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Chapter 1

Introduction

In my project I have worked with a number of problems related to Image Registration. From the
start I have worked with registering brain images using a software package called FAIR [18], and
specifically with looking at the importance of choosing distance measures suited for the task. Last
fall I spent some time working on a project with the Image Processing Group here at UiB related
to Forskningsdagane, a science fair for kids. We made a program that registered pictures of faces
to animals, celebrities, cartoon figures etc.

1.1 FAIR

I have based most of the registration on a software package called FAIR. FAIR has been devel-
oped by Jan Modersitzki, and is an extensive collection of image processing (in particular image
registration) tools. The book FAIR - Flexible Algorithms for Image Registration [18] explains the
framework used in the software and most of the theory behind it. I have decided to use the same
formalism as Modersitzki uses in the book whenever possible.

One of the important concepts in the model used in FAIR is that it is a continuous setting; all
the variables are functionals. There are multiple reasons for choosing a continuous model, both
philosophically; since an image is a model of a continuous setting and thus should be continuous,
and practical; since our transformed image most likely will not align with a fixed, discrete pixel grid.
In addition this approach is more efficient. To obtain this continuous model we use interpolation
as discussed in Section 3.1.

Getting familiar with the software I have used and the theory behind it has been a bigger
undertaking than I imagined it would be. The multilayered structure of the software and the, in
my opinion, somewhat lacking commentary made it difficult to follow the process at times. I have
certainly learned the value of good comments and clarity.

Despite this I really appreciate the opportunity of starting with a complete registration package.
Without it I would surely not have gotten as far as I have.

Many of the results I show will be images generated by the FAIR software. The basic layout
of a registration result in shown in Figure 1.1.

1.2 Image processing

In mathematics, we may view a digital image as a two- or three-dimensional function, T (x),
where the points x are the spatial coordinates and the function value T (x0) is the intensity value
at coordinates x0. For graytone images, which encompasses all images I have been working on,
T (x0) ∈ R. The choice of viewing an image as a function opens up a lot of possibilities for
manipulating the image or for extracting information out of it. We can for instance find edges
in the image by looking at the gradients, remove noise by filtering the Fourier spectrum of the

7



8 CHAPTER 1. INTRODUCTION

(a) Start of registration

(b) End of registration

Figure 1.1: Basic FAIR graphical output. In the top left corner of the output is the reference
image. Top middle shown the template image interpolated at the starting guess. The template at
the current grid is shown in the upper right corner. The lower row shows the original template
overlayed with the current grid and the difference between reference and template at starting
guess and registered grid, respectively.

(a) (b) (c)

Figure 1.2: Example of image processing. Three slices of an MRI taken of a Kiwi-fruit. The
seeds have been segmented out using a image processing method known as k-means.
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image and increase contrast by manipulating the distribution of intensity values (histogram) just
to name a few applications.

We think of the images we view on a computer as a representation of a real object. As such
this is a digital or discrete representation of a continuous function. We use some special terms
when discussing computer representations of images:

Definition 1.2.1 (Digital images). A digital image is a collection of pixels or voxels, where

• A pixel (picture element) is a discrete unit with information about position and intensity
value in a two-dimensional image. The position is a 2-dimensional vector, x ∈ Ω ⊂ R2. The
intensity values are given by a function T (x) ∶ Ω→ R, where Ω ∈ R2 is the image domain.

• A voxel (volume element) is the equivalent of a pixel for x ∈ R3.

An example of image processing that is of special interest to us is the applying of transforma-
tions to the image. We may express these transformations as

T [y](x) = T (y(x)), (1.2.1)

where the function y ∶ Rd → Rd takes the coordinates x and maps them to y(x). Transformations
will be discussed further in Section 3.2.

1.2.1 Image registration
The need for Image registration often comes up in image processing when dealing with multiple
images. In short, image registration is the process of aligning two or more images of the same
object or scene [10]. Example of fields where image registration is important range from astronomy,
remote sensing, robotics, biology and criminology. There are a variety of methods developed for
registration, both between fields and within medical image registration (see for instance [3, 30]).

We start by choosing one of the images to be a reference image, R, and the other(s) as
templates image(s), T . Now, if one knew exactly how the images related to each others and the
transformation taking us from R to T , all that would be needed to do was apply the inverse of the
transformation and we would have a perfect match. In practice, however, we never know the exact
transformation. Furthermore, the existance of such a transformation might not be true. Often
the images are taken at different times or with different settings such that intensity values might
not correspond from R to T .

The problem turns into one of finding a transformation that takes us close enough to the
target image, going through an iterative process of transforming our template step by step and
checking how close we are to the target. There are a number of important tools needed to do
image registration, and some of them will be discussed in this chapter. Most of the theory in this
chapter is taken from the framework laid out in [18]. Wherever I have used other sources or made
additions on my own this will be clarified.

In the FAIR registration model the mathematical model is based mainly on the distance mea-
sure and the regularization. In short, to make the registration problem as compact as possible,
we create an objective function, J , that we want to minimize. This function may be composed of
different parts that we want to use in our registration, but in the FAIR framework it will consist
of a sum of the distance measure, D, and the regularizer, S. These will both be functions of the
template image, the reference image and the transformation y. The objective function with these
terms be expressed as

J [y] = D[T [y],R] + αS[y − yref]. (1.2.2)

Here α is a constant determining the amount of regularization. yref is the grid at the start of the
current registration.

I have mostly focused on the distance measure in my work, including testing the ones in the
FAIR package and implementing a new one. These will all be discussed in Section 3.4.
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In Chapter 2 I will introduce the project data I have been working on and the motivation
behind the methods I have been using. I will also introduce some history and theory on the
subject of medical imaging.

Chapters 4 and 5 will show some examples of the registration results; first on synthetic data
then on the real medical images, before a conclusion is provided in Chapter 6.

Finally, Chapter 7 includes an appendix with additional figures and some pieces of the code I
have used.

A note on notation

I have tried to use the same notation as that used in FAIR for my thesis. As such, R, T , etc.
refers to the continuous data and Tc, Rc, etc. refers to discretized data. For transformations and
grids, x usually refers to the original data grid, whereas y refers to the transformed grid.



Chapter 2

Multimodal Image registration

In this project I have mainly looked at problems regarding image registration of medical images.
In medical practice images of different modalities can provide vital information that can be used
in clinical practice or medical science [10]. The history of medical imaging goes as far back as
the late 19th century, when Wilhelm Conrad Röntgen discovered that certain wavelengths (that
we now call X-rays) in the electromagnetic spectrum can penetrate solid material and thus create
an image showing internal structure [10]. Today we have a multitude of different technologies to
obtain images of the anatomy, from the early X-rays to more recent discoveries; such as magnetic
resonance imaging (MRI), computer tomography (CT), positron emission tomography (PET) and
ultrasound (US). Sometimes we want to use images of different modalities from the same anatomy
or images taken at different times or of different patients. To compares these it helps to have
them relatively similar, and in order to get similar images we need to align them. The process of
aligning images is often referred to as image registration.

2.1 Image modalities
Most of the medical images we rely on today are the result of fairly recent advances in physics,
especially in the field known as particle physics. For instance, the discovery of the natural phe-
nomenon known as Nuclear Magnetic Resonance was first published by I.I. Rabi in 1938 [23].
This later led to the development of the technology behind Magnetic Resonance Imaging (MRI).
Computer Tomography (CT) is based on X-rays.

2.1.1 Magnetic Resonance
Magnetic Resonance Imaging is based on the magnetic moments of particles in the body. The
magnetic moment comes from the fact that some particles have a non-zero spin. The spin is
an intrinsic property of subatomic particles’ quantum states; a form of angular momentum. All
matter is composed of elementary particles, such as quarks and electrons, known as fermions.
These all have spin s = 1

2
and thus a magnetic moment. Composite particles, such as the protons

and neutrons, take the sum of the spins of their composing fermions. A proton, composed of two
up and one down quark, has a resulting spin of 1

2
[16].

Of special interest to us is the 1H-isotope. The reason for this interest is that it is the most
common molecule in the human body. It also produces a stronger signal than most other stable
nuclei [1]. Pathologies will often change the composition of molecules in the affected area, leading
to a change in observable signal (intensities in the image).

Because of this spin we get a magnetic moment,

µ = γI, (2.1.1)

where γ is the gyromagnetic ratio. The gyromagnetic ratio is dependent on the nucleus.

11



12 CHAPTER 2. MULTIMODAL IMAGE REGISTRATION

(a) T1-weighted MRI montage (b) PD-weighted MRI montage

(c) Slice of T1 data (d) Slice of PD data (e) Difference T1 and PD

Figure 2.1: Example of unregistered medical images.
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Weighting TR TE Description
T1 Short (< 750 ms) Short (< 40 ms) Can be run very fast due to short

repetition time. Usually involves
the introduction of a contrast
agent such as gadolinium, with
images taken before and after in-
jection. T1 images give good
contrast between gray and white
matter.

T2 Long (> 1500 ms) Long (> 75 ms) Good sequence for detecting
pathologies.

PD Long (> 2000 ms) Short(< 20 ms) Minimizes the contribution from
both T1 and T2. Intensity based
on number of protons in an area
(Proton Density).

Table 2.1: Different versions of MRI.

Outside the influence of a magnetic field, all possible orientations of the spin have the same
energy. Because of this, the number of atoms in each state will be approximately equal at equi-
librium. Placing the nucleus in an electric field will influence the balance between the states and
they will no longer have the same energy. The resulting energy difference between the two states
results in a bias towards the lower energy state. A convenient way to picture this is to think of
the spins as aligning with the magnetic field.

The factor

ν = γB
2π

(2.1.2)

is of importance; it is the frequency of electromagnetic radiation required to shift the quantum
spin state known as the resonance frequency. The frequencies needed for shifting a hydrogen nuclei
in a magnetic field are in the order of

ν = γ

2π
≈ 26.75 × 107 T−1 s−1

2π
= 4.2 × 107 HzT−1, (2.1.3)

or about 42 MHz per Tesla, which lies in the radiofrequency part of the electromagnetic spectrum.
In Magnetic Resonance Imaging (MRI) the patient is exposed to a magnetic field B0 in the

range of about 1 to 7 Tesla. This will give a net polarization parallel to the field, with a net
magnetization M0. We define the direction of the field as the z-axis, so that Mz,eq = M0. The
patient is then subjected to a Radio Frequency (RF) pulse, either perpendicular or antiparallel to
the field, which can tip the net magnetization either 90 or 180 degrees. This will change the value
of Mz, either to 0 (the net magnetization lies solely in the xy-plane) or to −Mz,eq, depending on
the angle between the field and the RF pulse.

The choice of RF pulse sequences defines the type of MRI we get. A common form is what is
known as the spin-echo sequence. Starting with a 90○ pulse, the magnetization vector is shifted
to the xy-plane, and the net magnetization starts shifting back to the original direction. After a
certain time t a 180○ pulse rotates the magnetization vector in the x-plane. This pulse is called a
refocusing pulse, leading to a signal echo at time 2t = TE. Typically, additional 180○ pulses are
applied, with a repetition time TR. This method was first described in [14]. Different TE and
TR give us different intensity values, some of the more common ones are listed in Table 2.1.

Since the energy of this radiation is a lot lower than that required to ionize the molecules in
the body and the intensity is too low to produce significant heating, the radio frequencies are not
expected to do any damage. This, combined with high sensitivity, makes MRI a great tool for
diagnosing certain types of pathologies.
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2.1.2 Computed Tomography
Radiography, the use of radiation to create images of internal structure, had its advent with the
discovery of X-rays at the start of the nineteenth century. For many decades the images had
the disadvantage of being projections of the three dimensional object they were depicting, thus
providing no depth information [27]. This was improved upon by the invention of computer-
assisted tomography (CT or CAT) scanners in the 1970s. A fan-shaped slice of a X-ray beam is
rotated about the patient and recorded by an arc of detectors on the opposite side. The resulting
image shows an entire slice of the body.

Any radiation sent through a medium will have its intensity reduced at a factor depending
on the material. This factor is known as the attenuation coefficient. Since the body is composed
of different materials with different attenuation coefficients, the photon count measured going
through the medium will be depending on the materials inside. Using these numbers as the
intensity values gives us an image showing the makeup of the medium. See e.g. [15] for a more
detailed discussion on Computed Tomography.

2.1.3 Position Emission Tomography
The nucleus of an atom is composed of nucleons; protons and neutrons. The number of protons
give us the atomic number, and thus the element. The number of neutrons may vary, and the total
number of nucleons decides the isotope of the element. Some isotopes are inheritable unstable.
These are radioactive, and will eventually decay into a more stable form. The decay can be in
multiple forms, but all have in common that they change the number of nucleons.

