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Abstract

Recent work has shown the great potential of interactive flow
analysis by the analysis of path lines. The choice of suitable
attributes, describing the path lines, is, however, still an open ques-
tion. This paper addresses this question performing a statistical
analysis of the path line attribute space. In this way we are able
to balance the usage of computing power and storage with the ne-
cessity to not loose relevant information. We demonstrate how a
carefully chosen attribute set can improve the benefits of state-of-
the art interactive flow analysis. The results obtained are compared
to previously published work.
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1 Introduction

When analyzing the dynamics of unsteady flow, the investigation of particle
movements is a canonical choice. In order to enable further analysis based
on particle paths, these trajectories need to be characterized. Possible ways to
describe the paths include deriving measures for their global and local behavior
and properties of the field around the moving particles. A large number of such
feature detectors is available and has been used in different contexts [162, 83,
186, 174].

Previous work by Biirger et al. [7], Shi et al. [186] and Lez et al. [112] has shown
the great potential of the combination of Interactive Visual Analysis (IVA)
and feature extraction. However, the question of how to choose an adequate
attribute set to investigate is left open, although it is non-trivial. Feature
detectors are usually designed to target one specific aspect of the flow behavior.
An ad hoc choice of suitable attributes is therefore dependent on correct prior
knowledge (or assumptions) on what type features to expect. This has the
implication that unexpected behavior is possibly hard to detect. Therefore, a
objective and complete investigation of the data set in question would require
to look for “all possible” features (say vortices, vortex core lines, path lines
with low average speed,...) and their detectors at once.

This leaves us with a large amount of possibly interesting features and even
more detectors that should be considered. Computing all of them is tedious at
least and results in a high computation time and storing a large number of at-
tributes per trajectory. It can be expected that this brute force approach would
generate a considerable information overhead, since many of the attributes are
computed from the same velocity field. In general, different feature detectors
may systematically correlated to each because they either describe the same as-
pect of the flow or are related to each other by physical principles (e.g., velocity
and vorticity by the vorticity equation). From the practical side, a systematic
analysis of a data set gets increasingly challenging the more dimensions it con-
tains. Hence, a canonic question in this context is: Is there a common subset
of the path line attributes that captures “all” complexity of the data sets? Or,
in short, what is the intrinsic dimensionality of the path line attribute space?

The problem of analyzing high dimensional data sets is a classic challenge, that
both statistics [87] and visualization [38] deal with, as well as others. Roughly
speaking, the main distinction between these two approaches to multivariate
data analysis, is the role of the user: while statistics relies on automatic meth-
ods, visualization-based approaches try to exploit a larger amount of user inter-
action [183, 155]. The benefits and drawbacks of the two approaches can be
considered complementary. One should therefore aim to combine the strengths
of both, namely rigidness and inherent objectiveness of statistical methods for
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determining the intrinsic dimensionality of the data and the flexibility and
possibility of integration user knowledge of IVA in the analysis stage.

In statistics, a number of dimension reduction methods are available [37], two
of the most prominent being principal component analysis (PCA) [143] and
exploratory factor analysis (EFA) [190]. In short, the first finds orthogonal
principal components (linear combinations of the observed variables) that ac-
count for the maximal amount of variance. Although efficient for the mere
dimension reduction purpose, one of the draw-backs of this method is that
the principal components are usually hard to interpret and the computation
of them involves possibly all observed variables. Modifications of PCA that
attempt to avoid this have been proposed [238], imposing additional constrains
on the algorithm. Exploratory factor analysis gives the number of statistical
variables, called factors, needed to explain the common variance between vari-
ables and how these factors load on (are correlated to) the observed variables.
These factors are assumed to be not directly measurable, hence the actual inter-
esting information being the loadings (correlation coefficients) on the observed
variables. Taking the highly loaded variables for every factor yields a set of
variables that are interpretable, account for the complexity of the data, and
the set is (if the data allows for this) of considerable smaller dimensionality.
Hence, exploratory factor analysis is a more promising choice for the dimension
reduction for our purposes. For a more detailed overview of the similarities and
differences between PCA and EFA, we refer to Suhr [192].

