louis, USA) and Agilent

stabilization and drying solution (Agilent Technologies, Santa

Clara, USA) were included in the two final steps in the washing

Response of MW to Initial M. tuberculosis Infection
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procedure (for 1 min and 30 sec respectively). The arrays were

scanned using the Agilent’s dual laser DNA microarray scanner

(part number G2505B). The scans were converted to data files

with Agilent’s Feature Extraction software (Version 9.1.3.1).

All microarray data are MIAME compliant and fully annotated

raw microarray data has been deposited in ArrayExpress

(accession number: E-TABM-1170).

Bio-Plex cytokine assay
Cell supernatants from M. tuberculosis H37Rv or D-mce1 H37Rv-

infected J774A.1 macrophages were harvested from all 3 biological

replicates prior to infection and from the 5 time-points post-

infection (15 min, 30 min, 60 min, 4 and 10 hours) and

immediately stored at 270uC. All cell supernatants were analyzed

on a 96-well sterile filter plate using the Bio-Rad Mouse 23-plex

cytokine assay (Bio-Rad, CA, USA) according to the manufactur-

er’s instructions. All samples were analysed in duplicate (technical

replicates) and the results from the technical replicates were

combined. Data preprocessing was performed using the Bio-Plex

Manager software (Bio-Rad, CA, USA) and exported into

Microsoft Excel for further analysis.

RT-QPCR verification
Selected genes belonging to the two most significantly over-

represented biological processes at 15 min post H37Rv-infection

were verified by reverse transcription (RT) quantitative (Q)-PCR,

of the relative amount of gene expression. The RT-QPCR mixture

for genes meeting the predefined criteria and for two genes (Hmbs

and Ubc) included as endogenous controls was prepared as follows:

10 ml TaqMan Gene Expression Master Mix (Applied Biosystems,

Carlsbad, USA), 1 ml TaqMan Gene Expression Assay (Applied

Biosystems, Carlsbad, USA), 8 ml PCR-grade water, and 1 ml

(22 ng) template DNA. The thermal cycling protocol was as

follows: UDG Incubaction for 2 min at 50uC, AmpliTaq GoldH,

UP Enzyme Activation for 10 min at 95uC followed by 40 cycles

of 15 sec at 95uC and 1 min at 60uC. The fluorescence signal was

measured at the end of each extension step at 60uC.

RT-QPCR amplification and analysis were performed using the

ABI 7500 instrument with software version 2.0.3 (Applied

Biosystems, Carlsbad, USA) and the relative amount of gene

expression was calculated using a pooled common reference as

reference sample.

Data Analysis
Microarray data analysis. Preprocessing and analysis was

undertaken using the software J-Express Pro 2.9 [18]. Control spots,

as well as all spots that were flagged by Feature Extraction (v.

9.1.3.1) or saturated in both channels were removed from the

analysis. Log 2 ratios were calculated between the Cy 5 and Cy 3

signals from the remaining spots. Processed Signal values, which by

the Feature Extraction default settings had been background

corrected and normalized with respect to dye effects, were chosen

to represent the signal intensity values. Technical replicates with the

identical hybridization names were combined into a single column

using the median of the signals per reporter. Missing values in the

dataset, after filtering, were imputed with the method LS impute

adaptive [19] as implemented in J-Express. Multiple reporters from

the same gene (as defined by GeneName annotation from Agilent)

were combined into a single gene profile using the max probe

statistic (choosing the highest and probably most reliable signal to

represent each sample). The data was divided into two data sub-sets,

one for the time-series following H37Rv infection and one for time-

series following the H37Rv D-mce1 infection. The association

between all arrays was analyzed by Correspondence Analysis (CA)

[20] and genes differentially expressed post-infection compared to

prior to infection for each set of time-series were identified using

Rank Product (RP) [21].

Functional classification. Functional classification of the

RP generated lists of genes being differentially expressed at certain

time points post H37Rv or D-mce1 H37Rv-infection was

performed using the Panther Classification System 6.1 [22].

Each of the gene lists were compared to the entire list of genes with

detectable expression in at least one of the 36 samples (n = 13990)

on the 4644K 60-mer oligo whole mouse genome - microarrays

(Agilent). Statistically over- and underrepresented annotated

biological processes were determined by binominal statistics,

using the observed number of genes versus the numbers

expected by chance within a certain annotation group.

