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Abstract

Sequencing of taxonomic or phylogenetic markers is becoming a fast and efficient method for studying environmental
microbial communities. This has resulted in a steadily growing collection of marker sequences, most notably of the small-
subunit (SSU) ribosomal RNA gene, and an increased understanding of microbial phylogeny, diversity and community
composition patterns. However, to utilize these large datasets together with new sequencing technologies, a reliable and
flexible system for taxonomic classification is critical. We developed CREST (Classification Resources for Environmental
Sequence Tags), a set of resources and tools for generating and utilizing custom taxonomies and reference datasets for
classification of environmental sequences. CREST uses an alignment-based classification method with the lowest common
ancestor algorithm. It also uses explicit rank similarity criteria to reduce false positives and identify novel taxa. We
implemented this method in a web server, a command line tool and the graphical user interfaced program MEGAN. Further,
we provide the SSU rRNA reference database and taxonomy SilvaMod, derived from the publicly available SILVA SSURef, for
classification of sequences from bacteria, archaea and eukaryotes. Using cross-validation and environmental datasets, we
compared the performance of CREST and SilvaMod to the RDP Classifier. We also utilized Greengenes as a reference
database, both with CREST and the RDP Classifier. These analyses indicate that CREST performs better than alignment-free
methods with higher recall rate (sensitivity) as well as precision, and with the ability to accurately identify most sequences
from novel taxa. Classification using SilvaMod performed better than with Greengenes, particularly when applied to
environmental sequences. CREST is freely available under a GNU General Public License (v3) from http://apps.cbu.uib.no/
crest and http://lcaclassifier.googlecode.com.
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Introduction

Marker gene sequencing (also known as ‘‘barcoding’’ or ‘‘meta-

barcoding) is an increasingly common technique for profiling the

taxonomic composition and diversity of environmental samples.

Facilitated by the rapid development of sequencing technologies,

such studies are rapidly becoming routine and increasingly

sophisticated. The technique has a clear potential for revolution-

izing the field of microbial ecology as well as medical microbiol-

ogy, by frequent and routine profiling of environmental as well as

human microbiome samples. It has even been used in macro-

ecology to monitor the distribution and dispersal of animal species

[1]. For prokaryotes, the small-subunit ribosomal RNA (SSU

rRNA) has become the de facto standard marker gene targeted by

amplicon (or ‘‘tag’’) sequencing [2]. However, the choice of

marker, primers and marker region targeted varies among

individual research laboratories and studies. In metagenomic or

metatranscriptomic studies, sequences containing SSU rRNA or

other markers can also be subjected to taxonomic profiling [3,4,5].

In either case, none of the existing ‘‘next-generation’’ sequencing

protocols available allow for full-length sequencing of the SSU

rRNA gene.

Pyrosequencing as developed by 454 Life Sciences (Roche) was

the first high-throughput sequencing technology to be applied for

sequencing of SSU rRNA. The current generation of pyrose-

quencing instruments (GS FLX+) can generate shotgun sequenc-

ing reads up to 800 bp long, while amplicon sequencing is only

supported using the previous generation chemistry at the time of

writing with read lengths of approximately 450 bp [6]. Other

sequencing platforms gaining popularity are Illumina Hi-Seq,

yielding read lengths of 100–150 bp [7], or 200 bp if assembly of

paired-end reads is used as described by [8] or [9], and

IonTorrent, yielding read lengths over 200 bp. Regardless of

technology used, accurate taxonomic classification is of paramount

importance to the interpretation of the resulting sequencing data

[2]. The quality of results depends on read length, choice of

taxonomic marker, region (the latter particularly important for

shorter reads) [10], and last but not least on the classification

method and taxonomy applied. Indeed, the quality of the
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taxonomy and reference database can have a more significant

effect on results than the classification method [10].

In the last years, a large amount of SSU rRNA sequence data

has been collected, organized and aligned in databases such as

SILVA [11], the Ribosomal Database Project (RDP) [12] and

Greengenes [13]. However, we are still only ‘‘scratching the

surface’’ of global biodiversity with countless novel species and

genera waiting to be discovered [14,15,16]. Many are also hidden

among the hundreds of thousands of existing environmental

sequences disguised under uninformative labels such as ‘‘uncul-

tured bacteria’’ and thus remain without proper taxonomical

descriptions. We can therefore expect that the Tree of Life

representing our current understanding of the phylogeny of all

living and extinct organisms, will receive many new branches and

undergo many topological changes. Meanwhile, taxonomic

classification will remain challenging. How to deal with the

environmental sequences whose taxonomical affiliations remain

unclear is a crucial consideration, as these unquestionably can be

useful for classifying other similar environmental sequences.

Including such environmental sequences in addition to cultured

type strains may be crucial for phylogenetic or taxonomical work

[17].

One challenging issue in taxonomical classification is polyphy-

letic taxa. Some of these, e.g. ‘‘Uncultured bacteria’’ are

intentionally created as placeholders for sequences whose

taxonomical affiliations are unclear. Others result from submission

of sequences with incorrect taxonomical classification or incom-

plete knowledge of a phylogenetic group. Both categories can

cause the classification sensitivity and resolution to drop [3].

Assignments to polyphyletic groups are also inherently less

meaningful. Still, there are situations where taxa are well

established in the literature, but known to be polyphyletic, e.g.

