
Masteroppgave i informatikk – optimering

Våren 2012

Modelling migration patterns of
fish using depth and temperature

preferences

Erik Natvig

uiblogo/UiBmerke_grayscaleV8.pdf

Universitetet i Bergen

2

Abstract

Time series of depth and temperature derived from electronic tagging of fish have

been used to construct a stochastic model that aims at capturing main characteristics

of the observations. Mixed Ornstein-Uhlenbeck process models are used to model

attraction towards different concentration points in the depth/temperature plane,

and a methodology to determine model parameters is presented. Simulations of the

model displays very similar dynamics to the original data. Further, an optimization

problem for finding a path expressing the geographical location of the tagged fish is

formulated. An interpolation procedure using thin-plate splines for interpolating an

atlas over temperature in the ocean is introduced. As general-purpose optimization

solvers fail to find optimal solutions to the problem, a special-purpose algorithm,

based on an ensemble search, is developed. The algorithm solves the problem to

optimality, both for test instances and for real data, but demonstrates that there

may be many radically different paths through the ocean that match the temperature

and depth time series. The algorithm has a potential of making good estimates on

the geolocation of fish provided external information is used to guide the algorithm

and to select the most likely solutions.

3

4

Preface

This Master of Science project came to be because I wanted to apply my favourite

mathematical subject, optimization, to solving problems within another interest of

mine, protection of the environment. Luckily, Dag Haugland at the Department of

Informatics knew how, and Sam Subbey from the Institute of Marine Research was

involved to suggest a very interesting project.

The work has given important insight into the world of uncertainty. Accepting the

presence of uncertainty, and forever giving up all hope of eliminating it, is crucial in

order to understand that a mathematical model for real phenomena can and should

never attempt to give a complete description of reality.

I would like to thank Sam for making this thesis possible by providing many

ideas and intuition. Also, thanks for asking nasty questions forcing me to rethink

the work I had done, and either reconsider it (because I realized it was wrong) or

continue working on it (having been convinced that I was on the right track). Thanks

also for co-writing the paper accepted at Norsk informatikkonferanse and for great

support in the final stages of the writing.

Big thanks also go to Dag, whose contribution in discussions, reading my thesis,

pointing out points for improvement, and for questioning the reasoning of Sam and

myself when needed, has been invaluable. Also, without Dag’s encouragement, I

would never have thought of submitting a paper to Norsk informatikkonferanse,

which resulted in a publication.

Other people at the Institute of Marine Research deserve thanks. Kathrine

Michalsen has been responsible for the fish tagging experiments, and explained to

me how they were done. Cecilie Hansen and Vidar Lien helped me get what I needed

5

6

out of the atlas over depth and temperature.

Thanks to Dag Tjøstheim at the Department of Mathematics, University of

Bergen, for a discussion on time series and stochastic processes, and for taking an

interest in my thesis work.

I want to thank my friend André Lynum for discussions on my work, providing

new ideas on solving tough problems, and for reading parts of my thesis, giving valid

comments particulary on making the text more accessible. Thanks also go to my

friend Jon Nyfløtt for proof-reading parts of the thesis.

Thanks to my parents Kristin and Richard Natvig for raising me as an academic,

completely without pressure on topics such as “what to do with myself” and for

providing a home for me while visiting Bergen.

The biggest thanks go to my dear Heidimarie, who has both taken a keen interest

in my work and also supported me through the most demanding periods by being

there for me with lots of love, reminders to take breaks or go to sleep, and with a

large capacity for housework. Without her support, the writing process would have

been much more arduous. Also thanks to Heidimarie for loads of proof-reading and

for laughing at some of my long and twisted sentences and arcane mathematical

terminology.

Erik Natvig, Oslo, April 26, 2012

Contents

1 Introduction 11

1.1 Why model fish movement? . 11

1.2 Electronic tagging . 12

1.3 Analysis challenges . 12

1.4 Geolocalization . 13

1.5 Structure of the thesis . 13

1.6 Notation, conventions and acronyms 13

2 Theory and definitions 17

2.1 Stochastic processes . 17

2.2 Markov processes . 19

2.3 Stochastic differential equations . 21

2.4 The Ornstein-Uhlenbeck process . 22

2.5 Markov chains . 28

2.6 Time series analysis . 31

2.7 Interpolation . 38

2.8 Constrained optimization . 39

2.9 Biological background information . 40

2.10 Geography . 41

3 Previous work 43

3.1 Stochastic modelling of wildlife movements 43

3.2 Mixed Ornstein-Uhlenbeck process models 44

3.3 Analyzing migratory behaviour of cod 48

7

8 CONTENTS

I Stochastic modelling of fish migration 51

4 Basic data analysis and modelling approach 53

4.1 Data overview . 53

4.2 Basic one-dimensional model . 56

4.3 Extending the model and inference methods to 2-D 62

4.4 Chapter summary . 67

5 Model validation and improvements 69

5.1 Simulation and validation of the 1-D model 70

5.2 Creating a mean model path . 80

5.3 Model improvements . 83

5.4 Parameter estimation methods . 91

5.5 Final model simulation results . 96

5.6 Summary and conclusion . 101

II Geolocalization of fish by optimization 103

6 Geolocalization: definitions, formulations and atlases 105

6.1 Simplifications and basic definitions 105

6.2 The simplified geolocalization problem 107

6.3 The ROMS atlas . 108

6.4 Test instances for testing optimization methods 115

6.5 Towards the original geolocalization problem 116

6.6 Maximum travelling distance for the fish 119

6.7 Solution methods for the optimization problem 120

6.8 Summary . 126

7 Interpolation and algorithm for geolocalization 127

7.1 Temperature atlas interpolation . 127

7.2 Test instances . 133

7.3 Solving the problem using standard solvers 135

CONTENTS 9

7.4 Analysis on one time step . 136

7.5 Suggested algorithm for geolocalization 138

7.6 Discussion on algorithm . 142

7.7 Testing the algorithm . 145

7.8 Results of geolocalization on real data 152

7.9 Discussion . 155

III Suggestions for future work 159

8 Future work 161

8.1 More on the stochastic state model 161

8.2 Extending the model to several fish 162

8.3 Other choices for parameter estimation 166

8.4 Movement to the far side of a concentration point 167

8.5 Improvements to geolocalization algorithm 168

8.6 Incorporating prior knowledge . 169

8.7 Correcting infeasible solution . 170

8.8 Particle swarm optimization for geolocalization 170

8.9 Considering uncertainties . 171

8.10 Validating the geolocalization algorithm 172

8.11 Geolocalization by migration model 172

8.12 Geolocalization by other factors . 173

A Article published at NIK 175

B Algorithms 189

B.1 Estimating a transition matrix . 189

B.2 Simulating a Markov chain . 190

B.3 Local maxima of a matrix . 190

B.4 Detailed description of geolocalization algorithm 190

10 CONTENTS

C Implementation issues 195

C.1 2-D kernel density estimation . 195

C.2 Adaptive-degree polynomial filter . 196

C.3 Implementation of spline interpolation 196

C.4 Running time of geolocalization algorithm 197

C.5 Atlas matrices . 197

Chapter 1

Introduction

This thesis is about modelling and analyzing movements of fish. The data used is

from electronic tagging of an Atlantic cod, belonging to a stock of Norwegian Coastal

cod in the Lofoten-Barents Sea ecosystem.

1.1 Why model fish movement?

Fisheries are important both as food sources and for employment. Modelling fish

movement is needed to understand complex interactions in the ecosystem and for

making fact-based decisions to ensure that fisheries are sustainable. Understanding

the food chain is crucial in order to avoid depleting species that are at the bottom of

the chain, which will affect all the oranisms in the chain. This requires information

on where and when different fish species overlap in space and time.

Knowledge on migration patterns makes can support decisions on e.g. restric-

tions on fishing that ensure sustainable population levels of each fish stock. The

International Council for the Exploration of the Sea (ICES) has since 2004 recom-

mended no fishing of Norwegian Coastal cod [35], because of low stock levels [14].

Knowledge on when and where the fish travels to spawn can be used recommend

measures that prevent disturbances in this important part of the life-cycle of the

fish.

Different stocks of Atlantic cod can have distinct migration patterns, and are

11

12 CHAPTER 1. INTRODUCTION

indistingishable to the eye. There are also significant differences in the population

levels of different stocks of cod, and the stock of Northeast Arctic cod is in good con-

dition. To ensure that it is this stock that is harvested, instead of Norwegian coastal

cod, one must know where and when the two different stocks overlap. Knowledge

about migration patterns will help protect vulnerable stocks by providing insight on

suitable areas for zones with restrictions on fishing.

1.2 Electronic tagging

Electronic tagging of fish is a method to provide long term, high resolution obser-

vation data on individual fish behaviour. To obtain such high-resolution data, for

fish that moves over large areas and does not stay at the surface, currently the only

available method is tags that store the data (data storage tags). The method relies

on the fish being caught e.g. through the commercial fisheries for the tag to be re-

turned to the researcher. Such tags do not record position directly, and therefore

depth and temperature are the two environmental factors that are used as basis for

modelling in this thesis.

1.3 Analysis challenges

The huge amount of data captured by a data storage tag represents challenges for

standard time series analysis methodologies. There is for instance much variation

in the distribution of the vertical position of the fish, between month and between

seasons. Much of the data displays periodic behaviour, but with varying amplitude

and frequency.

Some of these issues have been addressed in e.g. [51] and [50]. A major task that

remains, however, is to model individual fish behaviour and use this to gain insight

on the movement patterns of entire fish stocks. A start for this is the work in part

I in this thesis, where a stochastic model is constructed to mimic the movements of

a single fish in the depth and temperature plane.

1.4. GEOLOCALIZATION 13

1.4 Geolocalization

It is desirable to obtain information on geographical position of the fish as well as

depth and temperature to establish migration patterns of fish [58]. Some previously

presented approaches for geolocalization utilize light measurements recorded by data

storage tags. A challenge for using such approaches on fish in Arctic waters is that

for parts of the year, there is very little light. Another approach involves using

tidal variations [37]. However, the tidal difference in sea depth in the Barents sea is

relatively small [58, 50], making this approach less relevant.

One previous approach for geolocalization in the ecosystem considered is pre-

sented in [58]. Part II in this thesis expands the toolbox of researchers by providing

an alternative approach. Information from a data storage tag is combined with an

atlas of temperature and depth, and ptimization is used to find paths through the

ocean where it is possible to observe the characteristics in the time series. This

approach is tried on both synthetic examples and on true fish tag data.

1.5 Structure of the thesis

The thesis has the following structure:

• Introducory chapters on theory and previous work

• Part I on stochastic modelling

• Part II on geolocalization

• Part III on suggestions for future work

• Appendixes

1.6 Notation, conventions and acronyms

Notation

x = (x1, x2, . . . , xn)T : column vector of length n

14 CHAPTER 1. INTRODUCTION

D = (D1, D2, . . . , DN): length N time series of depth observations

T = (T1, T2, . . . , TN): length N time series of temperature observations

0: a vector of length N of zeros

1: a vector of suitable size of only ones

P(X = x): probability that stochastic variable X attains value x

Xt: discrete-time stochastic process

X(t): continuous-time stochastic process

Conventions

• In Part I, indices for vectors, time series and stochastic processes run from 1,

to indicate that observation 1 is the first observation.

• In Part II, the indices run from 0 because the time or day of release is used as

starting point for optimization, where the first iteration corresponds to day 1.

• For vectors, the notation a ≤ b means that the inequality is valid element-wise

• Entire time series are usually considered as row vectors, while other vectors

are usually column vectors.

Acronyms

DST Data storage tag

SDE Stochastic differential equation

OU Ornstein-Uhlenbeck (process)

ACF Autocorrelation function

PACF Partial autocorrelation function

KDE Kernel density estimate

1.6. NOTATION, CONVENTIONS AND ACRONYMS 15

ADPF Adaptive-degree polynomial filter

ROMS Regional Ocean Modelling System

16 CHAPTER 1. INTRODUCTION

Chapter 2

Theory and definitions

This chapter introduces theory and definitions needed in the rest of the thesis.

2.1 Stochastic processes

Stochastic processes describe how one or several characteristics of a system change

with time, when there is a randomness in the dynamics. This randomness implies

that the dynamics or state of the system after passage of some time, with the same

inital values, is not necessarily the same if the experiment or situation is repeated.

A time series can be considered as a snapshot or realization of a stochastic process.

Sometimes, the two terms are used interchangably, but the distinction will be kept

in this thesis.

2.1.1 Notation, time index sets and state spaces

A stochastic process can be denoted {X(t), t ∈ T}, where for each t ∈ T , X(t) is

a random variable or vector (see e.g. [43]) which represents the state of the process

at time t. The set T is the index set of the process. For a discrete-time stochastic

process, T is a countable set (either a finite number of elements, or infinite sets

such as the natural numbers), and the notation {Xt, t = 0, 1, . . . } can be used. If T

is an interval of real numbers (and thus an infinite set), then the process is called

continuous, and for T = [0,∞) it can be denoted {X(t), t ≥ 0}. Continuous-time

17

18 CHAPTER 2. THEORY AND DEFINITIONS

processes can be considered at any real valued point in time within the interval of T .

For easier notation, Xt (discrete-time) and X(t) (continuous-time) will be used in

this thesis to denote stochastic processes where the index set T can be understood

from the context.

The state space I of a stochastic process Xt is the range of states that the

process can have. The space can be limited to a finite number of values, to infinitely

countably many (e.g. natural numbers) or to a continuous set of numbers (e.g. the

real line).

2.1.2 Expectation, variance and autocovariance

The ideas of expectation and variance of random variables generalize to functions of

time for stochastic processes. It is desirable to derive expressions for these functions,

E [X(t)] and Var (X(t)), and also to analyze their behaviour as time tends to infinity.

If X(t) is the solution of a stochastic differential equation (defined in a later

section) expectation and variance can be derived directly from the expressions for

the solutions of the equation.

Definition 2.1.1. (Autocovariance) The autocovariance function of a stochastic

process Xt is defined as

γ(s, t) ≡ E [(Xs − µs)(Xt − µt)] (2.1)

for all time-points s and t, where µs and µt are the means at each time-point.

2.1.3 Stationarity

A property that some stochastic processes have are strict and weak stationarity.

Definition 2.1.2. (Strict stationarity) A stochastic process or time series

{Xt, t = 0, 1, . . . } is strictly stationary if (X1, . . . , Xn) and (X1+h, . . . , Xn+h) have

the same joint distributions for all positive integers h and n ≥ 0 [8].

Definition 2.1.3. (Weak stationarity) A stochastic process or time series Xt is

weakly stationary if [8]

2.2. MARKOV PROCESSES 19

• the expected value of Xt is independent of t, and

• the autocovariance of Xt is independent of t for any time lag.

If a stochastic process is stationary, its long-term behaviour is called the station-

ary expectation and variance. For stationary time series, the autocovariance is given

in terms of the lag h between time points instead of the time points themselves, i.e.

γ(h) = E [(Xt+h − µ)(Xt − µ)]. (2.2)

Definition 2.1.4. The autocorrelation function (ACF) of a stochastic process is

defined as

ρ(h) =
γ(h)

γ(0)
(2.3)

This can be thought of as a scaled version of the autocovariance function (2.2). It

is restricted to the interval [−1, 1] and a value of zero indicates no autocorrelation.

The autocorrelation function of a stationary process is symmetric around the origin,

so it is only necessary to consider it’s values when h ≥ 0.

2.1.4 White noise

Definition 2.1.5. (White noise) A stochastic process where the values at different

points in time are uncorrelated, independent and identically distributed (iid), with

finite variance, is called a white noise process [27].

When the probability density function generating the values of a white noise

process is a normal distribution, the process is called Gaussian white noise.

2.2 Markov processes

One special type of stochastic process is a Markov process (see [34]). A Markov

process Xt is characterized by a memoryless property. A value Xt+h is dependent

only on Xt and not on Xt−h for any positive value of h.

20 CHAPTER 2. THEORY AND DEFINITIONS

2.2.1 Discrete-time Markov processes

For a discrete-time Markov process, the memoryless property is given by:

P(Xk+1 = jk+1|Xk = jk, Xk−1 = jk−1, . . . , X0 = j0) = P(Xk+1 = jk+1|Xk = jk),

where jt is the state of the chain at time t. The property says that the probability

of an outcome jk+1 of X at time k + 1, conditional on the whole history of the

process, is equal to the probability of outcome i at time k + 1 conditional only on

the outcome at time k. Further, the Markov Property in [34] gives us

P(Xn+m = i|Xn = j) = P(Xm = i|X0 = j).

Thus the probability of transition from a state j to a state i in time n to time

n+m depends only on the time shift n, not on the actual times. This implies that

a time-shifted Markov process is also a Markov process.

2.2.2 Continuous-time Markov processes

We now consider continuous-time Markov processes. The memoryless property is

now given by

P(X(tk+1) = jtk+1
|X(tk) = jtk , X(tk−1) = jtk−1

, . . .)

= P(X(tk+1) = jtk+1
|X(tk) = jtk)

with {tk, tk−1, . . . } being some previous points in time satisfying tk+1 > tk > tk−1 >

. . . . Thus only the observation closest in time is necessary for defining the probability

for the value of the process at the current point in time.

An example of a continuous-time Markov process with a real-valued outcome is

a Wiener process, or Brownian motion. The Wiener process is a central component

of stochastic differential equations defined in Section 2.3. The following definition is

taken from [18]:

Definition 2.2.1. A Wiener process is a process W (t) depending continuously on

time t on an interval [0, T] and satisfying the three following conditions:

2.3. STOCHASTIC DIFFERENTIAL EQUATIONS 21

1. W (0) = 0 (with probability 1).

2. For 0 ≤ s < t ≤ T, the increment W (t)−W (s) ∼ N (0, t−s), that is, normally

distributed with mean 0 and variance t− s.

3. Increments at non-overlapping time intervals are independent.

2.3 Stochastic differential equations

Some stochastic processes are derived through solving stochastic differential equa-

tions (SDEs). We base the description of these on [18]. An SDE is a differential

equation where at least one of the independent variables represents a stochastic pro-

cess. An SDE differs from a deterministic differential equation, where all variables

are deterministic. Thus, the solution of an SDE is a not a function, but a stochastic

process, and is referred to as a diffusion process.

Wiener processes are central elements in SDEs (see Definition 2.2.1). Since it is

nowhere differentiable (with probability 1), one cannot use the familiar d/dt oper-

ator, but instead one must define the relation between infinitesimal quantities. A

scalar SDE in its most general form is:

dX(t) = f(X(t), t)dt+ g(X(t), t)dW (t), X(0) = X0, 0 ≤ t ≤ T. (2.4)

Here, f and g are functions of the process and time and X0 is the initial condition

(which may be a stochastic variable as well). The term dW (t) is an infinitesimal

increment of a Wiener process, which is a normally distributed variable with mean

0 and variance dt. Equation (2.4) is a compact and informal way of saying that X(t)

solves the stochastic integral equation

X(t) = X0 +

∫ t

0

f(X(s))ds+

∫ t

0

g(X(s))dW (s), 0 ≤ t ≤ T. (2.5)

The first term in the SDE (2.4) is the drift term, while the second, random term is the

diffusion term. If the function g(X(t), t) for the diffusion term is taken as constantly

equal to 0, the SDE reduces to a deterministic differential equation. Integrals over a

22 CHAPTER 2. THEORY AND DEFINITIONS

function with random variables, and integrals with respect to the random variable

dW (t), are defined using integration rules from stochastic calculus.

A stochastic differential equation may also define a vector-valued random process.

If the process is n-variate, f(X(t), t) and g(X(t), t) in (2.4) are replaced by n × n
matrices, where each entry in the matrices is a function of the process and t. The

scalar Wiener process W (t) is replaced by an n-variate Wiener process W(t), with

independent entries.

2.4 The Ornstein-Uhlenbeck process

There are many different stochastic differential equations used for modelling time-

dependent phenomena, particulary in physics [27] and in economics [23]. One SDE

defines the Ornstein-Uhlenbeck (OU) process. This process is particulary suited for

modelling attraction towards a mean value.

Definition 2.4.1. (Ornstein-Uhlenbeck process) An Ornstein-Uhlenbeck process is

a stochastic process that solves the stochastic differential equation

dX(t) = b(µ−X(t))dt+ cdW (t). (2.6)

The process was originally used to describe Brownian motion in physics, see [54] and

[16]. The OU SDE (2.6) is obtained from the general form of stochastic differential

equations (2.4) by setting f(X(t), t) = b(µ−X(t)) and g(X(t), t) = c.

The parameter b is the drift term parameter, while c is the diffusion term pa-

rameter. The parameter c can be thought of as a short-term variance of the process,

since it scales the normally distributed variable dW (t). See Figure 2.1 for example

trajectories of OU processes for different choices of parameters.

For the general properties of OU processes, refer to e.g. [27], [23] and [59]. The OU

process is a Markov process, and it is strictly stationary. To show that the process

is attracted to µ, we write the drift term as −b(X(t) − µ)dt (assuming b strictly

positive for now). We observe that if the difference between the current point and

the attraction point is positive, then the infinitesimal change in the random variable

given by this term is negative, attracting the process towards the attraction point.

2.4. THE ORNSTEIN-UHLENBECK PROCESS 23

figures/ouDemo.pdf

Figure 2.1: Example trajectories of OU processes

2.4.1 Generalization to n-variate OU processes

For the Ornstein-Uhlenbeck process, the generalization of the SDE to n-D is [6]

dX(t) = B (µ−X(t)) dt+ ΣdW(t) (2.7)

where B and Σ are n × n matrices and X(t),µ,W(t) ∈ Rn. The matrix B is the

drift term parameter, Σ is the short-term covariance matrix and µ is the attraction

vector or mean of the process.

2.4.2 Analytic solutions

A solution (see for instance [42]) to the Ornstein-Uhlenbeck SDE, with initial con-

dition X0 = x0 and µ = 0, is

X(t) = x0e
−bt +

ce−bt√
2b
W
(
e2bt − 1

)
(2.8)

24 CHAPTER 2. THEORY AND DEFINITIONS

where W
(
e2bt − 1

)
represents a Wiener process with variance1 e2bt − 1. To model

attraction towards a non-zero µ, we replace X(t) by X(t)−µ and x0 by x0−µ, and

write

X(t) = µ+ (x0 − µ)e−bt +
ce−bt√

2b
W
(
e2bt − 1

)
. (2.9)

Now we note that X(0) = x0 since e0b = 1 and W (0) = 0 by Definition 2.2.1. When

t tends to infinity, the deterministic part of X(t) (the two first terms) tends to µ.

2.4.3 Expectation and variance

From [16], with substitution for µ 6= 0 (or by taking the expectation and variance

of (2.9)), we get the following expressions for the Ornstein-Uhlenbeck process, con-

ditional on an initial state x0:

E [X(t)] = µ+ (x0 − µ)e−bt, (2.10a)

Var (X(t)) = Var

(
ce−bt√

2b
W
(
e2bt − 1

))
=
c2

2b

(
1− e−2bt

)
. (2.10b)

This can also be used for determining the distribution of the process at some time

s+ t, given a state xs at a previous point s in time:

(Xs+t|Xs = xs) ∼ N
(
µ+ (xs − µ)e−bt,

c2

2b

(
1− e−2bt

))
.

Since the OU process is Markovian and stationary, this statement is true for any

value of s (changing s corresponds to time-shifting the process). For the long-term

behaviour, with b > 0, we obtain

lim
t→∞

E [X(t)] = µ and (2.11a)

lim
t→∞

Var (X(t)) =
c2

2b
. (2.11b)

Thus, the long-term, or stationary, distribution of X(t) is N (µ, c2/(2b)).

For the properties of the n-variate OU SDE, we need the matrix exponential

(see [29] and [19]). The exponential function ex has Maclaurin expansion
∑∞

k=0
1
k!
xk.

This expansion can also be used for matrices:

1In the same way that W (t) = W (t) − W (0) has variance t − 0 = t by Definition 2.2.1,

W
(
e2bt − 1

)
= W

(
e2bt − 1

)
−W (0) = W

(
e2bt − 1

)
−W (e2b0 − 1) has variance e2bt − 1.

2.4. THE ORNSTEIN-UHLENBECK PROCESS 25

Definition 2.4.2. (Matrix exponential) For any given square matrix A, the matrix

exponential is defined as

eA ≡ exp(A) :=
∞∑

k=0

Ak

k!
. (2.12)

When the exponent tends towards minus infinity, the exponential tends to zero,

just as the standard exponential function. Now we can define the properties of the

n-variate OU process (see [6]):

E [X(t)] = µ + e−Bt(x0 − µ)→ µ as t→∞. (2.13a)

Var (X(t)) = Λ− e−BtΛe−BT t → Λ as t→∞. (2.13b)

Here, Λ = Σ(B + BT)−1ΣT is the long-term covariance matrix, which means that

the long-term stationary distribution of X(t) is N (µ,Λ), i.e. n-variate normally dis-

tributed with mean vector µ and covariance matrix Λ. If the matrices of parameters

are replaced by scalar parameters, the expressions above reduce to the previously

determined expressions for expectation and variance (2.10) for the univariate case.

2.4.4 Stability of the OU process

If we let the drift term parameter b in the univariate OU process SDE (2.6) be

negative, the term e−bt in the solution (2.9) tends to infinity as time increases,

and not to µ. Thus, the process is unstable if b < 0. For b = 0, the process is

unstable since the drift term in the SDE disappears and we are left with only the

diffusion term. The solution of this new SDE is then just a Wiener process (Brownian

motion) with increments having variance c
√
dt, which also can tend to infinity as

time increases. Hence, for modelling attraction towards µ, only cases with b > 0,

and thus limt→∞ e
−bt = 0, are of interest.

For the multivariate case of the OU process, note that limt→∞ e
−Bt = 0 where 0 is

the zero matrix only if B has positive eigenvalues, and this is true for positive definite

matrices [53]. Thus, the requirement for stability is that the drift term parameter

matrix B is positive definite (see [42] and [6]).

26 CHAPTER 2. THEORY AND DEFINITIONS

2.4.5 Simulating the OU process

Sample values of a normal distribution are realizations of a normally distributed

variable. For a stochastic process, the analogue is simulating, used to generate real-

izations of the sequence of stochastic variables the process defines. For an introduc-

tion to simulation of SDEs, see [18]. Simulation can be used to obtain knowledge

of the approximate behaviour of a stochastic process. A process is simulated on an

interval [0, T] by dividing it into N small intervals of width ∆t. The first point is

set to X0, and then for each step ∆t up until T we let the increment in the stochas-

tic process be given by an approximate or exact updating formula derived from an

expression for the stochastic process. For stochastic differential equations, a simple

approximation is to use the infinitesimal quantity given by the right-hand side of

the SDE.

Example 2.4.3. (First-order updating formula for the OU process) From [16], we

get a first-order updating formula for the OU process. Modifying it here for the case

when µ 6= 0, using substitution, we get

X(t+ ∆t) = X(t) + b(µ−X(t))∆t+ c
√

∆tn (2.14)

with n ∼ N (0, 1). This follows directly from the OU SDE by replacing infinitesimal

quantities with changes in value for small time steps (i.e. X(t+ ∆t)−X(t) instead

of dX(t), and ∆t instead of dt). This formula, however, will not be precise enough

if ∆t is too large [16]. Nevertheless, it was used in [31] for simulating fish migration,

and the results were adequate.

Example 2.4.4. (Exact updating formula for the OU process) An exact updating

formula from [16] for the OU process yields, with our notation and with substitution

for µ 6= 0,

X(t+ ∆t) = X(t)e−b∆t + µ(1− e−b∆t) + c

√
1− e−2b∆t

2b
n. (2.15)

with n ∼ N (0, 1). This actually follows directly from (2.9) by using substitution for

the case with µ 6= 0, replacing the initial condition x0 with X(t), replacing the time

t by the fixed time step ∆t, and rewriting the increment of the Wiener process using

its variance.

2.4. THE ORNSTEIN-UHLENBECK PROCESS 27

For a generalization of the exact updating formula for the OU process to 2-D,

we note that for the case used in this thesis, the parameter matrices B and Σ will

be 2 × 2 diagonal matrices. It is therefore sufficient to determine the update in

each dimension separately as if they were univariate OU processes, using the (i, i)th

component of the matrices to compute the update for the ith component of the

process. See complete discussion in Chapter 4.

2.4.6 Estimating parameters of the OU process from data

If observation data is assumed to have been generated by an OU process, there exist

several methods for estimating the parameters of the process. We present here the

least squares and maximum likelihood methods.

We base the following on [55] and [48]. The least squares approach given here

is only valid for time series equally spaced in time. Rewriting the updating formula

(2.15) for the OU process in a discrete notation, we get

Xt+1 = Xte
−b∆t + µ

(
1− e−b∆t

)
+ c

√
1− e−2b∆t

2b
n.

This is a linear relationship in the form

Xt+1 = αXt + β + ε (2.16)

where

α = e−b∆t, β = µ
(
1− e−b∆t

)
,

and ε is a normally distributed random term with

E(ε) = 0 and Var(ε) =
c2(1− e−2b∆t)

2b
.

We rewrite these equations and get

b = − lnα

∆t
, µ =

β

1− α,

c2 = Var(ε)
−2 lnα

∆t(1− α2)
= Var(ε)

2b

1− α2
.

28 CHAPTER 2. THEORY AND DEFINITIONS

So, if we assume that the linear relationship (2.16) is valid for at set of data and that

the errors ε are uncorrelated in time, we can estimate the required parameters by

making an ordinary least squares estimate for α, β using this data, and through this

getting the variance of ε. The assumption that data can be described using this linear

relationship is equivalent to assuming that it can be modelled by an autoregressive

process of order 1 (see Section 2.6.2 below). The quantity ∆t is just used for scaling

the parameters. Setting ∆t = 1 implies simulations with the same time step as data.

The method of maximum likelihood estimation uses the conditional probability

density for an observation Xt+1 given a previous observation Xt (see [55] for de-

tails). The log-likelihood function can be derived from this conditional density, and

the values of µ, b and c that maximize this function can be found analytically if

observations are evenly spaced in time. If observations are not evenly spaced, we

would need to use iterative optimization methods to find the maximum, see [15].

2.5 Markov chains

When a Markov stochastic process has a countable state-space I, it is usually called

a Markov chain (see e.g. [34]).

2.5.1 Discrete-time Markov chains

We first consider discrete-time Markov chains. Such a Markov chain can be described

by a probability distribution λ for the initial state X0, and a set of probabilities for

transitions between all pairs of states in a time step of one time unit:

P(Xk+1 = j|Xk = i) for all (i, j) in the set I of states of Xt, and k = 0, 1,

If these probabilities are independent of the time k, the chain is time-homogeneous.

For Markov chains with a finite state-space, these probabilities can be organized

in a finite transition matrix P , where (when the states are named as the natural

numbers) the elements of the matrix are given by

Pij = P(Xk+1 = j|Xk = i).

2.5. MARKOV CHAINS 29

See Section 2.5.3 for an example of a transition matrix. Transition matrices always

have rows where the elements sum up to one, and matrices with this property are

called stochastic matrices.

2.5.2 Important properties of Markov chains

We begin by listing some important properties and characterizations of Markov

chains, taken mainly from [34]:

• The probabilities for transitions to one state from another over several time-

steps are obtained by raising P to the power of the number of time steps, and

use the resulting stochastic matrix in the same way.

• Given an initial distribution λ for X0, we obtain the unconditional distribution

vector of Xn by taking λP n.

• A state of a Markov chain is called transient if there is zero probability for

the chain of returning to the state once it has been left once, and recurrent

otherwise.

• A state of a Markov chain is called absorbing if it has zero probability of being

left once it has been entered by the chain.

• A state of a Markov chain is called aperiodic when no states have a period. A

period for a state is the smallest fixed number of steps greater than 1 that it

takes to get back to the same state. For aperiodic states, on the other hand,

the return probability over n steps is strictly positive, for sufficiently large n.

A Markov chain is called aperiodic when all states are aperiodic.

• A Markov chain is irreducible if all states can be reached from each other.

• A Markov chain is called ergodic if it is both aperiodic and irreducible [40].

• The equilibrium distribution π of a Markov chain with a finite state-space is

the distribution of the states as time tends to infinity, and corresponds to the

30 CHAPTER 2. THEORY AND DEFINITIONS

proportion of time spent in each state when the chain is allowed to evolve

infinitely.

A distribution for the states of a Markov chain that satisfies πP = π (i.e. π is a left

eigenvector of P associated with the eigenvalue 1) is called an invariant distribution

for the chain. This means that the unconditional distribution of Xn, when the initial

distribution of the chain is π, will simply be π itself, since

πP n = π

for any value of n. From Theorem 1.8.3 in [34] we get that if an ergodic chain Xt has

an invariant distribution π, the equilibrium distribution is the same as the invariant

distribution, i.e.

P(Xn = j)→ πj as n→∞ for all j ∈ I.

A consequence of this is that the n-step transition matrix P n converges to a matrix

with µ in each row as n tends to infinity.

2.5.3 Simulating discrete-time Markov chains

To simulate a discrete-time Markov chain with a finite number of states we use a

random number generator and map these random numbers into a new state. See [34]

for a complete description of this procedure. We illustrate by an example. Given a

transition matrix

P =




0.10 0.80 0.10

0.10 0.60 0.30

0.05 0.60 0.35




for a Markov chain with the state-space I = {1, 2, 3}. Now, if the process is in state

1, the probabilities for transition to states 1, 2 and 3 are 0.1, 0.8 and 0.1, respectively.