One way the nuclei can decay is known as position emission or beta-plus decay. A proton (p)
in the nucleus is converted into a neutron (n) and a position (e+). An example is the decay of
Carbon-11, or 11C. Carbon is the sixth element, and thus has 6 protons. The isotope number
tells us that there are 5 neutrons. 11C decays solely through position emission,

11C →11 B + e+ + ν, (2.1.4)

where ν is an undetected neutrino [20].
The emission of such position is the basis of Position emission tomography, or PET; another

form of tomography used in medical imaging. The position emitted in the decay has a very short
lifetime when emitted inside an electron rich material such as those found withing the human
body. The position’s energy will rapidly diminish in interactions with electrons (usually between
10−1 and 10−2 cm), and once it’s energy is sufficiently reduced it will combine with an electron and
form a positronium. This state lasts a very short time (about 10−10 seconds) before it annihilates;
the masses of the positron and electron are converted into energy in the form of electromagnetic
radiation (photons). The energy released is given by Einstein’s famous formula,

E =mc2 = (me +me+)c2, (2.1.5)

where me and me+ are the masses of the electron and position, respectively, and c is the speed of
light in vacuum (approximately 3×108 m/s). To conserve momentum and energy, the annihilation
needs to produce a set of two photons are produced, traveling in exactly opposite directions with
equal energy [20].

This property is the foundation of PET: A raioactive isotope is injected into the patient.
This isotope will be incorporated with a biologically active molecule (typically fluorodeoxyglucose
(FDG), a sugar). The molecules will then be concentrated in the tissue of interest before the
scan takes place. Annihilations of positions emitted from the resulting decay inside the body will
produce photons that can be detected once they escape the body, and the location of the emission
can be calculated using the time of flight of the photons and the knowledge that the emission
happened at a point on a straight line between the detections.

PET scans are often taken in combination with a CT scan, resulting in an image with good
anatomical information from the CT scan as well as information about metabolism from the PET
scan.
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(a) CT scan (b) T1-weighted MRI

(c) PET scan (d) PD-weighted MRI

Figure 2.2: Four brain images taken with different modalities.

Example 2.1.1 (Example of modalities). Figure 2.2 shows one slice from each of four images
taken of brains using four different modalities. Note the differences in contrast and information.

2.1.4 Other image modalities

Other image modalities used in medical imaging include fMRI, ultrasound, diffusion tensor images
and thermography. I have not worked much with images taken with these modalities, but the
methods discussed in this thesis should be viable for these modalities as well.

2.2 Datasets
I have looked at many different datasets in the course of this project. Most of the registration
has, however, been done on two datasets. The first is an MRI of a patients abdomen, focusing
on the kidneys. A contrast agent (omniscan) has been administrated to observe the function of
the kidneys. The dataset consists of 20 images (each of size 256-by-256-by-20) taken at different
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Figure 2.3: One time slice of MRI data of kidney (abdomen).

times. Due to respiration and patient movement, the position of structures in the different image
do not correspond between images. Our task is to register the administrated images so that the
displacement between images is minimal. An additional problem is the addition of a contrast
agent, making a direct intensity based comparision of the images inadequate. In most of the tests
I have chosen to use a cropped version (interpolated on a 128-by-128-by-20 grid) of the image
showing only one of the kidneys. This is to avoid running out of memory and also to improve
performance of the registration. Figure 2.3 shows a montage of the first time slice of the full
dataset. Figure 2.4 shows one slice of the cropped dataset through the time steps. Both images
are displayed using the viewImage-script from FAIR set to ’imgmontage’.

The second dataset I have looked at is from a project at Haukeland University Hospital looking
at the aging brain. Images have been taken of 100 patients over a period of many years. Each
patients dataset consists of images of different modalities, such as MR images with different weighs,
CT scans and PET scans. These have different spatial resolution, different alignment and display
different types of information. Figure 2.5 displays a montage of slices through the head of different
modalities for one patient with all the images scaled to the same dimensions (128-by-128-by-16).

2.3 Difficulties surrounding multimodal registration

When registering images the perhaps most intuitive way of measuring the similarity is by looking
at the intensity values of the images. For multiple images taken with the same equipment with
the same setting this might work very well, but for our discussion this is not the case. Multimodal
images display different information about the object, as Figure 2.5 clearly shows. As such,
methods that work well for single modality registration might not work in multimodal registration.

The differences between single- and multimodal registration is mostly reflected in the choice
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Figure 2.4: One slice of MRI data of kidney (abdomen). Note the change in contrast due to the
contrast agent which makes registration with some distance measures unviable.
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(a) CT scan (b) T1-weighted MRI

(c) T2-weighted MRI (d) PD-weighted MRI

Figure 2.5: Image montages showing slices of four images of a brain taken with different
modalities.
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of the distance measure seen in Equation 1.2.2.
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Chapter 3

Background and Theory

The process of registering the images in FAIR can be laid out as a collection of steps. We
start by finding a multilevel representation of the images consisting of a set of grids of different
sizes. After choosing the necessary parameters (e.g. distance measure, regularization method
and number of iterations) for the registration, a parametric preregistration is performed on the
coarsest grid. When a sufficiently good parametric transformation has been found, the non-
parametric registration starts, going from the coarsest grid to the finest. After each step the
current registered grid is prolonged to fit the next level of registration and is then used as the next
starting guess.

3.1 Interpolation

Interpolating is the process of constructing new data points within the range of the old data. In
image registration interpolation is needed to reconstruct the image from a set of data and a grid.
There are a variety of methods used in interpolation, one of the simplest and most used being next
neighbour interpolation. Other methods include linear and spline interpolation.

3.1.1 Grids and cells

All transformations and changes in images are done via grids (see Figure 3.1 for an example), such
that the actual raw data is preserved. Our data, dataT, will be related to points

xj = [x1
j , . . . , x

d
j ] ∈ Rd, j = 1, . . . , n, (3.1.1)

where d is the dimension of the data, usually 2 or 3, and n is the number of elements in dataT.
These points can be thought of as the centers of cells in a grid that is laid over our image domain
Ω = (ω1, ω2) × ⋯ × (ω2d−1, ω2d) ⊂ Rd. Ω refers to the physical coordinates of the data. The
coordinate system is usually chosen so that ω1 = ω3 = ⋅ ⋅ ⋅ = ω2d−1 = 0.

The grid is a way of partitioning the image domain into congruent cells. For data of size
m = [m1, . . . ,md] we define

hi = (ω2i − ω2i−1) /mi, h = [h1, . . . , hd] , (3.1.2)

ξij = ω2i−1 + (j − 0.5)hi, ξi = [ξi1, . . . , ξmi] ∈ Rmi

. (3.1.3)

In this notation the index i refers to dimension and j = [j1, . . . , jd] refers to the data points.
Specifically, the collection of points

xj = [ξ1
j1 , . . . , ξ

d
jd] , ji = 1, . . . ,mi, i = 1, . . . , d, (3.1.4)

21
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(a) (b)

Figure 3.1: Example of an image interpolated on a transformed grid. Figure 3.1a shows the
image with the overlaid grid and Figure 3.1b shows the resulting interpolated image.

is called a cell-centered grid. The intervals

cellj = {x ∈ Rd ∣ −hi/2 < xi − ξij < hi/2} (3.1.5)

are cells with cell-centers xcj . h
i is the length of a cell in dimension i.

There are two other types of grids used in FAIR, mainly used in the approximation of deriva-
tives. These are called nodal and staggered grids. In the 1D-case when approximating the deriva-
tives of a function u at a cell-centered grid point one can use the central finite-differences,

∂u(xcj) =
u(xcj + 0.5h) − u(kcj − 0.5h)

h
+O(h2), (3.1.6)

where h is the cell size, (ω2 − ω1)/m. See Figure 3.2. This requires knowledge about the function
u on the nodal grid xcn to compute the approximation of the derivative on the cell-centered grid
xcc,

xnj = ω1 + jh, j = 0, . . . , n, and xcj = ω1 + (j − 0.5)h, j = 1, . . . , n. (3.1.7)

With uj = u(jh) this gives us

∂u(xcj) ≈ (uj − uj−1)/h. (3.1.8)

The third grid type, the staggered grid, are required in the 2− and 3D approximations. In the
2D case we define the grids as xj = [j1h1, j2h2] and

xs,1j = xj1,j2−0.5, j1 = 0, . . . ,m1, j2 = 1, . . . ,m2, (3.1.9)

xs,2j = xj1−0.5,j2 , j1 = 1, . . . ,m1, j2 = 0, . . . ,m2. (3.1.10)

The approximations of the derivative of u = [u1, u2] follows as
∂1u

1(xj1−0.5,j2−0.5) ≈ (u1
j1,j2−0.5 − u1

j1−1,j2−0.5)/h1, (3.1.11)

∂2u
2(xj1−0.5,j2−0.5) ≈ (u2

j1−0.5,j2 − u2
j1−0.5,j2−1)/h2, (3.1.12)

∂2u
1(xj1,j2) ≈ (u1

j1,j2+0.5 − u1
j1,j2−0.5)/h2, (3.1.13)

∂1u
2(xj1,j2) ≈ (u2

j1+0.5,j2 − u2
j1−0.5,j2)/h1. (3.1.14)

See Figure 3.3 for a representation of the staggered grid in 2D.
For the 3D case I refer to [18, 11].
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Figure 3.2: 1D Nodal grid. The figure shows the cell centers, xcj, and nodes, xnj−1 and xnj , as
well as the function values u at the nodes.

Figure 3.3: 2D grids. The figures shows cell centered (●), nodal (◻) and staggered (xs,1j (▶) for
u1 and xs,2j (▲) for u2) grids.
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3.1.2 Next Neighbour interpolation
The next neighbour interpolation is probably the simplest form of interpolation. The idea is simply
to let T nn(x) = dataT(j), where x ∈ cellj . The problem of such an approach is that the resulting
interpolant is discontinuous, possibly resulting in problems with the optimization.

Figure 3.4: Next neighbour interpolation in 1D. The dashed line shows the resulting
interpolatation.

3.1.3 Linear interpolation
The following discussion is for one-dimensional data. For extensions to higher dimensions, see [18].

The basic idea in linear interpolation is to assign the function value at each position with a
weighted sum of the function values of the neighbouring points. For this a linear mapping is used,

x→ x′ = (x − ω1) /h + 0.5, (3.1.15)

which mapps the domain Ω = (ω1, ω2) onto Ω′ = (0.5,m + 0.5). This maps a point xj = ω1 +
(j − 0.5)h onto j.

For an arbitrary point x, the neighbours and weights can now be found by splitting the resulting
x′ into an integer, p, and a remainder, ξ:

p = ⌊x′⌋ ∶=max{j ∈ Z ∣ j ≤ x′} and ξ = x′ − p, 0 ≤ ξ < 1. (3.1.16)

To put this into a formula, we get

T linear(x) ∶= dataT(p) ⋅ (1 − ξ) + dataT(p + 1) ⋅ ξ. (3.1.17)

This is valid for x1 ≤ x ≤ xm or 1 ≤ x′ ≤ m. If we add two additional data points, (0,0) and
(m + 1,0), we get 0 ≤ p ≤m and 0 ≤ ξ < 1 for all x ∈ Ω or equivalently for all x′ ∈ [0.5,m + 0.5].

Figure 3.5: Linear interpolation in 1D.

As seen in Figure 3.5 the linear interpolation is, unlike the next neighbour approach, contin-
uous. However, it is not necessarily differentiable at the grid points, which is a disadvantage in
comparision to e.g. a spline-based interpolation scheme. It does, however, have a much lighter
computational cost, and is an ideal method if we do not need derivatives.
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3.1.4 Spline interpolation
Splines are a type of functions defined piecewise by polynomials. In spline interpolation the goal
is to find a function T spline that interpolates the data and minimizes the bending energy. The
bending energy is defined as

S [T ] = ∫
Ω
(T ′′(x))2

dx. (3.1.18)

The solution to the problem

min S [T ] subject to T (xj) = dataT(j), j = 1, . . . ,m, (3.1.19)

is a cubic spline with coefficients cj and basis functions bj . Each basis function bj is a translated
version of a Mother spline b, such that bj(x) = b(x − j). We use the same mapping (Equation
3.1.15) of the cell-centered grid as in the previous section.

As basis function FAIR uses

b(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x + 2)3, −2 ≤ x < −1

−x3 − 2(x + 1)3 + 6(x + 1), −1 ≤ x < 0

x3 + 2(x + 1)3 − 6(x + 1), 0 ≤ x < 1

(2 − x)3, 1 ≤ x < 2

0 else.

(3.1.20)

This function is displayed in Figure 3.6a along with an example of data interpolated with this
spline basis in Figure 3.6b.

(a) Mother Spline (b) Spline interpolation in 1D

Figure 3.6: The mother spline b and an example of data interpolated with this basis.

Using all of this information, it is possible to write out the function T as

T (x) = T spline(x) =
m

∑
j=1

cjbj(x). (3.1.21)

To achieve this a way of computing the coefficients cj is needed. If we write c = [c1, . . . , cm]⊺ and
expand Equation 3.1.21 at xj = j we can simplify to

T (xj) = dataT(j) =
m

∑
k=1

ckbk(j) = [b1(j), . . . , bm(j)] c, j = 1, . . . ,m. (3.1.22)

We can now gather all of our function values T (xj) in T (xc) = [T (x1), . . . ,T (xm)]⊺, and we get

dataT = T (xc) = [b1(xc), . . . , bm(xc)] c = Bmc, (3.1.23)
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(a) Coarse representation (b) Fine representation

Figure 3.7: Multilevel surface plots. Figure 3.7a shows a coarse representation of the data
whereas Figure 3.7b shows a finer representation. Note the reduced number of local minima on
the coarse representation compared to the fine.

where Bm is the matrix

Bm =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

4 1 0
1 ⋱ ⋱

⋱ ⋱ 1
0 1 4

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (3.1.24)

This gives us a simple way of finding the coefficients c.

