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Abstract

Background/Objectives: White matter hyperintensities (WMH) in magnetic resonance imaging (MRI) scans of the brain, and
orthostatic hypotension (OH) are both common in older people. We tested the hypothesis that OH is associated with WMH.

Design: Cross-sectional study.

Setting: Secondary care outpatient clinics in geriatric medicine and old age psychiatry in western Norway.

Participants: 160 older patients with mild dementia, diagnosed according to standardised criteria.

Measurements: OH was diagnosed according to the consensus definition, measuring blood pressure (BP) in the supine
position and within 3 minutes in the standing position. MRI scans were performed according to a common protocol at three
centres, and the volumes of WMH were quantified using an automated method (n = 82), followed by manual editing. WMH
were also quantified using the visual Scheltens scale (n = 139). Multiple logistic regression analyses were applied, with
highest vs. lowest WMH quartile as response.

Results: There were no significant correlations between WMH volumes and systolic or diastolic orthostatic BP drops, and no
significant correlations between Scheltens scores of WMH and systolic or diastolic BP drops. In the multivariate analyses,
only APOEe4 status remained a significant predictor for WMH using the automated method (p = 0.037, OR 0.075 (0.007–
0.851)), whereas only age remained a significant predictor for WMH scores (p = 0.019, OR 1.119 (1.018–1.230)).

Conclusion: We found no association between OH and WMH load in a sample of older patients with mild dementia.
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Introduction

White matter hyperintensities (WMH) are commonly found in

cerebral T2-weighted magnetic resonance imaging (MRI) scans in

older people [1,2]. WMH seem to have a common distribution

regardless of underlying diagnosis [3–4], with a preference for

areas of lower relative perfusion. They have been associated with

depression [5] and dementia [6]. WMH predict functional decline

in voiding, mobility and cognition, and depression [7–9].

WMH have been associated, although only modestly [10], with

classic cardiovascular risk factors [2,11] including hypertension

[12] and APOEe4 [13], and are considered a marker of

cerebrovascular disease. Alternatively, WMH may, at least in

Alzheimer’s disease (AD), primarily be associated with neurode-

generative disease [14]. However, some studies [15–19] suggest

that hypotension, including orthostatic hypotension, plays a role in

the development of WMH.

Orthostatic hypotension (OH) [20] is common in older people

[21], and particularly in older people with dementia [22,23]. OH

is associated with falls [24], coronary heart disease and increased

mortality [25].

Furthermore, one older study using CT scans found seated

systolic blood pressure (BP) below 130 to be predictive of having

white matter low attenuation (equivalent to WMH in MRI) of the
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brain [26], suggesting that the absolute BP level might be of

importance.

In this study we wanted to explore the association between OH

and WMH in older people with mild dementia. We hypothesized

that systolic and/or diastolic BP drop at baseline are positively

correlated with total WMH volumes and Scheltens deep WMH

scores, and that having OH, or standing systolic BP at or below

110 mm Hg at baseline is independently associated with having

more severe WMH on imaging. Since OH appears to be

particularly common in Lewy body dementias [27], we tested this

association separately.

Methods

Subjects
Consecutive referrals to dementia clinics in the counties of

Rogaland and Hordaland in western Norway from March 2005 to

March 2007 were screened, and patients with a first time diagnosis

of mild dementia, i.e. a minimum Mini-Mental State Examination

(MMSE) score of 20 were included. From April 2007 we

selectively recruited patients with dementia with Lewy bodies

(DLB) and Parkinson’s disease with dementia (PDD) fulfilling the

aforementioned criteria of mild dementia. A total of 246 patients

have completed baseline assessments, the last of whom was

included in May 2011. In the current study, we included those

who had both OH measurements and available MRI scans with

adequate scan quality.

Ethics Statement
The study was approved by the Regional Committee for

Medical Research Ethics, Western Norway and the Norwegian

authorities for collection of medical data. The subjects provided

written consent to participate after the study procedures had been

explained in detail to them and a caregiver, usually the spouse or

offspring.