Clostridia and Bacilli [18]. Removing them is not always desired

until an alternative taxonomy has been established. Another

challenging issue is identification of novel sequences. In order not

to miss such potentially interesting information it is important to

clearly be able to identify them, rather than assigning them

incorrectly to an existing taxon [19].

To better deal with the above-mentioned issues, we present a set

of resources for taxonomic classification that utilize environmental

sequences together with reference strains. Branded as CREST

(Classification Resources for Environmental Sequence Tags), we

present a simple alignment- and lowest common ancestor (LCA)

based taxonomic classification method, implemented as a web-

server, command line tool and in a new version of the program

MEGAN [20]. We also present a reference database and

taxonomy for classification of environmental SSU rRNA sequenc-

es. This reference database, labeled SilvaMod, was derived using

extensive manual curation from the taxonomically annotated

SILVA Reference alignment (SSURef nr release 106) [11]. In

addition, SilvaMod includes explicit rank information derived

from the NCBI Taxonomy. A similar strategy was recently carried

out by taxonomical annotation of Greengenes [21].

CREST is equally suitable for classification of sequencing data

from SSU rRNA PCR amplicons as from shotgun metatran-

scriptome or metagenome sequences, not only from bacteria and

archaea (prokaryotes), but also from eukaryotic taxa. We illustrate

the performance of the databases and the assignment method, and

compare this to the RDP Classifier [22] and SINA Aligner, both of

which are commonly used methods for taxonomic classification of

SSU rRNA sequences. We use two types of cross-validation; ten-

fold, and removal of taxa, the latter to better simulate a situation

where a novel taxon is discovered. We also apply the method to

four environmental datasets generated using different sequencing

technologies and compared the number of identified taxa and the

proportion of classified reads at different taxonomical ranks. While

originally developed for classification of SSU rRNA sequence

data, CREST has wide applicability since it provides a framework

for generating and utilizing custom taxonomies and reference

databases. This procedure only requires a taxonomically annotat-

ed custom alignment, created e.g. with the program ARB [23].

Results

Overview of CREST
Figure 1 presents the resources of CREST, along with the flow

of information during the construction of a new reference database

(top part) or classification (bottom part). CREST includes:

1. the manually curated SSU rRNA taxonomy and reference

database SilvaMod based on a modification of the taxonomical

annotation used in SILVA SSURef nr release 106;

2. supplementary files for using the Greengenes taxonomy and

database as an alternative;

3. a simple classification method based on pairwise alignment and

assignment to the lowest common ancestor (LCA) of the

resulting highest-scoring alignments;

4. implentations of the classification method as webserver and

command line tool (LCAClassifier), and;

5. a new version of the program MEGAN [20] offering CREST

classification.

The LCAClassifier and MEGAN implement the same classifi-

cation algorithm and can use any taxonomy and CREST-

compatible reference database and taxonomy, in addition to

SilvaMod and Greengenes. Starting with a reference alignment of

a taxonomic marker sequences from a collection of taxa, such

databases can be derived with the script nds2CREST (see Methods

and online technical documentation at http://code.google.com/

p/lcaclassifier/wiki/Userguide for details).

SilvaMod and Greengenes Reference Databases
Release 106 of the SILVA non-redundant SSURef database

includes manual taxonomic annotations of its aligned sequence

clusters, with a resolution up to genus rank. According to the

developers, annotations were based on Bergey’s Manual of

Systematic Bacteriology (vol. 1 to 4) [24,25,26,27], the List of

Prokaryotic names with Standing in Nomenclature [28],

Candidatus taxa and names without standing in nomenclature

(described in detail at http://www.arb-silva.de/documentation/

faqs/). We curated these annotations and the taxonomical

structure itself (the ‘‘SILVA Taxonomy’’). in order to comply

with recent phylogenetic work and to incorporate proposed

environmental clades as suggested in a selection of phylogenetic

studies (see Methods). Importantly, we only carried out such

revisions if the resulting annotation agreed with the clustering in

SSURef, in order to avoid inserting apparently polyphyletic

taxa.

As the SILVA Taxonomy does not generally offer annota-

tions for eukaryotic sequences at higher resolutions (order and

above), we chose to instead use annotations to the NCBI

Taxonomy for this domain. Annotations were manually verified

and selected in order to avoid sequences whose taxonomic

annotations were in conflict with the topology of the alignment-

based tree (see Methods for details). To facilitate the identifi-

cation and classification of plastid and mitochondrial 16S

sequences as indicators of eukaryotic organisms, these were

placed in the SilvaMod taxonomy as sub-domains together with

CREST
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Figure 1. Overview of the resources of CREST. The flow of information during the construction of a new reference database (top part) or
classification (bottom part) is represented by arrows. The classification tools MEGAN or LCAClassifier can utilize CREST taxonomy files and databases
such as SilvaMod for classification of environmental sequences, aligned to the reference database with Megablast.
doi:10.1371/journal.pone.0049334.g001
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the nuclear 18S rRNA directly under the eukaryotic domain

(see box ‘‘Taxonomy’’ in Fig. 1), even though this strictly does

not agree with the phylogenetic origin of these genes.