Categories meeting the threshold of P-values below ,1023 were

imported into the TM4 Microarray software Suite Multi

Experiment Viewer 3.1 (TMeV, TIGR, US) [23] with one

entity per category, where a heat map was created based on the

negative log of the P- values for each category.

Results

Bacterial uptake
To assess if a deletion of the mce1 operon would have an effect

on the bacterial uptake, by the macrophages, the cfu was

determined at 60 min and 4 hrs post H37Rv- and D-mce1

H37Rv-infection, in addition to prior to infection. Equal number

of cfu of each strain (1.5 ml of 1.336108 cfu/ml [OD580 = 0.43]

for H37Rv and 2.0 ml of 1.256108 cfu/ml [OD580 = 0.35] for D-

mce1 H37Rv) was added to a cell culture flask containing 10 ml of

pre-warmed complete medium, resulting in a cfu concentration of

2.06107/ml for H37Rv and 2.56107/ml for D-mce1 H37Rv. The

number of cfu recovered by 60 min post-infection was 2.26106/

ml for H37Rv and 1.56107/ml for D-mce1 H37Rv. The cfu

recovered at 4 hrs post-infection was 2.36106/ml for H37Rv and

1.86106/ml for D-mce1 H37Rv.

Microarray analysis
The CA plot (Figure 1) of all samples shows clear distinctions

between infection by M. tuberculosis H37Rv [Rv] and D-mce1 M.

tuberculosis H37Rv [Yk] and between the different time-points post-

infection. All samples from the first 3 time-points (15 min, 30 min

and 60 min) following D-mce1 H37Rv infection, except 1 replicate

from the 60-min time-point, grouped together with the uninfected

samples, indicating few transcriptional changes within the first

hour post D-mce1 H37Rv-infection. All samples (except one Rv60

sample) from the first 3 time-points (15 min, 30 min and 60 min)

post-infection with the H37Rv (Rv) strain form a separate cluster

suggesting that there are clear distinctions with regards to the

transcriptional level even after 15 min, and that these changes

remain relatively constant during the first hour post H37Rv-

infection. For the later time-points (4 hrs and 10 hrs) the CA plot

shows that the samples from 4 hrs post D-mce1 H37Rv-infection

cluster together with the samples from 4- and 10 hrs post H37Rv-

infection, whereas the samples from the 10 hrs time-point post D-

mce1 H37Rv-infection form a separate cluster. The proportion of

total chi square statistic, explained by the plot, was 15.6%.

An immediate up-regulation of expression of 524 genes (using the

RP-test and a false discovery rate [FDR] = 10%) was observed within

the first 15 minutes post-infection with the H37Rv strain compared

to the uninfected pooled common reference. In contrast, by 15 min

post D-mce1 H37Rv-infection only 64 (FDR = 10%) genes were up-

regulated compared to the uninfected pooled common reference

(Table 1). Simultaneously, 505 and 590 genes (FDR = 10%) were

Response of MW to Initial M. tuberculosis Infection
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down-regulated within the first 15 minutes post-infection with the

H37Rv strain or the D-mce1 H37Rv strain, respectively, compared to

the uninfected pooled common reference. The numbers of both up-

and down-regulated genes at the various time-points post H37Rv and

D-mce1 H37Rv-infection are listed in Table 1.

Out of the 524 genes that were up-regulated by 15 min post

H37Rv-infection (FDR = 10%), 32 genes were up-regulated by 5-

fold or more compared to the uninfected pooled common

reference (Table S1). Except for Hist1h1d, which was continuously

expressed throughout the entire D-mce1 H37Rv time-course

experiment, none of the genes that were up-regulated 5-fold or

more by 15 min post H37Rv-infection were transcribed at a

similar level the first hour post D-mce1 H37Rv-infection. By 4 hrs

post D-mce1 H37Rv-infection 50% (16 out of 32) of the genes were

up-regulated by at least 5-fold compared to the uninfected pooled

common reference.

