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ABSTRACT 

 

The origin of the mountainous topography in southern Norway is at present unresolved. Post-Devonian 

sediments are absent onshore, making quantification of crustal uplift and fault displacements difficult. 

Low-temperature thermochronological techniques can be employed to constrain the timing of vertical 

movements through the uppermost few kilometres of the crust and are at present the most effective means 

of obtaining information about the topographic evolution prior to the Quaternary glaciations. This study 

aims to delineate the post-Caledonian morphotectonic evolution of the inner Hardangerfjord region by the 

means of apatite fission track and (U-Th)/He thermochronology, in combination with inverse thermal 

history modelling.  

Thirty-two samples derived from the steep flanks of the inner segments of the Hardangerfjord were 

analysed by the apatite fission track method. The resulting cooling ages range from Late Triassic to Late 

Cretaceous. A general positive age-elevation trend is evident, with abundant Early Cretaceous ages close to 

sea level and Jurassic ages on the Hardangervidda plateau. Four samples from the Eidfjord and Ulvik 

districts were analysed by the (U-Th)/He method, giving dominantly Cretaceous single grain ages. Fisson 

track age-elevation gradients and combined data from the apatite fission track and (U-Th)/He 

thermochronometers reveal low Jurassic-Cretaceous cooling rates in the order of ~1 °C/Ma.  Large age 

jumps over limited horizontal distances suggest post-Middle Jurassic offset across both small-scale faults 

and regional structures. Offset age-elevation gradients indicate local displacements in the order of several 

100 to more than 1000 metres.   

Thermal history modelling reveals two distinct episodes of accelerated cooling, which can be 

linked to documented pulses of tectonic activity onshore southern Norway and in adjacent offshore areas. 

Rapid cooling (2-6 °C) is inferred for the Permo-Triassic and is consistent with rift flank uplift and 

accelerated denudation in connection to the development of the North Sea Basin. The Jurassic and 

Cretaceous periods were characterised by low cooling rates (≤ 1 °C/Ma) and relatively minor regional 

exhumation, suggesting that the effects of the second North Sea rift phase were not pronounced in inland 

areas. Localized, periodically increased exhumation rates associated with fault displacement and footwall 

uplift are inferred from the fission track age distribution, but are not resolved by the thermal history 

models. The second episode of rapid cooling (~2 °C/Ma) is constrained to the late Cretaceous-Eocene and 

may have been attributed to tectonic activity in relation to the North Atlantic breakup or enhanced 

topographic relief following thermally induced uplift triggered by the Iceland mantle plume. Distinctly 

different Palaeogene cooling paths for adjacent structural blocks suggest that fault activity may have 

continued into the Cenozoic. Considering the fission track age distribution patterns and thermal history 

models reported from southwestern Norway in general, it is suggested that extensive fault activity has 

exerted a significant control on the overall morphology of the passive margin. Pre-Eocene peneplanation 

and domal tectonic uplift, as has been proposed in previous studies, cannot fully account for the 

thermochronological data obtained in the current work.  
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1. INTRODUCTION 

 
The origin of the high topography in southern Norway is a matter of controversy. As a result 

of the general lack of post-Devonian sediments onshore, the timing of uplift, erosion and 

topographical development is difficult to constrain. Over the last few years in particular, the 

onshore tectonic and geomorphological evolution, especially from the Jurassic onwards, has 

been the focus of a heated debate. In this regard, two contrasting models have received special 

attention; the conventional model (hereafter referred to as the peneplanation-uplift model) that 

invokes Mesozoic peneplanation followed by tectonic uplift during the Cenozoic (Gabrielsen 

et al., 2010) and the ICE hypothesis, which portrays the present topography as a remnant of 

the ~410 Ma Caledonian orogen (Nielsen et al., 2009). Low-temperature thermochronological 

techniques have the potential of revealing essential aspects concerning the timing and 

magnitude of Mesozoic and Cenozoic exhumation in southern Norway. However, the data 

that are available at present do not provide sufficient information on recent cooling events and 

thus cannot differentiate between the scenarios advocated by each of the models (Ksienzyk, 

2012).  

The research presented in this thesis is part of the Earth System Modelling (ESM) 

project at the University of Bergen. Overall, the aim of the ESM project is to improve the 

understanding of how onshore deformation and erosion is linked to sediment transport and 

deposition in a passive margin setting. The present contribution attempts to provide new 

insights into the exhumation and tectonics of the Norwegian margin hinterland. Apatite 

fission track (AFT) and (U-Th)/He analysis will be utilized in order to gain new, detailed 

information about the cooling history of the mountainous central part of the country.  