In this paper we investigate several CFD data sets with exploratory factor
analysis, with the goal to find a common set of variables that can be used as a
starting point for a deeper analysis of CFD data sets. This variable set should
capture the underlying physical processes in fluids with a little as possible
redundancy. The analyzed data sets span different geometries, constant/non-
constant inflows as well as different simulation methods to prevent the variable
set from being specific for one type of simulation/geometry /application.

We compare the results from IVA applied on the attribute set found in our
investigation to previously published results. Our results match and also par-
tially exceed previous ones. In contrast to previous work we have a predefined
attribute set, which makes a more systematic analysis possible.

The remainder of this paper is organized as follows: first we briefly discuss
previous work, and then we describe our statistical analysis and present its
results. We give a demonstration of the results achievable from the combination
of our findings and IVA, comparing these results to previous ones.
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2 Related work

Because of their tight relation to the dynamic behavior of the flow, visuali-
zation by means of particle trajectories is a well established branch of flow
visualization [133].

Theisel et al. [208] introduce the classification and segmentation of path lines
according to attracting, repelling and saddle-like behavior for visualization pur-
poses. This classification allows the authors to identify a path line-based topol-
ogy for two-dimensional unsteady flows. Salzbrunn and Scheuermann [177] in-
troduce a mathematical framework based on Boolean algebra that allows to
define a topology based on so-called streamline predicates. These predicates
are user chosen and can be seen as path line attributes with Boolean range.
Later, Salzbrunn et al. [174] extend this approach to path lines.

Biirger et al. [7] investigate the opportunity to combine several feature detectors
making use of interactive visual analysis, focusing on vortical features. Shi
et al. [186] present a similar approach together with more general path line
attributes, using both local and global descriptors for the path line behavior.
Lez et al. [112] enhance the utility of path line based IVA by the possibility for
direct path line brushing via projections.

The problem of dimension reduction in high-dimensional data sets is a well
established research field within statistics. Pearson published his seminal work
on principal component analysis [143] in 1901. Spearman laid the foundation
for factor analysis with his 1907 article on the “true measurement of correla-
tion” [190]. Since, a large number of related methods and algorithms has been
presented. For an overview we refer to Fodor’s survey on this topic [37].

In the context of information visualization, the possibility for user-guided di-
mension reduction has been investigated. Yang et al. present a method called
Visual Hierarchical Dimension Reduction (VHDR) [233]. VHDR clusters the
data dimensions according to similarity measures, generating a dimension hi-
erarchy. The user selects clusters and specifies “representative dimensions” for
those clusters. Finally, a projection step is applied.

Seo and Shneiderman present the rank-by-feature framework [183], that allows
the user to rank the dimensions by some simple statistics for one-dimensional
and two-dimensional representations of the original dimension and dimension
pairs, respectively. Piringer et al. [155] extend this approach to the investi-
gation of user-specified subsets of the original data set instead of dimensions
only. Recently, Turkay et al. [214] presented a visualization model that allows
for interaction in both item and dimension space. This eases the understand-
ing of the relation of different data dimensions and the according analysis of
high-dimensional data sets, yielding means of interactive dimension reduction.
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This paper is targeting dimension reduction for interactive flow analysis along
the lines of the works of Biirger et al. [7], Shi et al. [186], and Lez et al. [112].

3 Statistical analysis

In this section we firstly give a description of the statistical methodology we
use, and then describe the actual analysis of the data.

3.1 The statistical model

As explained in the introduction, we chose exploratory factor analysis (EFA)
to investigate the dimensionality of the path line attribute space. It is worth-
while noticing that modern EFA is more a group of methods than one single
algorithm. Since we want to find the minimal number of factors explaining the
variation in the data set, we have to choose Principal Factor Analysis (also
known as Common factor analysis) [65]. In order to increase the numerical
stability, an iterative algorithm is used [65]. Since we are interested in factors
that can be related back to one (or more) attributes that we can compute, we
discharge the usual assumption of uncorrelated factors and use the so-called
varimaz criterion instead [65]. In short, this criterion tries to maximize the
variation in the factor loadings onto the variables. This yields often the situ-
ation that each variable virtually loads one factor only [65]. For a thorough
discussion of these algorithmic choices, and possible alternatives, we refer to
Harman’s book [65].