Functional Classification
Gene lists generated by comparing macrophage gene expression

levels at each of the different time-points post H37Rv-infection

and D-mce1 H37Rv-infection (RP lists) to the uninfected pooled

common reference were uploaded into the Panther Classification

System 6.1. Gene lists generated were: genes up- and down-

regulated (FDR 10%) post H37Rv and D-mce1 H37Rv-infection,

for each time point, compared to the uninfected pooled common

reference. The numbers of genes in each of the 20 RP lists are

listed in Table 1. Functional classifications of genes that have been

mapped by the Panther Classification System 6.1 were performed

for all gene lists and the biological processes that were over-

represented among each of the lists are shown in Figure 2a (up-

regulated genes) and 2b (down-regulated genes).

Up-regulated genes. The heat-map displayed in Figure 2a

demonstrates significantly over-represented biological processes

within the macrophages following infection with the M. tuberculosis

H37Rv or the D-mce1 M. tuberculosis H37Rv strains compared to

the uninfected pooled common reference. The biological

processes: ‘Immune system process’ (P-value: 2.81E-09) and

‘Response to stimulus’ (P-value: 4.70E-08) were the two most

significantly over-represented biological processes among the up-

regulated genes at 15 min post H37Rv-infection comprising

Figure 1. Correspondence analysis (CA) of all samples from 5 time-points post-infection of mouse macrophages with wild-type M.
tuberculosis H37Rv (Rv) or M. tuberculosis H37Rv D-mce1 (Yk). Samples from the ‘early’ time-points post H37Rv-infection (15 min 30 min and
60 min) are colored yellow/orange, and samples from the ‘late’ time-points post H37Rv-infection (4 hrs and 10 hrs) are colored red/brown. Samples
from the ‘early’ time-points post D-mce1-H37Rv infection (15 min, 30 min, and 60 min) are colored light green, and samples from the ‘late’ time-
points post D-mce1-H37Rv -infection (4 hrs and 10 hrs]) are dark green/black. The uninfected samples (U) are colored purple, and the pooled
common reference samples are colored blue.
doi:10.1371/journal.pone.0026295.g001

Table 1. The number of up- and down-regulated genes (using a false discovery rate of 10%) in J774A.1 murine macrophages
following infection by the M. tuberculosis H37Rv strain or the M. tuberculosis D-mce1 H37Rv strain at different time-points post-
infection.

Time-points 15 min 30 min 60 min 4 hrs 10 hrs

H37Rv D-mce1 H37Rv H37Rv D-mce1 H37Rv H37Rv D-mce1 H37Rv H37Rv D-mce1 H37Rv H37Rv D-mce1 H37Rv

Up-regulated 524 64 162 124 504 119 722 730 605 816

Down-regulated 505 590 127 809 280 758 471 677 668 969

Total 1029 654 289 933 784 877 1193 1407 1273 1785

P-values* ,0.0001 ,0.0001 ,0.0001 ,0.0001 0.3401

*Differences between proportions were analyzed using the chi-square exact test (with Yates’ correction for continuity).
doi:10.1371/journal.pone.0026295.t001
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26.6% (115 out of 432) and 19.7% (85 out of 432) of the number of

genes in the search list, respectively. In contrast, following D-mce1

H37Rv-infection the ‘Immune system process’ and ‘Response to

stimulus’ biological processes became significantly over-

represented first at 60 min (1.08E-04 and 2.51E-05, respectively)

comprising 28.3% (39 out of 138) and 23.2% (32 out of 138) genes,

respectively. By 4 and 10 hrs the ‘Immune system process’ process

comprised 27.7% (169 out of 611 [P-value: 2.02E-14 ]) and 28.8%

(193 out of 670 [P-value: 3.32E-18]), respectively, out of the genes

up-regulated post D-mce1 H37Rv-infection, whereas the ‘Response

to stimulus’ process comprised 21.6% (132 out of 611 [P-value:

1.09E-14]) and 21.5% (144 out of 670 [1.12E-15]), respectively.