Given a random number u from a uniform distribution on (0,1), we need a setup

that gives us a 10% chance of staying in state 1, an 80% chance of transition to

state 2 and a 10% chance of transition to state 3. By using the cumulative sums

of the probabilities except the last, we can find intervals for the random variable

that will trigger a certain transition. The random variable should then be mapped

to transitions in the following way:

2.6. TIME SERIES ANALYSIS 31

u ∈ (0, 0.1)⇒ transition to state 1

u ∈ (0.1, 0.9)⇒ transition to state 2

u ∈ (0.9, 1)⇒ transition to state 3

2.5.4 Estimation of transition matrices

A transition matrix can be estimated from a time series on a discrete set of states,

under the assumption that the time series is generated by a Markov chain. For a

finite-state discrete-time Markov chain St with the natural numbers as names for the

states, [34] gives the following consistent estimator for the elements of the transition

matrix P :

p̂ij =

(
N−1∑

n=0

1{Sn=i,Sn+1=j}

/
N−1∑

n=0

1{Sn=i}

)
. (2.17)

This is the proportion of all transitions from state i that go to state j, using 1{}

to denote the indicator function which is equal to 1 if the subscripted expression in

braces is true, and 0 if it is false. The estimator p̂ij will tend to pij with probability

1 as N tends to infinity, by the strong law of large numbers.

2.6 Time series analysis

We base most of the basic time series analysis theory on [46] and [8]. An observed

time series can be written as {xt, t = 0, 1, . . . , }, whereas we will use Xt for denoting

the stochastic variables in time series models. In standard statistics, observations are

often assumed to be independent and identically distributed (i.i.d.). In time series

analysis, however, this is usually not the case, as there will often be some closeness

in value for observations that are made close to each other in time. Thus, the usual

statistical properties of mean and variance are replaced by the mean function and

the autocovariance functions, that depend on time. The definition of autocovariance

is the same as for stochastic processes in Section 2.1.2.

Definition 2.6.1. The mean function for a time series Xt is defined as

µt ≡ E [Xt] =

∫ ∞

−∞
xft(x)dx, (2.18)

32 CHAPTER 2. THEORY AND DEFINITIONS

if the integral exists, and where ft(x) is a time-varying probability density function

for the values in the time series.

It is a common approach to attempt to transform nonstationary time series into

stationary ones, using methods such as detrending and differencing (see the next

section). Thus, much of the theory for stationary time series can also be applied

to nonstationary time series. For stationary time series, we write E (Xt) = µ for

the mean function and γ(h) with h = |s − t| for the autocovariance function, as

these functions (in the stationary case) are independent of time. For the rest of

this section, the theory we present on time series analysis concerns stationary time

series. We therefore use the lag h instead of the general time points s and t. We now

give the sample autocovariance and autocorrelation functions, that are estimators

for their theoretical counterparts in 2.1.2.

Definition 2.6.2. The sample autocovariance function (ACF) is defined as [46]

γ̂(h) =
1

n

n−h∑

t=1

(xt+h − x̄)(xt − x̄) (2.19)

and the sample autocorrelation follows as

ρ̂(h) =
γ̂(h)

γ̂(0)
. (2.20)

The ACF of a white-noise process Wt of length n is, under some conditions [46],

approximately normally distributed with mean 0 and standard deviation given by

1/
√
n. From this, 95% confidence bounds for an ACF can be given. If a value of an

ACF for a process xt for some lag h is outside the interval ±/√n, it can be considered

as significantly different from that of a white-noise process. Then, if many of the

lags of are significant, the process is autocorrelated.

2.6.1 Smoothing

Smoothing is a technique used to discover trends in a time series. For instance, it can

be used to remove high-frequency statistical noise from a series with an underlying,

slower variation or pattern (see e.g. [11]).

2.6. TIME SERIES ANALYSIS 33

The terms filtering and smoothing are sometimes used interchangably. An impor-

tant distinction is that filters always keeps the time step in the original data, while

smoothing may involve producing smoothed data points at intermediate points in

time. In the following, all smoothing will be done using filters. An example of a filter

is the moving average filter:

Definition 2.6.3. (Moving average filter) A (2n + 1) point symmetric moving av-

erage of a time series xt is the series

mt =
1

n
(xt−n + · · ·+ xt−1 + xt + xt+1 + · · ·+ xt+n) .

The number (2n + 1) is called the window of the filter, as it gives the amount of

data points around the current that are included in the average. The term window

is also used for the set of nearby points used in the filter. Only windows symmetric

about the current point are considered here. Near the start and end of a time series,

less points are available to compute the average, so the smoothing is less heavy in

these areas.

In the moving average definition, the weights for each observation are the same.

Other filters may be obtained by using different weights. Another example is an

exponentially weighted moving average, where observations further away from the

time-point considered are given less weight, according to an exponential function

decreasing with the distance in time.

Savitzky-Golay filters

When smoothing a time series, it may be useful to retain local peaks in the series.

A filter which has a tendency to do so, provided that a suitable window is chosen,

is the Savitzky-Golay filter [45, 49]:

Definition 2.6.4. (Savitzky-Golay filter) A time series xt filtered by an order p

Savitzky-Golay filter with window k = 2n+ 1 (with k ≥ p+ 1) is the series

mt =
n∑

i=−n

αixt+i (2.21)

34 CHAPTER 2. THEORY AND DEFINITIONS

figures/adpfDemo.pdf

Figure 2.2: Example of ADPF smoothed time series

where the weights αi are obtained by least-squares fitting a degree p polynomial to

the data points xt−n, . . . , xt+n.

See for instance [39] for a discussion on properties of the filter. Also, when the

data points are evenly spaced in time, it is not necessary to do a complete polynomial

regression for each data point; the set of weights for neighbouring points is the same

for every point, the weights depend only on the window and the degree of the filter.

Adaptive-degree polynomial filters

For the Savitzky-Golay filters to optimally smooth high-frequency noise, both the

window and the degree of the filter must be chosen correctly. For maximum smooth-

ing, low-order polynomials are desirable, whereas high-order polynomials are needed

to maintain the local peaks [3]. Thus, the fixed-degree Savitzky-Golay filters may fail

to smooth all parts of a time series optimally. We consider instead adaptive-degree

polynomial filters (ADPF, see [3]). For these filters, only the window needs to be

chosen in advance, while the degree is chosen automatically for each data point. A

least-squares fit of a polynomial is done for the points in each data window, and sta-

tistical testing is used to determine the minimum degree needed for the polynomial

2.6. TIME SERIES ANALYSIS 35

to provide optimal smoothing. See Figure 2.2 for an example of ADPF smoothing

of a time series.

2.6.2 Autoregressive models

Autoregressive models are a common way to model discretely observed data with

observations evenly spaced in time. When the current value of a time series Xt is

explained as a function of p past values Xt−1, Xt−2, . . . , Xt−p of the series, it is called

an autoregressive model. It implies that p past values are considered necessary for

predicting the current value. Formally, such a model is defined as follows:

Definition 2.6.5. An autoregressive model of order p (denoted AR(p)) is a model

of the form

Xt = φ1Xt−1 + φ2Xt−2 + · · ·+ φpXt−p + wt (2.22)

with Xt stationary, φ1, φ2, . . . , φp constants (and φp 6= 0) and wt a noise process.

The noise process wt in the definition is typically chosen to be a white noise

process with some given variance. The mean of Xt above is zero, meaning that

the process is attracted towards zero (it can be shown that the AR(1) process is

a discrete-time analogue of the Ornstein-Uhlenbeck process). If an autoregressive

model with non-zero mean µ is desired, substitute Xt by Xt − µ for all t to obtain

Xt − µ = φ1(Xt−1 − µ) + φ2(Xt−2 − µ) + · · ·+ φp(Xt−p − µ) + wt

or, equivalently, for simpler notation,

Xt = α + φ1Xt−1 + φ2Xt−2 + · · ·+ φpXt−p + wt

with α = µ(1− φ1 − · · · − φp).
In order to identify which model is appropriate for modelling a time series, prop-

erties of the autocorrelation function defined above are central. For instance, for

an autoregressive process, the autocorrelation function shows a slow decay from 1

towards 0 for increasing lag. The partial autocorrelation function can be used to

identify the order of an autoregressive model suitable for modelling a time series xt.

36 CHAPTER 2. THEORY AND DEFINITIONS

Definition 2.6.6. The partial autocorrelation function (PACF) φhh of a stationary

process xt, t ≥ 0 for lags h = 1, 2, . . . , is [46]

φ11 = corr(x1, x0) = ρ(1)

and

φhh = corr(xh − xh−1
h , x0 − xh−1

0), h ≥ 2 (2.23)

where xh−1
h denotes the regression of xh on {xh−1, xh−2, . . . , x1}.

The PACF is, in words, the correlation between xt and xt−h with the dependence

on the terms between them in time removed. A PACF for an AR(p) process shows

a sharp cutoff after the p’th lag.

2.6.3 The Persist algorithm

When summarizing data using histograms, the data is divided into different bins

for determining the height in a bar diagram. The Persist algorithm [30] provides a

method for selecting such bins for equally spaced time series data, taking the time

ordering of the values into consideration. This can also be used for discretizing the

continuous values in a time series into a finite set of symbols. The algorithm works

by computing a persistence score for candidate bins, and modifying these bins to

maximize the sum of persistence scores over all bins. The persistence score is high

for a bin if the resulting symbol is persisting, i.e. that it occurs many times in a

row in the series. The implementation of the algorithm allows the user to select

the number of desired bins, or let the algorithm determine the optimal bin count

between 2 and 7 bins. Persisting states that account for less than 5 % of the whole

time series are not given their own bin.

2.6.4 Kernel density estimation

Kernel density estimation (KDE) is a non-parametric method used for estimating

the probability density function that has generated a random sample d1, . . . , dn (see

for instance [28] and references). Note that kernel density estimation is applicable

2.6. TIME SERIES ANALYSIS 37

figures/kdeExample.pdf

Figure 2.3: Examples of kernel density estimates for 1-D (with varying bandwidth) and

for 2-D data (blue is low density, red is high).

to any random sample, not just for time series. A kernel is a symmetric function

K() (typically the standard normal density function) that must integrate to one.

By placing a weighted kernel function at each data point and summing them up, we

get a new function that integrates to one. This estimate has peaks at regions where

there is a high density of data points. Formally, the estimated function f̂h of the

data d is

f̂h(d) =
1

nh

n∑

i=1

K

(
d− di
h

)
, (2.24)

with di the data points and h a smoothing parameter called the bandwidth or

window. See Figure 2.3 on the left for an example of how varying the bandwidth

affects the KDE.

The kernel density estimate has a two-dimensional counterpart, with the estimate

being a function

f̂h : R2 → [0, 1],

which is a probability density surface f̂h(x, y), with the height in the surface corre-

sponding to high concentration of data points near by. The standard normal density

function of the univariate KDE is typically replaced by the bivariate standard nor-

38 CHAPTER 2. THEORY AND DEFINITIONS

mal distribution. The bandwidth setting is generalized in such a way that separate

bandwidths for each data dimension are allowed. The 2-dimensional KDE is usually

represented using level curves or colours to display the function. See Figure 2.3 on

the right for an example 2-D KDE of a bivariate time series (xt, yt), where the time

series values are plotted in the plane.

2.7 Interpolation

Given a set of data (x0, y0), (x1, y1), . . . , (xn, yn), assumed to be evaluations of an

unknown, continuous function y = f(x), one might need to obtain function values

yi = f(xi) for some points xi lying between the given points. Interpolation is a tech-

nique to achieve this. When interpolating, a function is found that passes through

all the data points, called nodes, and this function is then evaluated at the desired

point.

Example 2.7.1. (Nearest neighbour interpolation) Nearest neighbour interpolation

is in practice fitting piecewise constant functions to the data points, in such a way

that the closest value is given.

Example 2.7.2. (Linear interpolation) Connecting all neighbouring data points

with lines, i.e. using a piecewise linear function to interpolate, provides linear inter-

polation.

2.7.1 Thin plate spline interpolation

Spline interpolation is useful for finding a smooth interpolating function [21]. A

spline is made up of piecewise polynomials, and cubic splines are often used in

practice. Natural cubic splines produce the smoothest spline possible. For functions

of two variables z = f(x, y), i.e. with a set of data

(x0, y0, z0), (x1, y1, z1), . . . , (xn, yn, zn)

assumed to be evaluations of f , a parallel to spline interpolation is thin-plate spline

interpolation [7]. The name refers to a physical analogue of bending a thin metal

2.8. CONSTRAINED OPTIMIZATION 39

plate to fit to the function value at the interpolation nodes. The spline is constructed

by minimizing the “bending energy”, and gives very smooth interpolating functions.

2.8 Constrained optimization

A general constrained, continuous optimization problem on n real variables can be

written as

minimize
x

f(x) subject to G(x) ≤ 0 (2.25)

where x ∈ Rn is the decision variable, f : Rn → R is a smooth objective function

and G(x) = (g1(x), . . . , gm(x))T is a vector of m smooth functions for inequality

constraints, with gk : Rn → R for k = 1, . . . ,m (see [33]). Such an optimization

problem may also have equality constraints, but such constraints can always be

written as a pair of inequality constraints of opposite direction.

The constraints define together the feasible set Ω of the optimization problem,

the space of values of x that satisfy all constraints.

2.8.1 Global and local solutions and convexity

An optimization problem may have both local and global solutions. A point x∗ is a

local solution if there is exists an open set containing x∗ where f(x∗) ≤ f(x) [33].

If a point x∗ satisfies f(x∗) ≤ f(x) for all x ∈ Ω, then it is a global solution. For

optimization problems where the objective function is a convex function and the

feasible set is a convex set, any local solution is also a global solution.

2.8.2 Optimization algorithms

Numerical algorithms for solving continuous optimization problems typically work

iteratively from a starting point x to improve the objective function value. Many

algorithms use information on the derivative of both the objective function and

constraint functions (constructed by finite difference if not given) to promote fast

convergence. For non-convex and non-smooth optimization problems, there is a risk

that algorithms “get stuck” at local solutions rather than finding global solutions.

40 CHAPTER 2. THEORY AND DEFINITIONS

2.9 Biological background information

Knowledge on some aspects about cod biology is necessary for the discussions in this

thesis. General information on this can be found in e.g. [50] and its references, and in

[44] and [36]. The species considered in this thesis is Atlantic cod (Gadus morhua),

and in the Lofoten-Barents sea ecosystem, specimens can either belong to the stock

of North-East Arctic cod (“skrei”) or to one of the populations of Norwegian coastal

cod. Cod is a predator, feeding on zooplankton, benthic organisms2 and other fish.

Cod is mainly a demersal fish, meaning that it lives mainly on or near the bottom

of the sea.

2.9.1 North-East Arctic cod

North-East Arctic cod is the largest cod stock in the world. During some parts of

the year, it is not only demersal, but also distributed in the open sea. It mainly lives

on the warm side of the Polar Front in the Barents sea, while it spawns in the open

sea in the Lofoten/Vester̊alen area in Norway.

2.9.2 Norwegian coastal cod

The Norwegian coastal cod is a variant of Atlantic cod which lives in coastal areas

and fjords. There are many distinct stocks along the coast of Norway, from Stad to

Russia. 75 % of the cod lives north of the 67th latitude. Only older cod (> 2 years)

moves to deeper water – in general the cod stays in shallow water. Its spawning

grounds are fjords.

2.9.3 Vertical migration

Cod can migrate horizontally, for instance for the North-East Arctic cod to reach its

spawning grounds. In addition, cod migrates vertically [17]. Vertical position may,

for North-East arctic cod, vary with time of day and time of year, and it is affected

by for instance light, current, bottom depth and prey abundance in space and time.

2organisms living on the seabed

2.10. GEOGRAPHY 41

figures/depthMap.pdf

Figure 2.4: Depth map of Norwegian and Barents seas, and of the area around the

Lofoten Archipelago. Source: The ROMS atlas, see Section 6.3.

2.10 Geography

To get an idea of the depths of the waters in which the fish analyzed in this thesis

belongs, see Figure 2.4 for a colour map showing the depth of the seabed off the

coast of Norway. The bottom figure shows a closeup near the spawning grounds of

the North-East Arctic cod in the Lofoten/Vester̊alen area, showing how narrow the

band of shallow waters along the coast is.

42 CHAPTER 2. THEORY AND DEFINITIONS

Chapter 3

Previous work

This chapter gives an overview over some previous work done on stochastic modelling

of data from tracking of the horizontal movement of indiviuals in various ways, and

on analyzing the migratory behaviour of cod.

3.1 Stochastic modelling of wildlife movements

Various technologies can be used to track the behaviour of wildlife. Radio transmit-

ters attached to animals can for instance be used to obtain time series of approximate

positions in the terrain [38]. Acoustic tags, attached to fish, can be used to deter-

mine the position of fish, but only for smaller areas [58]. Marine animals spending

much time at the surface can be tracked by satellite, but high-resolution tracking is

currently not possible for fish that stays most of the time in deep waters. Instead,

data storage tags (DSTs) are used. These can give time series on the ambient envi-

ronment such as depth (through pressure measurement) and temperature [17]. Also,

data storage tags do not transmit information, but rely on the fish being recap-

tured, typically through the commercial fisheries. See [32] for a recent overview on

electronic tagging and tracking of marine animals.

A method for extracting knowledge from movement data is stochastic modelling.

In [38], stochastic differential equations of different forms are used to model the

43

44 CHAPTER 3. PREVIOUS WORK

movement in the terrain of 216 elk. The general form of the equation used is

dr(t) =

(
µx(r(t), t)

µy(r(t), t)

)
dt+ D(r(t), t)

(
dΨx(t)

dΨy(t)

)
(3.1)

with r(t) = (X(t), Y (t)) being the position vector, µ the drift parameter, D the

diffusion matrix and Ψx,Ψy random processes with expectation 0.

Different forms of the parameters in Equation (3.1) were suggested, and they were

estimated using approximating difference equations and nonparametric regression

techniques.

3.2 Mixed Ornstein-Uhlenbeck process models

Mixed Ornstein-Uhlenbeck process models are fundamental for the modellig of fish

migration in this thesis. We now introduce them through their origins, and present

some examples on how they have been used to model animal movement patterns.

3.2.1 OU process models in home range analysis

The first application of OU process models (to the knowledge of the author), in

modelling wildlife movement behaviour, is by Dunn and Gipson [12]. In their work, a

multivariate OU process model is used to analyze radio telemetry data for studying

the home range1 of mammals. The process is defined such that the positions of

many animals are modelled simultaneously, using a (2n) variate process to model

the positions of n animals. One of the forms of the SDE (3.1) considered in [38] was

actually the bivariate Ornstein-Uhlenbeck process.

3.2.2 Mixed diffusion models

Blackwell [6] maintains that the single diffusion models in [12] are unrealistic for

modelling home range behaviour, and describes a generalization of the OU model in

1In [10], home range is defined as “[. . .] the area, usually around a home site, over which the

animal normally travels in search of food”.

3.2. MIXED ORNSTEIN-UHLENBECK PROCESS MODELS 45

which the individual animals make switches between different diffusion processes in

a random manner. The approach is based on [4], where a bivariate Markov process

{X(t), S(t)} (3.2)

is introduced with X(t) a continuous process representing position and a Markov

chain S(t) on a discrete state-space. The value of the continuous variable X(t) is

governed by a Markov diffusion process, with parameters that depend on the discrete

variable S(t) and if desired on the position. S(t) is governed by a continuous-time

Markov chain, with transition probabilites that are fixed or that depend on the

position given by X(t). The result shown is that the overall process of these two

variables is a Markov chain on the discrete space of states for S(t) [4]. The result

generalizes to higher-dimensional diffusion processes as well [6].

The model is in [6] extended to a bivariate diffusion process with a third variable

being a Markov chain, in order to model the position of wood mice. The mouse

model is then a bivariate OU diffusion process with a third variable determining the

behavioural state π of the animal, that is

{X(t), Y (t), S(t)} . (3.3)

S(t) is defined as a Markov chain with a state-space Π consisting of states

π1, π2, . . . , π|Π|. The process X(t) = [X(t), Y (t)]T is a bivariate Ornstein-Uhlenbeck

process, i.e. it is governed by the stochastic differential equation

dX(t) = B(k)
(
µ(k) −X(t)

)
dt+ Σ(k)dW(t). (3.4)

Here the parameters µ(k), B(k) and Σ(k) depend on the value of S(t) in the sense

that when S(t) = πk, the parameter set

{
µ(k), B(k),Λ(k)

}
(3.5)

for state πk of the chain S(t) is used in the SDE. The diffusion term parameter Σ(k)

is defined implicitly through the relation Λ = Σ(B +BT)−1ΣT .

The positions of the animals thus follow diffusion processes with parameters

given by the Markov chain. When the Markov chain makes a transition, the new

46 CHAPTER 3. PREVIOUS WORK

parameters are used instead of the old, with the start point of the new diffusion

being the end point of the previous one.

For modelling the home range of wood mice, Blackwell in [6] defines three differ-

ent states for the behaviour of a mouse: resting, feeding and travelling. A common

centre µ (the nest of the mouse) is used for all states, while the parameter matrices

Λ(k) and B(k) are estimated separately for each state using Bayesian inference and

Markov Chain Monte Carlo methods (see [5] for details).

3.2.3 Modelling mobile phone movements

Rosenblum in [42] used bivariate mixed Ornstein-Uhlenbeck models to model the

movement of mobile phone users in e.g. a city. The choice of model is based on the

need to model a tendency of users to move towards and cluster at certain points, are

referenced to as concentration points. The approach is similar to that of Blackwell,

but uses other methods to determine attraction points and for inference.

The terrain is partitioned into a grid, and a concentration point is defined at

the centre of each grid cell with a sufficiently high occupation frequency. For each

concentration point, denoted µi, a neighbourhood is defined as a circle around the

point with radius half the distance to the closest other concentration point. See

Figure 3.1 for a demonstration, where an area of 60 times 60 units is divided into

a grid. Squares with high mobile phone occupation are shaded, and concentration

points are placed at the centre of each of these. The neighbourhood associated with

each concentration point is shown as a green circle. States πk are defined for each

ordered pair of neighbouring concentration points.

Movement data of mobile phones within and between these neighbourhoods is

used to construct a generator matrix A for a continuous-time Markov chain

{J(t), t ≥ 0} ,

having a state πk = {i→ j} for each pair of concentration points. Also, the data is

used to estimate parameters

{µi, Bi,Σi}

for the OU process in each state.

3.2. MIXED ORNSTEIN-UHLENBECK PROCESS MODELS 47

./figures/rosenblum-demo.pdf

Figure 3.1: Mobile phone modelling: dividing an area into neighbourhoods

We now present the approach to parameter estimation for each state given in

[42]. State indices are skipped for easier notation. The goal is that the matrix Λ,

the covariance matrix of the stationary or long-term distribution, should match the

matrix with the variances of the data within the neighbourhood of the destination

concentration point on the diagonal. I.e.

Λ = Σ(B +BT)−1ΣT =

[
σ2
D 0

0 σ2
T

]
. (3.6)

The average time h spent travelling from between the origin and destination con-

centration points while in a state is introduced, without a precise definition. This is

used to set

B =
λB
h
I

48 CHAPTER 3. PREVIOUS WORK

and

Σ =
λΣ√
h

[
σD 0

0 σT

]

with λB and λΣ parameters to be determined. Since both B and Σ are diagonal,

and thus symmetric, we can write

Λ = Σ(B +BT)−1ΣT = Σ(2B)−1Σ

=
λ2

Σ

2λB

[
σD 0

0 σT

]
I

[
σD 0

0 σT

]
=

λ2
Σ

2λB

[
σ2
D 0

0 σ2
T

]

which satisfies (3.6) if we set
λ2

Σ

2λB
= 1. In [42], λΣ and λB are chosen arbitrarily,

but it is stated that ”In a more complex model, they could be based on the empir-

ical variances, since these constants determine on average how close a mobile will

approach its destination concentration point“.

3.3 Analyzing migratory behaviour of cod

This sections presents a few exampes of analyses made on the migratory behaviour

of cod using data storage tags. For general information on migratory behaviour, see

cited litterature in references highlighted here.

3.3.1 The 1996 cod tagging experiment

An experiment with tagging of cod using data storage tags in 1996 has been described

by Godø and Michalsen in [17]. The practical tagging was described in detail, and

some descriptive data analyses were made.

The data capture interval was 2 hours during the first 6 days, and 12 hours on

the 7th day, with this pattern repeating until the storage capacity of 3900 recordings

was exhausted. For the vertical movements, short-term movements of less than 10

meters was typical, while movements of up to 250 meters did occur sporadically.

For some periods, the fish moved with a diel rythm (24 hour rythm). Analysis on

the buoyancy, influenced by the fish swim bladder, was made. Seasonal differences

in depth and temperature showed that the cod experience higher temperatures in

3.3. ANALYZING MIGRATORY BEHAVIOUR OF COD 49

winter and spring than in summer and autumn. An acclimatization period of up

to 14 days after release was discovered, with behaviour unusual compared to later

recordings. Subsequently, the data from the first 14 days was excluded from the

analysis.

The effects of the tagging on the swimming speed of the fish was determined

to be neglectable. Tests by the manufacturer determined precision of temperature

recordings of ±0.2 degrees C and ±1 atmospheres (approximately 10 meters) for

depth.

3.3.2 DST analysis with the continuous wavelet transform

In [51], Subbey and Michalsen suggest using the continuous wavelet transform for

extracting periodical features of DST data and displaying them in an intuitive way.

This has revealed a clear diel and tidal rythm in DST data derived from the same

set of tagging experiments as the data used in this thesis. The paper also suggests

that the wavelet transform can be used to analyze corresponding temperature and

depth time series simultaneously, and for instance determining a cause-effect relation

between the two series.

3.3.3 Tidal migration of cod

It is known that cod can use tidal currents for their horizontal migration. The extent

of this is unknown, so the phenomenon is investigated in [50] using depth data from

data storage tags. Since the geograpical location (geolocation) of the fish is unknown,

known tidal information for different positions in the ocean cannot be used directly.

Instead, the depth time series is fitted to a tidal model to create a tide time series.

The resulting two time series are analyzed together using the continuous wavelet

transform, to identify times when the fish can be assumed to be using the tides for

transport.

50 CHAPTER 3. PREVIOUS WORK

3.3.4 Hidden Markov Models for geolocalization

An example of the use of data from data storage tags for determininig the geolocation

of fish is the modelling using Hidden Markov models in the thesis by Pedersen [37].

The observed DST data is considered as the observed state of the fish, while the

actual geolocation is the hidden state. Since DSTs determine depth using pressure,

the depth reading at the seabed will change when the ocean surface falls or rises

due to tides. If a tagged fish stays at the seabed for a long time (which happens

if the fish is of a demersal species), this tidal rythm can be retrieved. A random

walk model for the fish movement is combined with a model on the amplitude and

frequency of the tides at different positions in the sea to estimate a ”most probable

track“ for the fish through the ocean.

The thesis also shows examples of the use of a temperature atlas as an aid in

geolocalization (the tidal information remaining the main geolocating variable), with

the simplification that only temperature information for the seabed is used.

3.3.5 Geolocalization by biased random walks

A method for geolocalization using only depth and temperature information is pre-

sented in [58]. A database of depth and temperature for the area in question is

constructed. A huge number of synthetic fish are then moved through a virtual

ocean using a biased random walk procedure, starting at the release position of the

true tagged fish. The bias lies in that the fish is slightly attracted to the recapture

position. Fish that observe temperature conditions that are not in agreement with

the data from the DST data are terminated. Those that ”survive“ all the way are

used to make a mean trajectory. Examples are shown with geolocalization of tagged

North-East Arctic cod in the Barents sea.

Part I

Stochastic modelling of fish

migration

51

Chapter 4

Basic data analysis and modelling

approach

This chapter introduces the data used and the basic approach used for modelling.

The data is derived from electronic tagging of an Atlantic cod (Gadus Morhua) in

the Lofoten-Barents Sea ecosystem. The data has been provided by the Institute of

Marine Research, Norway, and is referenced in [51] and [50].

4.1 Data overview

The data is given as a time series of depth and temperature sampled at 10 minute

intervals, from the time of release until recapture. We denote the depth/temperature

time series tuple as (D,T), with D = (D1, D2, . . . , DN) for a length N time series

(and similarly for temperature). Sometimes, when developing methods applicable to

both depth and temperature time series, x = (x1, x2, . . . , xN) will be used instead.

The modelling work has been done using a time series from just a single tag,

labeled “Tag 1664”, which is from a fish that was tagged and released in April 2004,

and recaptured in December 2006. Data is available from the release day and until

May 2006. This is a rare example of a long time series for one tagged fish. For general

properties of the time series, see Table 4.1. See Figures 4.1 and 4.2 for plots of the

data. In Table 4.2, some basic statistical characteristics are shown. Box plots for the

53

54 CHAPTER 4. BASIC DATA ANALYSIS AND MODELLING APPROACH

Table 4.1: Properties of tag 1664

Property Value

Release date 02.04.2004

Release position 67.4◦N, 12.6◦E

Date/time first observation 03.04.2004 04:40

Recapture date 22.12.2006

Recapture position 68.4◦N, 16.1◦E

Date/time last observation 19.05.2006 20:40

Sex Male

Length on release date 89 cm

Genetic ID Norwegian Coastal Cod

distribution of the data for each month are shown for both time series in Figure 4.3.

The precision in the data is unknown, but as mentioned in the chapter on pre-

vious work, the precision in a previous tagging experiment was of ±0.2◦ C for tem-

perature and ±1 atmospheres (approximately 10 meters) for depth. For the lack of

more recent information, this will be used here as well.

Table 4.2: Selected statistical characteristics of tag 1664

Whole period First year First month

Temp Depth Temp Depth Temp Depth

Mean 7.66 99.86 7.48 114.53 6.22 84.55

Standard deviation 1.15 63.9 0.9 64.25 0.48 29.05

Median 7.54 89.7 7.47 113.6 6.1 82.4

Min 4.63 -1.99 4.63 -1.99 4.63 0.93

Max 11.71 329.25 11.21 329.25 7.37 156.61

Max diff 2.14 140.58 2.09 140.58 0.6 90.63

Max diff in one day 3.38 289.79 3.38 289.79 1.59 112.98

4.1. DATA OVERVIEW 55

figures/allDataPlot.pdf

Figure 4.1: All the data from tag 1664

figures/10daytrajectories.pdf

Figure 4.2: Two example 10-day trajectories shown as scatterplot and as time series

56 CHAPTER 4. BASIC DATA ANALYSIS AND MODELLING APPROACH

figures/boxplots.pdf

Figure 4.3: Box plots for each month of data

4.2 Basic one-dimensional model

The modelling approach in this thesis builds on the work presented previously in

a published paper [31]. The most important ideas and findings are repeated here

for the sake of completeness. For complete details, refer to Appendix A. The most

important inspiration has been the mobile phone modelling in [42].

4.2.1 Temperature and depth preferences

The modelling approach is motivated by the fact that there is a tendency in data to

clustering around specific points in the temperature/depth plane. This tendency is

confirmed by referring to Figure 4.4, where the correlation between temperature and

depth for each month of the first year of data is shown. For many of the months,

4.2. BASIC ONE-DIMENSIONAL MODEL 57

figures/corrTempDepth.pdf

Figure 4.4: Correlation between depth and temperature

the correlation is markedly different from zero. Also, refer to the scatterplot in

Figure 4.2 where such clustering is evident for an example time series. Attraction to

specific temperature/depth combinations can have biological explanations, such as

food availability, the need to avoid predators, physiological factors and the need for

specific conditions for spawning. Refer to e.g. [44] for more on the ecosystem in the

Barents sea and interaction of fish with the physical environment.

4.2.2 Modelling approach

We start by assuming that within short time intervals, the main characteristics of

the fish’s vertical movement can be modelled using a single diffusion (Ornstein-

Uhlenbeck) process. However, over time, the data shows changes in its characteris-

tics. It exhibits switches in what depth values the fish is localized over, and how much

the position varies around such depths. A similar variation over time is visible in the

temperature data, though not as clear-cut as for the depth data. We assume that this

behaviour could be evidence of switches between different behavioural and physio-

logical processes, such as, among others, feeding, swimming, passive tidal transport

and spawning. Thus we can consider that the fish over time is in several states rep-

58 CHAPTER 4. BASIC DATA ANALYSIS AND MODELLING APPROACH

resenting the varying behavioural/physiological processes, with different points and

strengths of attraction, and thus we need to use a mixed diffusion process to model

it. We use the following definitions from [31]:

Definition 4.2.1. A concentration point is a point in the space of the data being

considered with a high density of data points around it. Concentration points are

denoted µi. The space of the data will be partitioned into subsets which contain one

concentration point each, and the neighbourhood of a concentration point will be

defined as a region Ωµi containing the point.

Definition 4.2.2. A (behavioural) state is uniquely defined by the combination of

the concentration point the fish was attracted to last and the one the fish is currently

attracted to. I.e. a state with movement from µi to µj is denoted by πij = {i→ j}.

The mixed diffusion model suggested involves letting the parameters {µ, b, c} of

an Ornstein-Uhlenbeck process X(t) be determined by the state π of a discrete-time

Markov chain {St, t ≥ 1}. This is similar to the description of a two-dimensional

case with a continuous-time Markov chain in Sections 3.2 and 3.2.3. When the

Markov chain makes a transition, the new parameters are used instead of the old, in

practice starting a new diffusion process with the end-point of the previous diffusion

as starting point.

The inference method for the model involves determining:

• the concentration points µ1, . . . , µm from data

• which states of the chain St that are observed (and thus form the state-space

Π of St)

• the probabilities for transitions between the states

• the parameters b and c for the Ornstein-Uhlenbeck process for each state.

4.2.3 Determining a time series of states and Markov chain

The idea in this section is to summarize a slice of a time series of either depth

or temperature, {xt, t = 1, . . . , N}, into a time series of observed states {ŝt, t =

4.2. BASIC ONE-DIMENSIONAL MODEL 59

1, . . . , N} to use to estimate the transition probabilities for a Markov chain St. To

begin with, the slices considered are whole months of the time series. This is an

arbitrary choice.

Locating concentration points

We use Kernel Density Estimation (see Section 2.6.4) to locate concentration points

µi, by detecting values in the space of the data around which there is high density of

observations. The concentration points correspond to local maxima (peaks) in the

density estimate graph. See Figure 2.3 on the left-hand side for an example where

three concentration points are visible. However, the number of peaks in a KDE

depends on the bandwidth setting. In Figure 2.3 on the right-hand side, we show

how four peaks join into one when the bandwith is increased.