One crucial aspect of a factor analysis is the criterion that determines how
many factors have to be retained. The eigenvalues of the respective factors give
information on how much of the variance is explained by the single variable,
compared to a uniform distribution of the variance. Hence, Kaiser [89] suggests
to retain all factors associated to an eigenvalue greater than 1. Cattell suggests
the use of the plot of the eigenvalues against their index to determine the right
number of factors to retain [11]. The factors that lay on the scree (i.e., the base
of a steep incline or cliff) of the plot are considered neglectable, therefore this
criterion is commonly referred to the scree plot test [11]. Finally, if the goal is
to guarantee that the retained contain a certain percentage of variance, one can
simply include factors until their relative weight exceeds a desired threshold.
Kaiser’s criterion has the advantage of being objective, but has proven to be
unreliable in extracting the true number of underlying factors [15]. Better
results are obtained using the scree test [15]. Here the drawback lies in fact
that this is a “soft” criterion that relies on the users interpretation of the scree
plot. Finally, retaining factors accounting for more than 100% of the variance
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data set param. nr. of factors | factor: var. with highest loading (loading)
(Kaiser/scree/prop.)
time 6/7/11 1:X2 (0.95), 2:inv (0.99), 3:startEnd (0.97), 4:vel (0.87), 5:usH (0.85), 6:win-
dang (0.65), 7:dpos (0.81), 8:vel (0.71)
flow through a box ™g5ace 5/5/9 T:xz (0.96)/Hunt's Q (-0.94), 2:inv (0.98), 3:vel (0.86), 4:uSH (0.86)/SH (0.85), b:star-
tEnd (0.92), 6:pos (0.68)
time 5/8/6 l:inv (0.98), 2:startEnd (1.00)/avspeed (0.99), 3:A2 (0.94)/Hunt’s Q (-0.93),
. . 4:SH (1.00), 5:pos (0.88), 6:avspeed (0.71)
t-junction space 5/7]7 T:startEnd  (0.99)/avspeed  (0.97), 2:nv_ (0.89), 3:SH (0.96)/uSH (0.94),
4:X2 (0.95)/Hunt’s Q (-0.93), 5:inv (0.78), 6:pos (0.86), T:avspeed (0.58)
time 5/5/7 1:vort (0.95), 2:SH (0.94) /uSH (0.93), 3:inv (1.01), 4:startEnd (0.95)/ avspeed (0.94),
. 5:\2 (0.89)/Hunt’s Q (-0.85)
breaking dam space 4/4]8 1:vort (0.97), 2:inv (1.01), 3:dpos (0.67)/vel (0.63), 4:uSH (0.89)/SH (0.87), 5:Hunt’s
Q (0.94), 6:pos (0.73)
time 4/8/8 1:vort (0.94), 2:SH (0.92)/uSH (0.92), 3:inv (0.92), 4:startEnd (0.94)/avSpeed (0.93),
i 5:\2 (0.89)/Hunt’s Q (-0.85)
exhaust manifold space 1/8]7 T:vort (0.87), 2:avspeed (0.97)/dpos (0.94), 3:avspeed (0.97)/dpos (0.94) 4:inv (0.78),
5:avspeed (0.98)/dpos (0.93)
turb. chan. fow time 5/7/5 1:inv (0.99), 2:A2 (1.00), 3:vel (0.93), 4:vel (0.92), 5:vel (0.94)
) ’ space 5/7/6 1:inv (0.99), 2: X2 (0.96)/Hunt’s Q (-0.95), 3:vel (1.00), 4:vel (1.00), 5:vel (1.00), 6:win-
dang (1.00)
time 7/6/7 1:inv (0.98), 2:vort (0.99), 3:SH (0.99)/normbhel (0.99), 4:A5 (0.99)/ Hunt’s Q (-0.99),
5:avspeed (1.00)/vel (0.96), 6:avspeed (1.00)/vel (0.95)
rot. vortex rope space 7/779 1:inv (0.97), 2:vort (0.99), 3:SH (0.99) /normhel (0.99), 4: X2 (0.99)/Hunt’s Q (-0.99),
5:vel (1.00)/avspeed (0.96), 6:avspeed (1.00)/vel (0.95), 7:windang (0.91)

Table 1: Summative result of the statistical analysis on the different data sets, according to their parametrization. The found

patterns are discussed in Sec. 3.4.
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will not add information about the data set but noise. Hence, we consider the
maximum of the factor number suggested by Kaiser’s criterion and the scree
plot test, with 100% of explained variance (or proportion) as a limiting bound.
For a more thorough discussion of how to choose the correct number of factors
to retain, we refer the reader to the article of Costell and Osbourne [15].