Down-regulated genes. The biological process ‘Cellular

process’ (P-value: 1.44E-05) was the most significantly over-

represented process among the genes which were down-regulated

by 15 min post H37Rv-infection, comprising 47.3% (190 out of

402 genes) [Figure 2b]. In contrast, by 15 min post D-mce1

H37Rv-infection the biological process ‘Immune system process’

(P-value: 1.29E-04) was the most significantly over-represented

process among the down-regulated genes, comprising 26.8% (110

out of 411) genes. By 10 hrs post H37Rv infection the process

‘Cell-cell signaling’ (P-value: 6.89E-04) was the most significantly

over-represented biological process among the down-regulated

genes, comprising 12.3% (69 out of 561) of the genes, whereas the

Figure 2. Over-represented biological processes among up-regulated (A) and down-regulated (B) genes in J774A.1 murine
macrophages following infection with M. tuberculosis H37Rv (Rv) or M. tuberculosis D-mce1 H37Rv (Yk). The color intensity indicates the
negative log of the p-values, dark values representing highly functional processes significantly over-represented among the genes. The numbers
presented on the heat map display the percentage of genes within a gene set that map to a certain term, e.g. 19.7% of the 432 genes up-regulated
(A) 15 min post H37Rv infection map to the biological process ‘Response to stimulus’. The first column depicts the overall distribution of a term
among the 13, 990 genes with detectable expression in the data set, followed by the gene sets for the 5 time-points post H37Rv-infection and the 5
time-points post D-mce1-H37Rv infection.
doi:10.1371/journal.pone.0026295.g002
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biological process ‘Cell cycle’ (P-value: 7.29E-07) was the most

significantly over-represented process among genes down-

regulated following D-mce1 H37Rv-infection, comprising 16.9%

(122 out of 724) of the genes (Figure 2b).

Cytokine assay
Of the 23 cytokines analysed, 6 cytokines (IL-2, IL-3, IL-4, IL-

17, IFN-c and KC) were not expressed to a detectable level at any

of the time-points investigated.

As measured by the Bio Plex assay, cytokines normally

associated with both the classical M1 and the alternative M2

activation of macrophages were present in the cell culture

supernatants prior to infection, however, there was a marked

reduction in the concentration of all cytokines by 15 min post

H37Rv-infection. By 1 hr post H37Rv-infection there was a

significant decrease (P,0.001) in the concentration of the

cytokines; Rantes (Figure 3A), GM-CSF (Figure 3B), Eotaxin

(Figure 3C) IL-13 (Figure 3D), IL-9 (Figure 3E) and IL-1b

(Figure 3G). For IL-6 (Figure 3F) a significant reduction in the

concentration was observed post H37Rv-infection only, whereas

the observed reduction in IL-6 post D-mce1 H37Rv-infection, from

607 pg/ml to 271 pg/ml by 15 min post-infection and 258 pg/ml

by 10 hrs, was not statistically significant.

The concentration in the cell culture supernatant for the

cytokines MCP-1, MIP-1a and MIP-1b prior to infection was

above the range of the maximum concentration of the standards at

23.1 ng/ml, 10.1 ng/ml and 38.3 ng/ml, respectively. Post

H37Rv-infection, the concentration of MCP-1, MIP-1a and

MIP-1b in the supernatants decreased continuously throughout

the course of the infection to 1.5 ng/ml, 3.1 ng/ml and 2.8 ng/

ml, respectively, by 10 hrs post-infection. Post D-mce1 H37Rv-

infection the concentration of MCP-1 and MIP-1b remained

above the range of the maximum concentration of the standards

for the 15 min, 30 min and 60 min time-points before a drop in

the concentration was observed at 4 hrs (8.6 ng/ml and 13.6 ng/

ml, respectively) and 10 hrs (3.0 ng/ml and 7.3 ng/ml, respec-

tively). For MIP-1a the concentration post D-mce1 H37Rv-

infection remained above the range of the maximum concentra-

tion of the standards for the 15 min, 30 min, 60 min, and 4 hrs

time-points whereas at 10 hrs post-infection the concentration had

dropped to 5.5 ng/ml (Table S2).

For 6 of the cytokines measured [IL-1a, IL-5, IL-10, IL-12(p40)

and IL-12(p70)], the concentration in the supernatant dropped to a

level which was below the detection limits for the particular assays

by 15 min post H37Rv-infection. In contrast, post D-mce1 H37Rv-

infection the concentration of these cytokines remained similar to

the uninfected controls for the 15 min, 30 min and 60 min time-

points before a reduction in the concentration was observed at 4 hrs

and 10 hrs post-infection. The concentrations for these 6 cytokines

at the various time-points post-infection are provided in Table S2.

