
Multi-national Gene Expression 
Profiling of Oral Squamous Cell 

Carcinomas 
 

Biological Pathways Regardless of Differences Related to  
Life-style and Ethnicity 

 

Mai Lill Suhr Lunde 

 

Dissertation for the degree philosophiae doctor (PhD) at the University of 

Bergen 

 

2012 



 2



 3

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

To my family 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 4



 5

Contents  
 
 
ACKNOWLEDGEMENTS .................................................................................................................................. 7 
ABBREVIATIONS ............................................................................................................................................. 11 
SUMMARY ......................................................................................................................................................... 13 
LIST OF PUBLICATIONS ................................................................................................................................ 17 
1. INTRODUCTION ........................................................................................................................................... 19 

1.1 ORAL CANCER ............................................................................................................................................ 19 
1.2 POTENTIALLY MALIGNANT ORAL MUCOSAL LESIONS .................................................................................. 20 

1.2.1 Oral submucous fibrosis ..................................................................................................................... 20 
1.2.2 Oral leukoplakia ................................................................................................................................. 21 
1.2.3 Oral erythroplakia .............................................................................................................................. 21 
1.2.4 Oral lichen planus .............................................................................................................................. 22 

1.2 TOBACCO HABITS AND DEVELOPMENT OF OSCCS ...................................................................................... 23 
1. 4 MOLECULAR DEVELOPMENT OF OSCCS ..................................................................................................... 25 
1. 5 THE S100 PROTEINS.................................................................................................................................... 28 

1.5.1 S100 proteins and OSCCs .................................................................................................................. 30 
1. 6 GENETIC CHANGES AND CHROMOSOMAL DAMAGES IN OSCCS: ROLE OF ARRAY TECHNOLOGY ................ 31 
1. 7 REAL-TIME QUANTITATIVE POLYMERASE CHAIN REACTION (RT-Q-PCR) ................................................. 34 
1. 8 RESTRICTION FRAGMENT LENGTH POLYMORPHISM (RFLP) ....................................................................... 37 

2. AIMS OF THE STUDY .................................................................................................................................. 39 
3. MATERIALS AND METHODS .................................................................................................................... 40 

3.1 PATIENTS (PAPERS I-III).............................................................................................................................. 40 
3.2 TISSUE SAMPLES AND LABORATORY METHODS USED .................................................................................. 41 

3.2.1 Patients and tissue specimens ............................................................................................................. 41 
3.2.2 RNA and DNA extractions .................................................................................................................. 41 
3.2.3 cDNA synthesis, DNA labeling, hybridization and scanning (Papers I-III) ....................................... 41 
3.2.4 Quantitative Real-Time RT-PCR (Papers I and II) ............................................................................ 42 
3.2.5 Tissue specimens and immunohistochemistry (Paper III) .................................................................. 42 
3.2.6 Evaluation of the IHC ......................................................................................................................... 43 
3.2.7 Restriction fragment length polymorphism (RFLP) ........................................................................... 43 
3.2.8 DNA sequencing ................................................................................................................................. 44 

3.3 STATISTICAL ANALYSIS ............................................................................................................................... 44 
4. RESULTS AND GENERAL DISCUSSION ................................................................................................. 47 

4. 1 GENE EXPRESSION PROFILES AND CHROMOSOMAL DELETIONS/AMPLIFICATIONS (PAPERS I-III) ................ 47 
4.1.1 Gene expression profile for selected  genes (Papers I-III) ................................................................. 49 
4.1.1.a Caveolins, matrix metalloproteinases, extracellular matrix, proteases and oncogenes .................. 49 
4.1.1.b S100 A gene family members ........................................................................................................... 53 
4. 2 Common biological pathways ............................................................................................................... 55 
4. 3 Chromosomal alterations in OSCC compared to OFS samples (Paper III) ......................................... 56 
4. 4 S100A14 as a molecular biomarker for OSCCs (Paper III) ................................................................. 57 

5. CONCLUSIONS………………………………. ............................................................................................. 59 

6. FUTURE PERSPECTIVES ........................................................................................................................... 60 
7. REFERENCES ................................................................................................................................................ 61 
8. ORIGINAL PAPERS ..................................................................................................................................... 73 
  



 6



 7

Acknowledgements 
 

The work presented in this thesis was performed at the Department of Biomedicine, 

University of Bergen in the period from 2004 to 2011. 

 

First of all, I would like to thank my supervisors, Associate prof. Salah Osman Ibrahim and 

Prof. Endre Vasstrand for giving me the opportunity to do this project, for sharing their 

knowledge and experience and introducing me to the world of oral cancer. My special thanks 

to Salah for initiating this project and for establishing the international network which made 

this project possible. Thank you for teaching me so much, your patience, our fruitful 

discussions and your guidance throughout my studies. Thanks for believing in me!  

 

My special thanks go to Inger Ottesen for her skilled technical assistance, for guiding me in 

the lab, and for caring so much. Special thanks also to Randi Svebak for being so helpful with 

the daily lab routines, your knowledge and detailed overview of the lab equipment have been 

invaluable to me.  

 

I want to thank all my co-authors for making this work possible by supplying oral cancer 

biopsies, and their contributions to the papers. Special thanks to Prof. Saman Warnakulasuriya 

for his contributions to all my papers, his interest, comments and ideas, and for reading and 

commenting on the thesis. Thanks also to Prof. Ravi Mehrotra, Prof. Jan M. Hirsch and Dr. 

Jussi Laranne for their contributions to my work. Special thanks also to Dr. Ove Bruland for 

introducing me to quantitative PCR and allowing me to use the facilities at the Centre for 

Medical Genetics at Haukeland University Hospital. I am also grateful to Dr. Talia Miron for 

sharing her great expertice with me. 

 

I would like to thank Prof. Ian Pryme for reading and commenting on this thesis. 

 

I could not have done this work without the assistance from the people at the Norwegian 

Microarray Consortium in Bergen. I would like to thank Harald Breilid and Rita Holdhus for 

all their help and guidance working with microarray experiments, and Bjarte Dysvik, Kjell 

Petersen, Anne-Kristin Stavrum, Pawel Sztromwasser and Prof. Inge Jonassen for handling 



 8

microarray expression data, patiently explaining the details of data processing and helping me 

solving problems along the way (there were many!). 

 

I would also like to thank Dana Costea, Gunvor Øijordsbakken and Siren Hammer Østvold 

for their skilled assistance with immunohistochemistry, and Tarig Osman for taking time to 

show me the process, and for our interesting discussions.  

 

I highly appreciate working together with my oral cancer group members Dipak Sapkota and 

Eric Roman, sharing ideas, experience and daily routines. Special thanks to Dipak for helping 

out with statistics, figures and much more, you are always so helpful! I would also like to 

thank Bina Raju for sharing social moments and Sushma Bartouli for all our nice lab sessions. 

 

My time at BBB could not be described without mentioning Aurora Martinez and her 

Biorecognition group, running lab E, and sharing the facilities with our group. Thanks for 

including and supporting me, without you it would never have been the same! Special thanks 

to Prof. Aurora Martinez for her generosity, good advice and great support. Thanks so much 

for giving me the opportunity to participate in one of your projects! My special thanks also to 

my office mates Jessica and Khanh, making a nice union of Asia, Scandinavia, chemistry, 

bioinformatics and molecular biology. Thanks to Khanh for always offering me a ride home, 

and for teaching me so much about Vietnam! And then there is Marte, who has become my 

dear friend and shared so much with me during these years, both inside and outside of work. 

Also, thank you for all help in the lab and with figures. You are such a warm and including 

person, and I am ever grateful to have met you!  

 

To all my old friends here, there and everywhere, thanks so much for being there, caring for 

me and encouraging me to continue my project. A special thank to Therese and Trude for all 

your encouragement and support, and Tone for always making my visits home so cheerful! 

Thanks to Merete and Hanne for providing a social foundation when I first came to Bergen, 

and to Therese B and the lovely ladies of FFMM for expanding it. I would also like to thank 

Iren for many pep-talks in the corridors of BBB. 

 

I am very grateful for the support and love of my family, my sister Vivi and brother Ove and 

their families. I always enjoy our family meetings, and wish they occurred more often. Thanks 

also for the warmth and care of Heidi and Harald, Kevin and Jill, Wenche and my mother-in-



 9

law Elly, for your kindness and generosity, and my father-in-law Richard and Marit, for 

making our stays in Lofoten so great. Above all, I thank my parents, Hildur and Erling, for 

their endless love, encouragement, interest and just being there for me. You have always 

supported me in all possible ways, and you are wonderful grandparents. I would never have 

reached this point in life if it weren’t for you. 

 

Finally, I want to thank the most important persons in my life, Lars, my dear husband and best 

friend, for being who you are, for keeping my feet on the ground and for bearing with me, for 

believing in me and supporting me. You are my safe haven, and a great dad! And to my 

beloved children, Didrik and Ellinor, you have brought new dimensions into my life, and my 

love for you has no limits. Life is never boring when you’re around! 

 
Thank you all! 
 
 
 
 

Bergen, November 2011 
 

Mai Lill Suhr Lunde 



 10



 11

Abbreviations 
 

Array-CGH Array comparative genomic hybridization 

AN  Areca nut 

BAC  Bacterial artificial chromosome 

BQ  Betel quid 

ECM  Extracellular matrix 

HME  Hereditary multiple exostoses 

HPV  Human papillomavirus 

IHC  Immunohistochemistry 

MMP  Matrix metalloproteinase 

NNN  N-nitrosonornicotine 

NNK  4-[methylnitrosoamino]-1-[3-pyridyl] – 1-1 butanone  

NPID  Nature pathway interaction database 

OC  Oral cancer 

OLP  Oral lichen planus 

OSF  Oral submucous fibrosis 

OSCC  Oral squamous cell carcinoma 

PAC  P1 – derived artificial chromosome 

PAH  Polycyclic aromatic hydrocarbons 

RFLP  Restriction fragment length polymorphism 

ROS  Reactive oxygen species 

RT-qPCR Real-time quantitative polymerase chain reaction 

SNP  Single nucleotide polymorphism 

ST  Smokeless tobacco 

TSG  Tumor suppressor gene 

TSNAs Tobacco specific nitrosamines 

XME  Xenobiotic-metabolizing enzyme 



 12



 13

Summary 
 
Oral squamous cell carcinoma (OSCC) is a major health problem in many developing 

countries, representing more than 25% of all new cancer cases in some countries such as India 

and Sri Lanka. Cigarette smoking, smokeless tobacco (ST), alcohol use and chewing of betel 

quid (BQ) are the main risk factors associated with OSCC development. Infection with high-

risk Human papillomavirus (HPV) is an emerging risk factor, particularly for oropharyngeal 

cancers. Most of the OSCC cases are diagnosed at advanced stages, being one of the factors 

related to the high mortality rate of this cancer. A better understanding of the molecular 

biology of OSCC development might lead to improved methods related to detection, assessing 

prognosis and novel treatments of this malignancy.  

 

Over the recent years, microarray-based technologies have become commonly used 

techniques for analyzing gene expression and chromosomal alterations in human cancers and 

other disease conditions. These high-throughput technologies enable genome-wide analysis of 

changes in gene expression or chromosomal deletions/amplifications in the pathological 

samples to be studied. In the search for possible molecular biomarkers for OSCCs, a series of 

studies were carried out in the work described here, where cDNA microarrays and array-

comparative genomic hybridization (array-CGH) were applied to examine possible changes in 

gene expression and DNA copy number alterations in OSCC samples compared to their pair-

wised normal controls and between OSCC samples from different populations.  

 

In addition to examining gene expression in OSCC, the study included analysis of samples 

from a potentially malignant disorder known as oral submucous fibrosis (OSF), common in 

Asian populations, to ascertain whether genetic aberrations found in OSCC could be observed 

in early phases of carcinogenesis. 

Gene expression profiles and chromosomal alterations were studied in OSCC/OSF samples 

from Sri Lankan, Indian, Swedish and UK patients using cDNA microarrays and array-CGH. 

For gene expression profile (Paper I), 15 cases of OSCCs from Sri Lanka and their pair-

wised normal controls were examined. Following RNA extraction from all samples, cDNA 

was synthesized and labeled with Cy3 (tumor cDNA) and Cy5 (normal cDNA). Labeled 

tumor and normal cDNA were hybridized to 31k cDNA microarrays, slides were scanned and 

images were subjected to analysis with Genepix and J-Express computer software 
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programmes. 262 genes (189 up-regulated and 73 down-regulated) were found to be 

differentially expressed between tumors and normal controls with 66 genes of known function 

and 66 novel genes. Among the group of genes of known function those found were CAV1, 

CAV2, COL4A1, MMP1, MMP3, PLAU, SPARC, TNC (all up-regulated) and AZGP1, KRT19 

and S100A1 (all down-regulated). Microarray results for nine genes were verified with RT-

qPCR. Hierarchical clustering of the samples based on the differentially expressed genes did 

not show any clear relationship between sample clustering and the clinicopathological data, 

except for two samples (one verrucous carcinoma and one advanced tumor) that were 

clustered separately. 

