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Abstract

Mesoscale eddies stimulate biological production in the ocean, but knowledge of energy transfers to higher trophic levels
within eddies remains fragmented and not quantified. Increasing the knowledge base is constrained by the inability of
traditional sampling methods to adequately sample biological processes at the spatio-temporal scales at which they
occur. By combining satellite and acoustic observations over spatial scales of 10 s of km horizontally and 100 s of m
vertically, supported by hydrographical and biological sampling we show that anticyclonic eddies shape distribution and
density of marine life from the surface to bathyal depths. Fish feed along density structures of eddies, demonstrating that
eddies catalyze energy transfer across trophic levels. Eddies create attractive pelagic habitats, analogous to oases in the
desert, for higher trophic level aquatic organisms through enhanced 3-D motion that accumulates and redistributes
biomass, contributing to overall bioproduction in the ocean. Integrating multidisciplinary observation methodologies
promoted a new understanding of biophysical interaction in mesoscale eddies. Our findings emphasize the impact of
eddies on the patchiness of biomass in the sea and demonstrate that they provide rich feeding habitat for higher trophic
marine life.

Citation: Godø OR, Samuelsen A, Macaulay GJ, Patel R, Hjøllo SS, et al. (2012) Mesoscale Eddies Are Oases for Higher Trophic Marine Life. PLoS ONE 7(1): e30161.
doi:10.1371/journal.pone.0030161

Editor: Yan Ropert-Coudert, Institut Pluridisciplinaire Hubert Curien, France

Received January 7, 2011; Accepted December 11, 2011; Published January 17, 2012

Copyright: � 2012 Godø et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was partly carried out and funded by the Census of Marine Life project MAR-ECO (www.mar-eco.no). Further, the work was supported by a
grant from the Norwegian Research Council (9026I/S40). The funders had no role in study design, data collection and analysis, decision to publish, or preparation
of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: olavrune@imr.no

Introduction

Eddies advect, mix, and redistribute water masses [1] with

significant impacts on the production, distributions, and densities

of marine life. Strong associations between the environment and

corresponding biological responses are well documented: upwell-

ing stimulates production by renewing nutrient supply to

phytoplankton, ultimately leading to increased fish production

[2]; turbulence increases the encounter rates between predator

and prey and sustains a viable environment for juvenile fish,

potentially improving recruitment success [3,4,5]. But despite

observations of eddies stimulating production at lower trophic

levels [6,7], and biomass accumulation at higher trophic level

impacts [8,9,10,11], their importance to oceanic production is

poorly quantified. Characterizing physical-biological coupling

within eddies is also challenging due to the mismatch of temporal

and spatial scales. Eddies develop over time scales of days to weeks

[12], while biological responses to changes in the environment can

occur within a day (e.g. changes in primary production in response

to variation in light or tide [13,14]). Oceanic eddies [15,16]

spanning tens of kilometres result in patchy, three-dimensional

distributions of marine life [17,18,19]. Conventional observational

methods that combine vessel-deployed instruments [20] and

satellite remote sensing data [21] are insufficient to provide

synoptic and synchronous three-dimensional views of eddy

structure, dynamics, and their biological consequences. This paper

demonstrates mapping of anticyclonic mesoscale eddies and

quantification of associated distributions of fish and zooplankton

by combining data from ship-based platforms (acoustics, mid-water

trawls, current profiler, and CTD) with satellite altimetry, and

Synthetic Aperture Radar (SAR) data.

