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Abstract

Modern development practices encourage extensive testing of code while it is still under develop-
ment, using unit tests to check individual code units in isolation. Such tests are typically case-based,
checking a likely error scenario or an error that has previously been identified and fixed. Coming up
with good test cases is challenging, and focusing on individual tests can distract from creating tests that
cover the full functionality.

Axioms, known from program specification, allow for an alternative way of generating test cases,
where the intended functionality is described as rules or equations that can be checked automatically.
Axioms are proposed as part of the concept feature of the upcoming C++0x standard.

In this paper, we describe how tests may be generated automatically from axioms in C++ concepts,
and supplied with appropriate test data to form effective automated unit tests.

1 Introduction
Modern software engineering practises encourage the use of unit testing to increase software reliability.
Test-driven development (TDD) [4] dictates that software should be extended by writing tests for a new
feature first, before implementing the feature. The tests give a formal, but incomplete, specification of the
behaviour of the new feature, and provide an easy way to check that the implementation is correct and
remains correct throughout development and refactoring.

Less extreme methods call for tests for all program units, and for regression tests to be written to
ward off the reappearance of known bugs. Such methods may be practised rigorously, or in an ad-hoc
manner. Common to all is that they rely on the programmer to invent good test cases that cover both
likely, unlikely and even ‘impossible’ errors. The programmer must also be careful that the tests exercise
the full expected feature set, or the implementation will seem OK when all it does is implement the bare
minimum to pass the tests (as is common in TDD, where the tests are the actual specification of expected
behaviour).

1.1 Axiom-Based Testing
We suggest writing tests based on axioms that formally specify expected behaviour, rather than relying
on ad-hoc test cases. Axiom-based testing was introduced in the early eighties in the DAISTS [9] system,
which used formal algebraic specifications as a basis for unit testing. In DAISTS, a test consists of
axioms in the form of conditional equations, which serve as a test oracle, an implementation with an
equality operator; and a set of test data. A simple coverage analysis is done of the test runs to ensure that
all the axioms and program code are exercised by the tests.
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The Daistish system [19] brought these ideas to C++, though with a notational gap between the
conditional equational form of the axioms and the methods of C++.

In general, there has been a trend away from formal methods in software development in the last
decades. Software engineers have focused on agile development methods like TDD and extreme pro-
gramming [3], while formal methods research has focused on formal specification and verification –
which has been difficult to apply to mainstream languages and mainstream development.

Recently, however, the idea of axioms in development has started to catch on. Axioms are intro-
duced as part of the new concept construct in the upcoming C++ standard proposal [14, 12] – giving a
mainstream language built-in syntactic support for axioms. Axiom-based testing has been employed in
the Sophus numerical C++ library [16], and also in the JAX [24] (Java Axioms) testing approach and
JAxT [18] tool. Axiom like features have also been added to recent versions of JUnit [22].

Axiom-based testing from concepts has two main parts that instrument the implementation being
tested:

• axioms, in the form of conditional equations,

• suitable test data points.

Running an axiom-based test consists of evaluating the condition and (if it succeeds) the two sides
of the equation using the test data, and comparing the results using the equality operator. For example,
to test the following commutativity axiom x + y = y + x, we may substitute 4 for x and 5 for y, evaluate
4 + 5 and 5 + 4, and then verify that 9 = 9. A good test data set for this case would also include negative
numbers and zero.

If the results are to be reliable, the axiom must correctly express the desired feature. Earlier it was
considered crucial that the code for the equality operator had to be correct[10]. In [16] we discuss this,
concluding that with testing the equivalence and congruence properties of the equality operator, it can
be treated alongside any other function being tested. Another problem appears if the equality operator
used in a concept axiom is not implemented. This is known as the oracle problem, and can be handled by
techniques based on behavioural equivalence [10].

Concepts and axioms are still a work in progress as far as C++ standardisation is concerned. Previous
work on C++ axioms has mainly focused on their use for optimisation [25, 2]. Our contributions in this
article include:

• a technique for using C++ axioms for testing

• a tool to support this technique

• a discussion of how to generate test data (and some solutions for this)

The rest of the paper is organised as follows. In the next two sections we introduce C++ concepts
and axioms, and show how to generate test oracle and test code from them. In Section 4, we discuss how
to generate test data, both random and user-selected. We finish off with a discussion and conclusion in
Sections 5 and 6.