In Paper II, gene expression profiles from 19 OSCCs from Sweden (n=8) and UK (n=11) 

were examined and compared between these two populations. RNA was extracted from all 

OSCCs and cDNA was synthesized and labeled with Cy3. For controls, human universal 

reference RNA was used for cDNA synthesis and labeling with Cy5. Labeled cDNAs were 

hybridized to 21k human oligonucleotide microarrays, slides were scanned and images were 

subjected to analysis with GenePix and J-Express.  Here, 42 genes (including APOL3, NT5E, 

HMGA1, FASN and FOS) were found as being differentially expressed between the two 

populations compared to controls. Expression of three genes was validated with RT-qPCR. 

Upon hierarchical clustering, there was a tendency for the samples from the same population 

to group together. 

For chromosomal alterations (Paper III) 24 cases of OSCCs (12 from Sri Lanka and 12 from 

India) and 6 OSF (India) samples were studied. Following total DNA extraction from all 

samples, tumor and control DNA (Human Universal Reference DNA) were digested and 

labeled with Cy3 (tumors) and Cy5 (control) and further hybridized to arrays containing 4500 

Bacterial artificial chromosomes (BAC) and P1 artificial chromosomes (PAC) clones.  Array-

CGH resulted in 349 candidate genes located in deleted (34 genes) or amplified (30 genes) 

different chromosomal regions in these samples common to both populations, in addition to 

285 genes located in 66 chromosomal regions found as deleted or amplified in either Indian or 

Sri Lankan samples. Further, we selected one gene found to be deleted in the samples from 

both countries, namely S100A14, for further validation analysis using immunohistochemistry 

(IHC) and genetic variation study by RFLP (Restriction fragment length polymorphism). IHC 

showed decreased expression of S100A14 in OSCC archival samples compared to normal 
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oral mucosa, and a relocalization from membrane to cytoplasmic expression. RFLP for one 

SNP (461A>G) demonstrated a significant difference in genotypes of OSCC and OSF. 

 

These results together with our previous findings on cases of OSCCs studied from Sudan and 

Norway, demonstrate that 72 genes were found to be common for all six populations studied. 

Among these were BAX, CCND1, COL4A1, DAPK1, FGF3, FGF4, JUNB, MMP1, MMP3, 

PLAU, SPARC, TNC, TGFB1, several S100 gene family members (including S100A14) and 

TP53. Of particular note, there were only small differences in gene aberrations in OSF 

compared to OSCCs. 

 

These results suggest that genetic alterations occur early during OSCC development, and that 

there are genes commonly involved in OSCC development regardless of the life-style and 

source of the material to be studied. We suggest S100A14 as a possible tumor biomarker for 

OSCCs together with COL4A1, MMP1, MMP3, PLAU, SPARC and TNC. Findings in the 

present work further suggest that there is a specific genotype of OSF which might be related 

to an increased risk of OSCC development. 
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1. Introduction 
 

1.1 Oral Cancer 
 
Oral cancer (OC), accounting for about 40% of all head and neck cancers, is usually defined 

as a malignancy affecting the lip, tongue and oral cavity, floor of mouth, gingivae, buccal 

mucosa, oral commissures, retromolar trigone and hard palate (1, 2). More than 90% of all 

OC cases are OSCCs, representing a homogenous group of neoplasms with common risk 

factors and similarities in clinical presentation, prognosis and treatment (2, 3). OSCC 

develops through a series of cellular changes, initiated by single cell epithelial alterations 

(atypia), followed by dysplasia, involving more cells, progressing into carcinoma in situ and 

finally invasion. Epithelial alterations and development of dysplastic lesions are associated 

with OSCC, as these disorders are likely to progress to carcinoma. Leukoplakia, 

erythroplakia, OSF and oral lichen planus (OLP) are among the common oral mucosal 

disorders which have been described under the terms “pre-malignant”, “pre-cancers”, 

“precursor lesions” and intraepithelial neoplasia”. Recently, the WHO has recommended that 

the term “potentially malignant oral lesions” is to be used to describe these conditions (4). 

Worldwide, the incidence of OSCC varies greatly, with a relative frequency extending 

from 1-2% in developed countries like United Kingdom and Sweden, to more than 30% in 

developing countries like Sri Lanka and India. In South-East Asia, OSCC constitutes a major 

health problem, being the fifth most common form of cancer (2, 5). Nevertheless, the 

incidence of OSCC is increasing also in the developed world, particularly among younger 

people (2). Mortality of OSCC also has geographical variations, but overall the five-year 

survival rate is less than 50%, and has remained quite stable for the last four decades.  

The large variations in geographical incidence of OSCC are influenced by etiological 

risk factors such as the use of smoked tobacco and ST and alcohol, the main causative factors 

for this disease. In the Indian subcontinent, the use of BQ chewing and bidi smoking is 

extensive (2, 6), along with alcohol drinking (7). BQ consists of a betel leaf packed with 

sliced areca nut (AN), tobacco (not always), slaked lime and sometimes sweeteners (8, 9), 

while bidi is a cigarette rolled in a dried temburini leaf. BQ chewing is common among men, 

women and children, accounting for a major part of the clinical cases of potentially malignant 

disorders and OSCC in this region (7). Cigarette smoking and alcohol consumption are major 

risk factors for OSCC in Western Europe. In Sweden, the habit of oral snuff (“snus”) use is 
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common. Although recent studies have linked snuff use to development of OSCC, others have 

excluded this habit as an OSCC risk factor (10-15). However, tobacco and alcohol may act 

synergistically in OSCC development, increasing the risk significantly, as much as 38 times 

for heavy drinkers and smokers compared to non smokers and drinkers (2). Other risk factors 

associated with OSCC development are nutritional deficiencies, human papillomavirus (HPV) 

infection (2, 16) and syphilis. Some dental factors such as chronic trauma, periodontal disease 

and poor oral hygiene are also factors implicated in a few studies (17). 

 It is clear that there are world-wide differences related to incidence and etiology of 

OSCCs. In table 1, suggested incidence rate(s) and etiological factors related to OSCC 

development in UK, Sweden, India and Sri Lanka are presented. 

 
Table 1. Etiology and relative frequency of OSCC in UK, Sweden, India and Sri Lanka 

 

Etiology/Epidemiology 

 

UK 

 

Sweden 

 

India 

 

Sri Lanka 

Relative frequency (%) 1-2 1-2 >30 >30 

Major risk factors Smoking 

Alcohol 

Socio-economical 

status 

HPV? 

Smoking  

Alcohol 

Snuff? 

BQ 

Smoking 

Alcohol 

Poor nutrition 

Insufficient health 

care 

BQ 

Smoking 

Alcohol 

Poor nutrition 

Insufficient health 

care 

 

1.2 Potentially malignant oral mucosal lesions 

1.2.1 Oral submucous fibrosis 
 
OSCC progresses through a multistep process initialized by genetic alterations, often arising 

from the malignant transformation of a premalignant oral mucosal condition such as OSF, 

initially described as an insidious, precancerous chronic disease that may affect the entire oral 

cavity, sometimes extending to the pharynx (18). OSF is characterized by inflammation in the 

subepithelial tissue, followed by fibrosis of the submucous tissues, resulting in stiffness of the 

oral mucosa and difficulties in opening the mouth (Figure 1a). 

 AN and BQ chewing are the most common risk factors associated with OSF, and the 

condition is predominantly seen in the South Asian regions where use of AN and BQ are 

common. Immigrants from South Asian countries living in western communities and 

sustaining these habits may also suffer from OSF (8, 19). 
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BQ users who develop OSF may have functional difficulties in eating, swallowing and 

speech, and experience a burning sensation of the oral mucosa. Palpable fibrous bands, a 

marble-like appearance, blanching of the mucosa and mucosal ulceration are characteristic 

features used in diagnosing OSF. This pathological condition is not reversible, unless 

cessation of AN/BQ chewing is achieved at a very early stage. OSF has a high potential for 

malignant transformation where an Indian cohort study reported a malignant transformation 

rate of 7.6% over a period of 17 years (20). 

1.2.2 Oral leukoplakia  
 
Oral leukoplakia is a potentially malignant lesion that presents clinically in the form of a 

white patch (Figure 1b). WHO describes leukoplakia as “white plaques of questionable risk 

having excluded (other) known diseases or disorders that carry no increased risk of oral 

cancer.” Leukoplakia is only a clinical term, and conditions described as leukoplakia can be 

given another diagnosis after biopsy analysis (21, 22). Leukoplakias are seen most frequently 

on the buccal mucosa, alveolar mucosa and lower lip, and men are more often affected than 

women (increasing with age). Dysplastic or malignant transformations occur more often in 

lesions localized in the lower lip, lateral border of the tongue and floor of the mouth (21). 

There are two types of oral leukoplakias, non-homogenous and homogenous. Thin 

leukoplakias with an even surface are homogenous, while thicker and verrucous lesions are 

non-homogenous. Mixed white and red lesions, called erythroleukoplakias, have an uneven 

surface and are also non-homogenous. Generally, the non-homogenous leukoplakias are more 

likely to undergo malignant transformation (22). There are global variations in the prevalence 

of oral leukoplakia, but a mean global prevalence of 2.6% has been reported (23). The 

frequency of leukoplakia undergoing malignant transformation is not consistent in the studies 

performed, but in relation to a prevalence of 2.6%, the global transformation rate has been 

estimated to be 1.36% (23). 

1.2.3 Oral erythroplakia 
 
Erythroplakias are defined in the same way as leukoplakias, as a red patch that cannot be 

defined clinically or pathologically as any other condition (Figure 1c). Erythroplakias are seen 

more often in older men, and the most common sites are floor of the mouth, lateral border of 

the tongue, retromolar pad and soft palate (21, 22). Erythroplakias are less common compared 

to leukoplakias, but are more likely to progress to malignant lesions. Sometimes 
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erythroleukoplakias are seen, the red lesions inter-mixed with white lesions, and the 

probability that the red parts will show a higher grade of dysplasia is higher than for the white 

component (22).  

1.2.4 Oral lichen planus 
 
Oral lichen planus (OLP) is a chronic inflammatory condition of unknown etiology, affecting 

the oral mucous membranes (Figure 1d) (24, 25). OLP can also affect other sites of stratified 

squamous epithelia like skin and genitalia. It is a T cell-mediated autoimmune disease, 

perhaps associated with stress but of unknown etiology. Increased Th1 cytokine production in 

combination with activated T cells increase the expression of intercellular adhesion 

molecules, attracting the T cells towards the oral epithelium (24, 25). Up-regulation of the 

epithelial basement membrane extracellular matrix proteins further attracts T cells. The T 

cells bind to keratinocytes and interferon-gamma (INF-�), followed by up-regulation of p53 

and matrix metalloproteinases (MMPs), leading to destruction (apoptosis) of the basal 

keratinocytes (24). Genetic polymorphisms of INF-� and tumor necrosis factor-alpha (TNF-�) 

are associated with increased risk of OLP, and localization of lesions (25, 26). 

 Morphologically, OLP is classified as erosive or reticular (keratotic), often with 

multiple morphologies presented simultaneously (25). OLP are chronic disorders with no 

definite cure. A significant risk of malignant transformation of OLPs has been demonstrated, 

and patients with OLP should be monitored on a long term basis (25, 26) . 

 



 23

 
Figure 1. Potentially malignant oral mucosal lesions. a) Oral submucous fibrosis. The patient has restricted 
mouth opening, and blanching of the tongue; b) Homogenous leukoplakia; c) Erythroplakia. d) Lichen planus. 
Two patches, one on the right side of the dorsum of the tongue intermingled with areas of pigmentation, and 
another smaller one on the left side. IARC (htpp://screening.iarc.fr) 
 

1.2 Tobacco habits and development of OSCCs 
 
Tobacco use in the form of ST and smoked tobacco is a major risk factor for human cancer 

development, being the single largest cause of death due to preventable cancer (27). Cigarette 

smoking is the cause of 90% of all lung cancers, the most common cancer in the world (27). 

For OSCC development, tobacco use is the main risk factor world-wide. In the Western 

World, cigarette smoking is predominant, while tobacco chewing and oral snuff use are the 

common tobacco habits in developing regions (28, 29). 