 

1.1 Study area 
 
The present study focuses on the Eidfjord, Ulvik, Ullensvang and Granvin districts in the 

inner regions of the Hardangerfjord (Fig. 1). Geologically, this area is dominated by 

crystalline, Precambrian lithologies in addition to minor Cambrosilurian metasedimentary 

rocks and remnants of Caledonian thrust sheets. The NE-SW-trending Hardangerfjord Shear 

Zone dissects the Precambrian basement in the westernmost part of the field area. Following 

the termination of the Caledonian orogeny the Hardangerfjord Shear Zone exerted a major 
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control on the regional tectonic evolution (Fossen & Hurich, 2005) and may have governed 

landscape development by influencing denudational patterns.  

Topographically, the inner Hardangerfjord region is characterized by high relief. Glacial 

fjords and valleys with steep flanks on both sides are incised into the undulating highlands of 

the Hardangervidda plateau, which has a general elevation of ca. 1000 m in the area. The 

highest summits in the study area rise sharply to elevations of more than 1600 m a.s.l. The 

small tributaries to the Hardangerfjord are generally relatively shallow compared to the main 

segment, which attains a depth of 700 m in the outer Sørfjord. 

 

 
 
Fig. 1. Overview map of the study area, which is located in central southern Norway, directly to the west of the 

highest topography. The Sørfjord and the Eidfjord are the main segments of the inner portions of the 

Hardangerfjord. Four small tributaries extend towards the N-NE in the northern part of the outlined area.  

 

1.2  Research objectives 
 
The glacially shaped fjords in southern Norway offer a unique opportunity to sample across 

the passive margin into the hinterland at constant, low elevations. Samples collected in this 

manner have the potential of revealing essential aspects concerning the style of passive 

margin evolution. Eidfjord is regarded as one of the classical sites for low-temperature 

thermochronology in Norway, and a number of studies have been undertaken in this particular 

area (Andriessen and Bos, 1986; Rohrman, 1995; Leighton 2007). Some of the youngest 
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apatite fission track ages in Norway are found at low elevations in the inner regions of the 

Hardangerfjord. The combination of young ages close to sea level and high relief topography 

makes the Eidfjord and adjacent tributaries of the Hardangerfjord excellent targets for detailed 

studies on the timing and magnitude of the much debated post-Jurassic exhumation. Vertical 

sample transects are well suited for this purpose. Previous work in the region has, however, 

failed to provide a comprehensive representation of the exhumation history, mainly because 

the so called vertical profiles that have been sampled extend over significant horizontal 

distances (i.e. >20 km). Considerable lateral differences between samples in a vertical profile 

increase the risk of sampling across faults. Thermochronological data obtained from vertical 

profiles that are sampled in this manner may potentially contribute a distorted picture of the 

regional cooling history, given that structural discontinuities are not acknowledged. 

Numerous brittle structures dissect the basement of the inner Hardangerfjord. Limited 

structural work has thus far been conducted in the area, and consequently little is known about 

the nature of these structures and their possible records of displacement. In order to properly 

describe the tectonic evolution, the importance of differential exhumation across major fault 

zones and small-scale structures should be assessed. This has only partly been done in 

previous studies undertaken in the inner Hardangerfjord region. In the present contribution, 

the issues associated with large horizontal distances within vertical profiles will be addressed 

and structural data will be included in order to provide a more comprehensive understanding 

of the tectonic evolution of the Norwegian margin.  

The aims of the current study are: 

1. To provide steeper and more detailed vertical profiles from the inner regions of the 

Hardangerfjord in order to obtain better constraints on the exhumation of the southern 

Scandes.   

2. To determine whether the region has experienced episodes of accelerated cooling and 

confine the timing of such events. 

3. To establish the significance of displacements along small-scale fault systems on the 

distribution of fission track ages in the study area.  

4. To use thermochronological data to determine whether the Eidfjord and its tributary 

fjords are located at sites of major Mesozoic or Cenozoic fault activity.  

