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Abstract

Previous expression quantitative trait loci (eQTL) studies have performed genetic association studies for gene expression,
but most of these studies examined lymphoblastoid cell lines from non-diseased individuals. We examined the genetics of
gene expression in a relevant disease tissue from chronic obstructive pulmonary disease (COPD) patients to identify
functional effects of known susceptibility genes and to find novel disease genes. By combining gene expression profiling on
induced sputum samples from 131 COPD cases from the ECLIPSE Study with genomewide single nucleotide polymorphism
(SNP) data, we found 4315 significant cis-eQTL SNP-probe set associations (3309 unique SNPs). The 3309 SNPs were tested
for association with COPD in a genomewide association study (GWAS) dataset, which included 2940 COPD cases and 1380
controls. Adjusting for 3309 tests (p,1.5e-5), the two SNPs which were significantly associated with COPD were located in
two separate genes in a known COPD locus on chromosome 15: CHRNA5 and IREB2. Detailed analysis of chromosome 15
demonstrated additional eQTLs for IREB2 mapping to that gene. eQTL SNPs for CHRNA5 mapped to multiple linkage
disequilibrium (LD) bins. The eQTLs for IREB2 and CHRNA5 were not in LD. Seventy-four additional eQTL SNPs were
associated with COPD at p,0.01. These were genotyped in two COPD populations, finding replicated associations with a
SNP in PSORS1C1, in the HLA-C region on chromosome 6. Integrative analysis of GWAS and gene expression data from
relevant tissue from diseased subjects has located potential functional variants in two known COPD genes and has
identified a novel COPD susceptibility locus.
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Introduction

Gene expression levels in humans are highly heritable [1,2].

Multiple published studies have examined the associations

between single nucleotide polymorphism (SNP) variation and

microarray gene expression measurements to identify expression

Quantitative Trait Loci (eQTLs ), single nucleotide polymor-

phisms (SNPs) that influence gene expression [3–5]. However,

most of the published studies have examined gene expression in

lymphoblastoid cell lines (LCL) from unphenotyped individuals

[3,4], though a recent paper has described eQTLs in peripheral

blood CD4+ lymphocytes of patients with asthma [6]. Integrative

genomic analyses can provide functional information regarding

significant SNPs found through genomewide association studies

(GWAS) or identify the key genes within a locus identified through

GWAS. For example, genome-wide expression profiling in LCL

from children with asthma [5] was used to localize ORMDL3

(ORM1-like 3 (S. cerevisiae) [MIM 610075]) as the likely gene for

childhood asthma in the multi-gene chromosome 17q21 locus

found through GWAS [7]. However, this study did not determine

whether the eQTLs identified were relevant in primary human

tissues in asthma. Integrative genomics studies can also be used to

implicate novel genes for complex traits, such as the association

between MMP20 (matrix metallopeptidase 20 [MIM 604629]) and

age related decline in kidney function [8].

Chronic obstructive pulmonary disease (COPD [MIM

606963]), which includes emphysema and chronic bronchitis, is

a complex disease with genetic and environmental influences [9].

COPD is a major source of morbidity and mortality in the U.S.

and worldwide [10]. Previous GWAS have identified three

susceptibility loci for COPD, including HHIP (hedgehog interact-

ing protein [MIM 606178]), FAM13A (family with sequence

similarity 13, member A [MIM 613299]), and a multi-gene locus

on chromosome 15q25 containing candidate genes CHRNA5

(cholinergic receptor, nicotinic, alpha 5 [MIM 118505]), CHRNA3

(MIM 118503), and IREB2 (iron-responsive element binding

protein 2 [MIM 147582]) [11–13]. Cough and phlegm production

is common among COPD patients, and sputum samples may

provide a non-invasive window into pathobiologic processes in the

lungs of COPD patients. Therefore, we integrated GWAS data

with microarray gene expression profiles from induced sputum

samples from well-characterized COPD subjects participating in

the Evaluation of COPD Longitudinally to Identify Predictive

Surrogate End-points (ECLIPSE) Study [14]. We addressed two

hypotheses: (1) eQTL analysis will improve understanding of

previously known COPD susceptibility loci, such as chromosome

15q25; and (2) eQTL SNPs can be used to identify novel COPD

susceptibility genes. Limiting the search to functional eQTL SNPs

can reduce the multiple testing burden found in traditional

GWAS. Although eQTL studies have now been performed in

several human tissues besides blood, our study represents one of

the first integrative genomics analyses performed in affected

patients in order to gain insights into a common disease.