To choose the bandwidth, the Persist algorithm (see Section (2.6.3) and [30]) is

used to find suitable bins for the data (from now on these bins are referred to as

Persist bins), and the bandwith is adjusted so that no bin contains more than one

peak. Further, concentration points with low function value in the KDE are ignored.

See details on how this was done in [31]. A more systematic approach to adjusting

the bandwidth and locating concentration points is suggested in the chapter on

future work in Part III of the thesis.

Defining states for the Markov chain

After having chosen concentration points, we define a possible state πij = {i → j}
of the Markov chain for each ordered pair (µi, µj) of concentration points. The use

of each pair of points in defining the state is to allow the model to capture for

instance different speeds of attraction from below and above in the water column.

This gives us a candidate state-space Π̃ for St. Using the standard deviation σµ of

the data within the Persist bin containing a concentration point µ, we can define a

neighbourhood around µ as an interval Ωµ = (µ− nσµ, µ+ nσµ) for some suitable

value of n. We will use n = 1 to begin with.

60 CHAPTER 4. BASIC DATA ANALYSIS AND MODELLING APPROACH

State classification of time series

We can now divide the time series into states. Whenever the time series leaves one

neighbourhood Ωµi and after some time enters a different neighbourhood Ωµj (with

j 6= i), the time that Ωµi was left is considered as the time of state-change, to the

state {i → j}. Using the algorithm1 given in [31], we end up with a time series

{ŝt, t = 1, . . . , N} of states. Not all possible states in Π̃ are necessarily observed, so

only those that are will be used to define the final state space Π for the Markov

chain St. The states are now re-indexed such that we get Π =
{
π1, . . . , π|Π|

}
.

Initial Markov chain state

The first data point in the time series, and those that follow until the first state

change is observed, must be assigned a special state πinitial = {i → i}. This state

represents movement both from and to the same concentration point µi, since there is

no previously visited concentration point. This state is transient (cannot be returned

to) by construction, since there will always be a previously visited concentration

point once this state is left.

Estimating transition matrices

Using Equation (2.17) on the time series of states {ŝt, t = 1, . . . , N}, we can estimate

the |Π| × |Π| transition matrix P̂ for the chain St. We set the initial distribution of

St as the row vector with 1 in the position for πinitial and zero otherwise (i.e. S1 = ŝ1

with probability 1), and together with P̂ this gives us the complete description of

the estimated Markov chain St.

4.2.4 Estimating the Ornstein-Uhlenbeck parameters

Now that the time series has been divided into states, we can consider data observed

while the fish is in each state separately, to estimate parameters for the OU processes.

It may be that a state is visited several times during the whole times series, and

1The algorithm is left out here, since a similar algorithm for 2-dimensional time series is pre-

sented later in this thesis

4.2. BASIC ONE-DIMENSIONAL MODEL 61

care must be taken to combine data from each visit to estimate OU parameters that

are representative of all visits to the same states. However, with the methods used

for parameter estimation in [31], which are used preliminarily in the following, this

is as we will see not an issue.

The drift parameter b is chosen by experiments. The value b = 0.05 has, for

now, been used throughout all states because this has seemed to give simulation

results with speeds of attraction towards the concentration points, similar to that

observed in data. For the diffusion parameter c, an estimate of long-term variance is

used. From the long-term variance (2.11) Var (X(t)) = c2

2b
of an OU process X(t), we

get a relation between the two parameters, c2 = 2bVar (X(t)). Thus, the long-term

variance for each state from observed data must be estimated. This is done, inspired

by [42], by taking the empirical variance σ̂2
j of all data points within the defined

neighbourhood of the destination concentration point µj. So for state πk = {i→ j},
we let c(k) = σ̂j

√
2b, which has the consequence that, for now, the parameters are

the same for all states with the same destination concentration point.

The methods for parameter estimation in [31] were simple in order to get a

working model with as quickly as possible, as a starting point to work with. In the

next chapter, more careful analysis will be presented on how different methods for

parameter estimation work, and what assumptions are made.

4.2.5 Example of inference results for 1-D model

We now show some examples of inference results using the methods developed so

far. These results are the same as in [31], except that the data used for making the

plots is not smoothed. We start with the depth data from Tag 1664 for January

2005.

In the left-hand figure in Table 4.3, we show a flipped kernel density estimate

of the data, with the concentration points as lines, and their corresponding neigh-

bourhoods as gray backgrounds. The bandwidth used for generating the KDE is

indicated in the figure caption, and the bin boundaries determined by the Persist

algorithm are shown as red dashed lines. The right-hand figure shows again the con-

centration points and neighbourhoods, and in addition shows a plot of the data as

62 CHAPTER 4. BASIC DATA ANALYSIS AND MODELLING APPROACH

Table 4.3: Inference results from January 2005, depth data

Inference results January 2005, depth
Conc. pt. µ1: 97.670 σ̂1 = 12.47

Conc. pt. µ2: 172.558 σ̂2 = 19.98

P̂ ≈




0.9907 0.0093 0

0 0.9981 0.0019

0 0.0030 0.9970




State π1: {1→ 1} c(1) = 1.89

State π2: {1→ 2} c(2) = 3.00

State π3: {2→ 1} c(3) = 1.89

figures/conc_january_2005_1664.pdf

a function of time. The colour of the plotted line indicates which state the fish is

considered to be in.

The concentration points, states, diffusion parameters and the transition matrix

are all summarized at the top of the table, with σ̂i indicating the standard deviation

of the data within the Persist bin around concentration point µi.

4.3 Extending the model and inference methods

to 2-D

We now extend the mixed Ornstein-Uhlenbeck model to two dimensions. Recall from

Section 2.4.1 that the stochastic differential equation for the OU process for multiple

dimensions is

dX(t) = B(µ−X(t))dt+ ΣdW(t) (4.1)

where B and Σ are constant n × n matrices, µ is a vector with n entries, X(t) is

an n-variate function of time and W(t) is an n-variate Wiener process. To use this

4.3. EXTENDING THE MODEL AND INFERENCE METHODS TO 2-D 63

process to model fish tag data (D,T), we set n = 2. We write

X(t) =

(
D(t)

T (t)

)
and µ =

(
µD

µT

)
(4.2)

to clarify that the first component of the process is depth and the second is tem-

perature. Next we need to determine a set of states Π for the mixed process and a

corresponding parameter set {
µ(k), B(k),Σ(k)

}

for each state πk ∈ Π. In the following, we will always use depth as the first entry

of the vectors and temperature as the second, and often use (x, y) to denote points

in the depth/temperature plane. We avoid using (d, t), since t can be confused with

the variable name for time.

4.3.1 Determining 2-D concentration points and neighbour-

hoods

We use the (x, y) position of peaks in the 2-D kernel density estimate as concentra-

tion points µ = (µD, µT)T . The bandwidth matrix for the 2-D KDE may also have

to be adjusted in the same manner as for 1-D data, if several peaks appear within

the same Persist bins for either data type.

Choice of neighbourhood

The neighbourhood Ω around a concentration point is used for both observing state

changes and for parameter estimation. With a second dimension added, it is no

longer an interval, but a region in R2. The size and shape of the neighbourhoods can

affect the model results. Some alternative sizes and shapes will be considered in the

next chapter, but for now, to establish some preliminary inference results, we settle

for a rectangular neighbourhood region defined by ±1 degree for temperature and

±15 meters for depth. This seems to be appropriate for some data slices, in order

to capture approximately the areas where the kernel density estimate attains it’s

highest values. See Table 4.4 for an example of how the rectangle surrounds a peak

in the KDE.

64 CHAPTER 4. BASIC DATA ANALYSIS AND MODELLING APPROACH

Algorithm for locating concentration points

To wrap up this section, we present Algorithm 1 which is used for determining the

set of concentration points. For now, the algorithm uses the unspecified function

getNeighbourhood(), which takes a concentration point, the time series and the

KDE as input and returns a neighbourhood. The parameter h is the KDE bandwidth,

and p is a ratio to obtain the minimum threshold for accepting a peak of the KDE as

a concentration point. See Appendix B for a description of the other named functions

that are not self-explanatory.

Algorithm 1 function findConcentrationPoints()

Input: X ∈ R2×N (X = matrix of bivariate time series (D,T)T)

Output: µ,Ω (sets of concentration points and of corresponding neighbourhoods)

1: f̂← KDE(X, h)

2: [x,y,v]← localMaxima(̂f) {Gets position and value of local maxima of KDE}
3: Discard entries xi, yi of x,y where vi < p×max(v) and renumber indices.

4: k ← numRows(x)

5: µ,Ω← ∅
6: for i← 1, . . . , k do

7: µ← µ ∪
{

(xi, yi)
T
}

8: Ω← Ω ∪ getNeighbourhood
(

(xi, yi)
T ,X, f̂

)

4.3.2 State sequence

Given the assumption that it is easy to determine whether an observation (x, y)

is inside a neighbourhood Ω or not, the procedure for determining the sequence of

states is very similar to the one-dimensional case, given in [31]. The 2-dimensional

version is defined by the function determineStates() (see Algorithm 2).

The algorithm gives a time series ŝt of states, and the Markov chain transition

matrix P̂ for St can be estimated exactly as in the 1-D case, again using (2.17). The

initial state is set such that S1 = ŝ1.

4.3. EXTENDING THE MODEL AND INFERENCE METHODS TO 2-D 65

Algorithm 2 function determineStates()

Input: X ∈ R2×N ,µ,Ω

Output: Π, {ŝt, t = 1, . . . , N}
1: φ, τ ← 0N {zero vector of length N}
2: for t← 1, . . . , N do {letting (xt, yt) denote a (D,T) observation at time t}
3: for all Ωi ∈ Ω do

4: if (xt, yt) ∈ Ωi then

5: τt ← i

6: if τN = 0 then {take special care of the end of time series}
7: find the last time-point tlast such that τtlast 6= 0

8: for t← (tlast + 1), (tlast + 2), . . . , N do

9: τt ← τtlast

10: for t← N − 1, . . . , 1 do

11: if τt = 0 then {attraction to next point visited}
12: τt ← τt+1

13: φ1 ← τ1

14: for t← 2, . . . , N do

15: if τt 6= τt−1 then {attraction to new point, i.e. state change}
16: φt ← τt−1

17: else {same attraction as before}
18: φt ← φt−1

19: Π← ∅
20: k ← 0

21: for t← 1, . . . , N do

22: if {φt → τt} 6∈ Π then

23: k ← k + 1

24: πk ← {φt → τt}
25: Π← Π ∪ πk
26: ŝt ← πi = {φt → τt}

66 CHAPTER 4. BASIC DATA ANALYSIS AND MODELLING APPROACH

4.3.3 2-D Ornstein-Uhlenbeck parameters

To determine the parameter matrices B and Σ for each state π ∈ Π, reference is

made to [42] and [6].

Drift term parameter structure

For stability in the diffusion (so that the process does not tend to infinity), we

already know from Section 2.4.4 that the drift term parameter matrix B should be

positive definite. Many examples of different structures of B have been shown [6],

giving different expected trajectories leading towards the attraction point µ. This

allows for a wide range of movement behaviours, but it has been argued that it is

neither necessary nor realistic to allow this [6]. Instead, it has been suggested to

restrict B to the class of matrices that are multiples of the identity matrix, i.e.

B = bI =

(
b 0

0 b

)
.

The argument is that these matrices give expected trajectories that are invariant

under rotation, which avoids attaching special significance to the coordinate system

used for the measurements [6].

We will, however, not restrict B as much as in [6]. For our data, there is a special

significance attached to the coordinate system, since we are dealing with depth/

temperature observations with different units, and not (x, y)-position in the plane.

Restricting B to diagonal matrices with positive entries allows for different strengths

of attraction in each dimension, but does not open for e.g. spiralling in towards µ.

Since we have chosen to write observations from depth/temperature time series with

depth first and temperature second, the entry in position (1, 1) in B corresponds

to the drift for depth, and (2, 2) corresponds to the drift for temperature. Thus we

write

B(k) =

(
b

(k)
D 0

0 b
(k)
T

)

for the drift term parameter for state πk.

4.4. CHAPTER SUMMARY 67

Diffusion term parameter structure

Since the diffusion term parameter matrix Σ represents a short-term covariance, it

must necessarily be symmetric. In [42], diagonal matrices are used, because it is

assumed that there is no interaction or covariance between x and y coordinates.

The parameter is thus determined using the variances of data in each dimension.

In [6], examples are shown with non-zero covariance. As a simplification, which is

acceptable if the model turns out to be good enough, we assume for now that Σ is

diagonal (i.e. no covariance). Thus we write

Σ(k) =

(
c

(k)
D 0

0 c
(k)
T

)

for the diffusion term parameter for state πk.

Parameter estimation

With the diagonal structure of the parameter matrices, we observe that the two

components of the 2-D OU SDE (4.1) for depth and temperature, repectively, are

completely independent. Because of this, we can estimate parameters for each data

dimension separately, and reuse the approach described in Section 4.2.4 to establish

OU parameters for the preliminary 2-D inference results.

4.3.4 Preliminary 2-D model inference results

See Table 4.4 for an example of inference results for one month of data for the

preliminary 2-D model.

4.4 Chapter summary

This chapter has introduced the Data Storage Tag data, and the basic one-dimensional

modelling approach from [31] for modelling the data. An extension to 2-D has been

developed. In the next chapter, it will be verified that the model captures important

aspects of the fish migration behaviour, and the preliminary choices in the modelling

work will be reconsidered to improve model fit.

68 CHAPTER 4. BASIC DATA ANALYSIS AND MODELLING APPROACH

Table 4.4: Inference results for 2-D model for April 2004 data

Inference results, April 2004
Conc. pt. µ1: (66.3, 6.0)

Conc. pt. µ2: (105.6, 6.5)

P̂ ≈




0.990 0.010 0

0 0.997 0.003

0 0.003 0.997




State π1: {1→ 1} Σ(1) =

(
0.65 0

0 0.00

)

State π2: {1→ 2} Σ(2) =

(
4.59 0

0 0.30

)

State π3: {2→ 1} Σ(3) =

(
4.99 0

0 0.22

)

figures/conc2d_april_2004_1664.pdf

Chapter 5

Model validation and

improvements

The previous chapter has seen the construction of a stochastic model for depth and

temperature data for fish migration, with resulting Markov states and Ornstein-

Uhlenbeck process parameters for each state. Any computer model describing real-

world phenomena must be verified and validated. For a survey on verification and

validation of simulation models, see [22].

Verification of a model is to ensure that the computer program for modelling

works as intended (debugging).

Validation of a model is to establish that a verified model is able to capture

intended characteristics of the data, i.e. that simulations made using the model are

similar to observed data, in some way. The point in making a model is not to fit data

exactly, as the only “perfect” model of a system is the system itself [22]. Instead, the

model must be good enough for capturing the features of interest. Our model has

been designed to capture the attraction to concentration points and the variability

within each state, not to replicate all data properties. Thus, we consider our model

“good enough’ if the average simulated fish spends approximately the same amount

of time in each region of the temperature/depth as the actual fish has done, and

with a similar variability in each of the states.

This chapter considers the model fit of the basic fish migration model from the

69

70 CHAPTER 5. MODEL VALIDATION AND IMPROVEMENTS

previous chapter, and examines the validity of some of the assumptions made previ-

ously. Some improvements to the model are suggested, and alternative methods for

estimating the parameters B (or b) and Σ (or c) for each OU process are considered.

5.1 Simulation and validation of the 1-D model

We start with generating simulations of the model for just the depth component of

the time series. The reason is that it is far easier to examine and improve on the

simulations for one dimension, than considering both dimensions simultaneously.

In a later section, the methods and improvements determined in this chapter are

applied to the 1-D with temperature data and to the 2-D model. The main difference

in considering the 1-D model instead of the 2-D model is that concentration points

and corresponding neighbourhoods are differently placed. This is because the peaks

in the KDE for the 2-D model corresponds to points with high concentration of

nearby data points in both dimensions, not necessarily the same regions that have

high concentrations when each dimension is viewed separately.

5.1.1 Simulation time step

According to Section 5 of [31],

“The time step used in the simulation should not be the same as in the data,

because the random effects in the fish behaviour occur over a larger time-scale

than just one time step of 10 minutes. For instance, one may observe a steady

increase in depth over an hour before the depth decreases again, all while the

fish is in the same state. Had we used a time step of only 10 minutes in the

simulation, we would get large oscillations in the values for very short time

intervals, since the random part of the model is very dominant once the process

is close to a concentration point.”

A thorough explanation is offered here. In Figure 5.1 an example of depth data is

shown for 100 data points starting at April 16 2004 at 00:00. For this data, based

on the inference results for the entire month in Table 1 in [31], the fish is in a

state which involves attraction towards µ = 105.8. Apart from some high frequency

5.1. SIMULATION AND VALIDATION OF THE 1-D MODEL 71

figures/slowVariation.pdf

Figure 5.1: Depth data showing slow variation

noise, it seems as though the main variability in the depth happens on a longer

time-scale than the very high sampling rate of 10 minutes. In Section 5.3.4, we will

examine this noise more carefully. For now, it suffices to conclude that simulations

will match data variability better if simulations are made using a longer time step

than the data sampling interval. Thus, we use a time step of 12 points, or two hours,

in the simulations. This is an arbitrary choice without any heuristic for determining

it, but has proved to give satisfactory results.

5.1.2 Simulation details

Most of the discussion and methods in this section are taken directly from [31]. We

make simulations s(i) of the Markov chain and x(i) of the Mixed Ornstein-Uhlenbeck

process, for i = 1, . . . , numSims, with numSims a selected number of simulations.

The Markov chain St is considered first. For a two hour time step, we note that

we must use the 12-step transition probabilities obtained from P̂ 12. The number of

points Ñ in the simulation will be 1/12 of those in the original time series, so we set

Ñ = bN/12c to ensure that it is an integer. The chain is simulated as described in

Section 2.5.3 on a time grid t = 1, 2, . . . , Ñ with πinitial = {i→ i} for the first visited

concentration point µi as initial state. This gives a state time series st. Next, the

72 CHAPTER 5. MODEL VALIDATION AND IMPROVEMENTS

OU process is simulated using the first order updating formula (2.14), using x1 = µi

and the parameter set {µ(k), b(k), c(k)} corresponding to the current state πk of the

Markov chain. That is,

xt+1 = xt + b(k)
(
µ(k) − xt

)
∆t+ c(k)n

√
∆t,

with k such that st+1 = πk and ∆t = 12. The mean time spent in each state of a

Markov chain over the whole simulation period is slightly affected by the choice of

initial state. However, as the chain evolves, the effect of the initial state diminishes.

To obtain simulation results that are less affected by the initial state, it is common

to let simulations run for a little longer than needed, and discard the start of the

obtained series (see for instance [40]). This is known as “burn-in”. The burn-in here

involves discarding the first 200 time steps, and letting the process evolve an extra

200 steps.

5.1.3 Simulation comparison

The resulting simulations can be compared to original time series by plotting them

in the same graph, when taking care to align the paths in time (since the number of

points in the simulations is roughly 1/∆t of those in the data). A more systematic

approach is to compare the distribution of data to those of simulations using kernel

density estimates. Due to randomness in both the Markov chain and in the OU

process, the simulations are very likely to be different every time. To get an idea of

the “average behaviour” of the model, we take the average of the density estimates

of many simulations, and compare that to the density estimates of original data.

To ensure that the density estimates are comparable, we make them both using the

bandwidth originally selected for locating the concentration points.

Example of a simulation with good model fit

In Figure 5.2 we show on the left an example of a simulation using the states,

transition matrix and OU parameters inferred from the January 2005 depth data,

as shown in Table 4.3 in Chapter 4. The blue line indicates which concentration

5.1. SIMULATION AND VALIDATION OF THE 1-D MODEL 73

figures/sim_january_2005_1664.pdf

Figure 5.2: Example simulation for January 2005 and KDE comparison plot

point the process is currently attracted towards. The units on the x-axis correspond

to the original numbering of the observation data points.

Some important features of the depth data for January 2005 are captured in the

example simulation. The process spends time around the same concentration points,

and with more variability around the concentration point µ2 at 172.6 meters than

µ1 at 97.7 meters. A comparison of kernel density estimates for the data and for

this simulation (not shown) confirms this tendency. To get an idea of the “mean

behaviour” of the model, we show in Figure 5.2 on the right a comparison between

the data KDE (green) and the average of KDEs for 50 simulations (red).

Observe, by the higher peak in the KDE, that the proportion of time spent very

close to µ2 is overestimated by the model. This is natural, since there is a lot of

area under the green curve to the right of this point, at 200–250 meters. This corre-

sponds to data points that are not within the neighbourhood of any concentration

point, and thus this behaviour has not been captured by the model. In [31], Figure

3, simulation results for April 2004 depth data is shown. It is apparent that there

is a model tendency to generate simulations with a tighter clustering around the

concentration points than in data. This is also confirmed by looking at the single

example simulation, where the variability within each state appears smaller in sim-

ulations than in original data. This indicates that improvements in the method for

estimating c, or for selecting the size of the neighbourhoods, should be considered.

But overall, model fit for these two months is quite good, when judged on the basis

of the distribution of the data.

74 CHAPTER 5. MODEL VALIDATION AND IMPROVEMENTS

Table 5.1: Inference results from May 2004, depth data

Inference results from May 2004, depth data
Conc. pt. µ1: 64.2 σ̂1 = 6.24

Conc. pt. µ2: 107.7 σ̂2 = 4.23

P̂ ≈




0.9997 03 0

0 0.9880 0.0120

0 0.0789 0.9211




State π1: {1→ 1} c(1) = 0.99

State π2: {1→ 2} c(2) = 0.70

State π3: {2→ 1} c(3) = 0.99

figures/conc_may_2004_1664.pdf

figures/sim_may_2004_1664.pdf

Examples of simulations with poor model fit

We now show example inferences and simulations on two slices of data that give

poor model fit. The inference and simulation results for depth data for May 2004 are

shown in Table 5.1. Observe that the ratio of time spent around each concentration

point is switched between data and simulations. This is due to the fact that most

of the time spent around the concentration point at 64 meters is during the initial

transient state (shown in red in the top right figure). Since this state is transient and

likely to be left early, too little time is spent around this point in the simulations.

For the depth data from October 2004, shown on the right in the first figure in

Table 5.2, we see that the data has very different characteristics from those of data

5.1. SIMULATION AND VALIDATION OF THE 1-D MODEL 75

Table 5.2: Inference results from October 2004, depth data

Inference results, October 2004, depth data
Conc. pt. µ1: 103.1 σ̂1 = 17.81

Conc. pt. µ2: 204.4 σ̂2 = 24.86

P̂ ≈




0.9541 0.0459 0

0.0385 0.9615 0

0 0.0018 0.9982




State π1: {1→ 2} c(1) = 5.68

State π2: {2→ 1} c(2) = 3.88

State π3: {2→ 2} c(3) = 5.68

figures/conc_october_2004_1664.pdf

figures/sim_october_2004_1664.pdf

considered so far. Transitions occur much more often, and seemingly periodically.

The simulation results in the bottom part of the table show that the process spends

too much time between the two concentration points. This suggests that the attrac-

tion towards the concentration points is too weak, such that the simulated process

takes too much time to get to the destination point, compared to the behaviour in

data. This calls for adjustment of the drift term parameter b, which so far has been

set fixed to 0.05 for all states.

76 CHAPTER 5. MODEL VALIDATION AND IMPROVEMENTS

5.1.4 The problem with long-lasting initial states

The problem with the May 2004 data arises because the one visit to the initial

state may account for a large proportion of the time spent around the destination

concentration point during the time series. Since the state is transient by design,

it is likely that the state will be left forever in the simulation of the Markov chain

earlier than in the data. This may even happen during burn-in. Thus, the simulated

fish spends more time around the concentration points associated with other states.

We examine this problem analytically by considering the invariant distributions

of the Markov chains for different months. For the January 2005 data, the proportion

of time spent in each state is 0.0240, 0.6048 and 0.3712, respectively, for the states

π1,π2, and π3. Since states π1 and π3 have concentration point µ1 as their destination

concentration points, 0.0240+0.3712 = 0.3952 is the proportion of time that should

be spent being attracted towards µ1, and the rest of the time towards µ2. From the

Markov chain transition matrix

P̂ ≈




0.9907 0.0093 0

0 0.9981 0.0019

0 0.0030 0.9970




for this data from from Table 4.3 in Section 4.2.5 we get an invariant distribution

of the Markov chain for January by solving λjanP̂ = λjan for λjan, with the added

requirement that the components of the row vector λjan sum up to 1 (see Section

2.5.2). This gives us

{1→1} {1→2} {2→1}

λjan = (0, 0.6196, 0.3804)

with the states indicated above for reference. It has been confirmed that this invari-

ant distribution matches the equilibrium distribution of the chain, by raising P̂ to

high powers (P 100000 has been tried) and seeing that the rows of the resulting matrix

tend to λjan. Since π1 is transient and thus is not revisited, it has zero probability

in the equilibrium distribution. The chain St thus has, for large t, a probability of

0.3804 of being in a state with attraction to µ1. The diagonals of P̂ are approxi-

mately equal to 1 with one decimal point precision. Hence, we consider accuracy to

5.1. SIMULATION AND VALIDATION OF THE 1-D MODEL 77

one decimal point to be good enough, and within this precision, 0.3952 and 0.3804

are equivalent.

Conversely, consider the May 2004 data discussed in Section 5.1.3. The propor-

tion of time spent in each state is 0.8060, 0.1651 and 0.0289, respectively, meaning

0.8060 + 0.0289 = 0.8349 is the proportion of time that should be spent attracted

to µ1. The equilibrium distribution of the transition matrix P̂ in Table 5.1 above is

{1→1} {1→2} {2→1}

λmay = (0, 0.8509, 0.1491)

meaning that the proportion of time being attracted to µ1 is only 0.1491. Thus, we

have shown that the months with long-lasting transient states are very likely to give

poor model fit.

It is worth noting that the plot of the January 2005 data shown in Table 4.3

depicts clustering mainly around one concentration point for the first part of the

month, and mostly around another at the end of the month. The only reason that

we do not observe a long-lasting transient state is the very short visit to state

π2 = {1→ 2} early in the series. A close examination of the data shows that it is in

fact only two data points within the neighbourhood of the other concentration point

µ2 that causes this transition. This visit to π2 is so short that it is more likely to

be caused by large variability around π1 at 97.7 meters. This reveals that it is pure

“luck” in the modelling choices that lead to the good model fit for this month. For

April 2004, shown in [31], the departure from the initial state is much more clearly

a change in behaviour. It may be conjectured that the problem demonstrated for

months with long-lasting initial states may also be present for other months, though

not with as dramatic effects as for May 2004.

5.1.5 Adressing the problem with long-lasting transient states

It has been observed that some months end with a long visit to state, that is only

visited once. This produces an absorbing state, and can cause problems similar

to those with transient states. This is because the state may be reached earlier in

simulations than in data, which creates a bias towards this state. A possible solution

78 CHAPTER 5. MODEL VALIDATION AND IMPROVEMENTS

both to this and to the problem with long-lasting transient states is choosing other

ways to divide up the data, instead of using whole months. If a longer time period is

chosen, it is more likely that the time spent in the inital state accounts for a smaller

proportion of the data. As long as all the other states are in the same communicating

class, the average time spent in each state over many simulations is more likely to

match the time spent in each state in the data. Also, care must be taken such that

no periods end with long-lasting absorbing states. Choosing a different division of

the data may lead to other concentration points being chosen, because the kernel

density estimates are made using larger amounts of data which may have more

varying behaviour.

In [52] the frequencies in the fish tag data for the two whole years for this tag

is combined with a tidal model. The paper suggests that the fish is in 4 different

biological “modes” over the year, resulting in a division of the year into four periods:

April-July, August-November, December-January and February-March. The result

of determining concentration points from the data from each of these four periods

is shown in Figure 5.3. As we can see, for the first three periods, all initial states

are short-lasting. For the last period, February-March, there seems to be an abrupt

change in behaviour at around 2500 data points when the initial state is left. To solve

this, the first part of February can be considered as part of the previous period. We

will use this division from now on, and model fit for these periods will be considered

later, after some further improvements have been made to the model.

5.1.6 Preliminary conclusions

In [31], it was shown that the model estimated from slices of data (i.e. months)

with a long-lasting initial state in the data gave poor model fit, while those with

a short-lasting inital state generate model simulations that match rather well. A

preliminary conclusion from the discussion here is that a new division of data may

help solve this problem.

The fact that the model works rather well for some months without long-lasting

initial states, is perhaps a little surprising, considering the many ad hoc choices

and the simple methods for determining OU parameters. For other months, such as

5.1. SIMULATION AND VALIDATION OF THE 1-D MODEL 79

figures/4periodsDemo.pdf

Figure 5.3: Inference on data for four periods

October 2004 whose results were shown in Section 5.2, more systematic approaches

to parameter estimation are needed. For months with long-lasting initial states, a

solution can be to divide the data up in a different way, such that no period starts

with a long-lasting state.

It should be noted, however, that how well the model captures the time aspect

in the data has not been examined (for instance, the difference between consecutive

data points). Other ways of examining the validaty of the model may reveal further

points for improvement of the model itself.

Simulations have been made also using the exact OU updating formula (2.15)

instead of the first-order formula used so far. It seems that there are no important

differences between the results for the two methods, concerning the conclusions

drawn here. From now on, only the exact formula will be used.

80 CHAPTER 5. MODEL VALIDATION AND IMPROVEMENTS

figures/aprilMeanSimulation.pdf

Figure 5.4: Example of mean of 50 simulations

5.2 Creating a mean model path

If the fish migration model is going to be used for certain applications, we may

need to generate a single simulated path x̄ that closely mimics the original data,

also when the time aspect is considered. A natural way to do this is to take the

average of many simulations
{
x(1), . . . ,x(numSims)

}
, to get a sort of “mean path”

for a simulated fish. A mean of 50 simulations for the April 2005 data is shown in

Figure 5.4, and is obtained in this way:

x̄ =
numSims∑

i=1

x(i)/numSims

It can be seen that this averaging essentially cancels out most of the variation

in the model, and the mean process spends time around the average of the two

concentration points. This is because the Markov chain controlling the behavioural

state has an almost equal chance of being in both the recurrent states π1 and π2,

since the equilibrium/invariant distribution is λapril = (0.5252, 0.4748, 0). Hence a

simple average can be unappropriate.

5.2. CREATING A MEAN MODEL PATH 81

5.2.1 Weighted means

A weighted mean could be an alternative approach, where simulations that are more

similar to original data are given higher weight.

Consider a realization s(i) of the Markov chain St, belonging to a simulated

path x(i). The Markov chain has been estimated using the time series st of states,

represented as the vector s (downsampled if necessary to make it the same length

as the simulation). If the two are similar, the Euclidian distance
∥∥∥s(i)− s

∥∥∥
2

is small.

If they are very different, this quanity is larger. We would like to find a weighting

w(i) for each realization x(i) such that large differences give low weight and small

differences give high weight. We do this by using the reciprocal of the norm of

differences, and normalize the weights such that they sum up to 1. That is, the

computed mean path is

x̄ =
numSims∑

i=1

w(i)x(i)

with

w(i) =

(∥∥∥s(i) − s
∥∥∥
−1

2

/
numSims∑

j=1

∥∥∥s(j) − s
∥∥∥
−1

2

)
.

A way to make the weighting even heavier towards promoting paths with small

differences from data is for instance to square the norm before it is used in the

above formula, This will penalize poor matches and favourize close matches even

more.

An example of a mean model paths, made with very heavy weighting of 50

simulations for the April 2004 data, is shown in Figure 5.5. The resulting path is

still very different from original data, with only a slight tendency of being closer

to the main tendency of the data. The same type of weighting has been tried with

a much larger number of simulations, with data from other months and with even

more heavy weighting. There seems to be simply too much variation in the order of

which states appear in simulations of the Markov chains, compared to the relatively

rare transitions in data such as April 2004, for this idea to work.

82 CHAPTER 5. MODEL VALIDATION AND IMPROVEMENTS

figures/meanSimsWeighted_april_2004_1664.pdf

Figure 5.5: Example of weighted mean of 50 simulations

5.2.2 Deterministic state model

Given the poor performance of the mean model path, we consider now an alternative.

If it is desired to make simulations that match data closely also in the time-sense,

the sequence of states infererred from data can be used directly for the simulation

of the mixed OU model. Also, any problems that may remain with long-lasting

transient or absorbing states are solved by this. We will refer to the model, with

this modification, as the deterministic state model, and use it for the results in the

rest of this thesis. To avoid the need for using the entire sequence of states as model

parameter, one can instead record the time indices when transition happens to each

state, to get a compact description of the model.

The deterministic state model is suitable only if the model is used for modelling

the migration of just one fish, since different fish are likely to have both different sets

of behavioural states and different times at which each state is visited. Suggestions

for how the model can be extended to modelling the migration of several fish will be

discussed in Part III of the thesis. Because of this, we will include the consideration

of both random and deterministic state models in the rest of this thesis, when

appropriate.

The main advantage of using a deterministic state model, is that any problems

5.3. MODEL IMPROVEMENTS 83

figures/sim_deterministic_may_2004_1664.pdf

Figure 5.6: Simulation results for the depth data for May 2004 using a deterministic

sequence of states, instead of states generated by a Markov chain.

experienced with long-lasting initial states are solved, since the initial state can

simply be used for the first part of the data. No burn-in is necessary since there is

no Markov chain. Burn-in for the OU process alone while in the initial state should

be unnecessary as long as the process starts at the initial concentration point. See

results of simulating the May 2004 depth data using a deterministic state sequence

in Figure 5.6, and notice how the model fit is much better than before.

5.3 Model improvements

We now consider some ideas for improvements of the model. This is motivated

by studying the inference results, i.e. how data is used to determine states and

parameters, by visual inspection of simulated paths and by comparison of kernel

density estimates. Also, some of the ad hoc choices made in the model construction

are examined more closely.