5. To test the obtained results against the predictions of the peneplanation-uplift-model 

and the ICE hypothesis and assess the degree of correlation in each case.  
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1.3  Terminology 
 
In this thesis the term exhumation is used to describe the displacement of rocks with respect 

to the surface, as defined by England and Molnar (1990). Exhumation occurs by means of 

tectonic or erosional denudation or a combination of both. Unless otherwise stated, uplift 

refers to the upward displacement of rocks relative to the geoid.  
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2. REGIONAL GEOLOGICAL SETTING 
 

2.1 Precambrian crustal accretion 
 
2.1.1 General setting 

Southern Norway constitutes the youngest part of the Archaean to Mesoproterozoic Baltic 

Shield that comprises the entire Scandinavian Peninsula as well as a large area in the Kola 

Province of northwestern Russia. Over geological time the Baltic Shield has resided within a 

wide range of plate-tectonic settings and has experienced several episodes of accretion and 

deformation. This is reflected in the fascinating and complex geology that is apparent in 

Norway today.  

On a global scale the most significant series of events during the Proterozoic was 

related to the assembly of the Rodinia supercontinent between 1.3 and 1.0 Ga. The Baltic 

Shield, which was situated at the equator at the time, occupied the central eastern margin of 

the supercontinent (Torsvik & Cocks, 2005). 

 

2.1.2 The Precambrian in southern Norway 

The basement in southern Norway evolved through numerous episodes of crustal accretion 

and polyphase deformation during late Paleoproterozoic to Neoproterozoic times. Two 

orogenic episodes are believed to be of particular importance with respect to crustal growth 

and reworking. The Gothian event (1.75-1.50 Ga) involved subduction-related magmatism 

and deformation associated with the growth of an accretionary orogen along the western 

margin of the Baltic Shield. Substantial portions of the basement in southern Norway were 

formed during this time (Gaál & Gorbatschev, 1987). The Sveconorwegian orogeny (1.14-

0.90 Ga) is believed to have resulted from successive collisions between a series of Gothian 

crustal blocks, followed by continent-continent collision between the Baltic Shield and 

another large continent of which the identity is uncertain (Bingen et al., 2008). Except for the 

emplacement of large volumes of late- to post-orogenic granites, the Sveconorwegian orogeny 

involved relatively little crustal accretion. It is, however, recorded by extensive reworking of 

the largely Gothian basement (Gaál & Gorbatschev, 1987). 
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2.2 The Caledonian orogeny 
 
2.2.1 General setting  

Subsequent to the break-up of the Rodinia supercontinent at ~750 Ma the Iapetus Ocean 

started opening between Laurentia and Baltica (Torsvik & Cocks, 2005). Sea floor spreading 

in the Iapetus was accompanied by anticlockwise rotation of the Baltic Shield, resulting in a 

plate configuration where Norway was facing the Iapetus Ocean and the Laurentian continent 

(Hartz & Torsvik, 2002). In the Neoproterozoic to Ordovician Baltica experienced a 

prolonged period of tectonic quiescence, accompanied by extensive erosion, transgression and 

deposition of marine sediments over large parts of the continent. The closure of the Iapetus 

Ocean commenced in the Early Ordovician and culminated in the Early Devonian with the 

collision between Baltica and Laurentia and the creation of the Caledonian orogenic belt in 

western Scandinavia, Greenland and the northern British Isles (e.g. Gee et al., 2008). 

 

2.2.2 The Norwegian Caledonides 

The Caledonian orogeny involved westward subduction of the Baltoscandian margin beneath 

Laurentia, evident by ultra-high pressure eclogite facies parageneses in the coastal areas of the 

Western Gneiss Region in Norway (Dobrzhinetskaya et al., 1995; Griffin et al., 1985) and 

decreasing metamorphic grade of the basement towards the foreland in the southeast (Dietler 

et al. 1985). A number of E- to SE-verging thrusts developed on the Baltic flank of the 

orogen. Along some of these thrusts, the displacement of nappes amounts to several hundred 

kilometers (Gee et al., 2008). The Caledonian orogenic wedge consists of a number of 

tectonic units of diverse origin. These units have been grouped into the Lower, Middle, Upper 

and Uppermost Allochthons (cf. Roberts & Gee, 1985). The Lower and Middle Allochthons 

comprise sedimentary rocks derived from the continental margin of Baltica, in addition to 

detached and reworked slivers of the Precambrian basement (Stephens, 1988). The Upper 

Allochthon includes island-arc complexes, ophiolites and associated sedimentary successions, 

which in part may have originated within the Laurentian realm of the Iapetus Ocean (Pedersen 

et al., 1988). A Laurentian affinity has also been suggested for the Uppermost Allochthon, 

which mainly comprise ophiolites, arc-type granitoids and margin-proximal sediments 

(Roberts et al., 2007). The Caledonian nappes rest on strongly sheared Cambrosilurian 

metasediments that form a weak decollément zone, over which the thrust sheets have been 

translated (Fossen & Dunlap, 1998).  
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2.3 Post-Caledonian stages 
 
Southern Norway has experienced several episodes of extension following the Caledonian 

orogeny. The most significant onshore deformation took place during the initial stages of the 

orogenic collapse in the Devonian. 