Figure 3. Cytokine profiles of cell supernatants secreted from M. tuberculosis H37Rv (white bars) or M. tuberculosis D-mce1 H37Rv
(grey bars) infected J774A.1 murine macrophages. The numbers below each column reflect the time-points post-infection: 1; uninfected, 2;
15 min, 3; 30 min, 4; 60 min, 5; 4 hrs, and 6; 10 hrs.
doi:10.1371/journal.pone.0026295.g003
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For the cytokines Rantes, GM-CSF, Eotaxin, IL-13, IL-9, IL-6

and IL-1b (Figure 3A–G) there was no significant mean difference

in concentration among the first three time-points (15 min, 30 min

and 60 min) and the last two time-points (4 hrs and 10 hrs) for

both the H37Rv and D-mce1 H37Rv-infections. Thus, the

measurements from the Bio Plex assay for the first three time-

points (15 min, 30 min and 60 min) for each of the infections (post

H37Rv-infection and post D-mce1 H37Rv-infection) were com-

bined into one group termed ‘early’ infection, and the measure-

ments for the last two time-points (4 hrs and 10 hrs) were

combined into one group termed ‘late’ infection.

A comparison of the groups (‘early’ [15 min, 30 min and 60 min]

and ‘late’[4 hrs and 10 hrs]) post H37Rv-infection and post D-mce1

H37Rv-infection showed that there was a significant difference in

the concentration of cytokines when comparing the post ‘early’

H37Rv-infection vs. the post ‘early’ D-mce1 H37Rv-infection

groups, and the post ‘late’ H37Rv-infection vs. post ‘early’ D-mce1

H37Rv-infection groups for IL-1b, IL-9, IL13, Eotaxin and GM-

CSF (all had a P-value of ,0.001). However, when comparing the

post ‘early’ H37Rv-infection vs. post ‘late’ D-mce1 H37Rv-infection

groups and the post ‘late’ H37Rv-infection vs. post ‘late’ D-mce1

H37Rv-infection groups there were no significant differences in the

level of cytokine concentration for any of the cytokines analysed.

RT-QPCR verification
Six genes belonging to the two most significantly over-represented

biological processes at the 15 min post H37Rv-infection ‘Immune

system response’ (Ifnb1, Il12b, Ccl24, Pparg, and Clec4a2) and

‘Response to stimulus’ (Il13ra1) were selected for verification by

RT-QPCR analysis. Statistical analyses showed that there was no

significant mean difference in level of transcription among the first

three time-points (15 min, 30 min and 60 min) and the last two

time-points (4 hrs and 10 hrs) post H37Rv-infection and D-mce1

H37Rv-infection, i.e. measurements within the first hour (15 min,

30 min and 60 min) and for the last two time-points (4 hrs and

10 hrs) could be treated as equal, ignoring that the measurements

were taken at different time-points. Thus, for the statistical analyses,

the RT-QPCR results for the first three time-points (15 min, 30 min

and 60 min) for each of the infections (post H37Rv-infection and

postD-mce1 H37Rv-infection) were combined into one group termed

‘early’ infection, and the RT-QPCR results for the last two time-

points (4 hrs and 10 hrs) were combined into one group termed ‘late’

infection.

The relative quantification analysis showed a significant

increase in gene transcription by 15 min following H37Rv-

infection for the Ccl24 (26.5 fold [P,0.001]), Pparg (10.5 fold

[P = 0.003]), Clec4a2 (23.2 fold [P,0.001]) genes (Figure 4E) and

the Il12b (12.2 fold [P = 0.002]) gene (Figure 4C). In contrast,

following D-mce1 H37Rv-infection none of the genes analysed by

RT-QPCR were significantly up-regulated compared to the

uninfected pooled common reference during the first hour post

infection (Figure 4B, 4D, 4F and 4H).

By 4 hrs post H37Rv-infection the Ccl24 and Il12b genes

continued to be significantly up-regulated compared to the

Figure 4. Transcriptional profile of the genes selected for RT-QPCR verification. Each data point represents the relative quantification of
gene expression, by J774A.1 murine macrophages, between the pooled common reference and the different time-points post M. tuberculosis H37Rv
(Rv) or M. tuberculosis D-mce1 H37Rv (Yk) infection.
doi:10.1371/journal.pone.0026295.g004
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uninfected pooled common reference (9.4 fold [P = 0.003] and

30.2 fold [P = 0.001], respectively), whereas the Clec4a2 and Pparg

genes were down-regulated to a similar level as the uninfected

pooled common reference (2.9 fold [P = 0.391] and 1.5 fold

[P = 0.019], respectively). The Ifnb1 (Figure 4A) and Il13ra1

(Figure 4D) genes were not significantly differentially expressed

compared to the uninfected pooled common reference at any of

the time-points following H37Rv-infection.