5.3.1 Removal of short-lasting state visits

For some parts of data, there are examples of very short visits to certain states. For

instance, in the first plot in Figure 5.3 showing inference results for the depth data

from April-July 2004, we can observe a very short departure from state {2 → 1}
with a visit to state {1 → 2}. This visit consists of only 3 observations starting

84 CHAPTER 5. MODEL VALIDATION AND IMPROVEMENTS

close to the end of the period at data index 12113, and is triggered by a short

excursion of only 1 observation into the neighbourhood of the concentration point

µ2 at 64 meters. It is reasonable to believe that the excursion to this depth is not

the same kind of behaviour as in the first, longer-lasting visit to state {1 → 2} in

early April which involves attraction to the same depth. So the question is whether

this excursion really can be attributed to a state change, or instead is just evidence

of large variability or noise within the behaviour while the fish is in state {2→ 1}.
This situation has been observed at many places in the data.

When using a deterministic state model, the state sequence is reproduced accu-

rately, up to the downsampling of the state sequence used for making longer time

steps than 10 minutes. But for the stochastic state model, it has been observed that

the short visits can make simulations biased towards the states visited shortly. This

is because in some parts of the data, the number of transitions observed is very

low, such that just a few extra transitions affects the transition matrix dramati-

cally. This leads to simulations that overestimate the time spent in the state that is

visited shortly. An estimated Markov chain does not have any “knowledge” of how

long visits last, since it is a memoryless process. The only thing that matters is the

number of transitions in data used for estimating the transition matrix.

Since we use a determistic state model, the bias will not be a problem, but

for parameter estimation, very short visits to a state are not usable for determining

parameters for the OU process, and also they may affect the values of the parameters

considerably. We propose to let the data of any visit to a state shorter than some

lower threshold (we use 60 minutes, i.e. 6 time steps) belong to the previous state.

Parameter estimation methods must, then, be designed so that this choice does not

give biased parameters in these previous states.

5.3.2 Neighbourhood size and shape for 2-D model

In Chapter 4, we settled for an ad hoc choice of neighbourhood shape and size

for the 2-D model. Here are some suggestions for more systematic approaches for

determining the size and shape of neighbourhoods:

• One alternative is rectangular regions constructed using the standard deviation

5.3. MODEL IMPROVEMENTS 85

of data within bins given by the Persist algorithm for each data dimension. This

might be inaccurate since this algorithm is only 1-D, so it does not take into

account that states should be persisting in both dimensions. See for instance

Table 5.5 in Section 5.5.1, the top left figure, for an example KDE of 2-D data

with Persist bin boundaries shown. Note how cuts are placed in the middle of

the KDE peaks. An advantage of a rectangular region is that it is very easy

to determine if an observation is inside or outside the region.

• Another alternative is a region around the concentration point where the KDE

surface z(x, y) is above a certain value, small enough to exclude other concen-

tration points and not to overlap with other neighbourhoods. This is more dif-

ficult to handle than the rectangular region, since it both requires a heuristic

to determine the threshold value and since it is more challenging to determine

whether an observation is inside it or not.

• A third alternative is rectangular regions with size determined using the 2-D

KDE. For instance, the widest part in each dimension, of the part of the KDE

surface that is above some lower threshold value, can be used. This keeps the

simplicity of the first alternative, but exploits the extra information given by

the KDE in alternative 2.

If the Persist bin boundaries for each time series cross through a neighbourhood, this

is an indication that the neighbourhood size (for any choice of shape and size above)

should be reduced by excluding areas that do not belong to the same persisting state.

5.3.3 Analysis of data for visits to states

In order to give insight on how the data in each state should be modelled (for

instance, the best way to estimate OU parameters), we now present an analysis of

the data belonging to each visit to the state {2→ 3} in the April-July depth data,

as an example. See Figure 5.7, where data for all visits to the states is shown at the

top, the first long visit in the middle plot and the final twelve visits to the state

are shown at the bottom. The time indexing does not follow that of original data,

86 CHAPTER 5. MODEL VALIDATION AND IMPROVEMENTS

figures/visitExample.pdf

Figure 5.7: All visits to state {2→ 3} for April-July depth data.

but rather the observation number within all visits to the state. A gray dashed line

indicates that the following data is from a new visit to the state.

Some observations

From studying the data for state {2 → 3} for April-July depth data visually, we

make the following observations.

• For this state, there is a significant amount of data outside the neighbourhood

of the destination concentration point of the state.

• Even outside the bin provided by the Persist algorithms for this concentration

point, there is a lot of data. See all data above 150 meters, where the lack of a

concentration point for the deepest part of the data has the consequence that

5.3. MODEL IMPROVEMENTS 87

this data falls within this state. Also, at the 4624’th observation of this state,

the state change is triggered on the far side of the other concentration point

at 64.8 meters. That is because no points on the way are actually within the

neighbourhood of this point.

• Studying the data this close, it is possible to see that the main variation in

depth happens on a slower time-scale than the sampling interval of 10 minutes.

This supports the use of the large time step of two hours in simulations.

However, there is a certain amount of high-frequency variation. We should

consider smoothing this high-frequency noise.

A key question is how much of the variability for the data observed in a state should

be used to model the behaviour in a state, and how much corresponds to data

features that we have chosen not to model. We will return to this question when

considering the parameter estimation techniques in Section 5.4.

Autocorrelation in the time series

The data can be considered as a realization of an OU process if it satisfies the

memoryless property of Markov processes, i.e. that the values depend only on the

previous time point. This assumption is examined in Figure 5.8, where the autocor-

relation (ACF) and partial autocorrelation (PACF) functions for a sample subset of

depth data are shown. The data is clearly correlated more than one time step, and

from the PACF we see that there is still dependence over more than one lag when

removing the dependence on the observations in between. The correlation does vary

for different parts of data, and a tendency is that it is never just the first lag that

is significant. Thus, the Markov assumption is not valid for this data. Still, as long

as parameter estimation methods do not assume that the data is memoryless, the

main idea of modelling attraction and variability using the OU process can still be

considered valid.

88 CHAPTER 5. MODEL VALIDATION AND IMPROVEMENTS

figures/autoCorrDemo.pdf

Figure 5.8: ACF and PACF for 1000 depth data points in April 2004, with confidence

bounds.

5.3.4 Smoothing noise in the data

Smoothing the time series can be used to remove the high-frequency noise observed,

as long as the removed noise is not correlated in time. We will refer to what remains

after smoothing as residuals. Specifically, we write

(xres)t = xt − (xsmooth)t

with {xt, t = 1, . . . , N} being a slice of the time series.

Smoothing using moving averages and Savitzky-Golay filters (see Section 2.6.1)

has been tested for parts of the data. Experiments with these filters, including

variation of the degree and window of the Savitzky-Golay filter, have not been

successful in obtaining uncorrelated residuals. Adaptive-degree polynomial filters

(ADPF), however, do not require the setting of a fixed degree. Experimentation

with the window setting has revealed that it is often possible to find a setting

that gives residuals after smoothing that have little or no autocorrelation. This

is determined by comparing the autocorrelation function of the residuals with its

confidence bounds.

The optimal filter window varies between different parts of data. An idea is to use

one smoothing window for the data for each behavioural state. This is only for the

sake of model simplicity – there does not seem to be any clear connection between

the optimal smoothing window and the state, and the optimal window may vary

5.3. MODEL IMPROVEMENTS 89

between different parts of data within a state, particulary for long-lasting visits.

Using variable window setting complicates the inference procedure.

We determine then a filter window setting for each state. Since autocorrelation

is not a single number, but a function of the lag, it is difficult to make a robust

heuristic for choosing the window. Instead, we introduce an ad hoc method for

choosing the window. The method will require user input to the computer program.

The autocorrelation function of the residuals after smoothing of data from several

visits to a state is examined for several window settings. Only visits that are longer

than some shortest length are considered. The aim is to find a minimum acceptable

threshold for the autocorrelation for all visits. For instance, a smoothing window

which is equal to the average of the two optimal window settings for the longest and

the shortest visit to the state can be used. A helping heuristic can be to sum up

the absolute value of the autocorrelation function ρk(h) of the residuals (for a fixed

number of lags, e.g. 20), for each choice k of window, that is

η(k) =
20∑

i=1

|ρk(i)| .

The ACF for the residuals corresponding to the window setting k giving the lowest

values of η(k) can then be inspected to see if the autocorrelation is sufficiently small,

and this can be repeated for all visits to a state. Note that near the start and end of

each visit, data belonging to other states may fall inside the filter window. We allow

this to avoid having to use a smaller window near the start and end of each visit.

For 2-D time series, a compromise for filter window must be made between both

components, such that the values in the two smoothed series correspond to the same

time. The error made in this can be considered small in comparison with the total

range of the data.

See Figure 5.9 for an analysis of autocorrelation and normality of residuals after

smoothing for some example data. The departure from the line in the quantile-

quantile (Q-Q) plot indicates non-normality. Even though the smoothing is not

perfect, since some of the residuals are correlated, the smoothing is a good start for

removing noise and allow the model to focus on the slower varying dynamics of the

fish migration. A further point is that any temporal information that is lost when

90 CHAPTER 5. MODEL VALIDATION AND IMPROVEMENTS

figures/sm_res_autocorr.pdf

Figure 5.9: Sample autocorrelation and Q-Q plot of residuals after smoothing, for one

short and one long visit to a state of the April-July depth data. Smoothing window used:

27.

smoothing is correlated only for lags that are shorter than the assumed time frame

of the slower variations.

The advantage of this smoothing is that the smoothed data for each state can

be modelled separately from the noise, using the OU process. Depending on the

application of the model, the noise may or may not be added to simulations. Even

though the residuals are not normally distributed, their standard deviation is a useful

measure of the magnitude of the noise, and can be added as an extra parameter σ
(k)
noise

to each state πk. This can be used to generate a white-noise process to add to the

OU process simulation. The smoothing will be used for all the results following.

5.4. PARAMETER ESTIMATION METHODS 91

figures/tempSmoothDemo.pdf

Figure 5.10: Smoothing that fits very closely to precision noise

Smoothing of temperature data

When all temperature observations for the whole time series are ordered according to

magnitude, the smallest increment between two observations is 0.031 degrees. This

is much smaller than the precision of the data. However, this smallest increment is

visible in the data – it can be seen that the series only takes on values on a seemingly

discrete set. This can be thought of as noise in the data arising from the precision it

is stored with. It may happen that ADPF smoothing with small filter window can

fit exactly to this noise (“overfitting”), even if this filter window is selected using

the heuristic above. See Figure 5.10 for an example of this. This is undesirable, so

very small filter windows must be avoided.

5.4 Parameter estimation methods

With the modifications made to the model so far in this chapter, we are now in a

position to discuss different methods for parameter estimation for the OU process

parameters for each state. The parameter estimation methods should:

• provide the best parameters for reproducing attraction towards concentration

points and variability while in each state

92 CHAPTER 5. MODEL VALIDATION AND IMPROVEMENTS

• be able to combine information from each visit to a state when determining the

parameters (each visit to the same state can be viewed as a separate diffusion

process, but data from each visit should contribute to the estimation of the

parameters in an amount corresponding to the number of data points in the

visit)

• be possible to use for the data at hand without violating any assumptions

made.

It suffices to discuss methods for 1-D modelling, since we have previously chosen

to keep all parameter matrices diagonal. Recall that while we use the OU process

to model data, we are not actually assuming that the fish moves according to an

OU process – just that important characteristics of the data can be modelled by

mixed OU process models. So a discussion on parameter estimation methods is not

necessarily about improving the model’s ability to capture every detail of the vertical

migration data. It is rather about ensuring that those choices made do not introduce

any systematic bias into the parameters chosen, and thus bias in the simulations

generated.

5.4.1 Least squares and maximum likelihood estimation

The least squares and maximum likelihood methods follow the procedure described

in Section 2.4.6. Note that the estimation of µ is superfluous since it is set instead

as the concentration point, so the intercept β for the regression method need not

be considered. The set of points to include in the regression or likelihood estimation

for state πk is:

{(xn, xn+1) : ŝn = ŝn+1 = πk}

i.e. both current and next point must belong to the same visit to state πk. Otherwise,

we would include tuples like (xn, xn+h), when different states has been visited at the

intermediate time-points n+1, . . . , n+h−1. The linear relationship, and equal time

step assumptions, is not valid for such tuples.

To obtain unbiased estimates for the coefficients when using least squares for

solving a linear regression problem, the errors or residuals after regression must be

5.4. PARAMETER ESTIMATION METHODS 93

uncorrelated. We have already shown in Section 5.3.3 that the memoryless (Markov)

assumption is not valid in the data for each state, so there is certainly correlation in

the residuals after regression. Also, the linear dependence of just one previous value

is not sufficient to describe the data – more previous terms should be included. Since

both the linear regression and maximum likelihood methods rely on estimating the

parameter just by using dependence on one previous point, we reject them both for

using them on our data.

5.4.2 Method of mobile phone modelling

The method of parameter estimation from [42] for mobile phone movement mod-

elling described in Section 3.2.3 needs some more precise definitions. The following

quantities are recorded:

• ĥij = the average number of time points spent travelling from the neighbour-

hood of µi to that of µj while in the state πk = {i→ j} (note that this would

be an average of those values observed for each visit to this state).

• σ̂2
j = the variance of the points in the neighbourhood of µj (note that this

choice involves using data from all states with the same destination concen-

tration point).

Next, the parameters of the OU process for the state πk = {i→ j} are set (we omit

the k indices) as

c2 = λcσ̂
2
j/ĥij and b = λb/ĥij,

where λc and λb are constants to be determined. We now assume that the empirical

variance σ̂2
j of the points that are within the neighbourhood of µj can be considered

as the long-term variance of the process. Using the expression (2.11b) for the long-

term variance, we get

lim
t→∞

Var (Xt) =
c2

2b
=
λcσ̂

2
j/ĥij

2λb/ĥij
=

λc
2λb

σ̂2
j

94 CHAPTER 5. MODEL VALIDATION AND IMPROVEMENTS

so we see that we need to set λc/(2λb) = 1 in order for the parameters to reflect the

observed variance. We set λ ≡ λc = 2λb and get

c2 = 2λσ̂2
j/ĥij and b = λ/ĥij.

One important difference from the mobile phone case is that so far, we are only

using data from a single fish to estimate the parameters, whereas the mobile phone

data is from many different phone users. Also, we have observations that are evenly

spaced in time, so we use time units instead of actual times.

Setting the λ parameter

In essence, the parameter λ for state πk decides the relationship between b and c,

in such a way that any setting will lead to the same long-term variance, but not to

the same “speed of approach” towards the concentration point. In order to choose

λ, we note that in the literature [16], the quantity 1/b is called the relaxation time.

We interpret this as “time before approximate equilibrium is reached” and choose to

estimate it as the time from a state change is observed until the destination neigh-

bourhood is reached, which is exactly ĥij as defined above. Thus, setting λ = 1 we

get 1/b = ĥij. This choice gives the same drift term parameter for both dimensions in

the 2-D model. So even though we in Section 4.3.3 allowed any diagonal matrix with

positive entries for this parameter, we do not use a parameter estimation method

that exploits this possibility.

Adjustments

As shown in Chapter 4, the variability in the data was underestimated when using

the initial for setting the diffusion parameter c. While in each state, we see in Figure

5.7 that the time series has so much movement outside the neighbourhood, that we

underestimate the variability of the fish movement if we continue to only use the

variance of the data within the neighbourhood for estimating the c parameter for

the diffusion term. This can be observed also in the KDE comparison plot in the

Figure 5.2 and in Figure 3 of [31], where KDE peaks for simulations are narrower

5.4. PARAMETER ESTIMATION METHODS 95

and taller than in the KDE for the data. We conclude that a modification to this

approach is necessary.

First, we allow distinct diffusion term parameters for all states. In the original

approach in Section 4.2.4, all states with the same destination concentration point

used the variance of all points within the neighbourhood – now we restrict the data

used for each state to only the data belonging to the state.

Second, for computing the variance, we include all data within the same Persist

bin as the destination concentration point. This is a larger region than the neigh-

bourhood. This is reasonable, since movement inside the Persist bin is confirmed to

be consistent with the time structure of the data, not just with its distribution. To

maintain the idea of reaching some sort of equilibrium when close to the concentra-

tion point, the first points in the visit before entering the destination neighbourhood

are not included when computing the variance.

A different alternative is to use all data while in the state as basis for computing

this variance. However, a consequence of this is that any data such as the deepest

data in the April-July depth data in Figure 5.7, which is not associated with any

concentration point, is interpreted as variabilitiy within states with destination as

the closest concentration point. This is undersirable as it leads to overestimation of

the variability around the concentration point. Thus, this alternative is rejected.

A consequence of these adjustments is that the role of the neighbourhood di-

minishes. The main role of the neighbourhood now is capturing state changes, and

determining when “equilibrium” has been reached. The choice of size and shape of

neighbourhoods will therefore not be given more attention. We settle for n = 1 for

the size of the 1-D neighbourhood (ref. Section 4.2.3), and discuss the 2-D neigh-

bourhood further in Section 5.5.1.

5.4.3 Discussion and conclusions on parameter estimation

methods

If data is assumed to be a realization of an OU process, parameter estimation of the

drift term b should incorporate information on the strength of attraction at all times

– not just before the process has come close to the attraction point, as it has been

96 CHAPTER 5. MODEL VALIDATION AND IMPROVEMENTS

done in the methods presented here. However, the idea in this thesis is to model

attraction and variability to and around concentration points, not all characteristics

of data. Thus, we can consider a parameter estimation method good enough if the

mean time taken to reach the destination concentration point, after state change, is

comparable to that observed in data. Many simulated trajectories have been studied

closely, and it seems that the methods here and the choice of λ = 1 gives reasonable

speeds of attraction for most visits to each state.

5.5 Final model simulation results

A final inference and simulation result for the depth data for April-July 2004 is shown

in Table 5.3, and for temperature data in Table 5.4. A deterministic model for the

states has been used, but the transition matrices are shown for reference. Smoothing

is applied before parameter estimation. Experimentation with the smoothing win-

dow for visits to all states have revealed that a window of 27 time steps (4.5 hours)

is a good compromise, for both time series, and this has been used throughout. It is

the smoothed data that is shown for comparing data to simulations. The parameter

estimation is done using the methods of Section 5.4.2, with the Persist bin modifica-

tion for the long-term variance and λ = 1 for the drift parameter. The σ̂i’s indicate

the standard deviation of the data within the Persist bin around each concentration

point.

The results for the depth data show a very good model fit, except for the failure

to capture the deepest data. The temperature data has poor fit for the variability

around µ1 at 6.4 degrees. This can be explained by the existence of many Persist

bin boundaries around the data for state π3 = {2→ 1} that reduces the estimated

variability around this concentration point.

5.5.1 Simulations using final 2-D model

Inference and simulation results for the 2-D model for April-July 2004 data are

shown in Table 5.5. A limitation in making this has been the resolution of the kernel

density estimate. For such a long time series (17252× 2), the memory requirement

5.5. FINAL MODEL SIMULATION RESULTS 97

Table 5.3: Inference results from April-July 2004, depth data

Results for April-July 2004, depth
Conc. pt. µ1: 16.9 σ̂1 = 10.43

Conc. pt. µ2: 64.8 σ̂2 = 6.92

Conc. pt. µ3: 107.0 σ̂3 = 12.35

P̂ ≈




0.985 0.013 0 0.003 0 0

0.002 0.998 0 0 0 0

0 0.167 0.833 0 0 0

0 0 0 0.996 0 0.004

0.025 0 0 0 0.975 0

0 0 0 0.003 0 0.997




State π1: {1→ 2} c(1) = 3.19

State π2: {2→ 1} c(2) = 4.23

State π3: {2→ 2} c(3) = 0.00

State π4: {2→ 3} c(4) = 6.34

State π5: {3→ 1} c(5) = 2.66

State π6: {3→ 2} c(6) = 2.62

figures/conc_april-july_2004_1664.pdf

figures/sim_april-july_2004_1664.pdf

98 CHAPTER 5. MODEL VALIDATION AND IMPROVEMENTS

Table 5.4: Inference results from April-July 2004, temperature data

Results for April-July 2004, temperature
Conc. pt. µ1: 6.4 σ̂1 = 0.12

Conc. pt. µ2: 7.2 σ̂2 = 0.14

Conc. pt. µ3: 8.5 σ̂3 = 0.70

P̂ ≈




0.990 0 0.010 0 0

0 0.999 0.001 0 0

0 0.001 0.999 0 0

0 0 0 0.998 0.002

0 0 0 0.009 0.991




State π1: {1→ 1} c(1) = 0.05

State π2: {1→ 2} c(2) = 0.05

State π3: {2→ 1} c(3) = 0.02

State π4: {2→ 3} c(4) = 0.27

State π5: {3→ 2} c(5) = 0.04

figures/conc_april-july_2004_Temp_1664.pdf

figures/sim_april-july_2004_Temp_1664.pdf

5.5. FINAL MODEL SIMULATION RESULTS 99

and processing time for the algorithm for 2-D kernel density estimation is so large

that it could only be evaluated on a set of points in a 30-by-30 grid. Thus, the

accuracy is rather low, and peaks may have been placed a little off their actual

position.

The 2-D neighbourhood is chosen based on the ad hoc setting from before of ±15

meters and ±1 degrees. However, a modification has been made, manually, utilizing

the Persist bins. Any bin boundaries that cut across a neighbourhood, but not in

the middle of the peak, are used to reduce the size of the neighbourhood. This can

be seen in the plot on the top left in Table 5.5. The inference has otherwise been

done as for the 1-D model, with an ADPF smoothing window of 27 time steps. Since

the drift term parameters are equal for each dimension, they are given as a single

parameter b(k). Data and sample simulations for both dimensions are shown at the

bottom of the table, along with an average of the KDEs of 50 simulations. In Figure

5.11 on the left is a surface plot of the KDE of smoothed data, and on the right

is a plot of the difference of the KDE of smoothed data and of the average of 50

simulations. This shows that the difference between data and model in KDE plots

is in the order of 10−4, compared to the scale of the KDE which is in the order of

10−3, and verifies the close match. (Though it is unclear whether the match would

be this good if the KDEs were made using a higher resolution.)

Observing the example simulations, the model fit for the 2-D model for the

temperature part seems better than for temperature alone in Table 5.4. This is seen

e.g. by the larger difference in height of the two highest peaks in the 2-D KDE. This

is probably because of slightly differently placed peaks in the 2-D KDE, and because

the two Persist bin boundaries in the middle of the peak were ignored. The latter

explanation suggests that there is a possibility that this improved model fit may

be more because of “luck” than because of a very good model. Thus, more robust

methods for selecting neighbourhood size and shape should be used in future work.

100 CHAPTER 5. MODEL VALIDATION AND IMPROVEMENTS

Table 5.5: Inference results from April-July 2004, 2-D data

Inference and simulation results for 2D model for April-July 2004 data

Conc. pt. µ1: (65.0, 6.4)

Conc. pt. µ2: (15.0, 8.6)

Conc. pt. µ3: (110.0, 6.9)

P̂ ≈




0.999 0 0.001 0 0 0

0 0.996 0 0 0.004 0

0.007 0 0.993 0 0 0

0.020 0 0 0.980 0 0

0 0.003 0 0 0.997 0

0 0.009 0 0 0 0.991




State π1: {1→ 2} Σ(1) =

(
2.32 0

0 0.19

)
b(1) = 0.0382

State π2: {1→ 3} Σ(2) =

(
4.75 0

0 0.15

)
b(2) = 0.0944

State π3: {2→ 1} Σ(3) =

(
1.38 0

0 0.01

)
b(3) = 0.0122

State π4: {2→ 3} Σ(4) =

(
0.88 0

0 0.01

)
b(4) = 0.0286

State π5: {3→ 1} Σ(5) =

(
2.78 0

0 0.13

)
b(5) = 0.1062

State π6: {3→ 3} Σ(6) =

(
1.02 0

0 0.02

)
b(6) = 0.0094

figures/conc2d_april-july_2004_1664.pdf

figures/sim2d_april-july_2004_1664.pdf

5.6. SUMMARY AND CONCLUSION 101

figures/2dkdeComparison.pdf

Figure 5.11: Comparison of 2-D KDEs for April-July 2004 data and simulations

5.6 Summary and conclusion

We sum up this chapter by repeating the most important modifications made to the

model.

• Short lasting visits to states have been removed.

• The data has been divided in other ways than whole months, to avoid long-

lasting transient states.

• The deterministic state model has been introduced as an alternative to the

stochastic state model. This model uses the sequence of states inferred from

data directly as the sequence of behavioural states in simulations, rather than

using a Markov chain for controlling the state.

• Alternatives for the size and shape of the 2-D neighbourhood have been dis-

cussed.

• The data in each state is smoothed to remove high-frequency noise.

• Parameter estimation methods are more systematic and capture better the

variability in data.

This part of the thesis has shown the successful creation and validation of the

model for fish migration patterns, and has suggested many improvements to the

model. More can be done to make validation of the model more systematic, and

102 CHAPTER 5. MODEL VALIDATION AND IMPROVEMENTS

to create more robust heuristics for making some of the choices that were made

manually in the modelling work. There is much potential in expanding the model

to e.g. several fish, and for using it for making inferences on cod behaviour on stock

levels. See Part III of the thesis for suggestions for future work.

Part II

Geolocalization of fish by

optimization

103

Chapter 6

Geolocalization: definitions,

formulations and atlases

Given a time series of temperature and depth observations from a Data Storage Tag,

an estimate of the actual geographical location (geolocation) of the fish, expressed in

latitude/longtidude coordinates, is of interest to researchers. We call the process of

making such estimates geolocalization. Two points along the trajectory are known

approximately, namely the release and recapture positions. We will use an atlas

over temperature and depth to describe the ambient environment of the fish, and

try to match DST temperature/depth observations with positions in the atlas. In

this chapter we will formulate an optimization task for solving this problem, and

define test problems for the optimization methodologies. Development of algorithms,

and numerical results, will be presented in the next chapter.

6.1 Simplifications and basic definitions

To begin with, we regard the problem as purely mathematical and assume that

atlases are given as continuous functions, and disregard the actual implementation

which characterizes the atlases. Further, we ignore the fact that the earth is a sphere,

that tidal variations change the depth of the sea and that the tide and ocean currents

together may affect maximal swimming speed. Also, we disregard all considerations

105

106CHAPTER 6. GEOLOCALIZATION: DEFINITIONS, FORMULATIONS ANDATLASES

of units. We proceed by making some basic definitions.

Definition 6.1.1. (Domain of a depth atlas, or surface of the ocean) We use Ω to

denote the domain of a depth atlas. It can be viewed as the surface of the ocean, if

the Earth was flat, and is thus a bounded subset of the plane R2. We require that Ω

contains its boundary (i.e. that it is closed). Areas of the flat “Earth surface” that

are not covered by ocean are not allowed to be contained in Ω. We also assume that

Ω is contiguous, since this is the case for the oceans of the world.

Definition 6.1.2. (Depth atlas) A depth atlas is a function

D : Ω→ R+

that assigns a depth value to each coordinate (x, y) in Ω, i.e. we have that depth

≡ D(x, y). Since all points in Ω correspond to areas of the Earth surface covered by

ocean, we have that D(x, y) ≥ 0 for all (x, y) ∈ Ω.

Definition 6.1.3. (The ocean) We define the ocean as a set

Γ =
{

(x, y, d) ∈ R3 : (x, y) ∈ Ω, 0 ≤ d ≤ D(x, y)
}
.

We see that Ω is the projection of Γ on R2.

Definition 6.1.4. (Temperature atlas) A temperature atlas is a function

T : {Γ× R+} → R,

i.e. a mapping from a combination of coordinates (x, y, d) in the ocean Γ, and a

positive real number t which represents time, to temperature. That is, temperature

≡ T (x, y, d, t).

Definition 6.1.5. (Geolocalization problem) Given a lengthN+1 time series (D,T)

of temperature/depth observations on time-points t = t0, t1, . . . , tN , spatial coordi-

nates (xinit, yinit), (xfinal, yfinal) for the start and the end points of the time series,

a depth atlas D and a temperature atlas T and some “speed limit” on maximum

change in horizontal position per time unit. The geolocalization problem is to find

an estimate of a discrete-in-time path

P = {(xt, yt, dt) ∈ Γ, t = t0, t1, . . . , tN}

6.2. THE SIMPLIFIED GEOLOCALIZATION PROBLEM 107

(constrained by the speed limit) which is likely to have generated the time series, in

the sense that a fish travelling this path will experience temperatures and depths as

close as possible to the observations. Path estimates P of solutions to the geolocal-

ization problem are, through the restriction of the points on the path to the ocean

Γ, restricted by the depth of the ocean and the surface area Ω.

6.2 The simplified geolocalization problem

Developing solution techniques for the geolocalization problem requires further sim-

plification of the problem. Let a time series (D,T) be given. For testing purposes,

we define the simplified geolocalization problem as in Definition 6.1.5 but with the

following extra assumptions:

1. The time series is uniformly spaced in time.

2. The depth and temperature atlases are constant over time. Together with the

previous assumption, this means that apart from the ordering of the observa-

tions in the time series, we can ignore the time aspect.

3. The speed limit is a given constant and is invariant of direction. This speed

limit is realistic, in the sense that it is small compared to the total size of

the ocean Γ. This is absolutely necessary, otherwise the next point on solution

path can simply jump to any position in Γ having the observed temperature.

4. The upper constraint on depth can be ignored, because the sea is always deeper

than any depth observations.

6.2.1 Mathematical formulation of the simplified problem

We suggest that the simplified geolocalization can be solved using optimization, and

formulate it as an optimization problem. We let the x, y and d coordinates of the

path P be vectors of length N + 1, and optimize with these as variables. We use

non-negative numbers for indexing time.

108CHAPTER 6. GEOLOCALIZATION: DEFINITIONS, FORMULATIONS ANDATLASES

The simplified geolocalization problem with time series (D,T) of lengthN+1 and

initial/final coordinates P0 = (xinit, yinit, d0), PN = (xfinal, yfinal, dN) is formulated

as

minimize
x,y,d

f(x,y,d) =
∥∥∥(D,T)− (d, T (x,y,d))

∥∥∥
2

(6.1)

subject to

(x0, y0, d0) = P0, (6.2)

(xN , yN , dN) = PN (6.3)

‖(xt, yt)− (xt−1, yt−1)‖2 ≤ vmax, t = 1, . . . , N (6.4)

(xt, yt) ∈ Ω, t = 0, . . . , N (6.5)

d ∈ RN+1
+ (6.6)

Here, (D,T) should be understood as the row vector obtained by augmenting the

row vector D with T. Also, by T (x,y,d) we mean the row vector obtained by taking

Tt = T (xt, yt, dt) for t = 0, 1, . . . , N .

The optimization suggested here involves minimizing the difference between ob-

served values of depth and temperature and those given by evaluating the atlas at

our variable (x,y,d), the estimated discrete path. This distance would be zero if it

was possible to exactly match the DST observations in a path through the atlas.

6.3 The ROMS atlas

The way in which a real-world altas is implemented is necessary for the discussion

on solution methods. We now present the atlas which will be used for geolocalization

in this thesis. The model used for generating the atlas is a three-dimensional hydro-

dynamic model known as ROMS (Regional Ocean Modelling System, see [25, 57]

and their references). It contains variables such as temperature, depth and salinity.

For the application in this thesis, files containing daily averages for the time inter-

val in question, on a grid with a spatial resolution of 4 km, have been provided by

the Insitute of Marine Research. Those files where made specifically for use in the

6.3. THE ROMS ATLAS 109

figures/atlas20kmdemo.pdf

figures/atlasColorBar.pdf

figures/atlas4kmdemo.pdf

Figure 6.1: 20 km and 4 km atlases for different times

analysis in [57]. For testing purposes, a single file containing a six-day average on

a grid with a spatial resolution of 20 km was provided as well. The validity of the

ROMS model has been considered in both cited references, and is not considered

further here.

The data in the atlas is given on a finite set of coordinates and organized in

matrices. For concreteness, we present the relevant contents of the six-day average

atlas on a grid in the plane of 20 kilometers. See Figure 6.1 for a plot of surface

temperature in a 20 km gridded atlas and a 4 kilometer gridded atlas.

For illustration purposes, we study a subset of size 10-by-8 of the 20 km gridded

atlas with a six-day average for the area around the Lofoten Archipelago in Northern

Norway. This area corresponds to the intersection of rows 195 to 204 and columns

256 to 264 in the grid matrix. The submatrices associated with this area are shown

in Appendix C for reference. In the following, i will denote row direction in the

matrix, and j the column direction.

6.3.1 The grid

The grid in the 20 km atlas has 507 × 329 squares. A matrix each of longtidude

coordinates Mλ and latitude coordinates Mφ for the geographical position at the

110CHAPTER 6. GEOLOCALIZATION: DEFINITIONS, FORMULATIONS ANDATLASES

figures/viewCoordsInMap.pdf

Figure 6.2: The coordinates in the matrix and matrix row/column indices in map

centre of each square is given. Squares that are adjacent in the matrix are also

adjacent geographically. In Figure 6.2, a mapping from the matrices of coordinates

to the map and the reverse for the atlas subset is shown.

Errors in distances in grid

In the geolocalization application used in this thesis, the space of coordinates used

will be in grid units, and not in actual geographical coordinates. This introduces

some errors in the results. Since the Earth is (approximately) spherical, the distance

along the surface between all adjacent coordinates in a rectangular grid covering

large areas can not be exactly 20 kilometers. The existence of this error has been

confirmed by computing distances between points using the Haversine formula [47].

Figure 6.3 illustrates the error involved in assuming that the grid has a spacing of

exactly 20 km.