 
2.3.1 Devonian orogenic collapse 

Mode I extension: Backsliding of the orogenic wedge 

The contraction associated with the Caledonian Orogeny ceased towards the beginning of 

Devonian times and was followed by widespread extensional tectonics. During early stages of 

orogenic collapse, deformation was accommodated by reactivation of the Caledonian basal 

thrust as a low-angle detachment (Mode I extension; Fossen, 1992, Fig. 2a). Within the 

phyllites of the décollement zone, Caledonian top-to-the-southeast kinematic indicators are 

systematically overprinted by fabrics consistent with top-to-the-northwest displacement, 

suggesting a transition from a compressional to a tensional tectonic regime succeeding 

Caledonian nappe emplacement (Fossen, 1992; Fossen & Rykkelid, 1992). The timing of the 

transition is constrained by mica 40Ar/39Ar thermochronology of mylonites from the base of 

the Jotun Nappe Complex. Hinterland-verging mylonitic fabrics are generally associated with 

deformational ages in the range 402-395 Ma, whereas mylonites that primarily display a top-

to-the-foreland sense of shear record deformation between 415 and 408 Ma. Hence, the shift 

from Caledonian thrusting to post-Caledonian orogenic collapse must have been relatively 

swift and is likely to have taken place between 408 and 402 Ma (Fossen & Dunlap, 1998). 

The total displacement along the décollement during the extensional phase has been estimated 

to be > 20 km (Fossen & Rykkelid, 1992). According to some studies (e.g. Andersen, 1998), 

early stages of orogenic collapse were associated with displacement along east-dipping 

extensional shear zones in the easternmost parts of the hinterland, inferring foreland-directed 

movement along the décollement zone in this particular region. Such a scenario implies 

compressional tectonics in the east concomitant with extensional collapse of the hinterland 

and involves the development of a post-orogenic foreland fold and thrust belt. Clear kinematic 

evidence for top-to-the-northwest displacement in areas close to the eastern thrust front led 

Fossen (1992, 2000) to propose a model that involves backsliding of the entire orogenic 

wedge as result of a transition from convergent to divergent plate motions.  
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Fig. 2. Post-orogenic evolution of the Baltic flank of the Caledonides: a) Mode I: Reactivation of the basal thrust 

as a low-angle detachment; b)  Mode II: Crustal collapse following the development of W-NW-dipping 

extensional shear zones. Modified from Fossen and Dunlap (1998).  

 

Mode II extension: Development of W-NW-dipping, ductile shear zones 

The translation of the orogenic wedge towards the northwest caused progressive exhumation 

of the hinterland accompanied with southeastward rotation of the décollement zone. 

Consequently, the detachment attained a shallow and locally reversed dip unfavourable for 

extensional reactivation (Fossen, 2000). Backsliding was followed by extensive crustal 

collapse associated with the development of W-NW-dipping extensional shear zones in the 

western parts of the hinterland (Mode II extension; Fossen, 1992, Fig. 2b). The shear zones 

initially formed within the ductile regime, but attained a brittle character as exhumation 

progressed (Andersen, 1998). Caledonian allochthons are clearly displaced by Mode II 

extensional structures (e.g. Milnes et al., 1988), indicating that the backsliding motion of the 

orogenic wedge came to a halt during early stages in the development of the ductile shear 

zones (Fossen, 1992). The Nordfjord-Sogn Detachment Zone (NSDZ, Fig. 3) is the largest of 

the post-Caledonian shear zones and juxtaposes ultrahigh-pressure rocks belonging to the 

Western Gneiss Region and low-grade metamorphic Caledonian allochthons with local 

Devonian deposits (Norton, 1986). The extensional displacement along the NSDZ is thought 

to be partly responsible for the exhumation of the ultrahigh-pressure lithologies that are 

present in the footwall. However, non-coaxial strain along the NSDZ cannot solely explain 

the pressure estimates and the metamorphic imprints of the exhumed eclogites. Additional 

mechanisms, such as erosional or extensional denudation in combination with coaxial vertical 
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shortening at deeper crustal levels, may account for the remaining exhumation (Krabbendam 