Results

The discovery
During the 2004 Mar-Eco (www.mar-eco.no) expedition to the

Mid-Atlantic Ridge [22] we repeatedly observed that oceanic

acoustic records (see Material and Methods) in the Iceland Basin

delineated a weak but characteristic ‘‘wheel shaped’’ structure

extending horizontally 80–100 km and vertically to 1200 m depth

(Figure 1F, G). Given their appearance and the close geographical

match to anticyclonic (clockwise rotating) eddies detected by

satellite altimetry (Figure 1A, B, C, see also Material and

Methods), we attributed the observed patterns to the acoustic

footprints of biomass structured by eddy dynamics. Four similar

acoustic footprints, two of which are shown in Figure 1, were co-

located with four anticyclonic eddies. Synchronous ADCP

(Acoustic Doppler Current Profiler) measurements showed water

flow changing direction when crossing through the centre of the

eddy (Figure 1C), further strengthened our inference. Unfortu-
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nately, our supposition could not be fully validated due to the lack

of oceanographic profiling, and limited biological sampling. The

last of four eddies occurred at a predetermined sampling station

and was sampled by multiple gears (see Material and Methods).

The follow up study
To further investigate the observed phenomenon, we designed a

study in the Norwegian Sea in November 2009 where oceano-

graphic and acoustic sampling were based on the geographic

position and extent of an anticyclonic eddy detected by satellite

SAR (see Material and Methods). During two calm days, we

sampled the eddy, about 50 km in diameter, using a star pattern

(Figure 2A). Ten CTD (Conductivity, Temperature, and Depth)

casts (Figure 2A) provided data on water properties within the

eddy. Two additional CTD profiles, on and off the neighbouring

shelf, were used for comparative purposes (Figure 2B). Three mid-

water trawls identified biological constituents in the acoustic

record (Figure 2A). ADCP measurements provided continuous

Figure 1. Acoustic, satellite, and ADCP comparisons from a transect through the Iceland Basin eddy. Panel A: ship track (black line)
through multiple eddies as detected by satellite altimetry anomalies (colour scale in cm) in June 2004. Panels B and C: co-occurrence between the
satellite altimetry anomalies (cm) of two of the eddies and the wheel structured acoustic record (panel F and G, showing SV at 18 kHz, colour scale in
dB) of two anticyclonic eddies. Water current velocity vectors (m/s, 0–600 m) along the cruise track are indicated by the blue arrows (panels B and C).
Panels D and E illustrate the variation in biomass density (sV) in the upper depth layer (150–450 m, red), intermediate depths (451–850 m, green),
deep water (.850 m, blue), and entire water column (black). Vertical line in D, F indicate sunset. Sunrise is taking place prior to the start of the
horizontal axis in E, G.
doi:10.1371/journal.pone.0030161.g001
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current velocity profiles along the ship track (Figure 3A) and

continuous vertical profiles of biomass density were obtained from

the echosounder (Figure 3C).

Data from CTD profiles and the ship mounted ADCP were

used to characterise physical properties of the Norwegian Sea eddy

(Figures 2, 3). The core water of the anticyclonic eddy was

warmer, less saline, and less dense, than water in the eddy

periphery (Figure 2B). Similarities with samples from nearby

coastal (Figure 2B, stippled blue) and offshore (Figure 2B, stippled

red) stations suggest that the eddy originated from inshore waters

and migrated into deeper offshore water which encircled the

coastal water core at the time of our observations. This pattern has

been observed in other mesoscale eddies [23,24,25], and

specifically in the Gulf of Alaska [26] with subsequent impacts

on larval fish distribution. As expected, ADCP measurements

showed that water flow changed direction across the eddy centre

(Figure 3A), with a persistent direction from the surface to 600 m.

The bowl shape of the density structure (Figure 3C) along a section

from northeast to southwest conforms to that expected for an

anticyclonic eddy [6,7]. The acoustically-detected horizontal and

vertical biomass density along the same transect changed across

the eddy, reflecting the same bowl shape as the density structure

(Figure 3C). One notable difference is that the vertical biomass

distribution extends to the surface, resulting in a bowl shape in the

acoustic data rather than the wheel shape observed in the Iceland

Basin. The satellite SAR image shows that the eddy is horizontally

asymmetric (the strength and character of the SAR signal change

from west to east as noted in Figure 3A). This is also reflected in

the surface density structure and vertical acoustic records

(Figure 3A, C).