The top plot on the left shows the assumed and actual distances travelled, by

moving in straight lines along the i axis, along the j axis and diagonally. The lower

plot shows the relative error in distance calculation in each direction, and the max-

imum of these three. We can assume that the error in travelling along any other

direction is bounded by the maximum error in travelling along the coordinates axes

6.3. THE ROMS ATLAS 111

figures/coordinates_deviance.pdf

Figure 6.3: Error made in distance calculation in the 20 km gridded atlas when travelling

in i direction, j direction and on the diagonal from a point north of Spitsbergen.

and on the diagonal. The conclusion is that in travelling 65 atlas units, the maximum

error exceeds 5 percent. Travelling 135 units, the error may exceed 10 percent. For

the movement of a fish in one day, say e.g. 10 units, the maximum error is less than

5 %. To compensate, the maximum travelling distance in the optimization can be

increased by 5 %. The right-hand figure shows how the straight lines in the matrix

unit coordinates translate to geographical coordinates.

It should also be pointed out that the Haversine formula assumes a spherical

Earth, while the true Earth is an ellipsoid. This assumption adds a small extra error

of up to 0.55 % when crossing the equator, but generally below 0.3 % [26]. This error

is negligable for our purposes, and will be ignored. A further point is that whenever

geographical coordinates are plotted on a map, there will be errors in the observed

distances that depend on the projection used to create the map. So if a line is bent

on a map, it might not appear as bent along the true Earth surface.

The only two identified consequences for our application of making these distance

errors, is that computing the length in kilometers of a solution path is very inexact

and that any speed limits in the optimization are applied less exactly. A solution to

the last problem is to increase the speed limit by the error. This may lead to cases

112CHAPTER 6. GEOLOCALIZATION: DEFINITIONS, FORMULATIONS ANDATLASES

figures/coordinates_demo.pdf

Figure 6.4: Map showing directions travelled when calculating distance errors

where the fish is estimated as travelling faster than its maximum speed limit. These

cases can be revealed after optimization by converting the coordinates from grid

units to geographical coordinates, and using the Haversine formula. Then, one can

attempt to adjust solutions so that they obey the speed limit without increasing

the objective function value considerably, or otherwise the whole solution can be

rejected. If an optimization procedure is able to locate several optimal paths, this

analysis can be used to pick out those that are most realistic.

6.3.2 The depth atlas

The depth atlas consists of a 507×329 matrix MD giving (averaged) depth values in

meters for each cell in the 20 kilometer grid. Depth values are restricted to d ≥ 50.

The hydrodynamic model does not have defined values at all grid cells, typically

when more than half of the area within the grid cell lies on land [24]. To determine

which points are included in the atlas, a mask matrix M is given, with 1 for points

in the sea and 0 in points that are defined as land. This mask can be “overlaid” any

other matrices generated by the model so that only values where the temperature

6.3. THE ROMS ATLAS 113

figures/depthAtlas.pdf

Figure 6.5: Depth values and example surface temperature around Lofoten

atlas is defined are shown. We let this mask define the ocean set Ω. Overlaying the

mask gives the depth values for the area around Lofoten shown in Figure 6.5 on the

left.

6.3.3 The temperature atlas

The temperature atlas is given as a 507×329×30 matrix MT . For each square in the

grid of the atlas, the temperature atlas provides 30 temperature values, numbered

from 1 to 30. These temperature values correspond to each of 30 layers of the depth

column. The first entry in the temperature vector is for layer 1 and corresponds to

the deepest point, and the last is for layer 30 and is the point closest to the surface.

See Figure 6.6 for an illustration.

In order to map each layer to depth values, there is an associated vector s of

length 30 that when multiplied with the depth of the ocean at that point will give a

vector of (negative) depth values that the temperature applies to. This vector is the

same for all grid cells and contains the numbers {−59
60
,−57

60
, . . . ,− 3

60
,− 1

60
}. Since we

so far have considered depth to be a positive number, we will from here on take s

with positive values instead of negative.

The surface temperatures (layer 30) for the atlas subset considered are shown in

114CHAPTER 6. GEOLOCALIZATION: DEFINITIONS, FORMULATIONS ANDATLASES

figures/layer_demo.pdf

Figure 6.6: Illustration of use of layers for three adjacent points for matrix positions

i = 203 and j = 259, 260, 261.

Figure 6.5 on the right.

6.3.4 Time aspect

The temperature in the sea varies continuously over time, so the atlas provides

temperatures for different times. The finest time-resolution in the files provided for

this work is daily averages. Hence for the remainder of this chapter, we will consider

a whole day as the smallest possible time unit for geolocalization. The amounts of

data for each point in time (≈ 400 MB per daily average) suggests that any solution

method for the geolocalization problem must allow for non-storage of all data in

memory at a time.

6.4. TEST INSTANCES FOR TESTING OPTIMIZATION METHODS 115

6.3.5 Continuous extension of the atlas

Since the temperature in the atlas is given on a finite point set, interpolation of tem-

perature values in three dimensions is necessary for the assumption of a continuous

atlas. Methods for interpolating the atlas are presented in the next chapter.

6.4 Test instances for testing optimization meth-

ods

We have a mathematical formulation of the simplified geolocalization problem, and a

general idea on how a real-world atlas works. Before discussing methods for solving

the problem, we suggest a method for generating test instances of the problem,

in order to be able to determine how well solution methods are applicable to the

problem.

The idea is to generate a synthetic fish trajectory. Start with real-world atlases D
and T , the latter evaluated at one point in time. Define a test path that is well within

the ocean Γ given by the atlas, satisfying a speed limit. Generate depth/temperature

time series by evaluating the (interpolated) atlas at the points on the path, and try

to recover the path using optimization. The path can either stay well within the

boundaries of the ocean, so constraint (6.5) can be relaxed, or the problem can be

complicated by letting the path be close to the boundary.

An arbitrary test path within the ocean can be constructed by using a simulation

procedure similar to a random walk. We make a path of length N + 1 where the

time unit is one day. A starting point (xinit, yinit) is given, and an upper limit vmax

(measured in grid units) for horizontal movement must be specified. The mask M is

provided for checking the ocean constraint. Realistic movements in the depth column

can be mimicked by using true DST depth observations, denoted D. See Algorithm

3 for a procedure used for generating a test path of length N + 1.

The normal probability distribution for movements must use a variance that

makes movements in one direction that exceed the speed limit unlikely. Note also

that any horizontal movements that exceed the speed limit are ruled out by the

116CHAPTER 6. GEOLOCALIZATION: DEFINITIONS, FORMULATIONS ANDATLASES

if-statement. Some further options for test paths are:

• only allow movement at the exact positions that temperature information ex-

ists without using interpolation

• adopting smaller time steps than one-day steps, and downsampling the tem-

perature/depth time series as described later.

Algorithm 3 function [x,y,T] = makeTestPath(D,M, vmax, N, xinit, yinit)
x0 ← xinit

y0 ← yinit

for i← 1, . . . , N do

step_ok← false

while not step ok do

nx, ny ∼ N (0, σ2)

(xi, yi)← (xi−1 + nx, yi−1 + ny)

if n2
x + n2

y ≤ v2
max and Mround(xi),round(yi) = 1 and di ≤ D(xi, yi) then

Ti ← T (xi, yi, di)

step_ok← true

6.5 Towards the original geolocalization problem

Provided that an optimization method has been found that successfully solves the

simplified problem to (approximately) recover a test path for several test instances,

we can work on extending the mathematical problem description towards the orig-

inal geolocalization problem. We can view this as introducing “difficulties” to the

problem. Correspondingly, increasingly “difficult” examples should be construced

and tested. Then the optimization methods should be adjusted, if necessary, to re-

cover the test paths. It might be fruitful, if possible, to introduce each extra difficulty

separately, introduce adjustments to optimization methods and then later examine

how the difficulties added together affect the effectiveness of the solution methods.

6.5. TOWARDS THE ORIGINAL GEOLOCALIZATION PROBLEM 117

The following subsections suggest how more complexity can be introduced and corre-

sponding changes in the mathematical formulation and in synthetically constructed

examples.

6.5.1 Favouring temperature matches

With synthetic examples constructed from the real-world atlas, we do know that

there exists at least one match of the temperatures on the test path, even though

it may be difficult to find using optimization. In reality, the atlas is made using a

model, with errors, and the DST data contains measurement errors due to averaging

and the imprecision of individual measurements. With real data, it is less likely that

there exist exact matches of temperature/depth combinations for the whole time

series, within the swimming range of the fish.

With the formulation of the objective in (6.1), the depth variable d can be set

freely by optimization algorithms. Thus, it is may be that the depth time series can

be matched exactly in the optimization by simply setting d = D, while the temper-

atures will be only “close to” those observed in the time series. This is equivalent

to favouring solutions where the differences in depth between time series and can-

didate path have zero contribution to the objective function, over those paths with

only approximate matches in depth, but better matches in temperature. To adjust

this, we can add lower weight to differences in depth in the objective function by

introducing a parameter, a factor α ∈ [0, 1], and redefining the objective function

(6.1) like this:

f(x,y,d;α) =
∥∥∥ (αD,T)− (αd, T (x,y,d, τ))

∥∥∥
2
. (6.7)

Subsequently, α can be decreased (from an initial value of 1) to see the effect of such

weighting.

An alternative is to use the depth time series directly in the optimization, instead

of having depth as a variable. When developing methods, this is an advantage,

because it will be easier to analyze the problem for each step in 2-D rather than

in 3-D. We can view this as setting the α parameter above to 0, so the objective

118CHAPTER 6. GEOLOCALIZATION: DEFINITIONS, FORMULATIONS ANDATLASES

simplifies to

f̃(x,y; D) =
∥∥∥T− T (x,y,D, τ)

∥∥∥
2
. (6.8)

When solving the problem for real DST time series, or for e.g. a constructed example

with noise added, the depth variable should ideally be free, so that there is some

degree of flexibility in searching for the target temperature. An idea is to restrict

the depth to an interval around the observed (daily averaged) depth.

6.5.2 Adding the depth constraint

Add the depth constraint to the mathematical description, by replacing constraint

(6.5) by

(xt, yt, dt) ∈ Γ, t = 0, . . . , N. (6.9)

It should be noted that for averaged time series, it might be necessary to retain the

depth of the deepest point visited during the day, and match the constraint with

this value instead of the average. This is particulary relevant if the fish is assumed to

swim close to the seabed, where this constraint can be used to resolve a tie between

two different paths that are otherwise equally good solutions.

6.5.3 Introduce a time-varying temperature atlas

The addition of the possibility for an atlas to be time-varying requires the temper-

ature atlas to be evaluated at the time that the point in the path corresponds to.

We introduce the vector τ = (0, 1, . . . , T)T , such that it gives the time-index (day

index) for each observation in the time series. We then replace objective function

(6.1) by

f(x,y,d) =
∥∥∥(D,T)− (d, T (x,y,d, τ))

∥∥∥
2

(6.10)

A time varying atlas can be simulated, for creating and experimenting with con-

structed examples, by making time-varying random or systematic pertubations to

the values in a time-constant atlas. Then we can test how this affects the efficiency

of solution methods.

6.6. MAXIMUM TRAVELLING DISTANCE FOR THE FISH 119

6.5.4 Downsampling strategies

Given a real DST time series, with a 10 minute sampling interval, it is not obvious

how to match it against a time varying atlas with values given for each day. We

could use linear interpolation of the atlas in time, to get temperature values for each

point at 10 minute intervals. This would, however, not reflect the daily variability

in the temperature, since the values given are daily averages. Instead we consider

the following alternatives for downsampling the DST data:

1. using every 144th observation (since there are 144 observations per day)

2. do a moving average smoothing of the time series and pick every 144th smoothed

value

3. compute averages of all 144 observations from each whole day

It is reasonable to use alternative 3, since it most closely resembles daily average

nature of the temperature atlas.

6.6 Maximum travelling distance for the fish

The swimming speed of fish has been studied e.g. in [2]. The speed depends on many

biological, physiological and environmental factors, and varies between fish species.

It is common [56] to express the maximum swimming speed as proportional to the

body length L, e.g.

vmax = λ× L

where the λ factor is species dependent and measured in body length (in centime-

tres) per second. In laboratory experiments, [56] reports λ values of 2.1 and 2.6 for

sustained swimming speed for atlantic cod. A study with high-resolution tracking

using acoustic tags [13] showed swimming speeds for atlantic cod giving λ = 2.09,

but showed mean speeds that where less than half of this.

The maximum swimming speed can be used to establish an absolute maximum

on the travelling range of the fish in one day. However, it is not realistic that a fish

swims in a straight line at maximum speed for a very long period of time. In [41],

120CHAPTER 6. GEOLOCALIZATION: DEFINITIONS, FORMULATIONS ANDATLASES

the maximum displacement in one day for the migrating cod studied was 59 km (one

single day in three years) while mean displacement in one day varied from 6.6 to 24

km. From this we can conclude that the maximum swimming speed should be used

only as an absolute upper limit on daily displacement, and that lower swimming

speeds are more likely for most of the time. As a rough estimate, we will use λ = 2.0

in the geolocalization, and adjust if experience shows this to be necessary.

In Table 4.2 in Chapter 4, the maximum displacement in the vertical direction

between 10 minute observations and over a 24 hour period are given for tag 1664. The

maximum vertical displacement of 290 meters in one day is very small compared to

the maximum swimming speed of the fish. This may not be the case for all fish, but

to simplify we will ignore the vertical component of the swimming when considering

speed limits.

6.7 Solution methods for the optimization prob-

lem

We describe in this section how the optimization could be solved using different

approaches to optimization, and include some considerations on implementation

issues.

6.7.1 Three solution approaches

Total optimization

The optimization problem described above, with constraints, can be implemented

directly into a standard computer solver with a huge search space of 3(N + 1)

variables. However, since the amounts of data in the atlas for each day is very large,

not all temperature information can be loaded into memory at one time. Loading and

unloading data is time-consuming, and not tractable unless it is done systematically

so that as much as possible is done at each time step before unloading. Most standard

optimization solvers treat all variables equivalently, and move through the search

space in a theoretically efficient manner (for instance in a descent direction found

6.7. SOLUTION METHODS FOR THE OPTIMIZATION PROBLEM 121

using supplied derivatives or finite differences, for line search methods). It will require

severe modification of standard software for optimization to implement searches that

do not use information from many points in time at once. However, with a time

constant or artificially time-varying atlas, we can test this approach. This can give

insights into how other methods may work.

Most numerical optimization solvers for non-linear problems require a starting

point for all variables. A good start is a straight line from P0 to PN , with the depth

variable set equal to the depth series. This may not be a feasible point, for instance

if the ocean is not deep enough or the path crosses land. If that is the case, an option

is to adjust the initial path so that it becomes feasible.

Local optimization of total function

A simple optimization method is 1-parameter line search or the coordinate search

method [33]. This method searches along one variable for a minimum, and proceeds

with the next variable. There are no guarantees of convergence and efficiency. An

advantage, however, is that data for one dimension is all that is needed at a time,

compatible with the way our temperature data is organized. An idea is to extend this

method to solving for three variables at a time, xt, yt, dt, such that only temperature

data for time step t is needed. This is similar to pattern search methods [33], where

a set of search directions are chosen at each iteration. The search space at each

iteration is rather small because of the horizontal speed limit, making it possible to

search it efficiently. This approach also requires a starting path.

Ensemble search

This approach involves solving a succession of local optimization problems for each

time step, without considering the objective value for the whole time series. An ad-

vantage is that we do not need a starting path for the optimization. Let the position

P0 for the first time step be given. Then, given an estimated position on day n, and

an observed temperature on day n + 1, what position within the swimming range

of the fish gives the best temperature match? This introduces a local optimization

problem in 3-D. This problem may have several good solutions, with only few or

122CHAPTER 6. GEOLOCALIZATION: DEFINITIONS, FORMULATIONS ANDATLASES

none being close enough to the actual position. The best solutions define an ensem-

ble that may be retained, and used as starting points for the next time step. This

gives rise to an increasing number of candidate paths, and a strategy must be chosen

to keep the paths that give the best total match (so far, in time) to the temperature

series. It is also interesting to see if the point of recapture, PN , is actually found

using this method.

6.7.2 Implementation issues

We now discuss some aspects of implementing the opimization problem on a com-

puter. It will be discussed mostly briefly, as it is desirable keep discussions in this

thesis on a principal level using pseudocode.

Optimization problem algorithms

To solve the optimization problem in the previous sections, no matter whether the

total, local or ensemble search variant is used, the following computer methods are

suggested for solving the optimization problem:

• Standard solvers for constrained non-linear optimization. Derivatives are con-

structed using finite differences. Such methods are often more efficient if the

objective and constraint functions are continuous and differentiable, and even

though we interpolate the temperature atlas, this may not be true unless all

the ocean constraints are interpolated as well, using smooth functions. A dis-

advantage of such a method is that it can easily get stuck in a local minimum.

• Derivative-free solvers for unconstrained optimization. The objective function

may be implemented such that infeasible solutions are penalized.

• Derivative-free solvers supporting constraints, that use transformation of vari-

ables to implement the constraints.

• Integer programming, by searching only at the integer points or at a set of

discrete points.

6.7. SOLUTION METHODS FOR THE OPTIMIZATION PROBLEM 123

Software problem formulation

There are many ways to specify optimization problems in different programming

languages or modelling systems. Here, only MATLAB will be considered, and we

now present the standard way of specifying the problem as used by built-in functions

such as fmincon() and fminsearch(). These are solvers for finding a local minimum

of a function. The following is required (note that x here should not be confused

with the one horizontal component of paths in our optimization problem, it is simply

a vector of unknowns):

• Objective function f(x), taking a vector x ∈ Rn (the n optimization variables)

and returning a real number (the objective function value).

• Starting point x0. Does not necessarily have to be feasible, but choice of start-

ing point may affect whether a solution can be found, the rate of convergence

and which local minimum is found if there is more than one.

Constraints can be given as:

• upper and/or lower bounds on each element of x, i.e. two vectors l and u

giving the constraint l ≤ x ≤ u.

• constraint matrix A and right-hand side vector b of inequality constraints on

the form Ax ≤ b. Correspondingly for equality constraints Ax = b

• a function c : Rn → Rm for m non-linear inequality constraints, taking in a

current solution x and returning a vector of m values. The current solution is

regarded feasible if c(x) ≤ 0. Correspondingly a function ceq(x) for non-linear

equality constraints, where the requirement for feasibility is ceq(x) = 0.

Variables and objective function

To satisfy the format given in the previous section, the path x,y,d of 3 coordinates

at (N + 1) time points must be written as a long vector of 3(N + 1) elements. We

do this by augmenting them, giving us

p = (xT ,yT ,dT)T ∈ R3(N+1)

124CHAPTER 6. GEOLOCALIZATION: DEFINITIONS, FORMULATIONS ANDATLASES

as optimization variable. Then, to convert from numbering of indices in the path

back to separate coordinates, we subtract (N+1) for the y coordinates in the middle

and 2(N + 1) for the d coordinates at the end of the vector. To consider the point

in the path at time point t, we recover it using

(xt, yt, dt) = (pn, pn+(N+1), pn+2(N+1)).

The objective function is implemented directly as given in (6.1), with the modi-

fication that the temperature atlas function takes a path instead of its individual

components, i.e. T (p) for the time-constant case and T (p, τ) for the time-varying

case.

Implementing constraints

The speed constraint can be implemented as a function cspeed : R3(N+1) → RN ,

where the speed limit is subtracted from the horizontal Euclidian distance between

the previous point on the path and the new. We use the indexing for the augmented

path variable vector p, and get

cspeed(p) =




‖(p1, pN+2)− (p0, pN+1)‖2

...

‖(pN+1, p2N+2)− (pN , p2N+1)‖2


− 1vmax

where 1 is a vector of suitable size with only ones. If the speed at some point is too

large, the produced vector will have a positive value at that point.

The constraint on depth can be skipped if the depth is set directly as the down-

sampled DST depth time series instead of being a variable. Otherwise, the constraint

can be the restriction of depth

1. to positive real numbers, i.e. d ∈ RN+1
+ . Then we use a bound constraint,

0 = ld ≤ d. This constraint is relevant no matter which of the following

alternatives is chosen.

2. by the depth of the ocean, dt ≤ D(xt, yt) for each time point t. This must be

implemented as a non-linear constraint cdepth : RN+1 → RN+1 returning the

amount the variable oversteps the bound at each point in time.

6.7. SOLUTION METHODS FOR THE OPTIMIZATION PROBLEM 125

3. by some depth value that is larger than any of the DST observations, using a

bound constraint ud.

4. restricted to some interval around the DST depth time series. We introduce a

tolerance parameter β (which can be made time-varying if desired), and use

bound constraints min{D−β,0} = ld ≤ d ≤ ud = D +β. (The minimization

for the lower bound is done element-wise.) The tolerance parameter can for

instance be based on the variation within the data that has been downsampled

to obtain a depth value for each day.

An additional option, which is non-trivial to implement, is to retain the maximum

depth observed each day (before downsampling) and require this depth to be possible

to attain within a reasonable radius around each point on the solution path. For this

to work, a more detailed depth-atlas is required, since the depths given in the ROMS

atlas are averages over the whole grid cell.

For the constraints concerning the region of the atlas, we can use upper and lower

bounds for the indices of the square region that the atlas provides. For instance, if

we use the 20 km gridded atlas, which has observations in a 507 × 329 matrix, we

would take

1 = lx ≤ x ≤ ux = 507× 1

and

1 = ly ≤ y ≤ uy = 329× 1.

In addition, we need bounds for areas of land, where the atlas is not defined. We

can use a constraint cregion : R2N+2 → RN+1. This function returns a vector with

a positive number for each point (xt, yt) in the path that is outside the boundary,

and zero for the other points. For invalid points, the function could simply return a

number that is large in magnitude, or the infinity constant, since this will ensure that

the constraint function is positive. On the other hand, many optimization methods

take advantage of local changes in the constraint functions. This is used to determine

the best way to alter variables of the current solution to obtain a feasible solution. To

make this possible, we can let the constraint function increase gradually when very

close to the boundary, to attain a value greater than 0 when violating the bound.

126CHAPTER 6. GEOLOCALIZATION: DEFINITIONS, FORMULATIONS ANDATLASES

To sum up, the non-linear inequality constraint can be given as

c(p) =




cregion(p)

cspeed(p)

cdepth(p)


 (6.11)

and the bound constraints as

l =




lx

ly

ld


 , and u =




ux

uy

ud


 .

(Depending on the choices described above, cdepth may be zero or ud infinite.)

6.8 Summary

In this chapter, we have formulated the geolocalization problem mathematically, and

presented how the ROMS atlas is implemented. We have discussed the construction

of synthetic examples, and suggested general methods for solving the optimization

problem. In the next chapter, the interpolation procedure will be described in detail.

Then, attempts will be made to solve the geolocalization problem for given test

problems and for real data.

Chapter 7

Interpolation and algorithm for

geolocalization

This chapter demonstrates the practical interpolation which provides a continuous

extension of the temperature atlas. Further, an algorithm for the geolocalization

problem is described. The algorithm is run on test instances, giving insight to a

wide range of issues concerning the algorithm. Finally, the algorithm is run on true

DST data in order to find the geolocation of the cod.

7.1 Temperature atlas interpolation

Numerical methods for solving the optimization problem formulated in the previous

chapter as a continuous problem will require the ability to estimate temperature

values for any point in the ocean, not just those at the exact layers and points

given in the grid. Also, a continuous extension may be needed to find good temper-

ature/depth matches.

7.1.1 Why interpolation?

Integer programming or related approaches can work with only the integer points in

the atlas. It would be much simpler to just search these integer points for tempera-

ture matches, with a high tolerance to compensate for lack of exact matches. This

127

128CHAPTER 7. INTERPOLATION ANDALGORITHM FORGEOLOCALIZATION

has been attempted.

First, interpolation of the atlas was done to obtain a temperature time series

associated test paths construced as in Section 6.4. This is a good way to obtain a

series that does not match exactly to points in the atlas. Then, a simple brute-force

search method was used to attempt to locate the test path. The result of this was

that completely different paths were found. These paths turned out to have much

better temperature matches (i.e. much lower objective function value) than the path

obtained by rounding off the true test path to the nearest integers in the atlas. Thus,

it is very likely that we will need interpolation to avoid excluding true solutions, and

to find a larger range of paths with optimal objective function values.

7.1.2 Linear interpolation for depth

The atlas gives temperatures for 30 layers for a grid cell in the ocean that is dmax

meters deep. We wish to determine the temperature td at depth d, between 0 and

dmax (if d > d0, the ocean is not deep enough to have a temperature at this point). We

multiply the s vector by dmax, to obtain vector ds. Now, there are three possibilities.

The desired depth d might be smaller than the 30th element of ds, i.e. closer to the

surface than the topmost layer. Or, d may be greater than the first element of ds,

so it is deeper than the deepest layer. In these two cases, we use the temperature

for the shallowest/deepest layer directly. A third possibility is that d falls between

two elements of ds, i.e. between two layers a and b with depths da and db. Then, we

do a linear interpolation between the two temperatures ta and tb.

Specifically, we use the formula for a straight line through two points and insert

the depth d to obtain

td =
tb − ta
db − da

(d− da) + ta

for the temperature td at d meters.

7.1.3 Thin plate spline interpolation for position

For determining the temperature at a point (x0, y0, d0) which is not at one of the

precise coordinates given by the atlas, we use thin plate spline interpolation (see

7.1. TEMPERATURE ATLAS INTERPOLATION 129

figures/layers_interp_demo.pdf

Figure 7.1: Illustration of interpolation of temperature for depth

Section 2.7.1). The computer software we use for this is designed for interpolating

function values on points in the xy-plane. It takes in a set of interpolation nodes

with corresponding temperature values, and returns a function f(x, y) – a thin plate

surface that passes through all the interpolation nodes at the given temperature.

We choose a set of points in the plane that exist as integer points in the atlas,

around (x0, y0), and use the linear interpolation described above to obtain the tem-

perature at the right depth. Any points in this set that do not have a temperature

defined are excluded from the set. The nodes and function values are given to the

software, and the resulting spline is evaluated at (x0, y0).

7.1.4 Atlas subset for testing interpolation

The Lofoten subset of the 20 km gridded temperature atlas on the left in Figure

6.2 will be used to demonstrate the interpolation. The elements of the atlas needed

are the five matrices M (the mask), Mλ (longtidude), Mφ (latitude), MD (depth)

and MT (temperature). The row and column ranges are numbered i = 1, . . . , 10 and

j = 1, . . . , 8, respectively.

The mask matrix is illustrated in Figure 7.2 on the left, with white cells indicating

points in the ocean and black cells indicating land. We view the area provided by the

130CHAPTER 7. INTERPOLATION ANDALGORITHM FORGEOLOCALIZATION

figures/checkerboard.pdf figures/tempAtlas120meters.pdf

Figure 7.2: Mask and vertically interpolated temperatures at 120 meters.

matrix as a continuous set, and let our geolocalization methods search freely through

all points, without restriction. The red balls at the centre of each cell indicate what

precise position in this set the geograpichal coordinates in Mλ and Mφ correspond

to.

The temperature atlas is considered undefined at all points that fall within black

cells in the mask. The surface temperature given by the atlas (using only layer 30),

with the mask overlaid, was shown in Figure 6.5 in Section 6.3.3. An example where

depth interpolation is used is the temperature at 120 meters in Figure 7.2 on the

right. Note that grid cells where the atlas shows that the ocean depth is less than

120 meters are also black, and the temperature atlas is considered undefined at these

points.

7.1.5 Testing interpolation schemes

We discuss how many neighbouring points should be included as nodes for making

the spline. The centre point used for interpolation is the one we get by rounding

both coordinates to the closest integer.

We consider eight different sets of points around the centre point. The centre

point is in the middle of the innermost grid cell marked by a red rectangle in Figure

7.1. TEMPERATURE ATLAS INTERPOLATION 131

figures/interpolation_schemes.pdffigures/interp_scheme_testing_203_259.pdffigures/interp_scheme_testing_218_250.pdf

Figure 7.3: Different interpolation schemes and informal error analysis.

7.3, and the interpolation for this centre point is used for obtaining the temperature

at any point within the cell

{x, y : 4.5 ≤ x < 5.5, 4.5 ≤ y < 5.5} .

The point sets are shown with different colours, where the smallest point set of 5

points is blue, and new point sets are obtained by adding more points to the previous

set in a symmetric pattern. The eight configurations are 5, 9, 13, 25, 37, 41, 53, 61

and 81 points, respectively, and the orange points are included before the red, giving

a “star” shape for the 41 point set.

We now analyze informally the differences that arise when using different sets of

interpolation nodes. We hypothesize that the values given by evaluating the spline

for the large square of 9×9 = 81 points is “correct”, in the sense that it is the highest

precision we can obtain. We then examine how many points must be included to

make the “error” as small as desired.

Starting with a point in the atlas, we see how large the difference is between

the interpolated value from using n interpolation nodes and the value from using

81 nodes. We repeat this for many (150 random) points within the same grid cell,

such that it is the same sets of node sets that is used. We plot all the “errors”, the

worst (over all 150 points) for each node set and the mean error over the node sets.

The results of such analysis of interpolation for the surface temperatures within two

different grid cells are shown in Figure 7.3. The first cell is near land, such that there

132CHAPTER 7. INTERPOLATION ANDALGORITHM FORGEOLOCALIZATION

may be undefined points in node set, and the second is in the open sea.

We conclude that using a “star shaped” set of 41 points is definitely sufficient

to achive the needed precision, for the 20 km gridded atlas. Including more nodes

than 41 gives a “gain” of order 10−3 or less. This is an insignificant gain, compared

to the extra processing time involved. A similar analysis has been done for the 4

km gridded atlas, where a very high precision is achieved with as little as 13 points.

This may be because the higher resolution means less temperature variation between

adjacent cells. On the other hand, the 4 km gridded atlas is much more detailed,

including a better representation of eddies [24]. In case this leads to inaccuracies in

the interpolation at some points, while not at others (e.g. the ones tested), we “play

it safe” and include more points.

Another argument for including more than 13 points in the interpolation of the

4 km atlas is robustness. When moving between adjacent grid cells, the whole set of

nodes used shifts one unit. With just 13 points, 5 of the points are replaced when

shifting (≈ 38% of points). With 25 points and 37 points, 5 and 7 points (≈ 20% of

points) are replaced, respectively. When replacing a large proportion of the points,

we can risk getting artifacts in the form of discontinuities and non-smoothness in

the resulting interpolation at the border between grid cells. The discontinuitites may

prevent temperature matches in the optimization, and the non-smoothness can cause

problems for solvers for non-linear optimization that use derivatives. Thus, we never

use less than 25 points in the interpolation when the atlas is used for geolocalization

with real DST data.

We show the results of using this interpolation scheme for the temperature in

the Lofoten area in Figure 7.4. See Appendix C for a discussion on efficiency issues

concerning this interpolation.

7.1.6 Consequence of missing values

As mentioned above, whenever one of the 41 points in the interpolation point set

is one where the temperature atlas is undefined, the point is simply ignored such

that the spline is constructed without a node and function value at that point. For

some positions (for instance, at the end of a narrow fjord), this may result in there

7.2. TEST INSTANCES 133

figures/tempAtlasSurfInterp.pdffigures/tempAtlas120mInterp.pdf

Figure 7.4: Horizontal interpolation of surface temperature and temperature at 120 me-

ters for Lofoten area.

being too few data points to create a spline. This can be handled by letting the

temperature atlas be undefined at all points within the grid cell, or by returning a

constant value for cell. The first approach is used for the results in this thesis.

The approximate distance for the most remote interpolation node is 5× 20 km.

For some positions, a body of land may lie in between, making it unrealistic to use

the far away point as node for a spline determining the temperature at the current

point. We consider this problem to be negligable.

7.2 Test instances

Several test instances of the geolocalization problem have been created using the

procedure described in Section 6.4, and have been used for testing and developing

algorithms. Two of those that are used for demonstration purposes in this chapter

are shown in Figure 7.5 as both temperature/depth time series and as geographical

paths. A summary of their properties are given in Table 7.1. For each “synthetic

fish”, a length L is given in centimetres, in order to establish a maximum swimming

speed vmax measured in meters, and ultimately grid units, per day (ref Section 6.6).

134CHAPTER 7. INTERPOLATION ANDALGORITHM FORGEOLOCALIZATION

figures/testPaths.pdf

Figure 7.5: Test instances 1 and 2

The formula is then

vmax = L/100 cm× λ× 60 seconds× 60 minutes× 24 hours.

The speed measured in grid units is obtained by dividing by the resolution of the

atlas. Using λ = 2.0 and a 100 centimeter long fish, we then get 8.64 grid units for

the 20 km atlas and 43.2 for the 4 km gridded atlas. We let σ = vmax/3 for the

normal distribution used for generating the daily movements. The depth is set to

the true DST depth time series for tag 1664, downsampled using daily averages, to

make the depth movements realistic. All test instances use a time-constant atlas.

The point of release for all fish is the given point of release for tag 1664, e.g. 67.4◦N,

12.6◦E, close to Lofoten.

For the temperatures for the test instances for the 20 km gridded atlas, an inter-

polation scheme of only 13 points was erroneously used, and time has not allowed for

creating new temperature time series with more points in the interpolation. Since

these are test instances, however, the consequence is considered to be negligable as

long as the same interpolation is used for the atlas that the optimization algorithm

searches.

7.3. SOLVING THE PROBLEM USING STANDARD SOLVERS 135

Table 7.1: Properties of test instances

Instance Atlas type Fish length Series length

1 20 km 100 cm 100 days

2 20 km 50 cm 100 days

4 4 km 100 cm 30 days

7.3 Solving the problem using standard solvers

Attempts have been made to solve the geolocalization optimization problem for

test instances, as a total optimization problem as described in Section 6.7.1, us-

ing general solvers and the implementation as in Section 6.7.2. For instance, the

fmincon() function of MATLAB has been used, with many different varieties of

objective function and constraints. The testing has not been sufficiently systematic

to be documented properly here. Experience has shown that this approach is not

able to provide good matches in the temperature series, and that it has an extremely

high CPU running time.