All statistical computations for this paper have been carried out with SAS(©)
software.

3.2 The data sets

In total we analyzed 5 different data sets with different geometries and simu-
lation methods and 1 analytic data set. For the greatest possible generality,
we use only the velocity fields to calculate the path lines and their attributes.
This means that the similar factor patterns across the data sets are due to the
common underlying principles of fluid dynamics and not due to similarity in
the data sets. The data sets investigated are the following:

Flow through a box: This data set is the simulation of flow through a box.
The data set consists of 100 time steps. The inlet is on the top of the
box. The data set consists of 17120 cells organized in a Cartesian grid.

T-junction: This data set is the simulation of flow through a T-junction with
two inlets and one obstacle inside. The data set consists of 100 time steps.
One inlet is in horizontal direction, another one in vertical direction. The
obstacle is placed under the vertical inlet. The fluid flows through the
horizontal inlet first, while the inflow from the top begins after some time.
The data set consists of 30930 cells organized in a Cartesian grid.

Breaking dam: This data set is a flow simulation of a bursting dam with a
box-shaped obstacle. The data set consists of 48 time steps. The burst
occurs in the first time step. The data set consist of 76505 cells, organized
in a Cartesian grid.

Exhaust manifold: This data set is a flow simulation of an exhaust manifold.
The data set consists of 69 time steps, covering one inflow from every of
the three exits from the cylinders. The data set consists of 36524 cells
organized in an unstructured grid.

Turbulent channel flow: This data set is a direct numerical simulation (DNS)
of a fully developed turbulent channel flow at frictional Reynolds number
Re, of 180. The flow domain is bounded by two infinitely large parallel
solid walls, and the flow is driven by a constant mean pressure gradient
in the stream-wise (x) direction. The boundary conditions are non-slip
on the solid walls and periodic else. The data are produced by a Spectral
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Element Method (SEM) solver. The data set consists of 2097152 cells
organized in a rectilinear grid.

Rotating vortex rope: This data set is an analytic model of a rotating vortex
tube as used by Fuchs et al. [40] with parameters R = 0.25, k = 2,
w = 0.5 and s = 3. The data set consists of 100 time steps and 504063
cells organized in a regular grid.

3.3 The path lines and their attributes

For all data sets, we seed a path line at every cell center and integrate it until
the particle leaves the flow domain or the time span described by the data
set elapses. The particles are saved at the same time steps the original data
sets consist of. Besides the positions we compute both attributes depending on
these positions and attributes depending on the velocity field itself, evaluated at
the particle positions. The fact that we save particle positions (and attributes)
at the original time steps, avoids temporal interpolation of these fields. The
investigated attributes with their dimensionality are:

Attributes from positions: position (3), quadratic statistical invariants (3) [116],
temporal derivative of position (3), torsion (1), curvature (1), winding an-
gle (1), arc length (1), average speed (3), distance actual position to end
position (1)

Attributes from velocity: velocity (3), A2 (1) [81], Hunt’s Q (1) [80], normalized
helicity (1) [111], scalar field corresponding to the Figenvector method
(Sujudi and Haimes) [193] (1), scalar field corresponding to the Figen-
vector method for unsteady flow [40] (1), scalar field corresponding to the
Cores of swirling particle motion [221] (1), vorticity (3)