2 Concepts
Concepts [12, 14] allow restrictions to be placed on template arguments. A concept describes an interface
for types. It lists the members (functions, associated types, etc.) that are required for some types to model
the concept, and the axioms that apply to those members. For example, the following Monoid1 concept

1A monoid is an algebraic class with an operator ⊕ and an identity element e, such that x⊕e = e⊕x = x. For example, 〈int,+, 0〉
and 〈int, ∗, 1〉 are monoids.
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requires the existence of an identity_element and an operator, and gives an Identity axiom (adapted
from [14]):

concept Monoid<typename T>
: Semigroup<T> {

T op ( T , T ) ;
T i d e n t i t y _ e l e m e n t ( ) ;
axiom I d e n t i t y ( T x ) {

op ( x , i d e n t i t y _ e l e m e n t ( ) ) == x ;
op ( i d e n t i t y _ e l e m e n t ( ) , x ) == x ;

} }

To state that a class models a concept, we use a concept map. The concept map can specify a mapping
between the implementation names (from the class) and the names used in the concept, and can also be
used to add extra code necessary to model the concept. In the concept map below, we state that the
FiniteInt class of bounded integers models the Monoid concept, and give an operator that returns the
addition of elements and an identity_element function that returns the FiniteInt::zero identity
element.

template < i n t s i z e >
concept_map Monoid<F i n i t e I n t < s i z e > >{

F i n i t e I n t op ( c o n s t F i n i t e I n t& a ,
c o n s t F i n i t e I n t& b ) {

re turn a+b ;
}
F i n i t e I n t i d e n t i t y _ e l e m e n t ( ) {

re turn F i n i t e I n t < s i z e > ( 0 ) ;
} }

3 From Axioms to Test Code
There are two steps involved in generating tests from concepts. First, we generate a test oracle for
each axiom in each concept. The test oracle is a function having the same parameters as an axiom, and
returning true or false depending on whether the axiom holds for the given arguments.

For example, consider the Indexable concept in Figure 1, intended for data structures such as arrays.
It has the usual indexing operators you would expect, and an axiom ArrayEqual. The axiom can be trans-
formed into callable code by creating a normal C++ template class for the concept (Indexable_oracle),
and making the axiom a boolean function within that class – see Figure 2.

The second step is to generate test cases for each type that models a concept. This is done by finding
all the concept maps within the program, and generating code for each of them. The test case will use
data iterators (see Section 4) to iterate through a set of data values for each argument to the axioms, and
then call the test oracle for each combination of data values. Success or failure of the oracle test is then
reported to the testing framework.

For example, consider an ArrayFI class – an array indexed by finite (bounded) integers. A simplified
version of the class is shown in Figure 4. It is supplied with two concept maps, the first stating that an
ArrayFI of size size has the same shape as a FiniteInt of size size – this is needed to fulfil the
SameShape requirement of the Indexable concept. The second states that ArrayFI is Indexable with
index type FiniteInt and element type E.

The test case (seen in Figure 3) consists of an Indexable_tests class specialised for ArrayFI<size,
E>, FiniteInt<size> and E. The class contains a test function, ArrayEqual, which iterates over the
data generators and calls the generic test oracle derived from the axiom. The two outer loops generate
arrays (*a_0 and *c_0), while the inner loop generates indexes (*d_0). The test oracle (from Figure 2)
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concept I n d e x a b l e <typename A, typename I ,
typename E>

: s t d : : E q u a l i t y C o m p a r a b l e <A, A> ,
s t d : : E q u a l i t y C o m p a r a b l e <E , E> {

r e q u i r e s SameShape<A, I > ;
c o n s t E& operator [ ] ( c o n s t A&, c o n s t I &);
E& operator [ ] ( A&, c o n s t I &);

axiom ArrayEqua l (A a , A b , I i ) {
i f ( a == b )

a [ i ] == b [ i ] ;
i f ( a [ i ] != b [ i ] )

a != b ;
}

}

Figure 1: The concept Indexable has indexing operators and an axiom ArrayEqual that states that two
Indexables are equal if and only if their elements are equal. A is an indexable type, I is the index type,
and E is the element type. A and I are required to be of the same shape, i.e., the values of type I are the
allowable indices for the type A.

