
New Width Parameters of Graphs

Martin Vatshelle

Dissertation for the degree of Philosophiae Doctor (PhD)

Department of Informatics
University of Bergen

May 24, 2012

2

Abstract

The main focus of this thesis is on using the divide and conquer technique to
efficiently solve graph problems that are in general intractable. We work in
the field of parameterized algorithms, using width parameters of graphs that
indicate the complexity inherent in the structure of the input graph. We use
the notion of branch decompositions of a set function introduced by Robert-
son and Seymour to define three new graph parameters, boolean-width, max-
imum matching-width (MM-width) and maximum induced matching-width
(MIM-width). We compare these new graph width parameters to existing
graph parameters by defining partial orders of width parameters. We focus
on tree-width, branch-width, clique-width, module-width and rank-width,
and include a Hasse diagram of these orders containing 32 graph parameters.

We use the size of a maximum matching in a bipartite graph as a set
function to define MM-width and show that MM-width never differs by more
than a multiplicative factor 3 from tree-width. The main reason for introduc-
ing MM-width is that it simplifies the comparison between tree-width and
parameters defined via branch decomposition of a set function.

We use the logarithm of the number of maximal independent sets in a bi-
partite graph as set function to define boolean-width. We show that boolean-
width of a graph class is bounded if and only if rank-width is bounded, and
show that the boolean-width of a graph can be as low as the logarithm of the
rank-width of the graph. Given a decomposition of boolean-width k, we de-
sign FPT algorithms parameterized by k, for a large class of graph problems,
whose runtime has a single exponential dependency in the boolean-width,
i.e. O∗(2O(k2)). Moreover we solve Maximum Independent Set in time
O∗(22k) and Minimum Dominating Set in time O∗(23k). These algorithms
are in particular interesting in conjunction with the fact that many graph
classes have boolean-width O(log(n)), e.g. interval graphs.

MIM-width is defined using the size of a maximum induced matching in a
bipartite graph as set function. The main reason to introduce MIM-width is
that its value is lower than any of the other parameters, in particular MIM-
width is 1 on interval graphs, permutation graphs and convex graphs, and at

i

ii

most 2k on circular k-trapezoid graphs, k-polygon graphs, Dliworth k graphs
and complements of k-degenerate graphs. We show that the FPT algorithms
designed for boolean-width are XP algorithms when parameterized by MIM-
width, this shows that a large class of locally checkable vertex subset and
vertex partitioning problems are polynomial time solvable on the mentioned
graph classess with bounded MIM-width.

We give exact algorithms to compute optimal decompositions for all the
three new width parameters and report on the implementation of a heuristic
for finding decompositions of low boolean-width.

Acknowledgements

First and foremost, I would like to thank everyone in the Algorithms group at
the University of Bergen for creating an excellent atmosphere for learning. It
has been a great experience both scientifically and personally to get to know
you all! I want to extend special gratitude to those that have also become
my co-authors: Isolde Adler, Remy Belmonte, Binh-Minh Bui-Xuan, Fedor
Fomin, Serge Gaspers, Petr Golovach, Eivind Magnus Hvidevold, Erik-Jan
van Leeuwen, Daniel Meister, Sadia Sharmin and Yngve Villanger. And a
special thanks to my office mates Mostofa Patwary and Sigve Sæther who
made my office a cozy place to be.

I have had the privilege and pleasure of working with many people who
are experts in their fields and from whom I have learnt a lot! I, therefore,
would like to give special thanks to Therese Biedl, Lene Favrholt, Sang-il
Oum, Yuri Rabinovich, and Johan M.M. van Rooij for sharing your valuable
knowledge with me.

One of the things I enjoy the most from my academic experience is teach-
ing, and I have had so much pleasure interacting and fostering scientific
interest with a lot of students. Thanks to Pinar Heggernes, Daniel Loksh-
tanov, and Fredrik Manne, all of whom I have had the honour of teaching
together with.

During my four years of PhD studies, I have had the fortune of travelling
vastly and frequently. Out of the ten different countries I visited, Czech
Republic has become my favourite. I would like to thank Jan Kratochvil and
his entire group for organizing so many excellent workshops and conferences,
Dan Kral for extending invitations, and all the other students for making
Czech Republic feel like my second home. Also, I want to give special thanks
to Naomi Nishimura of the University of Waterloo for making it possible for
me to stay for five months in Waterloo - it was a unique experience at a great
university. I hope to be able to spend much more time there in the future.
Having said all these, thank you very much to UiB and NFR for generously
funding all my travels!

Above all, (and of course), my greatest gratitude and appreciation goes

iii

iv

to my supervisor, Jan Arne Telle. Not only has he imparted his much valued
knowledge, insights, and guidance to me, he has also managed to understand
my complicated inner self and put up with all the things I have done over
these past four years! None of the things I thanked for above would have
been possible if it was not for his faith in me. Jan Arne, it has been such an
honour, privilege, and enjoyment to learn from you and work with you. I am
forever grateful for your open door.

I have, in periods, been very busy - a consequence that my family has had
to endure. They have always been a great support throughout my studies
and for that, I am very grateful. I wish I can promise to spend more time
with them in the future, but at this point, there is much uncertainty about
the future. Last but not least, I want to thank my girlfriend for patiently
waiting for me to finish my PhD and enduring all those long months apart.
You have given me so much inspiration and motivation.

v

I dedicate this thesis to a very special Sunflower.

Figure 1: The Sunflower graph

vi

Contents

I Overview ix

1 Introduction 1
1.1 Graph Decompositions and Width

Parameters . 1
1.2 New Width Parameters . 3
1.3 Overview of Chapters . 4

1.3.1 Part I . 4
1.3.2 Part II . 5

2 Preliminaries 7
2.1 Set Theory . 7
2.2 Graph Theory . 8

2.2.1 Graph Properties and Graph Problems 10
2.3 Runtime Analysis . 11

3 Width Parameters 13
3.1 Decomposition Trees . 13
3.2 Module-width and Clique-width 15
3.3 Rank-width . 16
3.4 Tree-width . 17
3.5 Boolean-width . 18
3.6 Maximum Matching-width . 20
3.7 Maximum Induced Matching-width 21

4 Comparing graph parameters 23
4.1 Well-known width parameters 23
4.2 New Width parameters . 26

4.2.1 MM-width . 26
4.2.2 Boolean-width . 29
4.2.3 MIM-width . 30
4.2.4 Comparison Diagram of Graph Parameters 31

vii

viii CONTENTS

4.3 Restricted graph classes . 32
4.3.1 Random Graphs . 32
4.3.2 Graphs with an Intersection Model 35
4.3.3 d-degenerate Graphs 37
4.3.4 Grid Graphs . 38

5 Parameterized Algorithms 43
5.1 Monadic Second Order Logic 43
5.2 LC-VSVP problems . 47
5.3 Independent Set and Dominating Set 49
5.4 Feedback Vertex Set . 51

6 Computing Decompositions 53
6.1 Exact Algorithms . 53
6.2 Parameterized Algorithms . 55
6.3 Heuristics . 56

6.3.1 Practical Runtime . 57
6.3.2 Reduction Rules . 58
6.3.3 Implementations . 59

7 Conclusions and Future Work 61

II Papers 71

8 Boolean-width of Graphs 73

9 Graph Classes with Structured Neighbourhoods and Algo-
rithmic Applications 115

10 Fast dynamic programming for locally checkable vertex sub-
set and vertex partitioning problems 143

11 Feedback Vertex Set on Graphs of Low Clique-width 167

12 Faster Dynamic Programming on dense graphs 189

Part I

Overview

ix

Chapter 1

Introduction

Ever since they were first described by Leonard Euler in 1735 with his work
on The Seven Bridges of Königsberg [27], graphs have been an important
notion in discrete mathematics, and later in computer science. Graphs can
be used to model any pairwise relationship between any kind of objects, like
pieces of land connected by bridges or people connected by friendships. The
field of graph algorithms has many applications, and divide and conquer is
one of the fundamental algorithmic techniques. One of the earliest described
uses of divide and conquer is an algorithm for discrete Fourier transformation
of Gauss [37]. The main focus of this thesis is on using the divide and conquer
technique to efficiently solve graph problems that are in general intractable.

1.1 Graph Decompositions and Width

Parameters

When solving problems by divide and conquer on a graph G, it is common
to store the information of how to divide the graph by a rooted decompo-
sition tree of G. Constant size subgraphs of G are stored at the leaves of
the decomposition tree, and at internal nodes of the tree the smaller sub-
graphs of G at its children are ”glued” together to form bigger subgraphs of
G. We then process the decomposition tree in a bottom up fashion solving
the problem on subgraphs of G of increasing size using dynamic program-
ming, with the solution found at the root, which stores the graph G. The
runtime of such algorithms greatly depend on the choice of decomposition
tree. Therefore it is common to measure the complexity of a decomposition
tree by a carefully chosen parameter, called the width of a decomposition
tree, with the width parameter of a graph being the width of an optimal de-
composition tree. Tree-width, clique-width and rank-width are examples of

1

2 CHAPTER 1. INTRODUCTION

such graph width parameters for which there exists a vast litterature of both
algorithmic and structural results, see [45] for an overview. In this thesis
we focus on algorithmic applications and introduce three new graph width
parameters called boolean-width, maximum matching-width and maximum
induced matching-width.

When we analyse algorithms based on decomposition trees we use two
parameters, n the number of vertices in the input graph and k the width
of the decomposition tree. This makes it more complicated to compare the
runtime of algorithms, e.g. 2k

3 · n versus nk. Such considerations are part of
the field called Parameterized Complexity, see [24, 28, 56].

Graph algorithms based on decomposition trees have two stages. First
compute a good decomposition tree. Second use dynamic programming on
the decomposition tree to solve various NP-hard problems. Normally the
first stage is allowed more runtime than the second since it can be viewed
as a preprocessing and the same decomposition can be used to run many
algorithms. There are three important aspects to consider when comparing
the runtime of algorithms based on decomposition trees:

(1) The time spent to compute a decomposition tree (Chapter 6 gives an
overview).

(2) The width of the decomposition found (Chapter 4 gives an overview).

(3) The time spent to solve the problem by dynamic programming (Chap-
ter 5 gives an overview).

(1) is not a main focus of this thesis, however it is an important step. In
some sense this is the hardest step and the best algorithms for computing
optimal decompositions, in particular for tree-width and rank-width, involve
deep results of graph theory originating from e.g. the Graph Minors project.
These algorithms have limited viability in practice, but there is promising
work in designing heuristics in particular for tree-width, and the ideas from
this work might also carry over to other types of decompositions.

(2) is important because two different width parameters could have al-
gorithms with the same runtime but the two parameter values on a given
graph may differ greatly. We will compare many graph parameters, not only
those defined via decomposition trees, and define partial orders on them to
get an overview of how they relate to each other. The lower a parameter is
the harder it will be to design algorithms that are efficient in terms of this
parameter, and this constitutes the main challenge addressed in this thesis.

(3) has been studied intensely for all graph parameters discussed in this
thesis, and several new results are presented. The main focus in this area

1.2. NEW WIDTH PARAMETERS 3

has been whether a problem can be solved in FPT time i.e. f(k) · poly(n)
for a polynomial function poly or in XP time i.e nf(k). For FPT algorithms
there has been a focus on whether the poly(n) in the runtime is linear in
n or not. In this thesis we instead focus on f(k) and on reducing the ex-
ponential dependency in k, in particular we want algorithms with runtime
2O(k) · poly(n).

1.2 New Width Parameters

The notion of branch decompositions introduced by Robertson and Seymour
is a general framework that we will use to define several width parameters
of a graph G. For our purposes these width parameters will be based on a
set function assigning to each subset S of vertices of a graph G a number
between 0 and |V (G)|. A subset S ⊆ V (G) defines a cut of G consisting of
the edges with one endpoint in S and one endpoint outside S. In this way
a vertex subset S can be viewed as a cut which can be viewed as a bipartite
graph. Any parameter of a bipartite graph can therefore be used as a set
function to define a graph width parameter.

Rank-width fits this framework and is defined using the GF (2) rank of the
bipartite adjacency matrix of the cut as the set function. On the other hand,
tree-width and clique-width do not easily fit in this framework. However,
module-width which never differs by more than a multiplicative factor 2 from
clique-width, can be defined using this framework with the number of twin-
classes across the cut as the set function. Branch-width never differs from
tree-width by more than a multiplicative factor 1.5 and fits in the frame-work
of branch decompositions, but only by using a set function defined on subsets
of edges. Can we define a parameter in this frame-work, using a set function
defined on subsets of vertices, that never differs by more than a constant
multiplicative factor from tree-width?

Yes, we can, and this is the new parameter we call the maximum match-
ing width (MM-width). The Minimum Vertex Cover problem is a well
studied problem, in particular in the field of parameterized algorithms. In
bipartite graphs the Minimum Vertex Cover problem is equivalent to the
Maximum Matching problem. We use the size of a maximum matching in
the cut as a set function to define maximum matching width. The maximum
matching width is interesting because a proof via a cops and robber game
(equivalent to tree-width) shows that maximum matching-width never dif-
fers by more than a multiplicative factor 3 from tree-width. The proof relies
on the monotonicity properties of this version of the cops and robber game,
proven by [70].

4 CHAPTER 1. INTRODUCTION

When studying how to solve the Maximum Independent Set problem
by dynamic programming on decomposition trees we discovered, with the
help of Nathann Cohen, that the number of maximal independent sets in the
bipartite graph of a cut was an important measure, and we use this to define
boolean-width which help us solve several NP-complete problems in O∗(2O(k))
time when given a decomposition tree of boolean-width k. These algorithms
are in particular interesting in conjunction with the fact that many well-
known graph classes, like interval graphs, have boolean-width O(log(n)).

We introduce a third new width parameter even lower than boolean-
width, by using the size of a maximum induced matching in a bipartite
graph as the set function to define maximum induced matching-width (MIM-
width). MIM-width is constant on many interesting graph classes where none
of the other parameters are constant, e.g. interval graphs.

1.3 Overview of Chapters

The thesis has two parts. Part I contains an overview of known results as
well as new results that have not been published before. Part II contains five
papers previously published or recently submitted.

1.3.1 Part I

In Chapter 2 we give a short overview of standard definitions.
In Chapter 3 we describe a general framework called binary decomposition

trees and use this to define many graph width parameters. In particular we
define the three new graph width parameters MM-width, boolean-width and
MIM-width. Boolean-width was first introduced in the paper making up
Chapter 8, while MM-width and MIM-width are introduced for the first
time in this chapter.

In Chapter 4 we study the relationship between some well-known graph
width parameters and also how they relate to the new graph width param-
eters. We introduce partial orders of width parameters in order to compare
their values, presenting the orders in Hasse diagrams.

In Chapter 5 we compare the runtime of algorithms for various problems
expressible in monadic second order logic using various graph parameters,
sometimes assuming an appropriate decomposition given as part of the input.
We give an overview of existing algorithms. We show that the algorithms
given in Chapter 10 yield improved runtime parameterized by clique-width
and rank-width and lead to XP algorithms parameterized by MIM-width.
We also give an overview of runtimes for Maximum Independent Set,

1.3. OVERVIEW OF CHAPTERS 5

Minimum Dominating Set and Feedback Vertex Set parameterized
by the various graph width parameters.

In Chapter 6 we give exact algorithms to compute binary decomposition
trees of optimal boolean-width and MIM-width. We also give an overview
of the current best exact algorithms for other graph width parameters and
also of the best decompositions achievable by an FPT algorithm. Finally
we discuss heuristics to compute optimal decompositions, this is a big area
which we have barely started to investigate, but it is part of ongoing research.

In Chapter 7 we summarize and list some open problems.

1.3.2 Part II

Part II consists of 5 papers appearing in separate chapters numbered 8 to
12.

Chapter 8 Binh-Minh Bui-Xuan, Jan Arne Telle and Martin Vatshelle,
Boolean-width of Graphs, in Theoretical Computer Science
412(39), pages 5187–5204, 2011.

This paper introduces boolean-width, compares boolean-width
to rank-width and gives dynamic programming algorithms for
a handful of problems.

Chapter 9 Rémy Belmonte and Martin Vatshelle, Graph Classes with
Structured Neighborhoods and Algorithmic Applications, sub-
mitted to journal. Extended abstract in Proceedings of WG’11,
LNCS 6986, pages 47–58, 2011.

This paper shows that many well-known graph classes have log-
arithmic boolean width and that the algorithms in Chapter 10
run in polynomial time on these graph classes, i.e. graphs of
bounded MIM-width.

Chapter 10 Binh-Minh Bui-Xuan, Jan Arne Telle and Martin Vatshelle,
Fast Dynamic Programming for Locally Checkable Vertex Sub-
set and Vertex Partitioning Problems, submitted to journal.
Extended abstract (3 pages) in Isolde Adler, Binh-Minh
Bui-Xuan, Yuri Rabinovich, Gabriel Renault, Jan Arne Telle
and Martin Vatshelle, On the Boolean-width of a Graph:
Structure and Applications, in Proceedings of WG’10,
LNCS 6410, pages 159–170, 2010.

6 CHAPTER 1. INTRODUCTION

This paper gives algorithms for solving a large class of graph
problems analyzing the runtime of these algorithms in terms
of the width of a given decomposition tree.

Chapter 11 Binh-Minh Bui-Xuan, Ondra Suchý, Jan Arne Telle and
Martin Vatshelle, Feedback Vertex Set on Graphs of low
Clique-width, to appear in European Journal of Combinatorics.

This paper gives an algorithm for solving Minimum Feed-

back Vertex Set in time O∗(k5k) when given a decomposi-
tion tree having module-width k.

Chapter 12 Eivind Magnus Hvidevold, Sadia Sharmin, Jan Arne Telle
and Martin Vatshelle, Finding Good Decompositions for
Dynamic Programming on Dense Graphs, Proceedings of
IPEC’11, LNCS 7112, pages 219–231, 2011.

In this paper we give a first heuristic for computing boolean-
decompositions and compare its performance to existing heuris-
tics for tree-width.

Chapter 2

Preliminaries

In this Chapter we review some basic definitions. Most of the terminology in
this thesis is standard and can be found in any textbook on the appropriate
subject. First we consider set theory with special attention to the union,
intersection and symmetric difference operators. Then basic graph theory
and some well-known graph problems relevant to this thesis. Then a short
section on how to measure the runtime of algorithms.

2.1 Set Theory

The cardinality of a set S denoted |S| is the number of elements in the set.
Given two sets A and B we use the following operations:

Subset A ⊆ B if ∀v ∈ A we have v ∈ B.

Equality A = B if A ⊆ B and B ⊆ A otherwise A �= B.

Strict subset A ⊂ B if A ⊆ B and A �= B.

Intersection A ∩B = {v : v ∈ A and v ∈ B}.
Union A ∪B = {v : v ∈ A or v ∈ B}.
Difference A \B = {v : v ∈ A and v �∈ B}.
Symmetric difference A	 B = (A ∪B) \ (A ∩B) = (A \B) ∪ (B \ A).

A set family is a set of sets, as a convention to distinguish set families from
sets we will when possible use calligraphic upper-case letters for set families,
upper-case letters for sets and lower-case letters for elements. For three of
the operations above the order or the sets is irrelevant and the operations can
be extended to set families. Let F = X1, X2, . . . , Xk be a set family then:

7

8 CHAPTER 2. PRELIMINARIES

Intersection
⋂

X∈F X = X1 ∩X2 ∩ · · · ∩Xk.

Union
⋃

X∈F X = X1 ∪X2 ∪ · · · ∪Xk.

Symmetric difference 	X∈F X = X1	X2	 · · · 	Xk.

The theory of sets and set operations is wide and extensive, but not a
topic of this thesis, for an extensive overview see [72].

A set family P = {P1, P2, . . . , Pk} is called a partition of U (called the
universe) if U = P1 ∪P2 ∪ · · · ∪Pk and for all i, j such that 1 ≤ i < j ≤ k we
have Pi ∩ Pj = ∅ and Pi �= ∅.

We say a set S is closed under an operation ⊕ if for all x, y ∈ S we have
x⊕y ∈ S. The ⊕-closure of a set S is the unique minimal set closed under ⊕
containing S. The two types of closure we will discuss in this thesis is union
closure and 	-closure.

2.2 Graph Theory

In this section we give a short overview of standard graph terminology. For
a more complete introduction to graph theory there are many good books
for example an introductory book by R. J. Wilson [77] or a more advanced
book by R. Diestel [22].

Graph A graph G is a pair V (G) called the vertices, and E(G) called the
edges where edges are unordered pairs of the vertices. We will only
consider loopless simple undirected graphs in this thesis.

Neighborhood For a graph G and a vertex v ∈ V (G), the neighborhood of
v, denoted N(v), is the set of all vertices in G adjacent to v. The closed
neighborhood is denoted N [v] = N(v)∪{v}. The neighborhood of a set
S ⊆ V (G) is denoted N(S) =

⋃
v∈S N(v) and the closed neighborhood

of S is denoted N [S] = N(S) ∪ S.

Twins For a graph G, two vertices x, y ∈ V (G) are twins if N(x) \ y =
N(y) \ x.

Vertex complement For a graph G and A ⊆ V (G), the complement of A
is denoted A = V (G) \ A.

The complement of a graph The complement of a graph G, denoted G,
is the graph where V (G) = V (G) and for any pair u, v ∈ V (G) with
u �= v we have (u, v) ∈ E(G) if and only if (u, v) �∈ E(G).

2.2. GRAPH THEORY 9

Subgraph A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and
E(H) ⊆ E(G) denoted H ⊆ G. For S ⊆ V (G) the subgraph of G
induced by S denoted G[S] is the maximal subgraph H ⊆ G having
V (H) = S.

Cut For a graph G and A ⊆ V (G), the cut in G defined by A is the partition
(A,A) of V (G). The neighborhood ofX ⊆ A across (A,A) is N(X)∩A.
Two vertices x, y ∈ A are twins across (A,A) if N(x) ∩A = N(y) ∩A.

Bipartite graph We say a graph G = (V,E) is bipartite if there exist a
subset A ⊆ V (G) such that every edge in E(G) has one endpoint in A
and the other in A.

Induced bipartite subgraph For a graph G and A,B ⊆ V (G) such that
A∩B = ∅. The bipartite graph induced by the two subsets is denoted
G[A,B] = (A∪B,E ′) where E ′ ⊆ E(G) are the edges with one endpoint
in A and one endpoint in B. Note that A ⊆ V (G) defines the induced
bipartite subgraph G[A,A].

Bipartite adjacency matrix For a graph G and A ⊆ V (G) let
A = {v1, v2, . . . } and A = {u1, u2, . . . }. The bipartite adjacency matrix
of G[A,A] is the matrix with |A| rows and |A| columns where the entry
in row i and column j is 1 if (vi, uj) ∈ E(G[A,A]) and 0 otherwise.

Connected graph A graph G is connected if for every pair of vertices u, v ∈
V (G) there exist a path from u to v. A graph that is not connected is
called a disconnected graph.

Separator For a connected graph G, a set S ⊆ V (G) is a separator of G if
G[V (G) \ S] is a disconnected graph. A separator of size 1 is called a
cut vertex.

Tree A tree is a connected graph with no cycles. In a tree T , to avoid
confusion with a graph, we call the elements in V (T) nodes. A node
with degree at most 1 is called a leaf and a node of degree at least 2
is called an internal node. A tree is called a rooted tree if one vertex
has been designated the root, in which case the edges have a natural
orientation, towards or away from the root. For a rooted tree T and
u ∈ V (T) the neighbor of u on the path to the root is called the parent
of u and a vertex v is a child of u if u is the parent v.

Subcubic tree A subcubic tree is a tree where every node has degree at
most 3.

10 CHAPTER 2. PRELIMINARIES

Figure 2.1: A graph with 5 vertices and 6 edges.

Binary tree A binary tree is a rooted tree where every node is either a leaf
or has two children.

Contraction For a graph G and (u, v) ∈ E(G) the graph G′ is obtained
by contracting (u, v) in G by adding a new vertex w and making w
adjacent to N(u) ∪N(v) and then deleting u and v.

Subdividing For a graph G and (u, v) ∈ E(G) the graph G′ is obtained
by subdividing (u, v) in G by adding a new vertex w and making w
adjacent to u and v and then deleting the edge (u, v).

Cycle By Ck, for k ≥ 2, we denote the cycle of length k, i.e. a connected
graph with |V (Ck)| = k where every vertex has degree 2.

Clique By Kk, for k ≥ 1, we denote the clique of size k, i.e. a graph with
|V (Kk)| = k where every vertex has degree k−1. K3 is called a triangle.

2.2.1 Graph Properties and Graph Problems

For a graph G we have the following graph properties:

Vertex cover is a set S ⊆ V (G) such that every edge in E(G) has at least
one endpoint in S.

Independent set is a set S ⊆ V (G) such that every pair u, v ∈ S where
u �= v has u and v not adjacent in G.

q-coloring is a partition of the vertices into at most q independent sets.

Dominating set is a set S ⊆ V (G) such that every vertex v ∈ V (G) have
N [v] ∩ S �= ∅.

Matching is a set of edges M ⊆ E(G) such that for every vertex v ∈ V (G)
there is at most one edge in M having v as an endpoint.

2.3. RUNTIME ANALYSIS 11

Induced Matching is a set of edges M ⊆ E(G) such that for every vertex
v ∈ V (G) either there is no edge in M having v as an endpoint or there
is exactly one edge (u, v) ∈ M having v as an endpoint and no other
edge with an endpoint in N(v).

Feedback vertex set is a set of vertices S ⊆ V (G) such that G[V (G) \ S]
is a tree.

For any of the above graph properties we can define graph problems,
we use Capital Letters for graph problems. E.g. Maximum Matching

asks, given a graph G, for the maximum size of a matching in G and Mini-

mum Dominating Set asks for the size of a minimum dominating set in G.
We can also define weighted and counting versions of any of these problems.

2.3 Runtime Analysis

Let G be a graph with n = |V (G)| vertices. We use big O and O∗ notation
to measure the runtime of algorithms. For functions f and g we say:

• f(n) ∈ O(g(n)) if there exist c and n0 such that for all n > n0 we have
f(n) ≤ c · g(n).

• f(n) ∈ Θ(g(n)) if f(n) ∈ O(g(n)) and g(n) ∈ O(f(n)).

• f(n) ∈ O∗(g(n)) if there exist a polynomial poly, such that f(n) ∈
O(g(n) · poly(n)).

A graph parameter P is a function assigning a number to each graph.
Two graph parameters P and Q are linearly bounded if for every graph G
we have P (G) ∈ O(Q(G)) and Q(G) ∈ O(P (G)).

Let P (G) = k be a parameter of a graph G, when we measure the runtime
of an algorithm as a function of both n and k we call it a parameterized al-
gorithm. We distinguish the runtime of parameterized algorithms as follows:

• A parameterized algorithm is FPT parameterized by k if there exists
a function f and a polynomial function poly such that the algorithm
finishes in time f(k)poly(n).

• A parameterized algorithm is XP parameterized by k if there exists a
function f such that the algorithm finishes in time nf(k).

• A parameterized algorithm is single exponential parameterized by k if
there exists a polynomial function poly such that the algorithm finishes
in time 2poly(k) · poly(n).

12 CHAPTER 2. PRELIMINARIES

• A parameterized algorithm is Linear single exponential parameterized
by k if there exists a polynomial function poly such that the algorithm
finishes in 2O(k) · poly(n) time.

Chapter 3

Width Parameters

In this chapter we first describe a general framework called binary decomposi-
tion trees and use this to define many graph width parameters. In particular
we define the three new graph width parameters MM-width, boolean-width
and MIM-width.

3.1 Decomposition Trees

A branch decomposition based on a set function is by now a standard notion
in graph and matroid theory, see [29, 38, 60, 66].

Definition 3.1.1 (Branch decomposition). Let A be any finite set. Let
f : 2A → R be a symmetric set function, i.e. f satisfies f(X) = f(X) for
all X ⊆ A. For a tree T we denote the set of leaves by L(T). A branch
decomposition of f on A is a pair (T, δ), for a subcubic tree T and a bijec-
tion δ : A → L(T). For every edge e ∈ E(T) let T1, T2 be the connected
components of T \ e, then e yields a partition of A by the leaf labels of the
two connected components:

Pe =
{
{δ(v)−1 : v ∈ L(T) ∩ V (T1)}, {δ(v)−1 : v ∈ L(T) ∩ V (T2)}

}
.

We extend the domain of f to edges e of T by letting f(e) = f(X) for
Pe = (X,X). This is well-defined because f is symmetric. The width of
a branch decomposition (T, δ) is the maximum over all e ∈ E(T) of f(e).
The branch width of f is the minimum width over all branch decompositions
(T, δ). If |A| ≤ 1, then f has a unique decomposition tree with no edges and
we let the branch-width of f be f(A).

Note that for any branch decomposition (T, δ) we can assume that T has
no nodes of degree 2 since the two edges adjacent to a node of degree 2 yield

13

14 CHAPTER 3. WIDTH PARAMETERS

the same partition, hence contracting one of those edges would not change
the branch width of (T, δ). We now define branch-width of a graph G.

Definition 3.1.2 (Branch-width of a graph). For G a graph and X ⊆ E(G)
let the middle set of X be defined as {v ∈ V (G) : ∃(a, v) ∈ X and (b, v) ∈
X}. Let mid : 2E(G) → N be a function where mid(X) is the size of the
middle set of X. Let (T, δ) be branch decomposition of mid on E(G). The
branch width of (T, δ) is denoted brw(T, δ). The branch width of mid on
E(G), is called the branch-width of G and is denoted brw(G).

Apart from branch-width most of the width parameters defined in this
thesis involve a bijection to the vertices of a graph. Also, rooted decompo-
sitions are preferred when designing algorithms, so we will from now on be
using the following general type of decomposition.

Definition 3.1.3 (Binary decomposition tree). For G a graph and f : 2V (G)

→ R a set function on V (G). A binary decomposition tree of G is a pair
(T, δ), for a binary tree T and a bijection δ : V (G) → L(T), with L(T) the
leaves of T . For every node a ∈ V (T) let La be the leaves of T having a as
an ancestor and let Va = {δ−1(x) : x ∈ La} be the vertices of G mapped to
La. The f -width of a binary decomposition tree (T, δ) is the maximum f(Va)
over all a ∈ V (T). The f -width of G is the minimum f -width over all binary
decomposition trees (T, δ) of G.

We may also refer to a binary decomposition tree simply as a decompo-
sition tree. When defining a graph width parameter using a symmetric set
function f it usually does not matter which of the two definitions we use.

Observation 3.1.4. For any graphG and symmetric set function f on V (G),
if the branch width of f on V (G) using Definition 3.1.1 is k and f(V (G)) ≤ k
then the f -width of G using Definition 3.1.3 is also k.

Proof. Let (T, δ) be a branch decomposition of f on V (G) of width k. We
obtain a binary decomposition tree (T ′, δ) of f on V (G) by subdividing an
arbitrary edge of T by adding a node r and making r the root to obtain T ′.
For any node v ∈ V (T ′) with v �= r there is a corresponding edge e ∈ E(T),
and vice versa for any edge e ∈ E(T) there is a node v ∈ V (T ′) such that
Pe = {Vv, Vv} and hence f(Vv) = f(e), i.e. the unique edge (x, y) ∈ E(T)
with δ−1(x) ∈ Vv and δ−1(y) ∈ Vv. Since f(Vr) ≤ k the f -width of G is k.

In many situations it is convenient to define a simpler type of binary
decomposition tree.

3.2. MODULE-WIDTH AND CLIQUE-WIDTH 15

Definition 3.1.5 (Caterpillar decomposition). A caterpillar decomposition is
a binary decomposition tree (T, δ) where every internal node of T has a child
that is a leaf. See Figure 3.1. We can construct a caterpillar decomposition
(T, δ) from any ordering σ of V (G) by letting T be any binary tree where
every internal node has a child that is a leaf such that T has |V (G)| leaves
and for all 1 ≤ i ≤ |V (G)| let δ map σ(i) to the i’th leaf encountered by a
breadth first search starting from the root of T .

A caterpillar decomposition is also referred to as a linear decomposition.
For any width parameter defined via binary decomposition trees, the linear
width of a graph is the minimum width over all caterpillar decompositions,
see e.g. [33].

v1

v2

v3

v4

v5

(a) G

v1

v2
v3

v4

v5

(c) G[Ve, Ve]

a

δ(v1) = b
c

δ(v2) = d
e

δ(v3) = f
g

δ(v4) = h δ(v5) = i

(b) The caterpillar decomposition (T, δ)

Figure 3.1: Subfigure (a) shows the graph G. Subfigure (c) shows the cater-
pillar decomposition (T, δ) of G, with a being the root of T . The ordering
of V (G) used to create (T, δ) is v1, v2, v3, v4, v5. The node e ∈ V (T) defines
via δ the subset Ve = {v3, v4, v5}. Subfigure (b) shows the bipartite graph
G[Ve, Ve].

3.2 Module-width and Clique-width

Module-width is based on the definition of twins. Two vertices are twins
if they have the same neighborhood, i.e. x, y ∈ V (G) are twins if N(x) \
y = N(y) \ x and they are twins across a cut (A,A) if they have the same
neighborhood across the cut, i.e. x, y ∈ A are twins across the cut (A,A) if
N(x) ∩ A = N(y) ∩ A.

16 CHAPTER 3. WIDTH PARAMETERS

Definition 3.2.1 (Twin class partition). Let G be a graph and A ⊆ V (G)
a subset of the vertices. The twin class partition of A, denoted T CA, is a
partition of A such that ∀x, y ∈ A we have x and y in the same partition
class if and only if N(x) ∩ A = N(y) ∩ A. We define ntc(A) = |T CA|.

Definition 3.2.2 (Module-width). For G a graph and ntc : 2V (G) → N

the function defined above. Using Definition 3.1.3 with f = ntc we de-
fine modw(T, δ) as the f -width of a binary decomposition tree (T, δ) and
modw(G) as the f -width of G, also called the module-width of G.

Note that ntc(A) is not symmetric i.e. ntc(A) is not necessarily equal to
ntc(A), hence it is important that the definition uses a rooted decomposition
tree. Note that for the binary decomposition tree (T, δ) of the graph G in
Figure 3.1 we have modw(T, δ) = modw(G) = 2. The measure modw(T, δ)
was first introduced in [63, Chapter 6.2] where it was called the bimodule-
width of (T, δ).

We denote the clique-width of a graph G by cw(G). We will not define
clique-width, but since clique-width is a well-known graph width parame-
ter we will mention results related to clique-width. All the results we will
mention follows from the fact that module-width is linearly related to clique-
width [64]. For an introduction to clique-width refer to [17]. Clique-width
was introduced because many NP-hard graph problems are polynomial time
solvable on ”clique-like” graphs, however earlier width parameters were not
able to handle these graphs, e.g. the tree-width of a clique on n ≥ 2 vertices
is n− 1 while the clique-width is 2.

3.3 Rank-width

Rank-width was introduced in [57, 60] and is based on the definition of the
rank of a 0-1 matrix over GF (2).

Definition 3.3.1 (Rank-width). For G a graph, let cut-rank : 2V (G) → N be
a function where cut-rank(A) for A ⊆ V (G) is the GF (2) rank of the bipar-
tite adjacency matrix of G[A,A]. Using Definition 3.1.3 with f = cut-rank
we define rw(T, δ) as the f -width of (T, δ) and rw(G) as the f -width of G,
also called the rank-width of G.

In Definition 3 of Chapter 8 we give an alternative definition of the
cut-rank function, based on symmetric differences of neighborhoods across
a cut, i.e. DS(A) = {	v∈XN(v) ∩ A : X ⊆ A}. Note that for the binary
decomposition tree (T, δ) of the graph G in Figure 3.1 we have rw(T, δ) =

3.4. TREE-WIDTH 17

rw(G) = 2. An important application of rank-width is to efficiently approx-
imate the clique-width of a graph [60], but these two parameters are not
linearly related.

3.4 Tree-width

Since tree-width is the most well-known width-parameter we will relate our
results to tree-width. Tree-width can be defined in various ways, also via
a cops and robber game. The only place where we require the definition of
treewitdh is in the proof of Lemma4.2.4 and that proof actually relies on the
monotonicity property of the cops and robbers game, see [70]. We therefore
define treewidth via the cops and robbers game, where the question is how
many cops are needed to catch a visible and fast robber (minus one) on a
given graph.

Definition 3.4.1 (Cops and robber game [70]). The robber occupies one
vertex of the graph at any time and can at any time run at great speed to
any other vertex along a path of the graph. The robber is not permitted to
run through a vertex occupied by a cop. There are k cops, each of whom at
any time either occupies a vertex or is being relocated (moved by a helicopter
and can not capture the robber at this point). The objective of the player
controlling the movement of the cops is to land a cop via helicopter on the
vertex occupied by the robber, and the robber’s objective is to elude capture.
(The point of the helicopters is that cops are not constrained to move along
paths of the graph – they move from vertex to vertex arbitrarily.) The robber
can see the helicopter approaching its landing spot and may run to a new
vertex before the helicopter actually lands but has to immediately find a new
vertex to occupy. The cops have good intelligence services and know at all
time which vertex the robber occupy, however the robber is faster than the
police so they need to corner him by occupying all vertices adjacent to the
vertex occupied by the robber and then send one cop to capture the robber.

A graph G has tree-width k if the minimal number of cops needed to
capture a robber is k + 1. We denote by tw(G) the tree-width of a graph.
The linear version of tree-width is called path-width and can be defined via
a similar cops and robbers game where the only difference is that the cops
do not see where the robber is located [26].

18 CHAPTER 3. WIDTH PARAMETERS

3.5 Boolean-width

Boolean-width is a graph parameter first introduced in the paper making up
Chapter 8 of this thesis. There are several ways to define boolean-width, we
will now prove the equivalence of four set functions which can be used to
define boolean-width. The first set function relates to neighborhoods across
a cut.

Definition 3.5.1 (Union of Neighborhoods). For a graph G and A ⊆ V (G),
we define the union of neighborhoods across the cut (A,A) as

UN (A) = {N(X) ∩ A : X ⊆ A}

The second set function comes from Boolean matrix theory (see [50]) and
is the one that gave the name to boolean-width. A boolean matrix is a matrix
with entries that are either 0 or 1, and in the boolean sum we have 1+1 = 1.

Definition 3.5.2 (Boolean row space). Let M be a boolean matrix. The
boolean row space of M denoted R(M) is the smallest set of vectors contain-
ing the rows of M and the all-0 vector, and is closed under componentwise
boolean sum. |R(M)| is called the boolean row span of M . Let G be any
graph and A ⊆ V (G). We define the boolean row span of A as the row span
of the bipartite adjacency matrix of G[A,A].

It is known that the boolean row span is symmetric [50] i.e. the boolean
row span of A equals the boolean row span of A.

The third set function is via equivalence classes and is the most useful
when designing algorithms.

Definition 3.5.3 (Neighborhood equivalence). Let G be a graph and A ⊆
V (G). Two vertex subsets S1, S2 ⊆ A are neighborhood equivalent with
respect to (A,A), denoted by S1 ≡A S2, if N(S1) ∩ A = N(S2) ∩ A.

Definition 3.5.4 (Number of equivalence classes of ≡A). For a graph G and
A ⊆ V (G) we denote by nec(≡A) the number of equivalence classes of ≡A.
We also define for a binary decomposition tree (T, δ) the value nec(T, δ) as
the max of nec(≡Va) over a ∈ V (T).

The fourth set function is based on a well-known graph theoretic concept.
Let mis(G) denote the number of maximal independent sets in G, i.e. max-
imal under set inclusion. For A ⊆ V (G) the set function we are interested in
will be mis(G[A,A]).

Now we are ready to show that all of these four set functions are equiva-
lent.

3.5. BOOLEAN-WIDTH 19

Theorem 3.5.5. Let G be a graph and A ⊆ V (G). The following four values
are equal:

1. |UN (A)|.

2. The boolean row span of A.

3. nec(≡A)

4. mis(G[A,A])

Proof. To see that nec(≡A) = |UN (A)| see that for every S ∈ UN (A) there
exist X ⊆ A such that N(X) ∩ A = S and all such X belong to the same
equivalence class of ≡A. For every X ⊆ A there is a unique element S ∈
UN (A) such that N(X) ∩ A = S, hence we have a bijection.

That |UN (A)| equals the boolean row span of A is easy to see since in a
boolean sum 0+0 = 0 , 0+1 = 1+0 = 1+1 = 1 and in an adjacency matrix
0 represents a non-neighbor and 1 represents a neighbor. Hence a boolean
sum of a set of rows is equal to the union of the neighbors of the vertices
corresponding to the rows. And the row space is then the same as the union
closure of the neighborhoods across the cut, i.e. UN (A).

Finally we show that there is a bijection between UN (A) and the maximal
independent sets of G[A,A] (this equivalence was first pointed out to us by
Nathann Cohen [13]). For every S ∈ UN (A) we define M(S) = {v ∈ A :
N(v) ∩ A ⊆ S} the unique maximal subset of A having S as neighborhood.
Clearly I = M(S) ∪ A \ S is an independent set in G[A,A]. Since M(S)
is maximal every vertex in A \ I must have a neighbor in A \ S hence no
vertices in A \ I can be added to I. Since A \ I = S no vertices in A can be
added to I. This shows that I is a maximal independent set of G[A,A] and
hence |UN (A)| ≤ mis(G[A,A]). For the other direction, for every maximal
independent set I in G[A,A] we know that N(I ∩ A) = A \ I otherwise I
would not be a maximal independent set. Hence A \ I ∈ UN (A) showing
that there is a bijection between UN (A) and the maximal independent sets
of G[A,A]. This completes the proof.

Definition 3.5.6 (Boolean-width). For G a graph, let bool-dim : 2V (G) → R

be a function where bool-dim(A) = log2(|UN (A)|) for A ⊆ V (G). Using
Definition 3.1.3 with f = bool-dim we define boolw(T, δ) as the f -width of
a binary decomposition tree (T, δ) and boolw(G) as the f -width of G, also
called the boolean-width of G.

Note that for the binary decomposition tree (T, δ) of the graph G in
Figure 3.1 we have boolw(T, δ) = 2, but this is not a decomposition of opti-
mal boolean width, instead using the ordering v2, v5, v1, v3, v4 to construct a
caterpillar decomposition shows that boolw(G) = log2(3).

20 CHAPTER 3. WIDTH PARAMETERS

Theorem 3.5.5 gives the possibility of connecting boolean-width to results
in various fields. There is a vast literature on number of maximal independent
sets, the cardinality of the union closure of a set family and boolean matrix
theory. See Chapter 8 for more about boolean-width. Let us mention a useful
result that does not appear in that chapter.

Lemma 3.5.7. For G a graph and v ∈ V (G) it holds that:

boolw(G \ v) ≤ boolw(G) ≤ boolw(G \ v) + 1

Proof. For any boolean decomposition (T, δ) of G \ v we can add v by sub-
dividing any edge and attaching a new leaf and let δ map v to the new leaf
to obtain (T ′, δ′). Then clearly every graph G[A,A] defined by (T, δ) will
have a corresponding graph defined by (T ′, δ′) which can be obtained from
G[A,A] by adding one vertex and the edges incident to that vertex, and
bool-dim(v) ≤ 1. We will show that adding a vertex to a bipartite graph H
with color classes L,R can not decrease nor more than double |UN (L)|. Since
bool-dim is symmetric we may assume v is added to L. Every neighborhood
in UN (L) is also in UN (L∪v) therefore the first inequality holds. There can
not be more than |UN (L)| elements S ∈ UN (L∪ v) such that N(v)∩A ⊆ S
since then for each such S there is a X ⊆ L such that N(X ∪ v) ∩ A = S
and all such X would yield a different element of UN (L).

Corollary 3.5.8. For G a graph and e ∈ E(G) it holds that:

boolw(G \ e)− 1 ≤ boolw(G) ≤ boolw(G \ e) + 1

Proof. If we remove one endpoint of e and then add that vertex again with
all its adjacent edges except e we get G\e. From Lemma 3.5.7 boolean-width
can only go down at most 1 while removing a vertex and only go up at most
1 when adding a vertex, hence the corollary follows.

3.6 Maximum Matching-width

To our knowledge, neither tree-width nor branch-width of a graph G has
a characterization via a binary decomposition tree of G (based on a set
function on vertex subsets). We will introduce a new parameter called Max-
imum Matching width (MM-width) defined via a binary decomposition tree
of G and in Chapter 4 we will show that MM-width is linearly related to
tree-width and branch-width. This parameter will help us understand the
relationship between tree-width and the other parameters defined via binary
decomposition trees.

3.7. MAXIMUM INDUCED MATCHING-WIDTH 21

Definition 3.6.1 (MM-width). For G a graph, let mm : 2V (G) → N be a
function where mm(A) for A ⊆ V (G) is the size of a maximum matching in
G[A,A]. Using Definition 3.1.3 with f = mm we define mmw(T, δ) as the
f -width of a binary decomposition tree (T, δ) and mmw(G) as the f -width
of G, also called the MM-width of G, or maximum matching width of G.

Note that for the binary decomposition tree (T, δ) of the graph G in
Figure 3.1 we have mmw(T, δ) = mmw(G) = 2.

3.7 Maximum Induced Matching-width

We will now introduce the third and last new width parameter of this thesis.
It is called MIM-width and is based on the size of a maximum induced
matching. There are several reasons to introduce MIM-width, one being
that there are big classes of graphs where MIM-width is constant while none
of the other parameters discussed in this thesis are constant. Another reason
is that MIM-width is a natural extension of MM-width.

The third reason which lead us to the definition of MIM-width is a natural
algorithmic application. The parameter boolean-width is defined via the
number of neighborhoods across a cut. For a cut (A,A), every neighborhood
S ∈ UN (A) can be represented by a set R ⊆ A with N(R) ∩ A = S. To
achieve a more compact representation of the neighborhood we will choose an
inclusion minimal set R′ ⊆ R such that N(R′)∩A = S. It is then clear that
every vertex in R′ has a neighbor not shared with any other vertices in R′.
Let M be a set of edges containing for each vertex v in R′ an edge between
v and one of its private neighbors. Then M forms an induced matching in
G[A,A], also if there is an induced matching M such that M ∩A = R′ then
no subset of R′ has the same neighborhood as R′ across the cut (A,A). Hence
the size of an maximum induced matching in G[A,A] equal the maximum
size of such an inclusion minimal R′.

Definition 3.7.1 (MIM-width). For G a graph and A ⊆ V (G) let mim :
2V (G) → N be a function where mim(A) is the size of a maximum in-
duced matching in G[A,A]. Using Definition 3.1.3 with f = mim we de-
fine mimw(T, δ) as the f -width of a binary decomposition tree (T, δ) and
mimw(G) as the f -width of G, also called the MIM-width of G or the max-
imum induced matching width.

Note that for the binary decomposition tree (T, δ) of the graph G in
Figure 3.1 we have mimw(T, δ) = 2, but this is not a decomposition of
optimal MIM-width, instead using the ordering v2, v5, v1, v3, v4 to construct
a caterpillar decomposition shows that mimw(G) = 1.

22 CHAPTER 3. WIDTH PARAMETERS

It is known that computing mim(A) is NP-complete [71], moreover it is
APX-hard [25]. See [10, 49] for more recent results on the induced matching
problem. Therefore it is likely that computing mimw(G) also is NP-hard.

The notion mim(A) is equivalent to VC-dimension [76] of the set family
NA = {N(v) ∩ A : v ∈ A}. A similar notion called the VC-dimension of a
graph [53] is the VC-dimension of {N [v] : v ∈ V (G)}.

Adding a vertex to a graph does not alter MIM-width by more than 1.

Lemma 3.7.2. For G a graph and v ∈ V (G) it holds that:

mimw(G \ v) ≤ mimw(G) ≤ mimw(G \ v) + 1

Proof. Let M be a maximum induced matching in G \ v, then M is also
an induced matching in G, hence mim(G \ v) ≤ mim(G). Let M be a
maximum induced matching in G, then there is at most one edge (u, v) in M
having v as an endpoint. M \ (u, v) is an induced matching in G \ v hence
mim(G) ≤ mim(G \ v) + 1.

Let us denote by MIM -1 the class of graphs having mimw(G) = 1.
MIM -1 is an interesting class of graphs, little is known about this class. We
show two lemmata initiating the research on this graph-class, in Chapter 9
we show that several well-known graph classes are contained in MIM -1.

Lemma 3.7.3. For G a graph, if mimw(G) = 1 then mimw(G) = 1.

Proof. Let (T, δ) be a binary decomposition tree of G having mimw(T, δ) =
1. Then we will show that (T, δ) is also decomposition tree of G having
mimw(T, δ) = 1. For A ⊆ V (G) we have mim(A) = 1 if and only if for
every pair of vertices u, v ∈ A we have either N(u) ∩ A ⊆ N(v) ∩ A or
N(v) ∩ A ⊆ N(u) ∩ A in G. Now, in G we have the opposite namely if
N(u)∩A ⊆ N(v)∩A in G then N(v)∩A ⊆ N(u)∩A in G hence mim(A) = 1
also in G.

A graph G is called perfect if and only if neither G nor G contains an
induced cycle of odd length at least 5 [12].

Corollary 3.7.4. MIM-1 is perfect.

Proof. Let Ck be a cycle on k vertices. It is easy to see that for any k ≥ 5
we have mimw(Ck) = 2, hence by lemma 3.7.3 we have that mimw(Ck) = 2.
From Lemma 3.7.2 we see that any graph containing Ck as a subgraph has
MIM-width at least 2, hence no graph in MIM -1 contains Ck for k ≥ 5 as
an induced subgraph.

Open Problem 1. Can we recognize graphs of MIM-width 1 in polynomial
time?

Chapter 4

Comparing the Values of
Graph Width Parameters

In this chapter we start out in Section 4.1 by comparing the value of some
well-known graph parameters, and defining partial orders of these parame-
ters. Then in Section 4.2 we incorporate into these partial orders the three
new parameters: Boolean-width, MM-width and MIM-width. In Section 4.3
we compare the parameters on some special classes of graphs, in particular
random graphs, interval graphs, d-degenerate graphs and grid graphs.

4.1 Relations Between Some Well-known

Graph Width Parameters

In this section we have chosen a set of seven well-known graph parameters
that are typically used as parameters to design FPT algorithms for NP-
complete graph problems. The parameters we will study are: path-width
(pw), tree-width (tw), branch-width (brw), the size of a minimum feedback
vertex set (fvs), clique-width (cw), module-width (modw) and rank-width
(rw).

To get an overview of the values of these parameters on arbitrary graphs,
we will map out their relations by defining partial orders of graph parameters
and draw Hasse diagrams for these partial orders. The question of how
various width parameters relate to each other has been well studied. For
instance, tree-width relates linearly to branch-width and clique-width relates
linearly to module-width, as seen by the following theorems:

Theorem 4.1.1. [66] Let G be a graph then brw(G) ≤ tw(G)+1 ≤ 2
3
brw(G).

Theorem 4.1.2. [64] Let G be a graph then modw(G) ≤ cw(G) ≤ 2modw(G).

23

24 CHAPTER 4. COMPARING GRAPH PARAMETERS

This information is useful and tells us that if there is an algorithm solving
a problem in O∗(2O(brw(G))) time, then there is also an algorithm solving that
problem in O∗(2O(tw(G))) time. Likewise for clique-width and module-width.
Let us consider a somewhat weaker relation between two graph parameters.
Although clique-width is bounded on a class C if and only if rank-width is
bounded on C, they are not linearly related.

Theorem 4.1.3 ([60]). Let G be a graph then rw(G) ≤ cw(G) ≤ 2rw(G)+1−1.

This kind of theorem tells us that a problem is FPT parameterized by
rank-width if and only if it is FPT parameterized by clique-width. But
a problem could have a runtime single exponential in clique-width while
only double exponential in rank-width, i.e. for a graph G we could have
runtime O∗(2poly(cw(G))) as a function of clique-width but not better than

O∗(22
poly(rw(G))

) as a function of rank-width. Yet another possible relation is
illustrated by clique-width and tree-width, since clique-width is bounded on
any class where tree-width is bounded but not the other way around.

Theorem 4.1.4. [14] Let G be a graph then cw(G) ≤ 1.5 · 2tw(G).

Such a theorem tells us that if a problem is FPT parameterized by clique-
width then it is also FPT parameterized by tree-width, but not necessarily
the converse. Also, note that if we prove a problem W-hard parameterized by
tree-width then it follows that the problem is also W-hard parameterized by
clique-width. To capture these different kinds of relations we will use three
partial orders.

Definition 4.1.5. Let P and Q be two graph parameters. We say P ≤f Q if
there exists a function f such that for all graphs G we have P (G) ≤ f(Q(G)).

Definition 4.1.6. Let P and Q be two graph parameters. We say P ≤poly Q
if there exists a polynomial function poly such that for all graphs G we have
P (G) ≤ poly(Q(G)).

Definition 4.1.7. Let P and Q be two graph parameters. We say P ≤lin Q
if for all graphs G we have P (G) ∈ O(Q(G)).

It is easy to see that these orders are reflexive and transitive, hence we
have a pre-order. In order to obtain partial orders we define:

P =f Q if P ≤f Q and Q ≤f P

P =poly Q if P ≤poly Q and Q ≤poly P

P =lin Q if P ≤lin Q and Q ≤lin P

4.1. WELL-KNOWN WIDTH PARAMETERS 25

Note that ≤lin is an extension of ≤poly and ≤poly is an extension of ≤f ,
i.e. P ≤lin Q→ P ≤poly Q→ P ≤f Q.