3.1.5 Multilevel representation
An important concept is the use of a multilevel setting in the registration process. The idea is to
start out registering on a coarse version of our images before we gradually improve the resolution
until the result is good enough on the finest level - Increasing the level increases the level of detail.
There are a number of advantages to this. One is computational efficiency; computing on a coarse
level is cheaper, and the registration will require fewer iterations on the finer levels.

Another important feature is that on the coarse grid, only global characteristics of the image
will be present. This is an advantage because in our optimization, we look for global minima in
our objective function. If the image is too detailed and the starting point is far from the optimal
transformation, there is a significant chance that our optimization will return a false solution at
local minima. Using a multilevel registration process reduces this problem. Figure 3.7 shows
surface plots of two representations of an image, one finer and one coarser.

Example 3.1.1 (2D Multilevel). For dataT ∈ Rm1,m2

,m1 = m2 = 2L for some L ∈ N we have a
multilevel representation {Tl, l = 0, . . . , L}, where TL = dataT and Tl−1 is given as

Tl−1 = (Tl(1 ∶ 2 ∶m1 − 1,1 ∶ 2 ∶m2 − 1) + Tl(2 ∶ 2 ∶m1,1 ∶ 2 ∶m2 − 1)
+ Tl(1 ∶ 2 ∶m1 − 1,2 ∶ 2 ∶m2) + Tl(2 ∶ 2 ∶m1,2 ∶ 2 ∶m2))/4 (3.1.25)

for l going from L to 1.

We may also use splines to interpolate on a coarser grid, xcl for l going from L to 1. Using
splines will again give a smoother representation at the cost of computation time and memory.

In my thesis I have primarily used a coarse-to-fine representation based on linear interpolation.
The reason is that the spline-based method is very memory- and time consuming for larger datasets.
See Section 3.1.4 for more on splines.

3.2 Transformations
The choice of allowable transformations is an important step in the process of registering images.
In theory we can transform our template image into anything we would like by choosing the right



3.2. TRANSFORMATIONS 27

Figure 3.8: Example of multilevel representation of data. The image shows the graphical output
from FAIR’s getMultilevel tool.

Figure 3.9: Example of spline-based multilevel representation of data. The image shows the
graphical output from FAIR’s getMultilevel tool.
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transformation, from a simple translation in one direction to something not even closely resembling
the original image.

The concept of grids is of importance when we start dealing with transformations: If we perform
transformations of the original image we might run into problems if we wish to reconstruct the
image from a transformation that is not one-to-one. See Section 3.1 for more on grids.

FIGURE (Image transformed in two ways)
Since the original image contains information we would like to keep through the transformation

process, we need to restrict the allowable transformations in some way. The transformations we
use can be divided into two types, parametric and nonparametric, and depending on which type
we use we have different ways of restricting the transformation.

3.2.1 Parametric transformations
One way of expressing a parametric transform is as a function y ∶ Rd → Rd where the components
are linear combinations of basis functions ql with coefficients basically being the parameters wl

[18]. For instance, the simple linear function y ∶ R → R with y = w1x + w2 is parameterized by
w = [w1,w2]⊺ and the basis functions q1(x) = x and q2(x) = 1. Setting Q(x) = [q1(x), q2(x)] gives
us the simple form y = Q(x)w. As an introduction to parametric registration, see for instance [24].

Affine transformations

A popular class of parametric transformations are the affine linear transformations. An affine
linear transformation has the possibilities of translating, rotating, shearing and individual scaling.
In our notation, an image in R2 has the components

y1 = w1x
1 +w2x

2 +w3,

y2 = w4x
1 +w5x

2 +w6 (3.2.1)

where x1 and x2 are the original and y1 and y2 are the transformed coordinates in the image.
Writing the parameters in w = [w1, . . . ,w6] ∈ R6 and with

Q(x) = [x
1 x2 1 0 0 0

0 0 0 x1 x2 1
] (3.2.2)

we get the form y = Q(x)w. For an image with d = 3 we get 12 parameters.
One interesting subclass of the affine linear transformations are the rigid transformations.

These allow only for translation and rotation of the image, and are on the form

y1 = cos(w1)x1 − sin(w1)x2 +w2,

y2 = sin(w1)x1 + cos(w1)x2 +w3. (3.2.3)

where w = [w1,w2,w3]⊺ parameterizes the transformation. We also see that this corresponds to
Equation 3.2.1 with parameters

w = [cos(w1) −sin(w1) w2 sin(w1) cos(w1) w3]
⊺
. (3.2.4)

Spline-based transformations

Another interesting family of transformations is that of spline-based transformations. Where
the affine transformations can be parametrized by a relative small number of parameters (for
a 2D image we have 6 parameters for an affine transformation, or 3 if we’re restricted to rigid
transformations), a spline-based approach gives us the possibility of having as many parameters
or degrees of freedom as we like. This gives us more flexibility in the range of transformations
possible, but we also need to watch out for unreasonable transformations, as seen in Figure 3.11.
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(a) Original image with transformed grid (b) Transformed image

Figure 3.10: Linear affine transformed grid overlaid an image and the resulting transformed
image.

(a) Original image with transformed grid (b) Transformed image

Figure 3.11: Unreasonable grid obtained using a spline-based transformation. Note how the
grid folds over itself, creating a distorted transformation of the image.



30 CHAPTER 3. BACKGROUND AND THEORY

For a two-dimensional image the transformation is governed by the following equations:

y1 = x1 +
p1

∑
j1=1

p2

∑
j2=1

w1
j1,j2b

j1(x1)bj
2

(x2) (3.2.5)

y2 = x2 +
p1

∑
j1=1

p2

∑
j2=1

w2
j1,j2b

j1(x1)bj
2

(x2) (3.2.6)

where bj are the splines (see Section 3.1.4), p = [p1, p2] are the number of coefficients in the spline
expansion and w1 and w2 are the coefficients for the components of y. I have not used spline-based
transformation to a large extent; instead I have used non-parametric transformations to obtain
more freedom in transforming the images (see Section 3.2.3 and 3.3.2 for more on non-parametric
transformations).

3.2.2 Regularization
One important aspect of image registration is the ill-posedness of the problem. A problem is
considered well-posed if it has the following properties:

1. A solution exists

2. The solution is unique

3. The solution depends continuously on the data. [13]

A problem that is not well-posed is considered ill-posed. Image registration is inheritably ill-posed
because of the lack of unique solutions in most cases [7].

Consider a symmetric figure, for instance a square, and attempt to register a translated version
of the same square. One solution would then be to simply translate the template over the reference.
However, if we also rotate by 90 degrees we have a similar solution. Another example would be to
attempt to register an area of (near) constant intensity. In this area every change will yield the
same results.

One way of attempting to remedy this lack of uniqueness is by adding a regularizer, S, to
the registration process. The goal in adding a regularizer is to modify the registration problem
such that it becomes solvable, and ideally well-posed. In practice the well-posedness might be
impossible to obtain as there will still be local minima [18].

Most variants of regularization used in image registration are cost functions based on the L2-
norm of the derivative of the displacement u = y − yref , where yref is the preferred solution. In
this way, moving away from yref will add a penalty to the cost function.

We will use regularizers of the form

S[u] = α
2
∫

Ω
∣B[u]∣2 dx, (3.2.7)

where B is a differential operator, ∣ ⋅ ∣ is a Euclidian norm and α is a regularization parameter
deciding how big an impact the regularization is to have on the registration process.

Example 3.2.1 (Curvature Regularizer in two dimensions). The diffusion regularizer is based on
the second order derivatives. Let d = 2 and y = [y1, y2]⊺. The choice

B = [∆ 0
0 ∆

] , (3.2.8)

where ∆yi = ∂1,1y
i + ∂2,2y

i results in the regularizer [6]

S[y] = 1

2
∫

Ω
∣B[y]∣2 dx = 1

2
∫

Ω
(∆y1)2 + (∆y2)2 dx. (3.2.9)
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This choice of regularizer does not penalize affine linear transformations since

S[Ax + b] = 0 for all A ∈ Rd×d, b ∈ Rd. (3.2.10)

Example 3.2.2 (Elastic operator in two dimensions). The elastic regularizer is the elastic poten-
tial measuring the energy introduced by deforming an elastic material. It was introduced by Broit
[2] and is one of the most commonly used regularizers in image registration.

Again, let d = 2 and y = [y1, y2]⊺. The divergence is an interesting differential operator that
tells us about changes in the volume. The choice of

B =
⎡⎢⎢⎢⎢⎢⎣

√
µ∇ 0
0

√
µ∇√

λ + µ∂1

√
λ + µ∂2

⎤⎥⎥⎥⎥⎥⎦
, (3.2.11)

where ∇ = [∂1, ∂2]⊺, gives us the elastic potential

S[y] = α
2
∫

Ω
∣B[y]∣2 dx (3.2.12)

= α
2
∫

Ω
µ⟨∇y,∇y⟩ + (λ + µ)(∇ ⋅ y)2 dx. (3.2.13)

µ and λ are the so called Lamé constants. Note that for λ = −1 and µ = 1 this turns into the
diffusion regularizer,

S[y] = α
2
∫

Ω
⟨∇y,∇y⟩dx = α

2
∫

Ω
(∂1y

1)2 + (∂2y
1)2 + (∂1y

2)2 + (∂2y
2)2 dx. (3.2.14)

Example 3.2.3 (Thin-plate-spline regularization in two dimensions). A third option is the Thin-
plate-spline regularization, or TPS for short. Like the curvature regularizer this is also a second
order regularizer, but here the energy is obtained from

B = I2 ⊗B1, with B1 =
⎡⎢⎢⎢⎢⎢⎣

∂2
1√

2∂1∂2

∂2
2

⎤⎥⎥⎥⎥⎥⎦
, (3.2.15)

and is given as

S[y] = ∫
R2

∣By∣2 dx. (3.2.16)

See [18] for a discussion on boundary conditions.

The choice of regularizer is not always straightforward. In the registrations I have performed
I have used all of the above mentioned regularization schemes, depending on which gave the best
results in each case. See for instance [6] for more on regularization.

3.2.3 Nonparametric transformations
In nonparametric transformation the registration process is entirely governed by the regularization.
In theory, any transformation will be possible, so the regularization is vital in preserving the
important structure in the image. See more in Section 3.3.2 for details on the optimization
process.

3.2.4 Landmark-based registration
A different take on registration is the Landmark-based approach. The idea here is to find land-
marks, specific points in the image, that we wish to focus on. The registration then becomes a way
of matching landmarks in the template image with the corresponding landmarks in the reference,
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or at least to minimize the distance between marks. Landmark-based registration can work well
with sufficent landmarks placed in correct positions, but this is also one of the main disadvantages
of this method: There are as of yet no good methods of automatically placing landmarks, so in
practice placing landmarks has to be done in a manual or semi-manual way. Some work is non
the less being done on this, see for example [9]. The manual work is time-consuming and often
difficult without prior knowledge of the objects being studied. For instance it can be difficult for
someone without medical or anatomical knowledge of the brain to place corresponding markers.

Another option is to attach physical landmarks to the patient before the images are taken.
This makes registration, but has the disadvantage of being invasive.

The underlying idea is rather simple. For landmarks tj = [t1j , t2j] in the template, we have a
corresponding landmark rj = [r1

j , r
2
j ] for j = 1, . . . , n, where n is the number of landmarks. Our

goal is to find a transformation y ∶ R2 → R2 s.t.

y(rj) = tj for j = 1, . . . , n. (3.2.17)

The distance between points is calculated as the Euclidian distance,

DLM[y] =
n

∑
j=1

∥y(rj) − tj∥2. (3.2.18)

In some cases, a perfect match might not be viable, and we need to relax the demand for a
fit between landmarks in the reference and template images. In this case we get a minimization
problem,

DLM[y] =
n

∑
j=1

∥y(rj) − tj∥2 !=min. (3.2.19)

We might also add some kind of regularizing term and attempt to minimize the combination of
the regularization and the distance between corresponding landmarks. The regularization might
for example be restricting the transformation to specific types (e.g. affine), or by adding some
form of energy measure for the transformation (e.g. elastic regularization).

Affine linear Landmark-based registration

For an affine linear transformation (see Section 3.2.1 for details) we have

[y
1

y2] = [w1 w2

w4 w5
] [x

1

x2] + [w3

w6
] . (3.2.20)

From this and Equation 3.2.18 we get

DLM[y] =
n

∑
j=1

∥y(rj) − tj∥2 =
n

∑
j=1

(y1(rj) − t1j)2 +
n

∑
j=1

(y2(rj) − t2j)2, (3.2.21)

which makes our optimization problem decoupled.

Example 3.2.4 (Affine linear landmark based registration). As we see in Figure 3.12, affine linear
transformations are not able to match the landmarks perfectly when we have more conditions
(landmarks) than parameters (for affine we have 3d parameters).