Comparison of biomass structure of anticyclonic eddies
Biomass distribution patterns contained interesting similarities

and differences in the two areas. In both cases the dominant

pattern in the backscatter switched from horizontal to vertical

when going from the outside to the centre of the eddy. The

characteristic bowl shape, co-occurring with density isolines,

started when the acoustic record of the deep scattering layer

(DSL) [27] shifted towards a vertical orientation in the periphery

of the eddy, continuing to the bottom of the bowl at approximately

1000 m depth (Figure 3C). The DSL in the Iceland Basin eddies

had the same bowl shape (Figures 1F, G) but extended a little

deeper (to 1200 m). In the Norwegian Sea the vertically oriented

structures intersected the ocean surface while the vertical

stratification of the upper part of the DSL in the Iceland Basin

curved to form a dome shape at about 200 m, giving the acoustic

footprint of a submerged ‘‘wheel.’’ Oceanographic observations

are lacking in the Iceland basin, but assuming an analogous match

between the shapes of the acoustic records and the thermo-haline

properties in eddies at the two locations, we infer that the Iceland

Basin eddies were mode water eddies [6,7].

In both study areas we observed slightly higher biomass

densities (SV) above the steepest change in orientation of the

acoustic record (compare Figures 1D and 1F, 1E and 1G, and 3B

and 3C). This change co-occurred with the steepest density isolines

(Figure 3C). Minimum upper layer densities (Figure 1D, 1E, and

3B, red lines) occurred at the eddy centre, and a maximum in the

eddy periphery, which generally contained the highest acoustically

measured biomass. Similar patterns were observed in the two

deeper layers of the first eddy in the Iceland basin (Figure 1E),

while the biomass in the deeper layers of the second eddy peaked

at the eddy centre (Figure 1D). In general it appears that

acoustically-detected biomass was patchy, corresponding to the

structure of thermo-haline isolines. If so, a survey transect that

passed through the eddy, but not through the centre will miss the

centre minimum, as seen in the second eddy in the Iceland basin

(Figure 1D, F). The centre biomass minimum seems to be another

common feature for eddies in both areas. In the Iceland Basin the

minimum was associated with the centre of the wheel, while in the

Norwegian Sea it was clearest in the upper part of the water

column.

Biological sampling
Midwater trawl catches from both areas showed that fish with

gas-filled swimbladders dominated the acoustic records. Adult blue

whiting (Micromesistius poutassou) 27–33 cm length, lantern fishes

(Benthosema sp.) 2–7 cm, pearlside (Maurolicus muellerii) 3–7 cm, and

krill (Meganyctiphanes norvegica) dominated catches of two surface

trawls and one at 280–330 m that targeted the periphery of

the Norwegian Sea eddy (Table 1). Pearlside was not a major

Figure 2. Oceanographic sampling and the origin of the water masses of the Norwegian Sea eddy. Panel A shows cruise tracks with
acoustic sampling and CTD casts overlaid on anomalies in the SAR back scatter (dB); blue dots are inside the eddy and red dots along the outer
periphery. Red diamonds illustrate net sampling locations. Panel B shows the difference in density (kg/m3) of water inside the eddy (solid blue line,
average of all blue stations in panel A) and in the outer periphery of the eddy (solid red line, average of all red stations in panel A). Samples from
nearby coastal (stippled blue) and offshore waters (stippled red) allow evaluation of the origin of the water masses in the eddy.
doi:10.1371/journal.pone.0030161.g002
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constituent in the deepest tow. Lantern fish and pearlside perform

daily vertical migrations that can span 100 s of meters [28][27],

while blue whiting, the largest and fastest swimmer, normally

occupy deep water (300–500 m) with limited vertical movements

[29]. In the Iceland Basin we evaluated the species composition at

a station in the last eddy. Catches from a pelagic trawl with a

multiple opening-closing net and a vertical profiling zooplankton

net showed that the dominant organisms contributing to the

acoustic backscatter were swimbladdered, mesopelagic fish

ranging in length from 3 to 68 cm (Table 2).