We will draw Hasse diagrams of these partial orders to get a better
overview. Parameters which are equal in the partial order are drawn in-
side the same node and for each pair P,Q such that P is less than Q there
is drawn an arc from Q to P , see Figure 4.1.

tw, brw

pw fvs

cw, modw, rw

(a) Using ≤f

fvs

cw, modwtw, brw

pw

rw

(b) Using ≤poly or ≤lin

Figure 4.1: Hasse diageams for the three partial orders ≤f , ≤poly and ≤lin

on seven well-known graph parameters. The diagrams for ≤poly and ≤lin are
identical.

Lemma 4.1.8. Figure 4.1 is the Hasse diagrams of the partial orders ≤f

and ≤lin on the parameters {fvs, pw, tw, brw, cw,modw, rw}.

Sketch of proof. To show that an arrow from P to Q in the diagrams should
not be present is easy, one only needs a graph class where the relation does not
hold, e.g. a graph class where parameterQ is unbounded while parameter P is
bounded. Since Path-width is unbounded on trees while all other parameters
in the diagram are bounded on trees no arrow points to path-width in any
of the diagrams. Since Feedback Vertex Set is unbounded on a collection
of triangles while all other parameters are bounded on this class no arrows
points to fvs in any of the diagrams. From the definition it follows easily that
tw ≤lin pw and since adding a vertex can increase tree-width by at most 1
and tree-width of trees is 1 it follows that tw ≤lin fvs. Theorem 4.1.1 shows
that tw =lin brw.

From Theorem 4.1.4 it follows that cw ≤f tw and the fact that for cliques
tree-width is n − 1 while clique-width is 2 it follows that tw �≤f cw. Theo-
rem 4.1.2 show that cw =lin modw. Theorem 4.1.3 shows that rw =f modw.
This shows that Figure 4.1(a) is correct.

That cw �≤poly tw follows from [14]. Clique-width of trees is at most 3
and adding a vertex to a graph can increase the clique-width by at most 1

26 CHAPTER 4. COMPARING GRAPH PARAMETERS

therefore we have cw ≤lin fvs. It is well-known that cw ≤lin pw and that
rw ≤lin cw follows from [60] while that rw ≤lin tw follows from [58] (an
alternative proof given in [1], see Subsection 4.2.1). From [14] it also follows
that cw �≤poly rw in Figure 4.1(b). This completes the proof.

4.2 Relating the New Width Parameters

We now incorporate boolean-width, MM-width and MIM-width into the par-
tial orders displayed in Figure 4.1. First we will prove the relations we need,
then the updated Hasse diagram is presented in Figure 4.2.

4.2.1 MM-width

We start by relating MM-width to branch-width. To do this we need the fol-
lowing well-known theorem relating the Maximum Matching (MM) prob-
lem to the Minimum Vertex Cover (Min VC) problem.

Theorem 4.2.1 (Königs theorem [52]). Let H be a bipartite graph, M ⊆
E(H) a maximum matching and C ⊆ V (H) a minimum vertex cover, then
|M | = |C|.

Finding a maximum matching in a bipartite graph is a well-known prob-
lem that can be solved in O(m

√
n) time using the Hopcroft-Karp algo-

rithm [46]. Hence computing the MM-width of a binary decomposition tree
can be done in O(nm

√
n) ∈ O(n3.5) time. The next lemma shows a close

connection between minimum vertex covers and separators. Since separators
are closely related to branch-width this indicates a close relation between
MM-width and branch-width.

Lemma 4.2.2. Let G be a graph, A ⊆ V (G) and C a vertex cover of G[A,A].
Then C is a separator of G into A \ C and A \ C.

Proof. Assume for contradiction that C is not a separator of G into A \ C
and A \ C. Then there must exist u ∈ A \ C and v ∈ A \ C such that
(u, v) ∈ E(G), but then we also have (u, v) ∈ E(G[A,A]). Hence (u, v)
would have no endpoint in C contradicting that C is a vertex cover.

We now show how MM-width relates to tree-width and branch-width,
first we prove a lemma for branch-width.

4.2. NEW WIDTH PARAMETERS 27

Lemma 4.2.3. Let G be a graph, then mmw(G) ≤ max (brw(G), 1).

Proof. Since both mmw(G) and brw(G) for a disconnected graph G is the
maximum over all its connected components, it suffices to prove the lemma
for connected graphs.

Letting (TB, δB) be a branch decomposition of G, we will construct a
binary decomposition tree (TM , δM). Make a binary tree T ′

M from TB by
subdividing an arbitrary edge of TB and making the new vertex r the root
of T ′

M , then connecting two new leaves to each leaf in T ′
M so that T ′

M will be
a binary tree with 2|E(G)| leaves. Note that V (TB) ⊆ V (T ′

M) hence every
node in TB is also a node in T ′

M . For each leaf l in TB let δ′M map the two
endpoints of the edge mapped to l to the two children of l in T ′

M . Now δ′M
may map some vertex v ∈ V (G) to more than one leaf of T ′

M , while that is
the case, arbitrarily remove one of the leaves which v is mapped to (if one
of the leaves is a child of the root r, remove a leaf that is not a child of the
root). This will leave the parent x of the removed leaf (x �= r) with degree 2.
Make the unique child of x a child of the parent of x and delete x. Continue
in this way decreasing the number of leaves in T ′

M until we obtain the binary
tree TM with |V (G)| leaves and δM a bijection between V (G) and V (TM).

Note that the internal nodes of TM is a subset of V (TB), hence every
internal node of TM is also a node in TB. For any vertex w in TM , recall
that Vw denotes the vertices mapped to leaves of the subtree rooted at w. If
w ∈ V (TM) is a leaf or w = r (for r, the root of TM) then the value mm(Vw)
is at most 1. If w ∈ V (TM) is not a leaf and w �= r then w has a parent p.
First we will find an edge ew ∈ E(TB), if p = r let ew be the edge of TB that
was subdivided to create r. Else both w and p are in TB (but not necessarily
adjacent in TB). Let ew be the edge adjacent to w on the path in TB from
w to p. Denote the edges of G mapped to leaves of the sub-tree of TB \ ew
containing w by Ew.

Let M be a maximum matching in G[Vw, Vw], then for every edge (u, v)
in M with u ∈ Vw and v ∈ Vw there must exist an edge (u, x) ∈ Ew and
(v, y) ∈ E(G) \ Ew. Since either (u, v) ∈ Ew or (u, v) ∈ E(G) \ Ew either u
or v must be in the middle set of Ew. Hence by definition of branch-width
mmw(TM , δM) ≤ brw(TB, δB).

The above bound is tight up to an additive constant factor e.g. on grid
graphs. The next lemma will upper bound tree-width in terms of MM-
width and hence show that tree-width and MM-width are linearly related.
To show this we rely on the min-max theorem for tree-width by Seymour
and Thomas [70] and design a strategy for the cops and robber game. The
strategy we design is non-monotone, i.e. for v ∈ V (G) a cop may be placed
on a vertex v, then removed again and later again a cop is placed on v. It

28 CHAPTER 4. COMPARING GRAPH PARAMETERS

is non-trivial to transform a non-monotone strategy for the cops and robber
game into a tree decomposition.

Lemma 4.2.4. Let G be a graph, then tw(G) ≤ 3 ·mmw(G)− 1.

Proof. We will use the equivalence between tree-width and cops and robber
games, see [70]. Given a binary decomposition tree (T, δ) of G we will use
(T, δ) to design a strategy for catching a robber using at most 3mmw(T, δ)
cops. For every node u ∈ V (T) let V Cu be a minimum vertex cover of
G[Vu, Vu], we know from Königs theorem that |V Cu| ≤ mmw(T, δ).

We will design a strategy in stages such that at the beginning of every
stage there is a node w ∈ T such that the cops occupy only V Cw and the
robber is hiding in Vw \ V Cw. This is initially true at the root r since
Vr = V (G) and V Cr = ∅, hence the strategy we design will start with w = r
and move down the tree every stage. Lemma 4.2.2 shows that when V Cw is
occupied by cops there is no way for the robber to move from Vw \ V Cw to
Vw \ V Cw.

Let a and b be the children of w. Place cops on all vertices in V Ca∪V Cb.
Now the robber is either in Va \ V Ca or in Vb \ V Cb. Assuming without loss
of generality that the robber is in Va \ V Ca, remove all cops except those
placed on V Ca. Now we know that the robber is hiding in Va \ V Ca and we
have only placed cops on V Ca hence this is the beginning of the next stage
and we can repeat the process with w = a.

At every stage w is moved further away from the root, hence this process
will end in a linear number of stages. This process catches the robber using
at most 3mmw(G) cops, if given a binary decomposition tree of optimal
MM-width. Then it follows from [70] that tw(G) ≤ 3mmw(G)− 1.

Note that due to the nature of decompositions defined by symmetrical
cut functions it is trivial to bound MM-width by n/3, see Subsection 4.3.3.
Hence the above bound is tight e.g. on cliques where if n is a multiple of 3
then n− 1 = tw(Kn) and mmw(Kn) = �n3 �.

Open Problem 2. Given a binary decomposition tree (T, δ) can we compute
a tree decomposition of tree-width at most 3mmw(T, δ)− 1 in O(n3.5) time?

Lemmata 4.2.3 and 4.2.4 gives us:

Theorem 4.2.5. Let G be a graph, then

1

3
(tw(G) + 1) ≤ mmw(G) ≤ max(brw(G), 1) ≤ tw(G) + 1

4.2. NEW WIDTH PARAMETERS 29

We can now with this new insight that MM-width is at most the branch-
width give an alternative simpler proof of the fact that for any graph G we
have rw(G) ≤ brw(G) [58].

Theorem 4.2.6. Let G be a graph, then rw(G) ≤ mmw(G).

Proof. For any A ⊆ V (G) we show that cut-rank(A) ≤ mm(A), from this
the theorem follows. Let R be a basis of the rows corresponding to the
vertices in A, then for any X ⊆ R we have that the GF (2) sum is unique
i.e. |{	v∈XN(v) ∩ A : X ⊆ R}| = 2|R|. This implies that for every X ⊆ R
we have |N(X)∩A| ≥ |X| otherwise X can not generate 2|X| different sums.
Then by Halls theorem [43] we have a matching of size at least |R| hence this
theorem holds.

4.2.2 Boolean-width

We start by showing that boolean-width never exceeds MM-width. The
following Lemma follows from [1], we give a simplified proof here.

Lemma 4.2.7. Let G be a graph, then boolw(G) ≤ mmw(G).

Proof. Fix A ⊆ V (G) and let V C be a minimum vertex cover of G[A,A],
from Königs theorem we know that |V C| = mm(A). We will show that
mis(G[A,A]) ≤ 2|V C|, then by Theorem 3.5.5 it follows that bool-dim(A) ≤
mm(A) and hence the lemma will follow.

Let S ⊆ V C be any subset of the vertices in the vertex cover. For
any maximal independent set X of G[A,A] such that X ∩ V C = S we can
partition V (G) into four types:

• V C,

• the isolated vertices which all must be in X,

• N(S) \ V C of which none can be in X and

• N(V C) \ (V C ∪N(S)) of which all must be in X.

For a fixed S ⊆ V (G) every v ∈ V (G) fits into exactly one of the four types
and X is uniquely defined by the partition of V (G) into the four types. Hence
there is a unique maximal independent set X of G[A,A] such that X∩V C =
S, and this shows that there are at most 2|V C| maximal independent sets of
G[A,A]. Thus by Theorem 3.5.5 and Königs theorem we have:

bool-dim(A) = log2(mis(G[A,A]) ≤ log2(2
|V C|) = |V C| = mm(A)

30 CHAPTER 4. COMPARING GRAPH PARAMETERS

Theorem 4.2.8 ([1]). Let G be a graph, then boolw(G) ≤ tw(G) + 1.

Proof. The theorem follows from Lemma 4.2.7 and Theorem 4.2.5.

Open Problem 3. Is boolw(G) ≤ tw(G) for all graphs G?

It is known that any graph G with boolw(G) = tw(G) + 1 would need to
have at least 8 vertices [2] and tree-width at least 2.

We now show that boolean-width is less than clique-width.

Theorem 4.2.9 (Chapter 8 Theorem 3). Let G be a graph, then

log2(cw(G))− 1 ≤ boolw(G) ≤ modw(G) ≤ cw(G)

Proof. We will first prove that for any cut (A,A) we have:

ntc(A) ≤ |UN (A)| ≤ 2ntc(A)

Note that by definition any x, y ∈ A belong to the same twin-class of A if
and only if N(x)∩A = N(y)∩A, so every twin-class yields a unique element
in |UN (A)|. Therefore the number of twin classes of A is at most |UN (A)|.

For the second inequality, note that if X ⊆ A contains two vertices from
the same twin class we can remove one of them without changing the neigh-
borhood across (A,A). Hence we can generate at most 2ntc(A) unions of
neighborhoods from the ntc(A) twin classes, i.e. |UN (A)| ≤ 2ntc(A). This
implies bool-dim(A) ≤ ntc(A).

Since for every binary decomposition tree (T, δ) this holds for every
cut (Va, Va) defined by (T, δ), it allows to conclude that log2(modw(G)) ≤
boolw(G). It is known that for any graph G we have modw(G) ≤ cw(G) ≤
2 ·modw(G) [64]. Hence the theorem follows.

4.2.3 MIM-width

MIM-width is the smallest of all parameters we discuss in this Chapter.

Theorem 4.2.10. Let G be a graph, then

mimw(G) ≤ boolw(G) ≤ mimw(G) log2(n)

Proof. For A ⊆ V (G) let M be a maximum induced matching in G[A,A].
It is clear that no two subsets of M ∩ A have the same neighborhood in
M ∩ A hence |UN (A)| ≥ 2mim(A) which proves the first inequality. The
second inequality holds by Chapter 9 Lemma 2.

MIM-width is bounded on interval graphs, while boolean-width is not,
hence boolw �≤f mim.

4.2. NEW WIDTH PARAMETERS 31

4.2.4 Comparison Diagram of Graph Parameters

In Figure 4.2 the three new parameters boolean-width, MM-width and MIM-
width have been added to the Hasse diagrams in Figure 4.1 and there are
now a total of 10 parameters.

tw, brw,
mmw

pw fvs

cw, modw, rw, boolw

mimw

(a) Using ≤f

fvs

cw, modw
tw, brw,
mmw

pw

rw

boolw

mimw

(b) Using ≤poly

pw fvs

tw, brw,
mmw

cw, modw

rw

boolw

mimw

(c) Using ≤lin

Figure 4.2: The Hasse diagrams for the three partial orders on ten graph
parameters. The three new graph parameters are in bold. The dotted line in
Figure 4.2(c) is unknown. We conjecture that boolw �≤lin rw see Chapter 8
Section 4.

Theorem 4.2.11. Figure 4.2 is the Hasse diagrams of ≤f ,≤poly and ≤lin on
{fvs, pw, tw, brw,mmw, cw,modw, rw, boolw,mimw}.

Proof. Thatmm =lin tw follows from Theorem 4.2.5 and boolw =f cw follows
from Theorem 4.2.9. That boolw ≤poly rw is shown in Chapter 8 Corollary 1

32 CHAPTER 4. COMPARING GRAPH PARAMETERS

and that rw �≤poly boolw is shown in Chapter 8 Theorem 2. That mim ≤lin

boolw follows from Theorem 4.2.10. That mim ≤lin rw follows from the fact
that the adjacency matrix of an induced matching is the identity matrix.
The remaining relations follow from Lemma 4.1.8.

In Figure 4.3 we have included a total of 32 parameters in the Hasse
diagram for ≤f . It is part of an ongoing project to fill these Hasse diagrams
with even more parameters. The explanation of the different abbreviations
used in the figures can be found in Figure 4.4. Most of the relations follow
from the results in this Chapter or from [69], some relatively easy ones are
left without a proof. To make the Hasse diagrams easier to read we have
divided the diagrams into four regions; top left is bounded on cliques and
unbounded on trees, top right is unbounded on both cliques and trees,
lower left is bounded on both cliques and trees, lower right is unbounded
on cliques and bounded on trees.

4.3 The Parameter Value on Restricted Graph

Classes

All time complexities considered in this thesis are worst case runtimes. For
graph problems those worst case inputs could possibly be avoided, and it is
common to consider also the runtime of graph problems when restricting the
input to a certain graph class. In this section we will see some results on
restricted graph classes that highlight the differences between several graph
width parameters.

4.3.1 Random Graphs

Let us first consider random graphs generated by the Erdös-Rényi model.
For a constant 0 < p < 1 the Erdös-Rényi model generates a graph Gp on n
vertices where independently for every pair of vertices an edge is added with
probability p. This is not a restricted graph class since any graph in principle
could be generated by the Erdös-Rényi model, however the probability for
a specific graph to be generated tends to 0 as n increases. Therefore the
probability that for a particular problem we get a worst case input may
also tend to 0 as n increases. The following theorem shows that for random
graphs the expected boolean-width is dramatically lower than tree-width,
clique-width, rank-width and MM-width, and MIM-width is even lower than
boolean-width.

4.3. RESTRICTED GRAPH CLASSES 33

CLIQUES

TREES
CLIQUES

TREES

pw maxDeg

td

carv-w

MM, VC

cut-w

band-w

fvs
genus

tw, brw
MM-w

degen, arbor, thick

minDeg

connectivity

chromatic num

max clique

Dilworth

MIMDS

IS

Min CC

comp diam

cw, nlc-w
modw, rw
boolw

mimw

1
Figure 4.3: A Hasse diagram of the ≤f relation, with each quadrant contain-
ing parameters bounded on either cliques, trees, both, or none, as indicated.
See Figure 4.4 for explanation of abbreviations.

34 CHAPTER 4. COMPARING GRAPH PARAMETERS

Min CC Size of a minimum clique cover.

IS Size of a maximum independent set.

DS Size of a minimum dominating set.

MIM Size of a maximum induced matching.

comp diam Maximum diameter over all connected components.

Dilworth Dilworth number.

MM Size of a maximum matching.

VC Size of a minimum vertex cover.

td Tree Depth or equivalently Minimum Vertex Ranking.

band-w Band-width.

cut-w Cut-width.

pw Path-width.

carv-w Carving-width.

maxDeg Maximum Degree.

fvs Size of a minimum Feedback Vertex Set.

genus Genus.

tw Tree-width.

brw Branch-width.

MM-w Maximum matching width (MM-width).

degen Degeneracy.

abor Aboricity.

thick Thickness.

Chromatic num Chromatic number.

max clique The size of a maximum clique.

minDeg Minimum degree.

connectivity Connectivity.

cw Clique-width.

nlc-w NLC-width.

modw Module-width.

rw Rank-width.

boolw Boolean-width.

mimw Maximum Induced Matching width (MIM-width).

Figure 4.4: Abbreviations used in Figures 4.3

4.3. RESTRICTED GRAPH CLASSES 35

Theorem 4.3.1 ([1, 48, 51, 55]). For a constant 0 < p < 1, let Gp be
generated by the Erdös-Rényi model, then almost surely:

tw(Gp) ∈ Θ(n)
cw(Gp) ∈ Θ(n)
rw(Gp) ∈ Θ(n)
mmw(Gp) ∈ Θ(n)
boolw(Gp) ∈ Θ(log(n)2)
mimw(Gp) ∈ Θ(log n)

Proof. The three first results follow from [51], [48] and [55] respectively. For
MM-width the theorem follows since MM-width is linearly bounded by tree-
width by Theorem 4.2.5. For boolean-width the theorem follows from [1,
Theorem 4]. For MIM-width the Theorem follows from [1] Lemma 7.

4.3.2 Graphs with an Intersection Model

Chapter 9 studies the boolean-width of several classes of graphs defined by
having an intersection model. See Figure 4.5 for an overview of results. Let
us consider in detail the class of interval graphs. To define interval graphs
we need the notion of an interval. An interval I = 〈i, j〉 is represented by an
ordered pair of real numbers with i < j and represent the set of real numbers
{x : i < x < j}. Let I1 = (a, b) and I2 = (c, d) be two intervals, then I1
intersects I2 if and only if a < d and c < b.

Definition 4.3.2 (Interval graph). Let I be a family of intervals. For a
graph G, we say G is an interval graph if we can associate to each vertex in
V (G) an interval in I such that two vertices are adjacent if and only if their
corresponding intervals intersect.

Theorem 4.3.3 ([40], Chapter 9). Let C be the family of interval graphs on
n vertices. For any n > 1 we have:

∃G ∈ C : tw(G) = n− 1
∃G ∈ C : mmw(G) = �n

3
�

∃G ∈ C : cw(G) ∈ Θ(
√

(n))

∃G ∈ C : rw(G) ∈ Θ(
√

(n))
∀G ∈ C : boolw(G) ≤ log2(n)
∀G ∈ C : mimw(G) = 1

Proof. To prove the theorem for tree-width and MM-width let G be a clique
on n vertices. For clique-width the theorem follows from [40]. For rank-
width the theorem follows from Chapter 9 Corollary 18. For boolean-width
and MIM-width the theorem follows from Chapter 9 Lemma 3.

36 CHAPTER 4. COMPARING GRAPH PARAMETERS

trees

cographs

threshold

trivially perfect

interval

unit interval

distance hereditary

bipartite permutation

Dilworth 4

Dilworth 2

biconvex

convex

permutation

Dilworth k

perfect

comparability

co−comparability

chordal

split

circular arc

trapezoid

k−trapezoid

circular k−trapezoid

tolerance

circular permutation

strongly chordal

bipartitecircle

co−k−degenerate

I

II

III

IV

k−tree, fixed k

k−polygon

bounded tolerance

Figure 4.5: Inclusion diagram of some well-known graph classes.
(I) Graph classes where clique-width is bounded by a constant.
(II) Graph classes where MIM-width is bounded by a constant and boolean-
width is O(log n).
(III) It is unknown whether these classes have constant MIM-width or
boolean-width O(log n).
(IV) Either boolean-width is not O(log n) or it is NP-hard to compute such
decompositions.

4.3. RESTRICTED GRAPH CLASSES 37

A similar theorem can be proven for any of the following graph classes:
Bipartite permutation graphs, Unit interval graphs, Circular k-trapezoid
graphs, k-polygon graphs, Convex graphs and complements of k-degenerate
graphs, since all these graph classes have MIM-width O(1) and contains
graphs with rank-width Θ(

√
(n)). See Figure 4.5 and Chapter 9. These the-

orems show that there are many graph classes where tree-width, clique-width
and rank-width is exponentially larger than boolean-width, and MIM-width
is bounded while none of the other parameters are bounded.

4.3.3 d-degenerate Graphs

A graph G is d-degenerate if there exists a total ordering of V (G) such that
no node has more than d neighbors occurring later in the order. We will
now state a theorem bounding the different width parameters in terms of
degeneracy of a graph. This theorem however, does not show much difference
between the parameters. Let us start with the following lemma for MM-
width. Since module-width, rank-width, boolean-width and MIM-width are
all bounded by MM-width a corresponding lemma holds for any of these.

Lemma 4.3.4. Let G be a graph and S ⊆ V (G) a subset of the vertices,

then if |S| ≤ n
4
and |N(S) \ S| ≤ n−|S|

3
them mmw(G) ≤

⌈
n−|S|

3

⌉
.

Proof. We build a binary decomposition tree (T, δ). See Figure 4.6. When
we build the decomposition we start by a root r with two children cl and cr.

Let Vcl ⊆ V (G) be such that |Vcl | =
⌈
n+2|S|

3

⌉
and N [S] ⊆ Vcl . Construct the

binary subtree Tl rooted at cl such that cl has the two children a and b and Tl

has |Vcl | leafs, half of the leaves have a as an ancestor and half of the leaves
have b as an ancestor. Let δ arbitrarily map the vertices in Vcl to the leaves
of Tl. Let Vcr = Vcl , construct the binary subtree Tr rooted at cr such that cr
has the two children c and d and Tr has |Vcr | leafs, half of the leaves have c
as an ancestor and half of the leaves have d as an ancestor. Let δ arbitrarily
map the vertices in Vcr to the leaves of Tr.

Both Va and Vb have size at most �n+2|S|
6
�. Since 2|S|

3
≤ n

6
we get n+2|S|

6
≤

n+2|S|
6

− 2|S|
3

+ n
6
= n−|S|

3
. Both Vc and Vd have size at most �n−|S|

3
�. Clearly

since no vertex in S has a neighbor outside A we have:

mm(Vcr) = mm(Vcl) ≤ |Vcl | − |S| ≤
⌈
n+ 2|S|

3

⌉
− |S| =

⌈
n− |S|

3

⌉

38 CHAPTER 4. COMPARING GRAPH PARAMETERS

r

cl cr

a b c d

n+2|S|
6

n+2|S|
6

n−|S|
3

n−|S|
3

Figure 4.6: The decomposition tree of Lemma 4.3.4. The number of leaves
in each subtree is marked.

Theorem 4.3.5. For all graphs G such that G is d-degenerate:
tw(G) ≤ n− n

d+3
+ 2

mmw(G) ≤ n
3
− n

9d+3
+ 1

cw(G) ≤ 2n
3
− 2n

9d+3
+ 1

rw(G) ≤ n
3
− n

9d+3
+ 1

boolw(G) ≤ n
3
− n

9d+3
+ 1

mimw(G) ≤ n
3
− n

9d+3
+ 1

Proof. For d = 0 and d = 1 it is easy to see that the theorem holds. We only
prove the theorem for mmw, then the rest will follow from the Lemmata in
the previous section (to prove clique-width we know cw(G) ≤ 2modw(G) ≤
2mmw(G)). Let S be the � n

3d+1
� first nodes in the degeneracy order. Then

|NS(S)| ≤ dn
3d+1

= n
3
− n

9d+3
. For all values of d greater than 1 it is easy to

check that S satisfies the conditions in Lemma 4.3.4. We take the floor when
finding |S| which contributes at most 1

3
, and take ceiling in Lemma 4.3.4

which contributes at most 2
3
, hence the theorem follows.

This theorem is tight on cliques for tree-width and MM-width, but for
the other parameters the bounds are not tight.

Open Problem 4. Can we improve the bounds in Theorem 4.3.5?

4.3.4 Grid Graphs

For two integers p and q we define Gp,q to be the p× q grid graph where for
each i, j : 1 ≤ i ≤ p and 1 ≤ j ≤ q we have vi,j ∈ V (Gp,q) (called the vertex
in the i’th row and j’th column) with two vertices vi,j and vk,l adjacent if
and only if |i− k|+ |j − l| = 1.

4.3. RESTRICTED GRAPH CLASSES 39

Theorem 4.3.6 ([32]). Let Pn be a path on n vertices, then mis(Pn) ∈
O(20.406·n).

Construct a total ordering σ of V (Gp,q) by sorting the vertices vi,j ∈
V (Gp,q) according to the sum i+ j, with ties broken by the value of i. Con-
struct a caterpillar decomposition (T, δ)σ of the grid graph Gp,q as described
in Definition 3.1.5 using the ordering σ. See Figure 4.7(a).

Lemma 4.3.7. The boolean-width of the grid graph Gp,q is at most 0.812 ·
min(p, q), for sufficiently large p and q, as shown by decomposition (T, δ)σ.

Proof. For every cut (A,A) defined by (T, δ)σ the bipartite graph induced
by the cut Gp,q[A,A] has at most 2 · min(p, q) + 2 not isolated vertices, at
most two components and max degree 2. In other words it is either one path
or two paths of a combined length of at most 2min(p, q) + 2. We get from
Theorem 4.3.6 that 2boolw((T,δ)σ) ∈ O(20.812·min(p,q)).

For a long while we believed this to be the best possible way to decompose
a grid graph and even backed up our conjecture with randomized computer
aided searches. It turned out to not be the best way to decompose a grid
graph in terms of boolean-width.

Assume without loss of generality that p ≤ q, construct an ordering ρ of
V (Gp,q) by sorting the vertices vi,j ∈ V (Gp,q) according to j+(i mod 2) with
ties broken by the value of i. Construct a caterpillar decomposition (T, δ)ρ
of the grid graph Gp,q as described in Definition 3.1.5 using the ordering ρ.
See Figure 4.7(b).

Lemma 4.3.8. The boolean-width of the grid graph Gp,q is at most 0.695 ·
min(p, q), for sufficiently large p and q, as shown by decomposition (T, δ)ρ.

Proof. For every cut (A,A) defined by (T, δ)ρ the graph Gp,q[A,A] after re-
moving isolated vertices is at most 2 caterpillars with sum of the lengths at
most min(p, q) + 2. The number of maximal independent sets in a caterpil-
lar is exactly the number of independent sets of its core path (i.e. the path
induced by all vertices with degree at least 2). The number of independent
sets in a path follows the Fibonacci sequence [62]. The Fibonacci sequence
is defined by the recurrence F (n) = F (n−1)+F (n−2), F (0) = 0, F (1) = 1.
Let φ = 1.618... denote the golden ratio, it is well-known that F (n) can be
described by the following formula:

F (n) =
φn −

(
−1
φ

)n

√
5

Since φn is the dominant term and log2(φ) ≤ 0.695 the lemma follows.

40 CHAPTER 4. COMPARING GRAPH PARAMETERS

(a) Using σ (b) Using ρ

Figure 4.7: Two cuts (A,A) described by the two discussed decompositions
(T, δ)σ and (T, δ)ρ of a 7× 7 grid. The edges across the cut are drawn bold,
vertices of A are white while vertices of A are black.

The following lemma will help get a lower bound on the MIM-width of a
grid graph.

Lemma 4.3.9. Let G be graph and A ⊆ V (G). If G[A,A] is d-degenerate
and has a matching of size m, then G[A,A] has an induced matching of size
m
d+1

.

Proof. Sort the m edges in the matching by their last endpoint in the de-
generacy ordering. We construct an induced matching as follows. Greedily
pick edges in that order if they are not adjacent to any already picked edge.
Whenever an edge is put in the induced matching there is at most d later
edges adjacent to that edge that hence can not be in the induced matching.
Hence this greedy method will produce an induced matching of size m

d+1
.

Theorem 4.3.10 ([47]). Let Gn,n be a n×n grid graph (for sufficiently large
n), then:

tw(Gn,n) = n [51]
cw(Gn,n) = n+ 1 [48]
rw(Gn,n) = n− 1 [55]
n− 1 ≤ mmw(Gn,n) ≤ n
0.33n ≤ boolw(Gn,n) ≤ 0.695n
0.33n ≤ mim(Gn,n) ≤ 0.5(n+ 1)

4.3. RESTRICTED GRAPH CLASSES 41

Proof. For MM-width it is easy to see that mmw(Gn,n) ≤ n using the cater-
pillar decomposition (T, δ)ρ in Lemma 4.3.8, see Figure 4.7(b). Vı́t Jeĺınek
showed in [47] that any decomposition tree of Gn,n defines a cut with an
acyclic matching of size at least n−1 and hence also a matching of size n−1.
That boolw(Gn,n) ≤ 0.695n follows from Lemma 4.3.8. Since grid graphs are
2-degenerate Lemma 4.3.9 gives us that 0.33n ≤ mim(Gn,n) ≤ boolw(G).
The decomposition in Figure 4.7(b) shows that mim(Gn,n) ≤ 0.5(n+1).

It would be nice to close the gap in the bounds of boolw(Gn,n) and
mimw(Gn,n) in Theorem 4.3.10, this is part of ongoing research.

42 CHAPTER 4. COMPARING GRAPH PARAMETERS

Chapter 5

Parameterized Algorithms

In this chapter we give an overview of results that parameterize some well-
known graph problems by various different graph parameters and consider
the resulting parameterized complexity. We assume throughout the chapter
that we are given a graph G with n = |V (G)|. When we parameterize a
problem by a graph parameter P we use as parameter the value k = P (G).
For a particular problem parameterized by P we will consider the following
three complexity behaviors:

para-NP-hard For some constant parameter value k the problem is NP-
hard.

XP The problem is solvable in O(nf(k)) time.

FPT The problem is solvable in O(f(k) · poly(n)) time.

5.1 Monadic Second Order Logic

A large and well-known class of graph problems are the MSOL2 problems,
consisting of those graph problems that can be expressed in monadic second
order logic. See [16] for a full definition. The following is arguably the most
well-known result in the area of FPT algorithms for graph problems.

Theorem 5.1.1 ([15, 4]). Any MSOL2 problem is FPT parameterized by
tree-width.

The relation between graph parameters illustrated by the Hasse diagram
in Figure 4.3 can be used to derive consequences of this Theorem.

43

44 CHAPTER 5. PARAMETERIZED ALGORITHMS

Lemma 5.1.2. Consider two graph parameters P and Q and assume that
P ≤f Q. If a problem Π is FPT parameterized by P then Π is FPT parame-
terized by Q. Moreover, if Π parameterized by Q is Para-NP-hard then so is
Π parameterized by P .

Proof. We know from definition of ≤f that there is a function g such that for
any graph G we have P (G) ≤ g(Q(G)) and from definition of FPT we know
that there is a function f such that Π is solvable in time O(f(P (G)) ·poly(n).
Then it follows that Π is solvable in time O(f(g(Q(G))) · poly(n)) which is
FPT parameterized by Q.

If Π parameterized by Q is Para-NP-hard then there exists a constant
c such that Π parameterized by Q is NP-hard on the class of graphs {G :
Q(G) ≤ c}. By assumption P (G) ≤ g(Q(G)) and hence the problem is
NP-hard on the class of graphs {G : P (G) ≤ g(c)} and thus Para-NP-hard
parameterized by P .

The derived consequences of Theorem 5.1.1 are given in the following
Lemma and illustrated in Figure 5.1.

Lemma 5.1.3. Consider Figure 5.1. For all red parameters there exists
an MSOL2 problem which is para-NP-hard and for all green parameters all
MSOL2 problems are FPT.

Proof. The node containing tree-width is green since Theorem 5.1.1 states
that any MSOL2 problem is FPT parameterized by tree-width. All the nodes
colored green are greater than tree-width in the partial order ≤f hence by
Lemma 5.1.2 any MSOL2 problem is FPT also on these. There exist MSOL2

problems that are NP-hard on cliques [18], hence all the parameters bounded
on cliques, i.e. on the left side, should be red. maximum Independent Set

is NP-hard on planar graphs of maximum degree 3 [35], and since both genus
and maximum degree is bounded on this class it follows from Lemma 5.1.2
that all parameters below any of these two also should be red and this com-
pletes the proof.

Another well-known result in the area of FPT algorithms for graph prob-
lems concerns parameterizing by clique-width. The MSOL1 problems are
those MSOL2 problems that can be expressed in monadic second order logic
without allowing logical quantifications over edge subsets. See [18] for a full
definition. Certain problems, like Hamilton Cycle, belong to MSOL2 but
not MSOL1.

Theorem 5.1.4 ([18],[60]). Any MSOL1 problem is FPT parameterized by
clique-width.

5.1. MONADIC SECOND ORDER LOGIC 45

CLIQUES

TREES
CLIQUES

TREES

pw maxDeg

td

carv-w

MM, VC

cut-w

band-w

fvs
genus

tw, brw
MM-w

degen, arbor, thick

minDeg

connectivity

chromatic num

max clique

Dilworth

MIMDS

IS

Min CC

comp diam

cw, nlc-w
modw, rw
boolw

mimw

1
Figure 5.1: The parameterized complexity of MSOL2 problems. Red means
there exists an MSOL2 problem which is para-NP-hard and green means all
MSOL2 problems are FPT.

Note that the result in Theorem 5.1.4 applies the FPT approximation
algorithm to clique-width given by the FPT algorithm for rank-width of [60]
and subsequently the result of [18]. Again, this Theorem has some derived
consequences given by Lemma 5.1.5 and illustrated in Figure 5.2.

Lemma 5.1.5. Consider Figure 5.2. For all red parameters there exists an
MSOL1 problem which is para-NP-hard, for all green parameters all MSOL1

problems are FPT (Dilworth number it is open).

Proof. Theorem 5.2 shows that all MSOL1 problems are FPT parameter-
ized by clique-width, and all the green nodes then follow from Lemma 5.1.2.
Minimum Weight Dominating Set is in MSOL1 and is NP-hard on com-
plements of bipartite graphs [11]. Since complements of bipartite graphs have

46 CHAPTER 5. PARAMETERIZED ALGORITHMS

clique cover of size 2, i.e. Min CC ≤ 2, all red nodes in the top left quadrant
follows from Lemma 5.1.2.

Maximum Independent Set is NP-hard on planar graphs of max de-
gree 3 [35], hence Maximum Clique is NP-hard on complements of planar
graphs. Since both genus and max degree is bounded on planar graphs of max
degree 3 all red nodes on the right side of the figure follows from Lemma 5.1.2.
It can be proven in a way similar to Chapter 9 Lemma 13 that complements
of planar graphs have MIM-width at most 6, hence Maximum Clique is
NP-hard on graphs of MIM-width at most 6.

CLIQUES

TREES
CLIQUES

TREES

pw maxDeg

td

carv-w

MM, VC

cut-w

band-w

fvs
genus

tw, brw
MM-w

degen, arbor, thick

minDeg

connectivity

chromatic num

max clique

Dilworth

MIMDS

IS

Min CC

comp diam

cw, nlc-w
modw, rw
boolw

mimw

1
Figure 5.2: The parameterized complexity of MSOL1 problems. Red means
there exists an MSOL1 problem which is para-NP-hard and green means
all MSOL1 problems are FPT. The complexity parameterized by Dilworth
number is open.

5.2. LC-VSVP PROBLEMS 47

The meta-algorithms for dynamic programming for MSOL problems pa-
rameterized by tree-width and clique-width have two stages, firstly finding
a decomposition (which will be discussed in the next chapter) and secondly
doing dynamic programming. The dynamic programming stage for general
MSOL problems has a runtime which is not single exponential in the param-
eter value.

5.2 Some Locally Checkable Vertex Subset

and Vertex Partitioning Problems

We will now consider a subclass of the MSOL1 problems first introduced
in [74], for which the dynamic programming stage has linear single expo-
nential runtime as a function of the parameter, i.e. O∗(2O(k)), for several
parameters. These problems are defined formally in Chapter 10, where they
are called Locally Checkable Vertex Subset and Vertex Partitioning prob-
lems, LC-VSVP for short. Well-known LC-VSVP problems can be found
in Chapter 10 Tables 1 & 2. In Chapter 10 we give dynamic programming
algorithms to solve any LC-VSVP problem. To express the runtime of these
algorithms by the various width parameters we need some intermediate lem-
mata based on the following definition, which is also given in Chapter 10,
motivated by the algorithmic application.

Definition 5.2.1 (d-neighbor equivalence). Let d be a non-negative integer,
G a graph and A ⊆ V (G). Two vertex subsets X ⊆ A and Y ⊆ A are
d-neighbor equivalent with respect to A, denoted by X ≡d

A Y , if:

∀v ∈ A : min(d, |X ∩N(v)|) = min(d, |Y ∩N(v)|)

Let nec(≡d
A) be the number of equivalence classes of ≡d

A. For a binary de-
composition tree (T, δ) we define necd(T, δ) as the maximum of nec(≡d

Vw
) and

nec(≡d
Vw
) over all nodes w ∈ T .

We now give two lemmata that will help us to bound nec(≡d
A) by ntc(A)

(see Definition 3.2.2) and mim(A) (see Definition 3.7.1).

Lemma 5.2.2. For G a graph, A ⊆ V (G) and d a non-negative integer we

have nec(≡d
A) ≤ (d+ 1)min(ntc(A),ntc(A)).

Proof. Let P ∈ T CA and S ⊆ A. By definition of twin class partition, for
any pair u, v ∈ P we have |N(u) ∩X| = |N(v) ∩ S|. Hence we can describe
N(S)∩A as a vector of length ntc(A) with entries from {0, 1, . . . , d−1,≥ d}

48 CHAPTER 5. PARAMETERIZED ALGORITHMS

and two subsets of A are d-neighbor equivalent if they have the same vector.
Hence nec(≡d

A) ≤ (d+ 1)ntc(A).
For X, Y ⊆ A it is clear that if for all P ∈ T CA we have |P ∩X| = |P ∩Y |

then X ≡d
A Y . Let R ⊆ A be an inclusion minimal set of an equivalence

class of ≡d
A, i.e. for all u ∈ R we have R �≡d

A (R \ u) and let P ∈ T CA. Then
|R∩P | ≤ d. Assume for contradiction that |R∩P | ≥ d+1 and let x ∈ R∩P ,
then for all v ∈ A \N(u) we have |R ∩N(v)| = |(R \ x) ∩N(v)| and for all
v ∈ A ∩N(u) we have |R ∩N(v)| ≥ d + 1 and |(R \ x) ∩N(v)| ≥ d. Hence
nec(≡d

A) ≤ (d+ 1)ntc(A).

Lemma 5.2.3. For G a graph, A ⊆ V (G) and d a non-negative integer we
have nec(≡d

A) ≤ ntc(A)mim(A)·d.

Proof. For any S ⊆ A we know from Chapter 9 Lemma 2 that there exists
R ⊆ S such that |R| ≤ mim(A) · d and R ≡d

A S. For X, Y ⊆ A it is clear
that if for all P ∈ T CA we have |P ∩X| = |P ∩ Y | then X ≡d

A Y hence the
lemma holds.

The following theorem summarizes what is known about the parameter-
ized complexity of LC-VSVP problems when given a decomposition. Its proof
relies on the ≤lin relation between the parameters, see Figure 4.2(c).

Theorem 5.2.4 ([74] Chapter 10). Given a graph G and a decomposition of
(any of the following)-width k we can solve any LC-VSVP problem by:

tree-width in O∗(2O(k))
branch-width in O∗(2O(k))
MM-width in O∗(2O(k))
module-width in O∗(2O(k))
clique-width in O∗(2O(k))
rank-width in O∗(2O(k2))
boolean-width in O∗(2O(k2))
MIM-width in nO(k)

Proof. For tree-width the theorem follows from [74]. For branch-width the
theorem follows since branch-width and tree-width are linearly bounded (see
Theorem 4.2.5) and we can transform a branch decomposition of branch-
width k into a tree decomposition of tree-width at most 3

2
k in polynomial

time. For MM-width the theorem follows since MM-width and tree-width
are linearly bounded (see Theorem 4.2.5) and we can compute a tree decom-
position of width O(k) in time O∗(2O(k)) [65]. For module-width, whose set
function is ntc, the theorem follows from Chapter 10 Theorems 1 & 2 and
Lemma 5.2.2. For clique-width the theorem follows since module-width and

5.3. INDEPENDENT SET AND DOMINATING SET 49

clique-width are linearly bounded (see Theorem 4.1.2) and we can transform
a clique-expression of width k into a module decomposition of width at most
2k in polynomial time. For rank-width note that ntc(A) ≤ 2cut-rank(A) [60]
andmim(A) ≤ cut-rank(A) (the adjacency matrix on an induced matching is
the identity matrix which has full rank). The theorem for rank-width follows
from Lemma 5.2.3 and Chapter 10 Theorems 1 & 2. For boolean-width the
theorem follows from Chapter 10 Corollaries 1 & 2. For MIM-width the the-
orem follows from Chapter 9 Lemma 2 and Chapter 10 Theorems 1 & 2.

It is an interesting question whether all LC-VSVP problems are in XP
parameterized by MIM-width. The above theorem answers the question pos-
itively for the dynamic programming stage, however the question of approx-
imating the optimal MIM-width of a graph is open.

Open Problem 5. Is there a function f such that, given a graph G, we can
in XP time parameterized by k = mimw(G) compute a binary decomposition
tree of MIM-width at most f(k)?

The runtime of the algorithms for LC-VSVP problems in Chapter 10 is
expressed in terms of nec(≡d

A) where d is a problem specific constant. Note
that by definition nec(≡1

A) = 2bool-dim(A). The subclass of the LC-VSVP
problems for which the problem specific constant d is 1 includes among others
the problems Maximum Independent Set and Minimum Dominating

Set, H-Coloring and H-Role Assignment, see Chapter 10 Table 1 & 2
for more problems. From Chapter 10 Theorem 1 & 2 we get the following
FPT algorithm as a corollary.

Corollary 5.2.5. Given a graph G and a binary decomposition tree of boolean-
width k we can solve any LC-VSVP problem with the problem specific constant
d = 1 in time O∗(2O(boolw(G))).

5.3 Independent Set and Dominating Set

For the well-studied LC-VSVP problems Maximum Independent Set and
Minimum Dominating Set, we give a more precise statement of the run-
time.

50 CHAPTER 5. PARAMETERIZED ALGORITHMS

Theorem 5.3.1 ([23, 41, 73],Chapter 8). Given a graph G and a decompo-
sition of (any of the following)-width k we can solve the Maximum Inde-

pendent Set problem by:
tree-width in O∗(2k)
branch-width in O∗(2.28k)
clique-width in O∗(2k)
boolean-width in O∗(4k)
module-width in O∗(4k)
MM-width in O∗(4k)
rank-width in O∗(1.42k

2
)

MIM-width in O∗(n2k)

Proof. For tree-width the theorem follows from [73]. For branchwidth the
theorem follows from [23]. For clique-width the theorem follows from [41].
For boolean-width the theorem follows from Chapter 8 Theorem 5. By Theo-
rem 4.2.9 boolean-width is bounded by module-width (using the same decom-
position tree), hence the theorem holds for module-width. By Theorem 4.2.5
boolean-width is bounded by MM-width (using the same decomposition tree),
hence the theorem holds for MM-width. From Chapter 8 Corollary 1 we know
that boolean-width is at most 1

4
rw2+O(rw) where rw is the rank-width and

since 41/4 < 1.42 the theorem holds for rank-width. By Theorem 4.2.10
we know that boolean-width is bounded by MIM-width times log(n) and
4klog(n) = n2k, hence the theorem holds for MIM-width.

Theorem 5.3.2 ([75, 9] Chapter 8). Given a graph G and a decomposition
of (any of the following)-width k we can solve the Minimum Dominating

Set problem by:
tree-width in O∗(3k)
branch-width in O∗(3.69k)
clique-width in O∗(4k)
boolean-width in O∗(8k)
module-width in O∗(8k)
MM-width in O∗(8k)
rank-width in O∗(1.69k

2
)

MIM-width in O∗(n3k)

Proof. For tree-width the theorem follows from [75]. For branch-width and
clique-width the theorem follows from [9]. For boolean-width the theorem fol-
lows from Chapter 8 Theorem 7. By theorem 4.2.9 boolean-width is bounded
by module-width, hence the theorem holds for module-width. By Theo-
rem 4.2.5 boolean-width is bounded by MM-width, hence the theorem holds

5.4. FEEDBACK VERTEX SET 51

for MM-width. From Chapter 8 Corollary 1 we know that boolean-width is at
most 1

4
rw2+O(rw) where rw is the rank-width and since 81/4 < 1.69 the the-

orem holds for rank-width. By Theorem 4.2.10 we know that boolean-width
is bounded by MIM-width times log(n) and 8klog(n) = n3k.

Open Problem 6. Given a graph G and a binary decomposition tree of
rank-width k, canMaximum Independent Set be solved in timeO∗(2O(k))?

5.4 Feedback Vertex Set

We now ask the question if there are MSOL2 problems that are not LC-VSVP
problems but still are solvable in O∗(2O(k)) time when given a decomposition
of width k. Hamiltonian Path, Steiner Tree, Feedback Vertex Set

and Connected Dominating Set are MSOL2 problems, and none are LC-
VSVP problems. Given a graph G of tree-width k any of these problems can
be solved in O∗(2O(k)) time by a randomized algorithm [19]. We focus on
Feedback Vertex Set in this section.

Theorem 5.4.1 ([19, 34] Chapter 11). Given a graph G and a decomposi-
tion of (any of the following)-width k we can solve the Minimum Feedback

Vertex Set problem parameterized by:
tree-width in O∗(3k)
branch-width in O∗(5.2k)
MM-width in O∗(2O(k))
clique-width in O∗(32k·log2(k))
module-width in O∗(32k·log2(k))
boolean-width in O∗(322

k·k)
rank-width in O∗(32k

2
)

Proof. For tree-width the theorem follows from [19]. For branch-width the
theorem follows since a branch decomposition of width k can be transformed
into a tree decomposition of width at most 3

2
k in polynomial time and

23/2 < 5.2. For module-width the theorem follows from Chapter 11. For
clique-width the theorem follows since a clique-expression of width k can
be transformed into a binary decomposition tree of module-width at most k
in polynomial time. For boolean-width the theorem follows since a binary
decomposition tree of boolean-width k has module-width at most 2k. For
rank-width the theorem follows from [34].

52 CHAPTER 5. PARAMETERIZED ALGORITHMS

Chapter 6

Computing Decompositions

In this chapter we discuss algorithms for finding decompositions of a given
graph G, for various width parameters. There are several ways to approach
the problem of computing graph decompositions. We can design an algorithm
to find an optimal decomposition for a specific parameter, and analyse the
runtime of this algorithm either as a function of |V (G)| = n only, which we
call an exact algorithm, or we can analyse the runtime as a parameterized
algorithm. We can also compute decomposition that only approximate the
optimal width, or use heuristics. We give an overview of results regarding
the different approaches.

6.1 Exact Algorithms

A general exponential time algorithm for computing an optimal branch de-
composition of a set function is presented in [29] based on work by Oum [59].

Theorem 6.1.1 ([59]). For any set A where |A| = n and any set function
f : 2A → R, an optimal branch decomposition of f on A can be computed in
O∗(2n · t(f, n)) time, where t(f, n) is the time it takes to evaluate f .

We showed in Observation 3.1.4 that branch decompositions are equiva-
lent to binary decomposition trees for all set functions discussed in this thesis,
so we can use this algorithm also to compute an optimal binary decomposi-
tion tree. For MM-width, module-width and rank-width the evaluation of the
set functions can be done in polynomial time [42, 44, 46]. For boolean-width
and MIM-width evaluating the set function is NP-hard [54, 35].

Lemma 6.1.2. Given a graph G, we can compute a binary decomposition
tree having optimal boolean-width in O(2.52n) time.

53

54 CHAPTER 6. COMPUTING DECOMPOSITIONS

Proof. The set function used to define boolean-width is bool-dim. For A ⊆
V (G) we know from Theorem 3.5.5 that computing bool-dim(A) can be done
by counting the number of maximal independent sets in the bipartite graph
G[A,A]. To compute an optimal decomposition we rely on Theorem 6.1.1.
In general graphs, counting the number of maximal independent sets can
be done in O(1.3642n) time [36], as far as we know this is also the best
exact algorithm for bipartite graphs, hence t(bool-dim, n) ∈ O(1.3642n). For
the bipartite graphs appearing as cuts in binary decomposition trees having
optimal boolean-width we can improve on this. This since, for decomposition
trees (subcubic or binary) we can see, by balancing the decomposition tree
properly, that any set function bounded by min(|A|, A) yields a width of at
most n

3
.

We define a new cut function minbool : 2V (G) → R, with minbool(A) =
min(bool-dim(A), n

3
). For bipartite graphs, there are algorithms enumerating

independent sets with polynomial delay [21], i.e. the time between each max-
imal independent set the algorithm outputs, is polynomial in n. We can stop
the polynomial time delay algorithm as soon as it has output 2n/3 maximal
independent sets, hence t(minbool, n) ∈ O∗(2n/3). Chapter 8 Algorithm 1
can also be used to evaluate minbool(A), however the algorithm of [21] is
more memory efficient.

We can use Theorem 6.1.1 to compute a binary decomposition tree (T, δ)
of optimal minbool-width in time O∗(2n · 2n/3) ∈ O(2.52n). For every u ∈
V (T) we know that minbool(Vu) ≤ n

3
hence minbool(Vu) = bool-dim(Vu),

thus (T, δ) has optimal boolean-width.

The following Theorem gives an overview of the best exact algorithms for
computing optimal decompositions for various graph width parameters.

Theorem 6.1.3 ([30, 31, 59]). Given a graph G, we can compute a decom-
position having optimal (any of the following)-width for:

tree-width in O∗(1.76n)
branch-width in O∗(3.47n)
module-width in O∗(2n)
rank-width in O∗(2n)
MM-width in O∗(2n)
boolean-width in O∗(2.52n)
MIM-width in O∗(2.79n)

Proof. For tree-width the theorem follows from [31]. For branch-width the
theorem follows from [30]. For module-width, rank-width and MM-width the
theorem follows from Theorem 6.1.1. For boolean-width the theorem follows

6.2. PARAMETERIZED ALGORITHMS 55

from Lemma 6.1.2. For MIM-width we know that computingmim(A) for any
A ⊆ V (G) can be done in O∗(1.392n) time [3], combined with Theorem 6.1.1
we get that we can compute MIM-width in O(1.392n · 2n) ∈ O(2.79n) time.

6.2 Parameterized Algorithms

For graphs where the parameter value is low compared to the number of
vertices we prefer parameterized algorithms. From a theoretical point of view
an interesting question is whether an optimal decomposition can be computed
in FPT time parameterized by k, the width of the optimal decomposition. If
this is not the case, how good an approximation can we find in FPT time?

Theorem 6.2.1 ([3, 4, 8, 39, 61, 59]). Given a graph G having (any of the
following)-width k, we can in FPT time parameterized by k compute a de-
composition having:

tree-width k
branch-width k
MM-width at most 3k
rank-width k
module-width at most 2k

clique-width at most 2k+1

boolean-width at most 4k

Proof. For tree-width the theorem follows from [4]. For branch-width the
theorem follows from [8]. For MM-width we use that we can compute an op-
timal branch decomposition in FPT time [8] and we know from Lemma 4.2.3
that a branch decomposition of branch-width w can be turned into a binary
decomposition tree of MM-width at most w in polynomial time. From The-
orem 4.2.5 we know that w ≤ 3k, where k is the MM-width of G, hence the
theorem follows. For rank-width the theorem follows from [61]. For module-
width and clique-width the theorem follows from [61]. For boolean-width we
know from [39] (see Chapter 8 Corollary 1) and [61] that if G has rank-width
rw we can compute a binary decomposition tree having boolean-width at
most 1

4
rw2 + rw and from Chapter 8 Lemma 1 we know that rw ≤ 2k for k

the boolean-width of G, and since 1
4
(2k)2+2k ≤ 4k for all k ≥ 1 the theorem

for boolean-width follows.