Quadratic Landmark-based registration

To get a better match than in the affine linear case, we might try a different transformation space.
One example is the quadratic family of transformations,

yi = wi
1 +w1

2x
1 +wi

3x
2 +wi

4(x1)2 +wi
5(x2)2 +wi

6x
1x2, i = 1, . . . , d. (3.2.22)

Example 3.2.5 (Quadratic landmark based registration). In this case the match between corre-
sponding landmarks is perfect. However, the transformation has not preserved the structure of
the image, and the results are thus meaningless. Result shown in Figure 3.13.
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Figure 3.12: Linear affine landmark based registration. Left: Template image with landmarks.
Middle: Reference image with landmarks. Right: Transformed template image with transformed
landmarks

Figure 3.13: Quadratic landmark based registration. Left: Template image with landmarks.
Middle: Reference image with landmarks. Right: Transformed template image with transformed
landmarks
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3.3 Optimization

As with any numerical problem, we need an optimization method to arrive at a solution. Opti-
mization is the process of selecting the best available solution from some set of possible solutions.
In our case, we want to get the best possible fit from our registration, and this means minimizing
the functional

J [y] = D[T [y],R] + αS[y − yref ] yÐ→min, (3.3.1)

where J is our objective function, D is the distance measure, S is the regularization term and y
is the transformed grid [18]. Depending on whether we use parametric or nonparametric transfor-
mations, the transformed grid might be seen as a function of the original grid and the parameters
of the transformation.

3.3.1 Parametric optimization

Our discretization of the parametric transformation yields us the optimization problem

J[y] =D(T (y(xc,wc)),R(xc)) + S(wc) wcÐ→min, (3.3.2)

where yc = y(xc,wc) is the transformation and T (yc) is the transformed template image. wc and
xc describe the parameters and the current grid.

The idea is twofold: To find a direction in which we search for a minimum and to find the ideal
step length in that direction. Starting with yk, we compute yk+1 = yk +αkpk, where the (positive)
scalar α is the step length and pk is the direction. It is usually required (the FAIR algorithm is
no exception) that pk is a descent direction, meaning p⊺k∇Jk < 0 [19].

We use a Gauss-Newton type algorithm to find our decent direction. This is a variation
of solving the classical Newton’s method, which is based on finding the extrema of the Taylor
expansion truncated after the second order term [8],

J(wc + dw) ≈ Ĵ(wc + dw) = J + dJdw + 1

2
dw⊺Hdw. (3.3.3)

Equation 3.3.3 attains its extreme values when dw solves Hdw = −dJ . Solving this straightforward
using the exact Hessian matrix,

H(f) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f

∂x2
1

∂f

∂x1∂x2
. . .

∂f

∂x1xn

∂f

∂x2∂x1

∂f

∂x2
2

. . .
∂f

∂x2xn

⋮ ⋮ ⋱ ⋮
∂f

∂xn∂x1

∂f

∂xn∂x2
. . .

∂f

∂x2
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.3.4)

gives us the standard Newton’s method.
The Gauss-Newton approach has the advantage of using an approximation of the Hessian. This

saves us the process of having to recompute the Hessian every iteration.
With the assumption that our objective function J can be written as J(wc) = ψ(r(wc)), we

approximate the Hessian of J , H, with dr⊺ d2 ψdr, which is positive semi-definite. Ĵ is thus
convex and dw is a descent direction since dJ⊺dw < 0. Another advantage, in particular for image
registration, is that this lets us neglect higher order derivatives of the inner function dr which
depends on the noisy data [18].

When we have found the descent direction we need to find out how far in this direction we
wish to go. Starting with t = 1, yt = y + t ⋅ dy is computed. If this gives us a sufficient decrease in
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the objective function we can continue. If not, t is replaced by 1
2
t. The test we use is called the

Armijo criterion:

J(yt) < J(y) + tolt(dJ⊺y), (3.3.5)

where tol is a tolerance value between 0 and 1 [19].

3.3.2 Nonparametric optimization
When we have a nonparametric transformation, the objective function is basically

J(yc) =D(T (yc),R(xc)) + S(yc − yRef). (3.3.6)

The process is very similar to the one we had in the parametric case 3.3.1, the main difference being
that we can’t express the transformation in terms of parameters. For details on the differences I
refer to the FAIR book [18].

The process of non-parametric registration is much slower than the affine linear counterpart
due to the large amount of information that has to be processed. To improve this situation FAIR
performs a parametric preregistration of the data on the coarsest level. The preregistration itself
is usually very quick, but the improved starting guess for the non-parametric registration has the
potential to improve performance, both concerning time and registration results.

3.3.3 l-BFGS
When dealing with large data sets, particularly 3D data, memory may become an issue. This may
be countered with completing the registration on a coarser level of data, but this will affect results
since finer detail will not be aligned. Another option is to use a different optimization process.

As seen in Equation 3.3.3 and the discussion following, one central part of the optimization
is the approximation of the Hessian. The idea behind the BFGS-method (named after Broyden,
Fletcher, Goldfarb and Shanno) is to replace the updating of the Hessian with an approximation
based on only the gradient information. The version of BFGS implemented in FAIR is a limited
memory BFGS scheme; l-BFGS.

The approximation to the inverse Hessian becomes (see [18] and especially [19] for details)

Ĥk+1 = (I − ρkskz⊺k)Ĥk(I − ρkzks⊺k) + ρksks⊺k), (3.3.7)

where

sk = yk+1 − yk, zk = ∇J(yk+1) − ∇J(yk) and ρk =
1

z⊺ksk
. (3.3.8)

3.4 Distance Measures
The choice of distance measure is of great importance in the registration model used in FAIR. We
want to transform the template image so that it aligns with the reference image, and to do this
we need a measure of similarity between the images. This is where distance measures come in. In
general, distance measures can be formulated as a functional

D[T,R] = ∫
Ω
φ(T ,R)dx, (3.4.1)

for some function φ describing the similarity at point x. For the transformed template T [y] we
get

D[y] ∶= D[T [y],R]. (3.4.2)

The distance measures Normalized Cross-Correlation, Sum of Squared Differences, Mutual
Information and Normalized Gradient Fields are included in the FAIR package, and discussed in
[18]. In addition I have implemented a method based on the second order derivatives; Normalized
Hessian Field.
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3.4.1 Sum of Squared Differences
The Sum of Squared Differences, or SSD for short, is one of the most intuitive distance measures:

DSSD[T ,R] = 1

2
∫

Ω
(T (x) −R(x))2 dx. (3.4.3)

This is the L2-norm of the difference image, and simply compares the intensity values of the two
images. It is squares as to not give negative values. One of the shortcomings of this method is
that it assumes the intensity values at x in the reference R(x) and in the transformed template
T [y](x) to be identical, which is seldom the case in multimodal image registration.

Of course, the integral in Equation 3.4.3 can not be computed analytically. Instead, we will
have to discretize. We define the function

ψ(x) = 1

2
(T (x) −R(x))2. (3.4.4)

Our discretization is on a cell-centered grid xc of width h. Denote Th = T (xc) and Rh = R(xc).
The discretized SSD is then defined as

DSSD,h(Th,Rh) = 1

2
⋅ hd ⋅ ∥Th −Rh∥2, (3.4.5)

where hd = h1⋯hd. The derivate of the discretized functional with respect to yc can be computed
to be

dJ(yc) = hd ⋅ dT (yc) ⋅ (T (yc) −R(xc)). (3.4.6)

Example 3.4.1 (Registration using Sum of Squared Differences). Example of registration using
Sum of Squared Differences. With the regularization parameter set too high (Figure 3.14a), the
registration is unable to find anything resembling the solution. Lowering the regularization (Figure
3.14b) makes the registration able to find a direction, but as is evident both from the grid and the
resulting image this is not a viable solution.

3.4.2 Normalized Cross-Correlation
The Normalized Cross-Correlation is an improvement over the Sum of Squared Differences in
that instead of assuming the gray-values of T (yc) and R(xc) to be identical, it assumes a linear
dependence of T [y] and R:

λT [y] = µR, λ, µ ∈ R. (3.4.7)

The cross-correlation of two images T and R is given by

⟨T ,R⟩ = ∫
Ω
T (x)R(x)dx. (3.4.8)

Ideally this should give a large response when the alignment is correct, but local high intensities
in the images can give matches at the incorrect position [22]. To remedy this the cross-correlation
can be normalized. The version of normalized cross-correlation used in FAIR also squares the
terms and includes a minus sign to change the problem into a minimization problem with values
in the range [0,1]:

DNCC[T ,R] = 1 −NCC[T ,R]2 = 1 − ⟨T ,R⟩2
∥T ∥2 ∥R∥2

, (3.4.9)

where ∥T ∥ =
√

⟨T ,T ⟩.
As in the SSD, we need a discretized version. Let Rc = R(xc) and Tc = T (yc). We then get

NCCh(Tc,Rc) = ⟨Tc,Rc⟩
∥Tc∥∥Rc∥ , (3.4.10)
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(a) Regularization constant α = 1e7

(b) Regularization constant α = 1e0

Figure 3.14: Example of images registered using Sum of Squared Differences.

with ∥Tc∥ =
√
Tc⊺Tc. The distance measure in Equation 3.4.9 can then be rephrased as follows:

DNCC(Tc) = ψ(Tc) = 1 − (Rc⊺Tc)
(Rc⊺Rc) (Tc⊺Tc) . (3.4.11)

Example 3.4.2 (Example of registration using Normalized Cross Correlation). Similar to the
example with Sum of Squared Differences, it is difficult to get decent results. Figure 3.15a shows
an example with the regularization set too high. Figure 3.15b shows some distortion due to
insufficient regularization. The results do however seem better than the ones obtained using SSD.

3.4.3 Mutual information
Mutual information is one of the most used distance measures in medical image registration.
It originated in information theory, and the concept is to study the mutual information of two
sequences T and R, or the normalized entropy of their joint density. Unlike Sum of Squared Differ-
ences and Normalized Cross-Correlation, Mutual Information is very general since no assumptions
on the nature of the dependence are made [17]. This distance measure was proposed independently
by Collignon [5] and Viola [28]. For more on Mutual Information see also [21].
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(a) Regularization constant α = 1e − 2

(b) Regularization constant α = 1e − 5

Figure 3.15: Example of images registered using Normalized Cross Correlation.

The first step in the process is to produce a histogram, summarizing the coincidences of all
possible n pairs of the sequence

ρhist(t, r) =#{(Ti,Rj)∣Ti = t ∧Rj = r}/n. (3.4.12)

The entropy H is then a measure for quantifying the “sharpness”of the histogram ρhist:

H[ρhist] = −∑
t,r

ρhist(t, r) log ρhist(t, r) = − 1

n
∑
i,j

log ρhist(Ti,Rj). (3.4.13)

The computation of the mutual information involves a normalization step, and is defined by

M̂I[ρhist] =H[ρhist
T ] +H[ρhist

R ] −H[ρhist], (3.4.14)

where ρhist
T = ∑r ρ

hist(t, r) and ρhist
R = ∑r ρ

hist(t, r) are the marginal densities.
The process of taking MI to the discretized framework is not straightforward. The quantity

ρ needs to be estimated. The popular approaches to this involve discretizing T . One method is
based on histograms, another on Parzen-window estimators. The histogram method is considered
inferior [26], so we will focus on Parzen-window-based estimators.
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The basic idea here is to work with a smooth kernel function which spreads out the sampled
data. For registration purposes we will use a smooth, compactly supported kernel; a cubic spline.
This kernel is bell shaped with integral one. The width of the kernel k is controlled by a dilatation
factor σ,

k(t, σ) = k(t/σ)
σ

. (3.4.15)

Since the integral is being kept at one, dilatation also affects the height of the function.
The estimated density is then obtained by summing shifted copies of the kernel and dividing

by the number of copies

ρ(t;σ) = ρ(t;T ,xc, σ) = 1

m

m

∑
j=1

k(t − tj , σ). (3.4.16)

We set σ = (tn − t0)/n. For two images T and R with m-point discretization xc we get

ρ[T ,R](t, r) = ρ(t, r;T ,R,xc, σ) =
1

m

m

∑
j=1

k(t − T (xcj), σ)k(r −R(xcj), σ). (3.4.17)

The marginal densities ρ[T ] and ρ[R] are

ρ[T ] = ∫
R
ρ[T ,R](t, r)dr and ρ[R] = ∫

R
ρ[T ,R](t, r)dt, (3.4.18)

and, finally, the discretized MI distance measure is given by

MI[T ,R] = ∫
R
ρ[T ] log ρ[T ] dt + ∫

R
ρ[R] log ρ[R] dr − ∫

R2
ρ[T ,R] log ρ[T ,R] d(t, r). (3.4.19)

In our discretization, our main task is to compute the integral

I = ∫
R2
ρ[T ,R] log ρ[T ,R] d(t, r). (3.4.20)

We assume that the values of the functions T and R are within a known range [t0, tn] and [r0, rn].
Typically, t0 = r0 = 0 and tn = rn = 255. The integrals will therefore be approximated by a midpoint
quadrature rule using an nt-by-nr grid. Let ηt = (tn − t0)/nt and ηr = (rn − r0)/nr. Furthermore,
let

ti = t0 + (i − 0.5)ηt, rj = r0 + (j − 0.5)ηr, i = 1, . . . , nt, j = 1, . . . , nr. (3.4.21)

To prevent consideration for 0 log 0, we add a small tolerance,

I = ηtηrρ⊺ log(ρ + ε) = ηtηr
nt

∑
i=1

nr

∑
j=1

ρi,j log(ρi,j + ε). (3.4.22)

The discretized marginal densities becomes

ρT (tk) = ηr
nr

∑
i=1
ρk,i and ρR(rk) = ηt

nt

∑
i=1
ρi,k. (3.4.23)

When using Mutual Information as a distance measure in FAIR there is an optional parameter
for choosing the size of the spline grid.