Temporal dynamics
Marine organisms, like those identified here, can undertake

extensive diel vertical migrations. It is possible that the observed

Figure 3. Acoustic, satellite, and CTD data comparisons from a transect through the Norwegian Sea eddy. Panel A shows anomalies in
SAR back scatter (dB) overlaid with ADCP current velocity vectors (m/s, 0–600 m) along the cruise track in November 2009. Colours along the track
illustrate change in biomass density at surface (accumulated SV over the layer 15–100 m – blue is the lowest observed SV and red is the highest).
White circles delineate eddy centre, periphery and outside (see Material and Methods). Panel B shows the variation in average biomass density (SV) in
the surface scattering layer (15–100 m, red), intermediate depths (101–600 m, green), deep water (601–1000 m, blue), and the entire water column
(black). Panel C shows the depth distribution of biomass (SV, dB) at 38 kHz over time along the indicated transect through the eddy centre. Water
density contours calculated from CTD casts are overlaid on the acoustic data.
doi:10.1371/journal.pone.0030161.g003
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patterns could be coincidental and due to the timing of the

sampling. In the Iceland Basin, data from a full diurnal cycle was not

available for any of the eddies. The diel signal is apparent as a

downward migration in the acoustic mid water layer (100–400 m)

during early morning (Figure 1G), and an upward migration of the

same layer at night (Figure 1F). This movement was not coordinated

with the ‘‘wheel shaped’’ signal in the eddy structure: the maximum

sun elevation occurred at 11 UTC, outside the time frame of the

eddy observations. For the northeast to southwest section in the

Norwegian Sea (Figure 3B), the maximum backscatter depth

occurred at dusk/night and not at midday as would be expected

if animals were undergoing upward migration at night. The

combination of all data, organised in a radial coordinate system

(Material and Methods), covers three diurnal cycles. These data

(Figure 4) support the hypothesis that the acoustic density structures

are caused by the eddy (Figure 3C) as follows: the biomass density at

the surface is very low close to the centre (Figure 4A, R1), peaking

towards the periphery (R2) and again reducing in the eddy outskirts

(R3). At medium and deep waters the maxima occurs in the centre

and gradually reduces towards the periphery, in most cases with

non-overlapping confidence limits. Also, Figure 4 shows a diel effect

where densities increase at night at the surface and decrease in mid

water. Our interpretation is that distribution and vertical migration

occur along the structure of the eddy, thus maintaining the wheel or

bowl appearance of the acoustic record. We ran a General Linear

Model (GLM, see Material and Methods) with SV as response

variable and day/night (t), radius (r) and depth (D) categories (same

as in Figure 4) as explanatory variables. Exploring effects and

interaction effects showed that distance from centre (r) and depth

(D) are the most influential variables while impact of time is not

significant. The model including the three category variables and

interaction among them explains 78% of the variation (Table 3).

These analyses support our earlier interpretation from Figure 4, that

biomass of higher trophic marine life is distributed along the eddy

periphery, and the distribution pattern is slightly modified by the

diel vertical migration.

Discussion

How our study differs from others
Earlier studies have demonstrated structural similarities between

physical properties of the eddy and the distribution of lower

Table 2. Catch composition by depth strata from the Iceland Basin trawl samples.