The FPT algorithm for computing decompositions of optimal rank-width
depends on the fact that the set function used for rank-width called cut-rank

56 CHAPTER 6. COMPUTING DECOMPOSITIONS

is submodular. A set function f : 2A → N is submodular if for all X, Y ⊆ A
we have f(X)+f(Y) ≥ f(X∪Y)+f(X∩Y). For the set functions bool-dim
and mim we know that they are not submodular, see Figure 6.1, hence the
approach used to compute rank-width is not directly applicable.

a b

c

d e

Figure 6.1: The sets X = {a, c} and Y = {b, c} certify that neither
bool-dim nor mim are submodular set functions. bool-dim(X) = log2(3),
bool-dim(Y) = 1, bool-dim(X ∪ Y) = 2, bool-dim(X ∩ Y) = 1, and
mim(X) = 1, mim(Y) = 1, mim(X ∪ Y) = 2, mim(X ∩ Y) = 1.

Much of the literature on FPT algorithms to compute optimal graph
decompositions focus on reducing the polynomial dependency in n, and often
the dependency in k is not even stated, but rather hidden in the big-O
notation. However, the dependency in k makes a big impact on the runtime
in practice. The following algorithm controls both the dependency on k and
n and the approximation ratio is linear.

Theorem 6.2.2 ([65]). Given a graph G with tree-width k we can compute
a tree decomposition of tree-width at most 4k in O(27k · n · log(n)) time.

The parameters for which we can find decompositions of width at most
a constant factor more than the optimal width k in time O∗(2O(k)) are tree-
width, branch-width and MM-width.

Open Problem 7. For a graph G with boolean-width k, rank-width k,
module-width k or MIM-width k, can we in time O∗(2O(k)) compute a de-
composition having width O(k)?

6.3 Heuristics

In this section we discuss how to get around the fact that the algorithms we
know for computing decompositions have too slow runtime (in seconds) to
work in practice. In practice there are so many factors affecting the precise
runtime (in seconds) of an algorithm that it is difficult to estimate, we should
rather test it by making implementations. However, this is a lot of work. In
the following we briefly discuss what would work in practice.

6.3. HEURISTICS 57

6.3.1 Practical Runtime

Consider the following thought experiment, we have a graph on n = 1000
vertices and we want to parameterize by a parameter with value k. We
estimate a standard computer to do 109 operations per second.

Question: For which values of k are algorithms with various runtimes
practical?

Table 6.3.1 shows what can be considered a practical value of k for various
runtimes, all FPT, i.e. f(k)·poly(n) for varying functions f and poly assuming
no hidden constants. The practical values of k range between 3 (for runtime
2k

3 · n) and 35 (for runtime 2k · n) These are rough estimates, taking into
consideration the runtime but not the memory usage which often is a limiting
factor. let us consider the practicality of some well-known algorithms.

runtime max k runtime max k

22
k · n 5 22k · n2 12

2k
3 · n 3 22k · n 17

2k
2 · n 5 3k · n 21

2
3
4
k2 · n 6 2k · n3 15

23k · n2 8 2k · n2 25
23k · n 11 2k · n 35

Table 6.1: Thought experiment on a graph with n = 1000 nodes. Runtime
of different algorithms, and estimated maximum k for which we consider the
algorithm practical (estimated to finish within 12 hours on a computer doing
109 operations per second).

For instance, Bodlaender’s algorithm for computing an optimal tree de-
composition [4] has a runtime of O(ck

3 ·n) (for some large constant c, for our
purpose it suffices to set c = 2), is this practical? If c = 2 and k = 4 we
get a factor of 264 and this many operations would take thousands of years
to execute. Bodlaender’s algorithm has been implemented [67], and it was
shown that it can in practice only compute optimal decompositions of graphs
of tree-width at most 3 [67]. For graphs of tree-width at most 4 there are
other more practical algorithms, see [68] and the bibliography therein.

The algorithm for dominating set of Chapter 8 given a binary decompo-
sition tree of boolean width k runs in time O(k · 23k · n) (after preprocessing
is done) and hence will be practical up to aproximately k = 11. Given a
decomposition of tree-width k Minimum Dominating Set can be solved
in time O(3k · k2 · n) [75] which can be considered practical up to k = 21. In

58 CHAPTER 6. COMPUTING DECOMPOSITIONS

general the dynamic programming step is practical for much larger values of
k than the step of computing decompositions.

6.3.2 Reduction Rules

None of the FPT algorithms for computing optimal decompositions are lin-
early single exponential in the width of the graph. One way to get around
this intractability is to do some preprocessing to remove the easier part of
the graph. Much work has been done in this direction for computing tree
decompositions of low tree-width [68, 5]. We now show one reduction rule
for boolean-width, a similar rule also applies to rank-width [45], but not to
tree-width.

Let G be a graph, a 1-join of G is a cut (A,A) such that after removing
all isolated vertices from the graph G[A,A], what is left is a complete graph.

Lemma 6.3.1. Let G be a graph and (A,A) a 1-join of G with N(A)∩A = R
and N(A)∩A = L. Let u ∈ R, v ∈ L and H be the disjoint union of the two
graphs G[A ∪ u] and G[A ∪ v]. Then boolw(G) = boolw(H).

Proof. Note that it suffices to prove this lemma for connected G. Since both
G[A∪u] and G[A∪v] are induced subgraphs of G we have from Lemma 3.5.7
that boolw(G) ≥ boolw(H), we only need to show boolw(G) ≤ boolw(H).
Assume we have binary decomposition trees (Tu, δu) and (Tv, δv) of optimal
boolean-width of each of the two components of H, we can make those two
decompositions unrooted by deleting the root and connecting the two children
of the root. Then we subdivide the two edges having either δu(u) or δv(v) as
endpoints making two new vertices u′ and v′, now we add a new root r and
connect the two decomposition trees by connecting r to u′ and v′ and merge
δu and δv into a new bijection δ. For every node x except δ(u), u′, δ(v), v′ and
r we have that bool-dim(Vx) in H is at most boolw(G) since G[Vx, V (H)\Vx]
after twin contraction equals G[Vx, V (G) \ Vx] after twin contraction. Since
bool-dim(Vr) = 0, bool-dim(Vδ(u)) = bool-dim(Vδ(v)) = 1, then the only cut to
argue for is (A,A), since this is a 1-join, i.e. G[A,A] is a complete graph plus
some isolated vertices, we have boolw(G) ≥ 1 and the lemma follows.

Note that we can apply the above lemma as long as the graph has a cut
vertex. The graphs of boolean-width 1 are the distance hereditary graphs
and can be recognized in linear time [20].

Open Problem 8. Can we recognize graphs of boolean-width at most
log2(3) in polynomial time?

6.3. HEURISTICS 59

6.3.3 Implementations

Implementations of algorithms for finding tree decompositions of relatively
low tree-width have been successful [7, 6, 5], see Chapter 12 for more on
this. We have started a similar project finding binary decomposition trees of
relatively low boolean-width. The first results of this project are positive and
are presented in Chapter 12. We refer to that chapter for further explanation.
However, it is clear that a lot of work remains to be done before boolean-
width decompositions can be used in the real world in any way resembling
that of tree-width.

In order to develop good heuristics there has to be a deep theoretical
understanding of the width parameter, with results such as Lemma 6.3.1.
The three new parameters in this thesis lack in theoretical understanding
compared to tree-width and rank-width. However, since MIM-width and
boolean-width can be much smaller than the other parameters it might be
easier to design heuristics for them. In particular, we believe that the heuris-
tic for boolean-width given in Chapter 12 has much potential for improve-
ments.

60 CHAPTER 6. COMPUTING DECOMPOSITIONS

Chapter 7

Conclusions and Future Work

We have introduced three new width parameters, many questions relating
to these are left open. In this Chapter we give an overview of the most
interesting open questions.

Recall from Chapter 4 that the relation between MM-width and tree-
width was proven via a non-monotone strategy for the cops and robber game
characterizing tree-width. Computing the MM-width of a binary decomposi-
tion tree can be done in O(n3.5) time using the Hopcroft-Karp algorithm [46].

Open Problem 2 (Chapter 4). Given a binary decomposition tree (T, δ)
can we compute a tree decomposition of tree-width at most 3mmw(T, δ)− 1
in O(n3.5) time?

Maybe the most important theoretical questions is to decide the complex-
ity of computing optimal decomposition trees or approximating the value of
the new width parameters.

Open Problem 7 (Chapter 6). For a graph G with boolean-width k, rank-
width k, module-width k or MIM-width k, can we in time O∗(2O(k)) compute
a decomposition having width O(k)?

For MIM-width and boolean-width little is known about computing op-
timal decompositions, and the above question seems to be ambitious, it will
be more realistic to start by asking:

Open Problem 5 (Chapter 5). Is there a function f such that, given a
graph G, we can in XP time parameterized by k = mimw(G) compute a
binary decomposition tree of MIM-width at most f(k)?

Even easier questions remain open.

61

62 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Open Problem 1 (Chapter 3). Can we recognize graphs of MIM-width 1
in polynomial time?

Open Problem 8 (Chapter 6). Can we recognize graphs of boolean-width
at most log2(3) in polynomial time?

We have not focused on the linear versions of the new width parameters
in this thesis. However, all the above questions have corresponding questions
for linear versions, which might be easier to answer.

There are also some special graph classes where the problem of deciding
the MIM-width and boolean-width is left open. For strongly chordal graph
we believe in a positive answer, while for tolerance graphs we believe in a
negative answer.

Open Problem 9 (Chapter 9). Is the MIM-width of strongly chordal graphs
and tolerance graphs constant?

One thing that has been important in this thesis is to find linear expo-
nential parameterized algorithms. There are many pairs of problems and
parameters where we don’t know the complexity, in particular the following.

Open Problem 6 (Chapter 5). Given a graphG and a binary decomposition
tree of rank-width k, can Maximum Independent Set be solved in time
O∗(2O(k))?

Linear single exponential FPT algorithms might be of practical interest,
especially when parameterizing by boolean-width since boolean-width in gen-
eral is much lower than other well-known graph width parameters. From a
practical point of view heuristics seem like the best approach to computing
decomposition trees of low boolean-width. Our heuristic for finding decom-
positions of low boolean-width is time and memory consuming and needs to
be improved in order to be of practical interest, this is an interesting direction
of research.

We know that the boolean-width of a graph G never exceed |V (G)|
3

, it is
part of an ongoing project with Yuri Rabinovich and Jan Arne Telle to prove
that there exist a constant c < 1

3
such that every graph G has boolean-width

at most c · |V (G)|.

Bibliography

[1] Isolde Adler, Binh-Minh Bui-Xuan, Yuri Rabinovich, Gabriel Renault,
Jan Arne Telle, and Martin Vatshelle. On the boolean-width of a graph:
Structure and applications. In Proceedings of WG, volume 6410 of Lec-
ture Notes in Computer Science, pages 159–170. Springer-Verlag, 2010.

[2] Rémy Belmonte. Boolean-width of special graph classes, applications for
solving np-hard problems on graph classes in polynomial time. Master’s
thesis, University Montpellier II, 2010. http://remybelmonte.files.
wordpress.com/2011/10/master_thesis.pdf.

[3] Daniel Binkele-Raible, Ljiljana Brankovic, Marek Cygan, Henning
Fernau, Joachim Kneis, Dieter Kratsch, Alexander Langer, Mathieu
Liedloff, Marcin Pilipczuk, Peter Rossmanith, and Jakub Onufry Woj-
taszczyk. Breaking the 2n-barrier for irredundance: Two lines of attack.
Journal of Discrete Algorithms, 9(3):214–230, 2011.

[4] Hans L. Bodlaender. A linear-time algorithm for finding tree-
decompositions of small treewidth. SIAM Journal on Computing,
25(6):1305 – 1317, 1996.

[5] Hans L. Bodlaender. Treewidth: Characterizations, applications, and
computations. In Proceedings of WG, volume 4271 of Lecture Notes in
Computer Science, pages 1–14. Springer-Verlag, 2006.

[6] Hans L. Bodlaender and Arie M. C. A. Koster. Treewidth Computations
I Upper Bounds. Information and Computation, 208(3):259–275, 2010.

[7] Hans L. Bodlaender and Arie M. C. A. Koster. Treewidth computa-
tions II. lower bounds. Information and Computation, 209(7):1103–1119,
2011.

[8] Hans L. Bodlaender and Dimitrios M. Thilikos. Constructive linear time
algorithms for branchwidth. In Proceedings of ICALP, volume 1256

63

64 BIBLIOGRAPHY

of Lecture Notes in Computer Science, pages 627–637. Springer-Verlag,
1997.

[9] Hans L. Bodlaender, Erik Jan van Leeuwen, Johan M. M. van Rooij,
and Martin Vatshelle. Faster algorithms on clique and branch decom-
positions. In Proceedings of MFCS, volume 6281 of Lecture Notes in
Computer Science, pages 174–185. Springer-Verlag, 2010.

[10] Kathie Cameron and Tracy Walker. The graphs with maximum induced
matching and maximum matching the same size. Discrete Mathematics,
299(13):49–55, 2005.

[11] Maw-Shang Chang. Weighted domination of cocomparability graphs.
Discrete Applied Mathematics, 80(3):135–148, 1997.

[12] Maria Chudnovsky, Neil Robertson, Paul Seymour, and Robin Thomas.
The strong perfect graph theorem. Annals of Mathematics, 164(1):51–
229, 2006.

[13] Nathann Cohen. Personal communication.

[14] Derek G. Corneil and Udi Rotics. On the relationship between clique-
width and treewidth. SIAM Journal on Computing, 34(4):825–847, 2005.

[15] Bruno Courcelle. The monadic second-order logic of graphs iii: tree-
decompositions, minor and complexity issues. Informatique Théorique
et Applications, 26:257–286, 1992.

[16] Bruno Courcelle. Handbook of Graph Grammars and Computing by
Graph Transformations, volume 1, chapter The Expression Of Graph
Properties And Graph Transformations In Monadic Second-Order Logic,
pages 313–400. World Scientific, 1997.

[17] Bruno Courcelle, Joost Engelfriet, and Grzegorz Rozenberg. Handle-
rewriting hypergraph grammars. Journal of Computer and System Sci-
ences, 46(2):218–270, 1993.

[18] Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time
solvable optimization problems on graphs of bounded clique-width. The-
ory of Computing Systems, 33(2):125–150, 2000.

[19] Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Jo-
han M. M. van Rooij, and Jakub Onufry Wojtaszczyk. Solving connec-
tivity problems parameterized by treewidth in single exponential time.
pages 150–159. IEEE, 2011.

BIBLIOGRAPHY 65

[20] Guillaume Damiand, Michel Habib, and Christophe Paul. A sim-
ple paradigm for graph recognition: application to cographs and dis-
tance hereditary graphs. Theoretical Computer Science, 263(1-2):99–
111, 2001.

[21] Vânia M.F. Diasa, Celina M.H. de Figueiredo, and Jayme L. Szwarcfiter.
On the generation of bicliques of a graph. Discrete Applied Mathematics,
155:1826–1832, 2007.

[22] Reinhard Diestel. Graph Theory (Graduate Texts in Mathematics).
Springer-Verlag, fourth edition, 2010.

[23] Frederic Dorn. Dynamic programming and fast matrix multiplication. In
Proceedings of ESA, volume 4168 of Lecture Notes in Computer Science,
pages 280–291. Springer-Verlag, 2006.

[24] Rodney G. Downey and Michael R. Fellows. Parameterized Complexity.
Springer-Verlag, 1999.

[25] W. Duckworth, D. Manlove, and M. Zito. On the approximability of the
maximum induced matching problem. Journal of Discrete Algorithms,
3:79–91, 2000.

[26] John A. Ellis, Ivan H. Sudborough, and Jonathan S. Turner. The vertex
separation and search number of a graph. Information and Computation,
113(1):50–79, 1994.

[27] Leonard Euler. Solutio problematis ad geometriam situs pertinentis.
Commentarii academiae scientiarum Petropolitanae, 8:128–140, 1736.

[28] Jörg Flum and Martin Grohe. Parameterized Complexity Theory.
Springer-Verlag, 2006.

[29] Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms.
Texts in Theoretical Computer Science. Springer-Verlag, 1st edition edi-
tion, 2010.

[30] Fedor V. Fomin, Frédéric Mazoit, and Ioan Todinca. Computing branch-
width via efficient triangulations and blocks. Discrete Applied Mathe-
matics, 157(12):2726–2736, 2009.

[31] Fedor V. Fomin and Yngve Villanger. Treewidth computation and ex-
tremal combinatorics. In Proceedings of ICALP, volume 5125 of Lecture
Notes in Computer Science, pages 210–221. Springer-Verlag, 2008.

66 BIBLIOGRAPHY

[32] Zoltán Füredi. The number of maximal independent sets in connected
graphs. Journal of Graph Theory, 11(4):463–470, 1987.

[33] Robert Ganian. Thread graphs, linear rank-width and their algorithmic
applications. In Proceedings of IWOCA, volume 6460 of Lecture Notes
in Computer Science, pages 38–42. Springer, 2011.

[34] Robert Ganian and Petr Hliněný. On Parse Trees and Myhill-Nerode-
type Tools for handling Graphs of Bounded Rank-width. Discrete Ap-
plied Mathematics, 158(7):851–867, 2010.

[35] Michael R. Garey and David S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. Series of Books in the
Mathematical Sciences. W. H. Freeman and Co., 1979.

[36] Serge Gaspers, Dieter Kratsch, and Mathieu Liedloff. On independent
sets and bicliques in graphs. Algorithmica, 62(3-4):637–658, 2012.

[37] Carl Friedrich Gauss. Nachlass: Theoria interpolationis methodo nova
tractata, volume 3. Knigliche Gesellschaft der Wissenschaften, Gttingen,
1866.

[38] James F. Geelen, Bert Gerards, and Geoff Whittle. Branch-width and
well-quasi-ordering in matroids and graphs. Journal of Combinatorial
Theory, Series B, 84(2):270–290, 2002.

[39] Jay Goldman and Gian-Carlo Rota. The number of subspaces of a vector
space. Recent Progress in Combinatorics, pages 75–83, 1969.

[40] Martin C. Golumbic and Udi Rotics. On the clique-width of perfect
graph classes. In Proceedings of WG, Lecture Notes in Computer Sci-
ence, pages 135–147. Springer-Verlag, 1999.

[41] Frank Gurski. A comparison of two approaches for polynomial time
algorithms computing basic graph parameters. CoRR, abs/0806.4073,
2008.

[42] Michel Habib, Christophe Paul, and Laurent Viennot. Partition re-
finement techniques: An interesting algorithmic tool kit. International
Journal of Foundations of Computer Science, 10(2):147–170, 1999.

[43] Philip Hall. On representatives of subsets. Journal of the London Math-
ematical Society, 10(1):26–30, 1935.

BIBLIOGRAPHY 67

[44] Roger Hart. The Chinese Roots of Linear Algebra. The history of math-
ematics. Johns Hopkins University Press, 2010.

[45] Petr Hlinený, Sang-il Oum, Detlef Seese, and Georg Gottlob. Width
parameters beyond tree-width and their applications. The Computer
Journal, 51(3):326–362, 2008.

[46] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum
matchings in bipartite graphs. SIAM Journal on Computing, 2(4):225–
231, 1973.

[47] Vı́t Jeĺınek. The rank-width of the square grid. Discrete Applied Math-
ematics, 158(7):841–850, 2010.

[48] Öjvind Johansson. Clique-decomposition, NLC-decomposition and
modular decomposition – Relatiohships and results for random graphs.
Congressus Numerantium, 132:39–60, 1998.

[49] Iyad Kanja, Michael J. Pelsmajerb, Marcus Schaefera, and Ge Xiac.
On the induced matching problem. Journal of Computer and System
Sciences, 77(6):1058–1070, 2011.

[50] Ki Hang Kim. Boolean matrix theory and its applications. Monographs
and textbooks in pure and applied mathematics. Marcel Dekker, 1982.

[51] Ton Kloks and Hans L. Bodlaender. Only few graphs have bounded
treewidth. Technical Report UU-CS-92-35, Department of Information
and Computing Sciences, Utrecht University, 1992.

[52] Dénes König. Gráfok és mátrixok. Matematikai és Fizikai Lapok, 38:116–
119, 1931.

[53] Evangelos Kranakis, Danny Krizanc, Berthold Ruf, Jorge Urrutia, and
Gerhard Woeginger. The vc-dimension of set systems defined by graphs.
Discrete Applied Mathematics, 77(3):237–257, 1997.

[54] Eugene L. Lawler, Jan K. Lenstra, and Alexander H. G. Rinnooy Kan.
Generating all maximal independent sets: Np-hardness and polynomial-
time algorithms. SIAM Journal on Computing, 9(3):558–565, 1980.

[55] Lee J. Lee, C. and Sang-il Oum. Rank-width of random graphs. Journal
of Graph Theory, 2011. doi: 10.1002/jgt.20620.

68 BIBLIOGRAPHY

[56] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms, volume 31
of Oxford Lecture Series in Mathematics and its Applications. Oxford
University Press, 2006.

[57] Sang-il Oum. Graphs of Bounded Rank-width. PhD thesis, Princeton
University, 2005.

[58] Sang-il Oum. Rank-width is less than or equal to branch-width. Journal
of Graph Theory, 57(3):239–244, 2008.

[59] Sang-il Oum. Computing rank-width exactly. Information Processing
Letters, 109:745–748, 2009.

[60] Sang-il Oum and Paul D. Seymour. Approximating clique-width and
branch-width. Journal of Combinatorial Theory, Series B, 96(4):514–
528, 2006.

[61] Sang-il Oum and Paul D. Seymour. Testing branch-width. Journal of
Combinatorial Theory, Series B, 97(3):385–393, 2007.

[62] Helmut Prodinger and Robert F. Tichy. Fibonacci numbers of graphs.
The Fibonacci Quarterly, 20(1):16–21, 1982.

[63] Michaël Rao. Décomposition de graphes et algorithmes efficaces. PhD
thesis, Université Paul Verlaine, Metz, 2006.

[64] Michaël Rao. Clique-width of graphs defined by one-vertex extensions.
Discrete Mathematics, 308(24):6157–6165, 2008.

[65] Bruce A. Reed. Finding approximate separators and computing tree
width quickly. In Proceedings of STOC, pages 221–228. ACM.

[66] Neil Robertson and Paul D. Seymour. Graph minors X. obstructions
to tree-decomposition. Journal of Combinatorial Theory, Series B,
52(2):153–190, 1991.

[67] Hein Röhrig. Tree decomposition: A feasibility study. Master’s thesis,
Max-Planck-Institut für Informatik in Saarbrücken, 1998.

[68] Daniel P. Sanders. On linear recognition of tree-width at most four.
SIAM Journal on Discrete Mathematics, 9(1):101–117, 1996.

[69] Robert Sasak. Comparing 17 graph parameters. Master’s thesis, Uni-
versity of Bergen, 2010. http://hdl.handle.net/1956/4329.

BIBLIOGRAPHY 69

[70] Paul D. Seymour and Robin Thomas. Graph searching and a min-max
theorem for tree-width. Journal of Combinatorial Theory, Series B,
58(1):22–33, 1993.

[71] Larry J. Stockmeyer and Vijay V. Vazirani. Np-completeness of some
generalizations of the maximum matching problem. Information Pro-
cessing Letters, 15(1):14–19, 1982.

[72] Robert R. Stoll. Set theory and logic. Dover books on advanced mathe-
matics. Dover Publications, 1979.

[73] Jan Arne Telle. Vertex Partitioning Problems: Characterization, Com-
plexity and Algorithms on Partial k-Trees. PhD thesis, University of
Oregon, 1994.

[74] Jan Arne Telle and Andrzej Proskurowski. Algorithms for vertex parti-
tioning problems on partial k-trees. SIAM Journal on Discrete Mathe-
matics, 10(4):529–550, 1997.

[75] Johan M. M. van Rooij, Hans L. Bodlaender, and Peter Rossmanith.
Dynamic programming on tree decompositions using generalised fast
subset convolution. In Proceedings of ESA, volume 5757 of Lecture Notes
in Computer Science, pages 566–577. Springer-Verlag, 2009.

[76] Vladimir N. Vapnik and Alexey J. Chervonenkis. On the uniform con-
vergence of relative frequencies of events to their probabilities. Theory
of Probability and its Applications, 16(2):264–280, 1971.

[77] Robin J. Wilson. Introduction to Graph Theory. Prentice Hall, fourth
edition, 1996.

70 BIBLIOGRAPHY

Part II

Papers

71

Boolean-width of graphs�

Binh-Minh Bui-Xuan
a, Jan Arne Telle

a,∗, Martin Vatshelle
a

a Department of Informatics, University of Bergen, Norway.
buixuan@lip6.fr [telle,vatshelle]@ii.uib.no

Abstract

We introduce the graph parameter boolean-width, related to the number of
different unions of neighborhoods – Boolean sums of neighborhoods – across
a cut of a graph. For many graph problems this number is the runtime
bottleneck when using a divide-and-conquer approach. For an n-vertex graph
given with a decomposition tree of boolean-width k, we solve Maximum
Weight Independent Set in timeO(n2k22k) and MinimumWeight Dominating
Set in time O(n2 + nk23k). With an additional n2 factor in the runtime we
can also count all independent sets and dominating sets of each cardinality.

Boolean-width is bounded on the same classes of graphs as clique-width.
Boolean-width is similar to rank-width, which is related to the number of
GF (2)-sums of neighborhoods instead of the Boolean sums used for boolean-
width. We show for any graph that its boolean-width is at most its clique-
width and at most quadratic in its rank-width. We exhibit a class of graphs,
the Hsu-grids, having the property that a Hsu-grid on Θ(n2) vertices has
boolean-width Θ(log n) and rank-width, clique-width, tree-width, and branch-
width Θ(n).

Keywords: graph decomposition, FPT algorithm, width parameter,
Boolean algebra

1. Introduction

Width parameters of graphs, like tree-width, branch-width, clique-width
and rank-width, are important in the field of graph algorithms. Many NP-
hard graph optimization problems have fixed-parameter tractable (FPT)

�Supported by the Norwegian Research Council, project PARALGO.
∗Corresponding author. Tel: (+47) 55 58 40 36. Fax: (+47) 55 58 41 99.

73

algorithms when parameterized by these parameters (see [23] for a recent
overview, and [15, 16] for extensive ones).

The most widely known parameter is the tree-width tw(G) of a graph
G, which was introduced along with branch-width bw(G) in [41]. In time1

O∗(23.7tw(G)) a decomposition of tree-width at most 3.7tw(G) can be com-
puted [3], and once a decomposition of tree-width k is given, there are case-
specific algorithms solving many NP-hard problems in time O∗(2c·k) for c a
small constant, e.g. c = 1.58 for Minimum Dominating Set [42]. Similar
results hold for branch-width since bw(G) ≤ tw(G)+1 ≤ 1.5bw(G). A draw-
back of tree-width and branch-width arises with dense graphs, where their
value is high, e.g. the complete graph Kn has tree-width n − 1 and 2tw(Kn)

is thus exponential in n.
The introduction of clique-width cw(G) in [12] was in this context a big

improvement. A class of graphs has clique-width bounded by a constant
whenever tree-width/branch-width is bounded by a constant, but cw(Kn) =
2. Moreover, given a decomposition of clique-width k many NP-hard prob-
lems can still be solved reasonably fast, e.g. Minimum Dominating Set can
be solved in O∗(24·k) time [30], very recently improved to O∗(22·k) [6]. A
drawback of clique-width was that for a long time no algorithm was known
for computing a decomposition of low clique-width. This situation improved
in 2005 with an algorithm that in time O∗(23cw(G)) computed a decompo-
sition of clique-width at most 23cw(G) [36]. Although this can be far from
the optimal clique-width, it means there are FPT algorithms for all MSOL1

problems when parameterized by clique-width [13].
This approximation for clique-width was achieved by introducing a new

parameter, the so-called rank-width rw(G), that is interesting in itself. Firstly,
given an n-vertex graph a decomposition of optimal rank-width can be com-
puted in time O(f(rw(G))poly(n)), for some polynomial function poly and
a function f at least exponential [22]. Secondly, rank-width is potentially
much smaller than clique-width, tree-width and branch-width: for any graph
G we have log cw(G) ≤ rw(G) ≤ cw(G), and rw(G) ≤ tw(G) + 1 and
rw(G) ≤ bw(G) [35], in contrast to clique-width where there exist graphs
with cw(G) in 2Θ(tw(G)) [11]. A possible drawback of rank-width is that so
far no well-known NP-hard problems are solvable in time O∗(2c·k) on a de-
composition of rank-width k, e.g. for Minimum Dominating Set the fastest

1We use O∗ notation that hides polynomial factors.

74 BOOLEAN-WIDTH OF GRAPHS

runtime is O∗(20.75k
2+O(k)) [9, 17]. However, note that for graphs having

rank-width much smaller than clique-width and tree-width it will still be
preferable to use rank-width for e.g. Minimum Dominating Set.

In this paper we introduce a graph parameter called boolean-width. Its
value is not only smaller than clique-width but also potentially much smaller
than rank-width: log cw(G) ≤ boolw(G) ≤ cw(G) and log rw(G) ≤ boolw(G)
≤ 0.25rw2(G) +O(rw(G)), with both lower bounds tight to a multiplicative
factor as shown here for Hsu-grid graphs. Very recently, also well-known
classes of graphs, like random graphs and interval graphs, have been shown to
have clique-width and rank-width exponential in their boolean-width [1, 4].
We show that there are NP-hard problems solvable in time O∗(2c·k) on a
decomposition of boolean-width k, e.g. c = 3 for Minimum Dominating Set.
A drawback of boolean-width is the same as with clique-width: so far the
best algorithm for computing a decomposition of low boolean-width is based
on the algorithm for rank-width. It will in the worst case, and in particular
for Hsu-grids, return a decomposition having boolean-width exponential in
the optimal boolean-width.

Our paper is organized as follows. In Section 2 we define boolean-width
based on the number of unions of neighborhoods across the cuts given by
a decomposition tree, and argue that it is a natural parameter if the goal
is fast divide-and-conquer algorithms, at least for independence and dom-
ination problems. In Section 3 we compare boolean-width to other width
parameters, and in particular to rank-width. We show that log rw(G) ≤
boolw(G) ≤ 0.25rw2(G) + O(rw(G)). This means that boolean-width is
(constantly) bounded on the same classes of graphs as clique-width and rank-
width, but for higher bounds the situation is different. For a class of graphs
C say parameter P is logarithmic, resp. polylog, if the value of P for any
n-vertex graph G in C is logarithmic in n, resp. polylog in n. For exam-
ple, boolean-width is logarithmic on interval graphs and polylog on random
graphs. Whenever P is logarithmic on C, resp. polylog on C, any algorithm
with runtime O∗(2c·P (G)), resp. O∗(2poly(P (G))), will on input a graph G in C
have polynomial runtime, resp. quasi-polynomial runtime. From the results
depicted in Figure 1 it follows that if any of tree-width, branch-width, clique-
width or rank-width is polylog on a class of graphs then so is boolean-width,
while we show in Section 3 that boolean-width is logarithmic on Hsu-grids
but the other parameters are not even polylog on Hsu-grids. Recent re-
sults showing that boolw(G) ≤ bw(G) [1] imply that if any of tree-width,
branch-width, or clique-width is logarithmic on some graph class then so is

75

2
k

2k
2k

tw

bw

cw

rw

boolw

oo

k 2
k

2k0.25

k

1.5k

k

k+1

k+1

k

Figure 1: Upper bounds tying parameters tw=tree-width, bw=branch-width, cw=clique-
width, rw=rank-width, and boolw=boolean-width. An arrow from P to Q labelled f(k)
means that any class of graphs having parameter P bounded by k will have parameter Q
bounded by f(k) or O(f(k)), and ∞ means that no such upper bound can be shown. The
results surrounded by a box are shown in this paper. Most bounds are known to be tight,
meaning there is a class of graphs for which the bound is f(k) or Ω(f(k)), except for the
arrows tw → cw where an Ω(2k/2) bound is known [11], and rw → boolw where an Ω(k)
bound is known (Theorem 2 of this paper).

boolean-width, but as the Hsu-grids show the converse is not always true.
The question whether logarithmic rank-width implies logarithmic boolean-

width is left open, although in Section 4 we answer negatively a similar
question at the level of graph cuts. More precisely, we show a sequence
of bipartite graphs whose adjacency matrices have a Boolean row space of
size equal to the number of their GF (2) subspaces. This result in Boolean
matrix theory implies that the measure for boolean-width can be quadratic
in the measure for rank-width, when restricting to graph cuts. The use of
Boolean-sums in the definition of boolean-width means a new application
for the theory of Boolean matrices to the field of algorithms. Boolean ma-
trices already have applications, e.g. in switching circuits, voting methods,
applied logic, communication complexity, network measurements and social
networks [14, 28, 32, 37].

Sections 5 and 6 are devoted to algorithms solving NP-hard problems on
an n-vertex graph in time O(2c·kpoly(n)) when given a decomposition tree
of boolean-width k. Since the goal is to allow practical implementations of
these algorithms we strive for simple descriptions, small constants c and low
polynomial functions poly. In Section 5 we give a pre-processing routine
setting up a data structure that will allow runtime at the combine step to
be a function of the boolean-width of the decomposition tree, rather than

76 BOOLEAN-WIDTH OF GRAPHS

the number of vertices. In Section 6 we show how to apply dynamic pro-
gramming on a decomposition tree while analysing runtime as a function
of its boolean-width. We focus on the Maximum Independent Set problem
where we get runtime O(n2k22k) and Minimum Dominating Set with runtime
O(n2+nk23k). The algorithms can be deduced from similar algorithms in [9],
that appeared before the introduction of boolean-width. We give the algo-
rithms here using the new and simpler terminology and show that they have
better runtime due to faster pre-processing and better data structures. We
also give algorithms to handle the vertex weighted cases, also for Max and
Min Weight Independent Dominating Set in the same runtime, and finally
the case of counting all independent sets and dominating sets of given size.

The question of efficiently computing a decomposition of low boolean-
width is left open. However, our algorithms take as input an easy-to-build
decomposition tree, namely a layout of the input graph G by a tree having
internal nodes of degree 3 and n leaves representing the n vertices of G, and
runtimes are expressed as a function of the boolean-width of the decomposi-
tion tree. This paves the way for applying heuristics to build decomposition
trees for boolean-width, as done in the TreewidthLIB project for tree-width
[5], and research on boolean-width heuristics is underway [25]. We end the
paper in Section 7 describing recent results and discuss some open problems.

2. Boolean-width

We deal with simple, loopless, undirected graphs and denote by {u, v} an
edge between vertices u and v. The complement of a vertex subset A of a
graph G = (V (G), E(G)) is denoted by A = V (G) \A. The neighborhood of
a vertex x is denoted by N(x) and for a subset of vertices X we denote the
union of their neighborhoods by N(X) =

⋃
x∈X N(x). A subset of vertices

X ⊆ V (G) is an independent set if there is no edge in G between any
pair from X. A set X ⊆ V (G) of vertices is a dominating set of G if
X∪N(X) = V (G). A cut of G is a 2-partition {A,A} of V (G). Two vertices
x, x′ ∈ A are twins across {A,A} if N(x) ∩ A = N(x′) ∩ A. A vertex subset
X ⊆ A is a twin class of A if X is a maximal set of vertices all of whom are
twins across {A,A}. The twin classes of A form a partition of A. For disjoint
vertex subsets A,B of G we denote by G(A,B) the bipartite graph on vertex
set A∪B and edge set {{u, v} : u ∈ A∧ v ∈ B ∧{u, v} ∈ E(G)}. We denote
by MG the adjacency matrix of G, and by MG(A,B) the submatrix of MG

with the rows indexed by A and the columns by B. To ensure uniqueness

77

of certain algorithms, e.g. for computing representatives for vertex subsets,
we assume a total ordering σ on the vertex set of G which stays the same
throughout the entire paper. If vertex u comes before vertex v in the ordering
then we say u is σ-smaller than v. For easy disambiguation, we usually refer
to vertices of a graph and nodes of a tree.

We want to solve graph problems using a divide-and-conquer approach.
To this aim, we need to store the information on how to recursively divide the
input graph. A standard way to do this (see branch decompositions of graphs
and matroids [18, 36, 41]) is to use a decomposition tree that is evaluated by
a cut function.

Definition 1. A decomposition tree of a graph G is a pair (T, δ) where T
is a tree having internal nodes of degree three and δ a bijection between the
leaf set of T and the vertex set of G. Removing an edge from T results in
two subtrees, and in a cut {A,A} of G given by the two subsets of V (G)
in bijection δ with the leaves of the two subtrees. Let f : 2V → � be a
symmetric function that is also called a cut function: f(A) = f(A) for all
A ⊆ V (G). The f -width of (T, δ) is the maximum value of f(A) over all
cuts {A,A} of G given by the removal of an edge of T . We work also on
rooted trees. Subdivide an edge of T to get a new root node r, and denote
by Tr the resulting binary rooted tree. For a node u let the subset of V (G)
in bijection δ with the leaves of the subtree of Tr rooted at u be denoted by
Ar

u, or simply by Au if the choice of subdivided edge and root r is clear or
does not matter. For an edge {u, v} of T , with u being the child of v in Tr,
the cut given by removing edge {u, v} from T can wlog be denoted {Au, Au}.

We define the rooted tree Tr because divide-and-conquer on decomposi-
tion tree (T, δ) will solve the problem recursively, following the edges of Tr

in a bottom-up fashion. In the conquer step we must combine solutions from
two cuts given by the edges from a parent node to its children. The question
of what ’solutions’ we store is related to what problem we are solving. For a
cut {A,A} note that if two independent sets X ⊆ A and X ′ ⊆ A have the
same union of neighborhoods across the cut, i.e. N(X) ∩ A = N(X ′) ∩ A,
then for any Y ⊆ A we have X∪Y an independent set if and only if X ′∪Y an
independent set. This suggests that when solving independent set problems
we do not need to treat such X and X ′ separately, and that we should look
for a decomposition tree minimizing the number of different unions of neigh-
borhoods across the cuts. This minimum value is given by the boolean-width
of the graph.

78 BOOLEAN-WIDTH OF GRAPHS

Definition 2 (Boolean-width). Let G be a graph and A ⊆ V (G). Define
the set of unions of neighborhoods of A across the cut {A,A} as

U(A) = {Y ⊆ A : ∃X ⊆ A ∧ Y = N(X) ∩ A}
The bool-dim : 2V (G) → � function of a graph G is defined as bool-dim(A) =
log2 |U(A)|. Using Definition 1 with f = bool-dim we define the boolean-
width of a decomposition tree, denoted by boolw(T, δ), and the boolean-width
of a graph, denoted by boolw(G).

See Figure 2 for an example of a cut. U(A) is in a bijection with what
is called the Boolean row space of MG(A,A), i.e. the set of vectors that are
spanned via Boolean sum (1+1=1) by the rows of MG(A,A), see the mono-
graph [28] on Boolean matrix theory. It is known that |U(A)| = |U(A)|,
see [28, Theorem 1.2.3] and hence the bool-dim function is symmetric. The
value bool-dim(A) will be referred to as the boolean dimension of the matrix
MG(A,A) and of the bipartite graph G(A,A). The Boolean row space of
MG(A,A) may not have a basis of size bool-dim(A), but we do find represen-
tatives of that size; below Lemma 6 shows that for each Y ∈ U(A) we find
R ⊆ A with |R| ≤ bool-dim(A) and Y = N(R) ∩ A. Let us consider some
examples. If |U(A)| = 2 then G(A,A) has boolean dimension 1 and G(A,A)
is the union of a complete bipartite graph and some isolated vertices. If
G(A,A) is a perfect matching of G then |U(A)| = 2|V (G)|/2 and G(A,A) has
boolean dimension |V (G)|/2. If a graph has boolean-width 1 then it has a
decomposition tree such that, for every cut defined by an edge of the tree,
the edges crossing the cut, if any, induce a complete bipartite graph. Since
we take the logarithm base 2 of |U(A)| in the definition of boolean dimen-
sion we have for any graph G that 0 ≤ boolw(G) ≤ |V (G)|, which eases the
comparison of boolean-width to other parameters, and is in analogy with the
definition of rank-width given in Definition 3 below.

The boolean-width of a graph is not always an integer; however, most of
the analysis will address the value 2bool-dim(A), which is an integer.

In the next sections we compare boolean-width to other graph parameters,
but the reader interested only in algorithms can skip this and go directly to
Section 5.

3. Value of boolean-width compared to other width parameters

In this section we compare boolean-width boolw to tree-width tw, branch-
width bw, clique-width cw and rank-width rw. For any graph G, it holds

79

c 0 1 1 1

 d e f g
h 1 0 0 0

b 1 1 0 0
a 1 0 0 0

a

b

c

d

e

f

h

a

b

c

e

f

g

d

A TC ={d,e,f}ATC ={a,b,c}

LR(A)={Ø,{a},{b}, {c}, {a,c} }

A={h,a,b,c} UN(A)={Ø,{d},{d,e},{e,f,g},{d,e,f,g}}

G({a,b,c},{d,e,f})

G

LNR(A)={Ø,{d},{d,e},{e,f},{d,e,f}}

sigma=a,b,c,d,e,f,g,h

UN(A)={Ø,{h,a,b},{b,c},{c},{h,a,b,c}}

cut−bool(A)=log 5 < 2.33

Figure 2: Example graph G and A ⊆ V (G), with submatrix MG(A,A), unions of neigh-
borhoods U(A) and U(A) with bool-dim(A) = log2|U(A)| < 2.33, as defined in Section 2.
Note that cut-rank(A) = log2|D(A)| = 3, as defined in Section 3. Vertex ordering sigma
yields twin class representatives TCA and TCA, and the list of ≡A representatives LRA

with pointers to list of their neighbors LNRA, as defined in Section 5. Note that {h, b, c}
induces the largest independent set in G among the 7 subsets of A having ≡A represen-
tative {a, c}. The graph G(TCA, TCA) captures the essential information across the cut
{A,A}.

that the rank-width of the graph is essentially the smallest parameter among
tw, bw, cw, rw [35, 36, 41]: we have rw(G) ≤ cw(G) and rw(G) ≤ bw(G) ≤
tw(G)+1 for bw(G) �= 0. Accordingly, we focus on comparing boolean-width
to rank-width.

Rank-width was introduced in [34, 36] based on the cut-rank : 2V (G) →
� function of a graph G, with cut-rank(A) being the rank over GF (2) of
MG(A,A). To see the connection with boolean-width note this alternative
equivalent definition of rank-width.

Definition 3. Let G be a graph and A ⊆ V (G). Let
�

be the symmetric
difference operator, that applied to a family of sets gives the elements ap-
pearing in an odd number of sets. Define the set of symmetric differences of
neighborhoods of A across the cut {A,A} as

D(A) = {Y ⊆ A : ∃X ⊆ A ∧ Y =
�

x∈X
N(x) ∩ A}

The cut-rank : 2V (G) → � function of a graph G is defined as cut-rank(A) =
log2 |D(A)|. Using Definition 1 with f = cut-rank we define the rank-width
of a decomposition tree, denoted by rw(T, δ), and the rank-width of a graph,
denoted by rw(G).

80 BOOLEAN-WIDTH OF GRAPHS

We first investigate the relationship between the bool-dim and the cut-rank
functions. Lemma 1 below can be derived from a reformulation of [9, Propo-
sition 3.6]. We give a simplified proof here. Let

DS(A) = {S ⊆ D(A) : S is closed under the symmetric difference}.

Lemma 1. [9] For any graph G and A ⊆ V (G) it holds that:

log2 cut-rank(A) ≤ bool-dim(A) and

bool-dim(A) ≤ log2 |DS(A)| ≤ 1

4
cut-rank2(A) +O(cut-rank(A)).

Proof: Let {a1, a2, . . . , acut-rank(A)} be a set of vertices of A whose corre-
sponding rows in MG(A,A) define a GF (2)-basis of MG(A,A). Then clearly
N(a1), N(a2), . . . , N(acut-rank(A)) are pairwise distinct. This allows to con-
clude about the first inequality.

To prove the second inequality we injectively map U(A) to DS(A). Let
U(A) = {Y1, Y2, ..., Yq}. For each i with 1 ≤ i ≤ q we fix some Xi ⊆ A
such that N(Xi) ∩ A = Yi. Let Δclosure(G) be the unique smallest fam-
ily containing G that is closed under the symmetric difference of its mem-
bers. For each i �= j with 1 ≤ i, j ≤ q we have Yi �= Yj and therefore
Δclosure({N(x)∩A : x ∈ Xi}) �= Δclosure({N(x)∩A : x ∈ Xj}). Note also
that Δclosure({N(x)∩A : x ∈ Xi}) ∈ DS(A). But then f : U(A)→ DS(A)
defined by f(Yi) = Δclosure({N(x)∩A : x ∈ Xi}) is an injection, to conclude
the proof of the second inequality in the lemma.

DS(A) is in a bijection with the subspaces over GF (2) of the space
spanned over GF (2) by the rows of MG(A,A). This space has dimen-
sion cut-rank(A) and for the number of subspaces the third inequality in
the lemma is well-known in enumerative combinatorics, and can be derived
from [19]. �

Lemma 1 holds for all edges of all decomposition trees, we therefore have
the following corollary.

Corollary 1. For any graph G and decomposition tree (T, δ) of G it holds
that

log2 rw(T, δ) ≤ boolw(T, δ) ≤ 1

4
rw2(T, δ) +O(rw(T, δ)),

log2 rw(G) ≤ boolw(G) ≤ 1

4
rw2(G) +O(rw(G)).

81

This corollary can be combined with a result of [22] to get an approxi-
mation algorithm for boolean-width, as follows. Let a graph G have decom-
position trees (T, δ) and (T ′, δ′) such that rw(G) = rw(T, δ) and OPT =
boolw(G) = boolw(T ′, δ′). We then have from Corollary 1 that boolw(T, δ) ≤
rw2(T, δ) ≤ rw2(T ′, δ′) ≤ (2OPT)2. Hence, any decomposition tree of G of op-
timal rank-width is also a decomposition tree of boolean-width within 22·OPT

of the optimal boolean-width. There is an algorithm to compute a decompo-
sition tree of G of optimal rank-width in O(f(rw(G)) × |V (G)|3) time [22].
We thus have the following approximation for boolean-width, and we will
see with below defined Hsu-grid graphs that this approximation bound is
essentially tight for algorithms based on computing optimal rank-width.

Theorem 1. Given an n-vertex graph G there is an algorithm to compute
in O(f(boolw(G))n3) time a decomposition tree (T, δ) with boolw(T, δ) ≤
22·boolw(G), for some function f .

We now address the interesting fact that there are graphs whose boolean-
width is exponentially smaller than the value of the other main width param-
eters. In particular, we show that the lower bound log2 rw(G) ≤ boolw(G)
in Corollary 1 is tight to a multiplicative factor, by employing the graphs
used in the definition of Hsu’s generalized join [24] to define the Hsu-grid.
Firstly, for all k ≥ 1, the Hsu graph Hk is defined as the bipartite graph
having color classes Ak = {a1, a2, . . . , ak+1} and Bk = {b1, b2, . . . , bk+1} such
that N(a1) = ∅ and N(ai) = {b1, b2, . . . , bi−1} for all i ≥ 2 (an illustration is
given in Figure 3). We consider the cut {Ak, Bk}. A union of neighborhoods
of vertices of Ak is always of the form {b1, b2, . . . , bl}, and as a consequence,

Fact: for any Hsu graph Hk it holds that:
bool-dim(Ak) = log2 k and cut-rank(Ak) = k.

We lift this tightness result on graph cuts to the level of graph parameters
in a standard way, by using the structure of a grid and the concept of a
balanced cut (see e.g. [36, 40]): a cut {A,A} of a graph G is balanced if
1
3
|V (G)| ≤ |A| ≤ 2

3
|V (G)|. In any decomposition tree there exists an edge

of the tree which induces a balanced cut in the graph and any balanced
cut of a grid will contain either a large part of some row of the grid, or it
contains a large matching using only horizontal edges. The formal definition
of the Hsu-grid is given below while an illustration is given in Figure 3. Note
that graphs with a similar definition have also been studied in relation with
clique-width in a different context [7].

82 BOOLEAN-WIDTH OF GRAPHS

Figure 3: The Hsu graph H3, the 4× 5 grid, and the Hsu-grid HG4,5.

Definition 4 (Hsu-grid HGp,q). Let p ≥ 2 and q ≥ 2. The Hsu-gridHGp,q

is defined by V (HGp,q) = {vi,j | 1 ≤ i ≤ p ∧ 1 ≤ j ≤ q} with E(HGp,q)
being exactly the union of the edges {{vi,j, vi+1,j} | 1 ≤ i < p ∧ 1 ≤ j ≤ q}
and the edges {{vi,j, vi′,j+1} | 1 ≤ i ≤ i′ ≤ p ∧ 1 ≤ j < q}. We say that
vertex vi,j is at the ith row and the jth column.

We begin with a useful lemma.

Lemma 2. Let p ≥ 2 and q ≥ 2. Let {A,A} be a balanced cut of the Hsu-
grid HGp,q. Then, either the cut-rank of A is at least p/4, or HGp,q(A,A)
contains a q/6-matching as induced subgraph.

Proof: We distinguish two self-exclusive cases.

• Case 1: for every row 1 ≤ i ≤ p there exists an edge {vi,j, vi,j+1}
crossing {A,A}.

• Case 2: there is a row 1 ≤ i ≤ p containing only vertices of one side of
the cut, w.l.o.g. vi,j ∈ A for all 1 ≤ j ≤ q.

In case 1, we can suppose w.l.o.g. that there are at least p/2 row indices
i’s for which there exists j such that vi,j ∈ A and vi,j+1 ∈ A. Therefore, there
are at least p/4 row indices i’s for which there exists j such that vi,j ∈ A
and vi,j+1 ∈ A and that no two rows among those are consecutive (take every
other row). Now we can check that the rank of the bipartite adjacency matrix
of the subgraph of HGp,q(A,A) that is induced by the p/4 above mentioned
pairs vi,j and vi,j+1 is at least p/4. Hence, the cut-rank of A is at least p/4.

In case 2, from the balanced property of the cut {A,A} we have that there
are at least q/3 columns each containing at least one vertex of A. Then,
for each such column j we can find an edge {vi,j, vi+1,j} crossing {A,A}.
Choosing one such edge every two columns will lead to a q/6 matching that
is an induced subgraph of HGp,q(A,A). �

83

Lemma 3 below addresses the tightness of the lower bound on boolean-
width as a function of rank-width. Note its additional stronger property
that for a special class of Hsu-grids any decomposition tree of optimal rank-
width has boolean-width exponential in the optimal boolean-width. Thus
we cannot hope that an optimal rank-width algorithm will always return a
decomposition tree whose boolean-width approximates the boolean-width of
the graph by some polynomial function. This means that for approximation
of boolean-width via rank-width Theorem 1 is essentially tight.

Lemma 3. For large enough integers p and q it holds that: boolw(HGp,q) ≤
min{2 log2 p, q} and rw(HGp,q) ≥ min{�p

4
�, � q

6
�}. Moreover, if q < �p

8
� then

any decomposition tree of HGp,q of optimal rank-width has boolean-width at
least � q

6
�.

Proof: For simplicity, let m/n denote �m
n
�. To prove Lemma 3, we will focus

on two types of decomposition trees, that we call horizontal and vertical.
Let the k-comb be the tree we get from adding a new leaf node to each of

the k−2 inner vertices in the path on k vertices. The k leaves of the k-comb
are thus naturally ordered from left to right along the path. Let Bk be a
binary tree with k leaves (its shape does not matter). Let Tp,q be the tree
having pq leaves that we get from identifying each leaf of a p-comb with the
root of a Bq. The horizontal decomposition tree (Tp,q, δh) is defined by letting
δh induce a bijection that assigns the leaves of the leftmost copy of Bq to the
first row of HGp,q, the leaves of the next copy to the second row, and so on,
until the leaves of the rightmost copy of Bq that are assigned to the p’th row
of HGp,q. The vertical decomposition tree (Tq,p, δv) is defined by letting δv
induce a bijection that assigns the leaves of the leftmost copy of Bp to the
first column of HGp,q, the leaves of the next copy to the second column, and
so on, until the leaves of the rightmost copy of Bp that are assigned to the
q’th column of HGp,q.

It is straightforward to check that the boolean-width of any vertical de-
composition tree of HGp,q is at most 2 log2 p and the boolean-width of any
horizontal decomposition tree of HGp,q is at most q. Therefore it follows that
boolw(HGp,q) ≤ min{2 log2 p, q}. Besides, it follows directly from Lemma 2
that rw(HGp,q) ≥ min{p/4, q/6}.

To prove the last statement of Lemma 3, we note that any horizontal
decomposition tree of HGp,q has rank-width 2q, and therefore the rank-width
of HGp,q is at most 2q < p/4. We consider a decomposition tree (T, δ) of

84 BOOLEAN-WIDTH OF GRAPHS

HGp,q of optimal rank-width, and an edge {u, v} of T inducing a balanced cut
{A,A} in HGp,q. From Lemma 2 and the fact that the rank-width of HGp,q

is at most 2q < p/4, HGp,q(A,A) has a q/6-matching as induced subgraph.
Therefore, the value of bool-dim(A) is at least q/6, and the boolean-width of
(T, δ) is at least q/6. �

The following theorem sumarizes the tightness bounds on boolean-width
as a function of rank-width. Comparing with Corollary 1 note that the lower
bound is tight to a multiplicative factor while for the upper bound there is
a gap between a linear and a quadratic bound.