The resulting SilvaMod database contains 254,671 sequences

from the SILVA SSURef nr release 106, along with curated

taxonomical annotations including explicit rank information,

formatted for MEGAN and the CREST LCAClassifier. Out of

these, 72% are annotated to genus rank and 92% to at least family

rank or better and the taxonomy contains in total 99 phyla and 39

candidate divisions. At higher resolution, there are 1,237 orders,

3,933 families and 9,906 genera including candidate divisions and

environmental clades.

We also make available taxonomic annotations for the 2011

release of Greengenes [21], in the format accepted by MEGAN

and the CREST LCAClassifier. This database contains more

sequences (408,315) from a similar number of taxa at the phylum

rank. However, the Greengenes taxonomy contains a much

smaller number of taxa at higher resolutions, e.g. only 230 orders,

394 families and 1061 genera. One reason for this difference is the

many eukaryotic taxa present only in SilvaMod.

Classification Tools: MEGAN and the LCAClassifier
Alignment-based classification using LCA and minimum

similarity filters (see Methods) was implemented in the CREST

LCAClassifier and by extending MEGAN [20] (v4.68+). MEGAN

uses a graphical user interface and can also export assignments,

community composition and taxon-specific sequences in text

format. In addition, the composition of two or more communities

can be compared [29].

The CREST LCAClassifier uses a command line interface and

reports community composition in a simple tab-separated text

format allowing for overview of taxon abundance and richness (for

amplicon sequences) at each taxonomic rank. Several alignment

files, constructed using Megablast, can be classified simultaneously,

which facilitates easy comparison between classification results

from several datasets (by adding output for taxa present in at least

one dataset to all). In addition, assignment information can be

exported along with sequence data in FASTA format, or without it

as comma-separated text. The CREST LCAClassifier is also

available through a web interface at http://apps.cbu.uib.no/crest

including the Megablast alignment step. The user simply uploads

one or several sequence files in FASTA-format. A maximum of

1,000 sequences is currently enforced by the webserver, but

exceptions may be granted on request.

Default values of LCA parameters were chosen conservatively

based on cross-validation testing (see below). However, the

appropriate parameters depend on the community studied and

can be adjusted in the classification tools. See ‘‘Alignment-based

classification – LCAClassifier’’ in Methods for a discussion of

parameter choice.

In addition to LCA classification, we added a minimum

similarity filter in order to decrease the false positive rate for

‘‘novel’’ or noisy sequences, with low similarity to reference

sequences (see Methods). Using the CREST LCAClassifier, such

sequences are flagged as ‘‘Unknown’’ members of the taxon to

which they were assigned after filtering and can be retrieved from

the FASTA- or assignment output data. Using MEGAN, or

verbose output of the CREST LCAClassifier, information about

all such assignments is written to the output dialog.

When analyzing data from amplicon libraries, an important first

step is quality filtering followed by noise removal [30] or clustering

[31], as well as chimera removal, in order to compensate for

artifacts resulting from sequencing or PCR [32]. For pyrose-

quencing or IonTorrent sequence reads, we recommend using

AmpliconNoise for pre-processing as this can remove more

sequence noise than other available programs [30,33] and ensures

compatible annotation. Regardless of the method used, the result

is a set of unique sequences, each representing a variable number

of reads. For AmpliconNoise, the reads of each unique sequence

are determined as likely to originate from identical nucleotide

sequences. Alternatively, sequences representing similar reads in a

cluster (OTU) can be submitted if the sequence names in the

FASTA-file containing filtered sequences or OTU representatives

are annotated with read abundance (using ‘‘weight = N’’ or ‘‘_N’’),

MEGAN or the CREST LCAClassifier will report both the

weighted read abundance and number of unique sequences (i.e.

richness) for each taxon. In addition, the CREST LCAClassifier

calculates a Chao-estimate [34] of minimum richness for each

taxon.

Cross Validation Testing
To evaluate the performance of CREST with SSU rRNA

sequences, we performed two types of cross-validation testing (a

technique partitioning the reference dataset into subsets used for

re-training and validation). Firstly, exhaustive ten-fold cross

validation was used and secondly, removal of whole genera,

families and phyla (see Methods for details). Tests were repeated

with randomly cropped sub-sequences derived from these with

lengths 450 and 100 bps; the approximate read lengths from the

GS FLX Titanium (pyrosequencing) and Illumina Hi-Seq

platforms, two of the most commonly used methods for high-

throughput sequencing. Results from Megablast alignment

followed by CREST LCAClassifier are hereafter referred to as

‘‘LCA’’.

The same test regime was also carried out with the Greengenes

database to compare effects of the two reference databases on

classification results. To compare the performance with another

popular method, the RDP Classifier [22], the same tests were

carried out with this program using its default training dataset (v6/

2.32). An alternative training dataset for the RDP Classifier using

Greengenes was also evaluated, retraining the classifier via a

QIIME script [35], designed intentionally to classify reads only to

the family rank. This represents the recommended classification

method for SSU rRNA QIIME.

Table 1 lists the resulting assignment accuracies (fraction of

sequences classified correctly with default parameters) from ten-

fold cross validation of the different classification strategies.

SilvaMod with LCA performed best in five cases out of nine.