Dementia Diagnosis
The diagnoses for AD, DLB, PDD and vascular dementia

(VaD) were made according to consensus criteria [28–31], and for

frontotemporal dementia (FTD) and alcoholic dementia according

to the Lund-Manchester criteria [32] and the DSM-IV criteria,

respectively. DLB and PDD were combined into one group (Lewy

body dementia, LBD), because these conditions have several

clinical and biological similarities [29,33].

The diagnostic procedures and comprehensive standardised

assessment have been described elsewhere [34]. Patients with

acute delirium or terminal illness, as well as those recently

diagnosed with a major somatic illness, previous bipolar disorder

or psychotic disorder were excluded.

Blood Pressure Measurements
Blood pressures were measured at baseline only, using an

analogue sphygmomanometer. The protocol did not require

a period of rest prior to the BP measurements. In the majority

of patients, BP was measured once with the subject in the supine

position, and then once (all patients) within 3 minutes after

standing up. In some patients, the non-standing BP measurements

were made in the sitting position (22/80 in the volumetry group,

and 60/134 in the semi-quantitative group). For n= 9 patients the

non-standing position is unknown.

Orthostatic hypotension (OH) was defined according to the

consensus as a reduction of systolic BP of at least 20 mm Hg or

diastolic BP of at least 10 mm Hg within 3 minutes of standing

[20]. The diagnosis of OH was based solely on the baseline BP

measurements.

By contrast, a diagnosis of hypertension was based on the

medical history and the medical records only, and not on the

baseline BP measurements.

The assessments took place during normal office hours (i.e.

8 a.m. to 4 p.m.).

APOE
Apolipoprotein E (APOE) genotypes were determined in

a subgroup. First, genomic DNA was extracted from 200 ml
EDTA-blood using the QIAamp 96 DNA Blood Kit (Qiagen,

Hilden, Germany). For detection of the APOE e2, e3 and e4
genotypes, which are determined by the combination of two SNP’s

(rs7412 and rs429358), we employed the LightCycler APOE

Mutation Detection Kit (Roche Diagnostics, Mannheim, Ger-

many), using the assay according to the instructions of the

manufacturer.

Assessment of Physical Comorbidity
We employed the ‘‘Cumulative Illness Rating Scale’’ (CIRS) for

assessment of physical comorbidity. This instrument measures the

chronic medical illness burden, while also taking into account the

severity of chronic diseases. Scoring was done by an experienced

geriatrician, in accordance with guidelines [35].

MRI
Patients were scanned at three different sites; Stavanger

University Hospital, Haugesund Hospital, and Haraldsplass

Deaconess Hospital (Bergen). 1.5 T scanners were used in all

three centres (Philips Intera in Stavanger and Haugesund, and in

Bergen a 1.5T GE Signa Excite scanner). In each centre, MRI was

done on the same scanner during the entire study period, and

a common study imaging protocol was used. For technical details,

see Soennesyn et al. [9]. A phantom study, using the same three

scanners, of three human volunteers was done for the DemWest

study and has recently been published [36]. This was done to

assess the variability between scanners and also to assess intra-

scanner variability. Cronbach’s alpha between the three MRI

scanners, as well as between two points in time, all exceeded 0.95,

indicating excellent reliabilities.

The MRI scans were performed within a median interval of 2

months (interquartile range 1–4 months) from the baseline clinical

examination.
Volumetric assessment of WMH. Image analysis was

performed according to a method developed and previously

published by Firbank et al. [4] and modified as previously

described [9]. Briefly, this method requires sets of 3DT1 weighted

scans and FLAIR images from each patient. Non-brain regions

were removed from the T1 image, and the WMH were segmented

on a slice-by-slice basis from the FLAIR image, using a threshold

determined from the histogram of pixel intensities for each image

slice. An MNI atlas image registered to the FLAIR image was used

to calculate the WMH volumes in different regions of the brain.