Depth range

Group Length Range 0–,200 m ,200–800 m 800–1500 m

(mm) FT KT FT KT FT KT

Fish-GSB 26–680 31.3 989.4 951.6 196.1 – 199.6

Fish-RSB 135–169 0.0 5.1 46.2 15.1 – 38.3

Fish-NSB 70–251 4.1 80.6 223.7 21.9 – 33.6

Squid 19–288 1.0 218.4 22.8 0.0 – 32.0

Jellyfish 8.7 26.0 946.0 325.0 – 0.0

Macro-crustaceans 0.1 43.8 131.8 46.7 – 34.8

Copepods (no. m23) – 247.3 99.3 7.2

The major groups of species represented in the samples organised according to their acoustic properties. Fish with gas-filled swimbladders (Fish-GSB) give echoes of an
order of magnitude higher than fish with regressed swimbladders (Fish-RSB, swimbladders regress with age and becomes lipid filled), which give a much stronger signal
than fish without swimbladders (Fish-NSB) of same size. Squid, jellyfish and crustaceans are relatively weak acoustic reflectors compared to fish. Catch data (kg) are from
pelagic fish trawls (FT) and krill trawls (KT, g km21), except copepods caught by a multinet (no. m23) taken at the end of the vessel track in Figure 1. Copepods
contribute little to the recorded acoustic signal. Lengths are standard length for fish and mantle length for squid. Actual fish trawl depth ranges were: FT = 150–200 m,
370–750 m; KT = 10–175 m, 180–845 m, 880–1545 m.
doi:10.1371/journal.pone.0030161.t002

Table 1. Number and weight of fish species caught at three trawl stations in the Norwegian Sea.

Tow number/Depth #1/280–330 m #2/surface #3/surface

Time 08 UTC 18 UTC 23 UTC

n w (kg) n w (kg) n w (kg) length (mm)

Blue whiting (Micromesistius poutassou) 45 7.7 8 1.1 8 1.1 270–330

Lantern fish (Bentosema sp.) 466 0.9 289 0.3 27–70

Pearlsides (Maurolicus muelleri) 394 0.5 38–65

Northern krill (Meganyctiphanes norvegica) 0.2 0.1 0.1

Herring (Clupea harengus) 2 0.6 335–345

Lumpsucker (Cyclopterus lumpus) 1 1

Redfish (Sebastes sp.) 1

Catch (numbers, n and weight, w) composition from the Norwegian Sea eddy interior (station positions are indicated in Figure 2) as a result of targeted trawling on high
acoustic densities in the DSL (#1) and on surface concentration (#2 and 3).
doi:10.1371/journal.pone.0030161.t001
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trophic level biological production [6,30,31,32]. We have

demonstrated parallel similarities for higher trophic level marine

life. Concentrations of higher trophic marine life, including fish,

have been associated with eddies [11,33,34,35], but the low

resolution of these observations does not allow comparisons of

distribution patterns with eddy structure. We have investigated

biological density distribution in eddies by using satellite images to

direct acoustic data acquisition along our cruise track to collect

continuous data on biomass. Integrated sampling by echosoun-

ders, ADCP, and a minimum of midwater trawls, and CTD casts

supported quick 3D mapping of the eddy structures with limited

temporal lag and spatiotemporal confounding of data streams.

This approach provides a unique opportunity to examine connec-

tions between physical properties of eddies and their biological

responses at high spatial and temporal resolution. This integrated

approach contrasts earlier studies where spatial and temporal

resolutions of biological data are limited by the sampling

methodologies, such as vertical and horizontal net tows.

Which organisms do we see with acoustics?
In both study areas the acoustic signature of mesoscale eddies

originated from swimbladdered fish within the DSL. In the

Norwegian Sea blue whiting dominated all of the catches. This is a

physioclist fish with a high target strength compared to the other

fish species (e.g. lantern fish and pearlside) caught in midwater

trawls and is expected to dominate the acoustic records at 38 kHz.