 Cigarette smoke contains more than 60 known carcinogens, both in mainstream and 

sidestream smoke (27). Some of the strong carcinogens include polycyclic aromatic 

hydrocarbons (PAHs) like benzo[a]pyrene, tobacco specific nitrosamines (TNSAs) like N-

nitrosonornicotine (NNN) and 4-[methylnitrosoamino]-1-[3-pyridyl]-1-1 butanonone (NNK) 

and aromatic amines 4-aminobiphenyl (27, 29, 30). These compounds are present in smaller 

amounts than the weaker carcinogens like aldehydes (formaldehyde, acetaldehyde) and 
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phenols (cathecol) (27). The most important mechanism for mutagenesis caused by tobacco 

carcinogens is DNA binding, resulting in DNA adducts and miscoding if not repaired (27). 

 ST products are very heterogeneous in the way they are produced, marketed, their 

content and how they are consumed (30). Some products are chewed, while others are used as 

snuff. Chewing tobacco comes in the form of loose-leaf tobacco, cut or shredded, and treated 

with flavoring solutions. This product is declining in popularity, while the use of moist snuff 

is increasing in developing countries (28, 31). Moist snuff consists of finely cut tobacco, 

either loose or packed in small portion bags. The latter is user-friendly, and has become very 

popular in the US over the last 15 years (30). Snuff may also be used nasally in the form of 

pulverized dry snuff, but the use is not widespread. ST does not contain as many carcinogens 

as cigarette smoke, due to the fact that carcinogens are formed during combustion. However, 

ST has a considerably higher content of TSNAs than tobacco smoke, and levels of aldehydes 

and metals are significant (27, 30). In the European Union, oral ST products are banned, with 

the exception of Sweden, where oral snuff is very popular (30, 31).  

 Because of the manufacturing methods of Swedish snuff, resulting in a virtually sterile 

product, it contains a lower amount of bacterial by-products like TSNAs than North American 

moist snuff. Although evidence for Swedish snuff to be considered as a risk factor for OSCC 

is available, some studies have shown the opposite (10, 12, 14, 32, 33). Snuff is even 

suggested as a replacement for cigarette users addicted to nicotine (14, 27, 28). There is, 

however, a significant risk of developing pancreatic cancer in association with snuff use (32, 

34). 

 In the Sudan, oral snuff use, locally called toombak, is also widespread, and has been 

used for more than 400 years (35). Toombak consists of tobacco powder of Nicotiana rustica, 

mixed with aqueous sodium bicarbonate solution, producing a loose moist snuff dipped and 

retained between mostly the gums and the lower lips, and less often in cheeks or floor of the 

mouth (36). It is sucked slowly for 10-15 minutes and replaced several times per day (36). 

This type of snuff is different from the Swedish and American snuff regarding manufacturing 

procedures, tobacco species and nitrosamine content (36, 37). The level of TSNAs present in 

toombak are much higher than in Swedish and American snuff (37, 38), and toombak is 

considered to play a major role in the etiology of OSCC with the tumors often localized to the 

site of dipping in the mouth (39). Although toombak is used all over the Sudan, the habit is 

much more common among men rather than women, and therefore a higher rate of OSCCs is 

seen in Sudanese men (35, 39).  
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 In India, Sri Lanka and other South East Asian countries the use of BQ (also called 

paan) is extensive, and has been for centuries (8, 9, 40). BQ consists of sliced AN from the 

Areca palm (Areca cathecu), cathecu (Acacia catechu) and slaked lime wrapped in a betel leaf 

(Piper betle). Often sweeteners and spices are added to improve the taste (8, 9, 40). In India 

and Sri Lanka, adding tobacco to the BQ is common, while this is not done in Taiwan, Papua 

New Guinea and China (6, 41). Regardless of the regional variations in preparing BQ, AN is 

the most important ingredient. There are commercial BQ variants called pan masala and 

guthka, heavily marketed contributing to an increase in BQ use (8). Some BQ products are 

made especially for children, called sweet supari, gua or miste paan (19). The quid is placed 

between the teeth and the buccal mucosa, and sucked or chewed for several hours, producing 

a feeling of euphoria and well-being (19).  

 Being an ancient habit, BQ chewing is socially accepted both among men, women and 

children. On a daily basis, BQ is used by millions of people, representing a major risk factor 

for developing OSCC. The incidence of OSCC is very high in regions where BQ chewing is 

common, and there is undoubtedly an association between BQ and OSCC development (6, 

40). Also, it is a known risk factor for OSF (6, 8, 9). 

Carcinogens present in BQ are the tobacco-specific nitrosamines NNN and NNK as in 

other tobacco products (8, 37). Also, AN contains nitrosamines, N-nitroso-guvacoline (NG) 

and 3-(methyl-N-nitrosamino)propionitrile (MNPN), the latter being carcinogenic (8, 9).   

Alkaloids such as arecoline, arecaidine, guvacoline and guvasine have also been reported as 

areca nut carcinogens. BQ chewing generates reactive oxygen species (ROS) like superoxide 

anion and hydrogen peroxide, due to the combination of slaked lime and areca nut. The lime 

(calcium hydroxide) increases the pH in the oral cavity to alkaline conditions, favoring ROS 

formation, causing oxidative damage to the epithelial cells (8, 9). Decreased lime content of 

BQ should reduce ROS formation (8). 

 Being such a popular habit among both young and older people, linked to OSF and 

OSCC development, awareness of the danger of this habit should be emphasized, and 

preventative actions should be taken. 

 

1. 4 Molecular development of OSCCs 
 
Cancer is a genetic disease generally initiated by a mutation in a single cell, although the 

development of an invasive cancer is a result of accumulation of further genetic alterations 
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(42, 43). Usually, the tumor develops during a long period of time, where the cancer cells 

arise from generation of cells progressing into tumorigenesis (42, 43). Cancer cells acquire 

new traits during this evolutionary process, making them able to avoid the anticancer defense 

mechanisms harbored by normal cells (44). These traits have been described as the 

“Hallmarks of Cancer”, and include self-suffiency in growth signals, insensitivity to anti-

growth signals, evasion of apoptosis, immortalization, sustained angiogenesis, and invasion 

and metastasis (44). There are certain germ line mutations responsible for increased 

susceptibility to OSCC, but most of the mutations in the tumor cells are somatic (42, 43). 

Carcinogens, especially from tobacco and alcohol use, can in the case of OSCC development 

cause mutations in proto-oncogenes, tumor suppressor genes (TSGs) or DNA repair genes, 

leading to deregulation of cell growth, inability to repair damaged DNA and/or to eliminate 

damaged cells (27, 30, 31). Important tobacco carcinogens are TSNAs like NNN and NNK, 

which particularly cause guanidine-to-thymidine transversion (27). PAHs are tobacco related, 

but also an environmental carcinogen (27, 45). Ethanol per se is not carcinogenic, but 

acetaldehyde arising from alcohol metabolism is a recognized carcinogen (45).  

 There are large variations in the individual ability to metabolise carcinogens, partly 

due to the polymorphic nature of xenobiotic-metabolising enxymes (XMEs), and bearers of 

certain polymorphisms may have a predisposition to OSCC (45). Glutathione-S-transferases 

(GSTs) are a group of XMEs involved in detoxification of carcinogenic compounds, but 

overexpression of GSTs may also lead to increased resistance to anti-cancer drugs (46). There 

are several studies relating different polymorphisms of GST to OSCC susceptibility and 

predisposition to oral malignant disorders (45, 47-49). 

Genetic alterations can arise from point mutations in a single gene, chromosomal 

translocations, deletions and amplifications of chromosomal regions and epigenetic silencing 

such as methylation and transcriptional repression (43). Mutations in the proto-oncogenes 

(like RAS, MYC, CCND1, and EGFR) will result in activation of genes stimulating cell growth 

and avoiding apoptosis (gain of function). In normal cells, these genes are tightly regulated to 

control cell proliferation, but when a mutation arises, an oncogene (cancer-causing gene) is 

activated, and the cells are allowed to proliferate out of control (43, 50). Point mutations, 

chromosomal rearrangements and amplifications are common mechanisms activating 

oncogenes. Tumor suppressor genes (TSGs) (RB, TP53, p16INK4A/p14ARF and PTEN) have 

reduced or lost activity (loss of function) through mechanism(s) like loss of heterozygosity 

(LOH), epigenetic events, mutations or deletions (43, 50). Silencing of the TSGs leads to loss 

of control mechanisms of cell growth arrest and apoptosis, preventing repair of DNA damage 
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and elimination of abnormal cells, leading to accumulation of genetic alterations and 

eventually tumor formation (43, 50). Genes that are responsible for DNA damage repair and 

elimination of damaged cells (stability genes) are represented by ATM, BRCA1, BRCA2, BLM 

and NBS1. The stability genes are involved in control of processes such as DNA damage 

repair, chromosomal segregation and mitotic recombination, resulting in a higher mutation 

rate when inactivated (50). 

 In OSCCs, alterations in more than 100 genes have been described, but mutations in 

proto-oncogenes and TSGs are found to be of great importance in oral tumorigenesis (16, 51, 

52). Figure 2 shows a suggested progression model for OSCC. An early event of OSCC 

development is  LOH on chromosome 9p21-22, seen in 70 to 80% of tumors (51, 53). This 

region harbors CDKN2A, a TSG encoding two different proteins, p16INK4A and p14ARF. 

These proteins regulate cell cycle G1/S progression and stabilize p53 by MDM2 binding (16, 

54). Chromosome 3p, 13q, 17p and 11q are also involved in early tumorigenesis, including 

alterations in 17p13.1, where TP53 gene is located. p53 is one of the proteins most frequently 

inactivated in many human cancers, including OSCCs (51, 55, 56). TP53 mutations seem to 

be more frequent in OSCCs from Western countries than in developing countries (7, 57, 58), 

perhaps related to the different amounts of carcinogens found in cigarette smoke and ST (27, 

58). In oral dysplastic lesions, TP53 mutations are also found to be common, demonstrating 

early involvement of p53 in OSCC development (16, 58, 59). p53 may also be inactivated 

through other mechanisms such as degradation by MDM2, MDM4 or other p53 regulators, or 

by viral proteins (51, 60). Oral human papillomavirus (HPV) infection is considered as a risk 

factor for OSCC development, as its presence may lead to inactivation of p53. There is also a 

possible relation between HPV infections in OSCC and HRAS oncogene mutation, located in 

chromosome 11q (51). HRAS mutations are seen mainly in the developing world, with a 

particularly high frequency in India (51). Cyclin D1 is another 11q oncogene, often amplified 

in oral premalignant mucosal lesions and OSCCs, affecting cell cycle G1/S transition (51, 59). 

The first tumor suppressor gene to be identified, the retinoblastoma gene, RB, is located in 

chromosome 13q, and has shown to be frequently lost in OSCCs and also in oral dysplastic 

lesions (51, 59, 61). These genetic changes are connected with early events in OSCC 

tumorigenesis, leading to the progression of dysplasia into carcinoma in situ (51, 53, 59, 61). 

Further progression into invasive carcinoma involves genes like MMPs, genes related to cell 

adhesion, proliferation and migration and TP53 gene mutations which also occur in this more 

advanced stage (51, 53). Overall, chromosomal deletions at 1q, 3q, 1p, 3p, 4p, 5p, 7q, 8p, 10p, 

11q, 13q, and 18q, with amplification at chromosomes 1q, 3q, 5p, 7q, 8q, 9q, 11q, 12p, 14q 
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and 15q are the common genetic alterations found in OSCC (16, 54). Alterations 

accumulating over a time period of 20 to 30 years will eventually lead to the development of 

OSCC (62). 
 

Figure 2. Suggested progression model for OSCC development. Adapted from Califano et al. (53) and Choi 
et al. (59).  
 

 

1. 5 The S100 proteins 
 
The S100 proteins are small acidic proteins (molecular mass 10-20 kDa ) of the EF-hand 

superfamily, being involved in a large number of cellular processes like cell cycle regulation, 

cell growth, cell differentiation and cell motility (63, 64). The S100 proteins are expressed 

both intracellularly and extracellularly (63, 64). There are at least 25 members in the S100 

protein family, and several members (A1-A18, among others) are clustered in chromosome 

1q21, a region often affected by alterations in human cancers (65, 66). The S100 proteins are 

exclusive for vertebrates, first identified in bovine brain by Moore in 1965, and named S100 

because the subcellular fraction was Soluble in 100% saturated ammonium sulphate (67). The 

nomenclature of S100 genes is complex because many of the members have several names in 

the literature (63). 
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 EF-hand motifs are composed of two helices, E and F, joined by a loop containing the 

site for Ca2+-binding (Figure 3). S100 proteins are symmetric dimers containing two EF-hands 

motifs connected by a central hinge region (68, 69). The C-terminal EF-hand contains the 

typical EF-hand calcium-binding motif, common to all EF hand proteins. The Ca2+-binding 

motif has a 12 amino acid sequence, flanked by helices III and IV. The N-terminal EF-hand is 

characteristic of the S100 proteins (called pseudo-EF-hand) and consists of a specific 14 

amino acid sequence, flanked by helices I and II. A stretch of amino acids is located 

subsequent to the C-terminal end, the C-terminal extension. The hinge region and the C-

terminal extension are the most variable regions of S100 proteins, and are linked to their 

different biological properties (63, 68, 69). When Ca2+ binds to the S100 proteins, a 

conformational change occurs, mostly in the C-terminal region. A hydrophobic surface is 

formed by the hinge region, helix III and the C-terminal loop region, allowing target proteins 

to interact with the S100 protein. In addition to calcium ion binding, many S100 proteins have 

high affinity for Zn2+, and Cu2+ (63, 68, 69). 