By 4 hrs post D-mce1 H37Rv-infection the transcription of the

genes Ifnb1, Il12b and Pparg became significantly up-regulated

compared to the uninfected pooled common reference (17.9 fold

[P,0.001], 25.1 fold [P,0.001] and 0.7 fold [P = 0.001],

respectively), whereas the transcription of Ccl24, Clec4a2 and

Il13ra1 remained similar to that of the uninfected pooled common

reference throughout out the time-course experiment (Table 2).

A comparison of the groups (‘early’ [15 min, 30 min and

60 min] and ‘late’ [4 hrs and 10 hrs]) post H37Rv-infection and

post D-mce1 H37Rv-infection showed that there was a significant

difference in the level of transcription for all genes analysed by

RT-QPCR when comparing the post ‘early’ H37Rv-infection vs.

the post ‘early’ D-mce1 H37Rv-infection groups (excluding Ifnb1

[P = 0.651]), and the post ‘early’ H37Rv-infection vs. post ‘late’ D-

mce1 H37Rv-infection (including Ifnb1) [all had a P-value of

,0.001]. However, when comparing the post ‘late’ H37Rv-

infection vs. post ‘early’ D-mce1 H37Rv-infection groups only Il12b

and Il13ra1 showed a significant difference in the level of

transcription between the two types of infection (P,0.001) and

for the post ‘late’ H37Rv-infection vs. post ‘late’ D-mce1 H37Rv-

infection groups only Ifnb1 (P,0.001) showed a significant

difference in the level of transcription between the two types of

infection.

Luminex and RT-QPCR data analysis. Statistical analyses

were undertaken to detect differences between groups of

measurements. The t-test was applied when comparing groups

of 2, whereas ANOVA was applied when comparing .2 groups.

For both the RT-QPCR (n = 6) and the cytokine measures (n = 6)

multiple testing effects were taken into account, thus adjusting the

significance level by the Bonferroni rule using a significance level

of 0.05/6 = 0.00833. The computations were done using SPSS 17.

Discussion

The immune response against M. tuberculosis is multifaceted and

is further complicated by the dual role of the macrophages; they

represent both the primary effector cells for the killing of the

bacteria and the primary habitat for bacterial persistence. A

number of pathogens modulate the host immune response by the

secretion of effector proteins [16,24,25] and the modulatory

influence by live M. tuberculosis on its cellular host has been

demonstrated in several experiments [26–29]. The M. tuberculosis

Mce1 protein complex, which localizes to the cell envelope of the

mycobacteria, is important for infection and persistence [30].

Deletion of the mce1 operon has been shown to result in a

hypervirulent M. tuberculosis strain, which is poorly controlled and

generates disseminated disease in experimental infections [7]. The

present study describes the transcriptional and immunological

responses by murine J774A.1 MW to the initial encounter with a

wild-type M. tuberculosis H37Rv strain and a D-mce1 M. tuberculosis

H37Rv mutant strain.

Upon stimulation with M. tuberculosis H37Rv the concentration

of all cytokines measured declined and in some cases fell below the

detection limit of the assay within 15 min post-infection. The up-

regulation of the IL-13 receptor, Il13ra1, in combination with the

up-regulation of the IL-13 inducible Ccl24 and Pparc genes

(Table 2) by 15 min post H37Rv-infection suggests that an anti-

inflammatory transcriptional response was initiated by IL-13

signaling during the initial phase of M. tuberculosis H37Rv infection.

Previous studies [31–33] have demonstrated the role for IL-13 in

inhibiting autophagy in macrophages; a process which suppress

intracellular survival of mycobacteria. Surprisingly, upon stimula-

tion with D-mce1 H37Rv the concentration of all cytokines

measured, except for IL-6, remained similar to that of the

uninfected controls during the first hour post-infection (Figure 3).