It is worthwhile noticing that all attributes that would be constant along the
path line (average speed, arc length,. .. ), have been computed from the actual
position in the time step to the last time steps. For example, the average
speed at time step 0 is the average over the whole path line, at time step ¢ the
average over the part of the path line starting at its position in time step ¢ to
its end. This means that we have a time series for all of the attributes. The
information of the usual definition is stored at time step 0 and is therefore easily
retrievable. In the statistical analysis we consider the components of attributes
independently, since no assumptions on the dependencies of the dimensions of
the same attribute can be made. If one of the dimensions is characteristic for
the data set, however, we include all of them since the meaning of a dimension
can change from data set to data set. For example, the x-velocity may be the
stream-wise velocity in one data set and the span-wise in another.
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Finally, we investigate all data sets in the above described configurations, as
well as sampled evenly with respect to the arc length. This is achieved by a
re-parametrization. The arc length parametrized representation has the ad-
vantage that certain shape descriptors become unique, e.g., the combination of
curvature and torsion (c.f. Frenet-Serrat formulae [79]).

3.4 Results

The main results of our statistical analysis are summarized in Table 1. The
first column gives the data set in question, the second the parametrization
type (time or space). The third column gives the number of retained factors
according to Kaiser’s criterion, the scree plot test, and the 100% proposition
criterion, respectively. The last column gives the factors we consider, according
to the principle explained in Sec. 3.1. Next to the index of the factor we give
the attribute with the highest loading and in brackets the numerical value of
the loading. If there is another attribute that is in a 5%-range, we include it
as well. For the full statistical output we refer to the included extra material.
The abbreviations used in the table as well as in the full output (in alphabetic
ordering) are: arc (arc length), avspeed (average speed), curv (curvature), dpos
(time-derivative of the position), HuntsQ (Hunt’s Q), inv (quadratic statistical
invariants), 12 (A2), normhel (normalized helicity), pos (position), SH (eigen-
vector method according to Sujudi and Haimes), swirl (cores of swirling particle
motion), tors (torsion), uSH (eigenvector method for unsteady flow, “unsteady
Sujudi and Haimes”), vel (velocity), vort (vorticity), windang (winding angle).
The statistical analysis has to answer two questions: first, which dimensionality
has the attribute space, and second, which attributes represent these dimen-
sions best?

The dimensionality The average number of factors retained by Kaiser’s cri-
terion is 5.25 (SE = 0.28, C'V = 0.18), while the scree plot test retains 6.4
(SE =0.34, CV = 0.18) factors, on average. From the proportion criterion we
see that 7.5 factors (SE = 0.47, C'V = 0.22) are on average sufficient to explain
100% of the variance in the data set. Our criterion, which balances maximum
dimension reduction (Kaiser), a soft user-influenceable criterion (scree plot),
and the goal of explaining “all” variance of the data set, retains on average 6
factors, being more stable than the other criteria (SE = 0.28, CV = 0.16).

The representative attributes For our final suggestion of 6 factors we order
the attributes according to their frequency. The four most frequent attributes
are inv (12), A2 (10), Hunt’s Q (8) and avspeed (7). We include all but Hunt’s
Q, since this attribute is coupled to Ay in 7 out of 8 occurrences, and A5 is known
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(a) path lines (b) seeding positions

Figure 1: (a) path lines meeting the analytic condition defined in Sec. 4.2 and (b) their
seeding positions. The color coding gives the temporal evolution of the path line (from
yellow to red).

Figure 2: Scatter plot of the start-end distance (horizontal) and path line length (ver-
tical). Red points represent path lines starting in or in the vicinity of the middle pipe.
For further discussion see Sec. 4.2.

to outperform Hunt’s Q [81]. Two attributes have frequency 6: startEnd, and
vel. We include both. From the now retained five attributes, two, namely
inv and startEnd, depend on pos (frequency 3), so we decide to include this
attribute to make the 6 attributes we investigate as self-contained as possible.

Hence, 6 good candidates for representing the path line attribute space are:
the quadratic statistical invariants (inv), A2, the average speed (avspeed), the
start to end distance (startEnd), the velocity (vel) and the positions (pos).

We evaluate our factor choice by rerunning the analysis with the number of
factor to retain fixed to 6 and checking the obtained factor loading pattern for
crossloadings and the amount of variance explained as suggested by Costello
and Osborne [15]. On average 2.4 (SE = 0.76, CV = 1) attributes out of 28
exhibit crossloadings, and the average variance explained is 0.95 (SE = 0.02,
CV = 0.07) which shows that the proposed factor structure is both expressive
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and stable for the investigated data sets. The full output of the statistical
evaluation can found in the supplemental material.