Theorem 2. For large enough integer k, there are graphs Lk and Uk of rank-
width at least k such that boolw(Lk) ≤ 2 log rw(Lk) + 4 and boolw(Uk) ≥
�1
6
rw(Uk)�.

Proof: We define Lk as a Hsu-grid HGp,q such that k ≤ p/4 ≤ q/6 and
2 log2 p ≤ q. Then, from Lemma 3, we have that rw(Lk) ≥ p/4 ≥ k and
boolw(Lk) ≤ 2 log2 p, which allows to conclude about Lk. We define Uk to be
the k× k grid. It is known that the rank-width of Uk is k− 1 [26]. The same
idea as in the proof of Lemma 2 can be used to prove that boolw(Uk) ≥ k/6.
�

One of the most important applications of rank-width is to approximate
the clique-width cw(G) of a graph by log2(cw(G) + 1) − 1 ≤ rw(G) ≤
cw(G) [36]. Although we have seen that the difference between rank-width
and boolean-width can be quite large, we now show that, w.r.t. clique-width,
boolean-width behaves similarly as rank-width.

Theorem 3. For any graph G it holds that log2 cw(G) − 1 ≤ boolw(G) ≤
cw(G). For large enough integer k, there are graphs Lk and Uk of clique-
width at least k such that boolw(Lk) ≤ 2 log2 cw(Lk) + 4 and boolw(Uk) ≥
�1
6
cw(Uk)� − 1.

Proof: For a proper introduction to clique-width refer to [12]. We will in
fact not address directly clique-width, but a closely related parameter called
module-width [39], whose definition is based on rooted binary trees and twin
classes of a subset of vertices. Let (T, δ) be a decomposition tree of G. Let
Tr be the rooted binary tree we get by subdividing any edge of T for a root
r. The module-width of (Tr, δ), denoted modw(Tr, δ), is the maximum, over

85

all nodes a of Tr, of the number of twin classes of Ar
a. Note that Ar

a is
not used in this definition and thus the choice of rooting is important. The
module-width of G, denoted modw(G), is the minimum module-width taken
over every decomposition tree (T, δ) of G and over the subdivision of every
edge e of T to obtain a rooted tree Tr [39].

We first prove that log2 modw(Tr, δ) ≤ boolw(T, δ). Let {w, a} be an
edge in Tr with w being the parent of a. Note from the definition of twins
that x ∈ Ar

a and y ∈ Ar
a belong to the same twin class of Ar

a if and only if
N({x}) ∩ Ar

a = N({y}) ∩ Ar
a. Therefore the number of twin classes of Ar

a is
at most |U(Ar

a)| = 2bool-dim(Ar
a). Since this holds for every edge {w, a} in the

trees T and Tr, it allows to conclude that log2 modw(Tr, δ) ≤ boolw(T, δ).
To now prove boolw(T, δ) ≤ modw(Tr, δ), we consider an edge {w, a}

with w parent of a in Tr and denote by k the number of twin classes of Ar
a.

Since twins of Ar
a have the same neighbors in Ar

a, we can generate at most 2k

unions of neighborhoods from k twin classes, that is, |U(Ar
a)| ≤ 2k. In other

words, bool-dim(Ar
a) ≤ k, and since this holds for every edge {w, a} in the

trees T and Tr, it allows to conclude that boolw(T, δ) ≤ modw(Tr, δ).
It is known that for any graph G we have modw(G) ≤ cw(G) ≤ 2 ·

modw(G) [39]. Combining with the above bounds we obtain the inequalities
in the statement of Theorem 3. Finally, we use the same graphs Lk and Uk

as in the proof of Theorem 2 and the well-known fact that rw(G) ≤ cw(G)
for any graph G [36] in order to conclude that boolw(Lk) ≤ 2 log2 cw(Lk)+4.
Recall that Uk is the k × k square grid and so it is known that the clique-
width of Uk is at most k + 1 [20]. Combining this with boolw(Uk) ≥ k/6
allows to conclude. �

It would be nice to close the gap between the linear and quadratic upper
bound on boolean-width as a function of rank-width, i.e. by either improving
the bound boolw(G) ≤ 1

4
rw2(G) + O(rw(G)) in Corollary 1 or alternatively

showing its tightness. We show in the next section tightness of quadratic
upper bound on bool-dim as a function of cut-rank. However, we have not
been able to lift this result on graph cuts to the level of graph parameters by
using the structure of a grid, so we leave this as an open question.

Question: Is the boolean-width of every graph subquadratic in its rank-
width?

86 BOOLEAN-WIDTH OF GRAPHS

4. The cardinality of the Boolean space can equal the number of
GF (2) subspaces

We prove in this section that the quadratic upper bound on bool-dim as
a function of cut-rank from Lemma 1 is tight. More precisely, we exhibit a
graph G and A ⊆ V (G) where |U(A)| = |DS(A)|, leading to bool-dim(A) =
log2 |DS(A)| = Θ(cut-rank2(A)). Note that U(A) is in a bijection with the
Boolean space spanned over the Boolean algebra by the rows of MG(A,A).
The question of the possible cardinalities of the Boolean space of a given
{0, 1}-matrix has been studied by several researchers, see [44] and the bibli-
ography therein. Recall that

DS(A) = {S ⊆ D(A) : S is closed under the symmetric difference}

is in a bijection with the vector subspaces over GF (2) of the vector space
spanned over GF (2) by the rows of MG(A,A). It follows from Definition
3 that this space has dimension, or rank, k = cut-rank(A). The fact that
the number of its vector subspaces is therefore Θ(k2) is well-known in enu-
merative combinatorics – sum of Gaussian binomials – and derivable from a
recursion formula in [19]. The following are the important graphs and cuts.

Definition 5. For any integer k ≥ 1 the graph Rk is defined as a bipartite
graph having color classes A = {aS : S ⊆ {1, 2, . . . , k}} and B = {bS : S ⊆
{1, 2, . . . , k}} such that aS and bT are adjacent if and only if |S ∩ T | is odd.

For an example, note that R2 is the disjoint union of 2 isolated vertices
and a cycle of length 6. The “natural” cut of the bipartite graph Rk given
by {A,B} has cut-rank k and was used in [9] to give an alternative char-
acterization of the graphs of rank-width at most k. The graph Rk helps
in characterizing rank-width since any bipartite graph induced by a cut of
cut-rank k is, after removing twins, an induced subgraph of Rk. Let us re-
mark that the graph Rk has many interesting properties, and that graphs
with a similar definition based on a parity check appear in the book of Alon
and Spencer [2] and recently also in a paper by Charbit, Thomassé and Yeo
[10]. Observation 1 and its Corollary 2 are two important properties of Rk,
whose proofs are essentially a straightforward parity check.

Observation 1. It holds for any pair of vertices aS and aT of Rk that
N(aS)ΔN(aT) = N(aSΔT). The same holds for bS and bT .

87

In terms of linear algebra, Observation 1 tells us that the GF (2) sum of
the two rows in MRk

(A,B) corresponding to aS and aT will result in the one
corresponding to aSΔT . This helps as a shortcut when dealing with adja-
cency issues in Rk. For any set family G, we let Δclosure(G) be the unique
smallest family containing G that is closed under the symmetric difference of
its members. By convention we let ∅ ∈ Δclosure(G) for all G. In particular,
Δclosure(∅) = {∅} = Δclosure({∅}).

Corollary 2. It holds for any vertex subset X ⊆ A of Rk that

Δclosure({N(aS) : aS ∈ X}) ⊆ {N(aS) : aS ∈ A}.

Note that a∅ is a vertex of Rk and that N(a∅) = ∅. In terms of linear
algebra, Corollary 2 tells us in particular that the row space over GF (2)
of MRk

(A,B) is exactly the set of rows of MRk
(A,B): roughly, when using

Observation 1, we never “go outside” Rk by creating a fictive vertex because
aSΔT is a vertex of Rk. Before proving the main claim of the section, we need
the following tool.

Lemma 4. Consider the graph Rk and any X ⊆ A such that
{N(aZ) : aZ ∈ X} = Δclosure({N(aZ) : aZ ∈ X}). Then, for any aS ∈ A
with N(aS) ⊆ N(X) we have aS ∈ X.

Proof: Let F = {N(aZ) : aZ ∈ X}. We note a technical remark. From
F = Δclosure(F) we have that ∅ ∈ F . The only vertex in A having an empty
neighborhood is a∅. Therefore, we always have a∅ ∈ X. We conduct a proof
by induction on the notion of the dimension of F . For a family G closed under
the symmetric difference of its members, we let BG be the smallest subfamily
of G such that G = Δclosure(BG), and define the dimension dim(G) of G as
the cardinality of BG. Note by the minimality of BG that ∅ /∈ BG. Let us
prove Lemma 4 by induction on p = dim(F).

If p = 0, then BF = ∅, which means F = {∅}. Therefore, X = {a∅}, and
so N(X) = ∅. The only vertex in A having an empty neighborhood is a∅. In
particular, N(aS) ⊆ ∅ will directly mean aS = a∅ ∈ X.

If p = 1 then F \ {∅} is a singleton. So X contains only one non-trivial
vertex, say X = {a∅, aT} with T �= ∅. If aS = a∅ then trivially aS ∈ X so
we suppose aS �= a∅. Since X has so few members N(aS) ⊆ N(X) simply
means N(aS) ⊆ N(aT). If S \ T �= ∅, we define W = {i} with i ∈ S \ T . If
S � T , we define W = {i, j} with i ∈ S and j ∈ T \ S. In both cases we

88 BOOLEAN-WIDTH OF GRAPHS

have bW ∈ N(aS) \ N(aT), contradicting to the fact that N(aS) ⊆ N(aT).
Hence, S = T , which in particular means aS ∈ X.

We now assume that Lemma 4 holds whenever dim(F) ≤ p − 1, with
p−1 ≥ 1, and want to prove that it also holds for the case where dim(F) = p.
In particular p ≥ 2 and by this fact X \ {a∅} contains at least two vertices.
Like before, if aS = a∅ then trivially aS ∈ X so we suppose aS �= a∅. Let aT
be a vertex in X such that aT �= aS, and aT �= a∅. If T \ S �= ∅, we define
W = {i} with i ∈ T \ S, otherwise T � S and we define W = {i, j} with
i ∈ S \ T and j ∈ T , so that in any case we have bW ∈ N(aT) \N(aS). Let
X ′ = {aZ ∈ X : bW /∈ N(aZ)}.

We want to first prove that N(aS) ⊆ N(X ′). Assume for a contradiction
that there exists bW ′ ∈ N(aS) \N(X ′). Then, we have bW , bW ′ , and bWΔW ′

are three distinct vertices (because bW �= bW ′). Observation 1 tells us that
N(bWΔW ′) = N(bW)ΔN(bW ′), and therefore we deduce bWΔW ′ ∈ N(aS) \
N(X ′). (It is easier here to see the property by looking at the corresponding
{0, 1} values in the matrix MRk

and use the “GF (2) sum” N(bWΔW ′) =
N(bW)ΔN(bW ′) on the coordinates aS and aZ , for every aZ ∈ X ′.) Since
{bW ′ , bWΔW ′} ⊆ N(aS) ⊆ N(X), there exist vertices aU ∈ X \X ′ and aV ∈
X \X ′ such that both |U ∩W ′| and |V ∩ (WΔW ′)| are odd. Note that not
belonging to X ′ means both |U ∩W | and |V ∩W | are odd. Hence, U and V
cannot be equal because on the one hand we can deduce that |U ∩ (WΔW ′)|
is even (from the facts |U ∩W | odd and |U ∩W ′| odd), while on the other
hand we know that |V ∩ (WΔW ′)| is odd. But then |(UΔV) ∩W | is even
and |(UΔV) ∩W ′| is odd (a parity check or alternatively we can according
to Observation 1 check the “GF (2)” sum N(aUΔV) = N(aU)ΔN(aV) inside
MRk

at the coordinates bW and bW ′). That |(UΔV) ∩ W | is even means
aUΔV is a member of X ′ because aUΔV is not adjacent to bW , and clearly
N(aUΔV) = N(aU)ΔN(aV) belongs to F by the symmetric difference closure
of F . That |(UΔV) ∩ W ′| is odd means aUΔV is adjacent to bW ′ . This
contradicts the assumption bW ′ ∈ N(aS) \N(X ′). Hence, N(aS) ⊆ N(X ′).

We now want to prove that F ′ = {N(aZ) : aZ ∈ X ′} is closed under
the symmetric difference of its members. Pick N(aZ) and N(aZ′) therein:
both of them belong to F , so from Observation 1 and the fact F is closed
under symmetric difference, we deduce that N(aZΔZ′) ∈ F , in other words
aZΔZ′ ∈ X. Besides, note that we can also write X ′ = {aZ ∈ X, |W ∩
Z| is even} and it is clear that if both |W ∩ Z| and |W ∩ Z ′| are even, then
|W ∩ (ZΔZ ′)| is even. Hence, F ′ is closed under the symmetric difference
of its members. We also check that dim(F ′) ≤ p − 1. Indeed, F ′ ⊆ F ,

89

so we only need to show that Δclosure(F) properly contains Δclosure(F ′).
We consider aT : clearly N(aT) ∈ F . Recall that bW ∈ N(aT) \ N(aS) and
that F ′ = {N(aZ) : aZ ∈ X ∧ bW /∈ N(aZ)}. Therefore every member
N(aZ0) ∈ Δclosure(F ′) is such that bW /∈ N(aZ0). Since bW ∈ N(aT), we
deduce N(aT) /∈ Δclosure(F ′). Hence, dim(F ′) ≤ p − 1. Now, we can
conclude by applying the inductive hypothesis on F ′. �

Theorem 4. For the cut given by the bipartite graph Rk it holds that |U(A)|
= |DS(A)| and hence bool-dim(A) = log2 |DS(A)| = Θ(cut-rank2(A)).

Proof: As mentioned before, cut-rank(A) is the dimension of D(A) and
thus log2 |DS(A)| = Θ(cut-rank2(A)) follows from [19]. Since by definition
bool-dim(A) = log2 |U(A)| it remains only to show |U(A)| = |DS(A)|. We do

this by giving the following bijection between the two sets. Let f : 2A → 22
A

be defined as f(Y) = {N(aS) : bS /∈ Y }. We claim that the restriction of f
to U(A) is a bijection between U(A) and DS(A).

By definition, it is clear that f(Y) ⊆ D(A) for all Y ⊆ 2A. It can also
be checked that the sets N(aS), taken over all aS ∈ A, are pairwise distinct.

Therefore, f is a well-defined injection from 2A into 2D(A). Let us show
that the image of U(A) by f is included in DS(A). Let Y ∈ U(A) and let
X ⊆ A be such that Y = N(X). Let N(aS) ∈ f(Y) and N(aT) ∈ f(Y).
By definition, neither bS nor bT belong to N(X). In particular, for every
aW ∈ X, we have that both |S ∩ W | and |T ∩ W | are even, which also
means |(SΔT) ∩W | is even. This implies bSΔT /∈ N(X). Hence, N(aSΔT) ∈
f(Y). From Observation 1 we have N(aSΔT) = N(aS)ΔN(aT). Hence,
f(Y) is closed under the symmetric difference of its members. In other
words, f(Y) ∈ DS(A). (Note that since Y ∈ U(A), we have b∅ /∈ Y , hence
∅ = N(a∅) ∈ f(Y).)

Let F ∈ DS(A). In order to conclude Theorem 4, we only need to find
a vertex subset Y ∈ U(A) such that f(Y) = F . It is a basic property
in linear algebra that to any such F can be associated with a basis BF ⊆
{N(aS) : aS ∈ A} so that F = Δclosure(BF). From Corollary 2, F ⊆
{N(aS) : aS ∈ A}, so let X ⊆ A be such that F = {N(aS) : aS ∈ X}.
We define Y = {bS : aS /∈ X}, so that we clearly have from definition
f(Y) = {N(aS) : bS /∈ Y } = {N(aS) : aS ∈ X} = F . Thus, the only thing
left to show is that Y ∈ U(A). More precisely, we will prove that Y = N(X ′),
where X ′ = {aS : bS /∈ N(X)}.

90 BOOLEAN-WIDTH OF GRAPHS

• Let bS ∈ N(X ′). Then, there exists aT ∈ X ′ such that |S ∩ T | is odd.
By definition of X ′, we know that bT /∈ N(X). Since |S ∩ T | is odd
(hence aS and bT are adjacent in Rk), we deduce that aS /∈ X. Then,
by definition of Y , we deduce that bS ∈ Y . Hence, N(X ′) ⊆ Y .

• Let bS /∈ N(X ′). Then, for every aT ∈ X ′, |S ∩ T | is even. In other
words, for every bT /∈ N(X), |S∩T | is even. We can also say: for every
bT /∈ N(X), bT /∈ N(aS). Therefore, N(aS) ⊆ N(X). Lemma 4 then
applies and tells us aS ∈ X. This, by definition of Y , means bS /∈ Y .
Hence, Y ⊆ N(X ′).

�

5. A data structure for representatives bounded by boolean-width

In this section we give a pre-processing routine setting up a data structure
useful for dynamic programming on any decomposition tree (T, δ) of a given
graph G. It will allow runtime at the combine step to be a function of
boolw(T, δ), rather than the number of vertices of G. The data structure is
particularly useful when the goal is good runtime as a function of boolean-
width. For a vertex subset A we will give in Definition 7 an equivalence
relation on subsets of A, whose classes will be in a natural bijection with
U(A). It has in the worst case 2bool-dim(A) equivalence classes, but we show
how to represent each of them by a subset of A of size at most �bool-dim(A)�.
We show how to compute these representatives and how to set up a data
structure that givenX ⊆ A in O(|X|) time will access its representative. This
access is a main operation in the inner loop of many dynamic programming
algorithms, and it must be fast if we want good overall runtime.

We begin with a pre-processing step that is useful also outside the context
of boolean-width. Indeed, when solving an optimization problem on a graph
G by divide-and-conquer along its decomposition tree (T, δ), the cuts of G
given by edges of T are crucial. Since T is a tree having internal nodes of
degree three and n = |V (G)| leaves there will be 2n − 3 such cuts. For the
combine step, the important information across a cut {A,A} is captured by
the bipartite subgraph G(A,A) of G. In speeding up the handling of G(A,A),
a basic idea is that if two vertices have the same neighbors in G(A,A) then
we access the neighborhood information only for one of them.

91

Definition 6. Let G be a graph and A ⊆ V (G). Denote by TCA ⊆ A the
set containing for each twin class of A the σ-smallest vertex of the class.
Define ntc(T, δ), the number of twin classes of a decomposition tree (T, δ),
as the maximum value of |TCA| and |TCA| taken over all the 2n − 3 cuts
{A,A} obtained by removing an edge of T .

See Figure 2 for an example. The measure ntc(T, δ) was first introduced
in [38, Chapter 6.2] where it was called the bimodule-width of (T, δ). The
subgraph G(TCA, TCA) together with twin class sizes, is a compact repre-
sentation of the subgraph G(A,A), and is stored as MG(TCA, TCA). Its use
allows runtime at each cut to be bounded by a function of ntc(T, δ) rather
than |V (G)|. To this purpose we also want a data structure that given any
vertex x ∈ A in constant time will find the vertex y ∈ TCA for x and y being
in the same twin class of A. For a single cut there is a simple O(m) time
partition refinement algorithm for this task.

Lemma 5. [9] Let G be an n-vertex m-edge graph and (T, δ) a decomposition
tree of G. We can in time O(nm) compute for every edge of T the two vertex
sets TCA and TCA associated to the cut {A,A} given by the edge. We can
also in the same time compute for every x ∈ A a pointer to y ∈ TCA for x
and y being in the same twin class of A, and similarly for every x ∈ A.

Note that we can avoid the above O(nm) factor, and in Lemma 10 we
will show an alternative with a faster runtime whenever ntc(T, δ) = o(

√
m),

which typically holds for a good decomposition tree.
After this first pre-processing step we are ready to consider the main

data structure for representatives. Recall that one of the motivations behind
the definition of boolean-width is that for many optimization problems two
subsets of A having the same neighbors across the cut {A,A} do not need
to be treated separately. This leads to the following equivalence relation on
subsets of A, whose classes are in a natural bijection with U(A).

Definition 7. Let G be a graph and A ⊆ V (G). Two vertex subsets X ⊆ A
and X ′ ⊆ A are neighborhood equivalent w.r.t. A, denoted by X ≡A X ′, if
N(X) \ A = N(X ′) \ A.

For each equivalence class of ≡A we choose one element as a represen-
tative for that class. The representative should be a subset of TCA and
the lexicographically σ-smallest among the sets in the class having minimum
cardinality. More formally we define for A ⊆ V (G) the list LRA of all repre-
sentatives of ≡A.

92 BOOLEAN-WIDTH OF GRAPHS

Definition 8 (List of Representatives of ≡A and their Neighbors).
Given a graph G and A ⊆ V (G) we define the list LRA of representatives of
≡A as the unique family LRA ⊆ 2A satisfying:

1) ∀X ⊆ A, ∃R ∈ LRA such that R ≡A X

2) ∀R ∈ LRA, if R ≡A X then |R| ≤ |X|

3) ∀R ∈ LRA, if R ≡A X and |R| = |X| then R lexicographically σ-
smaller than X.

Let LNRA be the list containing the unions of neighbourhoods of members
of LRA in G(TCA, TCA), i.e. LNRA = {N(R) ∩ TCA : R ∈ LRA}.

See Figure 2 for an example. Note that LNRA is the projection of U(A)
on TCA. It is straightforward to check that for any R ∈ LRA we have
R ⊆ TCA (both LRA and TCA are defined using σ) and that there is a
bijection between the members of LRA and the equivalence classes of ≡A.

Lemma 6. Let G be a graph, A ⊆ V (G) and R ∈ LRA. For any Y, Z ⊆ R
s.t. Y �= Z, we have Y �≡A Z. Thus |R| ≤ �bool-dim(A)�.

Proof: Suppose, for a contradiction, that there are Y ⊆ R and Z ⊆ R such
that Y �= Z and Y ≡A Z. W.l.o.g. Y \ Z �= ∅ and so let v ∈ Y \ Z. Since
Y ≡A Z we have N(v)∩A ⊆ N(Z)∩A. Hence, N(R \{v})∩A = N(R)∩A,
contradicting the minimum cardinality of R. Thus, there are 2|R| mutually
non-equivalent subsets of R, each yielding a distinct element of U(A). Since
|U(A)| = 2bool-dim(A) we have |R| ≤ �bool-dim(A)�. �

We now describe an algorithm to compute at the same time LRA, LNRA,
and pointers between the two lists in such a way that given an element N
of LNRA we can access the element R of LRA such that N = N(R) ∩ A,
and vice versa. Firstly, note that by brute force the graph G(TCA, TCA) can
be computed in time O(|TCA| × |TCA|) after the preprocessing given in the
previous section.

Lemma 7. Let G be an n-vertex graph and (T, δ) a decomposition tree of G.
Assume the pre-processing described in Lemma 5 has been done. Then, in
time O(n ·ntc2(T, δ) ·boolw(T, δ) ·2boolw(T,δ)) we compute for every cut {A,A}
associated to an edge of T the list of representatives LRA, its neighbor list
LNRA, and pointers such that R ∈ LRA and N ∈ LNRA point to each other
if and only if N = N(R) ∩ A.

93

Algorithm 1 List of representatives and their neighborhood

Initialize LRA, LNRA, NextLevel to be empty
Initialize LastLevel = {∅}
while LastLevel != ∅ do
for R in LastLevel do
for every vertex v of TCA do
R′ = R ∪ {v}
compute N ′ = N(R′) ∩ TCA

if R′ �≡A R and N ′ is not contained in LNRA then
add R′ to both LRA and NextLevel
add N ′ to LNRA at the proper position
add pointers between R′ and N ′

end if
end for

end for
set LastLevel = NextLevel, and NextLevel = ∅

end while

Proof: We describe the operations needed for a cut {A,A} in Algorithm 1.
Our global computation simply repeats this operation over the 2n − 3 cuts
given by the edges of T .

Let us first argue for the correctness of the algorithm. The first iteration
of the while-loop will set {v} as representative, for every v ∈ TCA, and there
exist no other representatives of size 1 in LRA. The algorithm computes all
representatives of size i before it moves on to those of size i + 1. LastLevel
will contain all representatives of size i while NextLevel will contain all rep-
resentatives of size i+1 found so far. Every representative will be expanded
by every possible node and checked against all previously found represen-
tatives. The only thing left to prove is that any representative R can be
written as R′ ∪ {v} for some representative R′. Assume for contradiction
that no R′ exists such that R = R′∪{v}. Then let v be the lexicographically
largest element of R, then R \ {v} can not be a representative so let R′′ be
the representative of [R \ {v}]≡A

. We know that R′′ ∪ {v} ≡A R, we know
that |R′′ ∪ {v}| ≤ |R| and that R′′ ∪ {v} comes before R in a lexicographical
ordering contradicting that R is a representative.

We now argue for the runtime. Let k = bool-dim(A). The three loops are
executed once for each pair consisting of an element R ∈ LRA and a vertex

94 BOOLEAN-WIDTH OF GRAPHS

Algorithm 2 Initialize datastructure used for finding representative R of
[X]≡A

Initialize M to a two dimensional table with |LRA| × |TCA| elements.
for every vertex v of TCA do
for R in LRA do
R′ = R ∪ {v}
find RU in LRA that is linked to the neighborhood N(R′) ∩ TCA in
LNRA

add a pointer from M [R][v] to RU

end for
end for

v ∈ TCA. The number of representatives is exactly 2k, while the number of
vertices is |TCA|, hence at most O(|TCA|2k) iterations in total. Inside the
innermost for-loop we need to calculate the neighborhood of R′. Note when
processing R′ that we have already computed N(R), so that we can find
N(R′)∩TCA in O(|TCA|) time. Then to see if R′ ≡A R we compare the two
neighborhoods in O(|TCA|) time. Then we want to check if the neighborhood
is contained in the list LNRA. For fast runtime we can represent LNRA using
the so-called self-balancing binary search tree (or AVL tree): searching takes
log2(2

k) = k steps where for each step comparing two neighborhoods takes
O(|TCA|) time, yielding O(|TCA|k) in total. Inserting into the sorted list
LNRA takes O(|TCA|k) time, and in the other lists O(1) time. This means
all operations in the inner for-loop can be done in O(|TCA|k) time, giving a
runtime of O(|TCA||TCA|k2k) for each cut {A,A}. �

Given X ⊆ A we will now address the question of computing the rep-
resentative R of [X]≡A

, in other words accessing the entry R of LRA such
that X ≡A R. The naive way to do this is to search LNRA for the set
N(X) ∩ A. However, we want to do this faster, namely in O(|X|) time. To
this aim we construct an auxiliary data-structure that maps a pair (R, v),
consisting of one representative R from LRA and one vertex from TCA, to
the representative R′ of the class [R ∪ {v}]≡A

.

Lemma 8. Let G be an n-vertex graph and (T, δ) a decomposition tree of
G. Assume the pre-processing described in Lemmata 5 and 7 has been done.
Then, in time O(n·ntc2(T, δ)·boolw(T, δ)·2boolw(T,δ)) we compute for every cut

95

Algorithm 3 Finding representative R of [X]≡A

Initialize R to be empty.
for every vertex u of X do
find v ∈ TCA with u and v in same twin class of A, using pointer
described in Lemma 5
R = M [R][v] for M computed in Algorithm 2

end for

{A,A} associated to an edge of T a datastructure allowing, for any X ⊆ A,
to access in O(|X|) time the entry R of LRA such that X ≡A R.

Proof: As with Lemma 7, we only describe the algorithm for a cut {A,A}.
The computation of the datastructure is described in Algorithm 2, while
Algorithm 3 describes how to use it. The idea is to build R from an “incre-
mental” scanning of the elements of X = {x1, x2, . . . , xp} (see Algorithm 3):
an algorithmic invariant is that at step i the value of R is exactly the represen-
tative of {x1, x2, . . . , xi}. The correctness of this invariant (of Algorithm 3)
depends on the correctness of the computation of table M in Algorithm 2.
To prove the latter correctness, just notice that the algorithm essentially
exploites the bijection between the elements of LRA and LNRA.

Let us analyse the complexity of Algorithm 2. Let k = bool-dim(A).
There are two for loops in the algorithm iterating O(|TCA|2k) times in
total. For each iteration, finding the neighborhood of R′ takes O(|TCA|)
time, searching LNRA takes O(|TCA|k), and comparing neighborhoods takes
O(|TCA|) time, and the remaining operations take constant time. Hence, the
runtime is O(|TCA||TCA|k2k) for each cut {A,A}. The complexity analysis
for Algorithm 3 is straightforward. �

6. Dynamic programming for fast runtime by boolean-width

We show in this section how in general to apply dynamic programming
on a decomposition tree (T, δ) of a graph G while analysing runtime as a
function of boolw(T, δ). We focus on the Maximum Indpendent Set (Max IS)
and Minimum Dominating Set (Min DS) problems. The algorithms given
for Max IS and Min DS can be deduced from similar algorithms in [9], that
appeared before the introduction of boolean-width. We give the algorithms
here using the new and simpler terminology and show that they have better
runtime due to faster pre-processing and better data structures. We also give

96 BOOLEAN-WIDTH OF GRAPHS

algorithms to handle the vertex weighted cases and the case of counting all
independent sets and dominating sets of given size.

Note that we do not assume any further information from the input of
(T, δ) other than T being a tree with internal nodes of degree three and δ a
bijection between its leaves and V (G). As is customary, and as in Definition
1, we first subdivide an arbitrary edge of T to get a new root node r, denote
by Tr the resulting rooted tree, and let the algorithm follow a bottom-up
traversal of Tr. Recall that for a node a of T we denote by Aa the subset
of V (G) in bijection δ with the leaves of the subtree of Tr rooted at a. For
any dynamic programming on decomposition trees it is important to keep in
mind the below observation, that follows directly from definitions.

Observation 2. If in the tree Tr the node w has children a and b then
{Aa, Ab, Aw} forms a 3-partition of V (G).

Another crucial observation is the coarsening of neighborhood equivalence
classes when traversing from a child node a to its parent node w.

Observation 3. Let G be a graph with Aa ⊆ Aw ⊆ V (G) and let X, Y ⊆ Aa.
If X ≡Aa Y then X ≡Aw Y .

Proof: Since X ≡Aa Y we have N(X) ∩ Aa = N(Y) ∩ Aa. Since Aa ⊆ Aw

we have Aw ⊆ Aa and thus N(X)∩Aw = N(Y)∩Aw implying X ≡Aw Y . �

With each node w of Tr we associate a table data structure Tabw. In
general, the table will store optimal solutions to subproblems related to the
cut {Aw, Aw}. To simplify the initialization of Tabl (for every leaf l of Tr)
we assume throughout the section that G has no isolated vertices: there are
straightforward preprocessings in order to remove isolated vertices for any of
the problems we consider.

6.1. Maximum Independent Set

Let us first consider the Maximum Independent Set (Max IS) problem.
For Max IS the table Tabw is particularly easy to define since it will be
indexed by the representatives of the classes of ≡Aw .

Definition 9. The table Tabw used for Max IS at a node w of Tr has index
set LRAw . For R ∈ LRAw the table should store

Tabw[R] = max
S⊆Aw

{|S| : S ≡Aw R and S an IS of G}.

97

Note that Tabw has exactly 2bool-dim(Aw) entries. For a leaf l of Tr, Al =
{δ(l)} and ≡Al

has two equivalence classes: one containing ∅ and the other
containing Al, and these are also the representatives. We initialize tables at
leaves of Tr brute-force by setting Tabl[∅] = 0 and Tabl[{δ(l)}] = 1. The
combine step filling the table at an inner node after tables of its children
have been filled is given in Algorithm 4.

Algorithm 4 Combine step for Max IS at node w with children a, b

for all Rw ∈ LRAw do
initialize Tabw[Rw] = 0

end for
for all pairs Ra ∈ LRAa , Rb ∈ LRAb

do
if Ra ∪Rb is an IS in G(Ra, Rb) then
find the representative Rw of the class [Ra ∪Rb]≡Aw

Tabw[Rw] = max(Tabw[Rw],Taba[Ra] + Tabb[Rb])
end if

end for

Lemma 9. The Combine step for Max IS is correct.

Proof: Let node w have children a, b and assume Taba, Tabb have been filled
correctly. We show that after executing the Combine step in Algorithm 4 the
table Tabw is filled according to Definition 9. Let Rw ∈ LRAw and assume
Iw ⊆ Aw is an IS of G such that Rw ≡Aw Iw. We first show that Tabw[Rw] ≥
|Iw|. Let Ia = Iw ∩ Aa and Ib = Iw ∩ Ab and let Ra ∈ LRAa , Rb ∈ LRAb

be such that Ra ≡Aa Ia and Rb ≡Ab
Ib. Thus Ia ∪ Ib is an IS in G and

Ra∪Rb is an IS in G(Ra, Rb). Also, Ia and Ib are independent sets in G, and
therefore Taba[Ra] ≥ |Ia| and Tabb[Rb] ≥ |Ib|. Thus, when considering the
pair Ra, Rb the combine step will ensure that the entry for the representative
of the class [Ra ∪ Rb]≡Aw

is at least |Ia| + |Ib| = |Iw|. It remains to show
that this representative is Rw. By Observation 3 we have Ra ≡Aw Ia and
Rb ≡Aw Ib so that Ra ∪ Rb ≡Aw Ia ∪ Ib. Since Iw = Ia ∪ Ib and we assumed
Rw ≡Aw Iw we therefore have Ra ∪Rb ≡Aw Rw as desired.

To finish the correctness proof, we need to show that if Tabw[Rw] = k
then there exists Iw ⊆ Aw with |Iw| = k and Iw ≡Aw Rw and Iw an IS in G.
For this, note that the Combine step increases the value of Tabw[Rw] only if
there exist indices Ra ∈ LRAa and Rb ∈ LRAb

such that Ra ∪ Rb is an IS in

98 BOOLEAN-WIDTH OF GRAPHS

G(Ra, Rb), and Ra ∪Rb ≡Aw Rw, and Taba[Ra] = ka, and Tabb[Rb] = kb, and
ka + kb = k. Since Taba, Tabb are filled correctly we have two independent
sets Ia, Ib in G with Ra ≡Aa Ia and Rb ≡Ab

Ib and |Ia| = ka and |Ib| = kb.
We claim that Ia ∪ Ib is the desired Iw. Since Ra ∪ Rb is an IS of G(Ra, Rb)
it is clear that Ia ∪ Ib is an IS in G of size ka + kb = k. It remains to show
that Ia ∪ Ib ≡Aw Rw. By Observation 3 we have Ra ≡Aw Ia and Rb ≡Aw Ib
so that Ra ∪Rb ≡Aw Ia ∪ Ib. Since we assumed Ra ∪Rb ≡Aw Rw we therefore
have Ia ∪ Ib ≡Aw Rw as desired. �

Theorem 5. Given an n-vertex graph G and a decomposition tree (T, δ)
of G, we can solve the Maximum Independent Set problem on G in time
O(n(n + ntc2(T, δ) · k2k + k222k)) where k = boolw(T, δ). The runtime can
also be written O(n2k22k).

Proof: We start by running, for all cuts {A,A} given by edges of T , the
pre-processing routines described in Section 5. However, for a faster runtime
we replace Lemma 5 by below Lemma 10. That is, we first compute for all
such cuts the twin classes TCA and TCA as described in Lemma 10, for a
global runtime in O(n(n+ntc2(T, δ))). Second, we compute representatives of
neighborhood equivalence classes LRA, LRA, LNRA, and LNRA as described
in Lemma 7. This takes time O(n · ntc2(T, δ) · k2k). Third, set up the
datastructure for finding a representative of [X]≡A

and [Y]≡A
as described

in Lemma 8. This takes the same time as the latter operation, namely
O(n · ntc2(T, δ) · k2k).

We then perform the dynamic programming described in this section,
subdividing an arbitrary edge of T by a new root node r to get Tr, initializing
the table for every leaf of Tr, and traversing Tr in a bottom-up fashion filling
the table for every internal node based on already filled tables of its children.
At the root r we have Ar = V (G) so that by induction on the rooted tree
applying Lemma 9 the size of the maximum IS in G is found at the unique
entry of Tabr.

The combine step is executed O(n) times and loops over O(22k) pairs of
representatives. In each execution of this loop we must check that there are
no edges between RAa and RAb

, and this can be done in time O(k2). Also we
must find the representative of the class [Ra ∪Rb]≡Aw

, which using the data
structure of Lemma 8 takes time O(|Ra ∪ Rb|) which is O(k) by Lemma 6.
The runtime is therefore O(n(n+ntc2(T, δ)·k2k+k222k)), and also O(n2k22k)
since ntc(T, δ) ≤ min{n, 2k} and k ≤ n. �

99

To avoid the nm factor in the runtimes we had to replace the simple
computation of twin classes given by Lemma 5 by the following Lemma.

Lemma 10. Let G be an n-vertex graph and (T, δ) a decomposition tree of
G. In time O(n(n + ntc2(T, δ))) we compute for every edge of T the two
vertex sets TCA and TCA associated to the cut {A,A} given by the edge. In
the same time we compute for every x ∈ A a pointer to y ∈ TCA for x and
y being in the same twin class of A, and similarly for every x ∈ A.

Proof: It is more convenient to deal with rooted trees here, so we address
the rooted tree Tr as in Definition 1. The idea is to proceed in two steps.
In the first step we compute in a top-down traversal of Tr the set TCAa for
every node a of Tr. Then, in a second top-down traversal of Tr we compute
all sets TCAa

.
A refinement operation of an ordered partition P = (P1, P2, . . . , Pk) using

X as pivot is the act of splitting every part Pi of P into Pi ∩X and Pi \X.
With the appropriate use of data structure [21], such an operation can be
implemented to run in O(|X|) time. If the elements of each Pi are initially
ordered, the refinement operations will preserve their order. We initialize
Pr = {V (G)}, where the elements of V (G) follow in order σ. The following
claim constitutes the first top-down traversal of Tr.

Claim 10.1. ([8, Lemma 2]) We can compute TCAa for every a in Tr in
O(n2) time.

The full proof of Claim 10.1. is given in [8] but let us sketch the idea.
If a = r there is nothing to show, otherwise let w be the parent of a and
let b be the sibling of a. Suppose by induction that the twin-class partition
Pw = {P1, P2, . . . , Pk} of Aw has been computed before a is visited (when w
was visited). Then, refining Pw[Aa] = {P1 ∩ Aa, P2 ∩ Aa, . . . , Pk ∩ Aa} using
N(z) ∩ Aa as pivot, for every z ∈ Ab, will result in exactly the twin-class
partition of Aa. This idea can be implemented to run globally in O(n2) time
(the main trick is to compute N(z) ∩ Aa for any z ∈ Ab since Pw[Aa] can
be computed simply by refining Pw using Aa as pivot). The implementation
details are described in [8, Section 3]. After this, we scan every class P of Pa

and pick the first element of P in order to build the list TCAa .
We now compute TCAa

for every node a of Tr by a second top-down

traversal of Tr. Recall w is the parent of a and b. Clearly, Aa = Ab∪Aw. The
twin-class partitions Pa and Pb of Aa and Ab have already been computed as

100 BOOLEAN-WIDTH OF GRAPHS

described above. By induction we suppose that, before visiting a, the twin-
class partition Pw of Aw has also been computed (when w was visited). Pick
one representative vertex per part in Pa and put them together in a list Ra

(we can also use Ra = TCAa). Likewise, pick one representative vertex per
part in Pb ∪Pw and put them together in a list Ra, with additional pointers
so that from every element x of Ra we can trace back the partition class of
Pb ∪ Pw containing x. We then compute H = G(Ra, Ra). We now initialize
Pa = {Ra} and, for every z ∈ Ra, refine Pa using the neighborhood of z in
H as pivot. Finally, for every class P of Pa, we replace every element x of P
by all the elements belonging to the partition class in Pb ∪ Pw for which x
is representative. It is then straightforward to check that Pa is now exactly
the twin-class partition of Aa. After this, we scan every class P of Pa and
pick the first element of P in order to build the list TCAa

.
We now analyse the time complexity of the global computation. First we

have to run the algorithm mentioned in Claim 10.1, which takes O(n2) time.
For the rest, note that |Ra| ≤ ntc(T, δ) and |Ra| ≤ 2× ntc(T, δ), i.e. we can
compute Ra, Ra and H in O(ntc2(T, δ)) time (brute-force adjacency check
for H). The time for initializing the data structure for partition refinement,
and for subsequently performing all refinement operations is globally linear
in the size of H, namely in O(ntc2(T, δ)). The remaining operations consist
basically in following the pointers, whose total sum is bounded by the size
of Ra. Whence, TCAa

can be computed in O(ntc2(T, δ)) for every such a,
leading to an O(n · ntc2(T, δ)) runtime on Tr. �

6.2. Counting independent sets

Let α be the size of the max IS in G. Counting the number of independent
sets in G of cardinality k for each 0 ≤ k ≤ α can be accomplished by a similar
algorithm having runtime with an additional factor α2. The table Tabw must
be indexed by LRAw × {0, 1, ..., |Aw|} and store

Tabw[R][k] = |{S : S ⊆ Aw and S ≡Aw R and S an IS of G and |S| = k}|.

The initialization at a leaf l of Tr should be:
Tabl[δ(l)][0] = 0
Tabl[δ(l)][1] = 1
Tabl[∅][0] = 1
Tabl[∅][1] = 0
The combine step is given in Algorithm 5. Note that two families Fa

and Fb of vertex subsets, taken from two disjoint sets of vertices, can be

101

combined into |Fa| ∗ |Fb| larger vertex subsets. Note also that in the inner
loop of the combine step ka, kb ≤ α. The proof of correctness and runtime
remains otherwise much the same.

Algorithm 5 Combine step for Counting number of IS at node w with
children a, b

for all Rw ∈ LRAw and all k : 0 ≤ k ≤ |Aw| do
initialize Tabw[Rw][k] = 0

end for
for all pairs Ra ∈ LRAa , Rb ∈ LRAb

do
if Ra ∪Rb is an IS in G(Ra, Rb) then
find max ka and kb such that Taba[Ra][ka] > 0 and Tabb[Rb][kb] > 0
find the representative Rw of the class [Ra ∪Rb]≡Aw

for all pairs i, j : 0 ≤ i ≤ ka and 0 ≤ j ≤ kb do
Tabw[Rw][i+ j] = Tabw[Rw][i+ j] + Taba[Ra][i] ∗ Tabb[Rb][j]

end for
end if

end for

Theorem 6. Given an n-vertex graph G and a decomposition tree (T, δ) of
G, we can count the number of independent sets of G of any size in time
O(α2n2k22k), where k = boolw(T, δ) and α is the size of the maximum inde-
pendent set in G.

6.3. Minimum Dominating Set

We want to solve the Minimum Dominating Set (Min DS) problem on
a graph G by dynamic programming along a decomposition tree of G. The
algorithm for Min DS is more complicated than the one given for Max IS,
but its runtime as a function of boolean-width is only slightly higher. For a
cut {A,A} note that, unlike the case of independent sets, a set S of vertices
dominating A will include also vertices of A that dominate vertices of A
“from the outside”. This motivates the following definition.

Definition 10. Let G be a graph and A ⊆ V (G). For X ⊆ A, Y ⊆ A, if
A \X ⊆ N(X ∪ Y) we say that the pair (X, Y) dominates A.

Note that ’pair domination’ behaves well w.r.t. the neighborhood equiv-
alence classes.

102 BOOLEAN-WIDTH OF GRAPHS

Lemma 11. Let G be a graph and A ⊆ V (G). Let X ⊆ A, Y, Y ′ ⊆ A, and
Y ≡A Y ′. Then (X, Y) dominates A if and only if (X, Y ′) dominates A.

Proof: Since (X, Y) dominates A we have A\X ⊆ N(X∪Y). Since Y ≡A Y ′

we have N(Y) \ A = N(Y ′) \ A. Then it follows that A \X ⊆ N(X ∪ Y ′),
meaning (X, Y ′) dominates A. �

We will index the table Tabw at w by two sets: one representing the
equivalence class of ≡A that partially dominates A “from the inside”, and
one representing the equivalence class of ≡A that dominates the rest of A
“from the outside”.

Definition 11. The table Tabw used for Min DS at a node w of Tr has index
set LRAw × LRAw

. For Rw ∈ LRAw and Rw ∈ LRAw
the table should store

Tabw[Rw][Rw] = min
S⊆Aw

{|S| : S ≡Aw Rw and (S,Rw) dominates Aw}

and ∞ if no such S exists.

Note that Tabw has exactly 22bool-dim(Aw) entries. For every node w we
assume that initially every entry of Tabw is set to ∞. For a leaf l of Tr,
we have Al = {δ(l)}. Note that ≡Al

has only two equivalence classes: one
containing ∅ and the other containing Al. For ≡Al

, we have the same situa-

tion: one class containing ∅ and the other containing Al. We initialize Tabl
brute-force. Let R be the representative of [Al]≡Al

.

Tabl[∅][∅] =∞
Tabl[{δ(l)}][∅] = 1
Tabl[{δ(l)}][R] = 1
Tabl[∅][R] = 0.
Let w be a node with two children a and b, and assume that Taba and

Tabb have been correctly computed. Note that each of them can have up to
22boolw(T,δ) entries, and therefore a naive computation of Tabw by looping over
all pairs of entries in the children tables will result in a worst case runtime in
O(24boolw(T,δ)) multiplied by the time spent for finding the right entry of the
parent table Tabw that we want to update. Instead, in Algorithm 6 we apply
Observation 2 to give an O∗(23boolw(T,δ)) time algorithm by looping over only
2boolw(T,δ) entries in each table.

The following lemma will be useful in the correctness proof.

103

Algorithm 6 Combine step for Min DS at node w with children a, b

for all Rw ∈ LRAw , Rw ∈ LRAw
do

initialize Tabw[Rw][Rw] =∞
end for
for all Ra ∈ LRAa , Rb ∈ LRAb

, Rw ∈ LRAw
do

find the representative Ra of the class [Rb ∪Rw]≡Aa

find the representative Rb of the class [Ra ∪Rw]≡Ab

find the representative Rw of the class [Ra ∪Rb]≡Aw

Tabw[Rw][Rw] = min(Tabw[Rw][Rw],Taba[Ra][Ra] + Tabb[Rb][Rb])
end for

Lemma 12. For a graph G, let A,B,W be a 3-partitioning of V (G), and let
Sa ⊆ A, Sb ⊆ B and Sw ⊆ W . (Sa, Sb ∪ Sw) dominates A and (Sb, Sa ∪ Sw)
dominates B iff (Sa ∪ Sb, Sw) dominates A ∪B.

Proof: Let S = Sa∪Sb∪Sw. Clearly, (Sa, Sb∪Sw) dominates A iff A\Sa ⊆
N(S). Likewise, (Sb, Sa ∪ Sw) dominates B iff B \ Sb ⊆ N(S). Therefore,
A\Sa ⊆ N(S) and B \Sb ⊆ N(S) iff A∪B \Sa∪Sb ⊆ N(S) iff (Sa∪SB, Sw)
dominates A ∪ B. �

Lemma 13. The Combine step for Min DS is correct.

Proof: Let node w have children a, b and assume Taba, Tabb have been filled
correctly. We show that after executing the Combine step in Algorithm 6
the table Tabw is filled according to Definition 11. We first show for every
Rw ∈ LRAw and Rw ∈ LRAw

that if there is a set Sw ≡Aw Rw such that
(Sw, Rw) dominates Aw, then Tabw[R][Rw] ≤ |Sw|. Let Sa = Sw ∩ Aa and
Sb = Sw∩Ab. The algorithm loops over all triples of representatives: at some
point it will check (Ra, Rb, Rw), where Ra is the representative of [Sa]≡Aa

and
Rb is the representative of [Sb]≡Ab

. We know that (Sa ∪ Sb, Rw) dominates
Aw so it follows from Lemma 12 that (Sa, Sb ∪Rw) dominates Aa. Note that
Ra as computed in the combine step is the representative of [Sb ∪ Rw]≡Aa

so that it follows from Lemma 11 that (Sa, Ra) dominates Aa. Hence,
Taba[Ra][Ra] ≤ |Sa|. Arguing analogously we have that Tabb[Rb][Rb] ≤ |Sb|.
Thus, to conclude that Tabw[Rw][Rw] ≤ |Sa| + |Sb| = |Sw| all we need to
show is that Rw ≡Aw Ra ∪ Rb. By Observation 3 we have Ra ≡Aw Sa and
Rb ≡Aw Sb so that Ra ∪Rb ≡Aw Sa ∪Sb. Since Sw = Sa ∪Sb and we assumed
Rw ≡Aw Sw we therefore have Ra ∪Rb ≡Aw Rw as desired.

104 BOOLEAN-WIDTH OF GRAPHS

To finish the correctness proof, we need to show that if Tabw[Rw][Rw] = k
then there exists Sw ⊆ Aw with |Sw| = k and Sw ≡Aw Rw such that (Sw, Rw)
dominates Aw in G. For this note that, from the Combine step and assumed
correctness of children tables, there must exist indices Ra ∈ LRAa and Rb ∈
LRAb

, with Sa ≡Aa Ra and Sb ≡Ab
Rb such that (Sa, Ra) dominates Aa, and

(Sb, Rb) dominates Ab, and |Sa ∪ Sb| = s, and with Ra the representative of
[Rb∪Rw]≡Aa

, and Rb the representative of [Ra∪Rw]≡Ab
. We claim that Sa∪Sb

is the desired Sw. Since (Sb∪Rw) ≡Aa
Ra and (Sa, Ra) dominates Aa it follows

from Lemma 11 that (Sa, Sb ∪ Rw) dominates Aa. Likewise, (Sb, Sa ∪ Rw)
dominates Ab. We deduce from Lemma 12 that (Sa ∪ Sb, Rw) dominates
Aa ∪ Ab = Aw. It remains to show that Sa ∪ Sb ≡Aw Rw. By Observation 3
we have Ra ≡Aw Sa and Rb ≡Aw Sb so that Ra ∪ Rb ≡Aw Sa ∪ Sb. Since we
assumed Ra ∪Rb ≡Aw Rw we therefore have Sa ∪ Sb ≡Aw Rw as desired. �

Theorem 7. Given an n-vertex graph G and a decomposition tree (T, δ)
of G, the Minimum Dominating Set problem on G can be solved in time
O(n(n + ntc2(T, δ) · k2k + k223k)) where k = boolw(T, δ). The runtime can
also be written O(n2 + nk23k).

Proof: We start by running, for all cuts {A,A} given by edges of T , the
pre-processing routines described in Section 5, with Lemma 5 being replaced
by Lemma 10. These operations take time O(n · ntc2(T, δ) · k2k) (see proof
of Theorem 5).

We then perform the dynamic programming described in this section,
subdividing an arbitrary edge of T by a new root node r to get Tr, initializing
the table for every leaf of Tr, and traversing Tr in a bottom-up fashion filling
the table for every internal node based on already filled tables of its children.
At the root r we have Ar = V (G) so that by induction on the rooted tree
applying Lemma 9 the size of the maximum IS in G is found at the unique
entry of Tabr.

The combine step is executed O(n) times and loops over O(23k) triplets of
representatives. In each execution of this loop we must find the representative
for Rb∪Rw, Ra∪Rw, and Ra∪Rb. Each of the three is of size O(k), so finding
their representatives using the data structure of Lemma 8 takes O(k) time
(see Lemma 6). The runtime is therefore O(n(n + ntc2(T, δ) · k2k + k23k)),
and also O(n2 + nk23k) since ntc(T, δ) ≤ 2k. �

105

6.4. Counting dominating sets

Counting the number of dominating sets in G of cardinality k for each
0 ≤ k ≤ n can be accomplished by a similar algorithm having runtime with
an additional factor n2. The table Tabw should be indexed by LRAw×LRAw

×
{0, 1, ..., n} and store

Tabw[Rw][Rw][k] = |{S : S ⊆ Aw and S ≡Aw Rw and (S,Rw) dominates Aw

and |S| = k}|.
The initialization at a leaf l of Tr sets all entries to zero except (for R the

representative of [Al]≡Al
):

Tabl[δ(l)][∅][1] = 1
Tabl[δ(l)][R][1] = 1
Tabl[∅][R][0] = 1
The Combine step is given in Algorithm 7. There are four things to

consider for the correctness. All sets S we count have to be partial domi-
nating sets, we must keep track of their sizes correctly, we must not leave
out any such set and we must not count any such set twice. All these except
not counting twice follow easily. Let us therefore argue that no dominating
set is counted twice. We do this by induction on the decomposition tree
from the leaves to the root. Assume for contradiction that there is an entry
Tabw[Rw, Rw] with some set S counted twice, while tables Taba and Tabb at
children of w are correct. The combine step loops over all triples Ra, Rb, Rw

and Rw is used in the index of the update so Rw must have been the same in
any update counting S. Note also that S uniquely defines the two represen-
tatives Ra and Rb (since the representative for S ∩ Aa, respectively S ∩ Ab

is unique), and S also uniquely defines the integers ka and kb. But then
there is only a single triple Ra, Rb, Rw and unique integers ka, kb that could
have resulted in an update of Tabw[Rw, Rw] counting the set S so correctness
follows.

Theorem 8. Given an n-vertex graph G and a decomposition tree (T, δ) of
G, we can count the number of dominating sets of G of any size in time
O(n3k23k), where k = boolw(T, δ).