A reasonable explanation is that the interpolated temperature atlas, for one

day or time step, is not a convex function. This is due to its nature with possible

local maxima and minima at or near interpolation nodes. Then, the total objective

function is not convex either. Thus, an optimization algorithm using derivatives, such

as active-set and interior point that are used by fmincon(), is unable to escape local

extrema.

A solver for unconstrained least squares problems (lsqnonlin() in MATLAB)

and one using a derivative-free search method (fminsearchcon()) have been tried,

with penalty terms added to the objective to penalize violations of the speed limit.

Also, a derivative-free search method for constrained problems (fminsearchcon()

from MATLAB file central) has been tried, along with experimentation with Particle

Swarm Optimization (PSO), a non-deterministic optimization method that can solve

non-smooth problems (see e.g. [20]). Methods from the global optimization toolbox

of MATLAB were also tried. No significantly better results were obtained for the

total optimization problem.

136CHAPTER 7. INTERPOLATION ANDALGORITHM FORGEOLOCALIZATION

The optimization approach of local optimization of the total function described

in Section 6.7.1 is rejected because it is believed to give very slow convergence. The

reason for this is that for each point on a candidate solution path, the position is

bounded by the speed limit in maximum movement to both the previous and next

point in time.

We conclude that general-purpose approaches to optimization are not useful to

solve the whole problem, and must instead make a special-purpose algorithm.

7.4 Analysis on one time step

In this section we will study the search for a temperature match in one time step,

to aid in the discussion on solution methods for the geolocalization problem. That

is, given a release position on day 0, is it possible to find match for the average DST

depth and temperature on day 1 within the swimming range of the fish?

7.4.1 A one-step test problem

We consider a test problem where the initial position is (x0, y0) = (218, 250) in the

20 km gridded atlas, a point in the open sea between Iceland and Norway. After

one day, the synthetic fish has reached position (x1, y1) = (216.9493, 244.2176) at

a depth of D1 = 38.3970 m, an arbitrarily selected movement within the selected

swimming range of 8.64 grid units. The interpolated temperature at this point is

T1 = 1.9971 degrees.

We use interpolation both vertically and horizontally to get splines for the tem-

perature at depth D1 within a box of 24x24 units around the current point. The

splines are evaluated on a grid with a spacing of 0.2 units. This gives the plot on the

left in Figure 7.6. The swimming range of the fish within a day is indicated by the

yellow circle. Then we make a plot on the right in the same figure of the objective

(with the depth fixed at D1)

f(x, y;D1) = |T1 − T (x, y,D1)| .

7.4. ANALYSIS ON ONE TIME STEP 137

figures/temp_surf_218_250.pdf

Figure 7.6: One step temperature and objective.

In this plot, points on the 0.4 unit grid where the function values are less than 0.1

are indicated by a yellow circle.

7.4.2 Multiplicity of solutions

It can be seen that the target temperature is found within a precision of 0.1 degrees

within a long “belt”. Numerical optimization methods can be used to find more exact

matches. We run MATLAB’s fmincon() with the active-set algorithm, starting at

an arbitrarily picked yellow circle within each 1 × 1 unit box, and use this box as

bound constraints. In the case demonstrated, many points with objective function

value of less than 10−4 were found, which is better than the precision of actual DST

measurements. So even though they may have slightly different objective function

values, they are equally “correct”.

The conclusion to draw from this is that there are very many positions at the

target depth within the daily swimming range of the fish that have the target tem-

perature, including the “true” position of the synthetic fish. A search procedure that

starts a new search from all of these positions, at each time step, will quickly have an

exponential growth in the number of candidate solution paths. Care must be taken

to select only a few solutions to branch on. As a start, only one solution from each

unit box is included.

138CHAPTER 7. INTERPOLATION ANDALGORITHM FORGEOLOCALIZATION

7.5 Suggested algorithm for geolocalization

This section presents a special-purpose optimization algorithm for solving the ge-

olocalization problem, based on the ensemble search alternative described in the

previous chapter. An algorithm for this problem must be able to provide results

in a reasonable amount of time. It should also be able to estimate uncertainty in

solutions, since there may be many solutions having equivalent objective function

values. The main idea of the algorithm is to merge solutions that end up at the

same point, to reduce the number of branches of solutions paths that the algorithm

must maintain. Also, it is hoped that partial solutions that go in the wrong direction

will “die out” if they are way off their target, due to inability to find a match for

temperature, when staying in the “wrong” area over longer timer intervals.

7.5.1 Data structure for solutions

We introduce a data structure or class which we will call SolutionPath. Objects of

this class have the following properties, with data type and size indicated:

<1× 1 N> length

<n× 1 SolutionPath> prevPaths

<n× 2 R> endPoints

<2× 1 R> currentEndPoint

A SolutionPath object then contains n endpoints (n ≥ 1) and a vector of

SolutionPath objects of one time step shorter length that lead to the current point.

A SolutionPath object for the initial point is allowed to have no previous paths,

and the only endpoint is the initial point. Thus, the object recursively describes the

path from a start point to the current position. The current position given by the

property currentEndPoint is defined by all end-points together; see a later section

for details. To keep track of how long a path each object represents, the length

property is maintained.

7.5. SUGGESTED ALGORITHM FOR GEOLOCALIZATION 139

7.5.2 Main algorithm

An outline of the suggested procedure is given in Algorithm 4. There are many

details left to specify, which will be done in subsequent sections. Also, a more detailed

version of the algorithm is given in Appendix B. The result of running the algorithm,

if it does not terminate prematurely, is a collection of solutions Ψ(tmax) containing a

number of SolutionPath objects of length tmax + 1. The algorithm uses the depth

as a fixed parameter, and it is thus objective function 6.8 that is minimized. Only

the speed constraint is used in the algorithm – the ocean constraint has been moved

into the objective function in the sense that positions in the ocean with undefined

temperature never get temperature matches in each local search.

Algorithm 4 Geolocalization

1: given a time series T = (T1, T2, . . .), D = (D1, D2, . . .) of temperature and

depth and a starting position (x0, y0)

2: initialize a set Ψ(0) containing a SolutionPath object with the starting point

3: for t← 1, . . . , tmax do

4: initialize a set Ψ(t) maintaining all solutions at time step t

5: for each SolutionPath ψ in Ψ(t−1) giving a starting point (xt−1, yt−1) do

6: search the area within swimming range of (xt−1, yt−1) at depth Dt to find

Tt within some tolerance

7: for each matching point (x
(i)
t , y

(i)
t) from this search do

8: if the matching point (x
(i)
t , y

(i)
t) is different enough from all other solutions

in Ψ(t) then

9: add the matching point and the path leading up to it to Ψ(t) as a new

SolutionPath object

10: else

11: merge the matching point and path leading up to it with an existing

SolutionPath object

140CHAPTER 7. INTERPOLATION ANDALGORITHM FORGEOLOCALIZATION

7.5.3 Backtracking solution paths

To obtain the paths that all final solutions represent, each solution must be given

to a recursive algorithm that propagates backwards through the solution using the

prevPaths property. We will call this procedure “backtracking”. This will give in-

creasing number of solutions whenever there is more than one previous path. Some

options to handle this are:

• enumerate all paths

• always use e.g. the first previous path

• pick one or a few previous paths randomly

When a day and point of recapture (xfinal, yfinal) for the fish is given, we can use this

to exclude final SolutionPath objects that end up too far away from the recapture

point. If all the end points of the final solutions are far away from the recapture

point, or if the algorithm has terminated before it has reached the end of the time

series, adjustments to the algorithm or parameters must be made to achieve better

results.

7.5.4 Details on merging solutions

Line 8 of Algorithm 4 prescribes when to add a matching point as a new solution

path, and when to add the end-point and path to an existing solution path. The

following details how solutions can be merged.

Recall from Section 7.4.2 that we only considered one solution of each local

search within each 1× 1 unit box. This can be increased to larger boxes, e.g. 3× 3

unit boxes, if necessary to reduce the number of solutions even more. For the first

search at time step 1, this is the only way used to limit the number of solutions.

Optimization is then used to obtain a “perfect” temperature match within each box,

and solutions that do not end up with a close match than some given tolerance can

be discarded.

For the searching performed at the second time step and onwards, the method

for reducing the number of solutions is usually not sufficient to prevent exponential

7.5. SUGGESTED ALGORITHM FOR GEOLOCALIZATION 141

figures/combine_demo.pdf

Figure 7.7: Demo of merging solutions

growth in candidate solutions. Then, since there may be different paths “converg-

ing” after having moved in different directions at time step 1, there is a point in

merging these paths. When a SolutionPath is created, it defines a box around the

initial end point with some prescribed size. Every candidate end point considered is

checked whether it falls within the box of an existing SolutionPath object. If so, the

endpoint, and the path that leads up to it, are added to the existing solution. After

all searching in a time step is finished, the mean of all endpoints of each solution

path is used as starting point for an optimization. This optimization searches for

a “perfect” match bounded by yet a new box, which is a slightly bigger than the

smallest box needed to contain all the endpoints. This optimized end point is stored

as the currentEndPoint property, and then used as starting point for the search at

the next time step. See Figure 7.7 for an example.

It may happen that when starting a search from an endpoint which is made from

merging paths, a temperature match is out of range even though it was not out of

range from one of the individual endpoints. This may cause premature termination

of the algorithm. To prevent this, the swimming range of the fish can be increased

142CHAPTER 7. INTERPOLATION ANDALGORITHM FORGEOLOCALIZATION

by an amount corresponding to the spread in the endpoints that have been merged.

Thus, a solution of the problem at the next time can still be within range.

7.6 Discussion on algorithm

Results from running the algorithm on both the test instances from Section 7.2

and on real DST data are shown in Section 7.7. First, we discuss two important

modifications to the algorithm that have proved necessary for efficiency.

7.6.1 Initial coarse search

Experience from testing the algorithm has shown that it is usually not necessary

to use interpolation when searching for temperature matches within the one-day

swimming distance. It suffices to search the integer points given in the atlas, when

allowing for a greater tolerance in the difference to the target temperature. This

is also more efficent, since no splines need to be generated at this stage. When all

solutions for a time step have been collected, the refining optimization is run within

each box defined by all the endpoints, but this time utilizing the interpolation. This

is done to check whether there truly is a close temperature match. Solutions that

have a resulting objective function value greater than some tolerance can be rejected.

A possible explanation for the fact that only the integer points are needed can

be found by appealing to the intermediate-value theorem of calculus. For functions

of a single variable, the theorem states the following [1]:

Theorem. If f(t) is continuous on the interval [a, b] and if s is a number between

f(a) and f(b), then there exists a number c in [a, b] such that f(c) = s.

The thin plate splines are continuous functions. A function of one variable f(t)

on a closed interval [a, b] is constructed by drawing a line between two neighbouring

nodes used for generating the spline, and evaluating the spline at all points on the

line. The position of the nodes on the line are a and b with a < b. Then, if the

target temperature is s, and if f(a) < s < f(b) or f(b) < s < f(a), then by the

theorem there will always exist a point c on the line having this target temperature.

7.6. DISCUSSION ON ALGORITHM 143

Also, since the thin plate splines are “bent” as little as possible away from the

values of the interpolation nodes, we can expect the spread in the temperature

values at integer points in a local area to be sufficient in determining the spread in

interpolated values. The temperature target temperature is thus most likely found

within a suitable tolerance if it lies between the temperatures at nearby integer

points.

7.6.2 Choice of tolerances

The tolerance setting needed to find intermediate points with the target temperature

can be determined by the typical distance in temperature between neighbouring

integer points in the atlas. The optimization done at the end of each step can be

used to discriminate between

• solutions where the spline surface passes through the level set given by the

temperature, indicating an “exact” match, and

• solutions where the closeness in value is due only to the tolerance used in the

coarse search itself.

See Figure 7.8 for an example where searching for two different temperatures in an

area, using a big tolerance, can lead to both correct and wrong results. A tolerance

of 0.4 degrees might be needed to find all integer points where the temperature is

close enough to 7 degrees (blue plane), while the same high tolerance setting can also

give matches to a search for a temperature of 10.2 degrees (red plane). Clearly, the

temperature of 7 degrees is a true match, since the surface passes through the plane,

while the red plane for 10.2 degrees does not. That is why the refining optimization

at the end of each time step is needed.

One important point to note is that the tolerance should also be considered in

light of the uncertainty in DST observations and in the temperature atlas model.

Having a smaller tolerance than the uncertainty in data may exclude some valid

solutions. However, considering the vast amounts of solution paths that arise from

running the algorithm, a small tolerance in the refining optimization may be the only

way to discriminate between otherwise equivalent solutions. A heuristic used in the

144CHAPTER 7. INTERPOLATION ANDALGORITHM FORGEOLOCALIZATION

figures/intermediate_demo.pdf

Figure 7.8: Demonstrating the effect of tolerance setting.

algorithm is that the tolerance setting is started at a low level, and increased stepwise

only if more points are needed in order to find a sufficient number of matches.

7.6.3 Limiting further the number of solutions

Sometimes, even with the measures described to reduce the number of solutions

maintained by the algorithm, the number of solutions may become too high to allow

an acceptable running time. It is therefore necessary to introduce an extra measure.

When the number of solutions at the end of a time step exceeds a preset threshold,

the box around the first end point of each SolutionPath object used to merge

solutions is increased in size. This new size is used for the following time step. If the

number of solutions has fallen below the threshold at the end of the time step, the

box size is reduced back to the original size. The two box sizes and the threshold can

be chosen by experiments, to find a setting that is a compromise between getting

sufficient spread in the solutions and preventing a large growth in the number of

solutions.

7.7. TESTING THE ALGORITHM 145

7.7 Testing the algorithm

The algorithm has been run on the test instances that were presented in Section

7.2. The results shown in this section have been selected to demonstrate a range

of situations that may occur, and illustrate how changing settings in the algorithm

and the method of backtracking can affect results.

Test instances are used in the algorithm with both 100 days, and with only the

first 30 days of 100 day instances. It is assumed that the fish is recaptured on the

final day, and that the recapture coordinates are known. Unless otherwise specified,

the fish length in the algorithm is set equal to the synthetic fish that has generated

the data. In the figures in this section, many solution paths are shown together with

the mask matrix, giving a distorted map. Each path has a different colour. The

colours are chosen arbitrary within each plot, but the temperature plots have the

same colour as the corresponding solution paths.

For most solution paths, the temperature matches are so close to that of test

instances that they are not shown, and the function value is very close to 0. Unless

otherwise specified, all backtracking has been done randomly, picking only one pre-

vious path at each time step. When running the algorithm, it has been necessary to

experiment with the different parameters. For full details on which parameters are

available, see the complete description of the algorithm in Appendix B.

7.7.1 Too low tolerance can rule out true solutions

When the tolerance for accepting solutions after the “refining optimization” is very

small, it may happen that solutions that are close to the original test instance are

ruled out. An example of this is shown in Figure 7.9, where the paths of running

test instance 2 for 100 days is shown along with the temperatures for each path.

Note that the temperatures match so closely that the individual temperature plots

can not be seen. Even though the maximum swimming distance per day was set to

86.4 km, and the maximum movement in one day in the instance was 83.0 km, at

some point the algorithm “lost track” of the fish. Then it started going in the wrong

direction and still did not die out in the course of the 100-day run. The tolerance

146CHAPTER 7. INTERPOLATION ANDALGORITHM FORGEOLOCALIZATION

figures/geoTest2TooLowTolerance100.pdf

Figure 7.9: Solutions from running on test instance 2 with too low tolerance.

was 10−4 degrees, which is far too small, especially compared to the precision in the

true DST data. This low tolerance settings has, however, been applied successfully

on the other two test problems.

7.7.2 Backtracking only on solutions with good endpoints

Test instance 2 was run for 100 days with a much higher tolerance than before,

in the order of 0.5 degrees, and all final solution paths are shown in Figure 7.10.

Note that some individual temperature plots are slightly different so that they can

be seen. The small differences in objective function value could be used to evaluate

each solution. However, it turns out that these function values are very small, and

that they are not at all related to the closeness to the true path x. This closeness has

been measured for each final solution path x(i) by computing the Euclidian distance

from the true path, e.g.

dist(x,x(i)) =
∥∥∥x− x(i)

∥∥∥
2
,

where solution paths in two dimensions have been turned into one vector before

taking the norm. In Figure 7.11, these distances are shown in blue, in an increasing

order. For each solution path, the corresponding objective function value is shown in

7.7. TESTING THE ALGORITHM 147

figures/geoTest2AllSolutions100.pdf

Figure 7.10: All solutions from running test instance 2 with higher tolerance.

figures/geoTest2NormAnalysis.pdf

Figure 7.11: Analysis of objective function value of solutions to test instance 2.

green. There is no apparent link between function value and closeness to the original

paths, and thus all the solutions can be considered equivalent when considering

function value alone. It seems that the solutions can be classified into three groups

– ending around Iceland, ending near the coast of Møre og Romsdal or ending near

Troms. This is advantageous – it means that instead of a seemingly random spread

148CHAPTER 7. INTERPOLATION ANDALGORITHM FORGEOLOCALIZATION

figures/geoTest2BestSolutions100.pdf

Figure 7.12: Solutions to test instance 2 with best end point matches.

in solutions, there is a clear cut criteria to separate them. A new backtracking

where only the solutions with endpoints that are near Troms, corresponding to the

recapture position, are shown in Figure 7.12. For the most part, the algorithm has

done a very good job in approximately recovering the path.

7.7.3 Wrong solutions die out

While the algorithm progagates forward in time, it is likely to work on solutions that

turn out to die out before the final time step. For test instance 1, we show in Figure

7.13 how the algorithm after 30 days has three solutions approaching Spitsbergen,

and that these branches of the solution tree are not present after 100 days. Note

that they may also be missing as a result of the random branching – this possibility

has not been explored.

7.7.4 Large speed limit can give more solutions

Test instance 2, constructed with a 50 cm long synthetic fish, was run through

the algorithm with the fish length set to 100 cm and with the low tolerance 10−4

degrees as previously. See Figure 7.14 for the results. The spread in final solutions

7.7. TESTING THE ALGORITHM 149

figures/geoTest1Results.pdf

Figure 7.13: Solutions at 30 and 100 days for test instance 1.

was much larger than in the previous run, with excursions to England, Denmark and

Greenland. Interestingly, the algorithm did not terminate prematurely due to the

low tolerance as it did in Section 7.7.1. Only one solution remained that was close

to the true path in position. We conclude that using a speed limit that is too large

can increase the spread in solutions. The extra solutions can be ruled out by e.g.

recapture position. However, unnecessary spread in solutions increases the chance

that the number of solutions maintained exceeds the threshold for triggering an

increase of the size of the box used for merging solutions. In effect, the best solution

paths can in this way be affected by other solution paths that are far away.

7.7.5 Developing a good backtracking heuristic

So far we have only used random backtracking. This means that whenever there is

more than one path leading up to a point on a final solution path, rerunning the

backtracking procedure may result in paths that are closer to the true path. See an

example of this for a run of test instance 4 for 30 days in Figure 7.15. In the left plot

is shown the result of a random backtracking on all the final paths that have end

points closest to the true end point. All paths, including those that end up nearest

to the true recapture position, move very far away from the true path. In the right

150CHAPTER 7. INTERPOLATION ANDALGORITHM FORGEOLOCALIZATION

figures/geoTest2TooLongFish100.pdf

Figure 7.14: Solutions from running test instance 2 with too high speed limit.

plot, a different path leading up to the endpoint of pale blue path on the left is

shown in red. This path is much more accurate, but in a situation with actual DST

data this would not be known. This indicates that a backtracking heuristic should

be chosen that emphasizes a spread in the final solution paths. Alternatively, the

backtracking could enumerate all paths leading up to each end point. This can be

used to make a mean path, with uncertainty bounds given by the spread of all the

points for each day.

7.7.6 Pruning solutions

Biological and geographical information may be available that can be used to rule out

solution paths that existing knowledge indicates must be wrong. As seen in Figure

7.15, the run on test instance 4 gave out many false solutions that were difficult to

distinguish. For instance, if we knew that this fish was a Norwegian Coastal cod, we

would know that the paths going far into the Barents sea and back are wrong. Then

the user running the program could manually prune such solutions every few steps.

Another solution is to modify the mask matrix M to make temperature data

available at all points outside the known habitat of the species. An example is

shown in Figure 7.16, where the habitat for test instance 4 is assumed to be the area

7.7. TESTING THE ALGORITHM 151

figures/geoTest4BestAnd130.pdf

Figure 7.15: Demonstration of how backtracking matters for test instance 4.

shown. On the left are all solutions, and on the right are those with best matching

end points. There are still many equivalent solutions that are way off target, but

it is possible that running the algorithm for a longer time than the 30 days shown

here may cause the solutions near the boundaries of the habitat to die out. This

habitat restriction can also be time-varying – for instance using knowledge of what

time of year a fish species is known to never inhabit an area. An advantage with

this approach is that the number of maintained solutions may be smaller, reducing

the chance that the box size for merging is increased (ref. Section 7.6.3).

The approach of habitat restriction should be used carefully, because if too heavy

restictions are made on the habitat, the results may become realistic because of this

restriction alone.

7.7.7 Too small speed limit terminates the algorithm

When too small speed limits are set, compared to the test instance, the algorithm

may terminate early. Test instance 1, made with a 100 cm long synthetic fish, was

run through the algorithm with the fish length set to 50 centimetres (results are

not shown). All solutions died out by 47 time steps. The algorithm did, however,

manage to track the approximate true solutions for most of the time. The fact that

152CHAPTER 7. INTERPOLATION ANDALGORITHM FORGEOLOCALIZATION

figures/geoTest4Masked.pdf

Figure 7.16: Using habitat restriction to reduce spread in solutions for test instance 4.

the algorithm did terminate prematurely is a confirmation that the algorithm works

as intended – it never gives solutions that have poor temperature match. Also, it

confirms that there is sufficient variation in the temperature in the sea that some of

the paths that start out in the wrong direction do die out.

7.8 Results of geolocalization on real data

The geolocalization algorithm has been run on real data with a time-varying atlas

for the period in question. Results from this will be presented in the following.

No temperature plots are displayed, because all solutions are practically equivalent

when it comes to temperature matching. All runs of the algorithm produced so

many good solutions, that it was found sufficient to keep a low maximum speed

limit. An arbitrary setting of λ = 2/3 was used, i.e. for the 89 cm long fish of tag

1664 a maximum horizontal displacement of 51.3 km was allowed. Errors arising in

approximate conversion to grid units were not corrected. For all runs, the tolerance

setting for temperature matching after refining optimization was set to 0.1 degrees.

For the first run (Run 1), there was a lot of spread in the solutions. In Figure

7.17, the resulting paths after 30 days is shown on the left. The land shown is part of

7.8. RESULTS OF GEOLOCALIZATION ON REAL DATA 153

figures/geo1664_30_slowFish_highTolerance_noMask.pdf

Figure 7.17: Run 1 on DST data, 30 days and a selection of solutions

Northern Norway, though distorted. A selection of those paths that did not venture

far out into the open sea are shown on the right. A possibility could be to only

allow these paths remain in the pool of solutions. The algorithm was allowed to run

further with all solutions retained, for up to 120 days, and the results are shown in

Figure 7.18. As we see, for the last 60 days there are many paths that hug the north

Norwegian coast tightly, but few that do so the whole time. Also, there are many

that travel all the way to Spitsbergen, which is very improbable for this stock.

To both reduce processing time and to let the algorithm focus on solutions in

areas that are close to the known habitat, a new run (Run 2) was started where the

mask matrix was adjusted to not allow movement outside the square area shown

in Figures 7.19 and 7.20. The square was selected very subjectively, and a proper

implementation should use more exact masking that is not a square. The figures

show the solutions after 30 days, 60 days, 200 days and 400 days. Notice how the

paths almost cover the visible part of the Norwegian sea, showing how very many

and different paths there are with close temperature matches. Note also how some

paths occasionally cross land. If the path to go around e.g. a peninsula is within the

daily swimming range this is okay, but otherwise this may be a problem that should

be tackled in a future implementation of the model.

The time series for tag 1664 ends seven months before the recapture date. Thus,

154CHAPTER 7. INTERPOLATION ANDALGORITHM FORGEOLOCALIZATION

figures/geo1664_60_120_slowFish_highTolerance_noMask.pdf

Figure 7.18: Run 1 on DST data, 60 and 120 days

figures/geo1664_30_60_slowFish_highTolerance_masked.pdf

Figure 7.19: Run 2 on DST data with habitat masking, 30 and 60 days

7.9. DISCUSSION 155

figures/geo1664_200_400_slowFish_highTolerance_masked.pdf

Figure 7.20: Run 2 on DST data with habitat masking, 400 and 200 days

there is no potential for using the recapture position for selecting the best solutions.

Also, since the time series is very long (≈ 776 days), the fish could swim very large

distances in this time. Thus the utilization of the recapture position would not affect

much of the path anyway. Use of recapture position could be more useful for shorter

time series.

To conclude, we show in Figure 7.21, in a real map with projection, the shortest

and longest paths, respectively, from run 2 after 200 days. Note how similar the two

paths are for the first 100 days, but not for the next 100 days. The shortest path is

approximately 6648 km long, i.e. an average travelling per day of ≈ 33 km per day,

and the longest path is approximately 7700 kilometers long, meaning an average

of ≈ 38.5 km travelling per day. The average speed can be used as a criteria for

determining the realism of the paths.

7.9 Discussion

Several aspects of the algorithm have been discussed already, and ideas for improving

the algorithm are presented in the chapter on future work. Some drawbacks of the

algorithm are now discussed.

156CHAPTER 7. INTERPOLATION ANDALGORITHM FORGEOLOCALIZATION

figures/geo1664_final.pdf

Figure 7.21: Shortest and longest paths from run 2 at 200 days, shown in map

7.9.1 Drawbacks of the algorithm

No search in depth direction

One major drawback of the algorithm is that it does not search in the depth direction.

The (downsampled) depth value from DST observations is used directly for obtaining

the temperatures for each node for the spline at each time point. This may lead to

temperatures not being found, since the depth values have a degree of uncertainty

(see Section 4.1). It is hoped, however, that the lack of flexibility in vertical direction

is somewhat compensated by flexibility in the horizontal direction, since it is possible

that the temperature can be found at other points nearby, but at the fixed depth.

Infeasible solutions

When merging solution paths, the travel distance between points on a path can

easily become too large. Also, measured in true geograpichal distances as analyzed

in Section 6.3.1, the violation of the speed constraint may be even larger. See the

chapter on future work for a suggestion on solving this issue.

7.9. DISCUSSION 157

Sensitivity to solution order

The method of merging solutions relies on the position of the first path that ends in

an area. Thus, the placement of the box that captures nearby solutions depends on

“who gets there first”. Ideally, there should not be such a dependence on the order

of paths. However, this thesis does not address this issue.

7.9.2 Concluding remarks

The focus while developing the algorithm has been to make a method that works

– not one that can be easily analysed with respect to correctness, predictability or

convergence rate. Its main aim is to prioritize spread in solutions while preventing

exponential growth.

A lesson learned in the work on the geolocalization problem has been that there

is considerable ambiguity in solutions. That is, many radically different paths may

give a near-perfect match in temperature values, even over longer time periods.

Solution paths very close to a known, optimal test path can have worse objective

function value than other paths far away.

It is uplifting that an optimization problem that seemed unsolvable using general-

purpose solvers could be solved to approximate, known optimality (perfect tempera-

ture match to within precision) by the algorithm presented here. For the geolocaliza-

tion of true fish, it is neither possible nor desirable to determine the exact path, but

many approaches have been suggested here that can reduce the number of possible

solutions. Also, one can look at in a different way, namely that the points on the

solution paths (with careful selection) can be used to express where the fish might

experience the depths and temperatures it prefers. This means that even though

the one particular fish did not inhabit an area, another fish with similar preferences

could have.

The methods suggested here can be combined with geolocalization using other

methods and environmental factors, for instance on fish that in the North sea that

have already been geolocalized. Each approach may give large but hopefully different

spread in solutions. Those solutions that overlap between different methods are more

158CHAPTER 7. INTERPOLATION ANDALGORITHM FORGEOLOCALIZATION

likely to be closer to the true geolocation of the real fish.

For fish in the Lofoten-Barents sea ecosystem, where tidal and light based meth-

ods are less relevant, the only comparable method known to the author is the one

given in [58] using biased random walks. It would be interesting to try both methods

on the exact same data and atlases. This requires data from a tag with a known

recapture position at the end of the time series. It is unknown, however, how the

biased random walk method will work when the release and recapture positions are

close to each other. It is possible that the fish has travelled far away and back again

during the time period in question, while the method seems to rely on the attrac-

tion towards the recapture position. A consequence of this may be that the random

walk approach shows less spread in solutions than the optimization approach, since

solution paths that venture far away from the release and recapture coordinates are

less likely to occur.

Part III

Suggestions for future work

159

Chapter 8

Future work

This chapter continues some of the discussions in previous chapters, and presents

suggestions for future work. This comprises possible improvements on the method-

ologies used and ideas for applications of the fish migration model.

8.1 More on the stochastic state model

In Chapter 5.2.2, the use of a Markov chain for modelling the behavioural state

for a fish was rejected for the results in this thesis. We now present some further

considerations of the stochastic state model.

8.1.1 Suitability of stochastic state model for parts of data

Many parts of the depth data are characterized by long periods of movements around

the same concentration points, and thus long-lasting visits to behavioural states.

Other parts of data, however, show a rapid and seemingly random switching between

states. See e.g. the October 2004 results in Table 5.2, and compare to the very

long visit to a states in the May 2004 data in Table 5.1. It is possible that the

data can be characterized as exhibiting either a mostly deterministic behaviour or a

mostly random behaviour, and that the model can be specified in the same way. The

inference and simulation process, with all the improvements specified in Chapter 5,

has been tried on October 2004 depth data using the stochastic state model, and

161

162 CHAPTER 8. FUTURE WORK

the model fit turned out to be very good (the key was the improved estimation of

b).

8.1.2 Continuous-time Markov chains

The cited references on mixed OU models use continuous-time Markov chains for

controlling the state instead of discrete-time Markov chains. It is possible that the

dynamics are captured better with continuous-time chains. For determining the Q-

matrix of the chain, the method in [42] can be used. Another alternative is to use e.g.

optimization to determine the Q-matrices from the transition matrices estimated in

this thesis.

8.2 Extending the model to several fish

It is desirable to use the 2-D fish migration model, using DST data from many fish,

to obtain knowledge on fish on stock levels. This is called upscaling. Since the actual

point in time in which different fish exhibit the same types of behaviour are unlikely

to be the same, we require that the stochastic state model is used.

8.2.1 Model for many fish

To perform upscaling, one can make numerous simulations of fish behaviour and

analyse how the stock migrates on the whole. Three suggestions for how to do this

are presented here.

Many simulations using the original model

One way of simulating many fish is to determine sets of concentration points and

states for each fish that DST data is available for, and make many simulations for

each fish. However, this limits us to the time of data capture for each fish. Also, if

further improvements to the stochastic state version of the model are not made, one

must use the deterministic model. Then, all the simulated fish based on the same

tag data will be very similar.

8.2. EXTENDING THE MODEL TO SEVERAL FISH 163

Inference on all tags at once

It is preferable to be able to express the whole range of variation between fish when

upscaling. A suggestion on how to achieve this is to run the inference process on

many fish from the same area and time period together. Concentration points can be

determined from a kernel density estimate of aggregated data. Care must be taken

to choose time periods where all or most of the fish experience similar ranges of

behaviour. Fish that show very different behaviour from the rest can be excluded,

or modelled separately. Markov chain transition matrices can be estimated through

counting transitions in each series, and aggregating.

Stochastic concentration points

Another suggestion for determining concentration points from many fish at once is

to start by determining them individually. Then, those from different fish that are

close in position to each other can be grouped, such that all the points in a group are

associated with the same state or states. The concentration point used as attraction

point in each separate OU diffusion can then be a realization of a stochastic variable

with a distribution based on the spread in the concentration points belonging to the

state.

8.2.2 Systematization of inference process

For doing inference for the migration model on many fish over many time periods,

some of the manual input must be replaced by automated procedures.

Smoothing

The smoothing of noise should be done without requiring user input. An alternative

to the ADPF smoothing could be adaptive-window polynomial filters [9]. This could

also lead to better smoothing. Or, the correlated residuals can be accepted, and these

can be modelled using e.g. autoregressive moving average processes.

164 CHAPTER 8. FUTURE WORK

2-D persistence

For the selection of kernel density estimation bandwidth and for choosing the size

and shape of neighbourhoods, an extension of the Persist algorithm to bivariate time

series would be useful. Such an extension could identify boxes in the plane, instead

of intervals, that correspond to persisting states.

Kernel density estimation bandwidth

The bandwidth for kernel density estimation should be adjusted automatically. We

do not address how this can be done for 2-D data. A suggestion for the 1-D model is

the following. Use a standard bandwidth setting and obtain Persist bin boundaries.

While there are Persist bins with more than one peak, increase the bandwidth by a

small number.

Heuristic for discarding KDE peaks

The peaks in the KDE are discarded if they are less than 10 % in height compared to

the highest peak. This choice has been arbitrary. A possible heuristic that also uses

the time aspect in the data is to discard any peak that corresponds to a persisting

state that lasts a very short portion of the whole time series. The Persist algorithm

already has a lower threshold that specifies that 5 % of time must be spent in a

state for it to be persisting, but this could be set higher.

8.2.3 Systematization of validation

Each inference using a slice of fish tag data should be validated, before used as basis

for simulations when upscaling. The validation of the model must thus be more

systematic. For these amounts of data, it is undersirable to visually assess e.g. how

KDE curves match. It is also highly subjective.

Kernel density estimate validation

The difference in area, for the 1-D model, or in volume, for the 2-D model, between

kernel density estimates of simulations and of data can be used to quantify model

8.2. EXTENDING THE MODEL TO SEVERAL FISH 165

fit.

Check Persist bins of simulations

The time aspect of model fit can be measured using the Persist algorithm. If model

fit is good, the Persist algorithm should return similar Persist bins for data and for

simulations. The difference in position and in number of bins can be used to make

a number that measures the model fit.