Using the Greengenes database achieved slightly higher accuracy

at family rank. Figure 2 shows the results from this test as

precision-recall graphs, generated by varying the LCA range or

confidence cut-off. This confirms that the CREST LCAClassifier

was capable of classification with both a higher recall and

precision, compared to the RDP Classifier. The RDP Classifier

produced consistently higher false discovery rates (the fraction of

all classifications made that were incorrect, or 1-precision), up to

11% at the recommended bootstrap confidence cut-off at 0.8. For

LCA it never reached above 3%. The minimum similarity filter

contributes to reducing false assignments with about 30% at genus

and family level for full-length sequences using the default LCA

range.

Results from the second test, removal of whole taxa, are

presented in Table 2. In this test, the RDP Classifier performed

better for shorter sequences (100 bp) and for removal of whole

phyla, whereas the CREST LCAClassifier performed better with

longer sequences for removal of families or genera.

CREST
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Performance with Environmental Datasets
In order to evaluate the reference/training datasets and

classification methods on ‘‘real life’’ environmental SSU rRNA

datasets, the number of identified taxa and the proportion of

classified reads were compared, using four different datasets (see

Table 3). In addition to the approaches tested with cross

validation, we also included the online SINA Aligner from SILVA

in this test. Since submission to the online version of SINA was

limited to a maximum of 500 sequences at the time of testing, the

test could only be carried out with the one test dataset below this

size. As opposed to the RDP Classifier, which utilizes nucleotide

composition (‘‘k-mers’’), SINA is an alignment-based method like

CREST. However, the sequences are compared directly to the

reference alignment rather than using pairwise alignments.

SilvaMod with LCA performed best in terms of the share of

reads classified for each environmental dataset and for each rank

tested (phylum, family and genus), with only one exception (see

Table 4). Compared to the RDP Classifier used with the default

training, SilvaMod with LCA managed to assign on average about

50% more reads at family level. With this classification approach

more taxa were also detected in each dataset and rank, in all cases

but two (Table 4). Figure 3 shows the average share of classified

reads in the four datasets, with SilvaMod and LCA showing the

highest values across all ranks, followed with Greengenes, giving

similar sensitivity with LCA and RDP Classifier assignment

(except at genus level).

Classifications of the most abundant taxa agreed well, with a few

exceptions. Sequences that were classified as Sporichthyaceae order

Frankinales (21% abundance in the Lake Lanier dataset) using

SilvaMod, were instead classified as Actinomycetales clade ‘‘ACK-

M1’’ using Greengenes. Similarly Oryzihumus (22% in the Siberian

soil dataset, according to SilvaMod) was classified as Phycicoccus

according to Greengenes.

Resource Requirements and Execution Time
Running Megablast and LCA classification of 1,000 SSU rRNA

sequences from the Forest Soil dataset took less than 12 minutes

using a quad-core Apple MacBook Pro with a 2 GHz Intel i7. As a

comparison, the RDP Classifier trained with Greengenes used 2

minutes on the same dataset and MacBook while the SINA Online

Aligner used 8 minutes. Given that 1,000 sequences is a

moderately high richness after AmpliconNoise analysis, this allows

for classification in a very reasonable time of amplicon libraries

sequenced with pyrosequencing or IonTorrent and subjected to

AmpliconNoise prior to classification. Since typically only about

0.1% of shotgun metagenome sequences contain the SSU rRNA

gene [4], this is also a very reasonable time for classification of

such datasets. However, it requires a pre-screening to select the

SSU rRNA containing sequences before classification, for which

there are several alignment and compositional based tools

available faster than Megablast, such as Metaxa [36] HoSeqI

[37] and USEARCH [38].

Discussion

Ten-fold cross validation tests indicate that CREST LCA

Classification achieves better recall with higher precision com-

pared to the RDP Classifier and SINA, regardless of reference

database (SilvaMod or Greengenes). In general, CREST also gives

a higher recall and precision when using the Greengenes database

compared to SilvaMod at family rank. This could indicate that the

Greengenes taxonomy is more robust, i.e. contain fewer polyphy-

letic or incorrectly affiliated taxa. On the other hand, the

Greengenes reference database contains more sequences and

fewer taxa. Ten-fold cross-validation is expected to underestimate

the prediction accuracy for both small and more complex

reference datasets, as the taxonomic redundancy will be lower,

or in other words each taxon is represented by fewer sequences.

Considering this bias, results indicate that both databases perform

comparatively well using CREST LCA, whereas the RDP

Classifier gives rise to more false positives, especially at genus rank.

Removal of whole taxa is less biased to differences in reference

database size and showed contrasting results compared to ten-fold

cross validation. As a consequence of lower sensitivity, the RDP

Classifier always performed better when classifying shorter

sequences. It also performed better for phylum removal, when

using Greengenes as training dataset. This corresponds to a

situation where a previously un-encountered clade at ‘‘phylum

level’’ is discovered (SSU rRNA sequence similarity typically

,85%). The alignment and LCA based method struggled with

this, as partial alignments were often produced and thus an

assignment to the closest related phylum was made. A majority of

sequences with more realistic novelty are correctly identified as

unknown by the minimum similarity filter of MEGAN or the

CREST LCAClassifier. In addition, these can be extracted from

the dataset for further phylogenetic study. We recommend caution

when interpreting the existence of such taxa, however, particularly

for amplicon sequences with low abundance (such as ‘‘singletons’’)

or for shotgun sequencing reads, as these can represent sequencing

or PCR artifacts rather than true biological novelty.