t empla te <typename A, typename I , typename E>
r e q u i r e s I n d e x a b l e <A, I , E>
s t r u c t I n d e x a b l e _ o r a c l e
{

s t a t i c bool ArrayEqua l (A a , A b , I i )
{

i f ( a == b )
i f ( ! ( a [ i ] == b [ i ] ) )

re turn f a l s e ;
i f ( a [ i ] != b [ i ] )

i f ( ! ( a != b ) )
re turn f a l s e ;

re turn true ;
}

} ;

Figure 2: Oracle code from the ArrayEqual axiom.
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t empla te < i n t s i z e , typename E>
r e q u i r e s I n d e x a b l e <ArrayFI < s i z e , E> , F i n i t e I n t < s i z e > , E>
s t r u c t I n d e x a b l e _ t e s t C a s e <ArrayFI < s i z e , E> , F i n i t e I n t < s i z e > , E>
{

s t a t i c vo id ArrayEqua l ( ) {
t y p e d e f HasDataSet <ArrayFI < s i z e , E> > : : d a t a s e t _ t y p e d t_0 ;
d t_0 b_0 = HasDataSet <ArrayFI < s i z e , E> > : : g e t _ d a t a s e t ( ) ;
f o r ( Da taSe t <dt_0 > : : i t e r a t o r _ t y p e a_0 = DataSe t <dt_0 > : : b e g i n ( b_0 )

; a_0 != DataSe t <dt_0 > : : end ( b_0 ) ; ++a_0 ) {
t y p e d e f HasDataSet <ArrayFI < s i z e , E> > : : d a t a s e t _ t y p e d t_1 ;
d t_1 d_0 = HasDataSet <ArrayFI < s i z e , E> > : : g e t _ d a t a s e t ( ) ;
f o r ( Da taSe t <dt_1 > : : i t e r a t o r _ t y p e c_0 = DataSe t <dt_1 > : : b e g i n ( d_0 )

; c_0 != DataSe t <dt1 > : : end ( d_0 ) ; ++c_0 ) {
t y p e d e f HasDataSet <F i n i t e I n t < s i z e > > : : d a t a s e t _ t y p e d t_2 ;
d t_2 f_0 = HasDataSet <F i n i t e I n t < s i z e > > : : g e t _ d a t a s e t ( ) ;
f o r ( Da taSe t <dt_2 > : : i t e r a t o r _ t y p e e_0 = DataSe t <dt_2 > : : b e g i n ( f_0 )

; e_0 != DataSe t <dt_2 > : : end ( f_0 ) ; ++e_0 )
check ( I n d e x a b l e _ o r a c l e <ArrayFI < s i z e , E> , F i n i t e I n t < s i z e > , E>

: : Ar rayEqua l (∗ a_0 , ∗ c_0 , ∗ e_0 ) ,
" I n d e x a b l e " , " Ar rayEqua l " ) ;

} } } } ;

Figure 3: Concrete test code generated from a concept map. HasDataSet is used to select an appropriate
data set for each data type. check is a hook for reporting results to a testing framework.

will check that the array code behaves as expected for an Indexable structure. The HasDataSet pro-
vides a mapping from a type to a data generator for that type (reasonable defaults for this are generated
automatically).

3.1 Reusable Tests
A convenient effect of having concepts and their axioms separate from the classes that implement them is
that they can be freely reused for testing new types that model the same concepts. If you already have a
Stack concept with carefully selected axioms, you get the tests for free when you implement a new stack
class.

Having libraries of standard concepts for things such as algebraic classes [11] (including monoid, ring,
group and others that apply to numeric data types), containers (indexable, searchable, sorted, ...) as well
as the standard library providing common type behaviors [13] (CopyAssignable, EqualityComparable,
...) cuts down on the work needed to implement tests. A well thought-out library is also far less likely to
have flawed or too-weak axioms than axioms or tests written by a programmer in the middle of a busy
project.