Because of the variability in image quality from the different

centres participating in this study, we found it difficult to

empirically choose a single threshold level that gave us a perfect

segmentation result in each subject. Therefore, a threshold level of

1.2 was chosen, by which the lesion load was overestimated. Later,

manual correction was performed by removing excess pixels using

FSLView (http://www.fmrib.ox.ac.uk/fsl/index.html).

A specialist in internal medicine and geriatrics (HS) performed

the manual editing, blind to clinical data, after training by

a consultant neuroradiologist (MKB). They both edited the same
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10 datasets twice; once in the beginning, to secure good inter-rater

reliability, and a second time at the end of the editing process, to

secure that similar reliability still persisted and to evaluate intra-

rater reliability. The intraclass correlation coefficient (ICC) was

calculated to be 0.998 for inter-rater reliability and 0.964 for intra-

rater reliability. The manually edited scans were then used in the

further analyses of volumes of total and regional WMH. In order

to compensate for interindividual differences in total brain

volumes, we calculated the ratios of volumes of WMH to total

brain volumes, using these in the statistical analyses. In the present

study, we used only the ratios of total WMH volumes, which have

been shown to be highly correlated with regional WMH volumes

[37].

Visual assessment of WMH. MRI’s were also rated visually,

using the Scheltens scale [38], by an experienced rater (OJG),

blind to clinical data. According to the Scheltens scale, white

matter changes (WMC) are subdivided into periventricular WMC

and deep WMC, and deep WMC are further subdivided into deep

WMH (DWMH), basal ganglia WMH (BGH) and infratentorial

hyperintensities (IT) [39]. In the statistical analyses, we used only

the DWMH scores, because these have been associated with

(orthostatic) BP drop in previous studies [15,17]. Inter-rater

reliability with another experienced rater (MKB) was evaluated,

based on 12 scans, finding an ICC of 0.923.

Statistical Analyses
A total of 82 patients had MRI scans that could be analysed

volumetrically (volumetry group), and 139 had scans that could be

rated semi-quantitatively (the semi-quantitative group) according

to the Scheltens scale. The scans of 61 patients were analysed with

both methods, yielding a correlation coefficient (Spearman’s rho)

of 0.791 (p,0.001) between the scores of the two methods. Mann-

Whitney U-test, Chi-square, Spearman rank order or Fisher’s

exact test were used as appropriate. None of the continuous

variables had a normal distribution, according to the Kolmogorov-

Smirnov test.

Potential predictor variables having p-values ,0.25 in bivariate

logistic regression analyses were included in stepwise multiple

logistic regression analyses, with the response variable defined as

being in the highest quartile of total WMH volume ratios or

Scheltens deep WMH (DWMH) scores vs. the lowest quartile,

respectively.

P-values ,0.05 (two-tailed) were considered statistically signif-

icant.

All statistical tests were performed using PASW Statistics 18,

release 18.0.1.

Results

When comparing the baseline characteristics of patients un-

dergoing WMH volume analysis with those who were not included

in the study, the only significant difference was a higher proportion

with Alzheimer’s disease among the participants (volumetry group:

Pearson Chi square 14.558, df 1, p,0.001, semi-quantitative

group: Pearson Chi square 8.162, df 1, p= 0.006 (Table 1)).

In the volumetry group, the only significant difference with

respect to relevant clinical characteristics between patients in the

highest and lowest WMH quartiles was a lower proportion in the

former group with at least one APOEe4 allele (Table 2).

In the semi-quantitative group, patients in the highest DWMH

score quartile were significantly older than those in the lowest

quartile, and the proportion of patients with a previous stroke was

significantly higher in the highest quartile. Otherwise, there were

no significant differences between those belonging to the highest

and lowest DWMH score quartiles.

We did not find any significant association between a history of

hypertension and having OH at baseline (Pearson Chi Square

0.224, df 1, p = 0.636).