Using actual environmental datasets, the CREST LCAClassifier

with SilvaMod consistently demonstrated an ability to provide

more detailed taxonomic classifications than the other approaches

tested, in terms of both number of reads assigned and number of

taxa detected. These results indicate a stronger sensitivity at all

three taxonomic levels tested (phylum, family and genus), both

quantitatively (number of reads classified) and qualitatively

(number of taxa recognized). As demonstrated using cross-

Table 1. Assignment accuracy from ten-fold cross validation.

Accuracy per ranka

Method
Training/
Reference set

Fragment
length Genus Family Phylum

LCAb SilvaMod F.L.d 82% 92% 99.9%

LCAb SilvaMod 450 bp 62% 88% 99.7%

LCAb SilvaMod 100 bp 38% 61% 94%

LCAb Greengenes F.L.d 69% 94% 99%

LCAb Greengenes 450 bp 48% 87% 99%

LCAb Greengenes 100 bp 33% 65% 94%

RDPc Greengenes F.L.d – 97% 98%

RDPc Greengenes 450 bp – 94% 95%

RDPc Greengenes 100 bp – 49% 51%

RDPc RDP v6 F.L.d 81% 95% 99%

RDPc RDP v6 450 bp 73% 92% 98%

RDPc RDP v6 100 bp 35% 56% 90%

aAssignment accuracy defined as number of correct assignments divided by the
total number of sequences tested, given at three different ranks. The best
values for each combination of rank and fragment length are indicated in bold.
bClassification using Megablast alignments and the CREST LCAClassifier within a
2% LCA range of the highest bitscore as well as percent similarity filters.
cNaı̈ve Bayes classification using the RDP Classifier with a bootstrap of 0.8. With
the Greengenes training set, RDP Classifier was run via the QIIME script
assign_taxonomy, which does not classify sequences beyond the family level.
dUn-cropped full-length sequences from the reference or training dataset.
doi:10.1371/journal.pone.0049334.t001

CREST
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Figure 2. Precision-recall curves from ten-fold cross validation. Shows the precision (number of correct assignments/number of assignments
made) on the y-axis and measured recall (sensitivity or true positive rate) on the x-axis, when varying LCA range or confidence cutoff. Circles indicate
the default cutoffs (cutoff for RDP = 0.8, LCA range = 00.2).
doi:10.1371/journal.pone.0049334.g002
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validation, incorrect assignments are not likely to have influenced

this test. The fact that eukaryotic 18S rRNA sequences were only

present in SilvaMod contributed to these results but cannot

explain them alone; more bacterial and archaeal taxa were also

consistently predicted. In general, SSU rRNA offers limited

resolution as a taxonomic marker for eukaryotic sequences,

particularly at species level, why internal transcribed spacers

(ITS) or large subunit (LSU) rRNA is often utilized instead

[39,40]. Similarly to our results using SSU rRNA, it has been

shown that LCA classification as implemented in MEGAN yields

better accuracy also for ITS [40] or LSU [41] rRNA sequences.

CREST allows for the creation of such reference databases for the

CREST LCAClassifier, from an alignment of ITS or LSU

sequences.

The SINA Aligner performed significantly worse than all other

methods on the one dataset it was tested on. However, the results

of the comparison should be interpreted with some care; it may be

that the default parameters used are more conservative than those

used for the other methods. This is hard to estimate for SINA since

it was not practically possible to include the method in the cross

validation. It would have required the complete reference

alignment to be re-built for each test for a fair comparison.

At the family rank, recall rates from the ten-fold cross-validation

(Table 1) are roughly similar at family level to the fraction of

sequences classified from the environmental amplicon datasets

(Hydrothermal mat and Siberian soil) of corresponding lengths

(450 bp and 100 bp, respectively). This indicates that the ten-fold

cross-validation allows quite realistic testing of the methods at this

resolution. At genus level, however, recall rates were consistently

higher in the ten-fold cross-validation, probably because a large

fraction of the reads in the environmental datasets belong to taxa

that remain to be taxonomically described at this resolution.

In conclusion, CREST provides for efficient and accurate

taxonomic classification of environmental sequence tags, i.e. those

containing a suitable taxonomic marker, such as SSU rRNA. We

propose a classification scheme with Megablast used for alignment

to the proposed SilvaMod reference database, and an extended

algorithm for Lowest Common Ancestor classification, as imple-

mented in MEGAN and the CREST LCAClassifier. This results

in higher classification rates than with existing taxonomically

annotated reference databases such as Greengenes. As shown

using environmental datasets as well as cross-validation, it also

outperforms the RDP Classifier, regardless of training dataset

used, both in terms of recall and false positive rate.

Table 2. Assignment accuracy from removal-of-taxa cross validation.