 
Figure 3. Schematic structure of the S100 proteins. HI-IV: Hinge regions; H: Central hinge region; L: Loop. 
Adapted from Donato (68). 
 

 The S100 proteins are signaling molecules with a broad functional diversity. 

Intracellular functions of S100 proteins are regulation of phosphorylation, enzyme activity, 

cytoskeleton organization, Ca2+ homeostasis and cell growth and differentiation (63, 70). 

Extracellular functions are of a cytokine-like manner, acting as chemoattractants and 

exhibiting neurotrophic activity. Through interacting with the receptor for advanced glycation 

end products (RAGE), S100 proteins activate intracellular signaling pathways both promoting 

cell survival and apoptosis (63, 68, 71). S100 proteins are also involved in metastasis and cell 

proliferation. S100A4 has been linked to a number of malignancies such as thyroid 

carcinoma, melanoma, breast carcinoma, lung cancer among others, playing a significant role 

in metastasis and tumorigenesis (64). Other S100 genes implicated in metastasis are S100A7, 

S100A8 and S100A9. Some S100 proteins are over-expressed in cancerous tissue, while others 
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are down-regulated. Some S100 genes act as tumor suppressors, while others are tumor 

promoting, even the same gene can have different roles in different cancer forms (63). 

1.5.1 S100 proteins and OSCCs 
 
Several of the S100 proteins are linked to different human cancers, both in cancer progression 

and prevention (63, 64, 71). There are a number of S100 proteins interacting with p53, like 

S100A4 and S100B, both inhibiting p53 activity possibly through inhibition of p53 

phosphorylation. S100A4 has also been demonstrated to enhance p53-dependent apoptosis 

(72, 73). S100A2 also binds to p53, and has been demonstrated to promote p53 transcriptional 

activity (74, 75), and in our recent work we demonstrated that over-expressing S100A14 in 

OSCC-derived cell lines resulted in nuclear accumulation of p53, suggesting that S100A14 

protein enhances stabilization of p53 activity (76).  In addition, Chen et al. demonstrated that 

S100A14 is a downstream gene of TP53, down-regulated in esophageal cancer and a possible 

tumor suppressor in this malignancy (77). S100A14 was found to be down-regulated in 

OSCCs in our earlier work (78) and in another study on esophageal cancer (79). Apart from 

S100A14, other S100 genes have been shown to be implicated in OSCC. Our previous work 

demonstrated down-regulated expression of  S100A2, S100A4, S100A6, S100A8 (and 

S100A14) in OSCCs compared to normal tissue (78, 80), and amplification of the 

chromosomal region 1q21 harboring S100A1- 16 (81). It has been suggested that S100A2 may 

act as a tumor suppressor in OSCC (82, 83). Down-regulation of S100A6 has been reported in 

OSCC and OSCCs-derived cell lines (84). S100A7 have been found as up-regulated in 

premaligant oral mucosal lesions and early-stage oral carcinomas (85-88), proposing a role for 

S100A7 in malignant transformation of premalignant conditions. An association between 

S100A8 and HPV18-infected OSCCs was demonstrated by Lo et al. (89), suggesting S100A8 

as a biomarker in HVP-associated OSCCs. S100A8, S100A9, S100A11 and S100A13 

proteins were found to be differentially expressed between OSCCs and normal controls by 

MALDI-TOF MS analysis (90). 

 The S100A14 gene has recently been demonstrated as a possible tumor suppressor by 

Chen et al. and our group (76, 77). The protein was first identified from a lung cancer cell line 

by Pietas et al. in 2002 (91), as a protein with molecular weight of 11,66 kDa containing two 

helix-loop-helix structural motifs characteristic of calcium-binding sites. S100A14 protein 

shares 68% similarity and 38% identity with S100A13, 62% similarity and 30% identity with 

S100A4, 58% similarity and 31% identity with S100A10 and 55% similarity and 34% with 

S100A9. The gene is located on chromosome 1q21 and consists of three introns and four 
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exons. S100A14 is expressed in a number of normal human tissues, like colon, breast, liver, 

ovary and prostate. In cancerous tissue, S100A14 has been reported as over-expressed in 

tumors such as ovarian, breast, uterus and prostate (91), but down-regulated in esophageal, 

kidney, rectum and colon tumors. In OSCCs, S100A14 was demonstrated as down-regulated, 

and is suggested to be involved in tumorigenesis. An interaction between S100A14 and p53 

protein was shown in esophageal cancer (77), and in our previous work, where we found that 

S100A14 is involved in regulation of p53 and cell cycle in OSCC-derived cell lines (76). 

Also, we demonstrated that S100A14 is involved in invasion and metastasis of OSCC-derived 

cell lines (92). To date, the knowledge of the biological functions of the S100A14 protein is 

limited, and closer studies are needed to reveal its role in normal tissue and in oral 

tumorigenesis. 

 

1. 6 Genetic changes and chromosomal damages in OSCCs: Role of array 
technology 
 
During the recent years microarrays have become powerful and widely used tools to study the 

expression of thousands of genes simultaneously. Microarrays are platforms of different 

materials (glass, silica, nylon, beads etc) containing oligonucleotides or cDNA probes that are 

spotted or synthesized onto the platform surface (93-96). There are numerous commercial 

platforms available today, for several organisms, and custom-made arrays are also available 

(96). 

The general purpose of applying microarray technology is to search for a change in 

gene expression (or DNA copy numbers) between different groups of samples/patients, like 

diseased compared to healthy, treated compared to non-treated and pre-cancer compared to 

cancer. Also, rather than searching for changes in single genes, microarrays are used to 

determine specific genetic profiles or expression patterns which may be linked to certain 

conditions such as tumor classification, tumor aggressiveness or response to treatment (95, 

97).  

 There are both one- and two-channel microarrays available. The two-channel systems 

were the first arrays to be used, but today the one-channel systems are used more frequently. 

Figure 4 illustrates the two-channel system, where cDNA (synthesized from RNA) from the 

test samples and the control samples are labeled with two different fluorescent dyes, and 

hybridized to a microarray slide. cDNA will bind to the individual spots on the microarray in 
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different levels according to the amount of mRNA present in the samples. The amounts of 

mRNA present are linked to the signal intensity of each spot, and the signal intensity is a 

measurement of the expression of the specific gene in the test sample compared to the control 

sample. Upon scanning the arrays, the data need to be filtered and normalized before they are 

further analyzed.  

 A literature search on microarrays and gene expression profile of OSCCs showed 

numerous results and findings with different aspects of changes related to OSCC gene 

expression profiles. Differential gene expression between tumors and normal controls have 

been studied to a large extent, and this has shown that many common genes and pathways are 

found to be associated with OSCC development (97, 98), including our earlier studies (80, 

99). Several studies focusing on different stages of OSCC development have provided 

important information about tumor classification and of oral premalignant conditions 

compared to OSCCs (100-105) or metastasizing compared to non-metastasizing tumors (106-

113). A study on differential gene expression between OSCCs from smokers and BQ chewers 

have also been performed (114). The findings of molecular biomarkers and/or genetic profiles 

associated with malignant transformation of potentially malignant conditions and prediction 

of metastatic potential are very important for the understanding of molecular events involved 

in OSCC development, and may lead to improved detection and treatment strategies of the 

disease. 

 Array- based comparative genomic hybridization (array-CGH) enables genome-wide 

analysis of chromosomal deletions and amplifications in one single experiment, at a much 

higher resolution than conventional metaphase spread CGH, which detects chromosomal 

alterations of relatively large regions (~10Mb). Development of array-based CGH has opened 

for the detection of chromosomal rearrangements at levels less than 1Mb (94, 115, 116). 

Array-CGH follows the same principle as the described procedure for microarray 

experiments, but the samples used for labeling and hybridization are extracted DNA. The 

probes on the arrays consists of either large insert clones such as BACs, cDNA or 

oligonucleotide sequences (94, 116, 117). 

 DNA copy number variations are associated with many pathological conditions, and 

array-CGH has become a valuable tool to detect chromosomal alterations. Clinically, the 

technique has been used to study abnormalities like autism, schizophrenia and other mental 

disorders, developmental delay, dysmorphic features and other syndromic conditions (115, 

117, 118). This technique is also widely used to study copy number variations in cancer (94, 

115, 118, 119). A study on the global variations of DNA copy number concluded that there 
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are large variations between African, Asian and European populations (120). In OSCC and 

head and neck SCC, conventional and array-CGH has been applied to search for 

chromosomal alterations and possible biomarkers in tumors compared to normal tissues 

showing chromosomal changes similar for many tumors (81, 121-126). Studies have also 

been performed on classification of tumor type, tumor stages and prognosis with findings of 

specific copy number variations for different types of tumors and oral premalignant disorders 

compared to OSCCs (127-129). One study demonstrated copy number variations in 

premaligant lesions associated with a high risk of malignant transformation (130). Two 

studies performed with BQ-related OSCCs showed chromosomal changes that might be 

related to BQ (131, 132). 

 As both microarrays and array-based CGH technologies have been developed and 

improved, new findings in OSCC tumorigenesis have been brought about, and microarrays 

are established research tools both for cancer, diseases in general and other research areas. 
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Figure 4. Overview of the microarray process. a) Flowchart of the microarray procedure. b) A glass 
microarray, probes are spotted onto the surface. c) Affymetrix genechip, probes are synthesized onto the surface 
of the array. 
 

1. 7 Real-Time quantitative polymerase chain reaction (RT-Q-PCR) 
 
The real-time quantitative PCR technique is a well established method for measuring gene 

expression and validation of microarray experiments. RT-qPCR enables detection and 

quantification of the target molecule since the progression of the PCR reaction is monitored as 

it occurs in real-time. With traditional PCR, the product is detected at the end of the reaction, 

i.e. in the plateau phase (Figure 5). At this point, the PCR products will have differences in 

quantity due to differences in reaction kinetics. In RT-PCR, the detection of the PCR products 

occurs in the exponential phase, where the PCR products are amplified exponentially 

(doubled) in every cycle. This ensures a precise quantification of the PCR products. The point 
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at which the fluorescence in a reaction reaches a level above the background is called the 

cycle or crossing threshold Ct (Figure 6) (133, 134). 

 
 

 
 
Figure 5. The three phases of PCR, showing three replicates of the same sample. In the exponential phase, 
where the products are detected in RT-PCR, the products are doubled with each cycle, when the reagents are 
fresh and available. In the linear phase, some of the reagents are being consumed, and three samples begin to 
diverge in their quantities. In the plateau phase, the reactions will end, at different times for each sample due to 
reaction kinetics. Adapted from Applied Biosystems. 
 
RT-qPCR is frequently combined with reverse transcription, when the quantification target 

molecules are RNA. The products of RT-PCR are detected by using fluorescent probes, and 

the reaction is performed in a thermocycler. There are several probes available based on 

different detection techniques, such as hydrolysation of the probe (Taqman), hybridization 

(Lightcycler), fluorescent hairpins (LUX) or intercalating probes (SYBR Green). The Taqman 

assay will be described more closely, as this is the technique that has been used in our studies.  
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Figure 6. Amplification curve, showing the number of cycles on the horizontal line and fluorescence signal on 
the vertical line. (Applied Biosystems) 
 
The Taqman assay is based on an oligonucleotide probe containing a reporter fluorescent dye 

on the 5'-end and a quencher dye on the 3'-end. When the two dyes are close on the probe, 

fluorescence resonance energy transfer (FRET) through space will limit the signal from the 

reporter dye. The probe anneals to the target sequence, and is cleaved by the 5' nuclease 

activity of Taq DNA polymerase as this primer is extended, separating the reporter and 

quencher dyes, increasing the reporter dye signal (and decreasing the quencher dye signal) 

(Figure 7). The reporter signal will increase proportionally with the amount of PCR product 

made in each cycle. 

The RT-qPCR results can be analyzed either by absolute quantification, the absolute 

number of a specific RNA per sample, or by relative quantification, assessing the relative 

difference of RNA copies between samples. Absolute quantification requires a standard curve 

of known amount of RNA (using a serial dilution). The unknown signals are quantified by 

interpolating their quantity from the standard curve. A digital method not requiring a standard 

curve is also available (133, 134). The standard curve may also be applied in relative 

quantification, but the most common method is the comparative Ct method, using the formula 

2-��CT. This method compares the Ct value of the gene of interest to an endogenous control. 