Blue whiting is expected to be undersampled in trawl catches due

to strong trawl-vessel avoidance [36]. In contrast, swimbladder

resonance will increase acoustic reverberation of small mesope-

lagic fish at the acoustic frequencies used during the surveys

[37,38]. Krill were observed in the Norwegian Sea trawl samples

but are also undersampled due to selectivity of the net. Krill will

contribute little to the backscatter at 38 kHz but will be seen

at higher frequencies [39]. Thus, a partitioning of acoustic

contributions from the species observed during the surveys would

require additional sampling, backscatter modelling [40], and

behaviour studies to determine depth distributions and orienta-

tions. As such, the use of acoustic backscatter measures (SV, sV) to

quantify biomass densities over depth and time ranges is not

strictly correct for two reasons. First, biomass estimates depend on

the acoustic properties and species mix of the ensonified animals,

which can change with depth and spatial location, thus making

biomass densities not entirely comparable over time and space.

Secondly, vertical migration can change swimbladder volume and

animal orientations, thus affecting the relationship between

acoustic measures and biomass density [38]. For the outcome of

this paper these potential sources of uncertainty are considered

negligible because biomass structures rather than exact species

compositions are the focus.

Mechanisms behind the biological – physical interaction
In both study areas we infer that acoustic signatures primarily

originate from eddy manipulated distributions of organisms within

the DSL. Lower trophic level marine production through ‘eddy-

pumping’ is well documented [6,7,41]. In this study we demonstrate

that the restructuring and concentration of biomass caused by eddy

dynamics create a rich habitat that can lead to enhanced higher

trophic transfer compared to the surrounding waters. The observed

result is probably a combination of active and passive biological

responses to physical forcing. Even small copepods can be con-

centrated through active navigation in currents, which optimizes

their position relative to suitable prey in productive ocean structures

[42]. Similar behaviour by fish feeding on plankton will amplify

observed patterns of acoustically-detectable biomass. In addition to

Figure 4. Comparison of acoustic biomass densities (sV) related to distance from eddy centre and depth. The three panels show data
for the three depth categories; A. surface layer (0–100 m), B. mid water (101–600 m) and C. deep water (Deep, $600 m). In each panel distance from
centre are categorized in R1,9 km, 9#R2,37 km, R3$37 and day (D) and night (N) data are presented.
doi:10.1371/journal.pone.0030161.g004

Table 3. Results from the final GLM run (r2 = 0.78).

Source DF Type III SS Mean Square F Value Pr.F

D 2 342.40 171.20 10.30 ,0.01

R 2 128.16 64.08 3.86 0.03

T 1 28.05 28.05 1.69 0.20

D*r*t 12 566.70 47.23 2.84 0.01

doi:10.1371/journal.pone.0030161.t003
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extensive diel migrations as seen in the upper part of the water

column, lantern fish also exhibit a lethargic behaviour [28] where

they can be passively displaced by changes in water mass density or

currents [43]. The combination of swimming and passive transport

caused by eddy dynamics, enables mesopelagic fish to track

concentrations of zooplankton prey. Lethargic mesopelagic fish in

deep water may float along water masses of equal density, resulting

in the lower bowl shaped portion of the ‘‘wheel’’ in the Iceland Basin

[28]. The upper dome of the wheel is located in the epi- or meso-

pelagic depth layer, which is dominated by vertically migrating

organisms. The enhanced biomass along the shallow dome of the

‘‘wheel’’ will attract mobile animals, even small plankton [42]. The

concentrated biomass in this area forms a prey-rich depth zone for

vertically migrating fish, foraging along eddy isopycnals as a part of

their diel vertical migration. Similarly, a passive or semi-passive

concentration of lower trophic level biomass along the isopycnals

may attract large shoaling fish. The preservation of the horizontal

structure during diel migration in the Norwegian Sea (Figure 4)

further suggests that migration takes place in accordance with eddy

structure. Blue whiting is probably not part of this migration.