A remark on time- vs. arc length-parametrization We observe that the arc
length-parametrized data set allows a representation with the same number
of factors, or fewer, following Kaiser’s criterion or the scree plot test. With
the 100% proportion criterion, no clear trend is observable. It is worthwhile
noticing that an arc length parametrization represents the geometry of the path
line more faithfully, but lacks information on the dynamics (uniform speed with
respect to arc length!). Hence, the trend to be expressible by fewer factors may
actually originate for that fact that this representation causes an information
loss. On the other hand, we see that the shape descriptors inv perform well
under both parametrization. Hence, we may conclude that the geometry-wise
advantage of an arc length parametrized data set is too small to outweighed
the possible risk of information loss.

4 Demonstration

After we determined both dimensionality and representative attributes, we now
demonstrate how an interactive visual flow analysis based on our findings can
look like. First, we describe the framework used. Then we analyze two different
data sets. Both data sets have been investigated in previously published work,
which allows us to assess the results we achieve.

4.1 The framework

The framework used for this paper is the SimVis software [24]. This software
is an interactive visual analysis environment, tailored to meet the special re-
quirements of computational fluid dynamics. Apart from multiple linked views,
consisting of different information visualization views (e.g., histograms, scat-
ter plots, parallel coordinated), the system provides a passive 3D view for
focus+context visualization of the flow domain. Besides this, the frame work
offers the opportunity to derive new flow attributes on the fly. For further de-
tails we refer to Doleisch’s paper on the SimVis software [24] and the references
therein. One of the views, that makes the framework especially useful in the
context of path line attributes, is the curve view [99, 135]. The curve view is
used to display large families of function graphs at once (cf., e.g., Fig. 7) plot-
ting the function values against time. Lines are selected by brushing a certain
value range for a specific time step. Functions with multiple components can
be analyzed component-wise.
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(a) cluster 1 (b) cluster 2 (c) cluster 3

Figure 3: Investigation of some of the clusters in Fig. 2. The top row shows the actual selections, while the bottom row gives the
associated path lines in their 3D context (color coding according to temporal evolution from yellow to red). For the discussion
of the figures, we refer to the main text (Sec. 4.2).
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4.2 Exhaust manifold

This data set has been investigated by LeZ et al. [112]. Their paper is not tar-
geting the question of which attributes to choose for a interactive flow analysis,
however, the authors suggest several attribute combinations that they found
useful for the case study. These attribute combinations are start to end dis-
tance and path line length (arc length), maximum velocity and mean velocity
along path line, and maximal curvature and maximal torsion. All those at-
tributes are constant along the path lines. As also mentioned in the original
paper by Lez et al., one of the goals in the design of exhaust manifolds is the
decrease of flow resistance (so-called back pressure). Hence, the detection of
path lines/particles causing back pressure is a natural task in this context.

In order to make the visual analysis based on the different attribute sets com-
parable, we identify an analytically defined set of path lines that we try then
try to retrieve using both the original variable combinations and the here pro-
posed attribute set. We restrict the analysis to particles seeded in the middle
tube and its imminent vicinity. We identify particles possibly causing back
pressure as those which 1) move upstream (i.e. max¢(posy(to) — posz(t)) > 0,
x denoting the axis aligned with the stream and assuming the stream to have
positive sign) and 2) are upstream from the middle pipe at some point in time
(i.e. max(pipeboundary, — pos,(t)) > 0, with pipeboundary, being the posi-
tion on the x-axis where the inflow pipe is connected to the outlet and under
the same assumptions as before). Hence, the path lines in question are those
where both parameters are positive. See Fig. 1 for an overview over the path
lines identified and their seeding positions. Obviously, an ad hoc analytic defi-
nition of interesting path lines is only possible in relatively clear and intuitive
situation as this. We use this for the sake of comparability only.