The efficiency of the target gene amplification must be approximately equal to the efficiency 

of the endogenous gene amplification (133, 134). 
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Figure 7. Principle of Taqman assay. The probe anneals downstream of the forward primer, and is cleaved by 
the DNA polymerase, increasing fluorescence emission from the reporter dye. This step will also remove the 
probe, allowing the completion of strand extension (Applied Biosystems). 

 

1. 8 Restriction fragment length polymorphism (RFLP) 

RFLP is a method used for the detection of variance across homologous DNA sequences, 

such as single nucleotide polymorphisms (SNPs). SNPs are variations in one nucleotide 

occurring throughout the genome, on average in every 1000th nucleotide (135) . Since only 3-

5 percent of SNPs are present in the translated DNA sequences, most of the SNPs are silent 

mutations, but some are present in the coding DNA and may lead to protein modifications. 

SNPs may be associated with susceptibility to cancer, particularly in relation to genes 

involved in carcinogen metabolism, like CYP1A1 and GSTM1 (16, 46, 52, 135). RFLP is a 

simple approach to SNP analysis, involving restriction endonucleases to analyze PCR 

products where SNPs are localized (135). A PCR amplification of a DNA sequence is 

performed, including one or more SNPs of interest. The SNPs need to be associated with a 

restriction endonuclease site, and upon digestion of the PCR products, the fragments are 

separated by agarose or acrylamide gel electrophoresis. The fragment lengths will decide 

which SNP variant is included in the PCR product of interest. Uncut fragments represent the 
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homozygote of one variant, while the heterozygote shows two bands. The homozygote of the 

other genetic variant will be cut in both DNA strands, showing only one band, but shorter 

(runs further on the gel) than the uncut band. The PCR products may be sequenced to verify 

the results. 
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2. Aims of the study 
 

Despite the improvements in cancer therapy, the five-year survival of patients with OSCCs 

remains low. Many patients, particularly in developing countries, are diagnosed with OSCCs 

at advanced stages due to lack of awareness of the symptoms related to this pathology and 

lack of access to health care facilities (52, 136). A better understanding of the molecular 

events possibly implicated in the development of OSCCs may enhance the development of 

better methods for early detection, predictive tools and therapeutic targets of this disease, 

which are essential to improve survival. 

 

General aims: 

 

Examine gene expression changes in OSCCs from high- and low-income countries to search 

for possible molecular biomarkers for OSCC and to identify genes associated with tobacco 

habits and other clinicopathological parameters.  

 

Specific aims: 

 

1. To study differential gene expression in OSCCs from Sri Lankan patients (Paper I) 

 

2. To investigate differential gene expression in OSCCs from Sweden and the United 

Kingdom (Paper II)  

 

3. To explore genetic alterations in OSCCs and OSFs from India and Sri Lanka  

(Paper  III) 

 

4. To study genetic variants of the S100A14 gene in OSCCs and OSFs from Asian, 

African and European populations as a possible molecular biomarker for both OSCCs 

and OSFs (Paper III) 
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3. Materials and Methods 
 

3.1 Patients (Papers I-III) 
 
Primary samples of OSCC/OSF (Papers I-III) and their corresponding pair-wised normal 

controls (Papers I and III) were acquired from consecutive patients with previously 

untreated OSCCs/OSFs. After surgery, tissue samples (malignant and normal) were 

immediately submerged in the tissue storage and RNA stabilization solution, RNAlater™ 

(Ambion, Inc., Woodlands, TX, USA) and dispatched to the Department of Biomedicine at 

the University of Bergen, where they were stored at -20°C until RNA purification and 

microarray experiments were to be performed. 

All tumors were staged following the 1987 UICC staging system, and had their 

histopathological diagnosis confirmed by some of the authors (Papers I-III). 

Histopathological diagnosis of the OSF cases (Paper III) was confirmed by two of the 

authors (RM/SOI) using formalin-fixed, paraffin embedded tissue sections stained with H&E. 

Diagnosis was done according to Pindborg et al. (18). 

 

Ethical clearance: 

All studies performed were approved by corresponding Committees for Medical Ethics at the 

University of Perideniya and at Moti Lal Nehru Medical College, Allahabad, India, King’s 

College, London, UK and Uppsala University, Uppsala, Sweden. 
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3.2 Tissue samples and laboratory methods used 

3.2.1 Patients and tissue specimens 
 
Table 2. Overview of the tissue samples and laboratory methods used in Papers I-III 
 

Tissue specimens 

 

No 

 

Laboratory procedures used 

 

Paper(s)  

OSCCs/Pair-wised normal controls (Sri Lanka) 15 cDNA microarray, RT-qPCR, RFLP I, III 

OSCCs (UK) 11 cDNA microarray, RT-qPCR II 

OSCCs (Sweden) 8 cDNA microarray, RT-qPCR, RFLP II, III 

OSCCs (Sri Lanka) 12 Array-CGH, RFLP III 

OSCCs (India) 12 Array, CGH, RFLP III 

OSFs (India) 6 Array-CGH, RFLP III 

OSFs (India) 54 RFLP III 

OSCCs (Finland) 45 RFLP III 

OSCCs (Norway) 24 RFLP III 

OSCCs (Sudan) 65 RFLP III 

NHOM, ODL & OSCCs (Sri Lanka) 21 IHC III 

NHOM, normal human oral mucosa; ODL, oral dysplastic lesions 

3.2.2 RNA and DNA extractions 
 
Total RNA was extracted from both tumor specimens (Papers I and II) and normal controls (Paper I) 

using TRIzol© reagent (Gibco BRL, Carlsbad, CA, USA)/RNeasy Fibrous Tissue Kit (Qiagen Inc., 

Valencia, CA, USA) following manufacturer's instructions. Quality and quantity of the RNA were 

determined spectrophotometrically with a Beckman DU®530 Life Science Spectrophotometer 

(Beckman Coulter, Inc., Fullerton, CA, USA) and by an Agilent 2100 Bioanalyzer (Agilent 

Technologies, Palo Alto, CA, USA). Genomic DNA (Paper III) was extracted using DNeasy 

Purification Kit (Qiagen Inc., Valencia, CA, USA). DNA quantity and quality were 

determined using Nanodrop (Thermo Fischer Scientific). 

3.2.3 cDNA synthesis, DNA labeling, hybridization and scanning (Papers I-III)  
 
Synthesis and labeling of the cDNA was carried out using Fairplay Microarray Labeling Kit 

(Stratagene, La Jolla, CA, USA), following the manufacturer's instructions. Synthesized 

cDNA was labeled with Cy™3 (control cDNA) and Cy™5 (tumor cDNA) monoreactive dyes 

(Amersham Biosciences, GE Health Care), and samples were hybridized to the human 

oligonucleotide microarrays containing 34.580 oligonucleotid probes (Paper I) or 21.521 

oligonucleotides (Paper II) printed on Corning Ultra GAPS slides at the Norwegian 
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Microarray Consortium (www.mikromatrise.no). Labeled cDNA (Paper I and II) was 

hybridized on the Ventana Discovery® XT System (Ventana Medical Systems Inc., Tucson, 

AZ, USA) according to the manufacturer's protocols. 

Genomic DNA (Paper III) was labeled with Cy™3 (control DNA) and Cy™5 (tumor 

DNA) and hybridized to microarrays containing 4.549 BAC and PAC clones representing the 

human genome at ~1 Mb resolution, as well as the minimal tiling- path between 1q12-q25. 

Labeled DNA hybridization was performed using an automated hybridization station 

GeneTAC/HybArray (Genomic Solutions, Ann Arbor, MI, USA). cDNA microarray and 

DNA microarray slides were scanned by Agilent DNA Microarray Scanner BA (Agilent 

Technologies, Palo Alto, CA, USA), and the microarray data was stored as tiff format images. 

The images were further analyzed with GenePix Pro v5.0 (Molecular Devices Corp., 

Sunnyvale, CA, USA) where bad spots, and spots not found were flagged, and the final results 

containing all statistical values were stored as a gpr-file. 

3.2.4 Quantitative Real-Time RT-PCR (Papers I and II) 
 
To validate gene expression profiles for selected candidate genes, real-time quantitative RT-

PCR was performed for selected genes (9 in Paper I, 3 in Paper II). Aliquots of the same 

RNA (200-300 ng) used for the microarray hybridization was also used for synthesis of the 

cDNA, performed with High Capacity cDNA Archive kit (Applied Biosystems, Foster CA), 

following the manufacturer's instructions. Real-time PCR was performed with probes for each 

gene using the ABI 7900 HT (Applied Biosystems) and 384 well optical plates (ABI). Each 

reaction contained 1μl cDNA, 5μl 2xTaqMan Universal Master mix (Applied Biosystems), 

0.5μl Taqman AOD probe and H2O to a final volume of 10 μl, and was run in triplicate. 

Cycling parameters were 95ºC for 10 min, followed by 40 cycles of 95ºC for 15 sec and 60ºC 

for 1 min. Serial diluted standards were run on the same plate and the relative standard curve 

method was used to calculate gene expression. �-actin was used as an endogenous 

normalization control to adjust for unequal amounts of RNA. 

3.2.5 Tissue specimens and immunohistochemistry (Paper III) 
 
Immunohistochemistry (IHC) is a technique applied to identify proteins in tissues, based on 

antigen localization detection by antibody-antigen binding, visualized by fluorescence, 

enzyme-labels, colloidal gold particles or other methods (137, 138). Usually, the antibodies in 

use are derived from another species than the tissue to be examined. Rabbits and mice are 
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widely used for antibody production, but also other mammals are used, like goat, guinea pig, 

cow, swine, rat and camel (138). The IHC method was first introduced in the 1940s, and has 

evolved to be an important and widely applied technique in many medical research 

laboratories as well as in clinical diagnostics (137).  

IHC analysis of the S100A14 protein was performed on 21  archival formalin fixed, 

paraffin embedded tissue sections of OSCCs (representing 10 of the 15 patients from Sri 

Lanka) including oral dysplastic lesions and normal human oral mucosa using Autostainer 

universal staining system (DAKO-USA, Carpinteria, CA). Antigen retrieval was done by 

microwave treatment in Tris-EDTA buffer, pH 9.0 (DAKO). After blocking with 3% BSA in 

TBST, sections were incubated with rabbit polyclonal anti-human S100A14 primary antibody 

(10489-1-AP, Proteintech, Chicago, IL, USA, 1:500 dilutions) for 1 hr at room temperature. 

After washing, anti-rabbit secondary antibody conjugated with horseradish peroxidase labeled 

polymer (EnVision System, DAKO) was applied. Presence of antigen was visualized by 

staining with 3, 30-diaminobenzidine (DAKO), counterstained with Harris hematoxylin 

(DAKO) and mounted with EuKit mounting medium. Sections incubated with 3% BSA 

instead the of primary antibody served as negative controls. 

3.2.6 Evaluation of the IHC 
 
Tissue sections were examined using a light microscope for S100A14 expression. IHC 

evaluation was mainly focused on the invading islands of the OSCC specimens. S100A14 

staining was semi-quantitatively evaluated by manually counting the cells (at least 500 cells 

were counted in 3 representative areas, at 400X magnification) expressing either membranous 

or mixed membranous/cytoplasmic S100A14. Based on the number of positive cells with 

respect to sub-cellular localization of the S100A14, OSCCs were categorized into 3 groups 

with low (0-9% positive cells), moderate (10-49% positive cells) and high (50-100% positive 

cells) scores (92). 

3.2.7 Restriction fragment length polymorphism (RFLP) 
 
To search for SNPs in the S100A14 gene, we performed PCR with two different sets of 

primers within the S100A14 gene searching for two SNPs, 461G>A (rs11548103) and 

1545A>T (rs11548102). All available DNA samples from the cases used for array-CGH in 

Paper II were included in the RFLP study. For comparison, and further validation, we 

included archival OSCC DNA samples from Sudan (n=65), India (n=60), Finland (n=47) and 
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Norway (n=24). In addition, a collection of archival material from patients diagnosed with 

oral submucous fibrosis from India (n=43) were included. The PCR products were digested 

with restriction enzymes Kpn I (461G>A), Mnl I (1545A>T) and separated by 3% agarose gel 

electrophoresis. The agarose gel was stained with 1X GelRed Nucleic Acid Staining solution 

(Biotium, Hayward, CA, USA). 