6.5. Independent Dominating Sets

Combining the requirements of independence and domination in the def-
inition of tables and in the algorithm we can solve both the Minimum and
Maximum Independent Dominating Set problems. Note for the runtime

106 BOOLEAN-WIDTH OF GRAPHS

Algorithm 7 Combine step for Counting number of dominating sets at node
w with children a, b

for all Rw ∈ LRAw , Rw ∈ LRAw
, k ∈ [0, n] do

initialize Tabw[Rw][Rw][k] = 0
end for
for all Ra ∈ LRAa , Rb ∈ LRAb

, Rw ∈ LRAw
do

find the representative Ra of the class [Rb ∪Rw]≡Aa

find the representative Rb of the class [Ra ∪Rw]≡Ab

find the representative Rw of the class [Ra ∪Rb]≡Aw

for ka = 0 to ka ≤ n do
for kb = 0 to kb ≤ n do
Tabw[Rw][Rw][ka + kb]+ = Taba[Ra][Ra][ka]× Tabb[Rb][Rb][kb]

end for
end for

end for

given in Theorem 5 that O(n(n + ntc2(T, δ) · k2k + k222k)) is bounded by
O(n2 + nk23k) since ntc(T, δ) ≤ 2k.

Corollary 3. Given an n-vertex graph G and a decomposition tree (T, δ) of
G, we can solve the Minimum Independent Dominating Set and Maximum
Independent Dominating Set problems on G in time O(n2 + nk23k), where
k = boolw(T, δ).

6.6. Weighted cases

If the input graph G comes with a weight function on the vertices w :
V (G) → � we may wish to find the independent set with largest sum of
weights, or the dominating set with smallest sum of weights. This can be
accomplished in the same runtime as Max IS and Min DS and requires only
a very small change to the algorithm. For S ⊆ V (G) let w(S) = Σv∈Sw(v).
The tables must store

For Max weighted IS:
Tabw[R] = maxS⊆Aw{w(S) : S ≡Aw R and S an IS of G}
For Min weighted DS:
Tabw[R][R′] = minS⊆Aw{w(S) : S ≡Aw R and (S,R′) dominates Aw}
and the algorithms remain the same. Likewise for finding an independent
dominating set with smallest or largest weight.

107

7. Conclusion and Perspectives

Since the first introduction of boolean-width at IWPEC 2009 (essentially
an extended abstract of this paper) several new results have appeared that
we now summarize. Using the pre-processing routines described in Section 5
of this paper, algorithms with runtime O∗(2c·k

2
) have been given for a large

class of vertex subset and vertex partitioning problems (the so-called (σ, ρ)-
problems and Dq-problems [43]) for problem specific constants c [1], given a
decomposition tree of boolean-width k.

For several classes of perfect graphs, like interval graphs and permuta-
tion graphs, it has been shown that boolean-width is logarithmic and that
a decomposition witnessing this can be found in polynomial time [4]. On
the other hand rank-width, and hence the other main parameters, can on
these graph classes have value proportional to the square root of the number
of vertices. Additionally, for these graph classes the above-mentioned vertex
subset and partitioning problems will have runtime O∗(2c·k), yielding the first
polynomial-time algorithms for the weighted versions of all those problems
on e.g. permutation graphs.

Recent results tie boolean-width nicely to tree-width and branch-width by
showing that for any graph we have boolw(G) ≤ tw(G) + 1 and boolw(G) ≤
bw(G) for bw(G) �= 0 [1]. For a random graph G on n vertices it has been
shown that whp boolw(G) = Θ(log2 n) [1], this in contrast to rw(G) =
tw(G) = bw(G) = cw(G) = ntc(G) = modw(G) = Θ(n) [27, 29, 31]. More-
over, a decomposition tree witnessing the polylog boolean-width of a random
graph can be found in polynomial time, so that we get quasi-polynomial time
algorithms for the above-mentioned problems on input a random graph.

An important question concerns the practical applicability of boolean-
width. The divide-and-conquer algorithms given here are practical and easy
to implement. A heuristic for computing a decomposition tree of low boolean-
width has been implemented and experiments made on the graphs in Tree-
widthLIB show that boolean-width could indeed have practical applicability
[25].

There are many questions about boolean-width left unanswered. It is
known that the boolean-width of a graph is smaller than its tree-width,
branch-width and clique-width, but it is not clear how high the boolean-
width can be as a function of its rank-width. Is boolean-width linear in
rank-width, or subquadratic in rank-width, for every graph? It has been
shown that a k×k grid has rank-width exactly k−1 [26]. We have seen that

108 BOOLEAN-WIDTH OF GRAPHS

its boolean-width lies between 1
6
k (see Theorem 2) and k + 1 (derived from

the upper bound given by clique-width), but it would be nice to close this
gap and find its exact value.

On the theoretical side it would be nice to improve on the 22·boolw(G)-
approximation to optimal boolean-width of Theorem 1 that applies the al-
gorithm computing a decomposition tree of optimal rank-width of [22]. Note
that the runtime of that approximation algorithm is FPT when parameter-
ized by boolean-width of the input graph. The best we can hope for is an FPT
algorithm computing optimal boolean-width, but any algorithm computing
a decomposition tree of boolean-width polynomial in the optimal boolean-
width would be nice. It seems such an algorithm will require some new
techniques, as indicated by the tightness of Theorem 1 adressed in Lemma
3 and also the fact that bool-dim is not a submodular function [33]. The
graphs of boolean-width at most one are exactly the graphs of rank-width
at most one, i.e. the distance-hereditary graphs. What about the graphs
of boolean-width at most log2 3, do they also have a nice characterization,
and can they be recognized in polynomial time? More generally, is there
an alternative characterization of the graphs of boolean-width at most log2 k
for any integer k, for example by a finite list of forbidden substructures, like
minors for tree-width and vertex-minors for rank-width?

References

[1] I. Adler, B.-M. Bui-Xuan, Y. Rabinovich, G. Renault, J. A. Telle, and
M. Vatshelle. On the boolean-width of a graph: structure and applica-
tions. In Workshop on Graph-Theoretic Concepts in Computer Science
(WG’10), volume 6410 of LNCS, pages 159–170, 2010.

[2] N. Alon and J. Spencer. The probabilistic method. Wiley-Interscience
Series in Discrete Mathematics and Optimization, 2000.

[3] E. Amir. Approximation algorithms for treewidth. Algorithmica,
56(4):448–479, 2010.

[4] R. Belmonte and M. Vatshelle. Graph classes with structured neighbor-
hoods and algorithmic applications. to appear in WG’2011.

[5] H. Bodlaender and A. Koster. Treewidth Computations I Upper Bounds.
Technical Report UU-CS-2008-032, Department of Information and
Computing Sciences, Utrecht University, 2008.

109

[6] H. Bodlaender, E.-J. van Leeuwen, J. van Rooij, and M. Vatshelle.
Faster algorithms on clique and branch decompositions. In 35th Inter-
national Symposium on Mathematical Foundations of Computer Science
(MFCS’10), LNCS, pages 174–185, 2010.

[7] A. Brandstaedt and V. V. Lozin. On the linear structure and clique-
width of bipartite permutation graphs. Ars Combinatoria, 67:719–734,
2003.

[8] B.-M. Bui-Xuan, J. A. Telle, and M. Vatshelle. Feedback vertex set on
graphs of low cliquewidth. In 20th International Workshop on Combina-
torial Algorithms (IWOCA’09), volume 5874 of LNCS, pages 113–124,
2009.

[9] B.-M. Bui-Xuan, J. A. Telle, and M. Vatshelle. H-join decomposable
graphs and algorithms with runtime single exponential in rankwidth.
Discrete Applied Mathematics, 158(7):809–819, 2010.

[10] P. Charbit, S Thomassé, and A. Yeo. The minimum feedback arc set
problem is NP-hard for tournaments. Combinatorics, Probability and
Computing, 16(1):1–4, 2007.

[11] D. Corneil and U. Rotics. On the relationship between clique-width and
treewidth. SIAM Journal on Computing, 34(4):825–847, 2005.

[12] B. Courcelle, J. Engelfriet, and G. Rozenberg. Handle-rewriting hyper-
graph grammars. Journal of Computer and System Sciences, 46(2):218–
270, 1993.

[13] B. Courcelle, J. Makowsky, and U. Rotics. Linear time solvable optimiza-
tion problems on graphs of bounded clique-width. Theory of Computing
Systems, 33(2):125–150, 2000.

[14] C. Damm, K. H. Kim, and F. W. Roush. On covering and rank problems
for boolean matrices and their applications. In 5th Annual International
Conference on Computing and Combinatorics (COCOON’99), volume
1627 of LNCS, pages 123–133, 1999.

[15] R. Downey and M. Fellows. Parameterized Complexity. Springer Verlag,
1999.

110 BOOLEAN-WIDTH OF GRAPHS

[16] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer
Verlag, 2006.

[17] R. Ganian and P. Hliněný. On Parse Trees and Myhill-Nerode-type
Tools for handling Graphs of Bounded Rank-width. Discrete Applied
Mathematics, 158(7):851–867, 2010.

[18] J. Geelen, A. Gerards, and G. Whittle. Branch-width and well-quasi-
ordering in matroids and graphs. Journal of Combinatorial Theory,
Series B, 84(2):270–290, 2002.

[19] J. Goldman and G.-C. Rota. The number of subspaces of a vector space.
Recent Progress in Combinatorics, pages 75–83, 1969.

[20] M. Golumbic and U. Rotics. On the clique-width of some perfect graph
classes. International Journal of Foundations of Computer Science,
11(3):423–443, 2000.

[21] M. Habib, C. Paul, and L. Viennot. Partition refinement techniques: An
interesting algorithmic tool kit. International Journal of Foundations of
Computer Science, 10(2):147–170, 1999.

[22] P. Hliněný and S. Oum. Finding branch-decompositions and rank-
decompositions. SIAM Journal on Computing, 38(3):1012–1032, 2008.
Abstract at ESA’07.

[23] P. Hliněný, S. Oum, D. Seese, and G. Gottlob. Width parameters beyond
tree-width and their applications. The Computer Journal, 51(3):326–
362, 2008.

[24] W.-L. Hsu. Decomposition of perfect graphs. Journal of Combinatorial
Theory, Series B, 43(1):70–94, 1987.

[25] E.M. Hvidevold, S. Sharmin, J. A. Telle, and M. Vatshelle. Finding
good decompositions for dynamic programming on dense graphs.
submitted. see http://www.ii.uib.no/~telle/bib/HSTV11.pdf.

[26] V. Jeĺınek. The rank-width of the square grid. In 34rd International
Workshop on Graph-Theoretic Concepts in Computer Science (WG’08),
volume 5344 of LNCS, pages 230–239, 2008.

111

[27] Ö. Johansson. Clique-decomposition, NLC-decomposition and modular
decomposition – Relatiohships and results for random graphs. Congres-
sus Numerantium, 132:39–60, 1998.

[28] K. H. Kim. Boolean matrix theory and its applications. Marcel Dekker,
1982.

[29] T. Kloks and H. Bodlaender. Only few graphs have bounded treewidth.
Technical Report UU-CS-92-35, Department of Information and Com-
puting Sciences, Utrecht University, 1992.

[30] D. Kobler and U. Rotics. Edge dominating set and colorings on graphs
with fixed clique-width. Discrete Applied Mathematics, 126(2-3):197–
221, 2003. Abstract at SODA’01.

[31] C. Lee, J. Lee, and S. Oum. Rank-width of random graphs.
submitted. see http://arxiv.org/abs/1001.0461.

[32] H. X. Nguyen and P. Thiran. Active measurement for multiple link
failures diagnosis in IP networks. In 5th Passive and Active Measurement
Workshop, volume 3015 of LNCS, pages 185–194, 2004.

[33] S. Oum. private communication.

[34] S. Oum. Graphs of Bounded Rank-width. PhD thesis, Princeton Uni-
versity, 2005.

[35] S. Oum. Rank-width is less than or equal to branch-width. Journal of
Graph Theory, 57(3):239–244, 2008.

[36] S. Oum and P. Seymour. Approximating clique-width and branch-width.
Journal of Combinatorial Theory, Series B, 96(4):514–528, 2006.

[37] P. Pattison and R. Breiger. Lattices and dimensional representa-
tions: matrix decompositions and ordering structures. Social Networks,
24(4):423–444, 2002.

[38] M. Rao. Décomposition de graphes et algorithmes efficaces. PhD thesis,
Université Paul Verlaine, Metz, 2006.

[39] M. Rao. Clique-width of graphs defined by one-vertex extensions. Dis-
crete Mathematics, 308(24):6157–6165, 2008.

112 BOOLEAN-WIDTH OF GRAPHS

[40] B. Reed. Tree-width and tangles: a new connectivity measure and some
applications. In Surveys in Combinatorics, Soc. Lecture Note Ser. vol.
241, Cambridge university Press, pages 87–162. 1997.

[41] N. Robertson and P. Seymour. Graph minors. X. Obstructions to tree-
decomposition. Journal of Combinatorial Theory, Series B, 52(2):153–
190, 1991.

[42] J. Rooij, H. Bodlaender, and P. Rossmanith. Dynamic programming on
tree decompositions using generalised fast subset convolution. In 17th
Annual European Symposium on Algorithms (ESA’09), volume 5757 of
LNCS, pages 566–577, 2009.

[43] J. A. Telle and A. Proskurowski. Algorithms for vertex partitioning
problems on partial k-trees. SIAM Journal on Discrete Mathematics,
10(4):529–550, 1997.

[44] M. Zivkovic. Row space cardinalities. Semigroup Forum, 73(3):404–426,
2006.

113

114 BOOLEAN-WIDTH OF GRAPHS

Graph Classes with Structured Neighborhoods and

Algorithmic Applications

Rémy Belmontea, Martin Vatshellea,∗

aDepartment of Informatics, University of Bergen,
P.O. Box 7803, N-5020 Bergen, Norway.

Abstract

Given a graph in any of the following graph classes: trapezoid graphs, circular
permutation graphs, convex graphs, Dilworth k graphs, k-polygon graphs,
circular arc graphs and complements of k-degenerate graphs, we show how
to compute decompositions with the number of d-neighborhoods bounded by
a polynomial of the input size. Combined with results of Bui-Xuan, Telle
and Vatshelle [1] this leads to polynomial time algorithms for a large class
of locally checkable vertex subset and vertex partitioning problems on all of
these graph classes. The boolean-width of a graph is related to the number
of 1-neighbourhoods and our results imply that any of these graph classes
have boolean-width O(log n).

1. Introduction

When solving graph problems by divide and conquer, we need to recur-
sively divide the input graph G. A natural way to do this is to recursively
partition the vertices of the graph in two parts. The resulting decomposition
of G can be stored as a full binary tree whose leaves are in bijection with the
n vertices of G, called decomposition tree. In a companion paper [1], Bui-
Xuan, Telle and Vatshelle define for a given cut an equivalence relation on
vertex subsets, namely d-neighborhood equivalence, for every fixed integer
d. Further, they define necd as the maximum number of equivalence classes
of the d-neighborhood equivalence relation over the cuts defined by a given

∗Corresponding author. Tel: (+47) 55 58 42 00. Fax: (+47) 55 58 41 99.
Email addresses: remy.belmonte@uib.no (Rémy Belmonte), vatshelle@ii.uib.no

(Martin Vatshelle)

115

decomposition tree. In this paper we give polynomial time algorithms for
computing decomposition trees with necd polynomial in n for any graph be-
longing to one of the following classes: circular k-trapezoid graphs, k-polygon
graphs, Dilworth k graphs, complement of k-degenerate graphs and convex
graphs (see Group II of Figure 1). In [1], it is shown that given a graph G and
a decomposition tree of G the large class of locally checkable vertex subset
and vertex partitioning problems (LC-VSVP problems as defined in [2]) can
be solved in time polynomial in n and necd. Combined with the results in
this paper we get polynomial time algorithms solving any LC-VSVP problem
on any graph class in Group I or II of Figure 1.

In a seminal paper by Courcelle, Makowski and Rotics [3], it was shown
that every problem expressible in MSO1 logic can be solved in linear time
on graphs of bounded clique-width, i.e Group I of Figure 1. However, since
e.g. the Maximum Clique problem is NP-hard on complements of pla-
nar graphs [4] (a subclass of co-5-degenerate graphs), we cannot expect to
obtain such a strong result on all the graph classes in Group II of Fig-
ure 1. Instead our results imply polynomial time algorithms for the LC-
VSVP problems, a subclass of the MSO1 problems, via their relation to d-
neighborhoods. This includes many problems related to independence, dom-
ination and homomorphism. Many of the LC-VSVP problems have been
studied separately on many of the graph classes in Group II of Figure 1,
see [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. A previous result closely related to
ours is by Kratochv́ıl, Manuel and Miller in [16] who showed that a subset
of the LC-VSVP problems is solvable in polynomial time on interval graphs.

The notion of d-neighborhood generalizes the classical notion of neigh-
borhood, i.e. two subsets of a set A of vertices are 1-neighborhood equivalent
with respect to the cut

(
A,A

)
if they have the same neighborhood in A.

Boolean-width of a graph G is a parameter introduced by Bui-Xuan, Telle
and Vatshelle [17], defined as log2 (nec1) of an optimal decomposition of G. In
particular, they gave FPT algorithms for solving Maximum Weight Inde-

pendent Set and Minimum Weight Dominating Set in 2O(k) · poly(n)
time, assuming a decomposition tree of boolean-width k is given. As a corol-
lary of the results in this paper, we get that all the classes in Group II of
Figure 1 have boolean-width O(log n) and thus the two above algorithms are
polynomial on these graph classes. To our knowledge, this is the first time an
FPT algorithm is used to give polynomial time algorithms on a graph class
where the parameter value is not bounded by a constant.

In the simple case of interval graphs and permutation graphs we show how

116 GRAPH CLASSES

trees

cographs

threshold

trivially perfect

interval

unit interval

distance hereditary

bipartite permutation

Dilworth 4

Dilworth 2

biconvex

convex

permutation

Dilworth k

perfect

comparability

co−comparability

chordal

split

circular arc

trapezoid

k−trapezoid

circular k−trapezoid

tolerance

circular permutation

strongly chordal

bipartitecircle

co−k−degenerate

I

II

III

IV

k−tree, fixed k

k−polygon

bounded tolerance

Figure 1: Inclusion diagram of some well-known graph classes.
(I) Graph classes where clique-width and boolean-width is bounded by a constant.
(II) Graph classes having decomposition trees with necd polynomial in n, boolean-width
O(log n) and all LC-VSVP problems solvable in polynomial time (for k-trapezoid graphs
assume an intersection model is given).
(III) It is unknown whether these classes have boolean-width O(log n).
(IV) Either boolean-width is not O(log n) or it is NP-hard to compute such decompositions.

117

to construct decompositions such that every cut defined by the decomposition
has nested neighborhoods, i.e. the neighborhoods across the cut are totally
ordered by inclusion. Bipartite graphs with nested neighborhoods are called
chain graphs, and Yannakakis [18] showed that a bipartite graph is a chain
graph if and only if the size of a maximum induced matching is 1. Twin free
chain graphs, called Hsu graphs, are used in Hsu’s generalized join [19]. We
generalize the idea of a cut with nested neighborhoods by considering cuts
inducing bipartite graphs with a constant size maximum induced matching.
We use the fact that the size of a maximum induced matching across a cut
bounds the number of d-neighborhood equivalence classes, to give polynomial
upper bounds on the value of necd for all of the graph classes in Group II of
Figure 1.

In Section 2, we start by introducing standard graph theoretic notions
and terminology. We define d-neighborhoods and relate these to induced
matchings. In section 3, we show that for interval graphs, circular arc
graphs, permutation graphs, circular permutation graphs, trapezoid graphs,
convex graphs, k-polygon graphs, Dilworth k graphs and complement of k-
degenerate graphs we can in polynomial time compute decompositions where
all cuts have the number of d-neighborhoods bounded by a polynomial of n.
For k-trapezoid graphs and circular k-trapezoid graphs similar results are
proven, but we must assume that an intersection model is given along with
the input graph. In section 4, we show that for all the graph classes in
Group II of Figure 1, except possibly Dilworth k graphs (for k ≥ 2), our
upper bounds are essentially tight. We do so by showing that these classes
have rank-width Ω(

√
n), which implies that none of these classes can have de-

compositions with necd at most no(1). Moreover we show that for the graph
classes in Group IV of Figure 1 we cannot find decompositions with necd
bounded by a polynomial of n, unless P = NP . Finally in Section 5 we
conclude and give some open problems.

2. Framework

All graphs considered in this paper are undirected, finite and simple. The
neighborhood of a vertex u, denoted by N(u), is the set of vertices u such
that the edge (u, v) is in E and for a subset of vertices X we denote the
union of the neighborhoods of vertices in X by N(X) =

⋃
x∈X N(x). Given

a set A ⊆ V , we denote by A the complement of A in V , i.e. V \A. We call
a bipartition

(
A,A

)
of V a cut of G. We denote by G[X] the subgraph of

118 GRAPH CLASSES

G induced by X and G[X, Y] the bipartite subgraph of G induced by those
edges with one endpoint in X and the other in Y .

We now define formally the notion of decomposition tree. The choice
of a decomposition tree greatly influences the running time of any algorithm
using the decomposition tree. In order to choose the best decomposition tree,
we evaluate a decomposition tree by using a cut function. The following
formalism is referred to as branch decomposition of a cut function and is
standard in graph and matroid theory, see e.g. [20, 21, 22].

Definition 1 (Decomposition tree). A decomposition tree of a graph G
is a pair (T, δ) where T is a full binary tree (i.e. T rooted with every non-leaf
having two children) and δ a bijection between the leaf set of T and the
vertex set of G. For a node w of T let the subset of V (G) in bijection δ with
the leaves of the subtree of T rooted at w be denoted by Vw. We say the
decomposition defines the cut

(
Vw, Vw

)
.

Caterpillar decompositions are decompositions where the underlying tree
is a path with one leaf added as neighbor of each internal node of the path.
Many of our proofs will construct caterpillar decompositions. To describe a
caterpillar decomposition of a graph G, we only give an ordering v1, . . . , vn of
the vertices of G. To construct the caterpillar decomposition (T, δ) from an
ordering, first construct a caterpillar T from a path u1, . . . , un of length |V |.
Then let δ be a mapping of v1 to u1, vn to un and for all i ∈ {2, . . . , n− 1},
of vi to a new leaf attached to ui. Finally, subdivide any edge and root the
decomposition at the newly added vertex.

One of the essential notions in [17] and [1] is that of a representative. For
a cut

(
A,A

)
in a graph G a representative of a subset X ⊆ A is a subset R

having the same neighbors in A as X. Maximum induced matchings bound
the maximal size of representatives needed to represent any neighborhood
across a cut.

Definition 2 (Maximum induced matching over a cut). Let G be a
graph, then we say a subset M ⊆ V (G) of vertices is an induced matching
in G if G[M] is a disjoint union of edges. For A ⊆ V (G) we define mim (A)
as the maximum number of edges in an induced matching in G[A,A].

To see the relation to representative note that no two subsets ofM∩A has
the same neighborhood in A, hence all 2|M∩A| subsets have different neigh-
borhoods in A, and for the converse relation see Lemma 1. In the companion

119

paper [1] the notion of neighborhoods is generalized to d-neighborhoods, we
now formally define the notion of d-neighborhood equivalence.

Definition 3 (d-neighborhood equivalence). Let d be a non-negative
integer, G be a graph and A ⊆ V (G). Two vertex subsets X ⊆ A and
Y ⊆ A are d-neighbor equivalent with respect to A, denoted by X ≡d

A Y , if:

∀v ∈ A : min(d, |X ∩N(v)|) = min(d, |Y ∩N(v)|).

Let nec(≡d
A) be the number of equivalence classes of ≡d

A. For (T, δ) a
decomposition tree of G define necd(T, δ) as the maximum nec(≡d

Vw
) and

nec(≡d
Vw
) over all nodes w in V (T). We refer to nec(≡d

A) as the number

of d-neighborhoods of the cut
(
A,A

)
and to necd(T, δ) as the number of

d-neighborhoods of (T, δ).

Definition 4 (Boolean-width). Let G be a graph and (T, δ) a decompo-
sition of G. The boolean-width of (T, δ), denoted by boolw (T, δ), is defined
as the maximum over all w ∈ V (T) of log2(nec

(
≡1

Vw

)
). The boolean-width

of G, denoted by boolw (G), is defined as the minimum boolw (T, δ) over all
decompositions (T, δ) of G.

As a corollary of our results, we give logarithmic bounds on the boolean-
width of the graph classes in Group II of Figure 1. Moreover, in Section 4
we use boolean-width to provide lower bounds on the value of necd on these
graph classes.

In Section 3 we will show how to compute decompositions where the
number of d-neighborhoods is polynomial in the size of the graph. To do this
we will use the following connection between the number of d-neighborhoods
and maximum induced matchings.

Lemma 1. Let G be any graph and A ⊆ V (G) any subset of the vertices.
mim (A) ≤ k if and only if for every S ⊆ A, there is R ⊆ S such that
N (R) ∩ A = N (S) ∩ A and |R| ≤ k.

Proof. First we prove mim (A) ≤ k ⇒ |R| ≤ k. Assume for contradiction
that R is a minimal set such that N (R) ∩ A = N (S) ∩ A and that |R| > k.
Then for every x ∈ R we know that N (R \ x) ∩ A �= N (R) ∩ A. Let
y ∈ N (R)∩A \N (R \ x)∩A be any private neighbour of x. Each such pair
is an edge, i.e. (x, y) ∈ E(G[A,A]), Let M contain all these vertices. Since

120 GRAPH CLASSES

each y was a private neighbour of x we know that N(y)∩R = {x}. Since we
chose exactly one y for each x ∈ R we know that |M ∩ A| ≤ |R|, since each
x ∈ R has at least one neighbour in M ∩ A we know that G[M ∩ A,M ∩ A]
is 1-regular and hencemim (A) > k leading to a contradiction.

For the other direction we will prove the converse namely, if mim (A) >
k ⇒ |R| > k. Let M be an maximum induced matching over the cut

(
A,A

)
,

and S = M ∩A, then by assumption |S| > k, now we only need to show that
for every strict subset R ⊂ S we have N (S) ∩ A �= N (R) ∩ A. Since M is
an induced matching, there will be an edge (u, v) ∈ M with u ∈ S \ R, but
then by definition of an induced matching v has no neighbor in R and hence
N (R) ∩ A �= N (S) ∩ A.

Lemma 2. Let G be any graph and A ⊆ V (G) any subset of vertices. Then
nec

(
≡d

A

)
≤ nd·mim(A).

Proof. First we prove the following:

Claim. For every subset S ⊆ A, there exist R ⊆ S such that R ≡d
A S and

|R| ≤ mim (A) · d.

Proof of the claim. This proof is by induction on d and similar to that of [1,
Lemma 5]. For d = 1, this follows from Lemma 1 by using k = mim (A).
Now, assume the induction hypothesis true up to d− 1, then we show it true
for d. Let S ′ ⊆ S be an inclusion minimal set such that N(S ′)∩A = N(S)∩A
i.e. S ′ ≡1

A S. Hence from Lemma 1 we have that |S ′| ≤ mim (A). By
induction hypothesis there exists R′ ⊆ (S \ S ′) such that R′ ≡d−1

A (S \ S ′)
and |R′| ≤ mim (A) · (d − 1). Thus it is enough to show R = R′ ∪ S ′ ≡d

A

S. We partition the nodes of A into (P,Q) such that ∀v ∈ P , we have
|N(v)∩ (S \S ′)| = |N(v)∩R′| and ∀v ∈ Q, we have |N(v)∩ (S \S ′)| ≥ d− 1
and |N(v)∩R′| ≥ d−1. For every vertex v ∈ P , since S∩R′ = ∅ and S ′ ⊆ S,
we know |N(v)∩S| = |N(v)∩(S\S ′)|+|N(v)∩S ′| = |N(v)∩R′|+|N(v)∩S ′| =
|N(v)∩R|. We have N(S) = N(S ′) and since d > 1 we have Q ⊆ N(S ′). For
every vertex v ∈ Q, since |N(v)∩ (S \S ′)| ≥ d− 1 we get |N(v)∩S| ≥ d and
since |N(v) ∩ R′| ≥ d− 1 we get |N(v) ∩ R| ≥ d. Since (P,Q) is a partition
we get R ≡d

A S and |R| ≤ mim (A) · d, thus by induction the claim holds.

To bound the number of equivalence classes nec
(
≡d

A

)
we know from the

claim that we only need to find the equivalence classes among the subsets of
A of size at most d · mim (A). A trivial bound on number of subsets of A
with size d ·mim (A) gives us: nec

(
≡d

A

)
≤ |A|d·mim(A) ≤ nd·mim(A).

121

3. Finding Good Decompositions on Restricted Graph Classes

In this section we will show how to compute decomposition trees with
necd(T, δ) bounded by a polynomial of n if the graph belongs to a certain
graph-class. In almost all proofs, we construct a caterpillar decomposition by
giving an ordering of the vertices of the graph, and then argue using Lemma
1 that for each cut of the decomposition the size of a maximum induced
matching is bounded, and thus we can apply Lemma 2.

For all graph classes considered in this paper, except for the complements
of k-degenerate graphs and Dilworth k graphs, we use definitions via a geo-
metrical intersection model.

Definition 5 (Intersection Model). Let F be a family of nonempty sets.
For a graph G, we say F is an intersection model of G if there exists a
bijection ϕ from F to V (G) such that two vertices u, v ∈ V (G) are adjacent
if and only if ϕ(u) and ϕ(v) intersect.

The sets in the intersection model usually consists of geometrical objects
such as lines, circles or polygons.

3.1. Interval Graphs

An interval I = 〈i, j〉 is represented by an ordered pair of real numbers
with i < j and represent the set of real numbers {x : i < x < j}. Let
I1 = (a, b) and I2 = (c, d) be two intervals, then I1 intersects I2 if and only
if a < d and c < b.

Definition 6 (Interval graph). A graph is an interval graph if it has an
intersection model consisting of intervals.

Lemma 3. Given an interval graph G and any positive integer d, we can, in
polynomial time, compute a decomposition tree (T, δ) of G having necd (T, δ)
≤ nd.

Proof. Any interval graph has an intersection model where no interval starts
or ends at the same point and we can find such an intersection model in
linear time [23]. We build a caterpillar decomposition by sorting the vertices
by the left endpoint of their corresponding intervals. Let us now consider
any cut (A,A) defined by the decomposition. We want to bound mim (A) by
applying Lemma 1. Thus we will show that for every set S ⊆ A, there is a set

122 GRAPH CLASSES

R such that N (R)∩A = N (S)∩A and |R| ≤ 1. Let σ be the total ordering
of the vertices of A sorted by their right endpoint. Since all left endpoints
of intervals corresponding to vertices of A are to the left of all left endpoints
of intervals corresponding to vertices of A, two vertices u ∈ A, u′ ∈ A are
neighbors if and only if the right endpoint of u is to the right of the left
endpoint of u′. Hence, for every pair of vertices u, v ∈ A if σ(u) ≤ σ(v)
then N (u) ∩ A ⊆ N (v) ∩ A. For every set S ⊆ A, let R contain the unique
vertex of S whose interval has the rightmost right endpoint. We then have
N (R) ∩ A = N (S) ∩ A and |R| ≤ 1. Therefore, by Lemma 1, mim (A) ≤ 1
for all cuts. Then for any d, by Lemma 2 we have necd (T, δ) ≤ nd.

3.2. Circular-arc graphs

Circular-arc graphs is a natural generalization of interval graphs.

Definition 7 (Circular arc graph). A graph is a circular arc graph if it
has an intersection model consisting of arcs of a circle.

Lemma 4. Given a circular-arc graph G and any positive integer d, we
can, in polynomial time, compute a decomposition tree (T, δ) of G having
necd (T, δ) ≤ n2d.

Proof. We can compute the circular-arc intersection model of G in linear
time [24]. Fix an arbitrary point p on the circle. We define the distance
of an arc from p as follows: If the arc contains p, then the distance is 0,
otherwise it is the minimum distance between p and any point of the arc.
For any vertex u, we denote by arcu the arc corresponding to u.

Build a caterpillar decomposition by totally ordering the vertices in order
of increasing distance of their associated arc from p, breaking ties arbitrarily.
Note that this decomposition can be computed in polynomial time. We now
consider any cut (A,A) of this decomposition. By construction, for every
x ∈ A, y ∈ A, the distance of arcx from p is less than or equal to the distance
of arcy from p.

Now, we prove that for any set S ⊆ A, there exists a subset S ′ ⊆ S such
that |S ′| ≤ 2 and N (S) ∩ A = N (S ′) ∩ A. Let arcl be the arc extending
the furthest from p in clockwise direction and arcr the arc extending the
furthest from p in counter-clockwise direction and S ′ = {l, r}. In Figure 3.2
we get arcl = arca and arcr = arce. Assume for contradiction that there
exist v ∈ A such that v ∈ N(S) \ N(S ′). Since arcv does not intersect arcl

123

arca

arc
b

arcc

ar
c d ar

c e

arc
f
p

Figure 2: An intersection model of an circular-arc graph with 10 vertices. Let A =
{a, b, c, d, e, f}. Note that A forms a cut of the decomposition since no other arcs are
closer to p. Let S = {a, c, d}. Note the arcs of S are drawn in bold. We then get
arcl = arca and arcr = arcd, thus S

′ = {a, d} ≡A S.

or arcr and the distance of arcv is larger than both arcl and arcr. The arc
corresponding to the vertex in X overlapping with arcv must extend further
than either arcl or arcr leading to a contradiction.

For every set S ⊆ A, let R contain the vertices l and r as defined above.
We then have N (R) ∩A = N (S) ∩A and |R| ≤ 2. Therefore, by Lemma 1,
mim (A) ≤ 2 for all cuts. Then for any d, by Lemma 2 we have necd (T, δ) ≤
n2d.

3.3. Permutation Graphs

Definition 8 (Permutation graph). Let L and U be two distinct infinite
parallel lines. A graph is a permutation graph if it has an intersection model
consisting of straight line-segments with one endpoint on L and one on U .

124 GRAPH CLASSES

Lemma 5. Given a permutation graph G and any positive integer d, we
can, in polynomial time, compute a decomposition tree (T, δ) of G having
necd (T, δ) ≤ nd.

Proof. We compute the permutation model of G in linear time [25]. We
build a caterpillar decomposition by sorting the vertices by the upper end-
point of their corresponding line. Let us now consider a cut (A,A) of the
decomposition. Let σ be the total ordering of the vertices of A sorted by
their lower endpoint, hence ∀u, v ∈ A, σ(u) ≤ σ(v) iff the lower endpoint of
u is to the left of the lower endpoint of v. Since all upper endpoints of lines
corresponding to vertices of A are to the left of all upper endpoints of lines
corresponding to vertices of A, two vertices u ∈ A, u′ ∈ A are neighbors if
and only if the lower endpoint of u is to the right of the lower endpoint of u′.

Hence for any set S ⊆ A there exists x ∈ S such that N(S) ∩ A =
N(x) ∩ A, namely the vertex of S with the rightmost lower endpoint, by
Lemma 1, mim (A) ≤ 1 for all cuts. Then for any d, by Lemma 2 we have
necd (T, δ) ≤ nd.

3.4. Circular Permutation Graphs

Definition 9 (Circular permutation graph). Let L and U be two par-
allel different circles on a cylinder. A graph is a circular permutation graph
if it has an intersection model consisting of straight line-segments with one
endpoint on L and one on U .

Lemma 6. Given a circular permutation graph graph G and any positive
integer d, we can, in polynomial time, compute a decomposition tree (T, δ) of
G having necd (T, δ) ≤ n2d.

Proof. We compute the circular permutation model of G in linear time [26].
Let sv be the line corresponding to the vertex v. We build a caterpillar decom-
position using an ordering obtained by sorting the vertices by the endpoint
on L of their corresponding lines in clockwise order starting from any point
p. Let us now consider a cut (A,A) of the decomposition. For any S ⊆ A we
show that we can find S ′ ⊆ S such that N (S)∩A = N (S ′)∩A and |S ′| ≤ 2.
Let l (resp. r) be the line corresponding to the vertex v ∈ S that extend the
furthest from p in clockwise (resp. counter-clockwise) direction.

Let S ′ = {l, r} and assume for contradiction that there exist v ∈ A
such that v ∈ N(S) \ N(S ′). Since sv does not intersect sl nor sr and that
the distance from p to the point of sv on L is greater in clockwise (resp.

125

counter-clockwise) direction than the point of sl (resp. sr) on L we have
that the distance from p to the point of sv on U is greater in clockwise (resp.
counter-clockwise) direction than the point of sl (resp. sr) on U .

For every set S ⊆ A, let R contain the vertices l and r as defined above.
We then have N (R) ∩A = N (S) ∩A and |R| ≤ 2. Therefore, by Lemma 1,
mim (A) ≤ 2 for all cuts. Then for any d, by Lemma 2 we have necd (T, δ) ≤
n2d.

3.5. Trapezoid graphs

Let L and U be two infinite parallel lines. Let A and B be two non-
crossing straight line-segments with one endpoint on L and the other on U .
The finite area defined by the four lines L,U,A,B is called a trapezoid be-
tween L and U . Trapezoid graphs is a generalization of permutation graphs,
i.e. using A = B and a generalization of interval graphs, i.e. using L = U .

Definition 10 (Trapezoid graph). A graph is a trapezoid graph if it has
an intersection model consisting of trapezoids between two parallel lines.

Lemma 7. Given a trapezoid graph G and any positive integer d, we can, in
polynomial time, compute a decomposition tree (T, δ) of G having necd (T, δ)
≤ n2d.

Proof. We compute the trapezoid intersection model of G in O(n2) time [27].
We build a caterpillar decomposition by sorting the vertices by the upper
right corner of their corresponding trapezoid from left to right. Let us now
consider a cut (A,A) of the decomposition. We show that for any S ⊆ A,
we can find a set S ′ ⊆ S with N (S) ∩ A = N (S ′) ∩ A and |S ′| ≤ 2: For
the upper line (resp. lower), we take the the trapezoid u (resp. l) with the
rightmost upper (resp. lower) right corner, we then set S ′ = {u, l}. Let us
assume for contradiction that ∃x ∈ A : x ∈ N(S) \ N(S ′). The trapezoid
of x must intersect some trapezoid of S on the upper or lower line. If it
does not intersect u or l, then the whole trapzeoid of x is to the right of u
and l. By construction of the decomposition, x would have been in A, thus
N (S) ∩ A = N (S ′) ∩ A. For every set S ⊆ A, let R contain the vertices u
and l as defined above. We then have N (R) ∩ A = N (S) ∩ A and |R| ≤ 2.
Therefore, by Lemma 1, mim (A) ≤ 2 for all cuts. Then for any d, by
Lemma 2 we have necd (T, δ) ≤ n2d.

126 GRAPH CLASSES

3.6. k-trapezoid graphs

k-trapezoid graphs are a natural generalization of trapezoid graphs and
interval graphs in the sense that the 2-trapezoid graphs are exactly the trape-
zoid graphs and 1-trapezoid graphs are exactly interval graphs.

Definition 11 (k-trapezoid graphs). Let L1, . . . , Lk be k parallel lines.
In order to build a k-trapezoid, first choose two points si and ei on each line
such that si < ei. Then, make two non-intersecting paths s and e by joining si
to si+1 and ei to ei+1 respectively by straight lines for each i ∈ {1, . . . , k−1}.
A k-trapezoid is the polygon defined by s, e and the lines going from s1 to e1
and sk to ek in clockwise direction. A k-trapezoid graph is the intersection
graph of k-trapezoids.

Note that k-trapezoid graphs are equivalent to comparability graphs of
partial orders of interval dimension k [28]. Moreover, Yannakakis showed
in [29] that deciding if a partial order of height 1 has dimension at most
3 is NP -complete. Therefore, recognizing k-trapezoid graphs for any fixed
k ≥ 3 is NP-complete. Additionally, by [30] the smallest integer k such that
a given graph G is a k-trapezoid graph cannot be approximated within a
factor better than

√
n.

Lemma 8. Given a k-trapezoid graph G together with a k-trapezoid model
of G and any positive integer d, we can, in polynomial time, compute a
decomposition tree (T, δ) of G having necd (T, δ) ≤ nkd.

Proof. We build a caterpillar decomposition by sorting the vertices by the
rightmost corner of their corresponding k-trapezoid. Let us now consider a
cut (A,A) of the decomposition. We show that for any S ⊆ A, we can find
a set S ′ ⊆ S with N (S) ∩ A = N (S ′) ∩ A and |S ′| ≤ k: For each line i, we
take the the k-trapezoid ri, corresponding to a vertex of S, which contains
the rightmost point on Li. We set S ′ as the set of all ri. Let us assume
for contradiction that ∃v ∈ A : v ∈ N(S) \ N(S ′), let tv be the trapezoid
corresponding to v. Since v is in A there must exist some x such that tv
contains a point to the right of rx on Lx. Also ther must exist some y,
such that tv intersects some trapezoid of S on Ly hence tv contains a point
to the left of the rightmost point of ry on Ly. Since both tv and ry are
contineous they have to intersect at some point between Lx and Ly. Thus
N (S) ∩ A = N (S ′) ∩ A hence mim (A) ≤ k then by Lemma 2 the lemma
holds.

127

For every set S ⊆ A, let R contain all the vertices ri as defined above.
We then have N (R) ∩A = N (S) ∩A and |R| ≤ k. Therefore, by Lemma 1,
mim (A) ≤ k for all cuts. Then for any d, by Lemma 2 we have necd (T, δ) ≤
nkd.

It is an interesting open problem whether one, given a k-trapezoid graph
can build a decomposition tree having necd (T, δ) = nO(k).

3.7. Circular k-trapezoid Graphs

Circular k-trapezoid graphs form a natural extension of the k-trapezoid
graphs introduced in [31], see [32].

Definition 12 (Circular k-trapezoid graph). Let C1, . . . , Ck be k circles
on the surface of a cylinder, all orthogonal to its axis. In order to build a
circular k-trapezoid, first choose two points si and ei on each line. Then,
make two non-intersecting paths s and e by joining si to si+1 and ei to
ei+1 respectively by straight lines for each i ∈ {1, . . . , k − 1}. A circular
k-trapezoid is the polygon defined by s, e and the arcs going from s1 to
e1 and sk to ek in clockwise direction. A circular k-trapezoid graph is the
intersection graph of circular k-trapezoids.

Lemma 9. Given a circular k-trapezoid graph G and a circular k-trapezoid
model and any positive integer d, we can, in polynomial time, compute a
decomposition tree (T, δ) of G having necd (T, δ) ≤ n2kd.

Proof. Let p be an arbitrary point on C1. We define the distance of a k-
trapezoid from p as the minimum distance between p and any point of the arc
of the k-trapezoid on C1. For any vertex u, we denote by tu the k-trapezoid
corresponding to u and arcu,i the arc of Ci contained in tu. Build a caterpillar
decomposition by adding the vertices in order of increasing distance of their
associated k-trapezoid from p, breaking ties arbitrarily. We now consider any
cut (A,A) of this decomposition.

By construction, for every x ∈ A, y ∈ A, the distance of tx from p is less
than or equal to the distance of ty from p. Now, we prove that for any set
S ⊆ A, there exists a subset S ′ ⊆ S such that |S ′| ≤ 2 · k and S ≡A S ′.
Let r(S, i)(resp. l(S, i)) be the vertex v ∈ S such that tv containins the
extremal point of Li in clockwise (respectively counter-clockwise) direction.
Let S ′ =

⋃
i≤k{r(S, i), l(S, i)}, assume for contradiction that there ∃v ∈ A :

v ∈ N(S) \N(S ′). By construction of the decomposition arcv,1 must contain

128 GRAPH CLASSES

a point more extreme than the points on arcl(S,1),1 and arcr(S,1),1. Since
v ∈ n(S) there must exist a j such that, without loss of generality, arcr(S,j),j
contains a more extreme point than the least extreme point of arcv,j, but
then tr(S,j) contains both a point less extreme and more extreme than tv,
hence they must intersect.

For every set S ⊆ A, let R contain all the vertices r(S, i) and l(S, i) as
defined above. We then have N (R)∩A = N (S)∩A and |R| ≤ 2k. Therefore,
by Lemma 1, mim (A) ≤ 2k for all cuts. Then for any d, by Lemma 2 we
have necd (T, δ) ≤ n2kd.

3.8. Convex Graphs

Definition 13 (Convex graph). A graph G = (V,E) is convex if G is
bipartite with color classes X and Y and an ordering x1, . . . , x|X| of X such
that for every vertex u ∈ Y and xi, xj ∈ N(u), we have for every vertex
xt ∈ X that if i < t < j then xt ∈ N(u), i.e. the vertices in N [u] are
consecutive in the ordering of X.

Lemma 10. Given a convex graph G and any positive integer d, we can, in
polynomial time, compute a decomposition tree (T, δ) of G having necd (T, δ)
≤ nd.

Proof. Since G is convex we can in polynomial time find a bipartition (X, Y)
of V and σX an ordering of X such that for every vertex u ∈ Y and x, y ∈
N(u) [23]. Hence we have for every vertex z ∈ X that if σX(x) < σX(z) <
σX(y) then z ∈ N(u). We construct a total ordering σ of V from σX by
keeping the ordering of vertices in X and for each vertex v ∈ Y we insert
v immediately after the last element of N(v). We construct a caterpillar
decomposition from the order σ.

Let us now consider a cut (A,A) of the decomposition. We want to prove
that for any subset S of A, there exists a set S ′ ⊆ S such that S ′ ≡A S and
|S ′| ≤ 1. Note that by construction of σ, we have ∀v ∈ Y ∩A,N(v)∩A = ∅,
hence we can assume S ′ ⊆ X ∩ S.

Let v1, v2, . . . , vt be the ordering of the vertices of X ∩ S induced by σ.
Since all the vertices in Y ∩ A appear later in σ than vt, then we have for
every vertex v ∈ Y ∩ A, either vt ∈ N(v) or N(v) ∩ S = ∅. Moreover, note
that N(A ∩X) ∩ A = ∅. Hence N ({vt}) ∩ A = N (S) ∩ A.

For every set S ⊆ A, let R contain the vertex vt as defined above. We
then have N (R) ∩ A = N (S) ∩ A and |R| ≤ 1. Therefore, by Lemma 1,

129

mim (A) ≤ 1 for all cuts. Then for any d, by Lemma 2 we have necd (T, δ) ≤
nd.

3.9. k-polygon graphs

Definition 14 (k-polygon graph). A k-polygon graph is the intersection
graph of chords (straight lines between two points on distinct sides) of a
convex k sided polygon.

Lemma 11. Given a k-polygon graph G and any positive integer d, we
can, in polynomial time, compute a decomposition tree (T, δ) of G having
necd (T, δ) ≤ n2kd.

p

l2

r2

r3 = l3

l7

r7

r6 = l6

in S \ S ′

Figure 3: A 8-polygon graph with 12 vertices, the vertices in S are represented by bold
lines, those in A \ S by thin lines and those in A by dashed lines.

Proof. We compute the k-polygon intersection model of G in O(4k · n2)
time [33]. Let p be an arbitrary corner of the k-polygon. We measure the
distance of a point from p as the distance around the edge of the k-polygon
in clockwise direction. We define the distance of a chord from p as the min-
imum distance of any endpoint of the chord from p. We build a caterpillar
decomposition of G by ordering the vertices of G by increasing distance from
p of their corresponding chords.

130 GRAPH CLASSES

Consider any cut (A,A) of the decomposition. We prove that for any set
S ⊆ A, there exists a subset S ′ ⊆ S such that |S ′| ≤ 2k and S ′ ≡A S. We
denote by t the maximum distance from p to a chord of any vertex in A. We
can observe that, by construction of the decomposition, for every vertex u
in A, if both endpoints of the chord corresponding to u are at distance at
most t from p, then N(u) ∩ A = ∅. Now, we associate with each side of the
k-polygon with an index i ∈ {1, ..., k} ordered in clockwise direction starting
from p. For each side we define Si ⊆ S as the set of vertices of which line
has an endpoint on side i. Each vertex of G belongs to exactly 2 such sets.
We also define for each side i such that Si �= ∅, the point li on side i as the
endpoint of a coord corresponding to a vertex in Si closest to p, likewise ri
is the endpoint of a coord on side i corresponding to a vertex in Si furthest
from p.

Let S ′ =
⋃

i≤k{li, ri}, we claim that S ′ ≡A S. Let us assume for contra-

diction that there exists a vertex x ∈ (N(S)\N(S ′))∩A. Let cx be the coord
corresponding to x, pa and pb be the endpoints of cx such that t < pa < pb.

Let y ∈ S be a neighbor of x and cy the coord corresponding to y. Let py
be the endpoint of cy such that t < py and j the index of the side containing
py, then we know since y is a neighbor of x that pa < py < pb. We also know
by definition that lj < py < ry Since no coord can have both endpoints on
the same side we have either a < j or j < b, if a < j then pa < lj < py < pb
hence cx intersects the coord ending at lj, likewise we can argue if j < b
leading to a contradiction.

For every set S ⊆ A, let R contain all the vertices li and ri as defined
above. We then have N (R) ∩ A = N (S) ∩ A and |R| ≤ 2k. Therefore, by
Lemma 1, mim (A) ≤ 2k for all cuts. Then for any d, by Lemma 2 we have
necd (T, δ) ≤ n2kd.

3.10. Dilworth k Graphs

Definition 15 (Dilworth k graph). Two vertices x and y are said to be
comparable if either N(y) ⊆ N [x] or N(x) ⊆ N [y]. The Dilworth number of
a graph is the largest number of pairwise incomparable vertices of the graph.
A graph is a Dilworth k graph if it has Dilworth number k.

Dilworth k graphs can be recognized in O(k2 · n2) time [34].

Lemma 12. Given a Dilworth k graph G and any positive integer d, we
can, in polynomial time, compute a decomposition tree (T, δ) of G having
necd (T, δ) ≤ nkd.

131

Proof. Let us consider any cut
(
A,A

)
of G and S ⊆ A. We want to prove

that there exist S ′ such that |S ′| ≤ k and N (S ′)∩A = N (S)∩A. Let S ′ be an
inclusion minimal subset of S such that N (S ′)∩A = N (S)∩A. If S ′ contains
two vertices x and y such that N(y) ⊆ N [x], then S ′ \ {y} contradicts the
minimality of S ′. Since V cannot contain more than k pairwise incomparable
vertices, |S ′| <= k. Therefore mim (A) ≤ k and by applying Lemma 2 the
lemma follows.

3.11. Complements of k Degenerate Graphs

Definition 16 (k degenerate graph). A graph G is k-degenerate if there
exists an elimination ordering v1, . . . , vn of the vertices of G such that ∀i ∈
{1, . . . , n}, |{vj : j > i and vj ∈ N(vi)}| ≤ k.

Lemma 13. Given a graph G that is the complement of a k-degenerate graph,
and any positive integer d, we can, in polynomial time, compute a decompo-
sition tree (T, δ) of G having necd (T, δ) ≤ nd · 2kd.
Proof. We build a caterpillar decomposition of G using the elimination or-
dering induced by the k-degeneracy of G. We consider a cut (A,A) of the
decomposition.

Note first that since G is k-degenerate, every vertex of A has at most
k neighbors in A. Therefore, in G every vertex of A has at least |A| − k
neighbors in A. Moreover every S ⊆ A with size d sees at least |A| − kd
vertices d times. There is at most nd ways to choose S. For each such choice
there is at most kd missing edges, hence at most 2kd non-equivalent subsets
containing S.

3.12. Boolean-width

We say that a class of graphs C has boolean-width O(f(n)) if for every G
in C we have boolw (G) ∈ O(f(n)). We now restate the results in this section
in terms of boolean-width, using the fact that, for any graph G and any de-
composition (T, δ) of G, we have boolw (G) ≤ boolw (T, δ) = log2 nec1(T, δ) ≤
log2 necd(T, δ). Combining this fact with the results in this section we get
the following.

Corollary 14. The following graph classes all have boolean-width O(log n):
interval graphs, circular arc graphs, permutation graphs, circular permuta-
tion graphs, trapezoid graphs, k-trapezoid graphs, circular k-trapezoid graphs,
convex graphs, k-polygon graphs, Dilworth k graphs and complements of k-
degenerate graphs.

132 GRAPH CLASSES

4. Lower bounds

In this section we provide lower bounds for necd(T, δ) of optimal decompo-
sitions for various classes of graphs. We do so by providing lower bounds for
the boolean-width of these classes. Note that a lower bound on boolw (T, δ)
also implies the same lower bound for nec1(T, δ), which in turn give the same
lower bound for necd(T, δ) for d ≥ 2. However, the converse of this state-
ment is not true for values of d ≥ 2. We show that the upper bounds we
gave in Section 4 are tight in two senses. We say that a class of graphs C
has boolean-width Ω(f(n)) if for any integers k and n there exists a graph
G ∈ C with |V (G) ≥ n| having boolean-width larger than k × f(|V (G)|).
Firstly, we show that all graph classes (except possibly Dilworth k graphs) in
Group II of Figure 1 have boolean-width Ω(log n). Secondly, we show that
for all graph classes in Group IV of Figure 1, it is highly unlikely that they
have boolean-width O(log n). We use the following result on the relation
between boolean-width and some other width parameters.

Theorem 15 (Bui-Xuan, Telle, Vatshelle [17, 1]). For any graph G and any
decomposition (T, δ) of G, it holds that log rw (T, δ) − 1 ≤ log cw(T, δ) −
1 ≤ boolw (T, δ) ≤ log necd(T, δ), where boolw (T, δ) , rw (T, δ) and cw(T, δ)
denote respectively the boolean-width, rank-width and clique-width of (T, δ).

Hence if a graph class has rank-width or clique-width Ω(nc) for some con-
stant c > 0, then this graph class also has boolean-width Ω(log n). We now
give a lower bound for the rank-width of proper interval, bipartite permu-
tation graphs and complement of grids, which implies the desired Ω(log n)
lower bound for boolean-width.