Stomachs of fish caught from trawls in surface waters were full of

krill and had fully inflated intact swimbladders, indicating

adaptation to surface pressures. This contrasts with blue whiting

caught in deep water, which typically have ruptured swimbladders

when brought to the surface. The surface-caught blue whiting

appeared to use eddies as enhanced feeding stations (oases). The

occurrence of blue whiting at the surface is considered a response to

eddy conditions. All these taxa are deep water species, and must

have been entrained in or attracted to the eddy after it left the

continental shelf. This hypothesized movement potentially explains

their reduced densities at the core of the eddy, which is composed of

coastal water. Fish association with eddies has been inferred on the

basis of tagging studies of the slow-moving sun fish (Mola mola) [33]

and feeding concentrations of highly migratory fish such as albacore

(Thunnus alalunga), blue fin tuna (Thunnus thunnus) [34], and even

demersal fish species [35]. Analysis within these studies is limited to

a geographical comparison of eddy and fish distributions.

The bioproduction of eddies is enhanced by nutrient pumping

from deep water to the euphotic zone [6,7,41]. Given that biomass

accumulation was observed in both winter (Norwegian Sea) and

summer (Iceland Basin), we propose that the phenomenon

discussed here is mainly driven by an eddy’s ability to accumulate

and concentrate biomass within the eddy, thereby creating a

valuable habitat (oasis) for mobile predators. Primary production

at high latitudes is insignificant in November due to the lack of

solar radiation. Nutrient pumping to the photic zone [41], has a

minor impact on the primary production in the Norwegian Sea at

this time. In the Iceland Basin in June primary production could

be a contributing factor to enhanced biomass concentration. Yet,

enhanced biological production involving transfer of biomass

across trophic levels occurs on time scales that extends beyond the

lifetime of individual eddies. We consequently attribute the high

fish concentrations within the eddy to predators actively searching

for food in concentrated prey habitats. For example, the limited

vision range of fish larvae requires prey concentrations above

certain density levels to enable feeding success [44], and such high

concentrations occur often under special physical conditions, e.g.

in thin layers [45]. Our findings also suggest that mesoscale eddies

provide an optimal set of conditions for enriched feeding for

higher trophic marine life in the open ocean, including fish larvae,

that would not exist outside of a mesoscale eddy. The biomass

minimum found in the centre of eddies suggests that these

locations are uninteresting feeding habitats for fish. The origin and

development of such minima warrants additional research.

Understanding the impact of eddy dynamics on biomass at

different trophic levels is challenging because of the temporal

mismatch of eddy formation and decay [16] relative to the transfer

of energy from phytoplankton to adult fish. The time required to

map mesoscale eddies using vessel based ADCP profiles and CTD

casts may also mask observation of coupled biological-physical

responses within entrained water masses [14]. Our approach

resolves some of these technical challenges, demonstrates that

eddies attract higher trophic level organisms, and that biological

energy cascades up through the food web even during seasons of

low productivity. Quantifying biological responses to water

dynamics has been difficult due to the lack of coincident and

integrated observations of biological-physical coupling. Our

observations at two different locations in two different seasons

signify the general applicability of our approach for studying the

biological impact of eddies on higher trophic marine life. The use

of acoustics to detect and quantify physical and biophysical

phenomena has been repeatedly demonstrated [46,47,48]. This

study demonstrates that an expanded approach combining

satellite, net catches, ADCP profiles, CTD casts and acoustic

observations provides a new approach to understand and quantify

biophysical interactions. Using satellite information to direct the

hydrodynamic and acoustic sampling and then acoustic sampling

to target collection of biological samples has proved an efficient

way of collecting quantitative information about physical-biolog-

ical interactions.