& Wain, 1997). While the other major shear zones clearly penetrate the Precambrian 

basement, the NSDZ has been suggested to merge with the Caledonian décollement at depth 

(Wilks & Cuthbert, 1994). According to Fossen (2010) the NSDZ links with the Bergen Arc 

Shear Zone (BASZ) to the south. Consequently, it is difficult to envision how the NSDZ 

could possibly be restricted to the décollement zone only. The NE-SW-trending Møre-

Trøndelag Fault Zone accommodated sinistral strike-slip displacement during the Devonian 

orogenic collapse and acted as a transfer zone between the extensional structures in the 

Western Gneiss Region and W-NW-dipping shear zones, such as the Høybakken Detachment, 

to the northeast (Braathen et al., 2000; Séranne, 1992).  

The last ductile, contractional structures evident within the Caledonian crust are large-

scale, E-W-trending folds that mainly affect fluvial-alluvial Devonian basins that are situated 

in the hangingwall of the NSDZ, the  NSDZ and coast-proximal areas of the Western Gneiss 

Region (Fossen, 2010). Devonian sediments are found in the synforms of these folds, while 

the basement crops out in the antiforms (Osmundsen, Andersen, Markussen, & Svendby, 

1998). The age and tectonic significance of the E-W-trending folds are uncertain. Devonian 

extension and basin formation may have been accompanied by N-S contraction induced by a 

combination of internal stress permutations associated with exhumation and far-field stresses 

related to the continuing convergence between Baltica and Avalonia (Chauvet & Séranne, 

1994). Alternatively, the folds may have formed in a transtensional regime developed during 

sinistral shear along the Møre-Trøndelag Fault Zone (Osmundsen et al., 1998) or as a result of 

separate compressional pulses during Late Devonian to Permian or even Mesozoic times 

(Eide et al., 1999; Osmundsen et al., 1998).  

The Hardangerfjord shear zone (HSZ) is a NW-dipping, ductile extensional structure 

that can be traced from the southern margin of the Jotun Nappe southwards along the entire 

length of the Hardangerfjord (Fig. 3). The offshore continuation of the shear zone is 

represented by a set of NE-SW-trending lineaments and NW-dipping reflectors that extend 

through the Ling Depression, across the North Sea and possibly link up with the Highland 

Boundary Fault in Scotland (Færseth et al., 1995). Hence, its total length may be more than 

600 km (Fossen & Hurich, 2005). The HSZ marks the transition between thick-skinned 

Caledonian deformation (i.e. deformation that has affected the Precambrian basement) in the 

hinterland of the orogen and thin-skinned deformation in the foreland. There are no 

indications of extensive post-Caledonian deformation of the basement to the east of the 

Hardangerfjord Shear Zone (Andersen, 1998). The HSZ is marked by a ca. 5 km thick  
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Fig. 3. Simplified geological map of southern Norway. Thick black lines illustrate the location of major faults 

and ductile shear zones developed or reactivated during Mode II and Mode III extensional deformation. The 

approximate location of the field area is indicated by red box. Redrawn after Andersen (1998) and Fossen and 

Hurich (2005). 

 

package of mylonites and the estimated down-to-the-NW displacement is in the order of 10-

15 km. Caledonian thrust sheets are mainly preserved in the hangingwall and are 

monoclinically folded in the half-graben that overlies the shear zone. Immediately to the 

southeast of the HSZ, the sub-Cambrian peneplanation surface deviates from the dome shaped 

geometry that is evident elsewhere in southern Norway (Fig. 4). This departure is a result of 

800-1000 m of footwall uplift associated with Devonian extensional displacement (Fossen & 

Hurich, 2005).  
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Thermochronological constraints on Devonian exhumation 

Geochronological and thermochronological studies conducted in the southwestern part of the 

Norwegian Caledonides generally reveal rapid cooling associated with the collapse of the 

Caledonian orogen. U-Pb ages obtained from eclogites of the Western Gneiss Region attest to 

maximum burial at depths of 50-100 km at 415-400 Ma (Kullerud et al., 1986).  40Ar/39Ar 

thermochronology of hornblende indicate cooling through 500 ºC between 455 and 395 Ma 

(Boundy et al., 1996; Fossen & Dunlap, 1998). Anomalously old ages of 439 and 455 Ma 

have been obtained from the Lindås nappe, which occupies a tectonostratigraphically high 

position within the Bergen Arcs. These ages are interpreted to reflect early phases of 

exhumation associated with nappe emplacement. Significantly lower ages are reported from 

the Western Gneiss Region, where cooling is believed to be a result of exhumation in relation 

to extensional movement along the ductile shear zones to the west  (Boundy et al., 1996). 
40Ar/39Ar biotite and muscovite ages from southern Norway are in the range 410-385 Ma, 

indicating relatively rapid cooling below ~350 ºC following the culmination of the Caledonian 

orogeny (Chauvet & Dallmeyer, 1992; Fossen & Dunlap, 1998). 