Methods

Ethics Statement
Study subjects provided written informed consent, and all

studies were approved by the Institutional Review Boards at

Partners Healthcare and all participating centers.

ECLIPSE Study
ECLIPSE was a three year observational study conducted at 46

centers in 12 countries [14]. ECLIPSE recruited 2083 COPD

subjects ages 40–75 with a smoking history of at least 10 pack-

years (cigarettes smoked per day multiplied by years smoked,

divided by 20 to convert to packs), 332 control smokers with at

least 10 pack-years smoking history and normal lung function, and

237 non-smoking controls [15]. COPD was defined by GOLD

stage 2 or greater (FEV1/FVC,0.7 with FEV1,80% predicted)

[10]. Genome-wide SNP genotyping was performed on all

ECLIPSE subjects using the Illumina HumanHap550 BeadChip.

GWAS analysis included 1736 cases COPD cases and 175 controls

[11]. Sputum induction was performed on a subset of COPD cases

at 14 sites, using a standard protocol [16]. RNA was extracted

from sputum cell pellets using TRIzol and amplified with the

Nugen Ovation RNA Amplification kit. Gene expression profiling

was performed on RNA extracted from sputum samples of 145

COPD cases (all ex-smokers) using the Affymetrix Human U133

Plus2 array [17]. MIAME-compliant array data are available in

the Gene Expression Omnibus database (http://www.ncbi.nlm.

nih.gov/geo), accession GSE22148. Only Caucasian subjects were

included in this analysis.

Other GWAS Populations
Subjects from two additional COPD case-control studies were

merged with the ECLIPSE subjects in the combined GWAS

analysis and the GWAS meta-analysis [11]. COPD cases and

control smokers were Caucasians recruited in Bergen, Norway

[18,19]. Cases were defined by GOLD stage 2 or greater COPD;

smoking controls had normal lung function. Both cases and

controls had smoking history of at least 2.5 pack-years. GWAS

included 838 cases and 791 controls, genotyped using the Illumina

HumanHap550 BeadChip [12].

The National Emphysema Treatment Trial (NETT) cases have

FEV1#45% predicted and emphysema on chest CT scan [20,21].

Thus, NETT cases have COPD severity of GOLD Stage 3 or

greater. All NETT Genetics Ancillary Study subjects are former

smokers; only white subjects are included in this analysis. The

Normative Aging Study (NAS) is a cohort study of initially healthy

men followed by the Boston VA [22]. To define a control group

for comparison to NETT cases, we selected Caucasian subjects

meeting the following criteria: FEV1.80% predicted, FEV1/

FVC.90% predicted, at least 10 pack-years of smoking, and an

adequate DNA sample [23]. Genomewide SNP genotyping has

been performed in the NETT-NAS study (366 cases, 414 controls)

using the Illumina 610-Quad BeadChip [11].

Replication Populations
The International COPD Genetics Network (ICGN) was a

family-based study of COPD at ten centers in North America and

Europe [18,24]. Probands were ages 45–65 with post-bronchodi-

lator FEV1,60% predicted, FEV1/VC,90% predicted, a

smoking history of at least 5 pack-years, and at least one sibling

with $5 pack-year smoking history. Genotyping was performed

on Caucasian subjects only (Table 1).

The Genetic Epidemiology of COPD Study (COPDGene)

enrolled COPD cases and control smokers at 21 clinical centers

throughout the United States [25]. Subjects are 45–80 years old

and have a smoking history of at least 10 pack-years. This analysis

included the first 994 non-Hispanic white case and control subjects

enrolled in COPDGene (Table 1). In these samples, a set of 75

ancestry informative markers has been previously genotyped and

did not show evidence of population stratification [11].

SNP genotyping in ICGN and COPDGene SNPs was done

using the iPLEX Gold assay on the Sequenom (San Diego, CA)

MassARRAY system [26] or the TaqMan 59 exonuclease assay

(Applied Biosystems, Foster City, CA) [27].