We call Hsu-graph a bipartite graph H = (V,E) with V = {v1, v2, . . . va},
{u1, u2, . . . ub} and vi, uj ∈ E(H) if and only if i ≤ j. A Hsu-join-chain of
length q and width p is constructed as follows. Let F = G1, G2, . . . , Gq be a
family of graphs, all on at least p vertices. For j ∈ {i, i+1}, let Sj ⊆ V (Gj),
|Sj| = p and σj an ordering of Sj. Then, for every 1 ≤ i ≤ q − 1, let
G[Si ∪ Si+1] be isomorphic to a Hsu-graph where we identify σj(r) with vr
and σj+1(r) with ur.

Lemma 16. If G is a HSU-join-chain of length q and width p where q > 3p
then rw (G) ≥ p/2.

Proof. Let F = G1, G2, . . . , Gq be the family of graphs used to construct G.
Without loss of generality, we assume |V (Gi)| = p for 1 ≤ i ≤ q. To show

133

that G has high rank-width, note that every decomposition tree of G contains
a (1

3
, 2
3
)-balanced cut

(
A,A

)
. We show that every such cut has cut-rank at

least p/2. Assume for contradiction that cut-rank(A) < p/2. We distinguish
two cases:

Case 1: At least p graphs in F contains vertices from both A and A.
Then for every i and j with |i − j| = 1 such that Gi contains vertices from
both A and A we know that there is an edge (u, v) with u ∈ V (Gi) such that
(u, v) ∈ G[V (Gi), V (Gj)]. There is at least p such edges with different pairs
of i and j, and without loss of generality there is at least p/2 such edges
where min(i, j) is odd. These edges form an induced matching contradicting
that cut-rank(A) < p/2.

Case 2: At least 2p+ 1 graphs in F contains vertices all from the same
side of the cut

(
A,A

)
. Since the cut is balanced there must be at least one

graph with all its vertices in A and one graph with all its vertices in A. Let Gi

and Gi′ be two such graphs of minimum distance, without loss of generality
assume i < i′ and V (Gi) ⊆ A. Then for each r ∈ {1, 2, . . . , p} there must be
a j such that σj(r) ∈ A and σj+1(r) ∈ A, let S be a set containing all such
pairs of vertices and H = G[S] the subgraph induced by these vertices.

The graph H is formed by a collection of Hsu-graphs whose size sums up
to at least p, there is an induced subgraph of H which is a collection of vertex
disjoint Hsu-graphs whose size sum up to at least 2p/3, namely partitioning
the edges into 3 by j mod 3 and picking the largest partition. This graph
has rank-width at least 2p/3 leading to a contradiction.

We now describe two distinct families of Hsu-join-chains, one being a
subclass of bipartite permutation graphs and the other a subclass of proper
interval:

Corollary 17. Bipartite permutation graphs have rank-width Ω(
√
n) and

boolean-width Θ(log n).

Proof. Let a Hsu-stable-chain of length q and width p be the Hsu-join-chain
of length q and width p where for every i, Gi is a stable set of size p. Clearly,
Hsu-stable-chains are bipartite permutation graphs (see Figure 4), and by
Lemma 16 and Theorem 15 they have rank-width Θ(p) and boolean-width
Θ(log p).

Recall that proper interval graphs are interval graphs admitting an inter-
val model where all the intervals have same length.

134 GRAPH CLASSES

93 6

5 82

1 4 7

11

10

12

(a)

10 11

1 2 3 7 8 9

124 5 6

(b)

Figure 4: (4× 3) Hsu-stable chain (a) and its permutation representation (b).

Corollary 18. Proper interval graphs have rank-width Ω(
√
n) and boolean-

width Θ(log n).

Proof. Let a Hsu-Clique-chain of length q and width p be the Hsu-join-chain
of length q and width p where for every i, Gi is a clique of size p. Clearly,
Hsu-clique-chains are proper interval graphs, and by Lemma 16 and Theorem
15 they have rank-width Θ(p) and boolean-width Θ(log n).

1 4

52

3 6 9

8

7 10

11

12

(a)

11
12

10

9

7
8

4
5
6

1

3
2

(b)

Figure 5: (4× 3) Hsu-Clique chain (a) and its proper interval representation (b).

Moreover, note that Jeĺınek showed in [35] that
√
n×√n grids have rank-

width exactly
√
n − 1. Since the rank-width of a graph differs by at most

one from the rank-width of its complement, then complement of grids have
rank-width at least

√
n − 2. Since grids are 2-degenerate, then complement

of k-degenerate graphs have rank-width Ω(
√
n).

Finally, we can summarize these lower bounds as follows:

Lemma 19. All graph classes in Group II of Figure 1 (except possibly Dil-
worth k graphs), have boolean-width Ω(log n).

Another interesting question to ask is whether there exist more graph
classes having logarithmic boolean-width. The usual way to answer this
question is by either showing how to construct a decomposition of small
width, or by showing an infinite family of graphs of large width. For some
graph classes it is possible to provide such examples of graphs having non-
logarithmic boolean-width, like for the q× q grid. However, for other classes

135

of graphs, we do not know any example of infinite family of graphs having
non-logarithmic boolean-width. We are nonetheless able to provide some
lower bounds:

Lemma 20. For all the classes in Group IV of Figure 1, either they do not
have boolean-width O(log n), or such a decomposition cannot be computed in
polynomial time unless P = NP .

Proof. Note first that for all the classes of graphs in Group IV of Figure 1,
Minimum Weight Dominating Set is NP-complete (see [36], [37] and
[38]). Moreover, Minimum Weight Dominating Set can be solved in
time O(23·boolw · poly(n)) [17]. Assume now that there exists a class C in
Group IV of Figure 1 having boolean-width O(log n) and where such decom-
positions can be computed in polynomial time. Then Minimum Weight

Dominating Set can be computed in time O(2O(logn) · poly(n)) which is
polynomial in n. Hence if a class of graphs on which Minimum Weight

Dominating Set is NP-complete has boolean-width O(log n), then com-
puting such decompositions is NP-hard.

Note that this holds not only for Minimum Weight Dominating Set,
but as long as there exists a problem which can be solved in O(2O(boolw ·
poly(n)) time. Finally, we can get stronger lower bounds by working under
a stronger hypothesis. The Exponential Time Hypothesis (ETH) states that
there does not exists an algorithm for solving 3-Sat running in time 2o(n).
We can reformulate Lemma 20 as follows:

Lemma 21. For all the classes in Group IV of Figure 1, either they do not
have boolean-width O(no(1)), or such a decomposition cannot be computed in

time 2n
o(1)

, unless ETH fails.

Proof. Assume for contradiction that there exists a class of graphs C in Group
IV of Figure 1 for which a decomposition of boolean-width no(1) can be com-
puted in time 2n

o(1)
. Recall that Minimum Weight Dominating Set is

NP-complete on all the classes in Group IV of Figure 1. Hence, there is a
polynomial time reduction from k-SAT to Minimum Weight Dominat-

ing Set on C such that from any instance I of k-SAT, a graph G = (V,E)
belonging to C can be built such that n ≤ |I|c, for some constant c > 0
and solving Minimum Weight Dominating Set on G implies a solution
to k-SAT on I. Recall that Minimum Weight Dominating Set can be
solved in 23·boolw(G) · poly(n). Finally, since we assumed we could compute

136 GRAPH CLASSES

a decomposition of boolean-width no(1) in time 2n
o(1)

, the instance I can be
solved in 23·n

o(1) · poly(n), which is equivalent to 23·|I|
o(c) · poly(|I|c). This

would imply that we could solve the instance I in time 2o(|I|). Hence the
Lemma follows.

This means for instance that if split graphs have boolean-width polylog-
arithmic in n, then it is NP-hard to compute a decomposition of split graphs
having boolean-width within a factor log(n) of the optimum.

5. Conclusion

We have shown that all graph classes in Group II of Figure 1 admit a
decomposition where necd is bounded by a polynomial of n, and we can
compute such decompositions in polynomial time if the intersection is model
is given. This answers an open question from [17]. The following theorem is
the main motivation for our results.

Theorem 22 (Main theorem of [1]). Let G be a graph given along with a de-
composition tree (T, δ). For every LC-VSVP problem Π, there are constants
d and q such that Π can be solved in time O(n4 · q · necd (T, δ)3q).

Combined with the results in Section 3 we get the following theorem:

Theorem 23. Let C be one of the following graph classes: Dilworth k graphs,
convex graphs, trapezoid graphs, circular permutation graphs, circular arc
graphs or circular k-trapezoid graphs. Then, every LC-VSVP problem can be
solved in polynomial time on C.

For the particular case of complement of k-degenerate, we gave a bound
for necd (T, δ) of the form 2d·k · nd, which implies the following:

Theorem 24. Let G be the complement of a k-degenerate graph, given along
with a decomposition tree (T, δ). Every LC-VSVP problem can be solved in
time 2O(k) · poly(n).

This means that every LC-VSVP problem can be solved in FPT time on
a graph G when parameterized by the degeneracy of the complement of G,
with single exponential dependence in the parameter. Finally, we leave open
the question of whether the classes in Group III of Figure 1 have logarithmic
boolean-width.

137

References

[1] B.-M. Bui-Xuan, J. A. Telle, M. Vatshelle, Fast dynamic programming
for locally checkable vertex subset and vertex partitioning problems,
Theoretical Computer Science Submitted to this issue (?) (2012) ?

[2] J. A. Telle, A. Proskurowski, Algorithms for vertex partitioning prob-
lems on partial k-trees, SIAM Journal on Discrete Mathematics 10 (4)
(1997) 529–550.

[3] B. Courcelle, J. A. Makowsky, U. Rotics, Linear time solvable optimiza-
tion problems on graphs of bounded clique-width, Theory of Computing
Systems 33 (2) (2000) 125–150.

[4] M. R. Garey, D. S. Johnson, L. J. Stockmeyer, Some simplified np-
complete graph problems, Theoretical Computer Science 1 (3) (1976)
237–267.

[5] A. Brandstädt, D. Kratsch, On the restriction of some np-complete
graph problems to permutation graphs, in: Proceedings of FCT, Vol.
199 of Lecture Notes in Computer Science, Springer-Verlag, 1985, pp.
53–62.

[6] M.-S. Chang, Efficient algorithms for the domination problems on inter-
val and circular-arc graphs, SIAM Journal on Computing 27 (6) (1998)
1671–1694.

[7] P. Damaschke, H. Müller, D. Kratsch, Domination in convex and chordal
bipartite graphs, Information Processing Letters 36 (5) (1990) 231–236.

[8] J. Dı́az, J. Nesetril, M. J. Serna, D. M. Thilikos, H-colorings of large
degree graphs, in: Proceedings of EurAsia-ICT, Lecture Notes in Com-
puter Science, Springer-Verlag, 2002, pp. 850–857.

[9] E. S. Elmallah, L. K. Stewart, Independence and domination in polygon
graphs, Discrete Applied Mathematics 44 (1-3) (1993) 65–77.

[10] M. Farber, J. Keil, Domination in permutation graphs, Journal of Al-
gorithms 6 (1985) 309–321.

138 GRAPH CLASSES

[11] P. van’t Hof, D. Paulusma, J. M. M. van Rooij, Computing role as-
signments of chordal graphs, Theoretical Computer Science 411 (40–42)
(2010) 3601–3613.

[12] W.-L. Hsu, K.-H. Tsai, Linear time algorithms on circular-arc graphs,
Information Processing Letters 40 (3) (1991) 123–129.

[13] Y. Liang, Dominations in trapezoid graphs, Information Processing Let-
ters 52 (6) (1994) 309–315.

[14] C. Rhee, Y. Liang, S. Dhall, S. Lakshmivarahan, An o(n + m)-time
algorithm for finding a minimum-weight dominating set in a permutation
graph, SIAM Journal on Computing 25 (2) (1996) 404–419.

[15] K.-H. Tsai, W.-L. Hsu, Fast algorithms for the dominating set problem
on permutation graphs, Algorithmica 9 (6) (1993) 601–614.

[16] J. Kratochv́ıl, P. D. Manuel, M. Miller, Generalized domination in
chordal graphs, Nordic Journal of Computing 2 (1) (1995) 41–50.

[17] B.-M. Bui-Xuan, J. A. Telle, M. Vatshelle, Boolean-width of graphs,
Theoretical Computer Science 412 (39) (2011) 5187–5204.

[18] M. Yannakakis, Node deletion problems on bipartite graphs, SIAM Jour-
nal on Computing 10 (2) (1981) 310–327.

[19] W.-L. Hsu, Decomposition of perfect graphs, Journal of Combinatorial
Theory, Series B 43 (1) (1987) 70–94.

[20] J. Geelen, A. Gerards, G. Whittle, Branch-width and well-quasi-ordering
in matroids and graphs, Journal of Combinatorial Theory, Series B 84 (2)
(2002) 270–290.

[21] S.-i. Oum, P. D. Seymour, Approximating clique-width and branch-
width, Journal of Combinatorial Theory, Series B 96 (4) (2006) 514–528.

[22] N. Robertson, P. D. Seymour, Graph minors. X. obstructions to tree-
decomposition, Journal of Combinatorial Theory, Series B 52 (2) (1991)
153–190.

139

[23] K. S. Booth, G. S. Lueker, Testing for the consecutive ones property,
interval graphs and graph planarity using pq-tree algorithms, Journal
of Computer and System Sciences 13 (1976) 335–379.

[24] R. M. McConnell, Linear-time recognition of circular-arc graphs, Algo-
rithmica 37 (2003) 93–147.

[25] D. Kratsch, R. M. Mcconnell, K. Mehlhorn, J. P. Spinrad, Certifying al-
gorithms for recognizing interval graphs and permutation graphs (2003)
158–167.

[26] R. Sritharan, A linear time algorithm to recognize circular permutation
graphs, Networks 27 (3) (1996) 171–174.

[27] T. H. Ma, J. P. Spinrad, On the 2-chain subgraph cover and related
problems, Journal of Algorithms 17 (2) (1994) 251–268.

[28] H. L. Bodlaender, T. Kloks, D. Kratsch, H. Müller, Treewidth and min-
imum fill-in on d-trapezoid graphs, Journal of Graph Algorithms and
Applications 2 (2).

[29] M. Yannakakis, The complexity of the partial order dimension problem,
SIAM Journal on Algebraic and Discrete Methods 3 (3) (1982) 351–358.

[30] R. Hegde, K. Jain, The hardness of approximating poset dimension,
Electronic Notes in Discrete Mathematics 29 (2007) 435–443.

[31] D. Kratsch, T. Kloks, H. Müller, Measuring the vulnerability for classes
of intersection graphs, Discrete Applied Mathematics 77 (3) (1997) 259–
270.

[32] Y.-l. Lin, Circular and circle trapezoid graphs, Journal of Science and
Engineering Technology 2 (2) (2006) 11–17.

[33] E. S. Elmallah, L. K. Stewart, Polygon graph recognition, Journal of
Algorithms 26 (1) (1998) 101–140.

[34] V. R. Stefan Felsner, J. Spinrad, Recognition algorithms for orders of
small width and graphs of small dilworth number, Order 20 (4) (2003)
351–364.

140 GRAPH CLASSES

[35] V. Jeĺınek, The rank-width of the square grid, in: 34rd International
Workshop on Graph-Theoretic Concepts in Computer Science (WG’08),
Vol. 5344 of LNCS, 2008, pp. 230–239.

[36] D. G. Corneil, Y. Perl, Clustering and domination in perfect graphs,
Discrete Applied Mathematics 9 (1984) 27–40.

[37] M.-S. Chang, Weighted domination of cocomparability graphs, Discrete
Applied Mathematics 80 (3) (1997) 135–148.

[38] J. M. Keil, The complexity of domination problems in circle graphs,
Discrete Applied Mathematics 42 (1) (1993) 51–63.

141

142 GRAPH CLASSES

Fast dynamic programming for locally checkable vertex

subset and vertex partitioning problems�

Binh-Minh Bui-Xuan
a, Jan Arne Telle

b, Martin Vatshelle
b,∗

a CNRS – Université Paris 6, France.
b Department of Informatics, University of Bergen, Norway.

Abstract

Given a graph G we provide dynamic programming algorithms for many
locally checkable vertex subset and vertex partitioning problems. Their run-
time is polynomial in the number of equivalence classes of problem-specific
equivalence relations on subsets of vertices, defined on a given decomposi-
tion tree of G. Using these algorithms all these problems become solvable in
polynomial time for many well-known graph classes like interval graphs and
permutation graphs (Belmonte and Vatshelle [1]). Given a decomposition of
boolean-width k we show that the algorithms will have runtime O(n42O(k2)),
providing the first large class of problems solvable in fixed-parameter single-
exponential time in boolean-width.

1. Introduction

When solving graph problems by divide-and-conquer or by dynamic pro-
gramming we need to recursively divide the input graph G. A natural way
to do this is to recursively partition the vertices of the graph in two parts.
The resulting decomposition of G can be stored as a full binary tree whose
leaves are in bijection with the n vertices of G. In this paper we assume
that we are given such a decomposition tree of G and focus on fast dynamic
programming algorithms for a large class of locally checkable vertex subset
and vertex partitioning problems. Depending on the problem being solved

�Supported by the Norwegian Research Council, project PARALGO.
∗Corresponding author. Tel: (+47) 55 58 42 00. Fax: (+47) 55 58 41 99.
Email addresses: buixuan@lip6.fr (Binh-Minh Bui-Xuan), telle@ii.uib.no

(Jan Arne Telle), vatshelle@ii.uib.no (Martin Vatshelle)

143

and the given decomposition tree we define equivalence relations on vertex
subsets and give algorithms with runtime polynomial in n and the number
of equivalence classes of these relations. In a companion paper by Belmonte
and Vatshelle [1] it is shown that for many families of graphs, like permuta-
tion graphs, interval graphs, Dilworth k graphs, we can in polynomial time
find a decomposition tree where the number of such equivalence classes is
polynomial in n. Combined with the results in this paper we get on all
those graph families polynomial-time algorithms solving the class of locally
checkable vertex subset and vertex partitioning problems.

This class includes many well-known NP-hard problems related to dom-
ination, independence and homomorphism, and also their vertex weighted
versions. For example, vertex subset problems like Perfect Code, Maximum
Induced Matching, Minimum Perfect Dominating Set and in general exis-
tence and optimization problems over any of the vertex subset properties
listed in Table 1. For fixed integer d problems like Minimum d-Dominating
Set, Induced d-Regular Subgraph, Minimum Subgraph of Degrees ≥ d, and
d-Vertex Coloring. Also, the problem of deciding if the input graph has a
partitioning of its vertex set into a fixed number q of sets each having a
property listed in Table 1. For a fixed simple graph H also problems like H-
Coloring, H-Homomorphism, H-Covering, H-Partial Covering, and H-Role
Assignment, see Table 2, asking for a homomorphism, with some possible
local constraints, from the input graph G to the target graph H.

These are optimization problems over locally checkable neighborhood con-
ditions, as defined in Section 2. For example, in the Minimum d-Dominating
Set problem we optimize over vertex subsets S of the input graph G such
that any vertex not in S has at least d neighbors in S. To check this con-
dition note that we must count S-neighbors up to d, but no further since
it does not matter if a vertex has d neighbors in S or if it has more than
d neighbors in S. In a bottom-up traversal of the decomposition tree T we
solve the problem on induced subgraphs of G of increasing size. For the
subgraph induced by A ⊆ V (G) two subsets X, Y ⊆ A will be equivalent
w.r.t. the d-Dominating Set constraint if any vertex v not in A either has the
same number of neighbors in X and Y , or at least d in each. The number
of equivalence classes necdA of vertex subsets will in this way depend on the
value d as given by the problem, on the various vertex subsets A as given
by the decomposition tree T , and on the bipartite graphs induced by edges
having exactly one endpoint in A as given by the graph G. In Section 5 we
give dynamic programming algorithms solving locally checkable vertex sub-

144 LC-VPS PROBLEMS

σ ρ d Standard name VP ∃ MAX MIN

� ≥ d d d-Dominating set 3 P P NPC

{d} � d+1
Induced d-Regular

2 ? NPC ?
Subgraph

≥ d � d
Subgraph of

? P P NPC
Min Degree ≥ d

≤ d � d+1
Induced Subg.

? P NPC P
of Max Degree ≤ d

{0} {0, 1} 2
Strong Stable set

4 P NPC P
or 2-Packing

{0} {1} 2
Perfect Code or

4 NPC NPC NPC
Efficient Dominating set

{0, 1} {0, 1} 2 Total Nearly Perfect set 3 P NPC P

{0, 1} {1} 2
Weakly Perfect

3 NPC NPC NPC
Dominating set

{1} {1} 2
Total Perfect

3 NPC NPC NPC
Dominating set

{1} � 2 Induced Matching 2 P NPC P

{1} �
+ 2

Dominating Induced
2 NPC NPC NPC

Matching
� {1} 2 Perfect Dominating set 2 P P NPC
{0} � 1 Independent set 3 P NPC P
� �

+ 1 Dominating set 3 P P NPC

{0} �
+ 1

Independent
3 P NPC NPC

Dominating set
�

+
�

+ 1 Total Dominating set 2 P P NPC

Table 1: Some vertex subset properties expressible as (σ, ρ)-sets, with � = {0, 1, ...} and
�

+ = {1, 2, ...}. Column d shows that we must count up to d neighbors. Column VP
shows the smallest k for which the question of partition into k such sets is NP-complete.
Columns ∃, MAX and MIN show complexity of existence, maximization and minimization
over such sets, with P, NPC and ? denoting Polytime, NP-Complete and unknown (to
us).

145

set problems in time polynomial in all the necdA, and in Section 6 we extend
this result to vertex partitioning problems.

Edges d Standard name NP-Complete

� 1
H-coloring

H bipartite
H-homomorphism

�
+ 1

H-role assignment
H on 3 vertices or more

H-locally surj. hom.

{1} 2
H-covering

open, e.g. H k-regular for k ≥ 3
H-locally bij. hom.

{0, 1} 2
H-partial covering

open, Harder than H-covering
H-locally inj. hom.

Table 2: Various homomorphism problems for fixed simple graph H. These are expressible
as locally checkable vertex partitioning problems with the degree constraint matrix Dq

being the adjacency matrix ofH with 1-entries replaced by value in column Edges, 0-entries
replaced by {0}, and q = |V (H)|. Column d shows that we must count up to d neighbors.
NP-completeness known for fixed H having property listed in the last column [2], with
dichotomy known for the first two rows.

As shown in the companion paper [1], for many families of intersection
graphs, like convex graphs and trapezoid graphs, one can in polynomial time
find a decomposition tree T such that necdA is polynomial in n, for any subset
A appearing as the leaves of a subtree of T , and any fixed value d. This im-
plies polynomial-time algorithms for the locally checkable vertex subset and
vertex partitioning problems on these families of intersection graphs. On the
other hand, for graph families where at least one of these problems remains
NP-hard we cannot expect the existence of decomposition trees with every
necdA polynomial in n. In such cases it is common to define a width parameter
of graphs and apply the theory of fixed parameter algorithms. One can, for
each value of d, define a width parameter of graphs that captures the min-
imum, over all decomposition trees T of a graph G, of the maximum necdA
for any A ⊆ V (G) at the leaves of a subtree of T . For the value d = 1 the
resulting width parameter is exactly 2boolw(G), where boolw(G) is the boolean-
width of G. Moreover, we show in Section 7 that for any d and A we have
necdA ≤ (nec1A)

d×log2(nec1A). This implies that given a graph G and a decom-
position tree of boolean-width boolw our dynamic programming algorithms
are single-exponential fixed-parameter tractable in boolw. For vertex subset
problems the runtime becomes O(n423d×boolw2

) and for problems asking for a

146 LC-VPS PROBLEMS

partition of the vertex set into q sets the runtime becomes O(n423qd×boolw2
).

Width parameters of graphs have many applications in the field of graph
algorithms and especially in Fixed Parameter Tractable (FPT) algorithmics,
see e.g. Downey and Fellows [3], Flum and Grohe [4], and Hliněný et al. [5].
Since the locally checkable vertex subset and vertex partitioning problems are
expressible in monadic second-order logic it follows from the well-known the-
orem of Courcelle and Makowsky [6] that they are fixed-parameter tractable
when parameterized by either the tree-width, branch-width, clique-width,
rank-width or boolean-width of the input graph. Although the runtime re-
sulting from this theorem contains a highly exponential factor (tower of pow-
ers), the problems behave very well for tree-width tw and branch-width bw:
Given a decomposition tree of tree-width tw, they can be solved in O∗(2O(tw))
and O∗(2O(bw)) time [7]. This is not the same situation for clique-width cw,

where until now the best runtime contained a O∗(22
poly(cw)

) double exponen-
tial factor [8]. Having small boolean-width is witnessed by a decomposition
of the graph into cuts with few different unions of neighborhoods across the
cut. This makes the decomposition natural to guide dynamic programming
algorithms to solve problems, like Maximum Independent Set, where vertex
sets having the same neighborhoods can be treated as equivalent [9]. In this
paper we extend such an observation to the much larger class of locally check-
able vertex subset and vertex partitioning problems. As mentioned above,
the runtime of our algorithms expressed by boolean-width boolw of the given
decomposition tree is O∗(2O(boolw2)), which can be interpreted as O∗(2O(cw2))
since for the clique-width cw resulting from this decomposition tree we have
cw ≥ boolw [9]. For clique-width this improves by an exponential factor the
best previous runtimes [8] and it provides for the first time a large class of
problems for which dynamic programming gives runtime single exponential
in boolean-width. It implies quasi-polynomial algorithms solving all these
problems on random graphs, since it has been shown that a random graph
on n vertices where the edges are drawn with respect to a uniform distri-
bution almost surely has boolean-width Θ(log2 n), and it is easy to find a
decomposition tree witnessing it [10]. On an arbitrary graph G a decom-
position of optimal boolean-width can be computed in time O(2.52n) [11].
Heuristic algorithms finding decompositions for boolean-width compare well
with heuristics for tree-width, in particular for dense graphs [12], opening for
the possibility of a practical application of the algorithms given here.

The paper is organized as follows. In Section 2 we define the class of

147

problems and the decomposition trees used. In Section 3 we give an intu-
itive description of our algorithms, using the Maximum Induced Matching
problem as example. In Section 4 we give a pre-processing step comput-
ing representatives to be used as indices of the dynamic programming. In
Section 5 we give algorithms for vertex subset problems and in Section 6
algorithms for vertex partitioning problems. In Section 7 we define boolean-
width and show its relation to necdA that allows us to express runtime of our
algorithms as a function of boolean-width. We end in Section 8 with some
conclusions and open problems.

2. Locally checkable problems and rooted decomposition trees

We deal with simple, undirected graphs. The complement of a vertex
subset A of a graph G = (V (G), E(G)) is denoted by A = V (G) \ A. The
neighborhood of a vertex x is denoted by N(x) and for a subset of vertices
X we denote the union of their neighborhoods by N(X) =

⋃
x∈X N(x). We

denote by G[X] the graph induced by X ⊆ V (G). To ensure uniqueness of
certain algorithms, e.g. for computing representatives of the equivalence re-
lations on vertex subsets, we assume a total ordering σ on the vertex set of G
which stays the same throughout the entire paper. For easy disambiguation,
we usually refer to vertices of a graph and nodes of a tree.

We want to solve graph problems using a divide-and-conquer approach.
To this aim, we need to store the information on how to recursively divide the
input graph instance. A standard way to do this is to use a decomposition
tree, for our purposes a rooted tree.

Definition 1. A decomposition tree of a graph G is a pair (T, δ) where T is
a full binary tree (i.e. T rooted with every non-leaf having two children) and
δ a bijection between the leaf set of T and the vertex set of G. For a node a
of T let the subset of V (G) in bijection δ with the leaves of the subtree of T
rooted at a be denoted by Va.

We will be interested in the following problems as defined in [7].

Definition 2. Let σ and ρ be finite or co-finite subsets of natural numbers.
A subset S of vertices of a graph G is a sigma-rho set, or simply (σ, ρ)-set,
of G if

∀v ∈ V (G) : |N(v) ∩ S| ∈
{

σ if v ∈ S,
ρ if v ∈ V (G) \ S.

148 LC-VPS PROBLEMS

Table 1 shows some classical vertex subset properties expressed as (σ, ρ)-
sets. The class of locally checkable vertex subset problems consist of finding
a minimum or maximum (σ,ρ)-set in an input graph G, possibly on vertex-
weighted graphs. This includes many NP-hard problems as indicated in
Table 1. For NP-completeness results see [13, 14, 15, 16, 17, 18].

Since σ and ρ are either finite or co-finite we can check locally if S is a
(σ, ρ)-set by counting for each vertex v the number of S-neighbors only up
to d(σ, ρ), defined as follows.

Definition 3. Let d(�) = 0. For every finite or co-finite set μ ⊆ �, let d(μ) =
1 +min(maxx∈�x : x ∈ μ,maxx∈�x : x /∈ μ). Let d(σ, ρ) = max(d(σ), d(ρ)).

For example, d({1}) = 2 which is one more than the largest number
contained in the finite set {1}, while d({1, 2, ...}) = 1 which is one more
than the largest number not contained in the co-finite set {1, 2, ...}, and
d({1}, {1, 2, ...}) = 2 which is the maximum of d({1}) and d({1, 2, ...}).

We can also ask for a partition of V (G) into q classes, with each class
satisfying a certain (σ, ρ)-property, as follows.

Definition 4. A degree constraint matrix Dq is a q by q matrix with entries
being finite or co-finite subsets of natural numbers. A Dq-partition in a graph
G is a partition {V1, V2, ..., Vq} of V (G) such that for 1 ≤ i, j ≤ q we have
∀v ∈ Vi : |N(v) ∩ Vj| ∈ Dq[i, j].

The locally checkable vertex partitioning problems consist of deciding if
G has a Dq partition. NP-hard problems fitting into this framework include
the question of deciding if an input graph has a partition into q (σ, ρ)-sets,
which is in most cases NP-complete for small values of q, see the column
VP in Table 1. It also includes for any fixed graph H the homomorphism
problems listed in Table 2. Let us mention that extending the algorithms we
give here to handle also the case of finding an extremal value (maximum or
minimum) of the cardinality of a vertex partition class over all Dq-partitions
is straightforward.

3. Detailed example: Maximum Induced Matching

We first describe our algorithms intuitively, taking as our main example
the vertex subset maximization problem over (σ, ρ)-sets with σ = {1} and
ρ = �. We thus want to compute the cardinality of a maximum set of vertices

149

S such that in G[S] all vertices have degree one, the so-called Maximum
Induced Matching problem. In a bottom-up traversal of T we will solve
the problem on induced subgraphs of increasing size, at node a of T storing
information on partial solutions to the problem on G[Va] in a table Taba.

A partial solution will have two parts (Sa, Za) where

• Sa ⊆ Va such that in G[Sa] all vertices (of Sa) have degree at most one

• Za ⊆ Va such that in G[Sa ∪ Za] vertices of Sa have degree exactly one

We call (Sa, Za) a partial solution to the Max Induced Matching problem
on G[Va], in which Za is a witness of a necessary, but not sufficient, condition
for Sa to be extendible into an induced matching of G.

The number of partial solutions could be exponential in n but many of
them are superfluous. If two subsets Za, Ya ⊆ Va have the property that
for every v ∈ Va the vertex v has either zero neighbors in each of Za and
Ya, or exactly one neighbor in each, or at least two neighbors in each, then
it is not hard to check that for the Maximum Induced Matching problem
(Sa, Za) is a partial solution if and only if (Sa, Ya) is a partial solution, and
one of the two will be superfluous. This motivates the following equivalence
relation on subsets of vertices, which applies to the general σ, ρ case using
d(σ, ρ)-neighbor equivalence. For the Maximum Induced Matching problem
we have d({1},�) = 2.

Definition 5 (d-neighbor equivalence). Let d be a non-negative integer, G
be a graph and A ⊆ V (G). Two vertex subsets X ⊆ A and Y ⊆ A are
d-neighbor equivalent w.r.t. A, denoted by X ≡d

A Y , if:

∀v ∈ A : min(d, |X ∩N(v)|) = min(d, |Y ∩N(v)|).

Let nec(≡d
A) be the number of equivalence classes of ≡d

A.

In the example above we had Za ≡2
Va

Ya and for fixed Sa we need to store

a partial solution (Sa, Za) for at most one member of the equivalence class of
Za. A similar thing applies to Sa, if Sa ≡2

Va
S ′
a and both (Sa, Za) and (S ′

a, Za)
are partial solutions and |Sa| ≥ |S ′

a then (S ′
a, Za) is superfluous since we are

solving a maximization problem. In light of this we index the table Taba of
partial solutions at node a of T by the Cartesian product of the two sets of

150 LC-VPS PROBLEMS

equivalence classes ≡2
Va
× ≡2

Va
(or rather by representatives of these classes)

and store the following information:

Taba[X][Y]
def
= maxS⊆Va{|S| : S ≡2

Va
X and G[S ∪ Y] is 1-regular}

or minus ∞ if no such S exists. Note that (S, Y) is a partial solution for
G[Va]. In this way we contain the runtime by a function of the number of
equivalence classes nec(≡2

Va
) and nec(≡2

Va
).

It is instructive to consider in some detail the initialization of table entries
at leaf a of T associated to vertex δ(a) = v ∈ V (G). In that case we have
Va = {v} with two classes of ≡2

Va
(assuming v has at least one neighbor)

with representatives {v} and ∅, we have Va = V (G) \ {v} with three classes
of ≡2

Va
(assuming v has at least two neighbors) with representatives R0, R1

and R2. The class of Ri for i = 0, 1 consists of those subsets of V (G) \ {v}
containing i vertices of N(v), and for i = 2 those containing ≥ 2 vertices of
N(v). According to the definition of table entries we initialize as follows.

• Taba[∅][R0] = Taba[∅][R1] = Taba[∅][R2] = 0

• Taba[{v}][R0] = Taba[{v}][R2] = −∞

• Taba[{v}][R1] = 1

At the root r of T we have Vr = V (G) with a single equivalence class of
≡2

Vr
, and we have Vr = ∅ with a single equivalence class of ≡2

Vr
. The single

entry of Tabr will contain the cardinality of the largest S ⊆ V (G) such that
in G[S] all vertices have degree 1, i.e. the solution to the Maximum Induced
Matching problem.

At the combine step we have a node w of T with children a, b such that
Vw = Va ∪ Vb and we compute partial solutions to G[Va ∪ Vb] based on al-
ready computed partial solutions to G[Va] and G[Vb]. For any dynamic pro-
gramming on decomposition trees it is important to keep in mind the below
observation, that follows directly from definitions.

Observation 1. If in the tree T node w has children a and b then {Va, Vb, Vw}
forms a 3-partition of V (G).

Another crucial and easy observation is the coarsening of neighborhood
equivalence classes when traversing from a child node a to its parent node w.

151

Va

Sa

Vb

Vw

Ra Rb

Rw

Rb Ra

Rw

Va Va Vb

Vw

Rw

Sa
Sb

Vb

Vw

Ra

Va Vb

Vw

Rb

Sb

Figure 1: Solving Maximum Induced Matching by dynamic programming using the 2-
neighbor equivalence relation on vertex subsets. At inner node w of T with children
a, b we have partition Va, Vb, Vw of V (G). Bottom left shows three arbitrary representa-
tives Ra, Rb, Rw of refined relations as circles, and as boxes the computed representatives
Ra, Rb, Rw of the resulting coarser relations. Top line shows partial solutions (Sa, Ra)
from Taba[Ra][Ra] and (Sb, Rb) from Tabb[Rb][Rb]. Bottom right shows resulting partial
solution (Sa ∪ Sb, Rw) from Tabw[Rw][Rw].

152 LC-VPS PROBLEMS

Observation 2. Let d be a non-negative integer, G be a graph with Va ⊆
Vw ⊆ V (G) and let X, Y ⊆ Va. If X ≡d

Va
Y then X ≡d

Vw
Y .

In particular we have that if X ≡2
Va

Y or X ≡2
Vb

Y then X ≡2
Vw

Y , so
that ≡2

Vw
is a coarsening of the two relations ≡2

Va
and ≡2

Vb
. Likewise ≡2

Va

and ≡2
Vb

are coarsenings of ≡2
Vw
. The algorithm will iterate over all triples of

representatives Ra, Rb, Rw from the three most refined equivalence relations,
≡2

Va
, ≡2

Vb
, ≡2

Vw
, compute the representatives of the resulting coarser relations:

Rw of ≡2
Vw

(from Ra and Rb), Ra of ≡2
Va

(from Rb and Rw), Rb of ≡2
Vb

(from

Ra and Rw), and then update Tabw[Rw][Rw] by Tab[Ra][Ra] + Tab[Rb][Rb].
For correctness it will be crucial that for any Sa ≡2

Va
Ra and Sb ≡2

Vb
Rb the

following holds: If in G[Sa ∪Rb ∪Rw] all vertices of Sa have degree 1 and in
G[Sb ∪Ra ∪Rw] all vertices of Sb have degree 1, then in G[Sa ∪ Sb ∪Rw] all
vertices in Sa ∪Sb will have degree 1. We refer to the formal description and
correctness proof for details, see Figure 3.

The case of ρ �= � is handled similarly. For example, consider Maximum
Dominating Induced Matching for which it is NP-complete simply to decide
if such a set exists. In this case we maximize over σ = {1}, ρ = �

+ sets.
Partial solutions (Sa, Za) must now also ensure that in G[Sa ∪ Za] vertices
in Va \ Sa have degree at least one. The fact that d(�+) = 1 < d({1}) = 2
does not matter, as the 1-neighbor equivalence relation is a coarsening of the
2-neighbor equivalence relation.

4. Computing representatives of d-neighbor equivalence classes

Before explaining the dynamic programming we show how to compute
representatives of the ≡d

Vw
and ≡d

Vw
relations used for indexing the table

Tabw at node w of the tree T . We denote by repdVw
(X) the representative of

X ⊆ Vw in the relation ≡d
Vw
, and by repd

Vw
(Y) the representative of Y ⊆ Vw in

the relation ≡d
Vw
. For simplicity we define this using Vw instead of a generic

subset A, but note that everything we say about X ⊆ Vw, rep
d
Vw
(X) and ≡d

Vw

will hold also for repd
Vw
(Y), Y ⊆ Vw and ≡d

Vw
.

Definition 6 (representative). We assume that a total ordering of the ver-
tices of V (G) is given. For every X ⊆ Vw, the representative repdVw

(X) is
defined as the lexicographically smallest set R ⊆ Vw such that |R| is mini-
mized and R ≡d

Vw
X.

153

To check algorithmically if two subsets of Vw are equivalent w.r.t. Vw we
use the d-neighborhood vector w.r.t. Vw defined as follows.

Definition 7 (d-neighborhood). For X ⊆ A ⊆ V (G), the d-neighborhood of
X w.r.t. A, denoted Nd

A(X), is a multiset of nodes from A, such that, ∀v ∈ A
the number of occurrences of v in Nd

A(X) is equal to min{|N(v) ∩ X|, d}.
Since we have assumed a fixed ordering of the vertices we will store Nd

A(X)
as an |A|-vector over {0, 1, ..., d}.

Note that X ≡d
A X ′ if and only if Nd

A(X) = Nd
A(X

′).

Algorithm 1 List of representatives and their d-neighborhood

INPUT: Graph G, subset A ⊆ V (G) and integer d
Initialize LRA, LNRA, NextLevel to be empty
Initialize LastLevel = {∅}
while LastLevel != ∅ do
for R in LastLevel do
for every vertex v of A do
R′ = R ∪ {v}
compute N ′ = Nd

A(R
′)

if R′ �≡d
A R and N ′ is not contained in LNRA then

add R′ to both LRA and NextLevel
add N ′ to LNRA at the proper position
add pointers between R′ and N ′

end if
end for

end for
set LastLevel = NextLevel, and NextLevel = ∅

end while
OUTPUT: LRA and LNRA

Lemma 1. For any node w of T we can compute a list LRVw containing all
representatives w.r.t. ≡d

Vw
in time O(nec(≡d

Vw
) · log(nec(≡d

Vw
)) · n2).

We also compute a data structure that given X ⊆ Vw, in time O(log(nec(≡d
Vw

)) · |X| · n) will allow us to find a pointer to repdVw
(X) in LRVw .

Proof. Algorithm 1 computes the list LRVw and the list LNRVw of all d-
neighborhoods w.r.t. Vw of the members of LRVw . Before adding a repre-
sentative R to the list LRVw we check if the list LNRVw contains the d-
neighborhood Nd

Vw
(R). Therefore all elements of the list LRVw have different

154 LC-VPS PROBLEMS

d-neighbourhoods. All the representatives added to the list LRVw are also
expanded by any of the vertices of Vw. Assume for contradiction that X is
a minimal representative such that Nd

Vw
(X) is not in the list LNRVw . Then

∀u ∈ X we have: ∀Y ∈ LNRVw : X \ u �≡ Y since then Nd
Vw
(X) would

have been added to LNRVw . Meaning that Nd
Vw
(X \ u) is not in LNRVw

contradicting that X is minimal.
The total of number of representatives to be added to LRVw and number of

d-neighborhoods added to LNRVw is nec(≡d
Vw
). The total number of possible

representatives R′ to be considered is nec(≡d
Vw
) · n. Computing the union

R ∪ {v} and the d-neighbouthood Nd
Vw
(R′) can be done in O(n) time by

copying the d-neigborhood vector of R and updating the entries for vertices
in N(v) ∩ Vw. If we realize the list LNRVw as a balanced binary search tree
checking for containment can be done in O(log(nec(≡d

Vw
)) ·n). Inserting into

the list LRVw can be done in constant time. So in total the construction of
LRVw and LNRVw takes time O(nec(≡d

Vw
) · log(nec(≡d

Vw
)) · n2).

Given a subset X ⊆ Vw we can generate the d-neighborhood Nd
Vw

in
O(|X| · n) time. Then we can binary search in the list LNRVw to find a
pointer to the representative in time O(log(nec(≡d

Vw
)) · |X| · n).

5. Dynamic programming for vertex subset problems

We show in this section how to apply dynamic programming on a de-
composition tree (T, δ) of a graph G to solve a (σ, ρ) locally checkable vertex
subset optimization problem. Note that we do not assume any further in-
formation from the input of (T, δ) other than T being a tree with internal
nodes of degree three and δ a bijection between its leaves and V (G). As is
customary, we let the algorithm follow a bottom-up traversal of T .

With each node w of T we associate a table data structure Tabw that
will store partial solutions to the problem we are solving. Note that we
must satisfy the constraint imposed both by σ and by ρ and that we must
account for the domination both ’from the inside’, i.e. from Vw, and also the
expectation ’from the outside’, i.e. from Vw. This motivates the following
definitions.

Definition 8. Let G be a graph, A ⊆ V (G), and μ ⊆ �. For X ⊆ V (G),
we say that X μ-dominates A if ∀v ∈ A : |N(v) ∩ X| ∈ μ. For X ⊆ A,
Y ⊆ A, the pair (X, Y) σ, ρ-dominates A if (X ∪ Y) σ-dominates X and
(X ∪ Y) ρ-dominates A \X.

155

Letting d = d(σ, ρ) we note that for Y ≡d
A
Y ′ we have Nd

A
(Y) = Nd

A
(Y ′),

i.e. the d-neighborhood of Y and Y ′ w.r.t. A are equal, see Definition 7. This
proves the following lemma showing that σ, ρ-domination behaves well w.r.t.
the d(σ, ρ)-neighbor equivalence relation.

Lemma 2. Let G be a graph and A ⊆ V (G) and σ, ρ finite or co-finite
subsets of non-negative integers with d(σ, ρ) = d. Let X ⊆ A, Y, Y ′ ⊆ A,
and Y ≡d

A
Y ′. Then (X, Y) σ, ρ-dominates A if and only if (X, Y ′) σ, ρ-

dominates A.

The index set of the table Tabw at w will be LRVw×LRVw
and its contents

is defined as follows.

Definition 9. Let opt stand for either function max or function min, de-
pending on whether we are looking for a maximum or minimum (σ, ρ)-
set, respectively. For every node w of T , for X ⊆ Vw and Y ⊆ Vw, let
RX = repdVw

(X) and RY = repd
Vw
(Y). Let d = d(σ, ρ). We define the con-

tents of Tabw[RX][RY] as:

Tabw[RX][RY]
def
=

⎧⎨
⎩

optS⊆Vw{|S| : S ≡d
Vw

RX and (S,RY) σ, ρ-dominates Vw},
−∞ if no such set S exists and opt = max,
+∞ if no such set S exists and opt = min.

Note that Tabw has nec(≡d
Vw
)×nec(≡d

Vw
) entries, cf. Definition 5. At the

root r of T the value of Tabr[rep
d
Vr
(X)][∅] (for all X ⊆ V (G)) will be the size

of a maximum, resp. minimum, (σ, ρ)-set of G (cf. Vr = V (G) and ≡d
Vr

has
only one equivalence class).

For initialization, firstly, for every node w of T the value of every entry
of Tabw will be set to +∞ or −∞ depending on whether we are solving a
minimization or maximization problem, respectively.

Updating the leaves: For a leaf l of T , we then perform the following
update: letting δ(l) = v ∈ V (G), for every representative R w.r.t. ≡d

V (G)\{v},
we set:

• If |N(v) ∩R| ∈ σ then Tabl[{v}][R] = 1.

• If |N(v) ∩R| ∈ ρ then Tabl[∅][R] = 0.

Updating the internal nodes: In a bottom-up traversal of the tree T ,
for an inner node w of T with children a and b, the algorithm proceeds as
follows.

156 LC-VPS PROBLEMS

• Loop over all triples Rw ∈ LRd
Vw
, Ra ∈ LRd

Va
, Rb ∈ LRd

Vb
and do:

Compute Rw = repdVw
(Ra ∪ Rb), Ra = repd

Va
(Rb ∪ Rw) and Rb =

repd
Vb
(Ra ∪Rw)

Update Tabw[Rw][Rw] = opt(Tabw[Rw][Rw],Taba[Ra][Ra]+Tabb[Rb][Rb]).

The following lemma will be useful in the correctness proof of this update.

Lemma 3. For a graph G, let A,B,W be a 3-partitioning of V (G), and let
Sa ⊆ A, Sb ⊆ B and Sw ⊆ W . (Sa, Sb∪Sw) σ, ρ-dominates A and (Sb, Sa∪Sw)
σ, ρ-dominates B if and only if (Sa ∪ Sb, Sw) σ, ρ-dominates A ∪ B.

Proof. Let S = Sa ∪ Sb ∪ Sw. Consider x ∈ Sa, x
′ ∈ A \ Sa and y ∈ SB, y

′ ∈
B \ Sb. By Definition 8 (Sa, Sb ∪ Sw) σ, ρ-dominates A iff for every such x, x′

we have |N(x)∩S| ∈ σ and |N(x′)∩S| ∈ ρ. Also, (Sb, Sa∪Sw) σ, ρ-dominates
B iff for every such y, y′ we have |N(y) ∩ S| ∈ σ and |N(y′) ∩ S| ∈ ρ.

Again, by Definition 8 (Sa ∪ SB, Sw) σ, ρ-dominates A ∪ B iff for all z ∈
Sa∪Sb and z′ ∈ (A∪B)\(Sa∪Sb) we have |N(z)∩S| ∈ σ and |N(z′)∩S| ∈ ρ,
to finish the proof.

Lemma 4. The table of an inner node is updated correctly.

Proof. Let node w have children a, b and assume Taba, Tabb have been filled
correctly. We show that after executing the update at node w the table Tabw
is filled according to Definition 9. We first show show that if Tabw[Rw][Rw] =
k then there exists Sw ⊆ Vw with |Sw| = k and Sw ≡d

Vw
Rw such that (Sw, Rw)

σ, ρ-dominates Vw in G. For this note that, based on the update step and
assumed correctness of children tables, there must exist indices Ra ∈ LRVa

and Rb ∈ LRVb
, with Sa ≡d

Va
Ra and Sb ≡d

Vb
Rb such that (Sa, Ra) σ, ρ-

dominates Va, and (Sb, Rb) σ, ρ-dominates Vb, and |Sa ∪ Sb| = s, and with
Ra = repd

Va
(Rb ∪ Rw) and Rb = repd

Vb
(Ra ∪ Rw). We claim that Sa ∪ Sb

is the desired Sw. Since (Sb ∪ Rw) ≡d
V a

Ra and (Sa, Ra) σ, ρ-dominates Va

it follows from Lemma 2 that (Sa, Sb ∪ Rw) σ, ρ-dominates Va. Likewise,
(Sb, Sa∪Rw) σ, ρ-dominates Vb. We deduce from Lemma 3 that (Sa∪Sb, Rw)
σ, ρ-dominates Va ∪ Vb = Vw. It remains to show that Sa ∪ Sb ≡d

Vw
Rw. By

Observation 2 we have Ra ≡d
Vw

Sa and Rb ≡d
Vw

Sb so that Ra∪Rb ≡d
Vw

Sa∪Sb.
Since we assumed Ra ∪ Rb ≡d

Vw
Rw we therefore have Sa ∪ Sb ≡d

Vw
Rw as

desired.

157

For the other direction, we need to show for every Rw ∈ LRVw and Rw ∈
LRVw

that if there is a set Sw ≡d
Vw

Rw such that (Sw, Rw) σ, ρ-dominates Vw,
then after the update the value of Tabw[Rw][Rw] is ≤ |Sw| if opt = min and
≥ |Sw| if opt = max. Let Sa = Sw∩Va and Sb = Sw∩Vb. The algorithm loops
over all triples of representatives: at some point it will check (Ra, Rb, Rw),
where Ra = repdVa

(Sa) and Rb = repdVb
(Sb). We know that (Sa ∪ Sb, Rw) σ, ρ-

dominates Vw so it follows from Lemma 3 that (Sa, Sb ∪ Rw) σ, ρ-dominates
Va. Note that Ra as computed in the update satisfies Ra ≡d

Va
(Sb ∪ Rw) so

that it follows from Lemma 2 that (Sa, Ra) σ, ρ-dominates Va. Hence, after
the update the value of Taba[Ra][Ra] will be ≤ |Sa| if opt = min and ≥ |Sa|
if opt = max. Arguing analogously we have that the value of Tabb[Rb][Rb]
will be ≤ |Sb| if opt = min and ≥ |Sb| if opt = max. Thus, to conclude
that the value of Tabw[Rw][Rw] will be ≤ |Sa|+ |Sb| = |Sw| if opt = min and
≥ |Sa|+ |Sb| = |Sw| if opt = max all we need to show is that Rw ≡d

Vw
Ra∪Rb.

By Observation 2 we have Ra ≡d
Vw

Sa and Rb ≡d
Vw

Sb so that Ra ∪ Rb ≡d
Vw

Sa ∪ Sb. Since Sw = Sa ∪ Sb and we assumed Rw ≡d
Vw

Sw we therefore have
Ra ∪Rb ≡d

Vw
Rw as desired.

Theorem 1. For every n-vertex graph G given along with a decomposition
tree (T, δ), with necd(T, δ) the maximum nec(≡d

Vw
) and nec(≡d

Vw
) over all

nodes w of this tree, any (σ, ρ)-vertex subset problem on G with d = d(σ, ρ)
can be solved in time O(n4 · necd(T, δ)3).

Proof. The correctness follows by structural induction on the tree T using
Lemma 4 with the base case being the leaf initialization, so that at the root
r of T the single index of the table Tabr will contain the size of the optimal
(σ, ρ) set in G. For complexity analysis, for every node w of T , we basically
call the first computation of Lemma 1 once, then loop through every triplet
Rw, Ra, Rb of representatives, and there are at most necd(T, δ)

3 such triplets.
For each triplet we call the second computation of Lemma 1 three times, and
since |Rw|, |Ra|, |Rb| and log(necd(T, δ)) all are at most n, we can perform
the table update in O(n3) time.

If the input graph G comes with a weight function on the vertices w :
V (G)→ � we may wish to find the (σ, ρ) set with largest sum of weights, or
with smallest sum of weights. This can be accomplished in the same runtime
and requires only a very small change to the algorithm. For S ⊆ V (G) let
w(S) = Σv∈Sw(v). The tables must be defined to store the optimum value

158 LC-VPS PROBLEMS

over w(S) rather than over |S| and the algorithms remain the same apart
from the leaf initialization.

6. Dynamic programming for vertex partitioning problems

We show in this section how to apply dynamic programming on a decom-
position tree (T, δ) of a graph G to solve a locally checkable vertex partition-
ing problem defined by a degree constraint matrix Dq of finite and co-finite
entries, see Definition 4. Let d = d(Dq) = maxi,j d(Dq[i, j]).

Definition 10. Let G be a graph and let A ⊆ V (G) be a vertex subset of
G. Two q-tuples (X1, X2, ..., Xq) and (Y1, Y2, ..., Yq) of subsets of A are d-

neighbor equivalent w.r.t. A, denoted by (X1, X2, ..., Xq) ≡q,d
A (Y1, Y2, ..., Yq),

if:
∀i∀v ∈ A : min(d, |N(v) ∩Xi|) = min(d, |N(v) ∩ Yi|)

Observation 3. (X1, X2, ..., Xq) ≡q,d
A (Y1, Y2, ..., Yq) if and only if ∀iXi ≡d

A

Yi. A consequence is that the number of equivalence classes of ≡q,d
A is at most

nec(≡d
A) to the power q.

This Observation follows directly from Definitions 5 and 10. The dynamic
programming algorithm will again follow a bottom-up traversal of T and
maintain a table at each node of T with partial solutions. In the sequel we
will define the values of Tabw directly indexed by the equivalence classes.
For this we need to first define representatives. For a node w of T , and
X = (X1, X2, ..., Xq) : Xi ⊆ Vw, we define rep

q,d
Vw
(X) = (repdVw

(X1), rep
d
Vw
(X2)

, ..., repdVw
(Xq)).