An up-regulation of the transcription of the IL-13 receptor

(Il13ra1) was observed by 15 min post D-mce1 H37Rv-infection

however, a corresponding change in the concentration of IL-13

measured in the supernatant could not be detected during the first

hour post D-mce1 H37Rv-infection. Although a decline in cytokine

concentration was observed by 4 hours post D-mce1 H37Rv-

infection, the lack of effect on transcription of the IL-13-inducible

genes by 4 hrs post D-mce1 H37Rv-infection may be explained by

a down-regulation of the IL-13 receptor by 4 hrs post D-mce1

H37Rv-infection. The genes coding for the majority of cytokines

that were measured by the 23-plex luminex assay were, as

measured by microarray, not differentially expressed, for any of

the time-points investigated. Thus, the observed initial reduction

in the cytokine concentration during the first hour post H37Rv-

infection may result from post-translational inhibition of the gene

transcript, cytokine degradation by secreted mycobacterial prote-

ases, or from an immediate binding of the cytokines to their

respective receptors on the macrophage or to receptors on the

mycobacteria.

Table 2. Relative quantification of genes selected for verification by RT-QPCR at different time-points post-infection with M.
tuberculosis H37Rv or M. tuberculosis D-mce1-H37Rv.

Agilent Probe ID Gene Name Molecular function Post-H37Rv Post D-mce1H37Rv

15 min 30 min 60 min 4 hrs 10 hrs 15 min 30 min 60 min 4 hrs 10 hrs

A_51_P144180 Ifnb1 Receptor binding 3.7 1.1 2.2 3.7 2.2 0.1 1.2 5.9 17.9 18.4

A_51_P365189 Il13ra1 Cytokine receptor 0.8 1.5 1.5 20.5 20.6 2.3 2.9 3.2 20.3 20.2

A_51_P385812 Il12b Receptor binding 12.2 10.2 19.0 30.2 24.3 0.2 1.6 4.7 25.1 28.5

A_51_P322640 Ccl24 Receptor binding 26.5 28.1 27.7 9.4 4.2 2.8 6.3 7.9 5.7 3.6

A_51_P106799 Pparg Transcription factor 10.5 9.0 8.6 1.5 21.5 0.4 0.1 1.1 0.7 20.9

A_51_P444092 Clec4a2 Receptor activity 23.2 22.4 21.3 2.9 0.3 1.1 1.5 2.5 1.8 0.0

The values represent the fold-change in gene expression between the different time-points post-infection compared to the uninfected pooled common reference.
doi:10.1371/journal.pone.0026295.t002
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A study by Dunphy et al [34] suggests that one gene (fadD5),

which is located within the mce1 operon may be involved in the

recycling of mycolic acids. Furthermore, other studies which have

been performed on genes with high sequence similarity to genes in

the mce1 operon suggest that there is evidence for the involvement

of the mce1 operon in fatty acid transport and fatty acid

degradation [35,36]. Disruption of the mechanisms responsible

for transport or recycling of fatty acids across the mycobacterial

cell envelope may result in an altered lipid composition of the cell

envelope. Furthermore, several studies have shown that the

mycobacterial cell envelope mycolic acids have a modulatory

effect on the host immune response and that the modification of

the mycolic acids may have an anti-inflammatory effect on

macrophage function [37,5,38,39]. Thus, the lack of an initial

transcriptional response by the macrophage to infection by the

D-mce1 H37Rv strain may be the result of an alteration of the

mycolic acid structure or content on the mycobacterial cell

envelope caused by a disruption of the fatty acid recycling

mechanism coded for by the mce1 operon (S. A. Cantrell, personal

communication).

The number of extracellular cfu recovered by 60 min post-

infection was ,10-fold lower for H37Rv than that of D-mce1

H37Rv, whereas by 4 hrs post-infection, the number of extracel-

lular cfu recovered was similar for the two strains. Previous studies

using RAW264.7 macrophages showed that, by two hours post-

infection, there was no difference in the ability of the H37Rv and

the D-mce1 H37Rv strains to invade the host macrophage [7].