3.2 Concept Combinations
Some combinations of classes can create interesting interactions between concepts. For example, the
FiniteInt type we used in the implementation of ArrayFI satisfies the Monoid concept from Section 2
(as well as several other algebraic concepts that are too lengthy to include in this paper). If we extend
our ArrayFI with element-wise operations, an instance ArrayFI<FiniteInt> can ‘inherit’ the Monoid
concept from the FiniteInt. For this to work, we need to provide a concept map

template <typename A>
r e q u i r e s D e f a u l t I n d e x a b l e <A> ,

Monoid<D e f a u l t I n d e x a b l e <A>
: : e l e m e n t _ t y p e > ,
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template < i n t s i z e , typename E>
c l a s s ArrayFI {
p r i v a t e :

E d a t a [ s i z e ] ;
p u b l i c :

E& operator [ ] ( c o n s t F i n i t e I n t < s i z e >& i ) {
re turn d a t a [ i ] ;

}
bool operator==( c o n s t ArrayFI& a ) {

f o r ( i n t i = 0 ; i < s i z e ; ++ i )
i f ( d a t a [ i ] != a . d a t a [ i ] )

re turn f a l s e ;
re turn true ;

}
i n t g e t S i z e ( ) c o n s t {

re turn s i z e ;
}

}
template < i n t s i z e , typename E>
concept_map SameShape<ArrayFI < s i z e , E> ,

F i n i t e I n t < s i z e > >{
}

template < i n t s i z e , typename E>
concept_map I n d e x a b l e <ArrayFI < s i z e , E> ,

F i n i t e I n t < s i z e > , E>{
}

Figure 4: The ArrayFI class, parameterised with a size and an element type.
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s t d : : C o p y C o n s t r u c t i b l e <A>
concept_map Monoid<A> {

A op ( c o n s t A& a , c o n s t A& b ) {
re turn Shape<A> : : map (

Monoid<D e f a u l t I n d e x a b l e <A>
: : e l e m e n t _ t y p e > : : op ,

a , b ) ;
}
A i d e n t i t y _ e l e m e n t ( ) {

re turn Shape<A> : : b u i l d (
Monoid<D e f a u l t I n d e x a b l e <A>

: : e l e m e n t _ t y p e >
: : i d e n t i t y _ e l e m e n t ( ) ) ;

}
}

The Indexable concept may be used in several different ways on the same array type with different
index and element types. As we want the compilation process to automatically deduce which way to index
our data structure, we need to provide a default pair of index type and element type to each Indexable
through the following concept DefaultIndexable:

concept D e f a u l t I n d e x a b l e <typename A> {
typename i n d e x _ t y p e ;
typename e l e m e n t _ t y p e ;
r e q u i r e s I n d e x a b l e <A, i n d e x _ t y p e ,

e l e m e n t _ t y p e > ;
}

Then, for example, ArrayFI would only need a small concept map as the one below to inherit from
all the axioms.

t empla te < i n t s i z e , typename E>
concept_map D e f a u l t I n d e x a b l e <

ArrayFI < s i z e , E>> {
t y p e d e f F i n i t e I n t < s i z e >

i n d e x _ t y p e ;
t y p e d e f E e l e m e n t _ t y p e ;

}

Based on the above concepts and the concept maps, an ArrayFI<size, FiniteInt> would have
test code for the ArrayEqual axiom (instantiated from the template code in Figure 3), and for the Monoid::Identity
axiom. And, as ArrayFI<size, FiniteInt> is itself a Monoid, we can use it as the element type for
a new Indexable Monoid ArrayFI<size1, ArrayFI<size2, FiniteInt> >, and so on2. Such con-
structions are important in some problem domains [17] and allow us to do some simple integration testing
with axioms as well.

3.3 Test Programs / Suites
So far we have generated test oracles from axioms, and test cases that generate test data and call the
oracles. To actually perform the testing, we need to call the test cases as well. There are three ways to do
this: we may call the code manually, we may generate code that calls all known test functions, or we may
use a combined approach.

2Which raises the question – how many of these do we generate code for? None and all. Since the generated test code uses
templates, the basic *_tests functions also handles the nested combinations. Only the basic variants are called automatically by
our tool’s code, though.
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By default, our tool will generate a main function filled with calls to all non-template test functions.
Guessing at sensible template parameters is difficult in the case of unconstrained template parameters
and when there is a large or infinite number of choices (as in the case of the nested arrays above). We
therefore rely on the user to choose which templated tests to run, see Section 4.