Example 3.4.3. Example of registration using Mutual Information, results shown in Figure 3.16.
A 32-by-32 spline grid was used. To register with MI we need to use a different optimization
process than the Gauss-Newton type discussed in Section 3.3. The alternative implemented in
FAIR is a BFGS method (l-BFGS), see [18] or [19] for more. This method reduces the memory
consumption and time required to perform registration, especially using Mutual Information. To
give an example of the difference, using the Gauss-Newton scheme on the images in this example
took more than 15 minutes, whereas the lBFGS approach used 6.35s.
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Figure 3.16: Example of images registered using Mutual Information.

3.4.4 Normalized Gradient Fields
The Normalized Gradient Field is a distance measure developed by Jan Modersitzki along with
Eldad Haber [12]. It is based on the idea that information in the image T can be displayed by the
intensity changes, and thus by the image gradient ∇T .

Looking at the steepest descent of a generic distance measure D[y] = D[T [y],R], the chain
rules gives us

dyD = dT D dyT , (3.4.24)

implying that ∇T = (dyT )⊺ is an important ingredient.
Instead of assuming that intensity values in the transformed T [y] andR correspond, we use the

premise that intensity changes appear at corresponding positions. Intensity changes are indicated
by the gradient, with larger values of the gradient corresponding to steeper intensity differences.
Since the magnitude of change and thus the magnitude of the gradient representing an edge may
not be identical from one image to the other, we replace ∇T with the normalized ∇T /∣∇T ∣, thus
removing information about the strength and only focusing on the positions of the change.

We start off the discussion of Normalized Gradient Fields (NGF) with the continuous version.
We define the NGF by

n[T ] = n[T , η] = ∇T√
∣∇T ∣ + η2

,

where η is an edge parameter defining what is to be looked at as an edge (∣∇T ∣ > η) and what
is to be considered within the noise levels (∣∇T ∣ ≤ η). Without this parameter, any noise in the
picture will be exaggerated by the normalization.

Next, we need to make sure that there is no bias in the direction of the NGF. Let t ∶= n[T ] and
r ∶= n[R]. Since a change from low to high intensity in one image might correspond to a change
from high to low values in the other, we want t = ±r to be treated identically. We also need to
make sure that we don’t get a match if t or r is zero. To get this, instead of minimizing the area
spanned by the two vectors, we maximize the linear dependency of the two. This leads us to

d(t, r) = 1 − (t⊺r)2.

This gives us minimal value zero for t = ±r and maximum value one if t is orthogonal to r or if t
or r is zero.
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Our distance measure is as follows:

DNGF[T ,R] = NGF[T ,R] = ∫
Ω

1 − (n[T (x)]⊺n[R(x)])2 dx,

where n[T (x)]⊺n[R(x)] is referred to as the residual.

Example 3.4.4 (The importance of the edge parameter in Normalized Gradient Field). To show
the importance of the edge parameter, consider the following example. Two relatively similar
images taken of a kidney at two different times in an acquisition process with injected contrast
agent are shown in Figure 3.17. As seen in the figure the residual becomes very noisy in the
absence of the parameter η. However, choosing a value that is too high will result in a loss of
detail that might interfere with the registration.

(a) Reference (b) Template (c) ⟨R − T ⟩

(d) Residual, η = 0 (e) Residual, η = 10 (f) Residual, η = 100

Figure 3.17: Two images of a kidney with contrast agent taken some time apart. In the top
row, 3.17a and 3.17b shows the reference and template images and 3.17c shows the absolute
difference of the two. The bottom row shows three images of the NGF residual with three
different values of η.

Discretizing NGF

Our next step is to make a discretized version of the NGF. Let xc denote a cell-centered grid and
yc = y(xc) be the transformed grid. The gradient ∇T is approximated by finite differences,

∂jT [y](xc) ≈ ∂hj T (yc). (3.4.25)

One way of doing this is with the Kronecker product, ⊗,

∂h1 = Im3 ⊗ Im2 ⊗D1,

∂h2 = Im3 ⊗D2 ⊗ Im3 ,

∂h3 =D3 ⊗ Im2 ⊗ Im3 ,
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where

Dj =
1

2hj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1
−1 0 1

⋱ ⋱ ⋱
−1 0 1

−1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rmj ,mj

. (3.4.26)

Once the gradients have been computed, we can carry out all operations pointwise. Let Tc =
T (yc) ∈ Rn and Rc = R(xc) ∈ Rn,

gradTi = [(∂h1 Tc)i, (∂h2 Tc)i, (∂h3 Tc)i]⊺, gradRi = [(∂h1 Rc)i, (∂h2 Rc)i, (∂h3 Rc)i]⊺. (3.4.27)

With

n[T [y](xi)]⊺n[R(xi)] ≈ rci ∶=
gradT⊺i gradRi√

∥gradTi∥2 + η2
√

∥gradRi∥2 + η2
, (3.4.28)

hd = h1⋯hd, and ω̂ = ∏d
i=1(ω2i−1 − ω2i), the discretized NGF becomes

NGF(yc) = hd
m

∑
i=1

(1 − rc2
i ) = ω̂ − hd ⋅ rc⊺rc. (3.4.29)

Example 3.4.5. Example of registration using Normalized Gradient Fields. The edge parameter
was set to 10 and the regularization parameter to 0.2. The time taken to register was 21.78s.

Figure 3.18: Example of images registered using Normalized Gradient Field.

3.4.5 Normalized Hessian Field
Unlike the previous distance measures, the Normalized Hessian Field is not a part of the FAIR
package. One of the main parts of my work has been to implement a distance measure based on
the second derivatives. The idea is in many ways similar to the Normalized Gradient Fields, but
instead of looking at the cross correlation of gradients, we use the second order information from
the Hessian matrix to compute the distance.

For each point in the image we want to find all the second order partial derivatives. Equation
3.3.4 shows a generic Hessian Matrix, which in our case yields a 2-by-2 (for a 2 dimensional image)
or 3-by-3 (for 3 dimensions) symmetric matrix which we store in a vector for easier computation.
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The second order derivative information is tied to the curvature or concavity of a function. A
positive second derivative indicates that the function is convex or concave up; a negative second
derivative means the function is concave down or simply concave. Like with Normalized Gradient
Fields there is no guarantee that the sign or strength of the second derivatives will correspond
when we have multimodal images, and again this can be fixed by replacing the second derivative
vector with a normalized version and by computing the correlation of the two images.

We define the NHF as follows

n[T ] = H[T ]√
∣H[T ]2 + η2

, (3.4.30)

with H[T ] being the vectorized Hessian of the image,

H[T ] = [ ∂T
∂x2

1

,
∂T

∂x1∂x2
, . . . ,

∂T
∂x2

n

] . (3.4.31)

The distance measure is defined as

DNH[T ,R] = NH[T ,R] = ∫
Ω

1 − (n[T ]⊺n[R])2dx. (3.4.32)

Example 3.4.6 (The importance of the edge parameter in Normalized Hessian Field). The edge
parameter is equally important in Normalized Hessian Field as in Normalized Gradient Field, as
Figure 3.19 shows.

(a) Reference (b) Template (c) ⟨R − T ⟩

(d) Residual, η = 0 (e) Residual, η = 10 (f) Residual, η = 100

Figure 3.19: Two images of a kidney with contrast agent taken some time apart. In the top
row, 3.19a and 3.19b shows the reference and template images and 3.19c shows the absolute
difference of the two. The bottom row shows three images of the NGF residual with three
different values of η.
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Figure 3.20: Example of images registered using Normalized Hessian Field.

Discretizing Normalized Hessian Field

The process of discretizing our Hessian-based distance measure is similar to that in Section 3.4.4.
Let Tc = T (yc) and Tci,j = ∂hi ∂hj Tc and similarly for R(xc). For a two dimensional image we have

hessTi = [(Tc1,1)i (Tc1,2)i (Tc2,1)i (Tc2,2)i] (3.4.33)

where the second order derivative matrices have been vectorized. This yields an mn × 4 matrix
for an image of dimensions m by n. The 3D case yields a mn × 9 matrix. We approximate the
Normalized Hessian Field by

n[T [y](xi)]⊺n[R(xi)] ≈ rci ∶=
hessT⊺i hessRi√

∥hessTi∥2 + η2
√

∥hessRi∥2 + η2
. (3.4.34)

See Section 3.4.4 for more details on the discretization.

Example 3.4.7. Example of registration using Normalized Hessian Fields as distance measure.
The edge parameter was set to 10 and the regularization parameter to 0.2. The time taken to
register was 18.18s.

3.4.6 Derivatives of Distance Measures

We will now discuss the derivatives of a general distance measure for the optimization. The idea
is to decompose the distance measure into elementary building blocks,

D(yc) =D(T (yc),Rc) = ψ(r(yc)). (3.4.35)

To approximate the Hessian we use first order information and neglect the second order derivative
of the residual r;

dD(yc) = dψ(r(yc))dr(yc), d2D(yc) ≈ dr(yc)⊺d2ψ(r(yc))dr(yc) (3.4.36)

For our computation we need to find the discrete versions of the derivative. Following is an
example with the Normalized Hessian Field.
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Example 3.4.8 (Derivative of discrete Normalized Hessian Field). We let Tc be the discrete
transformed image and ∂hl be the discrete gradient operators as seen in Equation 3.4.26. Let
∂hij = ∂hi ∂hj . We write

hessT = [∂h11Tc ∂h12Tc ∂h13Tc ∂h21Tc ∂h22Tc ∂h23Tc ∂h31Tc ∂h32Tc ∂h33Tc] (3.4.37)

lengthHT =
√

∥hessTi∥2 + η2. (3.4.38)

Further we write the residual r = r1r2 where

r1 = hessT⊺i hessRi, r2 = 1/(lengthHTilengthHRi). (3.4.39)

Using sparse matrices for our gradient operators, we use r1⊙ r2 = diag[r1]r2 in our computations.
We get

dr1 = diag [hessR1]∂h11 + diag [hessR2]∂h12 + diag [hessR3]∂h13

+ diag [hessR4]∂h21 + diag [hessR5]∂h22 + diag [hessR6]∂h23

+ diag [hessR7]∂h31 + diag [hessR8]∂h32 + diag [hessR9]∂h33. (3.4.40)

dr2 = −diag [ 1

lengthHR ⋅ lengthHT3
]

⋅ (diag [hessT1]∂h11 + diag [hessT2]∂h12 + diag [hessT3]∂h13

+ diag [hessT4]∂h21 + diag [hessT5]∂h22 + diag [hessT6]∂h23

+ diag [hessT7]∂h31 + diag [hessT8]∂h32 + diag [hessT9]∂h33). (3.4.41)

Using the chain rule, we can use the information in Equations 3.4.40 and 3.4.41 to get the derivative
of r,

dr = diag [r2]dr1 + diag [r1]dr2. (3.4.42)
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Chapter 4

Applications to synthetic data

Testing the methods on synthetic data can be a good starting point for further discussion. This
allows us to see the basic behavior of the registration process on a dataset where we know how
the images correspond.

4.1 Single modality
To simulate a single modality registration an artificial image depicting a solid circular shape
with an enclosing ring is created as a reference image. The template image is a transformed
version of this reference image. Thus the images show the same information with only a spatial
transformation separating them. Gaussian noise of mean 0 and variance 0.01 has been added to
both images before they were scaled to the [0,255]-range. Both parametric and non-parametric
transformations will be shown.

Example 4.1.1 (Comparison of distance measures on synthetic data (parametric)). The data is
represented in Figures 4.1b and 4.1a. Since the template image in this dataset is only an affine
transformed version of the reference all distance measures can be expected to do a reasonable job
of registering the images. This also seems to be the case, as the difference image in each case shows
mostly noise. Note that the grids found with each distance measure is different. This highlights
one of problems with image registration: Even if a seemingly good solution has been found, there
is often no way to be sure if this is the “true” solution. Of course, this is exaggerated in this
example as the synthetic data shows more symmetry than most real data.

This example uses only parametric registration on a fixed level. The time taken and parameters
are shown in Table 4.1. Sum of Squared Differences has the lowest time taken, whereas Normalized
Hessian Field seems to take a long time to find a sufficient minimum.

Example 4.1.2 (Comparison of distance measures on synthetic multimodal data (non-paramet-
ric)). In this example the reference image is similar to the one in the previous example. The
template image this time is a non-linearly transformed version of the reference image (spline-
based transformation), so affine linear transforms will not give a match. The registration has

Distance measure Optional Parameters Time (s)
SSD None 7.6263
NCC None 21.3488
MI nT = nR = 32 14.9635
NGF η = 30 14.9633
NHF η = 10 54.6370

Table 4.1: Parameters and time for registration on synthetic data from Example 4.1.1,
“Comparison of distance measures on synthetic data (parametric)”.
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(a) Template (b) Reference (c) Inversed difference
∣T (xc) −R(xc)∣

Figure 4.1: Data used in Example 4.1.1. The template is an affine transformed version of the
reference image. Figure 4.1c shows the inverted difference image of the template and the
reference. This highlights the differences between the images. The image has been inverted to
make the differences easier to spot, as black on white stands out more than white on black. The
difference image has also been adjusted so that the small intensity values stand out more.