Thus, the lack of macrophage response towards the D-mce1 H37Rv

strain during the first hour post-infection, as measured by cytokine

concentration, may reflect a delay in the phagocytosis of the D-

mce1 H37Rv strain by the macrophages. Furthermore, it has also

been shown that the disruption of the mce1 operon prevented the

mutated bacteria from entering into a persistent state resulting in

more extensive replication of the bacteria [7] and that the

presence of IFN-a/b allowed mycobacteria to grow uncontrollably

in monocytes suggesting that secretion of IFN-a/b directly

promotes mycobacterial growth [40]. Induction of type I

interferons have also been shown to be involved in the reduced

Th1-type T-cell response observed in mice infected by the

hypervirulent M. tuberculosis HN878 strain, resulting in an

increased bacillary load and increased mortality [41]. The

increased transcription of Ifnb1 (Figure 4C) and Il1a, Il1b, Cd36,

Mmp9 and Mmp12 (data not shown) by 4 hrs post D-mce1 H37Rv-

infection, in combination with the lack of IL-13 induced immune

response support previous findings that, upon an encounter with

the D-mce1 H37Rv, the macrophage initiates an immunological

response which is less able to control bacterial replication leading

to more immunopathology than the response induced by the

H37Rv wild-type strain. These results differ from those reported

previously [7] – an observation which may reflect the fact that host

responses in this study were measured in the first few hours after

infection whereas the previous report showed results after 1–3 days

post-infection. It is clear from the data presented here that gene

expression changes dramatically through the early infection

period, probably reflecting the evolving response of the host cell

and its interaction with the wild type and Mce1-deficient

pathogens.

The IL-13 inducible gene Clec4a2, coding for the dendritic cell

immunoreceptor (DCIR), is a member of the type II calcium-

dependent (C-type) lectin family which efficiently presents

internalized antigens to T-cells and selectively inhibits TLR8-

mediated IL-12 and TNF-a production and TLR9-mediated IFN-

a [42,43]. The observed lack of up-regulation of transcription of

the DCIR receptor post D-mce1 H37Rv-infection as compared to

post-H37Rv infection, may suggest that the D-mce1 H37Rv strain

does not effectively present the structures that normally bind to the

DCIR receptor, or that the Mce1-mutant is capable of suppressing

the induction of the transcription of this inhibitory receptor. In a

recent study, Simmons et al [44] showed that mycobacterial

lipoproteins signaling through TLR2 inhibited induction of Ifnb1

in dendritic cells, thus contributing to the modulation of the

immune response. The observed suppression of transcription Ifnb1

post H37Rv-infection may be explained by the production of

immunomodulatory lipoproteins signaling through TLR2 or the

up-regulation of transcription of Clec4a2, which may inhibit

TLR9-induced induction of Ifnb1. Depending on their degree of

virulence, different strains of M. tuberculosis induce different levels

of pro- and anti-inflammatory responses [45]. Furthermore, it has

been shown that stimulation with either pro-inflammatory or anti-

inflammatory cytokines allows the macrophages to switch from

one activation state to the other [46] and that reactivation of latent

TB disease is correlated with a shift from pro-inflammatory type 1

cytokines to the anti-inflammatory type 2 cytokines [47], while

control of TB disease is associated with the opposite pattern [48].

By 4 hrs post H37Rv-infection there appeared to be a shift

towards the more protective pro-inflammatory type 1 response,

similar to the response observed by 4 hrs post D-mce1 H37Rv-

infection, indicated by the down-regulation of the IL-13ra1

receptor, Ccl24 and Pparg in combination with an up-regulation

of the transcription of the genes Cd36, Mmp9 and Mmp12 and the

genes coding for the pro-inflammatory cytokines IL-12 (Il12b)

[Table 2] and IL-1 (Il1a and Il1b [data not shown]). The findings

from this study indicate that during the initial encounter of the

macrophage the Mce1 protein complex may be involved in

eliciting an immediate anti-inflammatory immune response by the

macrophage which shifts towards a more pro-inflammatory

response by about 4 hrs post-infection. It is possible that the

Mce1-induced response modulates the subsequent inflammatory

response to reduce immunopathology – consistent with the

extensive pathology observed in mice infected with Mce1-deficient

M. tuberculosis, and with its proposed role as a regulator of latency

[7]. Furthermore, the deletion of the mce1 operon results in a

different and perturbed immunomodulatory response which may

hinder control of bacterial replication, and thereby increased

pathology. It would be pertinent to conduct further studies that

look more closely at specific bacterial components or molecules

that favor the early macrophage shift to more protective host

responses.
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H37Rv or D-mce1-H37Rv-infection. The values represent the
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