Method Training/Reference set Fragment length Accuracya at removed rank level for removal of:

Genera Families Phyla

LCAb SilvaMod F.L.d 98% 90% 7%

LCAb SilvaMod 450 bp 77% 64% 27%

LCAb SilvaMod 100 bp 81% 66% 76%

LCAb Greengenes F.L.d 85% 99.8% 37%

LCAb Greengenes 450 bp 90% 85% 24%

LCAb Greengenes 100 bp 87% 72% 71%

RDPc Greengenes F.L.d – 57% 85%

RDPc Greengenes 450 bp – 83% 92%

RDPc Greengenes 100 bp – 99% 99%

RDPc RDP v6 F.L.d 62% 62% 21%

RDPc RDP v6 450 bp 75% 78% 89%

RDPc RDP v6 100 bp 93% 92% 96%

aAccuracy defined as number of correct assignments divided by the total number of sequences tested, given at three different ranks. The best values for each
combination of rank and fragment length are indicated in bold.
bClassification using Megablast alignments and the CREST LCAClassifier within a 2% LCA range of the highest bitscore as well as percent similarity filters.
cNaı̈ve Bayes classification using the RDP Classifier with a bootstrap confidence cutoff of 0.8. With the Greengenes training set, RDP Classifier was run via the QIIME script
assign_taxonomy, which does not classify sequences beyond the family level.
dUn-cropped full-length sequences from the reference or training dataset.
doi:10.1371/journal.pone.0049334.t002

Table 3. Datasets used for performance testing.

Dataset Sequencing technology Library type Total SSU rRNA reads*

Lake Lanier GS FLX Ti Shotgun metagenome 558

Forest soil GS FLX Ti Shotgun metatranscriptome 51,202

Siberian soil Illumina 16S rRNA amplicons 2,173

Hydrothermal mat GS FLX Ti 16S rRNA amplicons 8,903

*Reads with a BLASTN alignment bitscore .50 to a sequence in SilvaMod.
doi:10.1371/journal.pone.0049334.t003
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In addition to classification with the SilvaMod reference

database, CREST-compatible configuration files for the Green-

genes database are available at the CREST website (http://apps.

cbu.uib.no/crest). By using both databases for prokaryotic

sequences, a best practice is ensured and differences can be

identified and manually studied in more detail. Using the

nds2CREST script distributed with the CREST LCAClassifier,

new CREST reference databases can also be made from a

taxonomically annotated alignment-based tree in ARB-format,

from any taxonomic marker (e.g. rpoB, LSU rRNA or ITS).

Methods

Constructing the SilvaMod Taxonomy and Reference
Database

The non-redundant SILVA SSURef release 106 was down-

loaded in ARB-format from the SILVA website at http://www.

arb-silva.de. Using the ARB software package [23], we removed

all sequences with a pintail score below 75, alignment quality score

below 75 or length below 1,200 bp, in order to retain only high

quality sequences. Further, we revised the taxonomy of several

bacterial and archaeal taxa. The most significant improvements

update the taxonomy of the Archaea to include the proposed

phylum Thaumarchaeota [42,43], the Actinobacteria to comply with

Bergey’s Taxonomic Outline [44], the Acidobacteria to incorporate

proposed subgroups [45] and the Cyanobacteria to comply with the

CyanoDB [46] and in some cases specific studies (details given in

Supplementary Table S1). Other added taxa include the

Zetaproteobacteria [47], Rubritaleaceae [27] and Armatimonadetes [48].

Figure 3. Average proportion of reads classified at different
ranks in four environmental datasets. The CREST LCAClassifier
(analogous to MEGAN) was tested using the full SilvaMod and
Greengenes [21] reference databases with their respective taxonomies,
as well as the RDP Classifier [22] retrained with Greengenes (99%OTU
dataset; executed via QIIME) and version 6 of the default RDP training
dataset.
doi:10.1371/journal.pone.0049334.g003

Table 4. Results from performance testing using environmental datasets.