If we want fully automatic test program generation, we could analyse existing application code and
find suitable template instantiation arguments there. Or, in cases where template parameters are con-
strained by concepts, we can generate calls with all classes that fulfil the concept constraint (with a
cut-off in place to avoid infinite nesting). This would allow quite exhaustive exercising of code, including
combinations that a programmer would likely never think of.

Even if the tool does not automatically generate full test suites, it could help the programmer by
generating code templates. With integration into an IDE, such as Eclipse test suite building, can be done
in a guided manner. The JAxT [18] tool offers Eclipse integration, ours does not (yet).

3.4 Axioms for Object-Oriented Code
The axiom examples we have used so far have mostly been in a functional style where results are returned
and there are no side-effects on arguments. Realistic C++ code will often be written in a more object-
oriented style.

Concepts favour non-member functions over member functions (methods), particularly for overloaded
operators, since they should work well also with primitive types, which are not classes and thus cannot
have members. This fits with the expression-oriented style of equational axioms. Functions with side
effects may be handled by wrapping a sequence of statements in an extra function, or by using the comma
(sequence) operator, as in the following CopyPreservation axiom:

axiom C o p y P r e s e r v a t i o n ( T& x , U y ) {
( x = y , x ) == y ;

}

The comma operator has the effect of first assigning y to x, and then yielding the value of x.
Figure 5 shows the traditional bounded stack example also used for DAISTS [9], Daistish [19] and

JAX [24]. The BoundedStack concept is written in an object-oriented style, where the stack operations
modify the current object, rather than return a new modified stack.

In our stack axioms, we have intentionally not specified what happens when we attempt to push onto a
full stack or pop an empty stack. In a traditional bounded stack, pushing onto a full stack has no effect. By
leaving this behaviour undefined, we leave the door open for alternative solutions (handled by non-axiom
test cases, for example).

However, if we wish to specify that an exception should be thrown when attempting to push onto a
full stack, we would need a small helper function to do the push, catch the exception and return true or
false – see Figure 6. With some small changes [2] to the proposed C++ syntax, we could avoid the use
of the helper function.

This state-modifying style of axioms has some consequences for test code generation, since the test
oracles will modify the test data. For this reason, the test oracles avoid reference arguments, ensuring
that the data is copied into the oracle function. This may not be sufficient for all data structures, though.
We are still unsure of the best way to handle this, as we would like to keep data generation as simple and
efficient as possible. Fortunately the const/non-const status of parameters will give a clue as to when
this may be a problem.
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concept BoundedStack<typename S , typename E>
: s t d : : E q u a l i t y C o m p a r a b l e <S , S> ,

s t d : : E q u a l i t y C o m p a r a b l e <E , E> {
S : : S ( ) ;
E S : : t o p ( ) c o n s t ;
E S : : pop ( ) ;
void S : : push ( c o n s t E&);
bool S : : f u l l ( ) ;
bool S : : empty ( ) ;

axiom PushTop ( S s , E e ) {
i f ( ! s . f u l l ( ) )

( s . push ( e ) , s . t o p ( ) ) == e ; }
axiom PushPop ( S s , E e ) {

i f ( ! s . f u l l ( ) )
( s . push ( e ) , s . pop ( ) ) == e ;

i f ( ! s . f u l l ( ) )
( s . push ( e ) , s . pop ( ) , s ) == s ; }

axiom Empty1 ( ) {
S ( ) . empty ( ) == t rue ; }

axiom Empty2 ( S s , E e ) {
i f ( ! s . f u l l ( ) )

( s . push ( e ) , s . empty ( ) ) == f a l s e ; }
axiom Equal1 ( ) {

S ( ) == S ( ) ; }
axiom Equal2 ( S s , E e ) {

i f ( ! s . f u l l ( ) )
( s . push ( e ) , s ) != S ( ) ; }

axiom Equal3 ( S s1 , S s2 ) {
i f ( ! s1 . empty ( ) && s1 == s2 )

s1 . t o p ( ) == s2 . t o p ( ) ;
i f ( ! s1 . empty ( ) && s1 == s2 )