Sputum Integrative Genomics in COPD
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Statistical Analysis
A total of 145 COPD subjects had sputum samples with gene

expression data available; two arrays failed quality control. Of the

remaining 143 subjects, 131 had corresponding genomewide SNP

data and phenotype data. The Affymetrix HG-U133 Plus 2 array

contains 54,675 probe sets. After filtering out 17,420 probe sets

which were not annotated with a specific gene symbol in the

hgu133plus2.db R/Bioconductor database or which mapped to

the X or Y chromosomes, 37,255 probe sets remained. Microarray

preprocessing used the robust multiarray average method and

quantile normalization [28], implemented in Bioconductor. QC of

microarrays was performed using the Bioconductor package

affyQCReport; QC results are available in the Data S1 and in

Figure S1. QC of genomewide SNP data in ECLIPSE has been

reported [11]. SNPs with minor allele frequency ,0.05 in the 131

ECLIPSE cases were additionally excluded.

In the integrative analysis, each expression probe set was mapped

to its corresponding gene and all genotyped SNPs were identified

within 50 kb of the transcription start site (TSS). General linear

models were used to detect cis-acting associations between probe set

expression levels and SNP genotypes, adjusted for age, gender, and

the first six genetic ancestry principal components derived from the

genotype data on all ECLIPSE COPD cases [29]. False discovery

rate adjusted p-value,0.05 defined statistical significance. eQTL

analysis utilized the GGTools Bioconductor package [30].

Each significant cis-eQTL SNP was then tested for association

with COPD in the combined GWAS dataset from ECLIPSE,

Norway, and NETT-NAS [11]. The published combined GWAS

analysis was a mega-analysis of individual-level genotype data,

using logistic regression, adjusted for age, pack-years of smoking

and principal components for genetic ancestry. In the published

meta-analysis, stratified logistic regression was performed within

each case-control study and results were combined using Z-scores

for weighting by the inverse variance. SNPs associated with

COPD at p,0.01 in either the combined GWAS analysis (mega-

analysis) or the GWAS meta-analysis were genotyped for

replication in ICGN and COPDGene. In the COPDGene study,

case-control data were analyzed with linear regression models,

adjusted for age, sex, and pack-years of smoking, using PLINK

version 1.0.7 [31]. Family-based ICGN data were analyzed in

PBAT version 3.6.1, adjusted for age, sex, and pack-years of

smoking [32].

We also tested for eQTL SNPs influencing the expression of

genes in previously identified COPD loci. On chromosome 15q25,

we defined a region starting 50 kb centromeric from IREB2

extending 50 kb telomeric from CHRNB4 (approx. 300 kb total)

and tested all genotyped SNPs within this region for association

with expression levels of probe sets for six genes: IREB2, AGPHD1,

PSMA4, CHRNA5, CHRNA3, and CHRNB4. For the other two

COPD loci, we expanded the cis-eQTL analysis to all SNPs with

200 kb of the TSS of the genes HHIP and FAM13A.

Results

Sputum eQTL Analysis
Characteristics of the 131 ECLIPSE COPD subjects in the

eQTL analysis are shown in Table 1. On average, COPD subjects

had a heavy smoking history and severely impaired lung function,

similar to the full set of ECLIPSE GWAS cases [11]. The data

analysis is outlined in Figure 1. Combining the gene expression

data with genomewide SNP data and limiting analysis to potential

cis-acting SNPs (within 50 kb of TSS) yielded 562,787 SNP-probe

set association tests. Of these, 4315 SNP-probe set associations

were significant at FDR-adjusted p,0.05 (corresponding to

unadjusted p = 3.8e-4), representing 3309 unique SNPs and

1399 unique probe sets, covering 1086 genes (Table S1).

The top eQTL was for SNP rs104664 within the gene

FAM118A (family with sequence similarity 118, member A). This

SNP was found to be highly associated with FAM118A expression

(Affymetrix Human 1.0 ST Exon array) in human osteoblasts [33],

suggesting cross-tissue generalizability of this eQTL association.