8.2.4 Pre-smoothing

In Section 5.3.1, short-lasting visits to states were simply removed. Another alter-

native, which is useful when using a stochastic state model, is smoothing the data

before inference is done. The unsmoothed data can be retained for a new smoothing

within each state, since it allows for individual window settings at that stage. We

suggest a moving average filter.

With moving averages applied to the April-July depth data, an interesting effect

of this smoothing appears. We get the modified inference results as shown in Figure

8.1. Now the state set is different, because the state {3→ 1} is no longer observed.

This presents two advantages. First, the shortest lasting visits have disappeared

(only two, longer-lasting, visits to state {2→ 1} remain towards the end of the time

series). Second, the peaks in the KDE plot are much narrower, making the peaks

in the KDE more defined, such that concentration points are easier to find. For

instance, a concentration point at 140 meters is now found as a peak in the KDE

(consistent with the existence of a Persist bin for this area), whereas before, the

data within this area was too spread out to give a peak in the KDE graph. Actually,

this shows that for this particular case, more features are brought out of the data

when using smoothing at this stage. It should be noted, however, that for months

with behaviour such as in October 2004 with high oscillation between states, this

pre-smoothing will not be beneficial since it removes the alternating tendency.

166 CHAPTER 8. FUTURE WORK

figures/aprilJun_smooth.pdf

Figure 8.1: Inference on data from April-July with presmoothing

8.3 Other choices for parameter estimation

Systematic validation of model fit for other fish may reveal that the parameter

estimation methods used are not adequate. Some further ideas are given here.

8.3.1 Drift term parameter

We consider an alternative for estimating the drift term parameter b, that allows for

different parameters for temperature and depth in the 2-D model. This is obtained

by considering a different choice of the λ parameter of Section 5.4.2. Note that

for data from an OU process with µ = 0, we have, for the expected value of an

observation given a previous,

E(Xt+h|Xt = x0) = x0e
−bh (8.1)

where h is the time that separates two observations. We can find observations for

the point in time that the neighbourhood of µi is left (the time tk of state change to

state πk = {i → j}) and the point in time that the neighbourhood of µj is entered

(tk+ ĥij), which we will denote xleave(i) and xenter(j). Thus we get, when solving (8.1)

8.4. MOVEMENT TO THE FAR SIDE OF A CONCENTRATION POINT 167

for b with these observations inserted,

b =
1

ĥij
ln

(
xleave(i)
xenter(j)

)

so we can set

λ = ln

(
xleave(i)
xenter(j)

)
. (8.2)

Estimating λ in this way from several visits to a state can be done by taking a mean

of those estimated from each visit to the state. If the two values have different sign

for a visit (which is possible for temperature), the logarithm is undefined and the

method cannot be used for this visit. The extension to non-zero µ is straightforward

by substitution.

8.3.2 Diffusion term parameter

The diffusion term parameter c in Chapter 5.4 relies on estimating the long-term

variance of what is assumed to be a realization of an OU diffusion process. The

method used was to consider all data after the first entering of the destination

neighbourhood as “equilibrium data”. Since the neighbourhood size is chosen rather

ad hoc, a different alternative is considered. For a sufficiently long visit to a state

πi, the variance σ̃j of all data starting from one observation xj during the visit to

the end of the visit can be computed. This is then the variance for each of
{
xk, . . . xleave(πi)

}
, k = tenter(πi), . . . , tleave(πi) − 1.

Plotting this variance, a goal is to find a point in the curve from where the variance

has become “stable”, e.g. that it does not change very much when points are removed

or added. This stable variance can be used as the long-term variance for estimating

c.

8.4 Movement to the far side of a concentration

point

It has been observed that occasionally, the fish travels so fast through the water

column that it can pass from one side of the neighbourhood of a concentration

168 CHAPTER 8. FUTURE WORK

point to the other in less time than the sampling interval of 10 minutes. This may

lead to state changes not being captured, or recorded too late, and through this to

bias in the transition matrix (or for the deterministic state model, bias in the state

sequence). Also, depending on the OU process parameter estimation technique, it

can introduce bias into the parameters for the state as well (for instance, an extra

amount of variability is attributed to the wrong state). A solution is to let any

movement past the two most extreme concentration points (smallest or largest in

value, in depth or temperature), count as a state change. For 2-D data, the analogue

involves modifying the neighbourhoods of any concentration points near the edges

of the region of the data by streching them in the extreme direction.

8.5 Improvements to geolocalization algorithm

This section presents some suggestions for improving the algorithm, that should be

considered for future implementations.

• When nearing the end of the time series, i.e. the date of recapture, solutions

paths that are unlikely to be able to reach the destination area in time, due

to restrictions on maximum swimming speed, can be excluded from further

search.

• The algorithm can be run backwards in time, from the point of recapture, and

then attempts can be made to merge solutions with those from running the

algorithm forwards, at the time halfway between release and recapture day.

This is similar to an approach used in [58].

• Each local search for temperature matches can be started with a low maximum

travelling distance compared to the absolute maximum swimming speed of the

fish. Then, the search radius can be extended only if necessary to find the

target temperature, stepwise up to the established maximum limit. Also, if

the algorithm runs very low on solutions, or even terminates prematurely, the

algorithm can go back a few time steps and increase the search radius used,

such that new solution paths that “survive” longer can be found.

8.6. INCORPORATING PRIOR KNOWLEDGE 169

• The algorithm can be made to adapt itself strategically, by continuously tuning

parameters (e.g. distance for merging solutions) to maintain an approximate

same number of solutions at all times. Also, all merging can be deactivated if

there are very few solutions.

• Interpolating three-dimensional data directly, using some method for 3-D in-

terpolation instead of the two-stage interpolation used in this thesis, might

make it easier for algorithms to search for temperature matches also in the

depth plane.

8.6 Incorporating prior knowledge

In Section 7.7.6, some ideas were presented for using existing knowledge on fish be-

haviour to rule out solutions. Some more possiblities for incorporating prior knowl-

edge on oceanography and fish behaviour are:

• identifying tidal signals in the DST data (as in e.g. [50] and [37]), and com-

paring them to known information on tides at points in the solution paths. If

the tidal signal observed is impossible to observe in an area, we can rule out

such a solution path.

• when a DST depth recording shows only an identified tidal signal for a longer

period of time (e.g. several hours), this is indicative of the fish staying at the

seabed [37]. Then, solutions paths where the ocean is too deep compared to

the observed depth can be ruled out.

• if a solution path shows that the fish swims very far north, at a time in the

winter when there is little daylight in the area, and a diurnal rythm is still

observed in the DST data (after correcting for any tidal effects), we can assume

that the solution path is unlikely.

170 CHAPTER 8. FUTURE WORK

8.7 Correcting infeasible solution

A solution for correcting the problem with infeasible solutions returned from the

geolocalization algorithm is now discussed. A final solution that violates the speed

limit can be turned over to a standard optimization routine such as MATLABs

fmincon(), to modify, if possible, certain parts of the path violating the speed

constraint, while still maintaining a good objective function value. This has been

done on test problems with success. See Appendix C for more on how this was

implemented efficiently. The speed constraint can be implemented to check distances

using the haversine formula, made possible by converting grid unit coordinates to

geographical coordinates e.g. by interpolating the Mλ and Mφ matrices.

8.8 Particle swarm optimization for geolocaliza-

tion

Experimentation with particle swarm optimization has revealed that this is a very

powerful optimization method, even though attempts did not provide satisfactory

results for the geolocalization problem. The method may well be capable of finding

global optima of complicated optimization problems, particulary when it is imple-

mented to use social sub-swarms. The main challenge in applying this method to the

geolocalization method is the implementation of constraints – particles that leave

the feasible set must be re-initialized at a feasible point. This is not straight-forward

to implement.

One advantage with this method is that it should be simple to modify the al-

gorithm such that all processing for each time step is done before proceeding to

the next. This would make it compatible with the way the temperature altas is

organized. Another beneficial possibility of this approach is that the different so-

cial groups may converge on different solution paths, which has the potential of

expressing the spread in solution paths.

8.9. CONSIDERING UNCERTAINTIES 171

8.9 Considering uncertainties

Before using the algorithm for geolocalization to do real analyses, uncertainties and

possible errors in the approach should be considered further. Some issues are dis-

cussed here.

8.9.1 Daily averaging

The averaging of the DST temperature is done over a whole day, which may include

both vertical and horizontal movement. The temperature atlas, however, provides

values that are averaged over a day, but for a constant position. This can make

it harder to find temperature matches, or cause a bias in the estimated horizontal

direction that compensates for the two types of averaging. The algorithm’s sensitivity

to this drawback can be investigated by finding confidence bounds for the daily

averages. This bound must both consider the errors in individual measurements and

the errors in estimating the daily mean from discretely observed data. Whenever

a search fails to find a target temperature, the depth and temperatures for each

extreme bound (i.e. four combinations) can be used instead of the daily average

itself. Another source of errors in the daily average is that we have not investigated

what time zones have been used in the atlas and in the DST.

Another consequence of the averaging is that the maximum observed depth dur-

ing the day is not used. A possibility is to keep an extra times series of maximum

depth per day, and exclude solution paths where the sea is not deep enough in one

day’s travelling range to visit this maximum depth.

8.9.2 Uncertainty in atlas

In this thesis, the uncertainty in the hydrodynamic model generating the temper-

ature atlas has not been considered. This should be done, in order to decide what

tolerance levels should be used for temperature matches.

172 CHAPTER 8. FUTURE WORK

8.9.3 Expressing uncertainty in solutions

To express uncertainty in the solutions, many or all of the paths obtained by back-

tracking from each final solution can be used to compute a mean and standard

deviation for each point on the path. It should be noted that we cannot expect such

a mean path to have an optimal function value. To do this, a heuristic is needed to

identify paths that are radically different and paths that are similar enough to be

averaged into a single path.

The algorithm or backtracking can be modified in order to promote as much

spread in solutions as possible, in order to attempt to find the entire range of possible

paths with good temperature matches.

8.10 Validating the geolocalization algorithm

Before using the geolocalization approach in this paper, some external information

should be used to confirm that the method is trustworthy. One way of doing this

is to create synthetic data using a real data storage tag. For instance, a DST could

be attached to a device at the end of a line pulled by a boat, generating both a

known geographical path and a temperature/depth time series. The algorithm can

then be tested for its ability to recover this path using a temperature atlas for the

time period in question.

Another alternative for validation is to perform geolocalization using several

methods. DST data from e.g. North Sea fish that has already been geolocalized can

be used, and the results from many methods can be compared. More confidence can

be placed in estimated paths that arise from using several different approaches for

geolocalization.

8.11 Geolocalization by migration model

An application of the fish migration model of Part I is to perform geolocalization

of simulations instead of data directly. Either, one can use a time step of 1 day,

or one downsample simulations to one day. This is a useful test of whether the

8.12. GEOLOCALIZATION BY OTHER FACTORS 173

fish migration model generates depth and temperature data that is adequate for

geolocalization. A further possibility is to run geolocalization on many simulations

made using an extension of the model to several fish, to geolocalize a whole stock of

simulated fish. This can be used for making inferences on stock level.

8.12 Geolocalization by other factors

The algorithm should be straighforward to modify for performing geolocalization

using other environmental variables than temperature.

• For instance, a recent technological development is geomagnetic tags, that

measure the Earth’s magnetic field. Mathematical models of the magnetic

field can be used in place of the temperature atlas in the algorithm.

• Some DSTs record salinity, and hydrodynamic models can be used to generate

salinity atlases.

• Many factors can be used simultaneously in the geolocalization, by formulating

an objective function that promotes matches to the all the different factors.

174 CHAPTER 8. FUTURE WORK

Appendix A

Article published at NIK

The article attached in this appendix was written as part of the thesis work, and

was presented at the conference Norsk informatikkoneferanse 2011, November 21-23

in Tromsø, Norway [31].

175

Modelling vertical fish migration using mixed
Ornstein-Uhlenbeck processes

Erik Natvig∗, Sam Subbey†

Abstract
Based on vertical movement data derived from electronic storage tags (DST)
attached to fish, we construct a stochastic model that aims at capturing the
main characteristics of the observations over one year. We use a mixed
Ornstein-Uhlenbeck process to model attraction to a limited number of
concentration points on the depth axis. A methodology for determining states
and transition probabilities between them, and for setting model parameters
for the process, is discussed. We show some examples of simulations using
the model, and compare the simulations to the original data.

In general, the model appears to capture the main characteristics of the
vertical dynamics, except in cases where the data is characterized by a long-
lasting transient state at the start of the time series.

1 Introduction
Electronic data storage tags (DSTs) attached to fish have the potential of providing
long term, high resolution observation data on individual fish behaviour. DSTs typically
record values of depth and ambient temperature (and occasionally, salinity) sampled at
prescribed time frequencies (e.g., every 10 minutes). The release-recapture period for an
individual fish may range from a few months to a couple of years in some exceptionally
few cases.

Thus, DSTs provide a large volume of data and depth of knowledge about individual
fish movement. A major drawback, however, has been the lack of adequate methodology
to efficiently handle the large amount of data recorded by DSTs. The vertical movement,
for instance, may vary significantly in frequency and magnitude, as well as between
months, seasons and years. This characteristic of the data poses a challenge to classical
data analysis methodologies. Further, whereas information on an individual fish may be
attractive, using such information as a basis for inference on fish behaviour at stock
(population) level is more desirable. Upscaling of the dynamics of a single fish, extracted
from DST analysis, to stock levels, has not been addressed in the literature.

This article presents a stochastic modelling approach that seeks to mimic the vertical
movement of fish as seen in an example data set, assuming that the fish makes transitions
between several behavioural states. The aim is to capture the main features of water
column usage for a single fish such as depth-homing, which might encapsulate several
responses. The next step in future work is to extend the model to several other data

∗Master student, Department of Informatics, University of Bergen, P.O. Box 7803, 5020 Bergen,
Norway. E-mail: erik.natvig@student.uib.no. URL: http://eriknatvig.net/

†Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway. E-mail:
samuels@imr.no. URL: http://uncertainty.imr.no/
This paper was presented at the NIK-2011 conference; see http://www.nik.no/.

series for fish tagged and released either in the same period or in the same location in
the ecosystem. The ultimate aim is to extend inference on individual fish to population
levels, based on the variability in model parameters obtained by analysis of large sets of
observations.

Section 2 gives an overview of the methodological approach, assumptions, and
presents some related work. Section 3 presents the theory needed for the modelling and
simulation procedures, while in Section 4 we suggest a method for determining Markov
states for the vertical dynamics, and formulation of the associated transition matrix.
Section 5 presents the data and inference results, and shows examples of simulations for
a given number of months. Section 6 concludes the paper, considers validity and suggests
points for improvement of the model. All methods have been implemented in MATLAB.

2 Overview and related work
Within short time intervals, one can assume that the individual fish moves according to
a single diffusion (Ornstein-Uhlenbeck) process. However, the depth data encapsulates
switches between different behavioural and physiological processes, which include,
among others, feeding, swimming, passive tidal transport and spawning. Thus the vertical
movement, over a long time period, involves switches between several states representing
the varying behavioural/physiological processes, and thus a mixed diffusion process. We
will need the following definitions in the rest of the paper:

Definition 1. A concentration point is a unique point in the space of the data being
considered, with a high density of actual data points around it. Concentration points will
be denoted by µi. The space of the data will be partitioned into subsets which contain one
concentration point each, and the neighbourhood of a concentration point will be defined
as a symmetric region around the point.

Definition 2. A (behavioural) state is uniquely defined by the combination of the
concentration point the fish was attracted to last and the one the fish is currently attracted
to, i.e. a state with movement from µi to µ j is denoted by πi j = {i→ j}.

The idea is to model the transitions between behavioural states as a discrete-time
Markov chain St , and model the fish trajectories using a mixed Ornstein-Uhlenbeck (OU)
process with parameters determined by the state of the Markov chain. The OU process is
a mean-reverting process, such that it can model random movement but with attraction
towards a fixed point µ, and alternating the behavioural states makes it suitable for
capturing the data characteristics mentioned above.

Simulations generated using the model we create will be compared to the original
data, to see if important characteristics have been captured. This poses four challenges
which will be addressed:

• Determining which state a given observation belongs to.
• Forming a transition matrix for a discrete-time Markov chain controlling the

behavioural state.
• Simulating the mixed OU process that mimics the behaviour of the fish.
• A metric for comparing simulations to observed data.

Related work
Bivariate Ornstein-Uhlenbeck models are used for modelling wildlife movement in Dunn
and Gipson [2], Preisler et al. [7] and Blackwell [1], though only Blackwell actually used
a mixed OU process and a set of several behavioural states (corresponding to resting,
feeding and travelling for wood mice). The procedure we use in this paper is directly
inspired by the work on modelling movements of mobile phone users by Rosenblum [8].

3 Modelling and simulation theory
Markov Chains
A Markov stochastic process is special in that the outcome/change in the system after
the passage of some time is dependent only on the state of the system before the passage
of time. This means that a Markov process is without memory – wherever the state has
been before the previous point does not matter (see [6]). A Markov chain is a stochastic
process with a countable set of states. Transition probabilities for finite-state discrete-time
Markov chain can be given by a transition matrix P whose entries are the probabilities
for transitions from each state to all others in one time step. A state of a Markov chain is
called transient if there is zero probability for the chain of returning to it once the state
has been left once, and recurrent otherwise.

Ornstein-Uhlenbeck process
A simple model for attraction towards a concentration point µ is the Ornstein-Uhlenbeck
(OU) process (originally used to describe Brownian motion in physics, see [10] and [4]). It
is defined as the stochastic process X(t) which satisfies the stochastic differential equation
(SDE)

dX(t) = b(µ−X(t))dt + cdW (t) (1)

where dW (t) denotes an infinitesimal increment of a Wiener or white-noise process and b
and c are parameters. Using the relevant expressions from [4], and substitution for the case
when µ 6= 0, we get the long-term expectation and variance of the process, with X(0) = x0
as initial condition:

E[X(t)] = µ+(x0−µ)e−bt → µ as t→ ∞, (2a)

Var(X(t)) =
c2

2b

(
1− e−2bt

)
→ c2

2b
as t→ ∞. (2b)

This clearly shows that the process is attracted towards µ. The drift term parameter b
determines the intensity of attraction. The second term (diffusion term) provides the
randomness in the process. A first-order approximation for use in simulating this SDE
is the updating formula from [4]:

X(t +∆t)≈ X(t)+b(µ−X(t))∆t + cn
√

∆t, (3)
where n is a sample value of a standard normally distributed variable N (N ∼N (0,1)).

Mixed Ornstein-Uhlenbeck process
To model the attraction of the fish towards concentration points, we follow the idea in [8],
and use a mixed Ornstein-Uhlenbeck (OU) process. Let Xt be the stochastic process that
is a solution of the stochastic differential equation (1) above that governs the movement
of the fish in the model, with a time index t running from 1 to T . Next, assume that there
are m different concentration points on the depth axis, with labels µ1, . . . ,µm, that the fish
may be attracted to.

We further assume that a discrete-time Markov chain St can model which
concentration point the fish is attracted to at any time step. The state-space of St is denoted
Π, and for each ordered pair of concentration points µi and µ j we define a state of the
Markov chain as πk = {i→ j}, representing movement from µi to µ j. The reason for
including one state for each pair of concentration points, instead of just one for each, is
that we might want to model different variabilities and intensities of attraction towards
the concentration point depending on where the fish came from. For instance, diving
down in the sea might be quicker than moving towards the surface or vice versa, so the
model should be able to capture that by varying the drift term coefficient b between states
(although in practice this possibility will not be explored in this paper).

Now, for each state πk ∈ Π, we define a set of parameters for the OU process:{
µ(k),b(k),c(k)

}
. In the model we let Xt follow a OU process with parameters given by the

state of the Markov chain St . When the chain transitions to a new state, the new parameters
are used instead of the old, so that we get a new OU process starting in the end point of
the previous process.

The parameters for the OU process for each state of the Markov chain, along with the
selection of concentration points, must be estimated using the data collected from actual
fish. In the following sections we suggest a method for this.

4 Determining states
Kernel density estimation
Kernel density estimation (KDE) is a non-parametric method used to estimate an
unknown probability density function from n data points assumed to be realizations of
n independent and identically distributed random variables. A kernel is a symmetric
function that integrates to one (usually taken to be the standard normal density function).
By placing a kernel at each data point and summing them up, dividing by the number of
data points, we get a new function that integrates to one and has peaks at regions with
high density of data points. Formally, the estimated function f̂h of the data d is

f̂h(d) =
1

nh

n

∑
i=1

K
(

d−di

h

)
, (4)

where h is a smoothing parameter known as the bandwidth, K() is the kernel and di are
the observed data points. The bandwidth that will be used by default is one optimal for
estimating normal densities, but we will see that it might need to be adjusted to reveal the
main features of interest.

Figure 1: Kernel density estimate examples

−50 0 50 100 150 200 250
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Depth (m)

D
en

si
ty

 fu
nc

tio
n

Example KDE plot of depth data June 2004

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Depth (m)

D
en

si
ty

 fu
nc

tio
n

KDE of November 2004 depth data for different bandwidths

Bandwidth 4.2 (auto)
Bandwidth 6
Bandwidth 9

A kernel density estimate for an example time series is shown in Figure 1 on the left.
Observe that the estimate has three peaks that can be considered as concentration points.
The next step involves defining neighbourhoods around such points.

Persistence analysis
Common methods for discretizing continuous values in a dataset into discrete symbolic
values, such as the histogram, do not take the time aspect into account. They may also
place cuts in regions of the data with high density. The temporal structure, i.e. the order in
which observations occur in a time series, is valuable information that should be used. The
Persist Algorithm [5] uses this information to find cuts such that the resulting symbolic
values, or states, are persisting. This means that for a point in time there is high probability
to observe the same symbol as in the previous point in time, when using the discretization
given by the algorithm. The bins given by the algorithm often coincide with peaks in the
KDE plot, such that each peak has its own bin.

Combining persistence analysis and kernel density estimation
Choosing concentration points
We wish to determine, for a slice X̃t , t = 1, . . . ,T of the time series (we will be using whole
months), which concentration points to use in the model. The following method is used:

1. Run the Persist algorithm in order to find bin boundaries for the data.
2. Make KDE plot and find local maxima (peaks in the graph).
3. Adjust KDE bandwidth if needed:

(a) Some of the local maxima may lie too close to each other (rule of thumb: less
than 10 meters apart), or have too low value on the y-axis compared to other
local maxima, so we consider smoothing the plot by increasing the bandwidth
manually until the KDE has desirable properties. This can be improved in
future work by adjusting the bandwidth more systematically. See Figure 1 on
the right for an example of bandwidth adjustment.

(b) One should also check that the bin boundaries from Persist are such that each
concentration point has its own bin – e.g. if there are two peaks in one bin, the
bandwidth should probably be increased so that the two peaks join into one
peak.

4. Discard peaks that are less than some percentage in height compared to the highest
peak. This paper uses a cut-off of 10%. However, this value is arbitrary. Future work
will seek to develop a more heuristic approach to determining a reasonable cut-off
value.

5. Store the m remaining peaks as concentration points µ1, . . . ,µm and define a possible
state of the Markov chain for each ordered pair of points to define the set of states
Π.

Neighbourhoods and states
Having defined the state πk = {i→ j}, we define the neighbourhood around µ j as the
interval

(
µ j−nσ j,µ j +nσ j

)
, where σ j is the standard deviation of the data in the same

bin as the concentration point, and n = 1 (for the moment). Define a number k for each
state in Π, then a mapping Ψ(i, j) from the numbering of the concentration points to the
numbering of the states, such that if state {i→ j} corresponds to state πk, then Ψ(i, j) = k.

We define two vectors φφφ and τττ, which store origin and destination concentration points,
respectively, for each data point. We use the following algorithm:

1: φφφ← 000 {zero vector of length T}
2: τττ← 000
3: for all X̃t do
4: if µi−nσi ≤ X̃t ≤ µi +nσi for some concentration point µi then
5: τt ← i
6: end if
7: end for
8: if τT = 0 then {take special care of the end of time series}
9: find the last time-point tlast such that τtlast 6= 0

10: τt ← τtlast for t = tlast +1, . . . ,T
11: end if
12: for all 1≤ t ≤ T−1 do
13: if τT−t = 0 then {attraction to next point visited}
14: τT−t ← τT−t+1
15: end if
16: end for
17: φ1← τ1
18: for 2≤ t ≤ T do
19: if τt 6= τt−1 then {attraction to new point, i.e. state change}
20: φt ← τt−1
21: else {same attraction as before}
22: φt ← φt−1
23: end if
24: end for
25: S̃t ←Ψ(φt ,τt) for t = 1, . . . ,T

Even though the process assigns to each point X̃t a state S̃t , there will be unencountered
states. We discard unencountered states and renumber those that remain, so that we
get a new set of states Π. Note that the first data point, and those that follow until a
new attraction is observed, are assigned a special state πinitial = {i→ i} with the same
destination and origin concentration point µi. This state is transient by construction, since
once it has been left there will always be a previously visited concentration point, different
from the one currently being sought.

Counting transitions and forming the transition matrix
A consistent estimator for the elements of the transition matrix P for a finite-state discrete-
time Markov chain St is, according to [6],

p̂i j =

(
N−1

∑
n=0

1{Sn=i,Sn+1= j}

/
N−1

∑
n=0

1{Sn=i}

)
, (5)

which is the proportion of all transitions from state i that go to state j. Here, 1{} is the
indicator function which is equal to 1 if the subscripted expression in braces is true, and
0 if it is false. As N tends to infinity, p̂i j will tend to pi j with probability 1, by the strong
law of large numbers.

We now consider S̃t , our time series of states, as a sample path of a discrete-time
Markov chain St . We wish to estimate the |Π| × |Π| transition matrix P for this chain.
In order to do this, we summarize the chain by a matrix M with entries mkl counting
transitions from πk to πl . Next, we form a matrix P̂ which has the normalized rows of
M, so that each entry p̂kl of P̂ has the proportion of all transitions from πk that go to πl ,
according to the estimator (5) above.

Figure 2: Example time series, the whole year April 2004 - March 2005 (left) and April 2004 (right)

 0 5000 10000 15000 20000 25000 30000 35000

0

50

100

150

200

250

300

350

D
ep

th
 (

m
)

Time (observation #)

Depth data, April 2004 − March 2005

 0 500 1000 1500 2000 2500 3000 3500 4000

0

20

40

60

80

100

120

140

160

180

200

D
ep

th
 (

m
)

Time (observation #)

Depth data, April 2004

5 Data and problem description
In order to test the methodology introduced in the previous section, we use the first year of
the depth data for a fish (cod) that was tagged and released in April 2004 and recaptured
in May 2006. The data is sampled at 10 minute intervals. This sampling frequency is
sufficient, and actually far too high, considering the ambient environment. The dominant
tidal frequencies are clustered aroung 6 and 24 hour periods. It has been established in the
literature that fish may use tidal transport for horizontal/vertical migration (see [11] and
[3]). Given this, it makes sense to expect that the vertical dynamics would encapsulate
signals with periodicity 6 and 12 hours. Further, it is natural to expect diurnal periodic
behaviour due to the influence of sunlight (see [9]).

In Figure 2 we show on the left the whole time series, while on the right we show
the data for April 2004. A visual inspection shows that there are basically three or four
regions on the depth axis with a high concentration of data points. In this section we will
determine concentration points and transition matrices for this data, present simulations
using these and compare the simulations to the original data.

Example of inference results
Running the procedure for determining states and transition matrices on this data
gives us the results shown in Table 1. The left-hand figure shows the (flipped) kernel
density estimate with the concentration points as lines, and the neighbourhoods as gray
backgrounds. Notice that the used bandwidth is indicated in the title of the figure. The
right-hand figure also shows the concentration points and neighbourhoods, but also a line
for the data with different line styles indicating which state the points are considered as
being in. (The data in the plot, and in all the similar plots following, is slightly smoothed
using moving averages for better visual quality.)

Simulation details
The modelling process requires both the simulation of the Markov chain and OU process
at the same time. Thus, the Markov chain St is considered first. It is simulated using
numbers u from a pseudo-random number generator on [0,1], where the interval is
partitioned into a set of disjoint subintervals for each state, as described in [6]. The OU
parameters belonging to the state at each time step are used in the updating formula (3)
for X(t).

Inference results for April 2004, depth data Conc. pt. µ1: 66.163 σ̂1 = 3.87
Conc. pt. µ2: 105.840 σ̂2 = 14.67

P̂≈




0.9961 0.0039 0
0.0043 0.9957 0

0 0.0078 0.9922




State π1: {1→ 2} c(1) = 2.02
State π2: {2→ 1} c(2) = 0.57
State π3: {2→ 2} c(3) = 2.02

April 2004 KDE and bins, bandwidth=6.6

Density function

D
ep

th
 (

m
)

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

20

40

60

80

100

120

140

April 2004 data, states and bins

D
ep

th
 (

m
)

Time (observation #)

0 500 1000 1500 2000 2500 3000 3500 4000

20

40

60

80

100

120

140

State 1−>2
State 2−>1
State 2−>2

Table 1: Inference results for April 2004, depth data

Parameters for the Ornstein-Uhlenbeck process
For each state of the Markov chain St we determine the parameters b (drift term
coefficient) and c (diffusion term coefficient) for the Ornstein-Uhlenbeck process. b is in
this paper chosen empirically and equal for all states. This is done by visually inspecting
the plots of the simulated paths and adjusting b so that they resemble the paths in the
data (b = 0.05 is used throughout). A systematic way of doing this is suggested in [8],
but this has not been implemented in this paper due to time constraints. The analysis
shows that the results have low sensitivity to the accurate determination of b, especially
in terms of picking the main dynamics of the migratory patterns. From the expression
(2b), using σ2 to denote the long-term variance of the OU process, we get the relation
c = σ

√
2b. We estimate the long-term variance of the process for a state πk = {i→ j} as

the squared standard deviation σ̂2
j of all data points that are within the neighbourhood

of concentration point µ j, so we set c(k) = σ̂ j
√

2b(k). Thus, all states with the same
destination concentration points have the same OU-parameters. Nevertheless, keeping
a state for each combination of concentration points in the model allows for further
experiments in future work by larger variations of b and c between states.

Simulation time step
The time step used in the simulation should not be the same as in the data, because the
random effects in the fish behaviour occur over a larger time-scale than just one time step
of 10 minutes. For instance, one may observe a steady increase in depth over an hour
before the depth decreases again, all while the fish is in the same state. Had we used a
time step of only 10 minutes in the simulation, we would get large oscillations in the
values for very short time intervals, since the random part of the model is very dominant
once the process is close to a concentration point. Thus, we choose for now to simulate
using a 2 hour time step instead, corresponding to 12 time steps in the data. Since the
transition matrix we have estimated is for time steps of 10 minutes, we need to use the 12-
step transition probabilities for St , which are the entries of the matrix P̂12. So in practice,
the updating formula above is used with ∆t = 12 and with OU parameters that depend on
the state of the Markov chain in the new time-point. We define

Xt+1 = Xt +b(k)
(

µ(k)−Xt

)
∆t + c(k)n

√
∆t, (6)

with k given by the Markov chain in the sense that St+1 = πk.

Figure 3: Example simulation for April 2004 and KDE plot

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

20

40

60

80

100

120

140

160

Time (observation #)

D
ep

th
 (

m
)

April 2004 Data and sample simulation

Original data
Example simulation
Point of attraction

0 20 40 60 80 100 120 140 160 180 200
0

0.005

0.01

0.015

0.02

0.025

0.03

Depth (m)

D
en

si
ty

 fu
nc

tio
n

April 2004 KDE of data and of average of simulations

Average of 50 simulations
Original data

Markov chain and OU process initial states, and burn-in
We choose as initial state S1 the special, transient state πinitial = {i → i} for the first
concentration point µi visited. Also, we let the OU process start in this concentration
point by letting X1 = µi. The initial state chosen for a Markov chain will slightly affect the
mean time spent in each state over the whole simulation period, but the longer the chain
is allowed to evolve, the less this “noise” from the start of the process affects it. To get
results that are not affected too much by the initial state, we let the process evolve for 200
time steps before recording the data. This is known as “burn-in”.

Simulation examples and comparing to data
In Figure 3 we show on the left an example of a simulation using the states, the transition
matrix and the OU parameters inferred from the April 2004 depth data shown in Table
1. Note the solid gray line indicating which concentration point the process is attracted
towards. The number of data points in the simulation are 1/12 of those in the data, but we
have plotted the simulation such that the two paths are aligned in time, the units of the
x-axis corresponding to the original numbering of the observation data points.

We see that some features of the original data for April 2004 are recreated in the
simulation, in the sense that the process spends time around the same concentration points,
and with more variability around the concentration point µ2 at 106 meters than µ1 at 66
meters. Comparing kernel density estimates for the data and the simulation (making sure
to use the same bandwidth in order to keep the plots comparable) confirms this. But since
this is a random process, both due to the randomness in the Markov chain and due to the
random term in the updating formula, the simulated path will be different every time. To
get an idea of the “mean behaviour” of the model, we take the average value of the KDEs
for 50 different simulations and compare that with the KDE for the data.

The resulting mean KDE plot for the April 2004 simulations is shown with a dashed
line on the right in Figure 3 together with a solid plot of the KDE of the data. We see
that the time spent around µ1 is overestimated by the model. But this is not surprising –
there is a lot of area under the solid curve to the left that corresponds to data points whose
characteristics we have not made any attempt to capture in the model. The peak around
µ1 at 66 meters could have been a little wider to capture more of the original data spread,
indicating that the diffusion term coefficient c used in the state that generated those data
points was too small. This indicates that the method for choosing c should be improved.

Table 2 shows complete inference and simulation results for a different month in the
example time series: January 2005. Here we also see that the distribution of the data in
the simulation matches quite well to the distribution of the original data.