( s1 . pop ( ) , s1 ) == ( s2 . pop ( ) , s2 ) ;
}

}

Figure 5: An example of an OO-style bounded stack concept, with a selection of axioms. The comma
operator (,) is used to first evaluate a call for the side effect (left side), then choosing the value we’re
interested in (right side). S() constructs a new stack.
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. . .
bool P u s h F u l l _ h e l p ( S s , E e ) {

t r y { s . push ( e ) ; re turn f a l s e ; }
catch ( . . . ) { re turn true ; }

}
axiom P u s h F u l l ( S s , E e ) {

i f ( s . f u l l ( ) )
P u s h F u l l _ h e l p ( s , e ) == t rue ;

}

Figure 6: Checking for exceptions. The function PushFull_help will return true if pushing onto a full
stack throws an exception, and false otherwise.

4 Generating Test Data
Creating a test oracle from the concept axioms and a concept-map is fairly straight-forward. Such a test
oracle will normally have parameter variables (free variables) that need to be instantiated by suitable
values in order to achieve a test.

We have three cases to consider when we want to provide data for a free variable:

• The parameter has a known, primitive C++ type.

• The parameter has a known, user-defined type. In this exposition we will not investigate the issues
arising if the known type can be subclassed.

• The parameter type is a template argument to the test oracle. In this case, the template may have
additional constraints, e.g., that a parameter models a given concept, see Section 3.3.

For the latter case we will rely on consept maps to identify candidate types. Though some authors [8]
claim that fixing the test data set for one such candidate will be sufficient, we believe test data sets should
exercise several of these in order to check that the stated requirements are sufficient constraints on the
template arguments.

We provide test data through associating test data generators with each class. For the primitive types
user defined expressions and the C++ random generator library provides arbitrary large selection of test
data. User defined classes should provide a test data generation interface, allowing our testing tool to feed
generated test data to the test oracles. A test data generator for a templated class may call upon the data
generators for the argument classes.

For a known type, whether primitive or user-defined, we see several strategies for providing test data.

1. User selected data sets.

2. Randomly chosen generator terms.

3. Randomly chosen data structure values.

The first is the classical approach to testing and the one (implicitly) favoured by test driven development.
Here the tester decides, e.g., that integer values -1, 0, 1 and 3 are of prime importance, or that stacks S(),
S().push(1) and S().push(1).pop() are specifically important. Such selected data sets are useful
for regression testing, where specific data sets that have exposed problems in the past are rechecked with
each revision of the code. The data sets can also be targetted for other purposes, e.g., path coverage of
the implemented algorithms.
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The second is favoured by Claessen & Hughes in their QuickCheck system [8] and by Prasetya et al.
for their Java-based testing system [21]. The idea is to let random expressions or sequences of (public)
methods compute data values of the appropriate type. By choosing a suitable enumeration of terms this
will always be possible and give good data coverage. So for testing integer we may use expressions
0, 0+ 1, (−1+ 0) ∗ 2 and for stacks sequences like S s(); s.push(1+-2); s.push(3|4); s.pop();
may be used.

The third approach requires the tester to have access to the data representation (data field attributes) of
a type. For a primitive types such as floats, this means setting the bit patterns of a floating point number
directly. For a user-defined class this implies that each data field is given a random value of the appropriate
type, subject to the constraints of the implementation. For instance, having a rational number class where
we represent rational numbers as pairs of integers (a nominator and a denominator, the denominator
different from zero), we may choose random pairs of integers for the attributes, discarding any pair where
the denominator part would be equal to 0. Such direct setting of attribute values may give access to a
larger range of test values than allowed by method 2, and is needed if all or some of the data fields are
publically available. Setting data attributes directly requires a filtering mechanism that identifies all bad
data combinations, i.e., a complete data (class) invariant. If the data invariant has narrow requirements
on the data, e.g., that the stack has a length field required to be equal to the length of the linked list
representing the data on the stack, independently generating random integers and random linked lists will
probably turn up too few good combinations for this technique to be worth-while.

Harvesting the data produced by an application program is related to the second method, in that it
provides values computed by the public methods of the classes, though harvesting ensures a statistical
distribution of data much closer to those that appear in practice. One way of harvesting application data
would be to insert the test oracles directly as assertions into an application, using the available data values
as parameter arguments to the oracle. This would only be safe for stateless data types or copy-assignable
data types, otherwise we risk that the oracle itself modifies the state of the application.