First, we investigate the attribute combination start to end distance and path
line length. We have preselected particles in the middle pipe and its immediate
vicinity. In Fig. 2 we see a scatter plot of the two attributes. The red dots
represent the path lines to investigate, the yellow dots give the context (i.e.
the remaining path lines). In the scatter plots opacity scaling according to
point density is used. In their paper, Lez et al. suggest investigating “unusual
clusters”, and we can visually identify several of them. We select those clusters
one after the other and monitor the path lines associated to them (Fig. 3). We
see that none of the visually distinguishable main clusters gives satisfactory
results: on the one hand the clusters in Fig. D.3(a) and Fig. D.3(b) describe
the same path line behavior, the cluster in Fig. D.3(c) contains both path lines
we are interested in (left branch) as well as path lines that seem not to be
associated with back pressure (lighter path lines in the right branch). Further
refinement of the query could help this, but no visual clues on how to do this
are present in the scatter plot.
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Figure 4: Scatter plot of the maximum velocity (horizontal) and the mean velocity
along the path line (vertical). As in Fig. 2, red points represent path lines starting
in or in the vicinity of the middle pipe. For further discussion see the main text in
Sec. 4.2.

Figure 5: Scatter plot of the maximum curvature (horizontal) and the maximum tor-
sion along the path line (vertical). As in Fig. 2 and 4, red points represent path lines
starting in or in the vicinity of the middle pipe. For further discussion see the main
text in Sec. 4.2.

The next attribute combination investigated is maximum velocity and mean
velocity along the path line. Fig. 4 shows a scatter plot of these two variables,
the colors have the same meaning as before. In this case the visual detection
of unusual clusters is harder. The most apparent abnormality seems to be the
high share of path lines in question in the center of scatter plot. As Fig. D.6(a)
shows these path lines are indeed associated with the behavior we want to
track. However, we systematically miss out on path lines seeded in a specific
region (marked up with the circle).

Finally, we investigate the combination of maximum curvature and maximum
torsion along the path line (see Fig. 5 for the respective scatter plot). Here, no
clusters are visible. This means we would have to rely on thresholding. This
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(a) (b) (c)

Figure 7: Intermediate steps of the interactive flow analysis based on the attribute set proposed in this paper. The time line is
left to right, top to bottom. Regular selections are marked in orange, not-selections in pink. The final result can be found in

Fig. 8. A detailed description of the analysis steps is given in Sec.4.2.
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Figure 8: The upper branch in the inv2 line plot together with the respective path
lines (together with the previous described selection, see Sec.4.2).

thresholding gives, however, not the desired results, as seen in Fig. D.6(b).
Choosing a higher threshold refines the selection, but it fails to discriminate
different types of flow behavior (Fig. D.6(c)).

As a summary, we conclude that, following the state-of-the-art approach as
described by Lez et al., we could find only a part of the path lines targeted.

Now we use the attribute set suggested by our statistical analysis. As remarked
earlier, all of these attributes are time series. Hence, we make extensive use of
the curve view. First we look at the stream-wise position (in the same sense
as used earlier). As in the first investigation, we select particles that originate
from the middle pipe and its vicinity (Fig. D.7(a) top). In order to cause
back pressure, particles have to still be in the pipe, at the next stroke of the
engine. Hence, we discharge (“not-selection”) particles that are in the outlet
at the time step the next stroke occurs (selection in Fig. D.7(b) top). In the
top of Fig. D.7(c) we see the path lines corresponding to this selections. The
particles that move “upstream” exhibit the same pattern as the once found by
the analytic definition.

However, our selection is, at the current point, still containing a number of path
lines with clearly different (so to say “correct”) flow behavior. Hence, we move
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Figure 9: Close-up of the seeding positions of the path lines in Fig. 8 compared to the
seeding points of the reference path lines. We see that the difference between those
two sets is hardly detectable.

to a different attribute to refine our selection. In the bottom of Fig. D.7(a)
we see the time series for the second quadratic statistical invariant (in the
following: inv2). We see (at least) two clearly distinguishable patterns: path
lines with a medium-high value of inv2 in the beginning of the time series,
and others with a rather low value. We select the ones with the higher values
and see (cf. Fig. D.7(c) bottom) that now nearly all path lines exhibit the
expected behavior. A small number of path lines is not of the expected type,
representing particles being sucked in the rightmost tube. In fact, also the
selected time series of inv2 have two branches (upper and lower, see Fig.D.7(b)
bottom).