Future development
Our definition of inside and outside an eddy is a subjective

evaluation derived from satellite and acoustic data. Both study

areas are dominated by mesoscale activities (e.g. Figure 1A) and it

may be difficult to find unaffected background densities of higher

trophic marine life. Also, there were clear indications of

asymmetric biomass distributions within eddies, which were not

considered in our analysis. The explanatory power of the GLM

model would probably be higher without distributional differen-

tiation among the six legs used in the analysis. The continuous

high resolution of acoustic technologies enables us to incorporate

these observations in future sampling efforts. Future studies should

delineate the geographic and physical-biological impact volume of

eddies through acoustically informed stratification of oceano-

graphic and biological sampling. Further, studies of density

distribution of higher trophic marine life in cyclonic eddies and

eddies of different age are interesting challenges where our remote

sensing approach could contribute new scientific knowledge. We

believe that execution of similar multidisciplinary data collection

will create new insights into the patchiness of biological production

and biomass distribution in the ocean, including commercially

important harvestable biomass and larval fish survival when

entrained in rich habitats such as eddies [49].

Materials and Methods

\The acoustic instrumentation included a Simrad EK60 multi-

frequency echosounder system transmitting at 7-second intervals

and produced estimates of acoustic volume backscattering strength

(SV) [50], a logarithmic variable related to biomass density. SV at

18 and 38 kHz was used to visualize physical-biological coupling

within eddy structures through the entire water column. To

statistically compare biological densities across depth and time

strata we used the linear variable volume backscattering coefficient

sV which is related to SV through the equation SV = 10 log10 (sv)

[50]. The calibrated echosounder was operated under high signal

to noise conditions from the R/V G.O. Sars [36] which permitted
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the use of low acoustic thresholds (285 to 295 dB re 1 m21) to

extend the detected organism size range. A 75 kHz ADCP

transmitted between echosounder transmissions to measure water

velocities, averaged in 50 m depth bins from the surface to 600 m.

Data were collected on June 7–9 2004 and on November 16–19

2009 at a speed of 11 knots. The 2004 data were collected when

transiting (Figure 1) towards the first station of the Mar-Eco

expedition [51,52]. To sample biological constituents we used fish

and macro zooplankton trawls with 3 and 5 independent small-

meshed codends (22 mm and 6 mm respectively), for depth-

stratified sampling, and a multinet system with eight codends for

vertical plankton sampling [53]. The same fish trawl with a single

codend was used in 2009.

Sea-level anomaly (SLA) maps from 2004 were merged from

satellite altimeter tracks taken during one week around the period

of acoustic observations. In 2009 we used Synthetic Aperture

Radar (SAR) information recorded one day before the acoustic

survey to locate eddies. The satellite data products are available

from Collecte Localisation Satellites (CLS), France.

Hydrographic measurements including temperature and salinity

were recorded from hull mounted sensors and CTD casts.

Estimates of the water density along each transect (Figure 3C)

were obtained by cubic interpolation of the density calculated

from the CTD casts.

Acoustic data are spatially correlated and thus not independent

measurements. In the statistical comparison of the 2009 acoustic

density data we therefore averaged the observed acoustic

backscatter (sV) over three radial categories; centre (R1, ,9 km),

periphery (R2, 9–37 km), outside (R3, $37 km). We also

categorized according to depth stratum; surface layer (Shal, 0–

100 m), mid water (Med, 101–600 m) and deep water (Deep,

$600 m). The sun was below the horizon during the cruise, but

we observed time-dependent behaviour patterns within the

acoustic record. The data were split by day, night and twilight

according to the nautical day/night definition. Nautical twilight is

the period when the centre of the sun is between 6 and 12 degrees

below horizon. Day and night are when the sun is above and

below twilight elevations. Finally, the six legs spanning from the

centre to the periphery (Figure 1) are assumed to be independent

replicates. We studied possible impacts on the observed biomass

density (b) by the category variables depth stratum (D), radius (r)

and day/night (t), as defined above, through the following

generalised linear model (GLM)

bijk~ mzDIzrjztkzeijk

where m is the overall mean term, Di, rj, tk, the terms relative to the

effect of the ith depth category, jth radius and kth time period, and

eijk is the error term. Impact of main factors and various interactions

were explored. To reduce impacts from extreme values the GLM

used the logarithmic SV as a proxy for biomass density (b).
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