Inference results for January 2005, depth data Conc. pt. µ1: 97.670 σ̂1 = 12.47
Conc. pt. µ2: 172.558 σ̂2 = 19.98

P̂≈




0.9907 0.0093 0
0 0.9981 0.0019
0 0.0030 0.9970




State π1: {1→ 1} c(1) = 1.89
State π2: {1→ 2} c(2) = 3.00
State π3: {2→ 1} c(3) = 1.89

January 2005 KDE and bins, bandwidth=10.3

Density function

D
ep

th
 (

m
)

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
80

100

120

140

160

180

200

220

240

260

280

January 2005 data, states and bins

D
ep

th
 (

m
)

Time (observation #)

0 500 1000 1500 2000 2500 3000 3500 4000
80

100

120

140

160

180

200

220

240

260

280 State 1−>1
State 1−>2
State 2−>1

0 500 1000 1500 2000 2500 3000 3500 4000 4500
80

100

120

140

160

180

200

220

240

260

280

Time (observation #)

D
ep

th
 (

m
)

January 2005 Data and sample simulation

Original data
Example simulation
Point of attraction

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Depth (m)

D
en

si
ty

 fu
nc

tio
n

January 2005 KDE of data and of average of simulations

Average of 50 simulations
Original data

Table 2: Inference results and simulations for January 2005, depth data

Simulations matching poorly
We see that the plot of the average of the KDEs matches pretty poorly with the data
KDE in the results for May 2004 in Table 3. The two peaks from the simulations have
almost opposite heights, which is very different from the situation in the data. Not all
such average KDEs of simulation series using the parameters of this data have shown as
poor results as this, but none of them show good model fit. Poor model fit may occur
whenever the fish has stayed close to one concentration point µi for a long time at the start
of the month. The problem in such cases is that the initial state πinitial = {i→ i} accounts
for a large portion of the time spent around µi. Randomness might bring the Markov chain
away from this state earlier than observed in the data, (possibly during burn-in) and since
it is transient, the chain will never revisit the state. Then, the proportion of time spent
around each concentration point for the rest of the simulated path will depend on the
corresponding proportion in the data after πinitial was left, which might not correspond to
the total proportion of time spent around each point in the whole month. This problem
needs to be solved in order to make the model usable for months where this occurs. A
possible solution is to avoid using whole months as cut-points for the data.

6 Conclusion
The model does quite a good job of capturing the main aspects of the vertical dynamics
for time series where the initial transient state is left early in the data. This is a good
starting point for modelling vertical migration of the fish. However, for months such as
May 2004, starting with a long-lasting transient state, the model fails to capture the main
characteristics.

Inference results for May 2004, depth data Conc. pt. µ1: 64.214 σ̂1 = 6.24
Conc. pt. µ2: 107.687 σ̂2 = 4.23

P̂≈




0.9997 0.0003 0
0 0.9880 0.0120
0 0.0789 0.9211




State π1: {1→ 1} c(1) = 0.99
State π2: {1→ 2} c(2) = 0.70
State π3: {2→ 1} c(3) = 0.99

May 2004 KDE and bins, bandwidth=4.0

Density function

D
ep

th
 (

m
)

0 0.01 0.02 0.03 0.04 0.05 0.06

40

50

60

70

80

90

100

110

120

May 2004 data, states and bins

D
ep

th
 (

m
)

Time (observation #)

0 500 1000 1500 2000 2500 3000 3500 4000

40

50

60

70

80

90

100

110

120 State 1−>1
State 1−>2
State 2−>1

0 500 1000 1500 2000 2500 3000 3500 4000 4500
30

40

50

60

70

80

90

100

110

120

130

Time (observation #)

D
ep

th
 (

m
)

May 2004 Data and sample simulation

Original data
Example simulation
Point of attraction

0 50 100 150
0

0.01

0.02

0.03

0.04

0.05

0.06

Depth (m)

D
en

si
ty

 fu
nc

tio
n

May 2004 KDE of data and of average of simulations

Average of 50 simulations
Original data

Table 3: Inference results and simulations for May 2004, depth data

Possible improvements to the model
Obtaining better model fit to data requires a method for estimating the OU process
parameters and a systematic approach for varying the parameters between states. More
systematic adjustment of KDE bandwidth must be considered. One might argue that a
transition between states should only be recorded if the state change lasts for some time. A
short excursion of 4-5 data points towards a different concentration point should perhaps
not be counted as a transition, since it often will affect the transition matrix and thus the
model dramatically. It is also neccessary to find a way to avoid the problem with long-
lasting transient states. Finally, attempts would be made to use second-order or exact
updating formulas for Xt in the simulations.

Validity and reliability
The procedures in this paper have not been tested with other data than those mentioned,
and conditions for them to work well for other data will now be concidered. The model
depends on data having a mean-reverting tendency. The data should be characterized by
more than one concentration point. Otherwise the model will simplify to a single-state OU
process starting at the mean, making it a white-noise process. No attempts have been made
to enforce biological plausiblity in the model, for instance “speed limits” or behavioural
restrictions. The time aspect (i.e. the time spent between transitions) of the model versus
original data has not been considered.

Extensions
Plans for further work include:

• Improve model fit by predefining a transition matrix and OU parameters, and
trying to recover them using the inference methods described here on simulations
produced using these settings.
• Testing the model also on temperature data and extending it to two dimen-

sions: depth and temperature, where concentration points are defined in the
depth/temperature plane.
• Using the model as a basis for species discrimination (North-East Arctic cod versus

Norwegian coastal cod).
• Attempting geolocation of the fish by combining the model with a depth and

temperature atlas.
• Using the model as a basis for making inferences on behaviour on the population

level.

References
[1] P.G. Blackwell. Random diffusion models for animal movement. Ecological

Modelling, 100(1-3):87 – 102, 1997.

[2] J.E. Dunn and P.S. Gipson. Analysis of Radio Telemetry Data in Studies of Home
Range. Biometrics, 33(1):85–101, 1977.

[3] R.N. Gibson. Go with the flow: tidal migration in marine animals. Hydrobiologia,
503(1-3):153–161, 2003.

[4] Daniel T. Gillespie. Exact numerical simulation of the Ornstein-Uhlenbeck process
and its integral. Physical Review E, 54(2):2084–2091, 1996.

[5] Fabian Mörchen and Alfred Ultsch. Optimizing time series discretization for
knowledge discovery. In Proceedings The Eleventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 660–665, 2005,
Chicago, IL, USA.

[6] J.R. Norris. Markov Chains. Cambridge Series on Statistical and Probabilistic
Mathematics. Cambridge University Press, 1997.

[7] Haiganoush K. Preisler, Alan A. Ager, Bruce K. Johnson, and John G. Kie. Mod-
eling animal movements using stochastic differential equations. Environmetrics,
(15):643–657, 2004.

[8] Michael Rosenblum. Mobility modeling with a mixed Ornstein-Uhlenbeck process.
Found on website http://people.csail.mit.edu/mrosenblum/work/.

[9] Sam Subbey, Kathrine Michalsen, and Geir Nilsen. A tool for analyzing information
from data storage tags: the continuous wavelet transform (CWT). Reviews in Fish
Biology and Fisheries, 18:301–312, 2008. 10.1007/s11160-007-9078-2.

[10] G.E. Uhlenbeck and L.S. Ornstein. On the theory of the brownian motion. Physical
Review, 36(5):0823–0841, Sep 1930.

[11] D. Weihs. Tidal stream transport as an efficient method for migration. Journal du
Conseil International pour l’Exploration de la Mer, (38):92–99, 1978.

188 APPENDIX A. ARTICLE PUBLISHED AT NIK

Appendix B

Algorithms

For reference and reproducibility, this appendix gives some algorithms/functions

omitted in the main presentation.

B.1 Estimating a transition matrix

Algorithm 5 function estimateTransitionMatrix()

Input: S,Π

Output: P̂

1: m← |Π|
2: P̂,E← 0m,m {Zero matrix of dimension m×m}
3: for t← 2, . . . , N do

4: ESt−1,St ← ESt−1,St + 1

5: for i← 1, . . . ,m do

6: for j ← 1, . . . ,m do {Take P̂ as normalized rows of E}
7: P̂i,j ← Ei,j/

∑m
k=1Ei,k

189

190 APPENDIX B. ALGORITHMS

B.2 Simulating a Markov chain

The simulation of a Markov chain in practice in MATLAB is done by exploiting

the function histc(). This function can find out which class in a histogram an

observation should lie in, using as classes the cumulative sum vector padded by

minus and plus infinity. The find() function finds the location of the non-zero

element of the vector from histc().

% given transition matrix P for n states,

% the chain is in state i

find(histc(rand,[-inf,cumsum(P(i,1:n-1)),inf]))

By re-running this expression and letting the i variable contain the outcome of the

previous iteration, we effectively simulate a Markov chain.

B.3 Local maxima of a matrix

The function localMaxima() takes a matrix, and returns the indices of any position

in the matrix that is considered as a local maximum, along with the value at that

position. A local maximum of a matrix is in this context defined to be a position

where the value is smaller at any neighbouring position on the row, column or

diagonal (i.e., the position has greater value than all the values in the 8 positions

around it).

B.4 Detailed description of geolocalization algo-

rithm

We now give the algorithm for geolocalization with much more detail than the

outline in Algorithm 4 in Chapter 7. It is presented as one main algorithm and

several subalgorithms in the form of functions (in the computer programming sense

of the word). Some of the enhancements suggested in the original presentation are

not included here. Global functions always available are the atlas functions D(x, y)

and T (x, y, d, t). In addition, the following parameteres are global:

B.4. DETAILED DESCRIPTION OF GEOLOCALIZATION ALGORITHM 191

• ∆ – the closeness for merging solutions

• vmax – swimming range in one day

• κ0 – initial tolerance for accepting solution

• κρ – factor with which to increase tolerance if needed

• κmax – maximum tolerance allowed

• κf – tolerance used after running fmincon() for refining optimization.

Algorithm Main algorithm for the geolocalization problem

Input: T,D, Pinit

1: Ψ(0) ← {new SolutionPath (Pinit)}
2: for t← 1, . . . , tmax do

3: Ψ(t) ← ∅
4: for each ψ ∈ Ψ(t−1) do

5: P0 ← ψ.currentEndPoint

6: Φ← geoLocalSearch(P0, Dt, Tt, t)

7: for each φ ∈ Φ do

8: Ψ(t) ← Ψ(t) ∪ newPath
(
Ψ(t), φ, ψ

)

9: Ψ(t) ← optimizeEndPoints
(
Ψ(t)

)

function Φ = geoLocalSearch(P0, D, T, t)

1: (x0, y0)← P0

2: κ← κ0

3: Φ← ∅
4: while |Φ| < 2 do

5: for each
{

(i, j) :
∥∥∥(x0 − i, y0 − j)

∥∥∥
2
≤ vmax

}
do

6: if |T (i, j,D, t)− T | < κ then

192 APPENDIX B. ALGORITHMS

7: Φ← Φ ∪ (i, j)

8: κ← κ× κρ {Increase tolerance}
9: if κ > κmax then

10: return Φ

11: Φ← trimSolutions(Φ)

12: return Φ

function path = newPath
(

Ψ(t), φ, ψ̃
)

1: Note: Now ψ̃ is a path of shorter length than those in Ψ(t).

2: if Ψ(t) = ∅ or t = 1 then

3: return new SolutionPath
(
φ, ψ̃

)

4: for each ψ ∈ Ψ(t) do

5: if hasEquivalentEndPoint(ψ, φ) and pathAlreadyHasPath(ψ, ψ̃) then

6: return ∅
7: else if hasEquivalentEndPoint(ψ, φ) then

8: addPathAndEndpoint
(
ψ, φ, ψ̃

)

9: return ∅
10: return new SolutionPath(φ, ψ)

function addPathAndEndPoint
(
ψ, φ, ψ̃

)

1: ψ.endPoints← ψ.endPoints ∪ φ
2: ψ.prevPaths← ψ.prevPaths ∪ ψ̃

function Ψ̃ = optimizeEndPoints(Ψ, D, T, t)

1: Ψ̃← ∅
2: f(x, y)← |T (x, y,D, t)− T |
3: for each ψ ∈ Ψ do

4: (x0, y0)← mean(ψ.endPoints)

B.4. DETAILED DESCRIPTION OF GEOLOCALIZATION ALGORITHM 193

5: if (x0, y0) is an infeasible point then

6: (x0, y0)← ψ.endPoints(1) {Use the first endpoint instead}
7: LB, UB← optimization bounds such that all endpoints are within them

8: (x, y, fxy)← fmincon(f, (x0, y0), LB, UB)

9: if fxy < κf then

10: ψ.currentEndPoint← (x, y)

11: Ψ̃← Ψ̃ ∪ ψ
12: return Ψ̃

function hasEquivalentEndPoint()

This algorithm detects the closeness of a new path, returns true if the endpoint

of the new path falls within a box of extent ∆ from the original path end point.

function pathAlreadyHasPath()

This algorithm is used to ensure that paths that are virtually identical are added to

the solution space. In particular, if the two paths are equal up to and excluding the

end point, and the endpoint is close enough for merging, this function returns true.

194 APPENDIX B. ALGORITHMS

Appendix C

Implementation issues

This appendix contains info on implementation, details that are not necessary for

the mathematical discussion but only for the efficiency in implementing methods on

a computer. This is hoped to be of aid for any reproducing of the results in this

thesis.

C.1 2-D kernel density estimation

The 2-D kernel density estimation uses software from the MATLAB Central File

Exchange. An issue with applying this method on long time series, such as the four-

month data used in the thesis, is that the running time and memory consumption is

extremely high if a high resolution in the estimate is desired. Hence, the 2-D KDEs

shown in the thesis are made using rather low resolution, and are interpolated by

MATLAB in the plots. This leads to the placement of concentration points to be a

bit inaccurate compared to the true peak of the function.

195

196 APPENDIX C. IMPLEMENTATION ISSUES

C.2 Adaptive-degree polynomial filter

The software for ADPF smoothing was downloaded from the MATLAB Central

File Exchange 1. This script is very general, because it also provides values for

the smoothed time series at arbitrary points, i.e. with higher resolution than the

sampling of original data. It also has good graphics. The script was modified to make

it into a pure filter, with same number of points both before and after smoothing.

ADPF smoothing is time-consuming, because polynomial regression must be

performed at each time step. This makes it difficult (e.g. slow) to make automated

experiments with the width of the filter window. This is another reason for consid-

ering adaptive-window filters instead.

C.3 Implementation of spline interpolation

The spline interpolation for temperature is made using the function tpaps in MAT-

LAB Spline Toolbox. The interpolation would not be efficient if the spline had to be

constructed every time an atlas value is requested by the algorithm. To solve this,

the spline used for each grid cell at each time step was stored in a MATLAB cell

array, with linear indexing. The mapping from position in the atlas to position in

the cell array was stored in a sparse matrix for each time step, which is effective for

keeping the memory consumption low.

A possible improvement for keeping memory consumption even lower is to make

splines for larger regions at a time, but the mapping from position to cell array would

be more complicated. Another issue is that the algorithm in MATLAB changes

nature when the number of interpolation nodes exceeds 728, and the running time

quickly becomes unacceptable. The region for each spline can thus not be too big.

It is therefore not possible to make e.g. a single spline that can be evaluated at all

the points in the search radius of a previous position in the algorithm.

Situations have occured when the storage of a huge number of splines (more than

10000) has made the algorithm very slow. Storing the spline took more time than

1http://www.mathworks.com/matlabcentral/fileexchange/34892-adaptive-degree-smoothing-

and-differentiation

C.4. RUNNING TIME OF GEOLOCALIZATION ALGORITHM 197

making it. This calls for deleting some of the splines if the memory consumption

becomes to high.

C.4 Running time of geolocalization algorithm

The main time-consumators in the geolocalization algorithm are loading the atlas

for each time step, doing the linear interpolation of depth and enumerating the tem-

perature at all integer points in a reasonable distance from the previous position.

To solve this, computed integer temperature were stored in a sparse array for each

time step. The splines must also use these stored interpolated values for its nodes.

Also, with the storage of splines suggested in the previous section, evaluating tem-

peratures in areas that already have been explored by the algorithm is much quicker

than just getting the linear interpolations for depth for an area.

Recall the solution to the issue with infeasible solutions described in the chapter

on future work. It turns out that the optimization to correct this can be very efficient,

even with a time-varying atlas, if the pertubations of the path needed are so small

that no new areas are explored, and only existing splines are evaluated. The chance

of this is increased if upper and lower bounds are set on each value of the series such

that the search does not venture too far.

C.5 Atlas matrices

The position, depth and surface temperature matrices for the area around the Lo-

foten Archipelago are given here.

198 APPENDIX C. IMPLEMENTATION ISSUES

Mφ =




68.7 68.6 68.5 68.4 68.2 68.1 68.0 67.9

68.6 68.5 68.4 68.2 68.1 68.0 67.9 67.8

68.5 68.4 68.2 68.1 68.0 67.9 67.8 67.6

68.4 68.2 68.1 68.0 67.9 67.8 67.6 67.5

68.2 68.1 68.0 67.9 67.8 67.6 67.5 67.4

68.1 68.0 67.9 67.8 67.6 67.5 67.4 67.3

68.0 67.9 67.7 67.6 67.5 67.4 67.3 67.2

67.8 67.7 67.6 67.5 67.4 67.3 67.1 67.0

67.7 67.6 67.5 67.4 67.3 67.1 67.0 66.9

67.6 67.5 67.4 67.2 67.1 67.0 66.9 66.8




Mλ =




14.1 14.4 14.8 15.1 15.4 15.7 16.1 16.4

13.8 14.1 14.4 14.8 15.1 15.4 15.7 16.0

13.4 13.8 14.1 14.4 14.8 15.1 15.4 15.7

13.1 13.4 13.8 14.1 14.4 14.8 15.1 15.4

12.8 13.1 13.5 13.8 14.1 14.5 14.8 15.1

12.5 12.8 13.1 13.5 13.8 14.1 14.5 14.8

12.2 12.5 12.8 13.2 13.5 13.8 14.2 14.5

11.8 12.2 12.5 12.9 13.2 13.5 13.9 14.2

11.5 11.9 12.2 12.6 12.9 13.2 13.5 13.9

11.2 11.6 11.9 12.3 12.6 12.9 13.3 13.6




MD =




435.5 223.1 112.8 65.6 50 50 50 50

388.7 203.5 111.3 73.0 57.8 50 50 50

344.3 186.8 112.5 83.4 71.1 61.1 50.4 50

304.1 172.4 114.6 94.9 86.3 75.5 61.1 50

269.9 160.8 117.4 106.3 101.9 91.0 73.1 54.7

244.6 154.6 122.8 118.5 117.4 106.2 85.1 62.3

230.7 156.0 132.7 132.5 132.4 119.6 95.2 68.6

228.8 165.1 147.2 147.9 145.9 129.9 101.9 72.4

237.8 180.6 164.8 163.9 157.6 136.7 105.1 73.4

256.2 201.7 185.6 181.0 168.8 142.1 106.4 73.0




C.5. ATLAS MATRICES 199

MT =




7.447 0 0 0 0 0 0 0

7.462 7.624 0 0 0 0 0 0

7.508 7.611 0 6.206 5.529 0 0 0

7.550 0 0 6.372 6.465 0 0 0

7.486 0 6.789 7.227 7.310 6.877 0 0

7.477 0 7.100 7.814 7.387 6.868 0 0

7.629 7.052 7.293 7.480 7.551 7.624 7.637 0

8.196 7.706 7.457 7.396 7.448 7.554 7.652 0

7.906 7.807 7.638 7.438 7.286 7.254 7.428 0

8.001 7.645 7.513 7.555 7.403 7.402 7.621 0




200 APPENDIX C. IMPLEMENTATION ISSUES

List of Figures

2.1 Example trajectories of OU processes 23

2.2 Example of ADPF smoothed time series 34

2.3 Examples of kernel density estimates for 1-D (with varying band-

width) and for 2-D data (blue is low density, red is high). 37

2.4 Depth map of Norwegian and Barents seas, and of the area around

the Lofoten Archipelago. Source: The ROMS atlas, see Section 6.3. . 41

3.1 Mobile phone modelling: dividing an area into neighbourhoods 47

4.1 All the data from tag 1664 . 55

4.2 Two example 10-day trajectories shown as scatterplot and as time

series . 55

4.3 Box plots for each month of data . 56

4.4 Correlation between depth and temperature 57

5.1 Depth data showing slow variation 71

5.2 Example simulation for January 2005 and KDE comparison plot . . . 73

5.3 Inference on data for four periods . 79

5.4 Example of mean of 50 simulations 80

5.5 Example of weighted mean of 50 simulations 82

5.6 Simulation results for the depth data for May 2004 using a deter-

ministic sequence of states, instead of states generated by a Markov

chain. 83

5.7 All visits to state {2→ 3} for April-July depth data. 86

201

202 LIST OF FIGURES

5.8 ACF and PACF for 1000 depth data points in April 2004, with con-

fidence bounds. 88

5.9 Sample autocorrelation and Q-Q plot of residuals after smoothing, for

one short and one long visit to a state of the April-July depth data.

Smoothing window used: 27. 90

5.10 Smoothing that fits very closely to precision noise 91

5.11 Comparison of 2-D KDEs for April-July 2004 data and simulations . 101

6.1 20 km and 4 km atlases for different times 109

6.2 The coordinates in the matrix and matrix row/column indices in map 110

6.3 Error made in distance calculation in the 20 km gridded atlas when

travelling in i direction, j direction and on the diagonal from a point

north of Spitsbergen. 111

6.4 Map showing directions travelled when calculating distance errors . . 112

6.5 Depth values and example surface temperature around Lofoten 113

6.6 Illustration of use of layers for three adjacent points for matrix posi-

tions i = 203 and j = 259, 260, 261. 114

7.1 Illustration of interpolation of temperature for depth 129

7.2 Mask and vertically interpolated temperatures at 120 meters. 130

7.3 Different interpolation schemes and informal error analysis. 131

7.4 Horizontal interpolation of surface temperature and temperature at

120 meters for Lofoten area. 133

7.5 Test instances 1 and 2 . 134

7.6 One step temperature and objective. 137

7.7 Demo of merging solutions . 141

7.8 Demonstrating the effect of tolerance setting. 144

7.9 Solutions from running on test instance 2 with too low tolerance. . . 146

7.10 All solutions from running test instance 2 with higher tolerance. . . . 147

7.11 Analysis of objective function value of solutions to test instance 2. . . 147

7.12 Solutions to test instance 2 with best end point matches. 148

7.13 Solutions at 30 and 100 days for test instance 1. 149

LIST OF FIGURES 203

7.14 Solutions from running test instance 2 with too high speed limit. . . . 150

7.15 Demonstration of how backtracking matters for test instance 4. . . . 151

7.16 Using habitat restriction to reduce spread in solutions for test instance

4. 152

7.17 Run 1 on DST data, 30 days and a selection of solutions 153

7.18 Run 1 on DST data, 60 and 120 days 154

7.19 Run 2 on DST data with habitat masking, 30 and 60 days 154

7.20 Run 2 on DST data with habitat masking, 400 and 200 days 155

7.21 Shortest and longest paths from run 2 at 200 days, shown in map . . 156

8.1 Inference on data from April-July with presmoothing 166

204 LIST OF FIGURES

Bibliography

[1] Robert A. Adams. Calculus: a complete course. Addison Wesley Longman, 5th

edition, 2003.

[2] Richard Bainbridge. The speed of swimming of fish as related to size and to

the frequency and amplitude of the tail beat. Journal of Experimental Biology,

35:109–133, 1958.

[3] Phillip Barak. Smoothing and differentiation by an adaptive-degree polynomial

filter. Analytical Chemistry, 67(17):2758–2762, 1995.

[4] Simeon M. Berman. A bivariate markov process with diffusion and discrete

components. Communications in Statistics. Stochastic Models, 10(2):271–308,

1994.

[5] P.G. Blackwell. Inference for Ornstein-Uhlenbeck processes in random environ-

ments. Research Report, Sheffield Univ. (United Kingdom). Dept. of Probabil-

ity and Statistics, 1996.

[6] P.G. Blackwell. Random diffusion models for animal movement. Ecological

Modelling, 100(1-3):87 – 102, 1997.

[7] F. L. Bookstein. Principal warps: Thin-plate splines and the decomposition of

deformations. IEEE Trans. Pattern Anal. Mach. Intell., 11(6):567–585, June

1989.

[8] Peter J. Brockwell and Richard A. Davis. Introduction to Time Series and

Forecasting. Springer, 2nd edition, March 2002.

205

206 BIBLIOGRAPHY

[9] M. Browne, N. Mayer, and T. R. H. Cutmore. A multiscale polynomial filter

for adaptive smoothing. Digit. Signal Process., 17(1):69–75, January 2007.

[10] William Henry Burt. Territoriality and home range concepts as applied to

mammals. Journal of Mammalogy, 24(3):pp. 346–352, 1943.

[11] Peter J. Diggle. Time series: a biostatistical introduction. Clarendon, 1990.

[12] J.E. Dunn and P.S. Gipson. Analysis of Radio Telemetry Data in Studies of

Home Range. Biometrics, 33(1):85–101, 1977.

[13] Anders Fernö, Terje Jørgensen, Svein Løkkeborg, and Paul D. Winger. Variable

swimming speeds in individual atlantic cod (gadus morhua l.) determined by

high-resolution acoustic tracking. Marine Biology Research, 7:310–313, 2011.

[14] International Council for the Exploration of the Sea. Advice for 2011 on nor-

wegian coastal cod. http://www.ices.dk/committe/acom/comwork/report/

2010/2010/cod-coas.pdf. View date April 24th 2012.

[15] José Carlos Garćıa Franco. Maximum likelihood estimation of mean reverting

processes. Published on web: http://www.investmentscience.com/Content/

howtoArticles/MLE_for_OR_mean_reverting.pdf. View date January 25th

2012.

[16] Daniel T. Gillespie. Exact numerical simulation of the Ornstein-Uhlenbeck

process and its integral. Physical Review E, 54(2):2084–2091, 1996.

[17] Olav Rune Godø and Kathrine Michalsen. Migratory behaviour of north-east

arctic cod, studied by use of data storage tags. Fisheries Research, 48:127–140,

2000.

[18] Desmond J. Higham. An algorithmic introduction to numerical simulation of

stochastic differential equations. SIAM Review, 43:525–546, 2001.

[19] Roger A. Horn and Charles R. Johnson. Topics in matrix analysis. Cambridge

University Press, 1994.

BIBLIOGRAPHY 207

[20] J. Kennedy and R. Eberhart. Particle swarm optimization. In Neural Networks,

1995. Proceedings., IEEE International Conference on, volume 4, pages 1942–

1948 vol.4. IEEE, November 1995.

[21] David Kincaid and Ward Cheney. Numerical Analysis: Mathematics of Scien-

tific Computing. Brooks/Cole, 3rd edition edition, 2002.

[22] Jack P. C. Kleijnen. Verification and validation of simulation models. European

Journal of Operational Research, 82(1):145–162, April 1995.

[23] Y. K. Kwok. Mathematical models of financial derivatives. Springer, 1998.

[24] Vidar S. Lien. Institute of Marine Research. Personal communication, 2012.

[25] Vidar S. Lien, Paul Budgell, Bjørn Ådlandsvik, and Einar Svendsen. Validating

Results from the model ROMS (Regional Ocean Modelling System) with respect

to volume transport and heat fluxes in the Nordic Seas. Fisken og havet 2/2006,

Institute of Marine Research, 2006.

[26] Movable Type Ltd. Calculate distance, bearing and more be-

tween latitude/longitude points. Web site: http://www.movable-

type.co.uk/scripts/latlong.html. View date April 10 2012.

[27] Reinhard Mahnke, Jevgenijs Kaupužs, and Ihor Lubashevsky. Physics of

Stochastic Processes. WILEY-VCH Verlag GmbH & Co., 2009.

[28] W. L. Martinez and A. R. Martinez. Computational statistics handbook with

MATLAB. Chapman & Hall/CRC, 2002.

[29] Cleve Moler and Charles Van Loan. Nineteen Dubious Ways to Compute the

Exponential of a Matrix, Twenty-Five Years Later. SIAM Review, 45(1):3–49,

2003.

[30] Fabian Mörchen and Alfred Ultsch. Optimizing time series discretization for

knowledge discovery. In Proceedings The Eleventh ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 660–665, 2005,

Chicago, IL, USA.

208 BIBLIOGRAPHY

[31] Erik Natvig and Sam Subbey. Modelling vertical fish migration using Mixed

Ornstein-Uhlenbeck processes. In Proceedings Norsk Informatikkonferanse NIK

2011, pages 73–84, 2011, Tromsø, Norway.

[32] Jennifer L. Nielsen, Nuno Fragoso, Molly Lutcavage, Haritz Arrizabalaga, Al-

istair Hobday, and John Sibert (editors). Tagging and Tracking of Marine An-

imals with Electronic Devices, volume 9 of Reviews: Methods and Technologies

in Fish Biology and Fisheries. Springer, 2009.

[33] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer Se-

ries in Operation Research and Financial Engineering. Springer, second edition

edition, 2006.

[34] J.R. Norris. Markov Chains. Cambridge Series on Statistical and Probabilistic

Mathematics. Cambridge University Press, 1997.

[35] Norwegian Ministry of Fisheries and Coastal Affairs. Press

release, march 17th 2010. http://www.regjeringen.

no/nn/dep/fkd/pressesenter/Pressemeldingar/2010/

Gjenoppbyggingsplan-for-kysttorsk-nord-for-62N.html?id=597705.

View date April 24th 2012.

[36] Institute of Marine Research. Web page on fish species. http://www.imr.no/

temasider/fisk/en. View data April 7th 2012.

[37] Martin Væver Pedersen. Hidden markov models for geolocation of fish. Master’s

thesis, Technical University of Denmark, Kongens Lyngby, Denmark.

[38] Haiganoush K. Preisler, Alan A. Ager, Bruce K. Johnson, and John G. Kie.

Modeling animal movements using stochastic differential equations. Environ-

metrics, (15):643–657, 2004.

[39] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flan-

nery. Numerical Recipes: The Art of Scientific Computing. Cambridge Univer-

sity Press, 2007.

BIBLIOGRAPHY 209

[40] Gilks W. R., S. Richardson, and D. J. Spiegelhalter. Markov Chain Monte

Carlo in Practice: Interdisciplinary Statistics (Chapman & Hall/CRC Interdis-

ciplinary Statistics). Chapman and Hall/CRC, 1 edition, 1995.

[41] G. A. Rose, B. deYoung, and E. B. Colbourne. Cod (gadus morhua l.) migration

speeds and transport relative to currents on the north-east newfoundland shelf.

ICES J. Mar. Sci, 52:903–913, 1995.

[42] Michael Rosenblum. Mobility modeling with a mixed Ornstein-Uhlenbeck pro-

cess. Found on website http://people.csail.mit.edu/mrosenblum/work/.

[43] Sheldon M. Ross. Introduction to Probability Models. Academic Press, 10th

edition edition, 2010.

[44] Egil Sakshaug, Geir Johnsen, and Kit Kovacs (editors). Ecosystem Barents Sea.

Tapir Forlag, 2009.

[45] A. Savitzky and M. J. E. Golay. Smoothing and differentiation of data by

simplified least squares procedures. Analytical Chemistry, 36(8):1627–&, 1964.

[46] Robert R. Shumway and David S. Stoffer. Time Series Analysis and Its Appli-

cations. Springer Texts in Statistics. Springer, 2006.

[47] R. W. Sinnott. Virtues of the Haversine. Sky and Telescope, 68(2):159+, 1984.

[48] William Smith. On the simulation and estimation of the mean-reverting

ornstein-uhlenbeck process. Web page: http://commoditymodels.com/2010/

02/24/parameter-estimation-mean-reverting-process/. View date Jan-

uary 25th 2012.

[49] J. Steinier, Y. Termonia, and J. Deltour. Comments on smoothing and differ-

entiation of data by simplified least square procedure. Analytical Chemistry,

44(11):1906–&, 1972.

[50] S. Subbey, K. Michalsen, H. Otneim, and G. Dingsør. Does Cod (Gadus

morhua) Ride the Tides? Under review – Canadian Journal of Fisheries Science

(2012).

210 BIBLIOGRAPHY

[51] Sam Subbey, Kathrine Michalsen, and Geir Nilsen. A tool for analyzing in-

formation from data storage tags: the continuous wavelet transform (CWT).

Reviews in Fish Biology and Fisheries, 18:301–312, 2008. 10.1007/s11160-007-

9078-2.

[52] S. Subbey et al. Manuscript under preparation (2012).

[53] Lloyd N. Trefethen and David Bau. Numerical Linear Algebra. SIAM: Society

for Industrial and Applied Mathematics, June 1997.

[54] G.E. Uhlenbeck and L.S. Ornstein. On the theory of the Brownian motion.

Physical Review, 36(5):0823–0841, Sep 1930.

[55] Thijs van den Berg. Calibrating the Ornstein-Uhlenbeck (Va-

sicek) model. Web page http://www.sitmo.com/article/

calibrating-the-ornstein-uhlenbeck-model/. View date October 24th

2011.

[56] J. J. Videler and C. S. Wardle. Fish swimming stride by stride: speed limits

and endurance. Reviews in Fish Biology and Fisheries, 1:23–40, 1991.

[57] Frode B. Vikebø, Åse Husebø, Aril Slotte, Erling K. Stenevik, and Vidar S.

Lien. Effect of hatching date, vertical distribution, and interannual variation

in physical forcing on northward displacement and temperature conditions of

norwegian spring-spawning herring larvae. ICES Journal of Marine Science:

Journal du Conseil, 67(9):1948–1956, December 2010.

[58] Bjørn Ådlandsvik, Geir Huse, and Kathrine Michalsen. Introducing a method

for extracting horizontal migration patterns from data storage tags. Hydrobi-

ologia, 582:187–197, 2007.

[59] Bernt Øksendal. Stochastic differential equations : an introduction with appli-

cations. Springer, 2003.