Other significant eQTL associations observed in sputum included

CHURC1 (churchill domain containing 1 [MIM 608577]), HLA-

DQB1 (major histocompatibility complex, class II, DQ beta 1

[MIM 604305]) and HLA-DQA1 (MIM 146880), all of which were

previously been found in other tissues, such as LCL [4,34] and

brain [35], according to a search of the GTEx (Genotype-Tissue

Expression) eQTL Browser (http://www.ncbi.nlm.nih.gov/gtex,

accessed 11/30/2010).

Sputum eQTLs associated with COPD
We queried the 3309 significant cis-eQTL SNPs in the combined

GWAS dataset including ECLIPSE, Norway, and NETT-NAS

subjects [11]. Using a strict Bonferroni correction, there were two

Table 1. Characteristics of Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points (ECLIPSE) study subjects
in the integrative genomics analysis as well as subjects from the International COPD Genetics Network (ICGN) and the Genetic
Epidemiology of COPD study (COPDGene) included in follow-up analyses.

ECLIPSE ICGN COPDGene

Cases Probands Relatives Cases Controls

N 131 983 1876 496 498

Male sex 87 (66.4%) 580 (59.0%) 970 (51.7%) 244 (49.2%) 251 (50.4%)

Age 64.9 (65.5) 58.4 (65.4) 57.9 (69.5) 64.7 (68.1) 60.3 (68.6)

Pack-years of smoking 46.8 (628.3) 52.7 (629.5) 39.2 (625.3) 54.8 (626.8) 38.8 (621.0)

Current smoker 0 320 (32.6%) 956 (51.0%) 149 (30.0%) 168 (33.7%)

Post-bronchodilator FEV1, % predicted 49.3 (615.3) 35.5 (613.1) 83.3 (626.0) 48.8 (618.4) 98.0 (611.3)

Post-bronchodilator FEV1/FVC 0.43 (60.12) 0.37 (60.12) 0.64 (60.14) 0.48 (60.13) 0.78 (60.05)

Values are presented as mean (6SD) or N (%).
FEV1 = forced expiratory volume in 1 second.
FVC = forced vital capacity.
doi:10.1371/journal.pone.0024395.t001
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cis-eQTL SNPs significantly associated with COPD at p,0.05/

3309 = 1.5e-5 (Table 2). These two SNPs on chromosome 15q25

are located in CHRNA5 and IREB2, genes with known COPD

associations.[12,36] At a nominal threshold of p,0.01, there were

64 cis-eQTL SNPs associated with COPD (Table S2). There were

56 eQTL SNPs associated with COPD at p,0.01 in the meta-

analysis of the ECLIPSE, Norway, NETT-NAS GWAS studies

(Table S3), as opposed to the combined analysis of individual-level

genotype data. Merging the 64 SNPs from the combined GWAS

analysis and the 56 SNPs from the GWAS meta-analysis left 76

unique SNPs, which were brought to replication analysis.

Replication Studies
Characteristics of the ICGN and COPDGene subjects in the

replication analysis are reported in Table 1. The two SNPs in

Table 2 were analyzed in previous reports [12,36] and were not

retested. Of the remaining 74 SNPs, 69 were successfully

genotyped in ICGN and COPDGene. Screening in the larger

ICGN study found 8 SNPs with p,0.1 (Table 3). Of these, only

one had p,0.1 in COPDGene. SNP rs1265098 was significantly

associated with COPD in ICGN and had a trend for significance

in COPDGene. The effect direction for rs1265098 was consistent

in ICGN, COPDGene, and the combined GWAS; the minor

allele was associated with increased COPD risk in all three studies.

SNP rs1265098 maps to the gene PSORS1C1 (psoriasis suscepti-

bility 1 candidate 1 [MIM 613525]) on chromosome 6, yet is

associated with transcript levels of the neighboring gene

PSORS1C3 (p = 8.2e-05, FDR-adjusted p = 0.016) (Figure 2).