Associations between WMH and OH
There was no significant correlation between WMH volume

ratios and the systolic orthostatic BP drops (Spearman’s rho 0.022,

p = 0.848), but a trend with diastolic orthostatic BP drops was

demonstrated (Spearman’s rho 20.213, p = 0.066). Similarly, we

found no significant correlations between DWMH scores and

systolic or diastolic orthostatic BP drops (Spearman’s rho 0.037,

p = 0.700 and Spearman’s rho 20.122, p = 0.202, respectively).

We performed bivariate logistic regression analyses with the

variables in Table 2 as predictors, and being in the highest WMH

quartile vs. the lowest quartile as response variable. In the

volumetry group, age, hypertension, coronary heart disease and

APOEe4 status had p-values ,0.25. As to the semi-quantitative

group, age, hypertension, APOEe4 status and previous stroke had

p-values ,0.25. None of the p-values for the BP variables

approached this level, except diastolic BP drop vs. DWMH score

(p = 0.297). The aforementioned variables having p-values ,0.25

were entered into stepwise multiple logistic regression analyses.

In the final model, only APOEe4 status remained a significant

predictor of the volumes of WMH (Table 3). The model

performed well (Omnibus test of model coefficients p,0.05), and

the model fit was good (Generalised linear models, Pearson Chi

Square p= 0.179). Only age remained a significant predictor of

DWMH scores (Table 4). The model performed well (Omnibus

test of model coefficients p= 0.010), and the model fit was good

(Hosmer and Lemeshow test p = 0.492).

We also performed multiple logistic regression analyses (stepwise

and forced entry) controlling for scanning site and including

variables known from previous studies to be associated with WMH

(age, hypertension, diabetes mellitus), in addition to OH or systolic

or diastolic BP drops. In these analyses, both with respect to the

volumetry group and the semi-quantitative group, only age

remained a significant predictor of WMH load (data not shown).

However, in some of the models the predictor ‘‘MRI centre’’

achieved borderline significance (p = 0.048–0.050).

When analysing the patients with DLB/PDD separately, we

found no significant correlations between Scheltens DWMH

scores and systolic or diastolic BP drops. Similarly, there were no

significant differences between those in the highest and lowest

Scheltens DWMH score quartiles with respect to the other

variables in Table 2 (data not shown). In bivariate logistic

regression analyses, diastolic BP drop, age and APOEe4 status

achieved the lowest p-values (0.124, 0.117 and 0.094, respectively).

Due to the rather small subsample, in combination with missing

values for the relevant variables, it was not statistically feasible to

perform multiple logistic regression analyses using these variables.

Discussion

The main finding of our study is that in this sample of older

people with mild dementia, WMH were not associated with OH

or low standing systolic BP. Only APOEe4 status (volumetry) and

age (volumetry and semi-quantitative analysis) were independently

associated with WMH volumes.

Thus, our hypothesis that WMH in mild dementia are

associated with OH was not supported. This finding is in contrast

to some previous studies. However, some of these studies were

performed in older people with major depression [16,18,19],

OH and WMH in Mild Dementia
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whereas in our study only a minority (17%) had clinically

significant depression (defined as a Montgomery Asberg De-

pression Rating Scale [40] score of at least 15). In the other studies

[15,17], a majority of the relevant subjects had DLB, known to

Table 1. Demographic and clinical characteristics.

Total sample
n=246

Volumetry group (n =82), vs. rest
of sample

Semi-quantitative group (n =139), vs.
rest of sample

Missing data
(out of n =246)

Age, median (IQR) 76.9 (71–81) 76.1 (70–81), p = 0.502 76.5 (71–81), p = 0.562 0

Women, n (%) 139 (57) 51 (62), p = 0.256 84 (60), p = 0.198 0

MMSE, median (IQR) 24 (22–26) 24 (22.5–26), p = 0.217 23.3 (22–25), p = 0.377 5

Coronary heart disease, n (%) 49 (21) 15 (19), p = 0.704 27 (21), p = 0.949 16

Hypertension (history of), n (%) 109 (46) 30 (38), p = 0.115 63 (47), p = 0.831 11