3.2.8 DNA sequencing  
 
10 PCR-products of the 461A>G SNP were selected for verification by sequencing. The PCR 

reaction was performed as described in the previous section. The products were run on a 3% 

agarose gel, excised from the gel and purified with Qiagen gel extraction kit (Qiagen Inc., 

Valencia, CA, USA) and ligated into the pCR®2.1-TOPO® vector (Invitrogen, Carlsbad, CA, 

USA) following the manufacturer’s instructions. After ligation, the vector with insert was 

transformed into XL10-Gold Ultracompetent E.coli cells (Agilent Technologies, Santa Clara, 

CA, USA) according to the manufacturer’s protocol, plated on LBamp plates and grown 

overnight. Clones were picked and grown overnight in 10mL LBamp, and plasmids were 

extracted using the Promega plasmid prep kit (Promega, Madison, WI, USA. The sequencing 

reaction was performed at the DNA sequencing facility at the Department of Molecular 

Biology, University of Bergen (www.seqlab.uib.no). 

 

3.3 Statistical analysis  
 
For Papers I and II, J-Express software package (version 2.6; www.molmine.no) was used to 

analyze the gpr-files produced by GenePix Pro, and the pre-processing was performed by 

filtering and normalization. In Paper I, each array was first pre-processed separately by 

performing the following steps: Spots flagged by Genepix (“bad”, “absent” or “not found”, -

100, -75 and -50, respectively) were filtered; and in order to avoid extreme ratios in spots 

where only one of the channels had a significant signal, a flooring step was applied where 

intensity values below 30 was set to 30, thereby eliminating unwanted high ratios for spots 

with intensity near zero. Global lowess normalization was applied to all values left after the 

filtering step. Thereafter, all in-array replicate spots were merged by a median statistics and 

inserted into a gene expression matrix. Genes for which more than 50% missing values 

(missing in more than 50% of the patients) were removed. Missing values were set to zero, 

thus eliminating their contribution for recording up- or down-regulation status of a gene in 
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tumor compared to normal control. To prepare the expression matrix for array comparison, we 

applied scale normalization to reduce differences in expression spread. For finding a gene 

with a significant difference between tumor and normal control, the relative difference in gene 

expression d(i)=M(i)/(SE(i)+s) was used where M(i) is the mean log ratio for gene i, SE(i) is 

the standard deviation of the gene’s log ratios and s is an added constant for all genes. This 

means that d(i) is a student's t-statistics with a fudge factor s which corrects for 

underestimated variances resulting in a higher weight to high average fold change compared 

to low variance that can be justified by noisy nature of microarray experiments. In our case, 

and as suggested by Efron et al. (139), s is set to a 90 percentile of all gene standard errors 

SE(i). 

Since all tumors were labeled with Cy5 and the corresponding normal controls were 

labeled with Cy3, we used as control an additional set of hybridizations of 5 pairs of 

experiments that included primary keratinocytes, dysplastic oral epithelial cell line, OSCC 

cell line (SCC-25) and two metastatic OSCC cell lines (OSC-2 and G6) that were hybridized 

twice with a dye swap experiment using the same arrays and identical experimental protocols. 

This was done to find out whether genes found to be differentially expressed were due to dye 

swap effect or were due to the disease status. In our case, we hypothesized that a gene-

specific dye effect would give genes with high s-scores in this matrix since a bias for one gene 

will give a higher signal with one of the dyes and will have this as a result. Therefore, we 

have chosen a very low threshold of 0.5 for the s-score, which has resulted in a list of 1276 

genes with a possible dye effect.  

For the tumor expression matrix, we selected genes with an s-score above 1.0, and 

obtained 461 genes as differentially expressed either between the tumors and normal controls 

or alternatively, as a result of the dye effect. To remove genes affected by a dye effect, we 

removed all genes for which array vendor had reported a possible dye effect, and also genes 

with s-score above 0.5 in the dye swap expression matrix, resulting in 263 genes that we 

believe are differentially expressed between tumors and normal controls. We further 

performed a permutation experiment and generated 1000 permuted matrices. Each permuted 

matrix contains the 12034 genes in the original unfiltered data set and the permutation was 

performed by flipping the sign of each column with a probability 0.5. Averaged over the 1000 

permuted matrices, our analysis generated 0.47 genes per matrix with a d-score above 1.0 

resulting in a false discovery rate of 0.001. 

 A pre-processing of each array was also performed in Paper II, by removing controls 

and spikes, as well as flagged and empty spots. Multiple spots for the same gene were 
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combined and represented by the median intensity value. The Global lowess normalization 

method was applied to each array individually. Genes with more than 40% missing values 

(missing in more than 40% of the patients) were removed. Remaining missing values were 

imputed with KNN input (K=10), the data were scale normalized (inter-array normalization as 

described by Yang et al. (140)) and finally genes showing little variation across the samples 

(s.d. less than 0.5) were removed. This resulted in log-ratios for 2439 genes across the 19 

samples studied. Significance analysis of microarrays (SAM) was performed with the 2439 

genes, using two classes (UK, Sweden; un-paired, with 1000 permutations) to find genes 

differentially expressed between the Swedish and UK samples. The percentage of genes 

falsely identified as differentially expressed, False Discovery Rate (FDR), was set to less than 

4 percent, resulting in 42 genes. 

To search for over-represented Gene Ontology terms (Papers I and II), Gene 

Ontology (GO) Directed Acyclic Graph (DAG) analysis were used. Genes related to the same 

biological pathway were found by performing a KEGG (Kyoto Encyclopedia of Genes and 

Genomes, www.KEGG.com) analysis, using Fisher-Irwin exact test to find statistically 

significant pathways (Paper I). Fischer-Irwin exact test was also used to analyze data from 

RFLP (Paper II). Results from real-time quantitative PCR were analyzed by the Mann-

Whitney U-test (GradPad Software Inc, La Jolla, CA, USA) (Papers I and II)  

Hierarchical clustering, based on Pearson correlation and average-linkage (WPGMA), 

was performed to cluster patients with similar gene expression profiles (Papers I and II). 

For array-CGH data (Paper III), gpr-files produced by GenePix were further 

processed by the MATLAB tool M-CGH, performing filtering and log2 normalization of 

CGH ratios, and linking the clones to their corresponding genomic information in the 

Ensembl database (www.ensembl.org). Significant copy number changes common for the two 

populations were only included when found in a minimum of 20% of the Sri Lankan and 

Indian samples. Genetic alterations were investigated separately for the two populations, to 

find DNA copy number changes exclusive for Sri Lankan or Indian samples. Alterations in 

one population were only considered as exclusive when no changes were seen in the other 

population. 
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4. Results and general discussion 
 

During recent years, microarray-based technologies have become commonly used techniques 

for identifying gene expression and chromosomal alterations in human cancers and other 

pathological conditions. These high-throughput technologies enable genome-wide analysis of 

changes in gene expression or chromosomal deletions/amplifications in the pathological 

samples to be studied. In the search for possible molecular biomarkers for OSCCs, a series of 

studies were carried out in the present work where both cDNA microarrays and array-CGH 

were applied to examine possible changes in gene expression and DNA copy number 

alterations in OSCC samples compared to their pair-wised normal controls and between 

OSCC samples from different populations. The results showed significant findings that will 

be presented and discussed as follows:  

 

4. 1 Gene expression profiles and chromosomal deletions/amplifications 
(Papers I-III) 
 
In Paper I, cDNA from OSCCs and their pair-wised normal controls obtained from patients 

from Sri Lanka were hybridized to 35k oligonucleotide microarrays, and 262 genes were 

found as differentially expressed in the OSCCs compared to normal controls (Tables IIIA 

and IIIB in Paper I). Among the 262 genes, 189 were found as up-regulated (including 

KRT17, COL4A1, MMP1, MMP3, HRAS and JUN) and 73 genes were found as down-

regulated (including KRT19, NDRG2, S100A1, EEF1G and WDFC2). Among the 262 genes, 

191 were of known functions (related to cell signaling, cell growth, cell adhesion, 

angiogenesis and other processes important for oral tumorigenesis) and 71 were of unknown 

function (several were without any assignation to a gene symbol). Interestingly, 66 (35%) of 

the known genes have previously been reported in OSCCs, according to the Cancer Genome 

Anatomy Project (CGAP) and gene expression studies performed on OSCCs. Further, 

hierarchical clustering was performed with the expression profile of the 262 genes found as 

differentially expressed (Figure 1 in Paper I). The samples were separated in a number of 

sub-groups, with the exception of samples 1 and 11. Sample 1 was diagnosed as a verrucous 

carcinoma - a tumor  related to ST use that is usually less aggressive compared to other 

OSCCs. Sample 11 was an advanced OSCC. A large subgroup of the samples with tumors 

predominantly of stage 3 and 4 was observed, which might suggest that advanced tumors have 
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a common gene expression profile compared to tumors of stage 1 and 2. Interestingly 

however, one of the stage 2 tumors clustered in a subgroup with tumors of stage 3 and 4, 

suggesting a gene expression profile in this sample that is similar to advanced tumors (Figure 

1 in Paper I). In Paper II, cDNA from OSCCs samples from Sweden and UK were 

hybridized with human universal reference RNA to 21 k oligonucleotide microarrays, and 

2439 genes were found to be differentially expressed. Significance of Analysis of Microarrays 

(SAM) was performed to find differentially expressed genes between Sweden and UK 

OSCCs, resulting in 42 genes. Based on the 2439 genes found, we performed hierarchical 

clustering of the samples studied from the two countries and the results showed a tendency for 

most of the patients grouping based on country of origin (Figure 1 in Paper II). All 

subgroups included tumors of different stages. One case from UK and one case from Sweden 

did not group with any of the other cases. Interestingly, the case from UK is the only case 

among the UK patients with a history of ST use (in addition to smoking), and the case from 

Sweden is the only sample with a distant metastasis (Figure 1 in Paper II). In Paper III, 

comparative genomic hybridization analysis using array-CGH was performed in OSCCs cases 

from Sri Lanka and OSCCs/OSFs samples from India. This resulted in 95 chromosomal 

regions found as deleted or amplified with 14 regions being deleted in samples from both 

populations and 14 regions with chromosomal gains. Chromosomal regions deleted in one 

population and amplified in the other were also found, resulting in 66 regions predominantly 

found as deleted in Sri Lankan and amplified in the Indian samples. The chromosomal regions 

found as deleted in both populations included among others 1q21, 1q23, 8q22 8q24, 12p13, 

13q12 and 20p11. Amplificated regions included chromosomes 1p36, 6p21, 7q36, 11q13, 

15q23, 18p11 and 19p13. Of the 66 regions with either DNA copy number increase or 

decrease in one of the two populations were 1p36, 7p22, 7q22, 11q13, 12q24, 16p11, 17p13, 

17q21, 17q25, 19p13 and 22q13. Several of these chromosomal regions are common DNA 

copy number alterations in OSCC (16, 54). The Ensembl 

(http://www.ensembl.org/index.html) and GeneCards® databases (http://www.genecards.org/) 

were applied to identify genes of biological significance located in chromosomal regions with 

copy number changes (34 genes in the deleted chromosome regions, 30 genes in amplified 

regions and 285 genes in amplified or deleted chromosomal regions in the two populations). 

Among the genes found in regions with a decrease in DNA copy number were IVL, several 

S100 gene family members, including S100A14, ANGPT1, WISP1, NDRG1, CASP4 and 

CASP5. Regions with increased DNA copy number represented genes such as NOTCH 4, 

XRCC2, MMP15, PRKCA, BCL2 and CD70. Genes localized in chromosomal parts deleted or 



 49

amplified in either of the two population included MTOR, ECM1, BAK1, AZGP1, CAV1, 

CAV2, PLAU, TNC, VEGFB, BAD, CCDN1, FGF3, FGF4, MMP14, EIF4A1, TP53, TIMP2 

and TGFB1. These genes are listed in Tables 2A and 2B and Supplementary table S1 in 

Paper III. When combining the results from all three studies for the samples studied from Sri 

Lanka, India, Sweden and UK, a total of 18 genes were found to be represented (Papers I-

III). These genes included caveolins, plasminogen activator, fatty acid synthase, hyaluronan 

synthase 3, tenascin C and protein arginine methyl transferase. When including previous work 

from the group where samples of OSCCs from Norway and Sudan were studied using 

microarray gene expression analysis, a total of 72 genes (Table 3 in Paper III) were found to 

be represented in more than one study, including CCND1, fibroblast growth factors, TP53, 

S100 gene family members, matrix metalloproteinases and TGFB1.  

4.1.1 Gene expression profile for selected  genes (Papers I-III) 

4.1.1.a Caveolins, matrix metalloproteinases, extracellular matrix, proteases and 

oncogenes 

Many of the common genes found are related to tumor development, progression, invasion 

and metastasis, and some are possible biomarkers for OSCCs. Caveolin 1 (CAV1) and 2 

(CAV2), genes (detected in Paper I and III), are structural proteins of the caveolea, 50-100 

nm flask shaped invaginations of the plasma membrane, distributed in a wide variety of cells, 

abundant in adipocytes, endothelial cells, pneumocytes and smooth muscle cells (141, 142). A 

third caveolin (CAV3) has also been identified, not as ubiquitously expressed as caveolin 1 

and 2 (141). Caveolin 1 and 2 are co-expressed and form a stable hetero-oligomeric complex. 