Share of reads assigneda Unique taxa (B+A+E)b

Method Training/Reference set Dataset Genus Family Phylum Genera Families Phyla

LCAc SilvaMod Lake Lanier 36.2% 73.7% 99.5% 31+0+1 45+0+2 11+0+2

LCAc SilvaMod Forest soil 30.4% 69.8% 99.1% 232+0+166 156+1+167 29+2+46

LCAc SilvaMod Siberian soil 31.2% 69.5% 93.6% 51+1+0 81+1+0 20+1+0

LCAc SilvaMod Hydrothermal mat 87.5% 93.0% 99.6% 36+2+1 42+8+1 19+2+1

LCAc Greengenes Lake Lanier 11.5% 64.5% 98.9% 15+0+0 25+0+0 13+0+0

LCAc Greengenes Forest soil 14.7% 55.1% 84.1% 130+0+0 126+1+0 31+2+2

LCAc Greengenes Siberian soil 39.0% 60.1% 85.6% 38+1+0 53+1+0 18+1+0

LCAc Greengenes Hydrothermal mat 77.5% 89.0% 99.4% 15+1+0 23+6+0 21+2+1

RDPd Greengenes Lake Lanier 0 72.2% 91.8% 0 28+0+0 9+0+0

RDPd Greengenes Forest soil 0 52.2% 86.7% 0 111+0+0 16+2+1

RDPd Greengenes Siberian soil 0 53.4% 90.5% 0 53+1+0 10+1+0

RDPd Greengenes Hydrothermal mat 0 81.6% 97.8% 0 19+3+0 9+2+0

RDPd RDP v6 Lake Lanier 9.3% 51.1% 87.1% 17+0+0 20+0+2 10+0+2

RDPd RDP v6 Forest soil 11.9% 40.4% 80.9% 176+2+0 95+2+0 20+2+1

RDPd RDP v6 Siberian soil 6.7% 39.7% 66.0% 36+1+0 39+1+0 10+1+0

RDPd RDP v6 Hydrothermal mat 84.4% 91.7% 97.7% 21+2+0 17+2+0 8+2+0

SINAe SSURef108 Hydrothermal mat 20.4% 27.7% 93.2% 32+1+0 25+5+0 9+2+0

aProportion of the total reads in the dataset for which taxonomical assignment was achieved at the given taxonomical level.
bNumber of unique taxa identified given separately for bacteria + archaea + eukaryotes. Where the highest total number of taxa was predicted from a test dataset, the
number is indicated in bold.
cClassification using Megablast alignments and the CREST LCAClassifier within a 2% LCA range of the highest bitscore as well as percent similarity filters.
dNaı̈ve Bayes classification using the RDP Classifier with a bootstrap confidence cutoff of 0.8. With the Greengenes training set, RDP Classifier was run via the QIIME
script assign_taxonomy.
eLCA clasification based on SINA Aligner, using default parameters at SILVA website.
doi:10.1371/journal.pone.0049334.t004
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In addition, we identified a number of taxa whose taxonomic

annotation disagreed strongly with the topology of the SSURef

alignment-based tree and appeared poorly supported by phyloge-

netic studies. These were either re-assigned to existing parent taxa

or novel ones labeled incertae sedis. Unique taxon names were

always used and to this end we added the name of the only child

taxon to several unlabeled or undetermined taxa, or removed

them.

Annotations of the eukaryotic taxa using the NCBI Taxonomy

were taken from the SSURef database and manually verified in

order to remove all sequences where taxonomical affiliation was in

clear conflict with the topology of the alignment-based tree.

Selection of fungal reference sequences was done according to

recent phylogenetic work [49,50].

All manual changes are listed in Supplementary Table S1,

which can also be downloaded as a text file from http://services.

cbu.uib.no/supplementary/crest/and is using an unambiguous

format that can be parsed by the nds2CREST script (see below). In

total, 82 new taxa were added, 123 were renamed and 17 deleted.

All sequences remaining after curation were exported in FASTA

format. During this procedure, sequences were cropped so as only

the part corresponding to the SSU rRNA gene was saved. This

was achieved by applying the Escherichia coli positional filter in

ARB, selecting alignment column 1,o00 and 43,183. A tab-

separated text file listing the accession numbers and taxonomic

placements of each sequence was exported (using ‘‘NDS export’’).

We developed the python script nds2CREST distributed together

with the CREST LCAClassifier in order to convert the exported

sequence and taxonomic data from ARB into configuration files

for MEGAN [20] and the CREST LCAClassifier. This script also

reads a text version of the Manual Changes File (MCF;

Supplementary Table S1). For each change specified in the

MCF, it confirms that the change was properly carried out. In

addition, the script removes all sequences without valid taxono-

mical annotation or specified to be removed in the MCF. After this

procedure, it assigns taxonomic ranks for each taxon based

primarily on the NCBI Taxonomy, where such information is

available; secondarily on the name of the taxon using the suffices

‘‘-ales’’ and ‘‘-acaea’’ to indicate family or order level, respectively;

and lastly based on the parent rank. The output of nds2CREST is

(1) a tree-file in Newick format describing the topology of the

taxonomy, (2) a tab-separated ‘‘mapping file’’ specifying the name

and rank for each taxon, and (3) a reference sequence database in

FASTA-format. In addition to SilvaMod, we also prepared such

files from the Greengenes Taxonomy [21] using the same

procedure, however without manual curation or positional

filtering.

Alignment-based Classification - LCAClassifier
Taxonomical classification of environmental sequences starts

with alignment to a reference sequence database (such as

SilvaMod or Greengenes) using the NCBI blastall implementation

of Megablast, with default settings except (optionally) restricting

the output to 100 alignments to save disk space and calculation

time, and deactivating the low complexity filter (the latter was not

used during testing but has negligible impact on SSU rRNA

alignments). BLASTN was also evaluated as an alternative, but as

we did not notice an increased performance relative to the faster

Megablast, we do not recommend it for SSU rRNA classification.

The CREST LCAClassifier requires that Megablast output is

saved in XML format, whereas MEGAN [20] can also parse the

plain text output.

The classification is then carried out based on a subset of the

best matching alignments using the Lowest Common Ancestor

(LCA) of this subset, as previously described in MEGAN [20].

Briefly, the subset includes sequences that score within x% of the

‘‘bit-score’’ of the best alignment, providing the best score is above

a minimum value. We selected a minimum bit-score of 155 and an

LCA range (x) of 2% as default parameters based on results from

ten-fold cross-validation testing of SilvaMod, which resulted in

relatively few false positives regardless of fragment length at the

cost of slightly decreased recall. Lowering the LCA range increases

the sensitivity at the cost of reduced precision, equivalent to

moving to the right along the precision-recall curves of Figure 2,

which can provide some guidance for selecting appropriate LCA

range with different sequence lengths (note however, that the

cross-validation testing only provides a rough indication of true

precision and recall values). The appropriate LCA range also

depends on the community studied. For example, the LCA range

can be decreased to 1% if most sequences are similar to well-

known type strains, or with longer read lengths (e.g. from Sanger

sequencing or GS FLX+). Minimum bit-score has less effect on

performance but we recommend increasing it when classifying

amplicon sequences with longer read lengths, to e.g. 300 for

FLX+.