As Fig.8 shows the two branches are indeed associated to the different types
of path line behavior present. Comparing the seed points of the path lines
found by our analysis to the seed points of the reference path lines, we see
a clear correspondence of the two sets (Fig. 9, in contrast to the situation in
Fig. D.6(a) bottom).

We see that the interactive flow analysis of the data set based on our suggestions
is able to find the targeted path lines. In addition, the process is intuitive in
the sense that different flow behavior is reflected by clearly distinguishable
clusters in the attributes. We discussed our results with a domain expert, who
confirmed the expressiveness of our results.

4.3 Breaking dam
This data set has been investigated by Pobitzer et al. [158] in the context of

finite-time Lyapunov exponents (FTLE). One of the interesting features is a
separation structure in front of the obstacle, separating particles passing at the
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Figure 11: Final result of the interactive flow analysis based on the her proposed
feature set. We are able to identify the recirculation area in front of the of the
obstacle described by Pobitzer et al. [158]

Figure 12: Top view on the path lines depicted in Fig. 11. The color coding is ac-
cording to the attribute inv3, blue being low and red being high values.

two sides of the obstacle. Another structure is a recirculation zone in front
of the obstacle. Due to its definition, the FTLE approach is not suitable to
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investigate the internal structure of the recirculation. We therefore investigate
this question by means of interactive flow analysis of the attribute set proposed
earlier in this paper.

Since we want to target recirculation behavior, we preselect particles seeded
upstream from the obstacle. Since the recirculating particles do not pass the
obstacle, we can assume that the distance from start to end is not too big.
Hence, we exclude the path line cluster associated to high distances from our
analysis, using a “not”-selection (Fig. D.10(a)). The top of Fig. D.10(b) shows
the path lines corresponding to this selection.

Now we investigate one of the other attributes, namely the first quadratic
statistical invariant (in the following: invl). The attribute is chosen since it
provides clearest clustering with the current selection (Fig. D.10(b) bottom).
The most distinct cluster is a rather small group of almost horizontal lines in
the top. We recall that invl is a shape descriptor and ideal recirculation can
be thought of as a circular motion. Hence, an almost constant shape descrip-
tor could indicate the wanted behavior. After selecting this curve cluster, we
investigate the second quadratic statistical invariant (in the following: inv2).
Again, this attribute has been selected for analysis by the same principle as
before. We detect two possible clusters and by the same reasoning as before,
we select the family of more or less constant lines (cf. bottom of Fig. D.10(c)).
In Fig. 11 we see the selection and the resulting path lines. We conclude that
we found the recirculation zone Pobitzer et al. found the boundary of in their
paper [158]. Investigating the remaining attributes, we see a clear split in the
second quadratic statistical invariant, color coding the path lines according to
this attribute, yields Fig. 12, revealing that the left-right separation structure
is also present inside the recirculation, an insight the FTLE-based analysis of
Pobitzer et al. failed to convey.

5 Conclusions

In this paper we address the problem of selecting an expressive subset of the
path line attribute space for interactive visual flow analysis. Investigating a
number of CFD data sets using factor analysis we found that there are common
patterns both in dimensionality and attributes associated to them across data
sets. We identify 6 path line attributes that represent those factors. The
analysis based on the attributes suggested in this papers proves to match,
and in part also exceed, previous work, showing how the benefit from the
already proven concept of interactive flow analysis can be utterly increased by
carefully selecting appropriate attributes. Prior knowledge of which attributes
to investigate reduces both computational and storage overhead. In addition, a
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lower-dimensional data set is easier to handle in the context of IVA and allows
for a systematic investigation.

Usually, one of the aims of factor analysis is to identify the underlying factors,
at least qualitatively (as mentioned earlier, are the factors assumed to not be
measurable directly). Looking at the attributes suggested, we can informally
identify one attribute associated to shape (inv), one related to vortices (Az),
and a bigger group of attributes related to motion (avspeed, startEnd, vel and
pos). This may indicate that the motion is the most complicated aspect of
path lines, or, more optimistically, better attributes for describing it could be
found.
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