Definition 11. Let G be a graph and A ⊆ V (G). Let X = (X1, X2, ..., Xq) ∈
Aq and Y = (Y1, Y2, ..., Yq) ∈ A

q
. We say that (X ,Y) Dq-dominates A if for

all i, j we have that (Xj ∪ Yj) Dq[i, j]-dominates Xi (cf. Definition 8).

Definition 12. For every node w of T , for every X = (X1, X2, ..., Xq) ∈ Aq

and every Y = (Y1, Y2, ..., Yq) ∈ A
q
, let RX = repq,dVw

(X) and RY = repq,dVw
(Y).

We define the contents of Tabw[RX][RY] as

Tabw[RX][RY]
def
=

⎧⎨
⎩

TRUE
if ∃ partition S = (S1, S2, ..., Sq) of Vw s.t:

S ≡q,d
Vw
RX and (S,RY) Dq-dominates Vw

FALSE otherwise.

159

It follows by definition that G has a Dq-partition if and only if some
entry in the table at the root of T has value TRUE. The computation of
the list of all representatives w.r.t. ≡q,d

Vw
is basically q times the one given

in the previous section. The same situation holds for the computation of a
representative from the input of a q-tuplet. Firstly, initialize all values in all
tables to FALSE.

Updating the leaves: for a leaf l of T , like before, let δ(l) = v ∈ V (G)
and let A = {v}. Firstly, there are q possible classes v could belong to
in a q-partition of A (recall that empty sets are allowed). We call their
representatives respectively RX1 , RX2 , . . . , RXq . Secondly, for vertices in
B = V (G) \ {v} note that they are either neighbors of v or not. Hence we
have at most d+1 choices (namely 0, 1, ..., d−1, ≥ d) for each of the q partition
classes. (A consequence is that Tabl has at most q(d+1)q entries.) For every
representative RY = (Y1, Y2, . . . , Yq) w.r.t. ≡q,d

B , we have that (RXi
,RY) Dq-

dominates {v} if and only if ∀j|N(l)∩Yj| ∈ Dq[i, j]. Accordingly, we perform
the following leaf update for every i and for every RY :

• Tabl[RXi
][RY] is set to be TRUE if and only if ∀j |N(v)∩Yj| ∈ Dq[i, j].

Updating the internal nodes: in the following,
⋃

q denotes the compo-
nentwise union of two q-tuples. For a node w with children a and b, the
algorithm performs the following steps.

• Loop over all triples of representatives Rw of ≡q,d

Vw
, Ra of ≡q,d

Va
, Rb of

≡q,d
Vb

and do:

Compute Rw = repq,dVw
(Ra

⋃
qRb), Ra = repq,d

Va
(Rb

⋃
qRw), Rb =

repq,d
Vb
(Ra

⋃
qRw)

If Tabw[Rw][Rw] = FALSE then Tabw[Rw][Rw] = Taba[Ra][Ra] ∧
Tabb[Rb][Rb]

Theorem 2. For every n-vertex, m-edge graph G given along with a decom-
position tree (T, δ) and an integer d. Deciding if G has a Dq-partition, with
d = maxi,j d(Dq[i, j]), can be solved in time O(n4 · q · necd(T, δ)3q).

Proof. The complexity analysis is very similar to the one given in Theorem 1,
except we need to compute one reprsentative for each of the q parts, and uses

160 LC-VPS PROBLEMS

the bound in Lemma 3. The correctness proof follows the same style as the
proof of Lemma 4, Some steps are not explained here because they were
explained in Lemma 4.

For the correctness, let a, b be the children of w in T , assume Taba and
Tabb are correct.
(⇒) For this direction of the proof we have that Tabw[Rw][Rw] = TRUE.
Then there must exist some q-tuplesRa,Rb such that Taba[Ra][Ra] = TRUE
and we have Tabb[Rb][Rb] = TRUE, whereRa = repdVa

(Rb

⋃
qRw) andRb =

repdVb
(Ra

⋃
qRw). Hence there exists Sa partition of Va and Sb partition of Vb

such that (Sa,Ra) Dq-dominates Va (Sb,Rb) Dq-dominates Vb. This means
that ∀i, j : (Saj ∪ Raj) Dq[i, j]-dominates Sai and ∀i, j : (Sbj ∪ Rbj

) Dq[i, j]-

dominates Sbi . It then follows that: ∀i, j : (Saj∪Sbj∪Rwj
) Dq[i, j]-dominates

Sai and ∀i, j : (Saj ∪ Sbj ∪ Rwj
) Dq[i, j]-dominates Sbi . It then follows

that: ∀i, j : (Swj
∪ Rwj

) Dq[i, j]-dominates Swi
. Which means (S,Rw) Dq-

dominates Vw.
(⇐) For this direction of the proof we have that there exists a parti-

tion S = (S1, ...Sq) of Vw such that: (S,Rw) Dq-dominates Vw. This means
that ∀i, j : (Swj

∪ Rwj
) Dq[i, j]-dominates Swi

. Let Sa,Sb be the compo-
nentwise intersection of Sw with Va and Vb respectively. We then have:
∀i, j : (Swj

∪ Rwj
) Dq[i, j]-dominates Sai and ∀i, j : (Swj

∪ Rwj
) Dq[i, j]-

dominates Sbi . Hence ∀i, j : (Saj ∪ Sbj ∪ Rwj
) Dq[i, j]-dominates Sai and

∀i, j : (Saj ∪ Sbj ∪ Rwj
) Dq[i, j]-dominates Sai . Let Ra = repd

Va
(Sb

⋃
qRw)

and Rb = repd
Vb
(Sa

⋃
qRw) then ∀i, j : (Saj ∪ Raj) Dq[i, j]-dominates Sai

and ∀i, j : (Sbj ∪ Rbj
) Dq[i, j]-dominates Sbi . Let Ra = cand

Va
(Sa) and

Rb = cand
Vb
(Sb) then Taba[Ra][Ra] = TRUE and Tabb[Rb][Rb] = TRUE.

Since the algorithm goes through all triples, it will at some point go through
(Ra,Rb,Rw). And it will set Tabw[Rw][Rw] to true, once it is true it will
never change.

By induction all tables will be correct.

7. Runtime expressed by boolean-width

We give an alternative definition of boolean-width, equivalent to the stan-
dard one [9].

Definition 13 (Boolean-width). Let G be a graph and A ⊆ V (G). The
bool-dim : 2V (G) → � function of a graph G is defined as

bool-dim(A) = log2(nec(≡1
A))

161

Let (T, δ) be a rooted decomposition tree of G. The boolean-width of (T, δ)
is

boolw(T, δ) = max
a∈V (T)

{bool-dim(Va)}
The boolean-width of a graph G is the minimum boolean-width over all its
rooted decomposition trees

boolw(G) = min
(T,δ)ofG

{boolw(T, δ)}

The classes of ≡1
A are in a bijection with what is called the Boolean row

space of the bipartite adjacency matrix of the graph on edges with exactly
one endpoint in A, i.e. the set of vectors that are spanned via Boolean sum
(1+1=1) by the rows of this matrix, see the monograph [19] on Boolean
matrix theory. ¿From this bijection we get that the bool-dim function is
symmetric, see [19, Theorem 1.2.3]. In particular, for any node w of T we
have nec(≡1

Vw
) = nec(≡1

Vw
).

Lemma 5. Let G be a graph and A ⊆ V (G). Then, for every X ⊆ A,
there is R ⊆ X such that R ≡d

A X and |R| ≤ d · bool-dim(A). Moreover,
nec(≡d

A) ≤ 2d·bool-dim(A)2.

Proof. We prove the first statement, namely bounding |R| by induction on
d. For d ≤ 1 the lemma follows from Lemma 6 in [9]. Let S ⊆ X be an
inclusion minimal set such that N(S) ∩ A = N(X) ∩ A e.g. S ≡1

A X. Hence
from this Lemma with d = 1 we have that |S| ≤ bool-dim(A). Assume
the induction hypothesis true up to d − 1, then we show it true for d. By
induction hypothesis there exists R′ ⊆ (X \S) such that R′ ≡d−1

A (X \S) and
|R′| ≤ bool-dim(A) · (d− 1). Thus it is enough to show R = R′ ∪ S ≡d

A X.
We partition the nodes of A into (P,Q) such that ∀v ∈ P , we have

|N(v)∩ (X \S)| = |N(v)∩R′| and ∀v ∈ Q, we have |N(v)∩ (X \S)| ≥ d− 1
and |N(v)∩R′| ≥ d−1. For every vertex v ∈ P , since S∩R′ = ∅ and S ⊆ X,
we know |N(v)∩X| = |N(v)∩(X\S)|+|N(v)∩S| = |N(v)∩R′|+|N(v)∩S| =
|N(v)∩R|. We have N(X) = N(S) and since d > 1 we have Q ⊆ N(S). For
every vertex v ∈ Q, since |N(v)∩ (X \S)| ≥ d−1 we get |N(v)∩X| ≥ d and
since |N(v) ∩ R′| ≥ d− 1 we get |N(v) ∩ R| ≥ d. Since (P,Q) is a partition
we get R ≡d

A X and |R| ≤ bool-dim(A) · d, thus by induction the lemma
holds for all d.

To bound the number of equivalence classes nec(≡d
A) we know from the

previous arguments that we only need to find the equivalence classes among
the subsets of A of size at most d · bool-dim(A). Two vertices x, x′ ∈ A are

162 LC-VPS PROBLEMS

twins across {A,A} if N(x) ∩ A = N(x′) ∩ A. Let H be obtained from the
bipartite subgraph of G with color classes A,A after doing twin contraction of
all twins. We know that every node of V (H)∩A has a unique neighborhood,
hence |V (H) ∩ A| ≤ 2bool-dim(A). For any subset of A there is a multiset of
V (H)∩A with the same d-neighbourhood, and a trivial bound on number of
multisets of size d·bool-dim(A) of V (H)∩A gives us: nec(≡d

A) ≤ 2d·bool-dim(A)2 .

Together with Theorem 1 we get the following.

Corollary 1. For every graph G given along with a decomposition tree (T, δ)
any (σ, ρ)-vertex subset problem on G with d = d(σ, ρ) can be solved in time
O(n4 · q · 23d·boolw(T,δ)2).

Together with Theorem 2 and Observation 3 we get the following.

Corollary 2. For every graph G given along with a decomposition tree (T, δ),
deciding if G has a Dq-partition, with d = maxi,j d(Dq[i, j]), can be done in
time O(n4 · 23qd·boolw(T,δ)2).

8. Conclusions and Open Problems

The runtime of the algorithms given here for (σ, ρ)-problems and Dq-
problems have the square of the boolean-width boolw as a factor in the
exponent, i.e. O(boolw2) in the exponent. For problems where d = 1 we can
in fact improve this to a factor linear in the exponent [9], but that requires a
special focus on these cases. We hope that also for the other problems (with
any constant value of d) we could get runtimes with a better exponential
factor, say O(boolw log boolw) in the exponent or maybe even linear. We
must then improve the bound in Lemma 5. For the linear bound we must
show that the number of d-neighborhood equivalence classes is no more than
the number of 1-neighborhood equivalence classes raised to some function of
d. This runtime question can also be formulated as a purely algebraic one.
First generalize the concept of Boolean sums (1 + 1 = 1) to d-Boolean sums
(i+j = min(i+j, d)). For a Boolean matrix A let Rd(A) be the set of vectors
over {0, 1, ..., d} that arise from all possible d-Boolean sums of rows of A. To
get O(boolw log boolw) in the exponent it would suffice to show that there is
a function f such that |Rd(A)| ≤ |R1(A)|f(d) log log |R1(A)|.

163

References

[1] R. Belmonte, M. Vatshelle, Graph classes with structured neighborhoods
and algorithmic applications, Theoretical Computer Science Submitted
to this issue (?) (2012) ?

[2] J. Fiala, J. Kratochv́ıl, Locally constrained graph homomorphisms -
structure, complexity, and applications, Computer Science Review 2
(2008) 97–111.

[3] R. G. Downey, M. R. Fellows, Parameterized Complexity, Springer Ver-
lag, 1999.

[4] J. Flum, M. Grohe, Parameterized Complexity Theory, Springer Verlag,
2006.

[5] P. Hliněný, S.-i. Oum, D. Seese, G. Gottlob, Width parameters beyond
tree-width and their applications, The Computer Journal 51 (3) (2008)
326–362.

[6] B. Courcelle, J. A. Makowsky, U. Rotics, Linear time solvable optimiza-
tion problems on graphs of bounded clique width, Theory of Computing
Systems 33 (1999) 125–150.

[7] J. A. Telle, A. Proskurowski, Algorithms for vertex partitioning prob-
lems on partial k-trees, SIAM Journal on Discrete Mathematics 10 (4)
(1997) 529–550.

[8] M. U. Gerber, D. Kobler, Algorithms for vertex-partitioning problems
on graphs with fixed clique-width, Theoretical Computer Science 299 (1-
3) (2003) 719–734.

[9] B.-M. Bui-Xuan, J. A. Telle, M. Vatshelle, Boolean-width of graphs,
Theoretical Computer Science 412 (39) (2011) 5187–5204.

[10] I. Adler, B.-M. Bui-Xuan, Y. Rabinovich, G. Renault, J. A. Telle,
M. Vatshelle, On the boolean-width of a graph: Structure and appli-
cations, in: Proceedings of WG, 2010, pp. 159–170.

[11] M. Vatshelle, New width parameters of graphs, Ph.D. thesis, University
of Bergen (2012).

164 LC-VPS PROBLEMS

[12] E. M. Hvidevold, S. Sharmin, J. A. Telle, M. Vatshelle, Finding good
decompositions for dynamic programming on dense graphs, in: Proceed-
ings of IPEC, 2011, pp. 219–231.

[13] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness, W. H. Freeman and Co., 1978.

[14] J. Kratochv́ıl, Perfect Codes in General Graphs, Academia Praha, 1991.

[15] T. J. Schaefer, The complexity of satisfiability problems, Proceedings of
STOC 10 (1978) 216–226.

[16] P. Heggernes, J. A. Telle, Partitioning graphs into generalized dominat-
ing sets, Nordic Journal of Computing 5 (2) (1998) 128–142.

[17] J. A. Telle, Vertex partitioning problems: Characterization, complexity
and algorithms on partial k-trees, Ph.D. thesis, University of Oregon
(1994).

[18] O. Amini, I. Sau, S. Saurabh, Parameterized complexity of the smallest
degree-constrained subgraph problem, in: Proceedings of IWPEC, 2008,
pp. 13–29.

[19] K. H. Kim, Boolean matrix theory and applications, Marcel Dekker,
1982.

165

166 LC-VPS PROBLEMS

Feedback Vertex Set on Graphs of Low Clique-width�

Binh-Minh Bui-Xuana, Ondřej Suchýb,1, Jan Arne Tellea, Martin Vatshellea,∗

aDepartment of Informatics, University of Bergen, Norway
bUniversität des Saarlandes, Saarbrücken, Germany

Abstract

The Feedback Vertex Set problem asks whether a graph contains q vertices
meeting all its cycles. This is not a local property, in the sense that we cannot
check if q vertices meet all cycles by looking only at their neighbors. Dynamic
programming algorithms for problems based on non-local properties are usually
more complicated. In this paper, given a graph G of clique-width cw and a cw-
expression of G, we solve the Minimum Feedback Vertex Set problem in time
O(n22O(cw log cw)). Our algorithm applies dynamic programming on a so-called
k-module decomposition of a graph, as defined by Rao [30], which is easily
derivable from a k-expression of the graph. The related notion of module-width
of a graph is tightly linked to both clique-width and NLC-width, and in this
paper we give an alternative equivalent characterization of module-width.

Keywords: feedback vertex set, clique-width, graph algorithms
2000 MSC: 05C85, 68R10

1. Introduction

The problem of finding a minimum Feedback Vertex Set (FVS) in a graph,
i.e. the smallest set of vertices whose removal results in a graph that has no
cycles, has many applications. For example to optical networks [22], circuit
testing, deadlock resolution, analyzing manufacturing processes and computa-
tional biology (see [10] and its bibliography). It is one of the classical NP-
complete problems from the 1972 list of Karp [21] and has been extensively

�Supported by the Norwegian Research Council, project PARALGO.
∗Corresponding author.
Email addresses: buixuan@ii.uib.no (Binh-Minh Bui-Xuan),

suchy@mmci.uni-saarland.de (Ondřej Suchý), telle@ii.uib.no (Jan Arne Telle),
vatshelle@ii.uib.no (Martin Vatshelle)

1Supported by the DFG Cluster of Excellence on Multimodal Computing and Interaction,
DFG project DARE (GU 1023/1-2) and by grant 1M0545 of the Czech Ministry of Education.
Most of the work done while on Dep. of Applied Mathematics and Inst. for Theoretical Com-
puter Science, Charles University, Prague, Czech Republic and while visiting the University
of Bergen.

167

studied from many viewpoints, including linear programming [7], approximation
algorithms [2, 13, 16, 22], exact algorithms [14] and parametrized complexity
[6, 10, 17, 25, 29].

The minimum FVS problem is 2-approximable in polynomial time [1]. The
fastest exact algorithm has runtime O(1.7548n) [14]. The fastest FPT (Fixed
Parameter Tractable) algorithm when parametrized by the size q of the FVS has
runtime O(5qqn2) [6]. These algorithmic results are quite strong, but are not
useful for cases of input graphs having a large number of vertices n, and a large
minimum FVS q, if we want the actual smallest FVS. For such cases we may
instead hope that the input graph has a bounded width parameter. For example,
if G is a planar graph of treewidth tw then Kloks et al [23] give a dynamic
programming algorithm solving minimum FVS on G in time O(2O(tw log tw)n).
Recently a randomized algorithm with runtime O(3twnO(1)) for minimum FVS
with one-sided error of probability at most 0.5 was developed [9]. It is still
an open problem whether there is a deterministic O(2O(tw)nO(1)) algorithm for
FVS, even though such algorithms exist for a large variety of NP-hard problems.
However, for minimum FVS it would require a small breakthrough to get such
an algorithm. One reason for this is that FVS is not a locally checkable property,
in the sense that given q vertices we cannot check that they form an FVS simply
by looking at their neighbors. One also has to consider paths between pairs of
vertices. The same issue arises when the problem is parametrized by q the size of
the FVS, but Dehne et al. [10] gave an O(2O(q)n) algorithm using the technique
of iterative compression and the running time for this parameterization was
improved in a long series of papers. In this paper we do not aim to prolong this
series. Instead, we consider the problem on graphs of clique-width cw. This
graph class encompasses large classes of graphs of unbounded treewidth, and
for which powerful algorithmic results are known. Note that bounded clique-
width does not imply bounded treewidth, hence we can not directly translate
FPT algorithms parametrized by treewidth to FPT algorithms parametrized
by clique-width. For instance, we have that any graph problem expressible in
MSO1-logic, as is the case with minimum FVS, is FPT when parametrized by
clique-width (roughly, apply [20], then [27, Proposition 6.3], then [8]). Since
FVS can be expressed in MSO1-logic it follows that FVS is FPT parameterized
by clique-width, however the running time will contain a tower of 2’s, and we
are not aware of any MSO1 formulation which would lead to a tower with less
than 4 levels. In this paper we are interested in as low exponential dependency
on cw as possible, and for this we need to use a specially designed dynamic
programming algorithm.

The complement of a FVS is a vertex subset inducing a forest, and solving
such tree-like problems using dynamic programming based on clique-width are
usually more complicated than dynamic programming based on treewidth. An
O∗(2cw

2 log cw) algorithm was given in [5], and an O∗(2cw
2

) algorithm was given
in [15] (this algorithm also works for the lower parameter rank-width). The first
algorithm is an extension of the treewidth algorithm with the key observation
that we only need to consider cw2 components of the complement of FVS. The
second improves this by cleverly reducing the number of considered components

168 FEEDBACK VERTEX SET

to cw.
In this paper we give an O∗(2cw log cw) algorithm. To this end, we use the

trick of considering only cw components, but we also make use of a technique
taking into account an “expectation from the outside” during the bottom-up
computation of the dynamic programming. This technique was introduced in [3]
where it was used for finding a minimum dominating set along a so-called H-join
decomposition, and later also for FVS in [15]. Roughly, when operating on some
reduced instance – e.g., some subgraphG[A] induced by vertex subset A – we not
only compute solutions – e.g., FVS, dominating sets, etc. – depending on G[A],
but also those solutions satisfying specific constraints depending on G[V (G)\A].
As opposed to classical dynamic programming, a consequence of “expecting from
the outside” will be that we no longer partition the set of possible solutions
(of G[A]) into equivalence classes with a one-to-one correspondence between
such classes and indices of the table (data-structure for dynamic programming).
Instead, each possible solution now can influence several indices of the table.

The exponential dependency on clique-width of our algorithm matches asymp-
totically the current best known algorithms based on treewidth. More precisely,
our algorithm finds a minimum FVS on a graph G of clique-width cw in time
O(2O(cw log cw)n2), when given a cw-expression of G which is a decomposition
of the graph showing that it has clique-width cw.

Clique-width is related to the notion of NLC-width of a graph [12] with
which it shares most properties but we have chosen to use clique-width in this
paper simply because that notion is more well known. More specifically, our
algorithm applies dynamic programming on a so-called k-module decomposition
of a graph, as defined by Rao [30], which is easily derivable from a k-expression
of the graph. The related notion of module-width of a graph is tightly linked
to both clique-width and NLC-width, and in this paper we give an alternative
equivalent characterization of module-width.

2. Framework

Let G be a graph with vertex set V (G) and edge set E(G). Consider the
following unifying decomposition framework for several decomposition schemes.
A binary tree is a rooted tree where every internal node has exactly two children.

Definition 2.1 (Decomposition tree). A rooted decomposition tree of a graph
G is a pair (T, δ) where T is a binary tree having n = |V (G)| leaves and δ is a
bijection between the vertices of G and the leaves of T .

Roughly, trees with their leaves in a bijection with the vertices of G are
important for techniques like divide-and-conquer or dynamic programming since
they show how to “divide” the graph instance into several sub-instances and
recurse. Clearly, any tree with the right number of leaves and a bijection can be
considered as a decomposition tree. Then, a common technique to select those
that are more suited for some task is to use an evaluating function.

169

Definition 2.2 (Decomposition and width parameters). Let G be a graph,
f : 2V (G) → R a function assigning a non-negative real value to subsets of
V (G), and (T, δ) a rooted decomposition tree of G. For every node u of T ,
let Vu denote the vertex subset of G induced by the leaves of the subtree of T
rooted at u. The f -width of (T, δ) is the maximum value of f(Vu), taken over
every node u of T . An optimal f -decomposition of G is a rooted decomposition
tree of G having minimum f -width. The f -width of G is the f -width of an
optimal f -decomposition of G.

If f is also required to be symmetric, namely that f(Vu) = f(V (G) \ Vu)
for every Vu, then the above framework, up to unrooting the tree T and setting
f(V (G)) = f(∅) = 0, is equivalent to the one developed for the study of branch
decomposition of symmetric and submodular functions (see, e.g., [27, Section 2]
for a short and recent introduction). This includes the branch-width [31], rank-
width [27], and boolean-width [4] decompositions of graphs. On the other hand,
rooted decomposition trees as defined here can be used for situations where the
symmetry does not occur, for instance with a branch-like decomposition of a
submodular function that is not necessarily symmetric, a clique-width or NLC-
width expression, or a so-called k-module decomposition as will be presented
below.

For an efficient complexity analysis of the algorithm that will be described in
Section 4, we will be interested in the following definition of f -width, so-called
module-width in [26, 32].

Definition 2.3. Let G be a graph and let X ⊆ V (G) be a vertex subset. A
subset A ⊆ X is a twin set of X if, for every z ∈ V (G) \X and pair of vertices
x, y ∈ A, we have x adjacent to z if and only if y adjacent to z. A twin set A
is a twin-class of X if A is maximal. The set of all twin-classes of X forms a
partition of X, that we call the twin-class partition of X.

Definition 2.4 (Module-width). The function μG : 2V (G) → N is defined such
that μG(X) is the number of twin-classes of X in the graph G. The module-
width decompositions and parameters of G refer to those of Definition 2.2 when
f = μG. The μG-width of G will be called the module-width of G and denoted
by μw(G).

The above terminology of module-width is according to the name given to
an equivalent notion that was mentioned in [26, last two pages] and formalized
in [32, Section 6.1.2]. Indeed, one can use a similar decomposition framework,
so-called k-module decomposition, in order to result in the same parameter as
follows.

Definition 2.5. ([26, 32]) Let G be a graph. A vertex subset X ⊆ V (G) is
a k-module if there exists a partition of X into k twin sets. G is a k-module
decomposable graph if there is a rooted decomposition tree (T, δ) such that every
vertex subset of G that is induced by the leaves of some subtree of T is also a
k-module of G. The module-width of G is the minimum integer k such that G
is k-module decomposable.

170 FEEDBACK VERTEX SET

Definitions 2.4 and 2.5 both lead to the same notion of module-width thanks
to the following simple observations. Firstly, if X is a k-module, then it is also
a (k+1)-module as long as k+1 ≤ |X|. Secondly, the minimum number k such
that X is a k-module is exactly μG(X).

Clique-width and NLC-width expressions are constructions of a graph us-
ing logic operations. For a proper introduction to clique-width and NLC-width
refer to [8, 12]. The underlying graphs of clique-width and NLC-width expres-
sions are rooted trees where every internal node has at most two children and
where the leaves are in a bijection with the vertices of the graph. This, up to
contracting one child nodes, can be seen as a rooted decomposition tree. The
clique-width cw(G) and the NLC-width nlc-w(G) of a graph G are parameters
of G having powerful algorithmic properties. For instance, we have that any
graph problem expressible in MSO1-logic is FPT when parametrized by one of
these two parameters (roughly, apply [20], then [27, Proposition 6.3], then [8]).
They are closely linked to module-width by the following property.

Theorem 2.6. ([32, Theorem 6.6]) We have for any graph G that

μw(G) ≤ nlc-w(G) ≤ cw(G) ≤ 2μw(G).

We now give an alternative viewpoint of these module-width decompositions,
that will link module-width to the so-called H-join decomposition framework [3]
in an unexpected way.

Definition 2.7. Let H be a bipartite graph with color classes V1 and V2, thus
V (H) = V1 ∪ V2. Let G be a graph and X ⊆ V (G) a subset of its vertices. We
say that G is an H-join across the ordered cut (X,V (G) \X) if there exists a
partition of X with set of classes P and a partition of V (G) \ X with set of
classes Q, and injective functions f1 : P → V1 and f2 : Q → V2, such that for
any x ∈ X and y ∈ V (G) \ X we have x adjacent to y in G if and only if x
belongs to a class Pi of P and y to a class Qj of Q with f1(Pi) adjacent to
f2(Qj) in H.

We will abusively refer to ordered cuts simply by cuts. Twins in a bipartite
graph are vertices in the same color class having exactly the same neighborhood.
A twin contraction is the deletion of a vertex when it has a twin. Notice that
H-joins are insensitive to twin contractions: if H ′ is obtained from H by a
twin contraction then G is an H-join across some cut if and only if G is an
H ′-join across the same cut. Note also that we do allow a twin-free bipartite
graph to have one isolated vertex in each color class. We model the joining in
module-width decompositions by using the following graph.

Definition 2.8. For a positive integer k we define a bipartite graph Yk having
for each integer i of {1, 2, . . . , k} a vertex ai ∈ A and having for each subset S
of {1, 2, . . . , k} a vertex bS ∈ B, with V (Yk) = A∪B. This gives k vertices in A
and 2k vertices in B. A vertex ai is adjacent to a vertex bS if and only if i ∈ S.

Lemma 2.9. Let k be an integer, let H be a bipartite graph over color classes
V1 ∪ V2 with |V1| ≤ k. Then, applying successive twin contractions in H until

171

stability will always result in a graph that is isomorphic to an induced subgraph
of Yk.

Proof. Just give an arbitrary ordering over the vertices of V1 = (v1, v2, . . . , vl),
and map them to the l first vertices a1, a2, . . . , al of Yk, respectively (note that
l ≤ k by hypothesis). Then, for every vertex u ∈ V2 of H, let S = {i : vi ∈
N(u)}, and map u to vertex bS of Yk. Hence, H is an induced subgraph of
Yk. Now, applying twin contractions on a subgraph of Yk will always result in
another induced subgraph of Yk.

Corollary 2.10. The function μG of Definition 2.4 is exactly equal to the func-
tion ηG defined for all X ⊆ V (G) by

ηG(X) = min{k : G is a Yk-join across the cut (X,V (G) \X)}.

Proof. In Definition 2.7 of an H-join across (X,V (G) \ X), if we consider as
joining partition of X the twin-class partition of X, then H is a bipartite graph
having exactly μG(X) vertices on one of its color class. Lemma 2.9 then allows
to conclude.

3. Computing the twin-classes

In the next section we will give a dynamic programming algorithm to solve
the feedback vertex set problem on an input made by an n-vertex m-edge graph
G and one of its rooted decomposition tree (T, δ). Note that the underlying
graph of a clique-width expression of G is a rooted tree where each internal
node has at most two children, and the leaves are in a bijection with the vertices
of G. Contracting the internal nodes having one child will result in a rooted
decomposition tree of G. Moreover, it can also be obtained from the proof of
Theorem 2.6 that the module-width of this rooted decomposition tree is at most
the clique-width of the clique-width expression. Consequently, if the input to
our algorithm is the graph G and a clique-width k expression of G, we can
transform them in a straightforward manner to an input made of G and one of
its rooted decomposition tree of module-width at most the value of k.

For every internal node u of T with Vu being the vertex subset of G induced
by the subtree of T rooted at u, we will need to compute the twin-classes of Vu

as mentioned in the definition of μG in Definition 2.4. In this section, we will
describe how to perform such a computation for every internal node u of T , in
global running time O(n2).

We will use the so-called partition refinement algorithmic technique (refer
to, e.g., [18, 28] for details). Partitions will be represented by double-linked lists.
A refinement operation of a partition Q = (Q1, Q2, . . . , Qk) of Vu using A ⊆ Vu

as pivot is the act of splitting every Qi into Qi ∩ A and Qi \ A. The output of
a refinement operation can be of two types. It can be made of one partition of
Vu which is the result of removing all empty sets from (Q1 ∩ A,Q1 \ A,Q2 ∩
A,Q2 \ A, . . . , Qk ∩ A,Qk \ A). We refer to these as one-to-one refinements.
It can also be composed of two partitions (one of A and one of Vu \ A) which

172 FEEDBACK VERTEX SET

result from removing all empty sets from (Q1 ∩ A,Q2 ∩ A, . . . , Qk ∩ A) and
(Q1 \A,Q2 \A, . . . , Qk \A). We refer to these as one-to-two refinements. With
the appropriate data structure, all these types of refinement operations can be
implemented to run in O(|A|) time for each operation (refer to, e.g., [18] for
details).

A simple way to compute the twin-class partition of Vu is to initialize Q =
(Vu) and, for every vertex z ∈ V (G) \ Vu, perform an one-to-one refinement of
Q using the neighborhood N(z) of z as pivot. The correctness follows directly
from the definition of twin-classes. This computation would have O(m) runtime
for each internal node u of T , hence a global O(nm) runtime.

The main idea to reduce this runtime is to observe that, in the above oper-
ations, we can use N(z)∩Vu as pivot instead of N(z) (for every z ∈ V (G) \Vu)
without modifying the refined partition of each step. However, the sum over
every possible Vu and z ∈ V (G) \ Vu of the value |N(z) ∩ Vu| might still be
large. We will observe a second fact. For a partition Q = (Q1, Q2, . . . , Qk) of X
and a subset Y ⊆ X, we denote by Q[Y] the partition of Y which results from
removing all empty sets from (Q1 ∩ Y,Q2 ∩ Y, . . . , Qk ∩ Y).

Remark 3.1. Let w be an internal node of T with children a and b. Let Vw,
Va, and Vb be the vertex subsets of G induced by the leaves of the subtrees of T
rooted at w, a, and b, respectively. Let Qw = (Qw(1), Qw(2), . . . , Qw(hw)) be
the twin-class partition of Vw. Then, initializing Q = Qw[Va] and refining Q
using N(z) ∩ Va as pivot for all z ∈ Vb will result to the twin-class partition of
Va.

Basically, the algorithmic difference given by the remark is that we can now
be restricted to z ∈ Vb instead of using all z ∈ V (G) \ Va as before. The main
point is that the sum over every possible Va and z ∈ Vb of the value |N(z)∩Va|
will be at most twice the value n +m (every edge of G appears at most twice
in the sum). We now implement Remark 3.1.

First of all, the bottleneck of using N(z) ∩ Va as pivot will be that, unlike
the case with N(z) which can be read simply in the adjacency list of G, we
will need to compute N(z) ∩ Va for every possible Va and z. We do this as a
preprocessing step as follows.

We prepare the tree T as described in [19] so that afterwards we can, given
two leaves x and y of T , compute the lowest common ancestor w of x and y in
T in O(1) time. This can also be done in such a way that, if a and b denote the
children of w, then we can in O(1) time decide whether x is a descendent of a
or it is a descendent of b. Then, for every internal node w of the tree T , with
children a and b, we initialize two tables N b→a

w and Na→b
w that will contain, for

every vertex z in Vb (resp. Va), the neighborhood of z in Va (resp. Vb). Now,
we scan through every edge xy of G and compute the lowest common ancestor
w of x and y, as well as the children a and b of w such that x is a descendent
of a, and finally add x to N b→a

w [y] and y to Na→b
w [x]. Clearly, after scanning

all edges of G, we have that N b→a
w [z] = N(z) ∩ Va for all w, a, b, and z. This

preprocessing takes O(m) time.

173

We come to the proper computation of the twin-class partitions. The twin-
class partition associated to the root of T only has one class, which is V (G).
Suppose that we have computed the twin-class partition Qw of an internal node
w having children a and b. This partition Qw is stored in a double-linked list
w.r.t. the data structure used for partition refinement. Basically, the following
operations can operate directly on this data structure, if we allow ourselves to
modify the double-linked list. However, the information on the twin-classes of
Vw would then be lost. For this reason, before continuing, we duplicate the
data structure of Qw so that we store the twin-classes of Vw in a private place
of node w. Then, we can compute Qw[Va] and Qw[Vb] simply by performing an
one-to-two refinement of Qw using either Va or Vb as pivot (cf. Vb = Vw \Va) for
each w. Duplication and refinement using Va (or Vb) as pivot take O(n) time
for every node w, hence an O(n2) global runtime.

We then initialize Q = Qw[Va] and, for every entry z of the table N b→a
w ,

refine Q using N b→a
w [z] as pivot. As mentioned before, the main point of all

these procedures is that the sum of the size of all possible pivots will now be
at most twice the value n + m. Hence, the global runtime of this step is in
O(n + m). We deduce the following lemma, whose proof is straightforward.
Recall that from the input of a clique-width expression of G, we can derive a
rooted decomposition tree simply by contracting all internal nodes having one
child in the underlying graph of the clique-width expression. The module-width
of this decomposition tree is at most the clique-width of the expression.

Lemma 3.2. Given a graph G and either (T, δ) a rooted decomposition tree of
G, or a clique-width expression tree of G. Then in O(n2) global runtime we
can compute and store, for every internal node u of T with Vu being the vertex
subset of G induced by the leaves of the subtree of T rooted at u, the partition
of Vu into its twin-classes Qu(1), Qu(2), . . . , Qu(hu).

4. Solving the Feedback Vertex Set Problem

Definition 4.1. A feedback vertex set of a graph G is a subset S of the vertices
of G with G[V (G) \ S] a forest. A forest inducing set (FI-set) of a graph G is a
subset of vertices S with G[S] a forest.

Fact 4.2. If S is a FI-set of maximum cardinality then V (G)− S is a feedback
vertex set of minimum cardinality.

We give dynamic programming algorithms that given a graph G and a rooted
decomposition tree (T, δ) of G will find the size of a minimum Feedback Vertex
Set of G, by computing the size of a maximum FI-set in G. Recall that in
Section 3 Va, Vb, Vw were the vertex subsets corresponding to subtrees rooted at
nodes a, b, w of T . For simplicity we adopt A = Va, B = Vb,W = Vw for the rest
of this section. The runtime of the algorithm will be expressed as a function of
μG(A), i.e. the number of twin-classes of such vertex subsets A = Va.

174 FEEDBACK VERTEX SET

4.1. Definition of Tables

For A ⊆ V (G) let T CA = {TC1
A, TC

2
A, ...TC

k
A} be the twin-classes of A,

using k = μw(V (G)) and allowing some empty classes. The indices of table TabA
will consist of pairs (P, C) where P is a partition of T CA and C is a partition
of a subset of T CA. We denote the classes of P by Q0

A, Q
1
A, R

0
A, R

1
A, ..., R

k
A,

allowing some empty classes. C will be a partition of T CA \ (Q0
A ∪ R0

A) and a
coarsening of R1

A, R
2
A, ..., R

k
A in the sense that two twin-classes both in Ri

A, for
some 1 ≤ i ≤ k, must belong to the same class in C.

Before defining the contents of the table formally, let us briefly give some
intuition. An index (P, C) will store a largest FI-set S ⊆ A satisfying certain
properties, e.g. where Q0

A and Q1
A are those twin-classes containing exactly

zero and one vertex from S and the remaining classes of P consist of twin-
classes containing at least two vertices of S. Among these, the twin-classes of
R0

A are exactly those containing vertices that should not get any further FI-set
neighbors as we progress up to the root of the decomposition tree. The partition
of the remaining twin-classes into R1

A, R
2
A, ..., R

k
A is part of the ’expectation from

the outside’. As we progress up the path to the root two nodes receive a new
common FI-neighbor if and only if they are in twin-classes belonging to the
same Ri

A. The partition class C is also part of the expectation and tells us
about connected components of FI-sets.

Definition 4.3. For every partition P of T CA into k+3 partsQ0
A, Q

1
A, R

0
A, R

1
A, ..., R

(allowing empty classes) and every partition C of T CA \ (Q0
A ∪ R0

A) that is a
coarsening of R1

A, R
2
A, ..., R

k
A, we have an index (P, C) in TabA. The contents

of TabA[P, C] will be a vertex subset S ⊆ A of maximum cardinality among all
S ⊆ A satisfying the pair (P, C), where such S is said to satisfy (P, C) if

1. Q0
A = {TCi

A : |TCi
A ∩ S| = 0}

2. Q1
A = {TCi

A : |TCi
A ∩ S| = 1}

3. The graph G(P, S) is a forest, where G(P, S) is constructed from G[S] by
adding new intermediate vertices {v1, v2, ..., vk}, and edges from vi to all
vertices in twin-classes belonging to Ri

A, for 1 ≤ i ≤ k.

4. Two vertices u ∈ TCi
A ∩ S and v ∈ TCj

A ∩ S with TCi
A, TC

j
A not in

R0
A belong to the same connected component of G(P, S) if and only if

TCi
A, TC

j
A are in the same class of C.

If no set S ⊆ A satisfying (P, C) exists then the contents of TabA[P, C] should
be �.

4.2. The dynamic programming algorithm

We are now ready to describe the algorithm computing a maximum FI-set
of G. The algorithm starts by initializing all table entries of all tables of the
tree T to �.

At any leaf a of the tree T we have A = {δ(a)} and T CA = {{δ(a)}}. Two
entries of the table Taba will be updated to something other than � corresponding
to the two choices for a set satisfying an index (P, C), namely S = {δ(a)}

175

and S = ∅. The first choice gives Taba[P, C] = {δ(a)} for P having empty
classes except Q1

A = {{δ(a)}} and C = {{δ(a)}}. The second choice gives
Taba[P, C] = ∅ for P having empty classes except Q0

A = {{δ(a)}} and C the
partition of the empty set.

In a bottom-up traversal of the tree T , when reaching an internal node w
having children a and b we do the following dynamic programming:

For all index triples (PA, CA), (PB , CB), (PW , CW)
If Taba[PA, CA] = SA and Tabb[PB , CB] = SB (i.e. not � entries)

and SA ∪ SB satisfies (PW , CW)
and Tabw[PW , CW] = � or |Tabw[PW , CW]| < |SA ∪ SB |

Then update Tabw[PW , CW] := SA ∪ SB

After the bottom-up traversal filling all tables output the entry Tabroot[P, C]
at the root of T , for P having empty classes except R0

root = {V (G)} and C the
partition of the empty set.

5. Correctness and timing

Let us start by noting that at the root of T we have T Croot = {V (G)} and
the value of Tabroot[P, C] for the partition where R0

root = {V (G)} and C the
partition of the empty set will by Definition 4.3 be a maximum FI-set of G. A
central part of the correctness argument is to show that the FI-set stored in a
table entry will induce an acyclic graph. This will be done by contradiction,
showing that a cycle in one graph can be replaced in another graph by a walk
starting and ending in the same vertex and using some edge exactly once, and
then applying the following easy observation.

Lemma 5.1. Consider a graph H containing a walk starting and ending in the
same vertex. If some edge uv appears an odd number of times in the walk then
the subgraph H ′ of H induced by the edges in the walk contains a cycle.

Proof. Note that H ′ is a connected graph. We first show that it remains con-
nected also after removing the edge uv. Removing uv breaks the walk up in
subwalks of three types, from u to u, from v to v and from u to v. Since uv is
used an odd number of times and the original walk started and ended in same
node, both u and v are used as endpoints an odd number of times. Therefore
one of the subwalks will go from u to v showing that u and v are in the same
connected component even after removing uv. Since adding a new edge to a
connected graph will give a graph with a cycle the graphH ′ must have contained
a cycle.

Lemma 5.2. The dynamic programming algorithm will correctly fill all tables.

Proof. The lemma is proved by bottom-up induction on the tree T . Leaves
of T are correctly updated since we try both subsets of nodes as FI-sets for
the unique indices that they satisfy. Consider an internal node w of T with

176 FEEDBACK VERTEX SET

children a, b and assume inductively that Taba and Tabb are correct. We show
that Tabw is then updated correctly. Recall that A,B,W are the vertex subsets
corresponding to subtrees rooted at a, b, w.

For any index (PW , CW) we must show that if there is a set satisfying
(PW , CW) then Tabw[PW , CW] is not equal � and that, if Tabw[PW , CW] = SW

then SW ⊆W is a largest set satisfying (PW , CW). First, note that in the latter
case we know SW satisfies (PW , CW) as this was checked in the algorithm.

Thus, assume for contradiction that there is a set FW ⊆ W satisfying
(PW , CW) and that we have either |FW | > |Tabw[PW , CW]| or we have Tabw[PW , CW]
�. From PW , CW , FW we first construct (PA, CA), (PB , CB) such that FW =
FA ∪FB and FA satisfies (PA, CA) and FB satisfies (PB , CB). Note that we will
not be using CW as the pair PW , FW uniquely defines CW . Let FA = FW ∩ A
and FB = FW ∩B.

We now construct PA = Q0
A, Q

1
A, R

0
A, R

1
A, ..., R

k
A. We set Q0

A = {TCi
A :

|TCi
A ∩ FA| = 0} and Q1

A = {TCi
A : |TCi

A ∩ FA| = 1}. Recall that T CW is a
coarsening of T CA ∪ T CB , so that a class of T CW is the union of some classes
of T CA and some of T CB . For any Ri

W with i > 0 the twin-classes of T CA that
are subsets of Ri

W , but have not been assigned to Q0
A ∪Q1

A, will be assigned to
Ri

A.
A twin-class TCh

A of T CA that has not been assigned yet (neither to Q0
A, Q

1
A

nor any Ri
A) must be a subset of R0

W and must have at least two vertices in
FA. If TCh

A does not have a neighbor in FB then it is assigned to R0
A. If TCh

A

does have a neighbor in FB then since FA ∪ FB contains no cycle all vertices
in TCh

A have a single neighbor vh in FB common to them all. We arbitrarily

pick indices j ∈ {1, 2, ..., k} with Rj
A still empty (since k = μw(V (G)) we can

find enough such j). We then assign remaining twin-classes using these indices
such that two remaining twin-classes TCh

A and TCg
A both belong to the same

Rj
A if and only if they have the same common neighbor in FB . All remaining

Ri
A should be empty. This completes the construction of PA. For PB we do the

analogous construction.

Claim 5.3. The graph G(PA, FA) is isomorphic (respecting twin-classes) to the
subgraph of G(PW , FA ∪FB) induced on edges with either both endpoints in FA

or exactly one endpoint in a twin-class belonging to Ri
A for some i. Same holds

for G(PB , FB).

Proof. Note that G(PA, FA) and G(PW , FA∪FB) clearly induce the same graph
on FA. All remaining edges of G(PA, FA) are, by definition of G(PA, FA),
accounted for by noting that two vertices in some twin-class of Ri

A have a
common neighbor (not in A) if and only if their twin-classes belong to the
same Ri

A for i > 0. But then they then have a common neighbor also in
G(PW , FA ∪ FB), since by construction Ri

A is one of two types: either all twin-
classes in Ri

A are subsets of some twin-class in Ri
W , in which case these vertices

have a common neighbor in G(PW , FA∪FB), or all vertices of all twin-classes in
Ri

A have a common neighbor in FB . Since we are only showing that G(PA, FA)

177

is (isomorphic to, while respecting twin-classes) a subgraph of G(PW , FA ∪ FB)
this suffices.

We now construct CA, following Definition 4.3. Consider the graphG(PA, FA)
constructed from G[FA] by adding new vertices {v1, v2, ..., vk}, and edges from
vi to all vertices in all twin-classes belonging to Ri

A, for 1 ≤ i ≤ k. We de-

fine CA to be the partition of T CA \ (Q0
A ∪ R0

A) such that TCi
A, TC

j
A not in

(Q0
A ∪R0

A) are in the same class of CA if and only if two vertices u ∈ TCi
A ∩FA

and v ∈ TCj
A ∩FA belong to the same connected component of G(PA, FA). For

CB we do the analogous construction. We are thus done with construction of
indices (PA, CA) and (PB , CB) in Taba and Tabb.

Claim 5.4. FA satisfies (PA, CA) and FB satisfies (PB , CB).

Proof. We give the argument for FA only since the argument for FB is sym-
metric. It is obvious from the construction that FA will satisfy the two first
constraints in Definition 4.3 for (PA, CA). By Claim 5.3 and the fact that
FA ∪ FB satisfies (PW , CW) the graph G(PA, FA) is a forest so that it satis-
fies the third constraint. By construction of CA it is clear that FA satisfies the
fourth constraint.

Based on the inductive assumption that Taba and Tabb are correct we know
that since FA satisfies (PA, CA) and FB satisfies (PB , CB) we have Taba[PA, CA] =
SA for some largest SA ⊆ A satisfying (PA, CA), Taba[PB , CB] = SB for some
largest SB ⊆ B satisfying (PB , CB), and thus |SA| ≥ |FA|, and |SB | ≥ |FB |.
Consider what happens when the algorithm considers the triple (PA, CA), (PB , CB),
(PW , CW). If SA∪SB satisfies (PW , CW) then we are guaranteed that |Tab[PW , CW]|
|SA ∪ SB | ≥ |FA ∪ FB | = |FW | which will establish the contradiction.

Thus, it remains only to show that SA ∪ SB satisfies (PW , CW), as in Def-
inition 4.3. From Definition 4.3 we get that if TCi

A belongs to Q0
A or Q1

A

then |SA ∩ TCi
A| = |FA ∩ TCi

A|, same holds for B. A twin-class TCi
W is a

union of some twin-classes from T CA and T CB . If TCi
W belongs to Q0

W or Q1
W

then it is a union of twin-classes belonging to Q0
A, Q

1
A, Q

0
B or Q1

B and hence
|(SA ∪SB)∩TCi

W | = |FW ∩TCi
W |. Therefore by construction SA ∪SB satisfies

the first two constraints of Definition 4.3 for (PW , CW). The following claims
will be useful to show that the third constraint is satisfied.

Claim 5.5. For any i ≥ 1 all vertices in any non-empty twin-class of Ri
A have,

in the graph G(PW , SA ∪ SB), exactly one neighbor not in A, which is common
to them all. Same for Ri

B.

Proof. We first show that no vertex x of a twin-class that is a subset of Ri
A

can have more than one neighbor outside A in G(PW , SA ∪ SB). We do this
by a case analysis showing that I: it cannot have any neighbor in an Rj

B-class,
II: it cannot have two neighbors in Q1

B-classes, III: it cannot have two new
intermediate neighbors, and IV: it cannot have one intermediate neighbor and
one neighbor in a Q1

B-class.

178 FEEDBACK VERTEX SET

Since by Claim 5.4 FA, SA satisfy (PA, CA) and also FB , SB satisfy (PB , CB)
all twin-classes of Ri

A contain at least two vertices of SA and of FA, and Rj
B

(for j > 0 an index of a non-empty Rj
B) contain at least two vertices of SB

and of FB . Therefore, since all vertices in a twin-class of T CA have the same
neighbors outside A case I must hold since otherwise we would have a 4-cycle
in G(PW , FA ∪ FB), contradicting that FA ∪ FB satisfies (PW , CW). Likewise
all twin-classes of Qi

B contain one vertex of both SB and of FB . Therefore,
case II must hold since otherwise we would again have a 4-cycle in G(PW , FA ∪
FB). By Definition 4.3 no vertex in the graph G(PW , SA ∪ SB) has more than
one intermediate neighbor so case III holds. For case IV note first that the
only way vertex x in a twin-class of Ri

A can have an intermediate neighbor in

G(PW , SA ∪ SB) is if its twin-class is a subset of Rj
W for some j > 0. But then

the vertex of FA in the same twin-class will also have an intermediate neighbor
in G(PW , FA ∪FB). Since all twin-classes of Qi

B contain one vertex of both SB

and of FB we conclude that case IV must hold since otherwise we would again
have a 4-cycle in G(PW , FA ∪ FB).

We now show that every vertex in any twin-class of Ri
A has a common

neighbor outside A in G(PW , SA ∪ SB). Firstly, every vertex whose twin-class
is a subset of Rj

W for j > 0 has a common intermediate neighbor. Secondly, for
a vertex whose twin-class is a subset of R0

W any neighbor it has outside A must
be in SB . Any two vertices of FA in twin-classes of Ri

A have in G(PA, FA) a
common neighbor, by Claim 5.4. By Claim 5.3 these two vertices of FA have
also in G(PW , FA ∪ FB) a common neighbor, which must be in FB since Ri

A

is a subset of R0
W . If any two vertices x, y in FA have a common neighbor in

FB then any two vertices in SA from the same twin-classes as x, y must have a
common neighbor in FB . This concludes the proof.

Claim 5.6. The graph G(PA, SA) is isomorphic (respecting twin-classes) to the
subgraph of G(PW , SA ∪ SB) induced on edges with either both endpoints in SA

or exactly one endpoint in a twin-class belonging to Ri
A for some i. Same holds

for G(PB , SB).

Proof. Note that G(PA, SA) and G(PW , SA∪SB) clearly induce the same graph
on SA. For the edges with exactly one endpoint in a twin-class belonging to Ri

A

Claim 5.5 implies that such an edge exists in both graphs or none of the two
graphs. No other edges exist in G(PA, SA).

To show that SA ∪ SB satisfies the third constraint of Definition 4.3 for
(PW , CW) we show that G(PW , SA ∪ SB) is a forest. We will prove this by
contradiction, showing that if we have a cycle Ψ in G(PW , SA ∪ SB) then we
also have a walk Ψ′ containing a cycle in G(PW , FW) (which we know is a
forest). We assume that the cycle Ψ is induced and break it into parts uniquely
as follows (after first uniquely choosing parts of type 1 below and then of type
2 below the rest of the cycle will uniquely be of types 3 and 4 below):

1. maximal paths starting and ending in SA containing at least one edge of
G[SA] and otherwise only containing edges with exactly one endpoint in

179

a twin-class belonging to Ri
A for some i.

2. maximal paths starting and ending in SB containing at least one edge of
G[SB] and otherwise only containing edges with exactly one endpoint in
a twin-class belonging to Ri

B for some i.

3. crossings from SA to SB directly by one edge.

4. crossings using one intermediate new vertex vi.

We assume additionally that the cycle Ψ has the smallest number of parts
over all induced cycles. Each part starts and ends in a vertex of SA ∪ SB and
these endpoints are called special vertices.

Claim 5.7. Each twin-class of T CA and T CB contains at most one special
vertex.

Proof. Assume for contradiction that some twin-class contains two special ver-
tices x, y. This twin-class must be some Ri

A (or Ri
B) since these are the only

classes containing more than one vertex of SA (or SB). Any special vertex x
in SA (resp SB) has two neighbors x1, x2 in the cycle Ψ. These two neighbors
cannot both be in SA (resp SB), since x would then not be a special vertex.
By Claim 5.5, x, y have exactly one neighbor not in A, thus wlog we can as-
sume x1 = y1 /∈ A so that the cycle Ψ has consecutive vertices x, x1, y. Their
other neighbor(s) x2, y2 in the cycle are in SA and thus x, y are not special
vertices.

Claim 5.8. Ψ cannot have only one part.

Proof. Note that Ψ must have at least two parts since if it had only one part
this part would have to be of type 1 (or type 2) and be a cycle in which case
Claim 5.6 would imply that G(PA, SA) (or G(PB , SB)) had a cycle, and thus
not satisfy (PA, CA) (or (PB , CB)) contradicting Claim 5.4.

We are ready to start constructing Ψ′. First, we choose for each special
vertex v ∈ SA (resp SB) of Ψ an arbitrary vertex of FA (resp FB) from the
same twin-class as v. By Claim 5.7 we have thus chosen at most one vertex
from each twin-class. We then replace each part of Ψ in G(PW , SA ∪ SB) by
a path in G(PW , FW) between the two chosen vertices and call the resulting
graph Ψ′.