Diabetes mellitus, n (%) 21 (9) 9 (11), p = 0.495 10 (7), p = 0.455 12

APOEe4$1 allele, fractions (%) 93/153 (61) 31/53 (59), p = 0.803 61/98 (62), p = 0.748 93

Previous stroke, n (%) 33 (14) 8 (10), p = 0.302 18 (14), p = 0.960 14

Smoker (former/pres.), n (%) 111 (48) 37 (47), p = 0.862 62 (48), p = 0.949 16

Heart failure, n (%) 12 (5) 2 (3), p = 0.227 5 (4), p = 0.416 22

Orthostatic hypotension (present), n (%) 90 (46) 35 (47), p = 0.945 49 (44), p = 0.727 49

CIRS score, median (IQR) 6 (4–8) 6 (4–7), p = 0.402 6 (4–7), p = 0.780 10

No. of drugs, median (IQR) 4 (2–6) 4 (2–5), p = 0.159 4 (2–5), p = 0.466 11

Blood pressure lowering medication*, n (%) 141 (60) 41 (53), p = 0.167 77 (57), p = 0.361 9

Dementia categories p=0.000 p=0.002 0

Alzheimer’s disease, n (%) 138 (56) 60 (73) 89 (64)

DLB/PDD, n (%) 89 (36) 16 (20) 38 (27)

Vascular dementia, n (%) 11 (4) 2 (2) 5 (4)

FTD/alcoholic dem., n (%) 8 (3) 4 (5) 7 (5)

IQR = interquartile range; MMSE =Mini-Mental State Examination, normal range 24–30; AD=Alzheimer’s Disease; DLB =Dementia with Lewy Bodies; PDD=Parkinson’s
Disease Dementia; VaD= vascular dementia; FTD= Frontotemporal Dementia; CIRS = Cumulative Illness Rating Scale, range 0 (no impairment)-52 (extremely severe
impairment); APOE =Apolipoprotein E.
*antianginals, antihypertensives, tricyclic antidepressants, paroxetine,MAO inhibitors, dopamine agonists, diazepam, dipyridamole, phenothiazines, clozapine,
quetiapine, haloperidol.
Significant results are shown in bold typeface.
doi:10.1371/journal.pone.0052196.t001

Table 2. Demographic and clinical characteristics, lowest vs. highest WMH quartile.

Volumetry group Semi-quantitative group

OH (fractions) 10/17, 10/19 p= 0.970 12/25, 14/28 p= 1.000

Systolic BP drop (median)* 10, 10 p = 0.949 10, 17.5 p = 0.492

Diastolic BP drop (median)* 0, 0 p = 0.308 3, 0 p = 0.158

Standing syst. BP#110 (fractions) 1/17, 2/19 p = 1.000 4/26, 2/28 p = 0.413

Age (median)* 73, 79.5 p = 0.081 72, 78.4 p=0.002

Women (fractions) 15/20, 13/20 p= 0.730 19/37, 17/31 p= 0.966

AD (fractions) 16/20, 14/20 p= 0.715 22/37, 22/31 p= 0.463

Hypertension (fractions) 6/18, 11/20 p= 0.310 10/36, 16/31 p= 0.081

Coronary heart disease (fractions) 1/19, 5/20 p = 0.182 6/35, 7/30 p = 0.756

Diabetes mellitus (fractions) 1/19, 1/20 p = 1.000 3/36, 2/31 p = 1.000

APOEe4$1 allele (fractions) 11/12, 6/13 p=0.030 17/36, 10/21 p= 0.353

Previous stroke (fractions) 2/20, 4/19 p = 0.407 2/34, 9/28 p=0.016

Smoker (former or present)(fractions) 8/20, 11/20 p= 0.527 19/33, 16/30 p= 0.933

Heart failure (fractions) 0/20, 1/18 p = 0.474 2/34, 1/28 p = 1.000

WMH=white matter hyperintensities; OH= orthostatic hypotension; BP = blood pressure; AD=Alzheimer’s disease; APOE= apolipoprotein E.
*Mann-Whitney U-test, all other comparisons Chi-Square or Fisher’s Exact test.
Significant results are shown in bold typeface.
doi:10.1371/journal.pone.0052196.t002
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have lower standing systolic BP values than AD [23], whereas in

our study the majority had AD. Furthermore, in these two last

studies blood pressures were measured partly or only during

carotid sinus massage, as opposed to our study, in which the blood

pressures were measured only in the supine (or sitting) position and

during active standing. Subjects with OH according to these two

different methods may not be comparable, e.g. concerning the

pathophysiology of WMH.