Sputum eQTLs in COPD Candidate Loci
Previous GWAS have identified three loci associated with

COPD susceptibility: HHIP on chromosome 4q31 [12,13],

FAM13A on chromosome 4q22 [11], and a region on chromosome

15q25 encompassing candidate genes CHRNA5, CHRNA3 and

IREB2, among others [12,36]. On chromosome 15q25, cis-eQTL

associations for IREB2 mapped to that gene (Figure 3a). Genetic

regulation of CHRNA5 was more complex. Previous studies have

demonstrated cis-acting effects of multiple SNPs on CHRNA5

expression. Saccone et al. defined 4 LD bins surrounding CHRNA5

with varying associations with cigarette smoking, lung cancer, and

COPD [37]. Bins 1–3 were represented in our dataset, tagged by

SNPs rs1051730, rs938682, and rs6495306, respectively (Table 4).

SNPs in bins 1 and 3 were associated with CHRNA5 expression in

sputum (Figure 2), as has been demonstrated in brain [38] and

lung tissue [39]. SNPs in bin 2 were not eQTLs for CHRNA5. We

added additional SNPs to these bins, based on strong LD with tag

SNPs in the larger ECLIPSE GWAS dataset. We also identified 3

sets of SNPs (3a, b, c in Table 4) with cis-eQTL associations for

CHRNA5 and moderate LD with SNPs in bin 3 (r2 0.57–0.76).

SNPs in bins 1 and 2, but not bin 3, showed evidence of

association with COPD in the combined GWAS dataset, though

they were not genomewide significant (bin 1: rs1051730, p = 2.8e-

6; bin 2: rs938682, p = 5.6e-5; bin 3: rs6495306, p = 0.2). These

results suggest that the COPD-associated SNP rs1051730 (bin 1)

may influence phenotype by its effect on gene expression, while

COPD-associated SNPs in bin 2 (tagged by rs938682) may exert

their effect through other mechanisms. SNPs in bin 3, although

eQTLs, were not associated with COPD risk.

SNPs in IREB2 were both cis-eQTLs for that gene (Table 4,

Figure 2) and were associated with COPD in the combined

GWAS (rs13180, p = 5.0e-7). Even though some of the significant

eQTL SNPs for CHRNA5 mapped to IREB2 (bin 3a), SNPs in all 3

bins were not in LD with the IREB2 eQTL SNPs (Figure 3b). No

SNPs were significantly associated with AGPHD1, PSMA4, or

CHRNB4 gene expression. For the other two COPD GWAS loci,

HHIP and FAM13A, we found no significant cis-eQTL SNPs

Figure 1. Overview of integrative genomics data analysis.
*Combined genomewide association study (GWAS) = Evaluation of
COPD Longitudinally to Identify Predictive Surrogate End-points
(ECLIPSE), Bergen Norway, and National Emphysema Treatment Trial
(NETT)-Normative Aging Study (NAS) [11]. COPD = chronic obstructive
pulmonary disease. eQTL = expression quantitative trait locus.
FDR = false discovery rate. ICGN = International COPD Genetics Network.
SNP = single nucleotide polymorphism.
doi:10.1371/journal.pone.0024395.g001

Table 2. Sputum cis-eQTL SNPs significantly associated with COPD in the combined COPD GWAS.

Chrom location SNP Affy probe Gene eQTL pvalue
FDR-adjusted
pvalue

GWAS COPD
ORa

GWAS COPD
pvaluea

GWAS pvalue
(adjusted)b

15 76532762 rs2656069 1555476_at IREB2 0.00030 0.042 0.75 6.8E-06 0.023

15 76681394 rs1051730 206533_at CHRNA5 0.00015 0.026 1.29 2.8E-06 0.0093

aCombined COPD genomewide association study (GWAS) according to Cho et al. [11].
bBonferroni correction for 3309 sputum expression quantitative trait locus (eQTL) single nucleotide polymorphisms (SNPs) tested.
doi:10.1371/journal.pone.0024395.t002
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within 50 kb, so we expanded the assessment of cis-eQTLs to all

SNPs within 200 kb of the TSS of each gene. There were no

significant cis-eQTLs within 200 kb of either HHIP or FAM13A.