Caveolin 1 and 3 are able to form caveolins alone, while caveolin 2 is not. The functional 

roles of the caveolae and caveolins are connected to cellular processes like endocytosis and 

signal transduction. Caveolins (particularly CAV1) and caveolae are associated with cancer 

development and progression (141, 142). CAV1 has been suggested as a tumor suppressor due 

to its down-regulation in malignancies like breast, lung and colon cancer. However, in some 

cancers like esophageal SCCs, OSCCs, prostate and breast an increase in expression has been 

observed (141, 143). These findings suggest several functional roles for caveolin 1 depending 

on the cell type and tissue investigated. CAV2 has not been studied as extensively as CAV1, 

but the expression pattern of this gene in cancer seems to follow a similar pattern as CAV1. 

Our findings suggest an increase in expression of CAV1 and CAV2 in OSCCs, consistent with 

previous studies performed with OSCCs and OSCC cell lines (144-146). Also, in a previous 
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proteomics study including OSCCs from Sudan and Sri Lanka, we found increased expression 

of caveolin 1 (147).  

MMPs (Matrix metalloproteinases) are a family of more than 20 proteolytic enzymes 

responsible for remodeling of extracellular matrix components. MMPs are normally not 

expressed in healthy tissue. Their precursors are produced and can be found in many cells, but 

the expression of MMPs is strictly regulated. However, MMPs are upregulated in tumor 

tissue, being involved in processes such as cell proliferation, cell migration, invasion, 

metastasis and angiogenesis (148, 149). Papers I and III included four MMPs; MMP1, 

MMP3, MMP14 and MMP15. MMP1 and MMP3 were also reported in another OSCC study 

performed by our group (81). MMP1 (Interstitial collagenase) encodes a protein that breaks 

down collagens I, II, III, IV and V. MMP3 (Stromelysin-1) also breaks down the same 

collagens, in addition to IX, X, XI and elastin. MMP14, a cell surface MMP (MT1-MMP), is 

involved in activation of pro-MMP2 by binding to TIMP2 (Tissue inhibitor of 

metalloproteinase 2). MMP15 (MT2-MMP) is also a cell surface MMP. Substrates for this 

enzyme are collagenes I to III, elastin, fibronectin, gelatins and laminin (149). MMP1, MMP3 

and MMP14 has previously been reported to have elevated expression in oral cancers (97, 

114, 148-152). Collagen IV, a basement membrane constituent is one of the substrates for 

both MMP1 and MMP3 proteins. Up-regulation of MMP2 and MMP9 seems to occur 

frequently in oral cancer (148, 149, 153, 154). Our earlier work showed differential 

expression of MMP2 and MMP9 between OSCCs from Sudan and Norway (99), and another 

study demonstrated involvement of MMP1 and MMP9 in invasion and metastasis in OSCC 

cell lines (92). COL4A1 (Collagen IV, alpha I) is a subunit of collagen IV, found as up-

regulated in Paper I and our previous work (81). Collagen IV has a possible implication in 

OSCC as it has been found as surrounding cancerous cells in ECM (extra cellular matrix), and 

that it is interrupted and discontinuous in invasive carcinoma (148). Collagens are also 

associated with oral submucous fibrosis, a premalignant condition mainly caused by BQ 

chewing. Collagen IV has not been directly connected with OSF, but Tsai et al. (152) reported 

COL4A1 as up-regulated when investigating mRNA profiles of Taiwanese BQ chewers 

diagnosed with OSCC. COL1A1, another gene reported as up-regulated in Paper I, is 

connected with a risk of developing OSF for individuals carrying a specific COL1A1 

genotype (155). This might indicate that expression of COL4A1 and COL1A1 in OSCCs are 

connected with BQ chewing. In contrast, Cheong et al. (114) studied OSCCs from smokers 

and BQ chewers, demonstrating elevated expression for COL4A1 and COL1A1 in both 

groups, indicating that both etiological factors can affect these genes. Additionally, these 
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genes were found to have altered expression in previous OSCC studies (97). In Paper III, 

several collagens were detected in amplified or deleted chromosomal regions; COL5A3, 

COL6A1, COL6A2, COL11A2, COL13A1, COL15A1 and COL16A1. SPARC (Secreted 

protein and rich in cysteine) is also an ECM protein located in the basement membrane, found 

as up-regulated in Paper I and in our previous work (80, 81). This gene has been 

demonstrated to have elevated expression in some malignancies and of decreased expression 

in others (156). In oral cancers however, SPARC is up-regulated and is associated with tumor 

progression, metastasis and survival (97, 157, 158). Another ECM protein, tenascin C (TNC), 

is expressed in tumor tissue and promotes tumor cell proliferation, invasion and angiogenesis 

(159, 160). Tenascin C interacts with ECM molecules such as fibronectin and perlecan, as 

well as a number of cell surface receptors, including integrins. TNC has been associated with 

tumor progression and poor prognosis (159, 160), but this is not the case for OSCCs (148). In 

Paper I and III, TNC was detected as up-regulated or located in an amplificated 

chromosomal region, and has been reported to have elevated expression in several studies 

performed with head and neck SCCs (97, 114). TNC protein might be implicated in up-

regulation of MMP9 and hereby invasion and metastasis (92, 148, 161).  

Proteases are important for cancer cells to be able to invade the surrounding tissue and 

to enter blood and lymph vessels, mostly performed by MMPs. There are also other enzymes 

responsible for ECM protelysis, like the urokinase plasminogen activator (PLAU). This 

protease has a restricted substrate specificity, activating plasmin from its inactive form 

plasminogen (162). When activated, plasmin is able to degrade ECM proteins and also to 

activate MMP precursors, like pro-MMP3. Additionally, plasmin has the ability to release or 

activate growth factors, such as TGF� (162). PLAU (also named uPA) binds to its receptor 

PLAUR (also known as uPAR or CD87), forming a complex enhancing proteolysis, cell 

proliferation, migration and modulating cell adhesion. PLAU and PLAUR are believed to 

play a critical role in tumor invasion and metastasis (162, 163). PLAU was detected in Paper 

I and III as well as in our previous studies (97, 114, 152). The involvement of extracellular 

matrix components in oral tumorigenesis is important for tumors to invade the connective 

tissue, to migrate and metastasize to distant sites. The genes described here may act as 

possible therapeutic targets and prognostic tools for OSCCs. Clinical trials on inhibitors of 

MMPs have been performed, although promising, there are yet no established successful 

therapies. SPARC and PLAU have been described as having a prognostic value for OSCC 

(158, 164).  
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In Paper II, we detected 42 genes as differentially expressed in OSCCs from Sweden 

compared to UK. Four of these genes (APOL3, PRMT1, FASN and HBA1) were also found in 

Papers I and III. HBA1 (Hemoglobin, alpha 1) has no clear role in tumorigenesis. 

Apolipoprotein 3 (APOL3) belongs to a cluster of six apolipoprotein L genes, APOL1-6, 

proteins involved in lipid transport and metabolism. APOL3 has been shown also to have a 

role in inflammation and apoptosis (165, 166). Johanneson et al. (167) demonstrated that 

genetic variance of APOL3 is connected to prostate cancer susceptibility. PRMT1, protein 

arginin methyltransferase 1, was reported in Papers I-III. PRMT1 encodes a protein which 

methylates arginin residues in proteins. There are several substrates for PRMT1, one of the 

major substrates are the histones, in particular H4, which is dimethylated at arginine 3 by 

PRMT1 (168). Methylation of the histones is one of the epigenetic events which regulates 

gene expression (169), and hereby plays an important role in cancer development (170). 

Arginine methylation modulates pathways such as signal transduction, epigenetic regulation 

and DNA repair pathways, and the involvement of PRMT1 in cancer progression is highly 

probable (164). A function for PRMT1 as a co-activator of p53-mediated transcription has 

also been demonstrated (171). Fatty acid synthase (FASN) catalyzes the synthesis of long 

chain saturated fatty acids. In cancerous conditions, de novo synthesis of fatty acids is 

elevated, due to an increase in the need of lipids in the growing cancer cells (172). High levels 

of  FASN expression have been found in many human tumors, including oral cancers (172). 

Tumor- related FASN expression is regulated by growth factors such as EGF and its receptor 

EGFR, ERBB2, and steroid hormones (androgen, estrogen and progesterone) and their 

respective receptors. These signals activate the PI3K, Akt and MAPK signaling pathways, 

stimulating FASN translation through SREBF1. Low pH and hypoxia will also induce FASN 

expression by activating SREBF1. FASN mutually stimulates ERBB2 signaling, increasing 

tumor cell proliferation. There are also transcription factors involved in FASN regulation, as 

well as posttranslational regulation (172, 173). The role of FASN in tumor growth and 

survival provides a possible therapeutic approach. FASN inhibitors have been shown to 

suppress tumor growth, but further studies on the mechanisms of FASN in tumor growth are 

needed before a therapeutic strategy can be applied (173). 

 The oncogene FOS (FBJ murine osteosarcoma viral oncogene homolog) was detected 

in Paper II. The Fos protein can dimerize with c-jun, a member of the Jun family, to form the 

transcription factor AP1 (Activator protein 1) (174). The AP1 complex regulates genes that 

are responsible for cell proliferation, invasion and metastasis. Other members of the Fos and 

Jun family also form AP1 proteins, and Jun family members can form jun-jun homodimers 
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(174), although these homodimers are less stable and weaker DNA-binding activity than the 

heterodimers. c-Fos is frequently over-expressed in a number of malignancies, and has 

oncogenic functions. However, recent studies have revealed tumor suppressor activity of c-

Fos, suggesting a dual role for this protein in cancer (175, 176). Previous studies of gene 

expression in head and neck SCCs have found this gene to be both up- and down-regulated 

(97) 

4.1.1.b S100 A gene family members 

Altered gene expression/DNA copy number changes were reported in S100 genes in Paper I 

(S100A1) and III (S100A1-9, 12-14 and 16). In Paper III, the chromosomal 1q21 region 

harboring S100A14 was found to be deleted, while in a previous CGH study performed on 

OSCCs from Sudan and Norway, an amplification of the 1q21 region has been reported (81). 

An up-regulation of S100A2 was also reported in our previous work (80), as with down-

regulation of S100A4, S100A6, S100A8 and S100A14 studying expression of S100 genes in 

OSCCs (78). An in-depth study on gene expression profiles of S100A14 and 18 other S100 

gene family members in OSCCs from Sudanese patients showed down-regulation of 

S100A14. S100 proteins are calcium-binding proteins with a broad diversity of both intra- and 

extracellular functions, such as motility, cell growth, differentiation, transcription and 

secretion (68). S100 proteins are associated with human pathological conditions, including 

psoriasis, rheumatoid arthritis, neurodegenerative disorders, cardiomyopathies and a number 

of malignancies (63, 64, 69, 71). S100A1 plays a role in different pathological conditions, and 

there are numerous target molecules for S100A1 (177). Some of the biological functions 

connected to the S100A1 proteins are Ca2+-regulation, phosphorylation, cell growth, apoptosis 

and cytoskeleton organization (177). Its role in cancer is not clear, but an interaction with the 

metastasis-inducing S100A4 protein was shown in rat tumor derived cell lines, where S100A1 

had an inhibitory effect on S100A4-inducing metastasis (178). S100A2 is a possible tumor 

suppressor, down-regulated in several malignancies (64). In oral cancers, S100A2 has been 

shown to interact with p53 (75), and down-regulation may suggest this protein as a tumor 

suppressor also in OSCCs (82, 83, 179). Increased expression of S100A4 has been associated 

with a number of cancers (64, 71), and has been suggested to play a role in metastasis and 

invasion. An interaction between p53 and S100A4 has also been demonstrated (64, 71). In 

OSCCs, S100A4 seems to be involved in metastasis and tumor progression (180, 181). 

S100A7 expression was first identified in psoriatic keratinocytes, alternatively named 

psoriasin. Expression of S100A7 in different malignancies has been demonstrated, and also in 
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OSCCs (71, 85, 88). It seems that S100A7 expression is higher in early stage carcinomas than 

in moderate or poor differentiated tumors (85, 86, 88). An association between S100A8 and 

HPV18-infected OSCC was reported by Lo et al. (89), suggesting an important role for this 

protein in OSCC tumorigenesis after HPV18 infection. Differentially expressed S100A8 in 

OSCCs compared to normal mucosa was detected in another study, also showing differential 

expression of S100A9, 11 and 13 (90). 