In our study, the presence of at least one APOEe4 allele was

associated with reduced odds of having high WMH volume,

suggesting that other APOEe alleles (i.e. e2 and/or e3) may

increase the odds of high WMH volume. This hypothesis is

supported by at least two previous studies [41,42]. Notably, none

of these included subjects with dementia. Alternatively, patients

possessing the e4 allele may have more neurodegenerative changes

and thus develop dementia with a lower WMH load. However, the

majority of studies in this field have not demonstrated any

association between APOEe4 status and WMH burden [43–48].

In contrast to some previous studies (e.g. [49]), we did not find

any significant associations between hypertension and WMH. This

could have several possible explanations, including different

definitions of hypertension, different study designs, and differences

regarding samples.

This being a multicentre study, it is possible that the measured

or scored WMH values might vary systematically according to

scanning site. The results of the phantom studies, as well as the

results of the multivariate analyses including scanning site as

a variable, do not support this hypothesis.

The strengths of our study include the use of both quantitative

and semi-quantitative methods for evaluation of WMH severity.

Furthermore, we had data on a number of potential causal or risk

factors for WMH, enabling us to include these in the analyses.

Limitations include the cross-sectional design, the relatively

small sample size, and orthostatic BP measurements in a number

of cases obtained from the sitting, instead of the supine position. It

has previously been demonstrated that sit-stand testing for OH has

a very low diagnostic accuracy [50]. However, sit-stand measure-

ment only has been used in recent, similar studies [51,52]. In

addition, no standing BP measurements were made after 3

minutes. According to a previous study [53], at least 20–30% of

dementia patients have a delayed orthostatic response. Thus, our

methodology would tend to underestimate the prevalence of OH,

thereby possibly masking the potential association between OH

and WMH. Furthermore, the consensus definition of OH, which

was employed in the present study, does not in itself require the

orthostatic BP to be measured on more than one occasion. This is

a potential limitation, as this approach cannot distinguish those

having only transient OH from those having more persistent or

frequently recurring OH. The latter groups may have a higher risk

of being afflicted with the potential adverse consequences of BP

drops, such as syncope and cerebral hypoperfusion, and possibly

also the development of WMH. Ideally, in order to identify

individuals with more than transient OH, orthostatic blood

pressures should have been measured repeatedly over a period

of e.g. a few weeks. Moreover, if OH does play a role in the

development of WMH in mild dementia, it probably exerts its

effects over an extended period of time, also prior to the diagnosis

of dementia. Exploring this clearly would require a longitudinal

study. One final point is that due to missing data for some

variables, a relatively low number of subjects could be included in

the multiple logistic regression analyses, thus limiting the number

of predictors that could be entered into these analyses, as well as

their power.

Our results suggest that OH or low standing BP may not be

associated with WMH in older people with mild dementia, at least

not cross-sectionally. Instead, these changes may primarily be

associated with neurodegenerative disease [14], ageing [54],

hypertension and smoking [2,11], genetics [55], or combinations

of these factors. However, recent longitudinal studies indicate that

an unfavourable vascular risk factor status from midlife and

onwards may be of importance for the development of WMH in

later life [10,56,57]. Thus, the best opportunities for potential

prevention of these changes may lie in controlling established

vascular risk factors, starting no later than in midlife.

Conclusion
In a sample of older people with mild dementia, we found no

cross-sectional association between OH and WMH load. Future

studies should include larger samples, use a longitudinal design,

and use more rigorous BP measurement protocols.
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