Claim 5.9. Parts of type 1 (resp 2) can be replaced by paths in G(PW , FA∪FB)
containing at least one edge of G[FA] and otherwise only containing edges with
exactly one endpoint in a twin-class belonging to Ri

A for some i (resp for type
2, replacing A by B).

Proof. By Claim 5.6 a part of type 1 in Ψ, i.e. a path in G(PW , SA ∪ SB),
gives a path in G(PA, SA). Since both SA and FA satisfy (PA, CA) this gives
a path in G(PA, FA). This means that for any part of type 1 between special
vertices u, v there is a path in G(PA, FA) between the vertices u′v′ chosen from
the same twin-classes as u, v, having edges in G[FA] and edges with exactly one
endpoint in a twin-class belonging to Ri

A. We now show that there is such a

180 FEEDBACK VERTEX SET

path in G(PA, FA) between u′, v′ containing at least one edge of G[FA]. Note
that if u, v both belong to the same Ri

A then u, v have a common neighbor in
G(PW , SA∪SB) and Ψ would have only one part and we apply Claim 5.8. Thus
u′, v′ are in twin-classes belonging to different classes of the partition PA. Any
path in G(PA, FA) between vertices in twin-classes belonging to different classes
of PA must contain an edge of G[FA].

Let us now argue that the existence of such a path from u′ to v′ in G(PA, FA)
implies the existence of a similar path in G(PW , FA ∪ FB). Firstly, on FA the
induced subgraphs are the same in both graphs. Secondly, by construction of
PA from PW any two vertices of FA having in G(PA, FA) a common neighbor
outside FA also have in G(PW , FA ∪ FB) a common neighbor outside FA.

We can similarly argue for parts of type 2.

Parts of type 3 are easy to replace since if there is an edge in G(PW , SA∪SB)
from a vertex in a twin-class TCi

A to a vertex in a twin-class TCj
B then in the

graph G(PW , FW) any vertex in TCi
A will be connected to all vertices in TCj

B .
Parts of type 4 are also easy to replace: such a part goes from a vertex in a twin-
class TCi

A via an intermediate new vertex to a vertex in twin-class TCj
B with

both twin-classes belonging to the same Rk
W and thus since FW satisfies PW , CW

the same edges are present in G(PW , FW). This finishes the construction of Ψ′

from Ψ.
Note that the subgraph Ψ′ must be connected since we started with a cycle

Ψ, then first replaced each special vertex v by some v′ and then replaced paths
of the cycle between special vertices u, v by paths connecting u′ and v′. Ψ′

is therefore a walk starting and ending in the same vertex and that is why
Lemma 5.1 is useful to show that Ψ′ contains a cycle.

Claim 5.10. If Ψ contains an edge from a special vertex u in a twin-class of
Q1

A (resp Q1
B) to a vertex w not in A nor in a twin-class of Ri

B (resp not in B
nor in a twin-class of Ri

A) then Ψ′ contains a cycle.

Proof. Note that for u ∈ Q1
A there are only two choices for w: it can either

belong to a twin-class of Q1
B or it can be an intermediate vertex between u and

a special vertex of B. The special vertex u of Ψ is replaced in Ψ′ by u′ in the
same twin-class and no other special vertex of Ψ is replaced by u′. Similarly, if
w ∈ Q1

B then it is replaced by a vertex w′ from the same twin-class and it is the
only such vertex. Otherwise we let w′ = w. We will argue that the edge u′w′

appears exactly once in Ψ′, and the statement will follow from Lemma 5.1. The
edge u′w′ does not belong to G[FA] nor to G[FB] and neither u′ nor w′ belongs
to some Ri

A or Ri
B . Therefore, by Claim 5.9 parts of type 1 or 2 in Ψ will

never be replaced by a path containing the edge u′w′. A part of type 3 will be
replaced by a single edge, and a part of type 4 by a path on two edges, from A
to B. Two parts of type 3 cannot both be replaced by the same edge u′w′ since
then the cycle Ψ would have contained the edge uw twice contradicting the fact
that Ψ was chosen to be simple. Similarly, two parts of type 4 cannot both be
replaced by a path containing the edge u′w′ since then the cycle Ψ would have

181

contained the edge from u to its intermediate neighbor twice contradicting the
fact that Ψ was chosen to be simple. Similarly we can argue for u ∈ Q1

B .

Claim 5.11. If all edges of Ψ belong either to G[SA] or G[SB] or have at least
one endpoint in Ri

A or Ri
B then Ψ′ contains a cycle.

Proof. By Claim 5.5 a vertex u in Ri
A (resp Ri

B) has a single neighbor outside
B so that if the cycle Ψ contains a vertex u in a twin-class of Ri

A (resp Ri
B) then

Ψ must contain an edge uv of G[SA] (G[SB]). Thus Ψ has at least one part of
type 1 or 2.

We now argue that the condition in the claim implies that the parts of Ψ
must alternate between being: of type 1 (containing at least one edge of G[SA]),
then crossing parts of type 3 or 4 (containing no edges of G[SA] or G[SB]), then
of type 2 (containing at least one edge of G[SB]), then again crossings, and so
forth. Consider wlog a part of type 1 ending in a special vertex u ∈ SA. The
other part with special vertex u cannot be of type 1 or 2 since parts of type 1 are
maximal and parts of type 2 have special vertices in SB . We need to show that
going around the cycle Ψ from u we must encounter a part of type 2 before we
encounter a part of type 1 again (i.e. they alternate). When going around the
cycle Ψ from u there are two cases, either we encounter a vertex in a twin-class
of some Ri

B before encountering an edge of G[SA], or not. In the former case we
would next encounter an edge of G[SB] by the observation at the start of the
proof of this claim and would be done. In the latter case the condition in the
claim implies that every edge of Ψ between u and the occurrence of the edge of
G[SA] would have an endpoint in Ri

A, which would contradict the maximality of
the type 1 part ending in u. We conclude that the parts alternate as described
above.

Parts of type 3 and 4 in Ψ are replaced in Ψ′ by crossings containing no
edges of G[A] or G[B] and by Claim 5.9 parts of type 1 (resp 2) are replaced
in Ψ′ by paths containing at least one edge of G[A] and no edge of G[B] (resp
at least one edge of G[B] and no edge of G[A]). Call an edge of Ψ′ with both
endpoints in G[A] or both in G[B] a one-sided edge. Firstly, if there is some
one-sided edge uv of Ψ′ that appears only once in the walk defined by Ψ′ then
by Lemma 5.1 the walk Ψ′ contains a cycle. Otherwise, take a one-sided edge uv
such that there are two appearances of it in the walk Ψ′ with no other one-sided
edge appearing twice in the part of the walk between these two appearances
of uv. Note that there must be at least one special vertex between the two
occurences.

As the types alternate, the subgraph induced by the edges between these
two uses of uv in the walk Ψ′ must contain a one-sided edge yz (on the other
side). We therefore have a walk in Ψ′ starting and ending in vertex u containing
an edge yz used exactly once, so that Ψ′ contains a cycle by Lemma 5.1.

If Ψ does not fulfill the condition of Claim 5.11 then it contains an edge
having one endpoint in a twin-class of Q1

A (resp Q1
B) and the other endpoint

not in A (resp not in B) and not in a twin-class of Ri
B (resp Ri

A). But then Ψ
fulfills Claim 5.10. Thus the existence of a cycle Ψ in G(PW , SA ∪ SB) implies

182 FEEDBACK VERTEX SET

a cycle in G(PW , FW) either by Claim 5.10 or 5.11, contradicting the fact that
FW satisfies (PW , CW). Thus, we have shown that SA ∪ SB satisfies the third
constraint of Definition 4.3 for (PW , CW). We now show that it satisfies also the
fourth constraint.

The argument for the fourth constraint is similar to the one for the third
constraint but a bit simpler since we only need to replace paths by connected
graphs and not cycles by connected graphs containing a cycle.

We show there exists a path Γ in G(PW , SA ∪ SB) from a vertex in TCi
W /∈

R0
W to a vertex in TCj

W /∈ R0
W if and only if there exists a path Γ′ in G(PW , FW)

from a vertex in TCi
W to a vertex in TCj

W . Since FW satisfies the fourth
constraint of Definition 4.3 for (PW , CW), showing this will imply that also
SA ∪SB satisfies it. Given Γ we construct Γ′ as follows. Break Γ into parts of 4
types in such a way that the endpoints of a part contains no vertex from R0

W .

1. paths having edges in A only

2. paths having edges in B only

3. a single edge from SA to SB

4. a path of length two from SA or SB to SA or SB via a new vertex vi

This can be done since vertices of R0
W have no crossing edges. First replace

each vertex v ∈ TCp
A (resp. v ∈ TCp

B) that is the endpoint of a part of Γ by
an arbitrary vertex v′ of FW in TCp

A (resp. TCp
B). A part (of type 1) with

endpoints u, v containing only edges from A is a path also in G(PA, SA), and
since both SA and FA satisfy (PA, CA) such a part can be replaced by a path
between u′, v′ in G(PA, FA), and since by Claim 5.3 G(PA, FA) is a subgraph
of G(PW , FW) it can be replaced by a path between u′, v′ in G(PW , FW). The
same holds for parts (of type 2) with endpoints u, v containing only edges from
B. A part of type 3 is easy to replace: edges from SA to SB are replicated in
FW since all vertices in a twin-class have the same neighbors on the other side.
A part of type 4 is also easily replaced since they go from a vertex in a twin-class
TCj

A or TCj
B to a vertex in a twin-class TCp

A or TCp
B both in Ri

W and thus in
G(PW , FW) all vertices of these two twin-classes will be connected by such a
path of length two via new vertex vi. This concludes the construction of Γ′ and
shows that there is a path between u′, v′ in G(PW , FW). The opposite direction,
given Γ′ constructing Γ, is done in an analogous manner. Thus SA∪SB satisfies
the fourth constraint of Definition 4.3 for (PW , CW).

We have shown that SA ∪ SB satisfies (PW , CW). Therefore we cannot have
that Tabw[PW , CW] = � and, since |SA∪SB | = |SA|+|SB | ≥ |FA|+|FB | = |FW |,
we cannot have |FW | > |Tabw[PW , CW]|, finishing the proof.

Theorem 5.12. Given either a rooted decomposition tree (T, δ) of module-width
k of a graph G, or a k-expression of a graph G of clique-width at most k, we
can in O(k5kn2) steps solve the Minimum Feedback Vertex Set problem on G.

Proof. Consider first the case of input being a rooted decomposition tree. By
Lemma 3.2 we can compute twin-classes for all nodes of the tree in time O(n2).
Note that for any node a of the tree T the number of twin-classes of Va is at

183

most k. By Definition 4.3 and Lemma 5.2 the maximum value over all entries
in the table at the root of our dynamic programming algorithm will correctly
solve the problem.

The tables are indexed by P, an ordered partition and C an unordered par-
tition of a subset defined by P. There are O(kk+3) ordered partitions of k + 3
elements. The number of unordered partitions of k elements is bounded by the
number of ordered partitions. Note that the number of unordered partitions
is so much smaller than the number of ordered partitions that it will cancel
all factors polynomial in k, hence the size of the tables are O(k2k). For the
runtime, the bottleneck is the inner node update procedure which loops over all
triples of table indexes (PA, CA), (PB , CB), (PW , CW) and check if the union the
two elements SA = Taba[PA, CA] and SB = Tabb[PB , CB] satisfies (PW , CW).
This gives a total of O(k6k) iterations, however CW is uniquely defined by the
other 5 elements hence only O(k5k) iterations are needed. To check if SA ∪ SB

satisfies (PW , CW) we first make the union in O(n) time and then check the four
constraints of Definition 4.3 for (PW , CW). The two first constraints are checked
in O(n) time, building the graph G(PW , SA ∪ SB) and checking if it is a forest
is straight forward to do in O(m) time. However if the two graphs G[SA] and
G[SB] are stored from the previous step, then one can build the graph in O(k2n)
time, and since a forest has at most n − 1 edges also check if G(PW , SA ∪ SB)
is a forest. Checking that the connected components match CW is also done in
O(n) time as long as the graph is a forest. In total the combine step is O(k5kn).
The preprocessing is done in O(n2) time, initialization is done in O(n × k2k)
time. Filling the tables requires n combine steps, hence the total running time
is O(n2k5k).

Note that within the same runtime we could instead have taken as input a k-
expression of a graph G of clique-width at most k. This is since by Theorem 2.6
the module-width of G is no larger than the clique-width of G, and from the
k-expression we easily derive a rooted decomposition tree of module-width at
most k.

6. Conclusion

The Feedback Vertex Set problem has a non-local property that does not
lend itself to easy dynamic programming. Using the technique of ’expecta-
tion from the outside’ in the definition of tables of the dynamic programming,
and not the standard technique of partitioning the solution space into equiv-
alence classes, we have given an FPT algorithm for FVS parametrized by the
clique-width of a given decomposition. The exponential runtime of this algo-
rithm matches the runtime of the best known deterministic algorithm when
parametrizing by treewidth. Note that many graph classes have unbounded
treewidth and bounded clique-width but the opposite cannot occur. It is already
an open problem to solve FVS deterministically in exponential time O∗(2O(tw)),
so maybe O∗(2O(cw)) is too much to hope for. Boolean-width and rank-width
are parameters bounded on the same graph classes as clique-width, but their
values can be exponentially smaller than clique-width. The best runtime known

184 FEEDBACK VERTEX SET

for FVS on graphs of rank-width rw is O(25rw
2

rw3n) [15], and from this we can

deduce an algorithm with runtime O(25(2
2bw)+3bwn) for graphs of boolean-width

bw. Can we get runtime O∗(2O(bw2)) for boolean-width?

[1] V. Bafna, P. Berman, and T. Fujito. A 2-approximation algorithm for the
undirected feedback vertex set problem. SIAM Journal on Discrete Mathe-
matics 12:289–297, 1999.

[2] R. Bar-Yehuda, D. Geiger, J. Naor, and R. Roth. Approximation algorithms
for the feedback vertex set problem with applications to constraint satisfac-
tion and Bayesian inference. SIAM Journal on Computing 27:942–959, 1998.

[3] B.-M. Bui-Xuan, J. A. Telle, and M. Vatshelle. H-join decomposable graphs
and algorithms with runtime single exponential in rank-width. Discrete
Applied Mathematics 158(7):809–819, 2010. .

[4] B.-M. Bui-Xuan, J. A. Telle, and M. Vatshelle. Fast FPT algorithms for
vertex subset and vertex partitioning problems using neighborhood unions.
http://arxiv.org/abs/0903.4796

[5] B.-M. Bui-Xuan, J. A. Telle, and M. Vatshelle. Feedback Vertex Set on
Graphs of Low Cliquewidth. In Proceedings of IWOCA’09, LNCS 5874,
pages 113–124, 2009.

[6] J. Chen, F. Fomin, Y. Liu, S. Lu, and Y. Villanger. Improved Algorithms
for the Feedback Vertex Set Problems. In Proceedings of WADS’07, LNCS
4619, pages 422–433, 2007.

[7] F. Chudak, M. Goemans, D. Hochbaum, and D. Williamson. A primal-dual
interpretation of two 2-approximation algorithms for the feedback vertex
set problem in undirected graphs. Operations Research Letters 22:111–118,
1998.

[8] B. Courcelle, J.A. Makowsky, U. Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory of Computing Systems,
33(2):125–150, 2000.

[9] M. Cygan, J. Nederlof, Ma. Pilipczuk, Mi. Pilipczuk, J. van Rooij and J.
Wojtaszczyk. Solving connectivity problems parameterized by treewidth in
single exponential time. to appear in Proceedings of FOCS’11

[10] F. Dehne, M. Fellows, M. Langston, F. Rosamond, and K. Stevens. An
O(2O(k)n3) FPT Algorithm for the Undirected Feedback Vertex Set Prob-
lem. In Proceedings of COCOON’05, LNCS 3595, pages 859–869, 2005.

[11] R.Downey and M.Fellows. Parameterized Complexity, Springer-Verlag
(1999)

185

[12] W. Espelage, F. Gurski, E. Wanke. How to Solve NP-hard Graph Problems
on Clique-Width Bounded Graphs in Polynomial Time. In Proceedings of
WG’01, LNCS 2204, pages 117–128, 2001.

[13] G. Even, J. Naor, B. Schieber, and L. Zosin. Approximating minimum
subset feedback sets in undirected graphs with applications. SIAM Journal
on Discrete Mathematics 13:255–267, 2000.

[14] F. Fomin, S. Gaspers, A. Pyatkin, and I. Razgon. On the Minimum Feed-
back Vertex Set Problem: Exact and Enumeration Algorithms. Algorith-
mica, 52:293–307, 2008.

[15] R. Ganian and P. Hliněný. On Parse Trees and Myhill-Nerode-type Tools
for handling Graphs of Bounded Rank-width. Discrete Applied Mathematics
158(7):851–867, 2010.

[16] M. Goemans and D. Williamson. Primal-dual approximation algorithms
for feedback problems in planar graphs. Combinatorica 18(1):37–59, 1998.

[17] J. Guo, J. Gramm, F. Hüffner, R. Niedermeier, and S. Wernicke.
Compression-based fixed-parameter algorithms for feedback vertex set and
edge bipartization. Journal of Computer and System Sciences 72(8):1386–
1396, 2006.

[18] M. Habib, C. Paul, L. Viennot. Partition Refinement Techniques: An
Interesting Algorithmic Tool Kit. International Journal of Foundations on
Computer Science 10(2):147–170, 1999.

[19] D. Harel and R. Tarjan. Fast algorithms for finding nearest common an-
cestors. SIAM Journal on Computing, 13(2):338–355, 1984.

[20] P. Hliněný, S. Oum. Finding branch-decompositions and rank-
decompositions. SIAM Journal on Computing 38(3):1012–1032, 2008.

[21] R. Karp. Reducibility among combinatorial problems. In Complexity of
Computer Computations, pages 85–103, 1972.

[22] J. Kleinberg and A. Kumar. Wavelength conversion in optical networks.
Journal of Algorithms 38:25–50, 2001.

[23] T. Kloks, C. Lee, J. Liu. New Algorithms for k-Face Cover, k-Feedback Ver-
tex Set, and k-Disjoint Cycles on Plane and Planar Graphs. In Proceedings
of WG’02, LNCS 2573, pages 282–295, 2002.

[24] D. Kobler, U. Rotics. Edge dominating set and colorings on graphs with
fixed clique-width. Discrete Applied Mathematics 126(2-3): 197–221, 2003.

[25] A. Koutsonas and D. Thilikos. Planar Feedback Vertex Set and Face Cover:
Combinatorial Bounds and Subexponential Algorithms. In Proceedings of
WG’08, LNCS 5344, pages 254–274, 2008.

186 FEEDBACK VERTEX SET

[26] J.-M. Lanlignel. Autour de la décomposition en coupe. Ph. D. thesis,
Université Montpellier II, 2001.

[27] S. Oum, P. Seymour. Approximating clique-width and branch-width. J.
Combin.Theory Ser. B 96(4):514–528, 2006.

[28] R. Paige, R. Tarjan. Three partition refinement algorithms. SIAM Journal
on Computing 16(6):973–989, 1987.

[29] V. Raman, S. Saurabh, and C. Subramanian. Faster fixed parameter
tractable algorithms for finding feedback vertex sets. ACM Transactions
on Algorithms 2(3):403–415, 2006.

[30] M. Rao. Clique-width of graphs defined by one-vertex extensions. Discrete
Mathematics 308(24):6157–6165, 2008.

[31] N. Robertson, P. Seymour. Graph minors X: Obstructions to tree-
decomposition. Journal on Combinatorial Theory Series B, 52:153–190,
1991.

[32] M. Rao. Décompositions de graphes et algorithmes efficaces. Ph. D. thesis,
Université Paul Verlaine, Metz, 2006.

187

188 FEEDBACK VERTEX SET

Finding Good Decompositions for Dynamic

Programming on Dense Graphs�

Eivind Magnus HVIDEVOLDa, Sadia SHARMINa, Jan Arne TELLEa, Martin

VATSHELLEa,

a Department of Informatics, University of Bergen, Norway.

Abstract

It is well-known that for graphs with high edge density the tree-width is always

high while the clique-width can be low. Boolean-width is a new parameter that

is never higher than tree-width or clique-width and can in fact be as small as

logarithmic in clique-width. Boolean-width is defined using a decomposition tree

by evaluating the number of neighborhoods across the resulting cuts of the graph.

Several NP-hard problems can be solved efficiently by dynamic programming

when given a decomposition of boolean-width k, e.g. Max Weight Independent

Set in time O(n2k22k) and Min Weight Dominating Set in time O(n2 + nk23k).
Finding decompositions of low boolean-width is therefore of practical interest.

There is evidence that computing boolean-width is hard, while the existence of a

useful approximation algorithm is still open. In this paper we introduce and study

a heuristic algorithm that finds a reasonably good decomposition to be used for

dynamic programming based on boolean-width. On a set of graphs of practical

relevance, specifically graphs in TreewidthLIB, the best known upper bound on

their tree-width is compared to the upper bound on their boolean-width given by

our heuristic. For the large majority of the graphs on which we made the tests,

the tree-width bound is at least twice as big as the boolean-width bound, and

boolean-width compares better the higher the edge density. This means that, for

problems like Dominating Set, using boolean-width should outperform dynamic

programming by tree-width, at least for graphs of edge density above a certain

bound. In view of the amount of previous work on heuristics for tree-width these

results indicate that boolean-width could in the future outperform tree-width in

practice for a large class of graphs and problems.

�Supported by the Norwegian Research Council, project PARALGO.

Email address: Sadia.Sharmin@uib.no (Sadia SHARMIN)

189

1. Introduction

Many NP-hard graph problems become polynomial-time solvable when re-

stricted to graphs of bounded tree-width or bounded clique-width. These algo-

rithms usually have two stages, a first stage finding a decomposition of width k
of the input graph, and a second stage of dynamic programming along the de-

composition. The dynamic programming is typically exponential in k, e.g. given

a decomposition of tree-width k it solves Maximum Weight Independent set in

time O(n2k) and Minimum Weight Dominating set in time O(n3kk2) [20]. It is

therefore important to have fast algorithms for the first stage, i.e. to find decom-

positions of small width. For clique-width such algorithms are not known, apart

from the 2OPT approximation achieved through rank-width [13]. For tree-width

there is an O(f(n)2O(k3)) algorithm for finding a decomposition of tree-width k, if

it exists [3]. This algorithm is not practical [17], but much work has been done on

finding decompositions of low tree-width in practical settings, see the overviews

[5, 4]. The web site TreewidthLIB [19] has been established to provide a bench-

mark and to join the efforts of people working in experimental settings to solve

graph problems using tree-width and branch-width [12, 16]. This includes prob-

lems from computational biology [18, 21, 22], constraint satisfaction [9, 11], and

probabilistic networks [15]. However, tree-width and branch-width are unsuitable

for non-sparse graphs, as a decomposition of tree-width or branch-width k means

the graph has O(k2n) edges. Clique-width, on the other hand, can be low for

dense graphs, but so far no experimental study has been done for clique-width or

similar notions. To our knowledge this paper is the first case of an experimental

study on computing a notion of width that works also for non-sparse graphs.

Boolean-width is a recently introduced graph parameter motivated by algo-

rithms [8]. It is defined by a decomposition tree that minimizes the number of

different unions of neighbourhoods across resulting cuts of the graph. This de-

composition is natural to solve problems where vertex sets having the same neigh-

borhoods across the cuts can be treated as equivalent. This includes problems

related to Independent Set, Dominating Set, Perfect Code, Induced k-Bounded

Degree Subgraph, H-Homomorphism, H-Covering, H-Role Assignment etc [1].

Similarly to treewidth, dynamic programming algorithms to solve these problems

using boolean-width employ a table at each node of the decomposition tree, to

store solutions to partial problems. In contrast to treewidth, the dynamic pro-

gramming for boolean-width involves a non-negligible pre-processing phase com-

puting indices of the tables, the so-called ’representatives’. Regardless, the total

runtimes are in many cases close to those for treewidth, e.g. given a decomposi-

190 HEURISTIC

tion of boolean-width k Max Weight Independent Set is solved in time O(n2k22k)
and Min Weight Dominating Set in time O(n2 + nk23k) [8]. These boolean-

width-based algorithms are straightforward and have been implemented in Java,

without much effort, using only the description in [8]. Let us compare dynamic

programming based on tree-width versus boolean-width, to solve Independent Set

and Dominating Set, with focus on exponential factors. For Independent Set the

exponential factor in the runtimes are 2tw versus 22boolw, given decompositions

of treewidth tw or boolean-width boolw, and boolean-width becomes preferable

when tw > 2boolw. For Dominating Set the exponential factor in the runtime is

3tw versus 23boolw and the cutoff is a bit lower, i.e. when tw ≥ 1.9boolw.

It is known that boolean-width is never higher than tree-width or clique-width

and it can be as low as logarithmic in clique-width [8]. For example, any interval

graph or permutation graph has boolean-width O(logn) [2] while there exist such

graphs of clique-width Ω(
√
n) and tree-width Ω(n). Also, a random graph with

constant edge probability will almost surely have boolean-width Θ(log2 n) [1] but

linear clique-width and tree-width. While these theoretical results favor boolean-

width over tree-width, the cutoff tw ≥ 2boolw that we arrived at above applies

when we are given a decomposition of treewidth tw or boolean-width boolw, as

the output of a first stage algorithm. It is unknown if computing boolean-width

is FPT or W-hard. In this paper we give a heuristic for the first stage, taking

as input a graph G and finding a decomposition of G having reasonably low

boolean-width. We tried various heuristics and present the one with best per-

formance, which is a local search algorithm where the search for new solutions is

based on interweaving between greedy choices and random choices. Theoretical

evidence that random choices are useful for boolean-width, at least for random

graphs, comes from the analysis of [1] showing that any decomposition of a ran-

dom graph is expected to be a decomposition of relatively low boolean-width. On

a set of graphs of practical relevance, specifically graphs in TreewidthLIB, the best

known upper bound on their tree-width is compared to the upper bound on their

boolean-width given by our heuristic. For 78% of those graphs in Treewidth-

LIB where both tree-width and boolean-width upper bounds were encountered,

the tree-width bound is at least twice the boolean-width bound, thus meeting the

tw ≥ 2boolw bound mentioned above. A drawback of tree-width is that it is al-

ways high when edge density is high. In contrast, boolean-width is typically low

for dense graphs and our experiments show that within reasonable time we can

find decompositions witnessing this. Our results indicate that, for problems like

Dominating Set, using boolean-width will outperform dynamic programming by

tree-width, at least for graphs of edge density above a certain bound. In view of

191

the amount of previous work on heuristics for tree-width we expect that further

work on boolean-width heuristics will substantially increase the class of graphs

for which boolean-width outperforms tree-width, also for other problems besides

Independent Set and Dominating Set.

The rest of the paper is organized as follows. In Section 2 we define partial

and full decomposition trees and boolean-width. In Section 3 we describe the

heuristic finding a decomposition of low boolean-width. In Section 4 we describe

the experimental results on graphs in TreewidthLIB, and also on small grid graphs.

In Section 5 we draw some conclusions.

2. Boolean-width

We consider undirected graphs G = (V,E) without loops. We denote the

neighborhood of a vertex v by N(v) and the union of neighborhoods of a vertex

subset A by N(A) = ∪v∈AN(v). The complement of A ⊆ V is denoted by

Ā = V \ A and we call (A, Ā) a cut of G. A partition of a set S consists of non-

empty and disjoint subsets of S whose union is S. We follow custom by referring

to vertices of a graph and nodes of a tree.

Definition 1 (Full and partial decomposition trees). A partial decomposition

tree of a graph G = (V,E) is a pair (T, δ), where T is a full binary tree and δ
is a mapping from the nodes of T to non-empty subsets of V , satisfying the fol-

lowing: if x is the root of T then δ(x) = V and if nodes y and z of T are children

of a node x then (δ(y), δ(z)) is a partition of δ(x). If a subtree of T rooted at x
has |δ(x)| leaves then it is called a full decomposition subtree. If T has |V | leaves

then (T, δ) is called a full decomposition tree.

Note that in a partial decomposition tree (T, δ) of a graph G, if L is the set of

leaves of T then {δ(x) : x ∈ L} is a partition of V . Hence in a full decomposition

tree there will for each vertex v of G be a unique leaf x of T with δ(x) = {v}.
Likewise for each vertex of δ(x) in a full decomposition subtree rooted at x.

Definition 2 (Unions of neighborhoods and boolean-width). Let (T, δ) be a

partial decomposition tree of a graph G. Let V (T) be the nodes of T . Every node

x ∈ V (T) defines a cut (δ(x), δ(x)) of G. The set of unions of neighborhoods

of subsets of A across the cut (A,A) is UN(A) = {N(X) ∩ A : X ⊆ A}. The

boolean-width of (T, δ) is

boolw(T, δ) = max
x∈V (T)

{log2|UN(δ(x))|}

192 HEURISTIC

The boolean-width of a graph G is the minimum boolean-width over all its full

decomposition trees boolw(G) = min
full (T,δ)ofG

{boolw(T, δ)}.

Note that UN(A) are the subsets of A for which there exists an X ⊆ A with

N(X) ∩ A being that subset, so we always have ∅ ∈ UN(A). It is known from

boolean matrix theory [14] that |UN(A)| = |UN(A)| and this is sometimes used

by our code. Let us consider some examples. If |UN(A)| = 2 then the set of

edges crossing the cut (A,A) induce a complete bipartite graph. If the set of edges

crossing the cut (A,A) induce a perfect matching of G then |UN(A)| = 2|V/2|. In

the definition of boolean-width we take the logarithm base 2 of |UN(A)| which

ensures that 0 ≤ boolw(G) ≤ |V |. If a graph has boolean-width one then it has

a full decomposition tree such that, for every cut defined by a node of the tree,

the edges crossing the cut, if any, induce a complete bipartite graph. From this it

follows that the graphs of boolean-width one are exactly the distance-hereditary

graphs [7].

Definition 3 (Split). A split of a set P is a partition into two subsets A and B,

with the constraint that min{|A|, |B|} ≥ 1
3
|P |.

3. Heuristic Algorithm

We present a local search heuristic that given a graph G computes a full de-

composition tree of G. The search for new solutions in the space of candidate

solutions is based on a fine balance between greedy choices and random choices.

The heuristic, given in Algorithm 1, runs for a pre-defined length of time and

then returns the best full decomposition found. Each heuristic pass iterates over

all decomposition nodes of the current partial decomposition tree, including the

children created by this heuristic pass. A newly created tree node always starts

out as a leaf node, which δ maps to a set of vertices of G that may be larger than

one. We keep track of the best full decomposition subtrees found for each P ⊆ V
encountered so far and call it Best(P).

3.1. Greedy Initialization
Step 1 of Algorithm 1 greedily generates a full decomposition tree, to serve as

the starting tree for the local search in Step 2. The greedy initialization starts with

T containing a single node x (as both root and leaf) with δ(x) = V and repeatedly

calls the Split subroutine until we get a full decomposition tree. The Split(P)
subroutine returns a split (A,B) of P and is given in Algorithm 2. Starting with

193

Algorithm 1 : Generate a full decomposition of a given graph

Input: a graph G
Output: a full decomposition tree (T, δ) of G
Step 1: /∗Greedily generate initial full decomposition tree∗/

Initialize T with V (T) = {root}, δ(root) = V
while ∃ leaf x of T with |δ(x)| > 1

(A,B) = Split(δ(x));
Add leaves y and z as children of x with δ(y) = A and δ(z) = B

for all x ∈ V (T) store Best(δ(x)), the subtree rooted at x
Step 2: /∗Local Search for better trees∗/

for fixed amount of time do
TryToImproveSubtree(root)
if (T, δ) is a full decomposition tree then Best(V) = (T, δ)

return Best(V)

A being a random half of the vertices of P (unless P=V), it adds new vertices to A
one by one in a greedy fashion while minimizing |UN(A)| and |UN(P \A)|, and

returns the best split found along the way complying with the split constraint. The

call of Split(V) at the root sets the initial conditions for the later splits and for this

root-case we start with A = ∅, rather than a random half of the vertices, to allow

the full benefit of the greedy choices. The local search in TryToImproveSubtree
will for leaves of the current tree make calls to Split(P) but not for P = V ,

since the root of T will never again become a leaf and instead the RandomSwap
subroutine described in the next subsection will be applied to the root.

The objective function optimized locally in Split is |UN(A)|, the number of

unions of neighborhoods of A, which directly relates to boolean-width, see Def-

inition 2. The computation of |UN(A)| is done in a separate subroutine called

UN(A) given in Algorithm 3. This subroutine starts by restricting from the cut

(A,A) to the subsets of vertices (S1, S2) having an edge going across the cut

(A,A). The list LN is used to accumulate the set UN(A) in a straightforward

way. Correctness is easy to show by induction on |S1|. Early termination of the

UN(A) subroutine is not shown in Algorithm 3 but is done if it is determined that

|LN | is too large for the cut (A,A) to be interesting.

3.2. Local Search
The local search used to improve the current decomposition tree is initiated at

the root of the tree T , in Step 2 of Algorithm 1. In the subroutine TryToImprove-

194 HEURISTIC

Algorithm 2 : Split(P)

Input: Set of vertices P ⊆ V .

Output: a partition (A,B) of P s.t. min{|A|, |B|} ≥ 1
3
|P |.

if P = V then A1 ← ∅
else A1 ← random half of the vertices in P
i = 1
while |P \ Ai| ≥ 1

3
|P | do

find x ∈ P \Ai s.t. max{UN(Ai∪{x}),UN((P \Ai) \ {x})} is minimized.

Ai+1 = Ai ∪ {x}.
i = i+ 1.

end while
find i such that max{UN(Ai),UN(P \ Ai)} is minimized and |Ai| ≥ 1

3
|P |.

return (Ai,P \ Ai).

Subtree(x), given in Algorithm 4, x is a node of the current partial decomposition

tree (T, δ) and the goal is to improve the subtree of T rooted at x. That subroutine

has four main parts.

(1) if x leaf then find candidate for split of its subset

(2) if x non-leaf then find candidate for swap of its two children subsets

(3) conditionally update (T, δ)

(4) for each child of x either use stored subtree or recurse

For (1) we use the Split subroutine described earlier. For (2) we use the Random-
Swap(A,B) subroutine given in Algorithm 5 that randomly swaps vertices be-

tween A and B while complying with the split constraint. At the very onset of the

local search, the current (T, δ) is the full decomposition tree found by the greedy

initialization. However, the current decomposition tree ceases to be full as soon as

the split given by RandomSwap(δ(y), δ(z)) in (2) is a good one and (3) updates

(T, δ) so that y and z become leaves. If the new δ(y) is a subset of vertices for

which a full decomposition subtree has never been stored, or the stored one is not

good enough, then in (4) a recursive call is made to TryToImproveSubtree(y),

with y a leaf of the current tree. If in that recursive call the split found in (1)

is not good then in (3) we will return with y a leaf of the current (T, δ) having

|δ(y)| > 1, which explains the if-statement at the very end of Algorithm 1.

195

Algorithm 3 : UN(A)

Input: Set of vertices A ⊆ V .

Output: |UN(A)|, the number of unions of neighborhoods of the cut (A,A)

if |UN(A)| has already been computed return the stored value

S1 = {v ∈ A : ∃u ∈ A ∧ (u, v) ∈ E}
S2 = {v ∈ A : ∃u ∈ A ∧ (u, v) ∈ E}
LN ← {∅} /∗neighborhood set accumulator∗/
for all u ∈ S1 do

for all Y ∈ LN do
X ← (N(u) ∩ S2) ∪ Y
if X /∈ LN then add X to LN

return The number of elements in LN

Note that the local improvements made in the local search are based on ran-

domly swapping vertices between δ(y) and δ(z) for two nodes y and z with the

same parent. As usual in local search, there is a fine balance to trying new splits

versus sticking with old splits. The goal is to neither get stuck in local minima

nor to swap so many nodes that we re-randomize completely and don’t get a hill-

climbing effect. Note in (4) that we store for each subset P of vertices encountered

so far the best found full decomposition subtree Best(P). The decision of when

to try new splits and when to use the old splits is tied to the boolean-width of the

best subtrees, and to the upper bound on boolean-width of G given by Best(V).

3.3. Discussion and Implementation Details
We made our implementations in Java. Subsets of vertices are stored as bitvec-

tors of length n, i.e. the number of vertices in the graph. We expect most of the

subsets we store to be of size at least n
2

so this is an efficient way to store sub-

sets. We also limited the boolean-width to 31, i.e. |UN(A)| ≤ 231, but none of

the graphs tested reached this limit. The bottleneck is rather the memory avail-

able on our machines. Let us explain. Our implementation of subroutine UN(A)

uses memory proportional to n ∗ |UN(A)| bits. Since |UN(A)| ≤ 2min(|A|,|A|) the

’boolean-width ≤ 31’ becomes a bottleneck only if the graph has at least 64 ver-

tices. In that case the implementation is handling a list of neighborhoods of size

64∗231 bits which is 16 GB of memory and that is more memory than our desktop

had. It is part of future research to find memory efficient methods to compute

|UN(A)|.

196 HEURISTIC

Algorithm 4 : TryToImproveSubtree(x)

Input: a node x of T with |δ(x)| > 1
(1) if x is a leaf then (A,B) = Split(δ(x))
(2) else

Let y and z be the children of the node x.

(A,B)=RandomSwap(δ(y), δ(z))

(3) if max{UN(A),UN(B)} < boolw(Best(V))
then Set y and z as new leaf children of x with δ(y) = A and δ(z) = B

else if x is still a leaf then return /* in case we came from (1) */

(4) if max{UN(δ(y)),UN(δ(z))} < boolw(Best(V)) then
for w ∈ {y, z}

if boolw(Best(V)) > boolw(Best(δ(w)))
then use root of Best(δ(w)) as w.

else if |δ(w) > 1| call TryToImproveSubtree(w)

if the subtree Tx rooted at x is a full subtree of δ(x)
then update Best(δ(x)) to Tx

As described, we are currently storing the best full decompositions of sub-

trees. Since bitvectors are easy to compare they are stored in a binary search tree

for quick look-up. Storing all these solutions eats up memory, and for some big

graphs this is the limiting factor. In the future we will consider more advanced

schemes for storing the partial solutions encountered. In particular one should

throw out elements that are no longer below the upper bound.

The search for new solutions in the space of candidate solutions is based on

a fine balance between greedy choices and random choices, a balance that was

arrived at mainly through experimentation. This appears e.g. in the choice of

letting the Split subroutine start with a random half of the nodes on one side before

trying vertices one-by-one in the more costly greedy stage. Similarly for the fully

random choice of swapping in subroutine RandomSwap, and in the conditional

tests in (3) and (4) of TryToImproveSubtree.

Although not specified in the pseudocode, for small subtrees we just return

an arbitrary one, since if |δ(x)| ≤ boolw(Best(V)) then any full subtree at x
will have boolean-width at most boolw(Best(V)). The Split(P) subroutine given

in Algorithm 2 could be stopped as soon as a subset Ai with low |UN(Ai)| and

|UN(P \ Ai)| values has been found. It is not clear that this is always better and

currently it is not done. There are many calls of UN(A) for many subsets A that

197

Algorithm 5 : RandomSwap(δ(y), δ(z))

Input: δ(y), δ(z) ⊆ V for sibling nodes y and z of T .

Output: split (A,B) of δ(y) ∪ δ(z).
Let x be the parent of y and z.

choose randomly i in 0..(|δ(y)| − |δ(x)|
3

) and j in 0..(|δ(z)| − |δ(x)|
3

).
choose randomly Mi ⊂ δ(y) and Mj ⊂ δ(z) with |Mi| = i and |Mj| = j.

A = (δ(y) \Mi) ∪Mj

B = (δ(z) \Mj) ∪Mi

return (A,B).

only differ in a few vertices. A possible improvement is to store the sets of unions

of neighborhoods UN(A) and use these e.g. when computing UN(A ∪ {v})
for a single added vertex v, allthough it is not clear how to do this efficiently.

The UN(A) subroutine given in Algorithm 3 does not recompute known values,

but otherwise it may seem naive. It forms the inner loop of the heuristic and

it is the bottleneck for running on graphs with many vertices. We tried differ-

ent approaches such as randomly sampling subsets to approximate |UN(A)| and

exploiting a correlation between the degree of a vertex and its contribution to

|UN(A)|. These tests led to only insignificant improvements so for the moment

we kept the naive algorithm. There are other, similar, improvements to UN(A)
that can be attempted, and although they may not asymptotically improve the

running-time of the heuristic they could potentially be of big help.

The balance between trying new splits and sticking to old splits is guided by

the conditional test in (3) of Algorithm 4. We did try imposing stronger conditions

in order to arrive at better splits sooner, but only minor improvements were seen,

and only in some cases.

The heuristic ran for a predefined amount of time for each graph but there are

several ways of experimenting with the stopping criteria, for example based on

the size of the input graph, or on the fraction of time since an improved tree was

last found.

4. Experimental Results

All presented results have been carried out on a Linux machine with 2.33 GHz

Intel Core 2Duo CPU E6550 and 2 GB RAM. Our aim was not fast benchmark

results, but to explore heuristics for finding decompositions of low boolean-width.

TreewidthLIB is an online depository containing a collection of 710 graphs, to

198 HEURISTIC

be used as a benchmark for the comparison of algorithms computing treewidth.

TreewidthLIB provides selected instance graphs, for which computing the tree-

width is relevant, originating from applications like probabilistic networks, vertex

coloring, frequency assignment and protein structures [5]. We ran our heuristic

on the graphs in TreewidthLIB.

TreewidthLIB contains 710 graphs. For 482 graphs a tree-width bound is

given in TreewidthLIB, and for 426 graphs we give a boolean-width bound us-

ing our heuristic. For the comparison we concentrate on the 300 graphs for which

we have a bound on both tree-width and boolean-width, but let us first discuss

the remaining 410 graphs. Among these 410 graphs, there are 126 having only a

boolean-width bound, 182 having only a tree-width bound, and 102 having nei-

ther. Among the 182 graphs having only a tree-width bound there are some in a

graph format not supported by our implementation, but for the majority of these

graphs our heuristic simply timed out already at the greedy initialization stage.

Note that for these 182 graphs, if we were given the decomposition of low tree-

width k, we could easily have produced a decomposition of boolean-width at most

k, using the O(nk2) algorithm which can be deduced from [1].

We now summarize our findings for the 300 graphs having both a tree-width

bound and a boolean-width bound. Firstly, the boolean-width bound is always

better than the tree-width bound, with the ratio of the tree-width bound divided

by the boolean-width bound ranging from 1.15 to 29, with an average of 3.13.

Not surprisingly, the ratio increased with higher edge density. In Fig.1 we have

plotted this ratio against the edge density of the graphs for a total of 300 graphs.

The trend line shows the growth of ratio with edge density.

Our heuristic algorithm starts with greedily finding a full decomposition tree

giving an Initial Bound on boolean-width and then improves this bound itera-

tively. In the experiments we kept track of the decrease in the boolean-width

over time. In Fig. 2 and Fig. 3 the upper bounds on boolean-width, i.e. the

values of boolw(BEST (V)), are shown as they decrease over time, for the two

graphs called eil51.tsp (V =51 and E=140) and miles1500 (V=128,E=5198). For

the graph eil51.tsp the Initial Bound was 9.1 after less than a second, then at the

’knee’ of the curve before the improvement decays we found a Fast Bound of 6.2

after 4 seconds, and finally the Best Bound of 5.8 was found after 124 seconds.

For each graph, we can likewise speak of three bounds: i) the Initial Bound given

by the greedy initialization, ii) a Fast Bound found at the ’knee’ of the curve, and

iii) the Best Bound found possibly after a long runtime.

In Table 1 we summarize results for 8 selected graphs having a good variety of

number of vertices V , edge density density, Time in seconds to find Initial Bound,

199

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

R
at

io
=T

W
U

B
/B

W
U

B

Edge density

Graph instances
y=143x4 164x3+48x2+1.9x+1.6

Figure 1: Ratio (treewidth divided by boolean-width) versus edge density in all the 300 graphs for

which heuristically computed upper bounds are known.

Fast Bound, and Best Bound on boolean-width, its best known treewidth upper

bound TWUB, and Ratio=TWUB/BWUB(Best Bound). The graphs are sorted by

this Ratio. The miles1500 graph is translated from the Stanford GraphBase. The

zeroin.i.1 and mulsol.i.5 graphs originate from the 2nd DIMACS implementation

challenge [10] and are generated from a register allocation problem based on real

code. The queen8 12 also comes from the DIMACS[10] graph coloring problems

and is an example of n-queens puzzle. The graph 1awd is from the field of com-

putational biology with each vertex representing a single side chain and each edge

representing the existence of a pairwise interaction between the two side chains.

The graph celar06-wpp is a frequency assignment instance. The graph BN 28
originates from Bayesian Network from evaluation of probabilistic inference sys-

tems at UAI 2006. The graph eil51.tsp is a Delauney triangulation of a traveling

salesman problem.

4.1. Small grid graphs
We also ran our heuristic on graphs corresponding to the n×n grid. However,

for square grids the current implementation of UN(A) is too memory-intensive

and we had to limit the size to n ≤ 9. These are sparse graphs having tree-width

n and the upper bound we find on boolean-width is below this. See Figure 4.

The boolean-width of square n × n grids is a topic we are investigating and our

current guess is that the optimal upper bound, holding for all n, is about 0.8 ∗ n.

If this is correct, the value computed by the heuristic is close to optimal, which

200 HEURISTIC

0 20 40 60 80 100 120 140
5.5

6

6.5

7

7.5

8

8.5

9

9.5

Time(sec)

B
oo

le
an

w
id

th

Best Bound

Fast Bound

Initial Bound

Figure 2: Improvement of boolean-width upper

bound as the local search progresses over time,

for the graph eil51.tsp (V=51,E=140)

0 100 200 300 400 500 600 700

4.9

5

5.1

5.2

5.3

5.4

5.5

5.6

B
oo

le
an

w
id

th

Time(sec)

Initial Bound

Fast Bound
Best Bound

Figure 3: Improvement of boolean-width upper

bound as the local search progresses over time,

for the graph miles1500 (V=128,E=5198)

Table 1: Results for selected graphs
Edge Initial Bound Fast Bound Best Bound

Graph name V density BWUB Time(s) BWUB Time(s) BWUB Time(s) TWUB Ratio
miles1500 128 0.64 5.5 32.6 4.9 345.7 4.8 609.6 77 15.85
zeroin.i.1 211 0.19 4.0 74.1 3.8 116.2 3.7 168.0 50 13.51
mulsol.i.5 186 0.23 6.4 55.3 5.4 130.0 4.9 365.2 31 6.25
queen8 12 96 0.30 16.7 3055 16.7 3055 16.7 3055 65 3.91
1awd 89 0.27 13.3 67.5 11.1 521.1 10.8 702.9 38 3.52
celar06-wpp 34 0.28 4.5 0.1 3.2 0.8 3.0 4.8 11 3.37
BN 28 24 0.18 3.3 0.02 2.3 0.05 2.0 0.3 5 2.50
eil51.tsp 51 0.11 9.1 0.9 6.2 4.1 5.8 124.6 9 1.55

is somewhat interesting as it is our understanding that the heuristics for finding

decompositions of low tree-width do not perform well on grid graphs.

5. Conclusion

We presented the first experimental study on computing a notion of width that

works also for non-sparse graphs, based on the boolean-width parameter. Experi-

ments with the graphs in TreewidthLIB show the strength of boolean-width versus

tree-width, in a practical setting, in particular for graphs of edge density above a

certain value. For more examples of real-world graphs of high edge density and

high tree-width we could also look beyond the TreewidthLIB library. There are

a number of open problems related to boolean-width heuristics and some have

already been discussed in subsection 3.3. Firstly, we need a fast heuristic that

directly constructs a reasonable upper bound on the boolean-width for any graph,

201

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

n

B
oo

le
an

w
id

th
 o

f G
rid

 n
xn

Figure 4: Upper-bound on boolean-width, as computed by our heuristic, for the n × n grid, with

n ranging from 2 to 9. Tree-width is given by the dotted line x = y.

regardless of how big the graph is or what its edge density is. The main issue will

be to give a fast heuristic for the computation of a good upper bound on |UN(A)|.
Secondly, we need to consider heuristics for computing lower bounds on boolean-

width, just as it has been done for tree-width [6]. Thirdly, we should explore

pre-processing to simplify the graph instances, again this has been done exten-

sively for tree-width [4]. These problems are of interest since our results indicate

that using boolean-width could in the future outperform the use of tree-width in

practice for a large class of graphs and problems.

References

[1] I. Adler, B. M. Bui-Xuan, Y. Rabinovich, G. Renault, J. A. Telle, and M. Vat-

shelle. On the boolean-width of a graph: Structure and applications. Pro-
ceedings of the 36th International Workshop on Graph-Theoretic Concepts
in Computer Science, WG 2010, pages 159–170, 2010.

[2] R. Belmonte and M. Vatshelle. Graph classes with structured neighborhoods

and algorithmic applications. Proceedings of the 37th International Work-
shop on Graph-Theoretic Concepts in Computer Science, WG 2011, 2011.

see full version www.ii.uib.no/˜martinv/Papers/LogBoolw.
pdf.

[3] Hans L. Bodlaender. A linear time algorithm for finding tree-decompositions

of small treewidth. SIAM Journal on Computing, 25:1305–1317, 1996.

202 HEURISTIC

[4] Hans L. Bodlaender. Treewidth: Characterizations, applications, and com-

putations. In Fedor V. Fomin, editor, Proceedings of the 32nd International
Workshop on Graph-Theoretic Concepts in Computer Science, WG 2006,

pages 1 – 14. Springer Verlag, LNCS, vol. 4271, 2006.

[5] Hans L. Bodlaender and Arie M. C. A. Koster. Treewidth computations I.

Upper bounds. Information and Computation, 208:259–275, 2010.

[6] Hans L. Bodlaender and Arie M. C. A. Koster. Treewidth computations II.

lower bounds. Technical Report UU-CS-2010-022, Department of Informa-

tion and Computing Sciences, Utrecht University, Utrecht, the Netherlands,

2010. Accepted for publication in Information and Computation.

[7] A. Brandstadt. personal communication.

[8] B. M. Bui-Xuan, J. A. Telle, and M. Vatshelle. Boolean-width of graphs (to

appear). Theoretical Computer Science, 2011. see full version www.ii.
uib.no/˜telle/bib/listofpub/BTV11.pdf.

[9] Hubie Chen. Quantified constraint satisfaction and bounded treewidth. In

Ramon López de Mántaras and Lorenza Saitta, editors, Proceedings of the
17th European Conference on Artificial Intelligence, ECAI 2004, pages 161–

165, 2004.

[10] The second DIMACS implementation challenge: NP-Hard Prob-

lems: Maximum Clique, Graph Coloring, and Satisfiability. See

http://dimacs.rutgers.edu/Challenges/, 1992–1993.

[11] Georg Gottlob, Nicola Leone, and Francesco Scarcello. A comparison of

structural CSP decomposition methods. Acta Informatica, 124:243–282,

2000.

[12] Illya V. Hicks, Arie M. C. A. Koster, and Elif Kolotoğlu. Branch and tree

decomposition techniques for discrete optimization. In J. Cole Smith, ed-

itor, TutORials 2005, INFORMS Tutorials in Operations Research Series,

chapter 1, pages 1–29. INFORMS Annual Meeting, 2005.

[13] P. Hliněný and S. Oum. Finding branch-decomposition and rank-

decomposition. SIAM Journal on Computing, 38:1012–1032, 2008.

203

[14] K. H. Kim. Boolean matrix theory and its applications. 1982. Marcel

Dekker.

[15] S. J. Lauritzen and D. J. Spiegelhalter. Local computations with probabil-

ities on graphical structures and their application to expert systems. The
Journal of the Royal Statistical Society. Series B (Methodological), 50:157–

224, 1988.

[16] Arnold Overwijk, Eelko Penninkx, and Hans L. Bodlaender. A local search

algorithm for branchwidth. Proceedings of the 37th Conference on Current
Trends in Theory and Practive of Computer Science, SOFSEM 2011, pages

444–454, 2011.

[17] Hein Röhrig. Tree decomposition: A feasibility study. Master’s thesis, Max-

Planck-Institut für Informatik, Saarbrücken, Germany, 1998.

[18] Y. Song, C. Liu, R. Malmberg, F. Pan, and L. Cai. Tree decomposition

based fast search of RNA structures including pseudoknots in genomes. In

Proceedings of the 2005 IEEE Computational Systems Bioinformatics Con-
ference, CSB’05, pages 223–234, 2005.

[19] Treewidthlib. http://www.cs.uu.nl/people/hansb/treewidthlib, 2004–

[20] Johan M. M. van Rooij, Hans L. Bodlaender, and Peter Rossmanith. Dy-

namic programming on tree decompositions using generalised fast subset

convolution. In Amos Fiat and Peter Sanders, editors, Proceedings of the
17th Annual European Symposium on Algorithms, ESA 2009, pages 566–

577. Springer Verlag, Lecture Notes in Computer Science, vol. 5757, 2009.

[21] Jizhen Zhao, Dongsheng Che, and Liming Cai. Comparative pathway anno-

tation with protein-DNA interaction and operon information via graph tree

decomposition. In Proceedings of Pacific Symposium on Biocomputing, PSB
2007, volume 12, pages 496–507, 2007.

[22] Jizhen Zhao, Russell L. Malmberg, and Liming Cai. Rapid ab initio predic-

tion of RNA pseudoknots via graph tree decomposition. Journal of Mathe-
matical Biology, 56(1–2):145–159, 2008.

204 HEURISTIC