The biological functions of the S100A14 protein are not yet understood, but it is clear 

that it is involved in different cancers, as S100A14 has altered expression in several 

malignancies. It was over-expressed in breast, ovarian and uterine tumors, and down-

regulated in kidney, colon, rectal, esophageal and, as mentioned above, in OSCCs (78, 79, 

91). Chen et al. (77) studied different genetic variants of S100A14 in esophageal SCCs, and 

demonstrated that transcription of S100A14 is regulated by the tumor suppressor protein p53, 

and that one of the genetic variants (461G>A) may correspond to a p53-binding site (77), and 

suggested that S100A14 is a putative tumor suppressor for esophageal SCCs. Further, recent 

work by our group showed that over-expression of S100A14 in OSCC-derived cells harboring 

wild-type p53 induced G1-arrest and hereby suppressing cell proliferation (76). Additionally, 

S100A14 was found to regulate the invasive potential of two OSCC cell lines, involving 

down- or up-regulation of matrix metalloproteinases MMP1 and MMP9. When over-

expressing S100A14, MMP1 and MMP9 were found to have decreased expression, thus 

inhibiting invasion of OSCC cells (92). In this experiment TNC was down-regulated upon 

over-expression of S100A14, supporting our findings of these genes playing an important role 

in OSCC development. S100A14 may be favoring accumulation of p53. TP53, the “guardian 

of the genome”, is involved in many cellular processes, preventing abnormal cells to divide 

and by inducing apoptosis, DNA repair, cell cycle arrest and inhibition of angiogenesis. TP53 

mutations occur in a great number of human cancers, including more than 50% of OSCCs, 

leading to a dysfunctional protein. More than 70% of the mutations affect the DNA-binding 

site. p53 inactivation also occurs through alterations in genes encoding proteins involved in 

regulation of this protein, like MDM2, or viral protein binding (50, 56). Tobacco products 

contain several carcinogens responsible for causing mutations in TP53. For ST, the main 

tobacco habit among patients in this study, TNSAs like NNK and NNN are the strongest 

carcinogens present (27, 31). Previously, we showed a relationship between use of oral snuff 

(toombak) in Sudan and p53-mutations (57). Also, BQ chewing may be responsible for TP53 

mutations as demonstrated by Chiba et al. (182) and Ralhan et al. (183). Alterations in TP53-

hosting chromosome part 17p13.1 were found in Paper III, deleted in the Sri Lankan tumors 
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and amplified in the Indian tumors. Our previous study involving OSCCs from Sudan and 

Norway reported this region as amplified (81). Findings in the present work suggest that there 

are several common pathways for OSCC development regardless of differences related to life-

style and ethnicity. Among the genes implicated in OSCCs from populations world-wide, 

there are possible biomarkers for OSCC development and progression in general, and also 

putative biomarkers related to tobacco habits. Our findings have presented genes that are 

differentially expressed in different oral cancer samples, and genes that may be up-regulated 

in one type of cancer and down-regulated in another. A gene that is up-regulated in a cancer 

cell line may not exhibit increased expression in vivo, since the tumor cells also respond to 

signals from their microenvironment. The fact that the expression of a gene is changed in one 

type of tissue compared to another does not necessarily mean that the expression of its gene 

product has changed. Genes may undergo post-transcriptional or translational regulation, 

affecting mRNA transcripts or proteins. For microarray experiments however, the results may 

depend on the source of samples and sample processing, as there is always a risk of bias due 

to the experimental procedures. Reproducing results can be difficult in two different 

laboratories, even with aliquots of the same samples and following the same procedure, since 

human handling could affect the results. For this reason, microarray experiments must always 

be carefully planned and interpreted. When comparing results from different microarray 

experiments, it is important to keep these considerations in mind. 

4. 2 Common biological pathways 
 
Different pathway databases were searched (KEGG pathways (www.kegg.com), Nature 

Pathway Interaction Database (NPID) (http://pid.nci.nih.gov/index.shtml) and Millipore 

Pathways (http://www.millipore.com/pathways/pw/pathways)) to find common pathways for 

the genes discussed in section 4.1.1. The Millipore pathway Cell adhesion ECM remodeling 

includes a number of genes, such as MMPs, PLAU, EGFR, SPARC and collagens (Figure 8). 

Many of the same genes are represented in Focal adhesion, a KEGG pathway including ECM-

receptor interaction and Cytokine-cytokine receptor interaction. PLAU and MMPs are 

represented in NPID by Urokinase-type plasminogen activator (uPA) and uPAR-mediated 

signaling. To date there are only a few connections of S100 genes with known biological 

pathways. S100A2 has been related to direct p53 effectors (NPID), a p53 signaling pathway. 

This pathway also includes PRMT1, MMP2 and CAV1, establishing a link between the S100 

genes and the genes described in section 4.1.1.a. 
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Figure 8. Cell adhesion ECM remodeling. This pathway involves several genes found in this work, such as 
MMPs, collagens, PLAU, SPARC and EGFR. Remodeling of the ECM is important for many tumorigenic 
processes such as angiogenesis, cell proliferation, motility and adhesion. (www.millipore.com). 
 

4. 3 Chromosomal alterations in OSCC compared to OFS samples (Paper III) 
 
By searching for chromosomal regions with differential changes in OSCC compared to OSF, 

very few alterations affecting OSCC and not OSF were observed (Table 5 in Paper III). 

There were no observations of DNA copy number changes affecting OSF exclusively. 

Hierarchical clustering of the Indian patients showed that the OSF samples grouped separately 

(Figure 1 in Paper III). Some of the genes located in the altered regions in both OSCC and 

OSF included EGFR, SULF1, EXT1, MTSS1 and MLNA. EGFR (epidermal growth factor 

receptor) is a well known tumor-promoting gene, being a receptor for EGF and other growth 
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factors. Over-expression of the EGFR protein is a common finding in cancers, associated with 

poor survival in some malignancies, including OSCCs (59, 61). Findings of EGFR up-

regulation have also been related to premalignant lesions. Chen et al. (184) demonstrated a 

connection between EGFR over-expression and poor survival in OSCC patients with a history 

of BQ chewing. The EGFR gene has been suggested as an important therapeutic target for 

OSCCs and other malignancies. Different therapeutic strategies for EGFR in OSCCs have 

been approached, with promising results (59, 185). Our results, however, contradict earlier 

findings, as EGFR was localized in chromosome 7p11.2, a region found as deleted in OSCC, 

and not found in OSF.  

Sulfatase 1 (SULF1) is a member of a family of esterases responsible for hydrolyzing 

ester bonds in different substrates. SULF1 encodes an extracellular heparan sulfate 

endosulfatase, suspected to have a tumor suppressor function, being down-regulated in many 

cancer cell lines (186). Sulfatase 1 has been implicated in inducing apoptosis, inhibition of 

heparin binding growth factors, angiogenesis inhibition and other tumor suppressing functions 

(186). However, further studies are needed to elaborate the tumor suppressor role of SULF1.  

EXT1, exostosin 1, encodes a glucosyltransferase required for heparan sulfate 

biosynthesis. This protein is involved in the autosomal bone disorder called hereditary 

multiple exostoses (HME), manifesting with benign bone tumors. Malignant transformation 

of these benign tumors are seen in 1-2% of HME patients (187). Reduced expression of EXT1 

due to mutations is seen in HME, and loss of heterozygozity in transformed malignant tumors, 

suggesting tumor suppressor activity for EXT1. Reduced expression of EXT1 in other cancer 

cells have also been reported (187). Both SULF1 and EXT1 are localized in chromosomal 

regions found to be deleted in this study. The fact that the majority of DNA copy number 

alterations were common both for OSCCs and OSFs supports the idea that the majority of the 

chromosomal changes occur early in OSCC development. However, the OSF sample size is 

too small to enable us to draw any conclusion from these results. 

4. 4 S100A14 as a molecular biomarker for OSCCs (Paper III) 
 
The S100A14 gene was selected for further in-depth analysis based on previous findings by 

our group and others, associating S100A14 with OSCC and esophageal cancer, being 

regulated by p53 (76, 77). Increased or decreased expression of S100A14 have also been 

observed in different cancers (91). In Paper III, IHC was performed and analyzed in OSCC 

tissue samples from Sri Lanka showing normal and malignant changes (Figure 2 Paper III). 

In the adjacent normal mucosa, S100A14 protein was found to be strongly expressed in the 
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cell membrane of the epithelial cells. Some of the epithelial cells showed cytoplasmic 

staining, but none showed nuclear staining. To a large extent, the dysplastic lesions showed 

the same expression as adjacent normal tissues, but more heterogeneously in the strength of 

expression. Across the OSCC tissue samples, a variable degree of staining was seen. The 

S100A14 protein expression was found to be clearly down-regulated and to some extent lost 

in the OSCC tissues, particularly in the invading tumor islands. The sub-cellular S100A14 

expression pattern was also to some extent seen to change from plasma membrane to the 

cytoplasm. Loss and change in subcellular localization of the S100A14 expression from 

normal to cancerous tissue suggests a possible role for S100A14 in oral tumorigenesis, 

supporting our earlier findings (92). Further, a study of genetic variance in S100A14 was 

performed on the two SNPs 461G>A and 1545A>T (Table 3 Paper III). Interestingly, the 

OSF samples from India were dominated by the heterozygotic genotype in the case of SNP 

461G>A, with very few samples harboring the homozygotic alleles. The European (Norway, 

Sweden, UK) samples harbored the GG (38%) and GA (46.5%) genotype in a larger 

proportion than the AA genotype (15.5%). Interestingly, none of the Sudan samples harbored 

the AA genotype, only the GA or GG alleles, were distributed evenly. Chen et al. (77) 

demonstrated that patients bearing the 461A allele have a higher risk of developing 

esophageal cancer, particularly smokers bearing the AA genotype, and that this allele is 

associated with reduced expression of S100A14. Our results show that there is a larger 

proportion of patients from Asia (India and Sri Lanka) and Europe (Norway, Sweden, UK) 

harboring the A allele in total (89% and 62%, respectively) than in the Sudan (47%). This 

might be related to the different tobacco habits practiced in these regions. Our results might 

indicate that there is also a high risk of developing OSCC in patients with OSF harboring the 

461A genotype, as 94% of the OSF cases were shown to be bearers of the A allele. This 

observation is of importance and warrants further in-depth studies with focus on the study of a 

large number of OSF cases. For the 1545A>T SNP, the allele frequency for OSFs also 

deviated from the European and African samples, with only one sample representing the AA 

genotype. 
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5. Conclusions 

 
Microarray technology is a powerful tool to identify distinct patterns of gene expression and 

genome-wide DNA copy number variations in OSCCs from different populations. 

 

Development of OSCCs follows a rather uniform pattern of biological pathways regardless of 

demographic differences related to ethnicity or risk factors. This observation is based on the 

findings that there are several common genes found to be involved in OSCCs from different 

populations.  

 

Alterations in biological pathways involving several genes like caveolins, matrix 

metalloproteinases, extracellular matrix, proteases, oncogenes and S100A gene family 

members are commonly found in OSCCs from different populations. 

 

The majority of the genetic changes observed seem to occur early in OSCC development also 

at premalignant stages. In this study changes in the S100 gene family have emerged as 

playing a key role in carcinogenesis. 

 

Differential expression of genes may have dual roles in different OSCC samples, and between 

different types of cancers. 

 

Down-regulation of the expression of the S100A14 is frequent in OSCC. This observation 

suggests that this protein might be used as a molecular biomarker in OSCC and OSF. 

 

Findings of differential distribution of the A allele of the S100A14 gene in the SNP 461G>A 

among OSCCs and OSF from Asia, Africa and Europe might be related to tobacco habits and 

oral cancer susceptibility. This gene locus may be a particular target for the transition of OSF 

into OSCC. 
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6. Future perspectives 
 
Proteomic analysis of the OSCC samples used in this study for the cDNA microarrays and 

array-CGH will compliment genomic studies reported here. 

 

Performing stable isotope labeling with amino acids in cell culture (SILAC) using OSCC cell 

lines over-expressing S100A14, searching for differential protein expression. 

 

Further studies on the functional role of S100A14 in OSCC to elucidate its involvement in 

cell cycle regulation and oral carcinogenesis. 

 

Further studies on the association between the genetic variants of S100A14 and OSCC/OSF, 

harvesting samples from Asian patients diagnosed with oral premalignant disorders.  

 

Investigate the role of S100A14 as a molecular biomarker in field survey studies involving 

chronic smokeless tobacco users and patients diagnosed with oral mucosal changes using non-

invasive methodologies. 

 

Further studies on the possible involvement of the S100 gene family members S100A7, 

S100A8 and S100A9 in oral carcinogenesis. 
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