Currently, random test data generation seems to be favoured by the literature. Studies of testing
efficiency seem to indicate that random testing outperforms most other test set designs. For any fixed data
set size, a carefully chosen data set will normally be better than a random data set, but a slightly larger,
often cited as 20% larger, random data set is often just as good [15]. Random data generation offers an
easy route to expand the data set to any reasonable size.

Similarly to the data invariant, a conditional axiom itself represents a filtering mechanism. A con-
ditional axiom contains an if-statement, and only those data combinations that satisfy the condition will
really be tried. Assume that we want to test the transitivity axiom for equality on a user-defined rational
number type.

i f ( a == b && b == c ) a == c ;

With the representation of rationals as pairs of integers sketched above, we may compute the equality
of n1

d1
and n2

d2
by the boolean expression n1*d2 == n2*d1 involving integer equality. Choosing arbitrary

combinations of integers for nominator and denominators, chances are rather slim we ever will get to the
truth part in the transitivity axiom. Similarly to QuickCheck we will provide a warning in such cases,
encouraging the user to provide data sets where a significant amount of data reaches the body of the
condition. On the other hand, only choosing obviously equal nominator and denominator pairs, skews the
data set towards trivially satisfying an axiom, and not providing good tests for the algorithms in general.

Claessen & Hughes also point out that different uses of a data type may benefit from different data
distributions. The observation being that the data set of integers which best checks that the integers form
a monoid, may not be the ideal data set for array sizes when generating finite array test sets. We see
this observation on targeted generation of data sets as very important, and expect the locality we have by
associating test the data generators with each class will provides this flexibility.

Once the test oracles and the test data machinery is in place, it is easy to run the tests by iterating
through the corresponding data set for each of the free variables of each test oracle. However, this easily
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leads to a combinatorial explosion in the testing size. A test set of 100 elements is quite reasonable, but
when we test axioms with several free variables this may become a problem. Take the transitivity axiom.
It has three free variables, hence we will test it for one million elements altogether. This may be OK for
integers, but what about one million finite arrays? We can deal with this by providing the data generators
with a parameter related to the number of arguments in an axiom. Our test generator tool can then fill in
this parameter automatically based on the number of free variables in an axiom.

5 Discussion
There is no reason to believe that writing axioms (or test cases) is any less error-prone than programming
in general. Failure of a test can just as well indicate a problem with the axioms or the equals operator
as a problem in the implementation. It is important to be aware of this while programming, so that bug-
hunting is not exclusively focused on implementation code. The same issue arises with hand-written
tests, though, so this is not specific to axiom-based testing. Also, since axioms have a different form
than implementation code (equation versus algorithm), it is unlikely that a bug in an axiom and in the
implementation will ‘cover’ for each other so that neither are detected. It is still possible, though; having
several axioms covering related behaviour will make this less likely.

Building libraries of well-tested concepts with axioms axioms will increase confidence and reduces
the training needed to make effective use of axioms. Not everyone can be expected to know all the
laws governing integer arithmetic – but using an existing axiom library and simply stating that “my class
should behave like an integer” is easy.

5.1 The Importance of Being Equal
Axiom-based testing (at least with equations) relies on a correct implementation of equality. In many
cases, problems with equality will be uncovered in testing, but it is possible to write an implementation of
equality that will hide most errors – for example, by simply returning true for all arguments (which may
be detected when testing inequalities, unless a != operator has been provided with the same problem).

We expect the equals operator to be a congruence relation – an equality relation that is preserved
by all functions. This means that it has the usual reflexivity, symmetry and transitivity expected of an
equivalence relation, with the additional requirement that all equal objects are treated the same by all
functions, i.e. f (a) = f (b) iff a = b for all a, b, and f .3 A straight-forward bitwise comparison of
two objects will often lack this property. In some cases, such as with floating-point numbers, a usable
equals operator will not be truly transitive (due to a small amount of ‘fuzz’ when comparing, to cover up
round-off errors) – this has little impact on our use, however.

The EqualityComparable concept in the standard library provides axioms for the equivalence relation
of the equality operator and as well ensures that inequality operator is the negation of the equality.

It may not always be desirable that the equality operator is a congruence. In the cases we want this
property, the relevant axioms should be tool generated, since they will involve every method belonging to
the class being tested.