Discussion

In a cohort of well-characterized COPD subjects, we integrated

genomewide SNP and gene expression data derived from induced

sputum, a biologically-relevant tissue in COPD, to identify a set of

eQTL SNPs affecting gene expression levels. The SNPs were then

tested for association with the clinical phenotype of COPD; gene

expression was not tested for association with disease status in this

set of COPD cases only. Using the eQTL results, we implicated

two distinct COPD susceptibility genes in a previously identified

region of chromosome 15q25. Additionally, we provide evidence

for a potential novel COPD susceptibility locus in the HLA region

on chromosome 6.

The initial GWAS in COPD found significant associations on

chromosome 15q25, with SNPs in the genes CHRNA3 and

CHRNA5, encoding two subunits of the nicotinic acetylcholine

receptor [12]. This region has also been associated with lung

cancer, peripheral arterial disease, and smoking behavior [37,40–

43], so it is not clear whether these genes have a direct effect on

COPD susceptibility, or their effects are at least partially

influenced through cigarette smoking, the major environmental

risk factor for COPD [44,45]. In terms of genetic regulation of

expression of the chromosome 15q25 genes, we found similar

eQTL associations with CHRNA5 expression in induced sputum as

has been found in brain [38] and lung tissue [39]. We found

additional sputum eQTL SNPs for CHRNA5 in moderate LD with

previously defined eQTLs. The previous papers on brain and lung

tissue gene expression did not report testing IREB2, a gene

previously associated with COPD [11,36]. The specific IREB2

SNPs associated in GWAS (rs13180) [11] and in a candidate gene

analysis of differentially expressed genes (rs2656069) [36] were in

only moderate LD (r2 = 0.44) with each other, implying indepen-

dent effects on IREB2 expression. The IREB2 and CHRNA5 eQTL

SNPs were not in LD with each other, suggesting the presence of

at least two COPD susceptibility genes on chromosome 15q25.

Previous studies have similarly used eQTL analyses to add

functional information about genes identified through GWAS,

including studies of asthma [7], celiac disease [46], and Crohn’s

disease [47]. However, these prior studies have examined gene

expression in blood cells, and not primary disease tissues.

However, we did not finding significant cis-eQTL SNPs for two

other known COPD loci, HHIP and FAM13A. The associated

SNPs found through GWAS may exert their effects on phenotype

via other mechanisms besides influencing gene expression.

Alternatively, the GWAS SNPs may actually be eQTLs acting

in other tissues besides sputum, such as alveolar or bronchial

epithelial cells, which were not assessed in our study.

Besides improving understanding of the COPD susceptibility

locus on chromosome 15q25, we identified a potential novel

COPD locus on chromosome 6. The SNP maps to gene

PSORS1C1, but it is associated with expression levels of the

neighboring gene PSORS1C3. Variants in PSORS1C3 have been

reported to be associated with psoriasis [48], an immune-mediated

skin disease. PSORS1C3 is located in the major histocompatability

(MHC) region, and subsequent papers have found that the

associations with psoriasis may be due to variants in HLA-C (MIM

142840) [49,50]. Interestingly, one study has reported an

epidemiologic association between psoriasis and COPD [51],

and cigarette smoking is a risk factor for psoriasis as well [52].

Although there are no reports of HLA-C associations with COPD,

alleles of other MHC class I genes, HLA-A and HLA-B, have been

associated with COPD [53,54]. The locus encompassing

PSORS1C1/3 and HLA-C will require additional replication studies

and functional validation to confirm its role in COPD suscepti-

bility.

Prior studies have also used eQTL analyses to identify novel

genes for complex traits, including age related decline in kidney

function [8] and body mass index [55]. In contrast to our study,

these papers first found gene transcripts correlated with the

phenotype, then tested SNPs in/near these genes for association

with expression levels. We performed the cis-eQTL analysis as the

initial step, then tested the eQTL SNPs for phenotype association.

This limits multiple testing compared to a GWAS, enriching for

eQTL SNPs which may be more likely to be associated with

disease [56].

This study has several limitations. The sample size of 131

subjects, though adequate for gene expression analyses, may be

underpowered to detect all potential eQTL associations.

Therefore, we limited the cis-acting analysis to SNPs within

50 kb from the gene, to limit the multiple testing burden. Based

Table 3. Genetic association analysis of sputum expression quantitative trait locus (eQTL) single nucleotide polymorphisms (SNPs)
with COPD susceptibility.