Distance measure Optional Parameters Regularization parameter, α Time (s)
SSD None 102 28.83
NCC None 10−6 9.75
MI nT = 8 nR = 8 1012 210.32
NGF η = 2 0.5 58.48
NHF η = 0.2 0.1 178.19

Table 4.2: Parameters and time for registration on synthetic data from Example 4.1.2,
“Comparison of distance measures on synthetic multimodal data (non-parametric)”.

thus been performed using non-parametric transformations. An elastic regularizer was used in
all examples. Parameters and time is shown in Table 4.2 and the resulting images are shown in
Figure 4.4. All registration was done over multiple levels, going from level 3 (8-by-8) to the full
size on level 7 (128-by-128).

Again we see that most of the distance measures do a good job in registering the images.
Perhaps surprisingly, Mutual Information is the distance measure that stands out as the one
having the most problems. Of the distance measures that were able to get results, Normalized
Hessian Fields again took the longest time.

4.2 Multimodal data
Multimodal data typically show different intensities and information. To simulate a multimodal
dataset I have made the image shown in Figure 4.5. Example 4.2.1 shows the results of registering
this data with different distance measures.

Example 4.2.1 (Comparison of distance measures on synthetic multimodal data (parametric)).
In this example the synthetic data has been changed to a dataset containing a reference similar to
the one in Example 4.1.1 and a template that is both affine transformed and inversed in intensity
values. As a consequence of this we do not expect SSD to be able to register the images in any
meaningful way. The results show that both the SSD and, perhaps surprisingly, NCC fail to
register the images. The three other distance measures do however get good results in relatively
similar times.

As in the Example 4.1.1, only parametric registration on a fixed level was performed. The time
taken and optional parameters is shown in Table 4.3. Figure 4.6 shows the resulting images.
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(a) Template with grid (b) Registered template (c) Inversed difference
∣T (yc) −R(xc)∣

(d) Template with grid (e) Registered template (f) Inversed difference
∣T (yc) −R(xc)∣

(g) Template with grid (h) Registered template (i) Inversed difference
∣T (yc) −R(xc)∣

Figure 4.2: Result for synthetic single modality data from Example 4.1.1. Continued on next
page.

Distance measure Optional Parameters Time (s)
SSD None 29.56
NCC None 17.01
MI nT = nR = 8 136.53
NGF η = 30 61.34
NHF η = 10 69.40

Table 4.3: Parameters and time for registration on synthetic data from Example 4.2.1,
“Comparison of distance measures on synthetic multimodal data (parametric)”.
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(j) Template with grid (k) Registered template (l) Inversed difference
∣T (yc) −R(xc)∣

(m) Template with grid (n) Registered template (o) Inversed difference
∣T (yc) −R(xc)∣

Figure 4.2: Results for synthetic data from Example 4.1.1, cont. Template and reference
images shown in 4.1a and 4.1b. The rows show the results from using Sum of Squared
Differences (4.2a-4.2c), Normalized Cross-Correlation (4.2d-4.2f), Mutual Information
(4.2g-4.2i), Normalized Gradient Fields (4.2j-4.2l) and Normalized Hessian Field (4.2m-4.2o),
respectively. Each row consists of the template overlaid with the registered grid, the registered
template and the inverse of the absolute difference between registered template and reference.

(a) Template (b) Reference (c) Inversed difference
∣T (xc) −R(xc)∣

Figure 4.3: Data used in Example 4.1.2. The template is transformed using a spline-based
transformation. Figure 4.3c shows the inverted difference image of the template and the
reference. Like in the previous example it is inverted and adjusted to better show the differences.
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(a) Template with grid (b) Registered template (c) Difference ∣T (yc) −R(xc)∣

(d) Template with grid (e) Registered template (f) Difference ∣T (yc) −R(xc)∣

(g) Template with grid (h) Registered template (i) Difference ∣T (yc) −R(xc)∣

Figure 4.4: Results for synthetic multimodal data in Example 4.1.2. Continued on next page.
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(j) Template with grid (k) Registered template (l) Difference ∣T (yc) −R(xc)∣

(m) Template with grid (n) Registered template (o) Difference ∣T (yc) −R(xc)∣

Figure 4.4: Results for synthetic data from Example 4.1.2, continued. Template and reference
images shown in 4.3a and 4.3b. The rows show the results from using Sum of Squared
Differences (4.4a-4.4c), Normalized Cross-Correlation (4.4d-4.4f), Mutual Information
(4.4g-4.4i), Normalized Gradient Fields (4.4j-4.4l) and Normalized Hessian Field (4.4m-4.4o),
respectively. Each row consists of the template overlaid with the registered grid, the registered
template and the inverse of the absolute difference between registered template and reference.

(a) Template (b) Reference (c) Difference ∣T (xc) −R(xc)∣

Figure 4.5: Data used in example 4.2.1. The difference image in Figure 4.5c has been inverted
like the ones in Examples 4.1.1 and 4.1.2.
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(a) Template with grid (b) Registered template (c) Difference ∣T (yc) −R(xc)∣

(d) Template with grid (e) Registered template (f) Difference ∣T (yc) −R(xc)∣

(g) Template with grid (h) Registered template (i) Difference ∣T (yc) −R(xc)∣

Figure 4.6: Results for synthetic data in Example 4.2.1 using non-parametric registration.
Continued on next page.
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(j) Template with grid (k) Registered template (l) Difference ∣T (yc) −R(xc)∣

(m) Template with grid (n) Registered template (o) Difference ∣T (yc) −R(xc)∣

Figure 4.6: Results for synthetic data from Example 4.2.1 using non-parametric registration,
cont. Template and reference images shown in 4.5a and 4.5b. The rows show the results from
using Sum of Squared Differences (4.6a-4.6c), Normalized Cross-Correlation (4.6d-4.6f), Mutual
Information (4.6g-4.6i), Normalized Gradient Fields (4.6j-4.6l) and Normalized Hessian Field
(4.6m-4.6o), respectively. Each row consists of the template overlaid with the registered grid, the
registered template and the absolute difference between registered template and reference.
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As Example 4.2.1 shows, Sum of Squared Differences do not work well even with simple ex-
amples of multimodal images. It will therefore not be used in the discussion in the following
chapter.
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Chapter 5

Applications to medical images

In this chapter the results on registering medical images are shown. Sum of Squared Differences
and Normalized Cross-Correlation are briefly discussed, but most of the focus of this chapter will
be on the application of the distance measures Mutual Information, Normalized Gradient Field
and Normalized Hessian Field to multimodal medical images.

One problematic aspect of image registration, particularly when dealing with multimodal im-
ages, is the lack of good evaluation or validation methods. After registering the images it may
sometimes be difficult to determine whether the results are adequate, and when dealing with
multiple results of the same data it can be difficult to determine which is the better result.

I have decided to only include single slices of the registration results in this chapter and move
the figures showing the entire datasets to the appendix. The image montages showing each slice
of the dataset do include more information than the single slices shown in these examples, but
each slice is smaller and thus it is more difficult to make out the details. In the discussion of the
results in the examples I will reference these image montages.

In this chapter I will use checkerboard images in the discussion. These are a composition of
two images, the reference and registered template in our case, into a image of smaller squares or
rectangles where adjacent parts are taken from different images. This lets us get some idea about
the overlap of the figures, in particular inconsistencies along the edges of the rectangles in the
checkerboard. An example of such a checkerboard image is shown in Figure 5.1.

5.1 Registration of brain images

I will show results from brain images from one patient in four different modalities (T1, T2 and
PD-weighted MRIs, and PET) as well as MR kidney data. For the brain data I produced multilevel
datasets going from 32-by-32-by-4 to 128-by-128-by-16, referred to as levels 1 (coarsest), 2 and 3
(finest) in the discussion. The finest level of the data is shown in Figure 5.2. All registration has
been done using the FAIR package with a l-BFGS optimization scheme. An affine preregistration
is performed at the coarsest level before the non-parametric registration governed by an elastic
regularization takes place. The figures in the examples will show one slice of the data in three
forms: The registered template, an inverted difference image of the registered template and the
reference, and a checkerboard image of the two. Images showing montages of the entire registered
data are found in Section 7.1.1. Table 5.1 shows the parameters chosen for the registrations and
the time taken.

5.1.1 SSD and NCC with multimodal brain images

As discussed in Sections 3.4.1 and 3.4.2, both Sum of Squared Differences and Normalized Cross-
Correlation are expected to do poorly on multimodal images. In Example 4.2.1 we saw this in
practice. For reference, the time taken for the registrations were 178.76s for SSD and 137.50s for
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(a) Reference (b) Checkerboard (c) Template

Figure 5.1: Example of checkerboard image. 5.1a shows a T1-weighted MRI, in this example
used as the reference image. 5.1c shows the registered template, here a PD-weighted MRI. The
middle image, 5.1b, shows the checkerboard image of the two. The checkerboard image shows
minor inconsistencies.

Distance measure Modality Regularizer Optional Parameters Time (s)
SSD T2 Elastic, α = 10000 None 178.76
NCC T2 Elastic, α = 1e − 9 None 137.50

MI
T2 Curvature, α = 1e − 6 nT = nR = 64 154.78
PD Curvature, α = 1e − 7 nT = nR = 64 89.22
PET Curvature, α = 1e − 7 nT = nR = 64 86.40

NGF
T2 Curvature, α = 100 η = 0.2 244.30
PD Curvature, α = 100 η = 0.2 200.26
PET Curvature, α = 100 η = 3 130.60

NHF
T2 Curvature, α = 100 η = 0.2 488.45
PD Curvature, α = 100 η = 0.2 935.80
PET Curvature, α = 10 η = 0.1 660.56

NGHF
T2 Curvature, α = 100 η = 0.2 1222.1
PD Curvature, α = 100 η = 0.2 1839.2
PET Curvature, α = 10 η = 0.1 857.74

Table 5.1: Parameters and time for registration of brain data.
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(a) T1 Reference (b) T2

(c) PD (d) PET

Figure 5.2: Image montages of the brain data used in the following examples.
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(a) Registered using SSD (T2) (b) Difference (c) Checkerboard

(d) Registered using NCC (T2) (e) Difference (f) Checkerboard

Figure 5.3: Example of multimodal registration on T2 and T1-weighted MRIs using SSD and
NCC.

NCC. The best results for these distance measures were obtained by starting at a higher level than
the minimum. For SSD, 64-by-64-by-8 seemed ideal and for NCC the registration starting at the
highest level gave the best results.

Example 5.1.1 (Registration of T1 and T2-weighted brain MRI using SSD and NCC). Figures
5.3a-5.3c shows the results of attempting to register two brain MRIs (T1 and T2-weighted) from
the same patient using SSD. Figures 5.3d-5.3f shows results from the same dataset using NCC.

Both registrations seem to have given decent results, but this is almost solely due to the
affine linear preregistration and the small initial distance. The results did not improve using
non-parametric registration with either distance measure.

That being said, there are tasks at which these distance measures can be used to some degree
of success. Their simplicity can also be an advantage in that they use less memory and time when
they do succeed.

5.1.2 Mutual Information with multimodal brain images

Mutual Information has been considered as one of the best distance measures for registering
multimodal images [30]. My testing does seem to confirm that this distance measure is viable for
registering between most modalities. I will show a couple of examples of the results I have gotten,
both from brain and kidney images.

Example 5.1.2 (Registration of multimodal brain images using MI). As we can see in Figures
5.4a-5.4c, the results on the T2 image seem very good with Mutual Information. Most of the
general features are correctly matched, but there there is some difference in the angle of the two
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images. Figures 5.4d-5.4f shows results from registering a PD-weighted MRI to the same reference
image. Here the results are ever better.

For both of these registrations I used the 64-by-64-by-8 images as the lowest level. The time
taken was 154.78s for T2 and 89.22s for the PD image. A 32-by-32 grid was used for the splines
in the estimation of the densities.

The biggest difficulties arose when trying to register the PET scan images. By nature PET
scans show a lot less structure than MRIs, and they are thus more difficult to register. Examining
the image in Figure 5.4i shows that the edges in the PET scan do not match the ones for the
reference image. The time taken was 86.40s. The second level was used as the lowest level on this
registration as well.

5.1.3 Normalized Gradient and Hessian Fields with multimodal brain
images

Normalized Gradient Field and Normalized Hessian Field have in common that they are differential
based distance measures. They will therefore try to match the edges and intensity changes in
the two images whilst ignoring the areas with constant intensities. They do this by focusing
on different aspects of the change, however; the first derivative and thus the gradient looks at
all intensity change whereas the second derivative from the Hessian only notices changes in the
gradient. Areas of constant change (like a ramp) will therefore be noticed by the gradient but not
by the Hessian.

Example 5.1.3 (Registration of multimodal brain images using NGF). As Figure 5.5 shows,
Normalized Gradient Field does very well registering both the T2 and PD-weighted MRIs. For
the PET scan the results are much better than the ones achieved from Mutual Information. Here
we see that the edges in the registered PET scan have mostly been aligned. The time taken for
the three registrations were 244.30s for the T2, 200.26s for the PD and 130.60s for the PET scan.
All registrations were performed starting at the second level. For the T2 and PD registrations
an edge parameter of 0.2 was sufficient, whereas the PET registration was performed with the
parameter set to 3.

Example 5.1.4 (Registration of multimodal brain images using NHF). We now turn to the
Normalized Hessian Field. The results on the registrations are very similar to the ones from NGF,
as may be expected for two differential based distance measures, though the time for NHF is
longer: 488.45s for T2, 935.80s for PD and 660.56 for the PET scan. Like with the NGF a low
edge parameter (here 0.01) was used on the two first images and a higher (here 1) was used on
the PET scan.