5.2 Axiom Selection and Specification
Many of the existing axiom based testing approaches, such as JAX and Daistish, rely on complete ax-
iomatisations or initial specifications. This gives extra properties on which to base tools.

3Informally speaking, since C++ functions may have side-effects or rely on global data.
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Axioms writtten in C++ concepts will normally be loose and incomplete, making many of these
testing techniques void. Our experience with developing and testing Sophus [17, 16], however, show that
such axioms are very useful.

5.3 Experiences with Axiom-Based Testing
There is currently no large body of code around that uses C++ axioms, since the standard proposal is not
yet finished and compiler support is still not mature. 4 A version of the Matrix Template Library [23]
(MTL) with concepts and axioms is in development and we plan to apply our tool to it as soon as it is
ready.

We have experience with axiom-based testing from the Sophus numerical software library [16]. This
predates C++ axioms, so the tests were written by hand, based on a formal algebraic specification. In our
experience, the tests have been useful in uncovering flaws in both the implementation and the specifica-
tion, though we expect to be able to do more rigorous testing with tool support.

The JAX [24] method of combining axioms with the JUnit [20, 5] testing framework has provided
some valuable insight into the usefulness of axiom-based testing. It conducted several informal trials
where programmers wrote code and tests using basic JUnit test cases and axiom testing, and found that
the axioms uncovered a number of errors that the basic test cases did not detect.

Initial experiences with DAISTS [9] were positive and indicated that it helped users to develop effec-
tive tests, avoid weak tests, and the use of insufficient test data. With Daistish [19], the authors did trials
similar to those done with JAX, with programming teams reporting that their axioms found errors in code
that had already been subjected to traditional unit testing. Testing also uncovered numerous incomplete
and erroneous axioms – they note that this is to be expected since the programmers were students learn-
ing algebraic specification. This is probably a factor, but some axiom errors can be expected even from
trained programmers.

5.4 Tool Implementation
Our implementation is based on the Transformers C++ parsing toolkit [6, 26] and the Stratego program
transformation language [7]. We have extended Transformers with the new syntax for concepts and
axioms, and written a tool, extract-tests, that reads C++ with concepts and generates testing code
from the concepts and concept maps in the code [1].

As part of our concepts extension to Transformers, we also have an embedding of the Concept C++
grammar into Stratego, so that Stratego transformation rules can be written using concrete C++ syntax.
This makes it easy to modify the code templates for the generated code.

Together with the tool, we have a utility library with basic data generation support, and hooks into a
testing framework.

5.5 Future Work
We have identified several areas for improvement throughout this paper. To summarise, here is the list of
work to be done (in no particular order):

• Do some proper trials to gauge the effectiveness of axiom-based testing and its impact on develop-
ment.

• Integrate the generated tests with a unit-testing framework, such as CppUnit. Ideally, this integra-
tion would be user-controllable, so that our tool would work nicely with any testing framework.

4The prototype ConceptGCC compiler works well in some cases, but is not complete yet.
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• As discussed in Section 4, there are many open issues with data generation. These will likely only
be resolved once we apply the method to realistic-sized projects (like MTL).

• A library of common concepts with axioms should be written. There has been some work on
this already [11]. Such concepts should eventually make their way into the C++ standard, for
consistency and interoperability.

• Integration with an IDE such as Eclipse would probably make axiom-based testing more usable in
practical programming.

• Our tool is still experimental, and would need many improvements to be ready for production use.

• Extend the tool with the ability to generate meta-axioms for testing, e.g., congruence axioms for
the equality operator or axioms checking the preservation of class invariants in all methods.

6 Conclusion
The use of axioms and “informal formal methods” has seen a surge in popularity recently. Introduction of
axioms to C++ may finally revive techniques such as axiom-based programming – almost 30 years after
the idea was presented with the DAISTS [9] tool. We have presented a method for doing axiom-based
testing in the context of the upcoming C++ standard, along with a tool to make generation of such tests
automatic.

Both the C++ standard, and programming tools such as compilers are still in development and should
be considered ‘unstable’. However, our initial experiments with simple test cases show promise, and
experiences with axiom-based testing from other languages (both our own and others’) encourage us to
push forward with tool development and larger-scale experiments.
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