SNP Chrom BP Gene
Effect on COPD
risk in ICGN ICGN pvalue COPDGene OR

COPDGene
pvalue GWAS ORa

GWAS
pvaluea

rs1999261 6 6515106 INTERGENIC Increase 0.042 0.94 0.53 1.15 0.0080

rs1265098 6 31214156 PSORS1C1 Increase 0.024 1.20 0.098 1.18 0.0065

rs4750277 10 12954527 INTERGENIC Increase 0.0062 0.97 0.80 0.83 0.0097

rs1025607 12 94884637 AMDHD1 Increase 0.011 1.12 0.26 a a

rs2347279 18 2528545 METTL4 Decrease 0.097 1.01 0.91 0.83 0.0025

rs1878553 18 2560155 NDC80 Decrease 0.030 1.03 0.83 0.83 0.0028

rs4803481 19 46758396 INTERGENIC Decrease 0.055 0.97 0.81 a a

rs2302188 19 46777713 CEACAM21 Decrease 0.090 0.97 0.77 0.85 0.0075

SNPs with p-value,0.1 in the International COPD Genetics Network (ICGN) are shown.
aOdds Ratio and p-value from combined genomewide association study (GWAS) analysis [11] are shown, except as noted:
rs1025607 p = 0.0089 in GWAS meta-analysis.
rs4803481 p = 0.0043 in GWAS meta-analysis.
doi:10.1371/journal.pone.0024395.t003

Sputum Integrative Genomics in COPD

PLoS ONE | www.plosone.org 5 September 2011 | Volume 6 | Issue 9 | e24395



Figure 2. Boxplots of sputum gene expression levels stratified by genotype in 131 Evaluation of COPD Longitudinally to Identify
Predictive Surrogate End-points (ECLIPSE) subjects with chronic obstructive pulmonary disease. a) rs1265098 - PSORS1C3 (238997_at),
p = 8.2e-5. b) rs13180 - IREB2 (1555476_at), p = 6.7e-9. c) rs1051730 - CHRNA5 (206533_at), p = 2.2e-4; LD bin 1 (see Table 4). d) rs6495306 - CHRNA5
(206533_at), p = 9.9e-6; LD bin 3 (see Table 4).
doi:10.1371/journal.pone.0024395.g002
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on RNA sequencing data, Pickrell et al. estimate that 90% of

eQTL SNPs are within 15 kb of a gene [57]. Previous papers

have used a 50 kb limit to define cis-acting eQTLs [6]. Using this

method, we were able to replicate published eQTL associations

from other tissues and were able to identify a set of significant

eQTL SNPs to carry forward for COPD association studies.

However, our method would be unable to detect cis-eQTLs

located .50 kb from the TSS, such as a SNP in an upstream

enhancer or in the 39 UTR of a large gene. Due to the sample

size, we limited our investigation to cis-acting eQTL SNPs, as a

full search for trans-acting regulatory SNPs greatly increases the

number of tests performed. The literature suggests that sample

sizes under 200 subjects may be inadequate to find true trans-

eQTLs [58].

Figure 3. Detailed analysis of the chromosome 15q25 chronic obstructive pulmonary disease (COPD) locus. a) Association between
single nucleotide polymorphisms (SNPs) in the chromosome 15q25 COPD locus and expression levels of IREB2 (1555476_at), CHRNA5 (206533_at) and
CHRNA3 (211587_x_at) in sputum samples from 131 Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points (ECLIPSE) subjects.
SNP rs numbers are listed in Table 4. b) Linkage disequilibrium r2 values between SNPs in the chromosome 15q25 COPD locus (listed in Table 4) in 131
ECLIPSE subjects.
doi:10.1371/journal.pone.0024395.g003
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Table 4. Single nucleotide polymorphism (SNP) associations with expression of IREB2 (1555476_at) and CHRNA5 (206533_at) in
induced sputum samples from COPD subjects.