Example 5.1.5 (Combined Normalized Gradient and Hessian Fields applied on brain data).
Another idea for distance measures is to make a composite distance measure from two or more
distance measures. In this example I have combined Normalized Gradient and Hessian Fields into
one distance measure, calculating each in turn and adding them together as

DNGHF = 0.8DNGF + 0.2DNHF. (5.1.1)

This would ideally have the advantage of being able to align both the first and second derivatives,
which might raise the accuracy of the registration.

The registration combining Normalized Gradient and Hessian Fields gives very similar results
to the ones using only NGF or NHF, closest resembling the results from NHF alone. The time
taken was 1222.1s for T2, 1839.2s for PD, and 857.74s for PET.



62 CHAPTER 5. APPLICATIONS TO MEDICAL IMAGES

(a) Registered using MI (T2) (b) Difference (c) Checkerboard

(d) Registered using MI (PD) (e) Difference (f) Checkerboard

(g) Registered using MI (PET) (h) Difference (i) Checkerboard

Figure 5.4: Example of multimodal registration of brain images using MI. Images show one slice



5.1. REGISTRATION OF BRAIN IMAGES 63

(a) Registered using NGF (T2) (b) Difference (c) Checkerboard

(d) Registered using NGF (PD) (e) Difference (f) Checkerboard

(g) Registered using NGF (PET) (h) Difference (i) Checkerboard

Figure 5.5: Example of multimodal registration of brain images using NGF.
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(a) Registered using NHF (T2) (b) Difference (c) Checkerboard

(d) Registered using NHF (PD) (e) Difference (f) Checkerboard

(g) Registered using NHF (PET) (h) Difference (i) Checkerboard

Figure 5.6: Example of multimodal registration of brain images using NHF.
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(a) Registered using NGHF (T2) (b) Difference (c) Checkerboard

(d) Registered using NGHF (PD) (e) Difference (f) Checkerboard

(g) Registered using NGHF (PET) (h) Difference (i) Checkerboard

Figure 5.7: Example of multimodal registration of brain images using NGHF.
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Distance measure Regularizer Optional Parameters Time (s)
NCC TPS, α = 5 ⋅ 10−6 None 289.70
MI TPS, α = 10−7 nT = nR = 32 953.36
NGF TPS, α = 10 η = 0.01 3231.25
NHF TPS, α = 10 η = 0.01 6617.86
NGHF TPS, α = 10 η = 0.01 8266.24

Table 5.2: Parameters and time for registration of kidney data.

5.2 Registration of kidney MRI

The second type of data I have attempted to register is a time sequence of 20 images taken from
a kidney injected with a contrast agent. Again we have a set of images that display change in
contrast for the same type of tissue, and as such SSD can not be used. NCC actually manges to
achieve some result on this dataset. One added complication when dealing with these images is
that the relevant part of the image, the kidneys, are surrounded by other types of tissue. This
means that even matching the general shape of the kidney might prove difficult. For the sequence
I have used, the first 10 images display relatively minor movement. The last images are not as
aligned, and the registration is thus more difficult.

To get a better registration of the kidney, which is what we are interested in, it helps to crop
the image by reducing it to an area of interest or use some method to segment out the kidney. In
the following results I have used a box of size 96-by-54-by-20 containing the left kidneys shown
in Figure 5.8. The data was then interpolated on a grid of size 128-by-64-by-16 for the following
registrations.

The results are discussed in the following examples. For each example one figure is supplied,
showing a spatial slice from registrations on the 3D-volumes of the kidney at four different times.
The registered template, an image showing the difference of the registered template and the
reference, and a checkerboard image of the two are shown. The first image in the sequence (t = 0)
is chosen as the reference image for the registration, and is denoted R. The three registered
images shown are at times t = 5, 11 and 19 and denoted T (y)5, T (y)11 and T (y)19, respectively.
Image montages of the registered volumes are shown in Section 7.1.2. The unregistered images
are shown in Figure 5.9. The parameters and time taken for the registration is shown in Table
5.2. The parameters and timespan of each registration is shown in table 5.2.

Example 5.2.1 (Kidney registration using NCC). The registration using Normalized Cross-
Correlation does not work very well. Some of the images seem to display only minor differences,
but this is most likely only a result of the small initial distance. Figure 5.10 shows the results.
As the images show, the registration has not been able to match the edges very well. This is
evident both in the checkerboard image, where following the edges around the kidney shows gaps
between the checkerboard tiles, and from the difference image, where it is clear that there are
double borders around the kidney. This indicates that the edges of the registered image and the
reference do not overlap. Time taken with NCC was 4 minutes, 49.70 seconds. The reason for the
short time is that the registration has done very few iterations in total.

Example 5.2.2 (Kidney registration using MI). The registration using Mutual Information per-
forms much better than the one using NCC, but there still seems to be some problems aligning
some of the edges. Figure 5.11 shows the results. In particular, the checkerboard image seen in
Figure 5.11i shows some broken edges, particularly in the lower right quadrant. This is also seen
in the difference image, where it is clear that there is a double edge in this area. Time taken with
MI was 15 minutes, 53.36 seconds.

Example 5.2.3 (Kidney registration using NGF). The registration using Normalized Gradient
Fields seem to be give very similar results as the MI registration: There is still some problems
registering some of the edges. Time taken with NGF was 53 minutes, 51.25 seconds.
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(a) Uncropped kidney data (b) Time series of abdomen slice

(c) Cropped kidney data

(d) Time series of kidney slice

Figure 5.8: Kidney data used in following registrations. Figure 5.8a shows the original data
from the first image, and the cropped version used for registration is shown in Figure 5.8c.
Figures 5.8b and 5.8d shows one fixed slice (full size and cropped, respectively) of the data
through the time series.
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(a) Reference, t = 0 (b) Template, t = 5

(c) Template, t = 11 (d) Template, t = 19

Figure 5.9: Unregistered version of the slices shown in the following examples.

(a) Registered template at t = 5 (b) Difference of T (y)5 and R (c) Checkerboard of T (y)5 and R

(d) Registered template at t = 11 (e) Difference T (y)11 and R (f) Checkerboard T (y)11 and R

(g) Registered template at t = 19 (h) Difference, T (y)19 and R (i) Checkerboard, T (y)19 and R

Figure 5.10: Results of kidney registration from Example 5.2.1 using NCC.

Example 5.2.4 (Kidney registration using NHF). The registration using Normalized Hessian
Fields gives far better results. The edges are better aligned than in the previous examples, as can
be seen in Figure 5.13. The time taken with NHF was 110 minutes, 17.86 seconds.

Example 5.2.5 (Kidney registration using NGHF). The registration using combined Normalized
Gradient and Hessian Fields yields the best results on this dataset. The time taken with NGHF
was 137 minutes, 46.24 seconds, the highest of the distance measures I have used, but as can be
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(a) Tc5 (b) Difference Tc5 and R (c) Checkerboard Tc5 and R

(d) Tc11 (e) Difference Tc11 and R (f) Checkerboard Tc11 and R

(g) Registered Tc19 (h) Difference, Tc19 and R (i) Checkerboard, Tc19 and R

Figure 5.11: Results of kidney registration from Example 5.2.2 using MI.

(a) Tc5 (b) Difference Tc5 and R (c) Checkerboard Tc5 and R

(d) Tc11 (e) Difference Tc11 and R (f) Checkerboard Tc11 and R

(g) Registered Tc19 (h) Difference, Tc19 and R (i) Checkerboard, Tc19 and R

Figure 5.12: Results of kidney registration from Example 5.2.3 using NGF.

seen in Figure 5.14, this gives the best registration. Following the edges in the checkerboard plots
show almost no discontinuities, and the difference images shown very few double edges.
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(a) Tc5 (b) Difference Tc5 and R (c) Checkerboard Tc5 and R

(d) Tc11 (e) Difference Tc11 and R (f) Checkerboard Tc11 and R

(g) Registered Tc19 (h) Difference, Tc19 and R (i) Checkerboard, Tc19 and R

Figure 5.13: Results of kidney registration from Example 5.2.4 using NHF.

(a) Tc5 (b) Difference Tc5 and R (c) Checkerboard Tc5 and R

(d) Tc11 (e) Difference Tc11 and R (f) Checkerboard Tc11 and R

(g) Registered Tc19 (h) Difference, Tc19 and R (i) Checkerboard, Tc19 and R

Figure 5.14: Results of kidney registration from Example 5.2.5 using NGHF.
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Conclusions

We present some conclusions that arose from the work and the experiences gained during the time
spent on this thesis.

FAIR

The FAIR software and book is a great way to learn the basics of registration, or to start registering
without complete knowledge of the registration process using the tutorials.

The book [18] contains theory behind most of the building bricks needed for registration, and
could be used as a tutorial on how to make your own software. One aspect I missed from the book
was a wider discussion on the choice of parameters in regularization and distance measures.

One drawback to the software is, as stated in the book, that the software is designed with
clarity and ease of reading in mind, not with efficiency and speed. This meant that most of the
data used needed to be scaled down in order for Matlab to have enough memory to perform the
registration.

With that said, the software performed well registering images. The way it is built up also
makes it rather easy to incorporate ones own methods into the package. For instance, setting up
a new distance measure proved to be a simple process.

Distance measures

One of the main focus points of my work on the thesis has been the choice of distance measure
in medical image registration. Of the distance measures I have tested I have focused mainly
on testing the performance Normalized Gradient Field and implementing and testing Normalized
Hessian Field. I have used Mutual Information as a reference for the performance of these distance
measures.

My results indicate that both differential based distance measures outperform Mutual Infor-
mation on alignment if not on speed, however the FAIR software uses a C script to calculate the
densities of Mutual Information. This makes it difficult to directly compare the temporal per-
formance. Normalized Gradient Field was noticeable quicker than Normalized Hessian Field in
most registrations. The combined Normalized Gradient and Hessian Fields was, unsurprisingly,
the slowest of the measures, but I used an inefficient implementation and split the calculations in
order to save memory. Because of these concerns, I have focused on alignment.

On the brain data, Normalized Gradient Field gave the most consistently good results, whereas
the best results on the kidney data were from registering with a combination of gradient and hessian
based information.

One problem with both differential based distance measures is that a large initial distance may
prove problematic even for parametric registration since a decent direction might be difficult to
find. In the cases where I encountered this problem a solution was to perform a quick parametric
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registration using either Mutual Information or Normalized Cross-Correlation to roughly align the
images, and then use the parameters as a starting guess for Normalized Gradient or Hessian Field.

Outlook

If there is one sure conclusion to be drawn from this work it is that I wish there was more time.
The work I have done in testing and implementing registration methods has given interesting
results, but have not given me a firm conclusion in a definitive distance measure for multimodal
registration of medical images. Normalized Gradient Field and Hessian Field are both promising
distance measures, and they each seem to be good at registering medical images. The combination
of them is therefore a tempting idea, and the results seem to indicate that it provides very good
results.

One aspect I would like to work more on is the choice of parameters. Much of the work felt
like a trial and error approach in choosing the right parameters, and I would like to see a better
way of doing this.

Another aspect of image registration where there is much work to be done is in the aspect
of validation or evaluation of image registration. As of yet there are no good methods of com-
paring results from different registration procedures, and often we are left with a very subjective
evaluation. There are a number of projects working on developing evaluation tools, such as [4, 29].



Chapter 7

Appendix

7.1 Additional figures
As not to fill up the main part of this thesis with additional figures, some of them have been placed
here in the Appendix. These include image montages of the registration results on the brain and
kidney data that I did not find room for in Chapter 5.

7.1.1 Brain registration
On the following pages image montages of the registered brain volumes are shown.
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(a) Registered using SSD (T2) (b) Inverted difference image

(c) Registered using NCC (T2) (d) Inverted difference image

Figure 7.1: Image montages of the results obtained from registering brain images from Chapter
5 using Sum of Squared Differences and Normalized Cross-Correlation as distance measure.
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(a) Registered using MI (T2) (b) Inverted difference image

(c) Registered using MI (PD) (d) Inverted difference image

(e) Registered using MI (PET) (f) Inverted difference image

Figure 7.2: Image montages of the results obtained from registering brain images from Chapter
5 using Mutual Information as distance measure.
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(a) Registered using NGF (T2) (b) Inverted difference image

(c) Registered using NGF (PD) (d) Inverted difference image

(e) Registered using NGF (PET) (f) Inverted difference image

Figure 7.3: Image montages of the results obtained from registering brain images from Chapter
5 using Normalized Gradient Fields as distance measure.
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(a) Registered using NHF (T2) (b) Inverted difference image

(c) Registered using NHF (PD) (d) Inverted difference image

(e) Registered using NHF (PET) (f) Inverted difference image

Figure 7.4: Image montages of the results obtained from registering brain images from Chapter
5 using Normalized Hessian Fields as distance measure.
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(a) Registered using NGHF (T2) (b) Inverted difference image

(c) Registered using NGHF (PD) (d) Inverted difference image

(e) Registered using NGHF (PET) (f) Inverted difference image

Figure 7.5: Image montages of the results obtained from registering brain images from Chapter
5 using combined Normalized Gradient and Hessian Fields as distance measure.