The minimum similarity filter is based on a set of rank-specific

requirements. Firstly, a sequence must be aligned with at least

99% nucleotide similarity to the best reference sequence in order

to be classified to the species rank. For the genus, family, order,

class and phylum ranks the respective cut-offs are 97%, 95%,

90%, 85% and 80%. These values were based on minimum

similarities between closest neighbor SSU rRNA sequences inside

the same taxa [51] then modified to further increase classification

accuracy based on initial cross-validation testing. The filter ensures

that classification is made to the taxon of the lowest allowed rank,

effectively re-assigning sequences to parent taxa until allowed.

Sequences with best-scoring alignments below the minimum bit-

score are treated as unclassified and not analyzed by this filter.

The CREST LCAClassifier was implemented in Python

(http://www.python.org) and can be executed on all major

platforms.

Performance Evaluation Using Cross-validation and
Environmental Data

We performed exhaustive ten-fold cross-validation by randomly

splitting the SilvaMod database into ten different sequence subsets

of equal size. Each subset was then aligned to a concatenation of

the other nine using Megablast and classified using the CREST

LCAClassifier, in addition determining the LCA range at which

the sequence could no longer be classified to each rank level. The

default minimum bit-score (155) was also applied. Each test

dataset was also randomly cropped into sub-sequences of 100 bp

and 450 bp and the two resulting cropped subsets aligned. The

same procedure was carried out for the Greengenes database and

RDP Classifier default training dataset version 6 [22]. Instead of

alignment, a re-training of the RDP classifier (v 2.3) was

performed. Ten-fold cross-validation was also carried out on the

Greengenes based training set gg_99_otus_4feb2011 using RDP

Classifier v.2.2 through the QIIME (v.1.4.0; [35]) script assign_-

taxonomy.py.

We also performed cross validation based on removal of whole

genera, families and phyla. Testing was carried out using the four

described reference (or training) datasets and was exhaustive,

except for genera, where 100 genera were chosen randomly. The

sequences of each taxon were aligned to a reference dataset with

the sequences from that taxon missing. For the RDP Classifier

tests, it was retrained in an analogous manner.
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Assignments from cross validation tests were summarized using

a custom python script and R (http://r-project.org). For each test,

classification strategy, rank, and confidence cut-off (or LCA range),

we calculated the number of true positives (TP; sequences correctly

classified to a taxon), true negatives (TN; correctly unclassified),

false positives (FP; incorrectly classified) and false negatives (FN;

incorrectly unclassified). Assignment accuracy, precision and recall

(sensitivity) was calculated using:

Accuracy~
TPzTN

TPzFPzTNzFN

Precision~
TP

TPzFP
Recell~

TP

TPzFN

In addition to cross-validation tests, the following four

environmental datasets (summarized in Table 3) were used:

1. SSU rRNA gene-containing pyrosequencing reads from the

metagenome of Lake Lanier [5],

2. SSU rRNA-containing pyrosequencing reads from the meta-

transcriptome of an Austrian forest soil (unpublished),

3. Illumina-sequenced amplicon reads of the V4 region of 16S

rRNA from Siberian tundra soil (unpublished), and

4. De-noised unique amplicon sequences of the V5–V6 region of

16S from a deep-sea hydrothermally associated microbial mat

[4]

In addition to the mentioned classification strategies, dataset #4

was submitted to LCA-based classification with the SINA Aligner

Online at the SILVA website (www.arb-silva.de/aligner) using

default parameters and SSURef release 108 as reference

alignment. Initially the Hidden Markov Model-based program

SSuMMo [52] was also included in the comparison, using its

SILVA v108 reference dataset and default parameters. However,

limitations of the program’s output format made it impossible to

calculate the number of assigned reads from classification of

amplicon sequences representing several reads. Initial results for

Environmental dataset 1 showed a consistently lower assignment

rate at family level (35%) compared to other methods tested (51–

74%) and a calculation time over ten times that of CREST (89

minutes for 1,000 sequences).

Data Access
All resources including databases, taxonomy files and the source

code for the CREST LCAClassifier and its web server are

available under a GNU General Public Licence (v3) from http://

apps.cbu.uib.no/crest and http://lcaclassifier.googlecode.com.

Technical documentation describing how to install and use the

program is available on the same websites. MEGAN can be

downloaded from http://ab.inf.uni-tuebingen.de/software/

megan/along with detailed documentation. All datasets used for

testing can be downloaded from http://services.cbu.uib.no/

supplementary/crest/.

Supporting Information

Table S1 Manual changes done during curation of the
Silva Taxonomy (release 106) to SilvaMod.
(XLSX)
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15. Pedrós-Alió C (2007) Ecology. Dipping into the rare biosphere. Science 315:

192–193.

16. Curtis TP, Head IM, Lunn M, Woodcock S, Schloss PD, et al. (2006) What is

the extent of prokaryotic diversity? Philos Trans R Soc Lond B Biol Sci 361:

2023–2037.
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