SNP Position IREB2 eQTL pvalue CHRNA5 eQTL pvalue LD bin r2 with locus tag r2 with rs13180

rs4243082 78682076 0.88 0.89

rs11635084 78686823 0.066 0.82

rs2869040 78688834 0.26 0.68

rs6495296 78696492 0.32 0.71

rs4887052 78703631 0.26 0.88

rs7171749 78708715 0.41 0.44

rs12913946 78709937 0.30 0.72

rs7183034 78710766 0.16 0.66

rs4887053 78712699 0.0012 0.11

rs1394371 78724469 0.0028 0.031

rs12903150 78724645 0.014 0.0014

rs12899131 78726885 0.71 2.8E-05 3a 0.57 ,0.01

rs10519198 78742754 0.73 3.3E-05 3a 0.57 ,0.01

rs2656069 78745707 4.0E-04 0.11 IREB2 0.44

rs13180 78789488 6.7E-09 0.74 IREB2

rs3743079 78791061 3.9E-04 0.063 IREB2 0.36

rs1062980 78792527 7.7E-09 0.78 IREB2 0.99

rs8034191 78806023 0.010 3.8E-04 1 0.90

rs3885951 78825917 0.025 0.20

rs2036534 78826948 0.0015 0.043 2 0.79

rs12915366 78831753 0.83 3.7E-07 3 0.80

rs2292117 78834689 0.80 6.4E-07 3 0.82

rs6495306 78865893 0.79 9.9E-06 3 ,0.01

rs680244 78871288 0.79 9.9E-06 3 0.99

rs621849 78872861 0.79 9.9E-06 3 0.99

rs578776 78888400 0.016 0.70 2 0.72

rs12910984 78891627 0.0061 0.45 2 0.99

rs1051730 78894339 0.016 2.2E-04 1 0.19

rs3743077 78894896 0.93 6.7E-05 3 0.98

rs938682 78896547 0.0061 0.45 2 0.26

rs12914385 78898723 0.014 8.0E-04 1 0.81

rs8042374 78908032 0.0064 0.53 2 0.98

rs3743075 78909452 0.76 2.0E-04 3b 0.76 0.01

rs6495309 78915245 0.088 0.64 2 0.90

rs1948 78917399 0.16 4.2E-04 3c 0.60 0.03

rs11636753 78928946 0.91 0.0023

rs12441998 78929372 0.14 0.85

rs1316971 78930510 0.083 0.89

rs12594247 78946633 0.63 0.62

rs17487514 78953785 0.10 0.068

rs1996371 78956806 0.025 0.025

rs6495314 78960529 0.025 0.025

rs922691 78963994 0.14 0.0060

rs8032156 78964498 0.51 0.66

rs8038920 78974545 0.059 0.011

rs4887077 78978364 0.049 0.029

rs11638372 78983559 0.049 0.029

Linkage disequilibrium (LD) bins for CHRNA5 associations are defined as in Saccone et al. [37]. SNPs tags for LD bins are shown in bold. Additional SNPs added to bins
based on LD in ECLIPSE genomewide association study dataset are shown in italics.
doi:10.1371/journal.pone.0024395.t004
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Several groups have compared eQTLs in different tissues from

the same individual, finding both overlapping and tissue-specific

eQTLs [59–61]. Multiple tissues are known to be important in

COPD biology, including large and small airways, lung paren-

chyma and immune cells. By only surveying sputum, we may have

missed significant eQTLs for COPD genes that are expressed in

other tissues. Multiple cell types may be present in sputum, yet

neutrophils have been shown to be the predominant cell type in

the sputum samples from COPD subjects in ECLIPSE [16].

Despite these limitations, sputum is a clinically important tissue in

COPD and is more accessible for genomic and biomarkers studies

than lung tissue. Studying diseased individuals may be advanta-

geous to identify eQTL SNPs for potential disease genes, which

may only be expressed, or may be expressed at higher levels, in

patients compared to healthy controls.

In conclusion, we combined genomewide SNP genotyping with

genomewide expression profiling from a relevant tissue in well-

characterized subjects with a common chronic disease. Using this

strategy, we were able to gain insights into the functional role of

SNPs previously associated through GWAS, as well as identify a

potential novel disease susceptibility gene which would have been

missed using standard GWAS analysis. Previous eQTL studies

have provided important information about genetic control of

human gene expression. Integrative genomics studies in relevant

tissue from well-phenotyped individuals, as we have performed,

will be required to apply this knowledge to human disease.
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