7.1. ADDITIONAL FIGURES 79

(a) Registered using NCC at time 5 (b) Inverted difference image

(c) Registered using NCC at time 11 (d) Inverted difference image

(e) Registered using NCC at time 19 (f) Inverted difference image

Figure 7.6: Image montages of some of the results obtained from registering kidney images from
Chapter 5 using combined Normalized Gradient and Hessian Fields as distance measure.

7.1.2 Kidney registration
In the following pages figures depicting the registered kidney volumes are shown.
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(a) Registered using MI at time 5 (b) Inverted difference image

(c) Registered using MI at time 11 (d) Inverted difference image

(e) Registered using MI at time 19 (f) Inverted difference image

Figure 7.7: Image montages of some of the results obtained from registering kidney images from
Chapter 5 using combined Normalized Gradient and Hessian Fields as distance measure.
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(a) Registered using NGF at time 5 (b) Inverted difference image

(c) Registered using NGF at time 11 (d) Inverted difference image

(e) Registered using NGF at time 19 (f) Inverted difference image

Figure 7.8: Image montages of some of the results obtained from registering kidney images from
Chapter 5 using combined Normalized Gradient and Hessian Fields as distance measure.
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(a) Registered using NHF at time 5 (b) Inverted difference image

(c) Registered using NHF at time 11 (d) Inverted difference image

(e) Registered using NHF at time 19 (f) Inverted difference image

Figure 7.9: Image montages of some of the results obtained from registering kidney images from
Chapter 5 using combined Normalized Gradient and Hessian Fields as distance measure.
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(a) Registered using NGHF at time 5 (b) Inverted difference image

(c) Registered using NGHF at time 11 (d) Inverted difference image

(e) Registered using NGHF at time 19 (f) Inverted difference image

Figure 7.10: Image montages of some of the results obtained from registering kidney images
from Chapter 5 using combined Normalized Gradient and Hessian Fields as distance measure.
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7.2 Program code
Some of the more relevant pieces of MatLab code will be included in this section.

The fire script is for setting up the data used in the registration. To open, create and save
nifti datasets I have used a script found at Matlab Central, [25]. The functions getMultilevel,
viewImage,inter,trafo,distance,regularizer,FAIRplots,viewIP,MLPIR and MLIR are all part
of the FAIR package.

This script is for creating multilevel datasets for FAIR from 3D NIfTI data.
% % Create multilevel datasets
% Set up dicretized grid size, m, and domain, omega
m = [128 128 32]; omega = [0 m(1) 0 m(2) 0 m(3)];

% Load datasets from nifti data
R = load_nii(’T1_nii’); R = R.img;
T = load_nii(’T2_nii’); T = T.img;

% Set up FAIR to use the correct viewer and interpolation
viewOptn = {’viewImage’,’imgmontage’}; viewImage(’reset’,viewOptn{:});
interOptn = {’inter’,’linearInter3D’}; inter(’reset’,interOptn{:});

% Get multilevel data based on images, domain and discretization
MLdata = getMultilevel({T,R},omega,m,’minLevel’,2);

The main script used in most registrations. Sets up optional variables and decides which opti-
mization scheme to use, as well as number of iterations to allow in the parametric preregistration
and in the non-parametric part. Calls register3d.m to do the actual registration.
% % 3D registration of brain images
% Initialize some variables
edge = 0; % Will be owerwritten if needed
alpha = 0; % Will be owerwritten if needed

% Choose minimum level of registration, type of preregistration, optimization and regulariza-
tion
type = ’affine’; % Preregistration
minLevel = 3; % minimum level for registration
save_flag = 1; % Flag for saving variables and images
lBFGS_flag = 1; % Flag for using lBFGS instead of Gauss-Newton
regul = ’mfElastic’; % Regularization

% Open file
load MLdata

% Set up discretization and domain
m = MLdata{end}.m; omega = MLdata{end}.omega;

% Choose distance measures to use
dist = {’SSD’,’NCC’,’MI’,’NGF’,’NHF’,’NGHF’};

for i=1:length(dist) % Run through all distance measures
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% Determine regularization and other parameters based on dist
% measure

switch dist{i}
case ’SSD’

alpha = 1e4;
case ’NCC’

alpha = 1e-9;
minLevel = 4;

case ’MI’
alpha = 1e-7;

case ’NGF’
edge = 3;
alpha = 1e2;

case ’NHF’
edge = 0.1;
alpha = 1e1;

case ’NGHF’
edge = 0.1;
alpha = 1e1;

end

% Choose optimization scheme and collect variables
if lBFGS_flag == 1

varargin = {’dist’,dist{i},...
’maxIterPIR’,100,’maxIterNPIR’,100,...
’edge’,edge,’alpha’,alpha,’minLevel’,minLevel,...
’nT’,64,’nR’,64,...
’mfRegularizer’,regul,...
’NPIR’,@lBFGS,’NPIRobj’,@NPIRBFGSobjFctn}’;

else
varargin = {’dist’,dist{i},...

’maxIterPIR’,10,’maxIterNPIR’,10,...
’edge’,edge,’alpha’,alpha,’minLevel’,minLevel,...
’nT’,64,’nR’,64,...
’mfRegularizer’,regul}’;

end

% Register here
if strcmp(’affine’,type)

[yc,wc,his,xc,t] = register3d(MLdata,...
varargin{1:end},’PIRtransf’,’affine3D’);

elseif strcmp(’rigid’,type)
[yc,wc,his,xc,t] = register3d(MLdata,...

varargin{1:end},’PIRtransf’,’rigid3D’);
end

% Save if needed
if save_flag ==1

% Grid type depends on regularizer
if strcmp(regul,’mfElastic’)

ycc = stg2center(yc,m);
elseif strcmp(regul,’mfCurvature’)

ycc = yc;
end
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% Interpolate data on grid, reshape and save variables and image
regT = inter(MLdata{end}.T,omega,ycc);
regT = reshape(regT,m);
regT = regT.*max(MLdata{end}.R(:))/max(regT(:));
nifty = make_nii(regT);
save_nii(nifty);
save variables end

end

Here is where the call to FAIRs registration is done. Contains preset variables that can be over-
written. Also sets up the choices for interpolation, parametric transformations, distance measure,
regularization and viewer options for FAIR.
function [yc,wc,his,xc,t] = register3d(MLdata,varargin)
% Set up and do registration on 3D data using FAIR. Syntax:
% [yc,wc,his] = register3d(MLdata,omega,m,varargin)
% Input:
% MLdata - Multilevel data from getMultilevel.m
% varargin:
% dist - distance measure, ’SSD’,’NCC’,’MI’ or ’NGF’
% nT,nR - parameters for MI
% edge - edge parameter for NGF
% alpha - parameter for regularization
% PIRtransf - type of PIR, ’rigid3d’ or ’affine3d’
% maxIterPIR - max iterations PIR
% maxIterNPIR - max iterations NPIR
% minLevel,maxLevel - min and max levels for registration
% wc - starting guess, parameters
%
% Output
% yc - transformed grid
% wc - parameters for parametric transform
% his - iteration history

% Initialze default variables
dist = ’NGF’; para = ’NPIR’;
nT = 32; nR = 32;
edge = 10; alpha = 1;
PIRtransf = ’affine3D’; mfRegularizer = ’mfElastic’;
maxIterPIR = 50; maxIterNPIR = 25;
minLevel = 3; maxLevel = 4;
PIR = @GaussNewtonArmijo; % optimizer to be used for PIR
PIRobj = @PIRobjFctn; % objective function for PIR
NPIR = @GaussNewtonArmijo; % optimizer to be used for NPIR
NPIRobj = @NPIRobjFctn; % objective function for NPIR
yc = []; xc = []; % Initialze grids

% Overwrite default parameters if needed
for k=1:2:length(varargin),

eval([varargin{k},’=varargin{’,int2str(k+1),’};’]);
end;

% Set up registration scheme:
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% Viewer
[viewer,viewOptn] = viewImage(’reset’,’viewImage’,’imgmontage’,...

’colormap’,’gray(256)’,’direction’,’xyz’);

% set-up interpolation scheme
[int,intOptn] = inter(’reset’,’inter’,’linearInter3D’,...

’regularizer’,’moments’,’theta’,0);

% set-up transformation used in the parametric part
[tra,traOptn] = trafo(’reset’,’trafo’,PIRtransf);

% set-up distance measure
[dis,disOptn] = distance(’reset’,’distance’,dist,...

’edge’,edge,’nT’,nT,’nR’,nR);

[reg,regOptn] = regularizer(’reset’,’regularizer’,...
mfRegularizer,’alpha’,alpha,’mu’,1,’lambda’,0 );

% prepare the plots
FAIRplots(’clear’)
showDifference = @(T,R,omega,m) viewIP(abs(R-T),omega,m,’colormap’,gray(256));
FAIRplots(’set’,’showDifference’,showDifference);

% Do the registration
% Check if the registration is parametric or non-parametric.

if strcmp(para,’NPIR’)
[yc,wc,his,xc] = MLIR(MLdata,...

’maxIterPIR’,maxIterPIR,’maxIterNPIR’,maxIterNPIR,...
’minLevel’,minLevel,’maxLevel’,maxLevel,...
’PIR’,PIR,’PIRobj’,PIRobj,’NPIR’,NPIR,’NPIRobj’,NPIRobj);

elseif strcmp(para,’PIR’)
[wc,his] = MLPIR(MLdata,...

’maxIter’,maxIterPIR,...
’minLevel’,minLevel,’maxLevel’,maxLevel,...
’PIR’,PIR);

end

This is the implementation of Normalized Hessian Field
% % Normalized Hessian distance measure (Kronecker-based)
function [Dc,rc,dD,drc,d2psi] = NHkron(Tc,Rc,omega,m,varargin)
% Based on NGFdot.m from FAIR

persistent G1 G2 G3 % the gradient operators
% initialize output variables
Dc = []; dD = []; rc = []; drc = []; d2psi = [];

% Initialize local variables
h = (omega(2:2:end)-omega(1:2:end))./m; % voxel size for integration
hd = prod(h); n = prod(m);

dim = length(omega)/2;
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edge = 100; % the edge parameter
doDerivative = (nargout > 3); % compute derivatives only on demand

% overwrites default parameters:
for k=1:2:length(varargin) eval([varargin{k},’=varargin{’,int2str(k+1),’};’]);
end;

if size(G1,2) = n, % set up gradient if necessary
for j=1:dim, % compute discrete 1D derivatives

d{j} = spdiags(ones(m(j),1)*[-1,1],[-1,1],m(j),m(j))/(2*h(j));
d{j}([1,end]) = d{j}([2,end-1]);

end;
if dim == 2,

G1 = sparse(kron(speye(m(2)),d{1}));
G2 = sparse(kron(d{2},speye(m(1))));
G3 = 0;

else
G1 = sparse(kron(kron(speye(m(3)),speye(m(2))),d{1}));
G2 = sparse(kron(kron(speye(m(3)),d{2}),speye(m(1))));
G3 = sparse(kron(kron(d{3},speye(m(2))),speye(m(1))));

end;
end;

% Compute second derivatives
hessT = [G1*G1*Tc,G1*G2*Tc,G1*G3*Tc,G2*G1*Tc,G2*G2*Tc,...

G2*G3*Tc,G3*G1*Tc,G3*G2*Tc,G3*G3*Tc];
hessR = [G1*G1*Rc,G1*G2*Rc,G1*G3*Rc,G2*G1*Rc,G2*G2*Rc,...

G2*G3*Rc,G3*G1*Rc,G3*G2*Rc,G3*G3*Rc];

% Compute length of second order derivatives
lengthHT = sqrt(sum(hessT.ˆ2,2) + edgeˆ2);
lengthHR = sqrt(sum(hessR.ˆ2,2) + edgeˆ2);

% Compute correlation and distance
r1 = sum(hessR.*hessT,2);
r2 = 1./(lengthHT.*lengthHR);
rc = r1 .* r2;
Dc = prod([omega(2:2:end)-omega(1:2:end)]) - hd * (rc’*rc);

% Find derivative on demand
if doDerivative, return; end;

sdiag = @(a) spdiags(reshape(a,[],1),0,length(a),length(a));

dr1 = sdiag(hessR(:,1))*G1*G1 + sdiag(hessR(:,2))*G2*G1 + sdiag(hessR(:,3))*G3*G1...
+ sdiag(hessR(:,4))*G1*G2 + sdiag(hessR(:,5))*G2*G2 + sdiag(hessR(:,6))*G3*G2...

+ sdiag(hessR(:,7))*G1*G3 + sdiag(hessR(:,8))*G2*G3 + sdiag(hessR(:,9))*G3*G3;
dr2 = -sdiag(1./(lengthHR.*lengthHT.ˆ3)) * ...

( sdiag(hessT(:,1))*G1*G1 + sdiag(hessT(:,2))*G2*G1 + sdiag(hessT(:,3))*G3*G1...
+ sdiag(hessT(:,4))*G1*G2 + sdiag(hessT(:,5))*G2*G2 + sdiag(hessT(:,6))*G3*G2...

+ sdiag(hessT(:,7))*G1*G3 + sdiag(hessT(:,8))*G2*G3 + sdiag(hessT(:,9))*G3*G3);
drc = (sdiag(r2)*dr1 + sdiag(r1)*dr2);
dD = -2*hd*rc’*drc;
d2psi = 2*hd;
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