 

Mode III extension: Brittle faulting 

The displacement along Mode II ductile shear zones was followed by the development of NE-

SW-trending brittle faults, designated as Mode III extensional structures (Fossen, 2000). The 

largest of these structures is the NE-SW-trending Lærdal-Gjende Fault System, which 

transects the nappe stack in central southern Norway and is interpreted as a late, upper crustal 

expression of the HSZ (Fossen & Hurich, 2005). Locally, the Mode III faults are found to 

exhibit semi-ductile features and cohesive fault rocks, indicative of a temperature of 

formation close to that of the brittle-ductile transition (i.e. ca. 300 ºC for felsic rocks; Fossen, 

2000). U-Pb ages of ~396 Ma, obtained from titanites that formed within brittle extensional 

faults in the parautochthonous basement west of Bergen, are believed to reflect the timing of 

the onset of brittle faulting in the region (Larsen et al., 2003). Although slight local 

differences in the timing of the entrance into the brittle domain are likely, the high cooling 

rates that are characteristic for the Early Devonian (Fossen & Dunlap, 1998) imply an almost 

synchronous shift to Mode III deformation throughout southwestern Norway (Fossen, 2000). 

NE-SW-trending faults and tension veins clearly affect Middle Devonian sedimentary rocks 

along the west coast. The stress field responsible for post-orogenic NW-SE extension may 

thus have persisted throughout much of the Devonian period (Larsen et al., 2003).  
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Fig. 4. Contour map of the elevation of the uppermost basement surface in southern Norway. The basement 

surface generally equals the sub-Cambrian peneplain and displays a dome-shaped geometry. This dome trend is 

disrupted in the footwall of the Hardangerfjord Shear Zone, where the peneplain reaches heights of > 1600 m asl. 

The deviation is particularly clear in the NW-SE-trending profile that is shown below the map. FU denotes 

footwall uplift and has a magnitude of 800-1000 m. From Fossen and Hurich (2005). 

 

2.3.2 Late Devonian and Carboniferous tectonic stability 

Rapid Early Devonian extensional collapse and associated cooling were followed by a 

prolonged period of time characterized by relative tectonic and thermal stability. By the early 

Carboniferous the topographic evolution was mainly controlled by surface-processes 

(Gabrielsen et al., 2010). 40Ar/39Ar alkalifeldspar data from the Jotun Nappe Complex and the 

Bergen area record sustained temperatures of 200-350 ºC from Middle Devonian times 

towards the end of the Carboniferous period. The Caledonian orogen may thus have remained 

topographically high and virtually unaffected by tectonic activity throughout Carboniferous 

times. This interpretation is supported by the lack of evidence for extensive deformation and 

metamorphism and the absence of post-Devonian onshore sediments in southern Norway 
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(Dunlap & Fossen, 1998). Results of 40Ar/39Ar alkalifeldspar thermochronology of samples 

obtained from a traverse through the NSDZ (Eide et al., 1999) agree well with the late 

Devonian thermal quiescence postulated by Dunlap and Fossen (1998) and are supportive of 

relatively slow cooling from 340 Ma until the latest Carboniferous. In addition, the data of 

Eide et al. (1999) indicate an episode of enhanced cooling from 360-340 Ma. This cooling 

event has been interpreted as a result of thermal underplating accompanied by increased 

topography and accelerated denudation rates. The early Carboniferous rapid cooling is 

contemporaneous with phases of faulting, igneous activity and development of 

unconformities that have been documented around the North Atlantic margin and may be 

correlated with the north-south folding of the Devonian basins and their substrate (Eide et al., 

1999).  

 

2.4 Late Paleozoic to Cenozoic tectonic evolution 
 
2.4.1 Permo-Triassic rifting 

Reorganization of the plate configuration during the Carboniferous-Permian resulted in a 

change in the regional stress state, and a rift system started to develop in northwestern Europe 

(Doré et al., 1999; Gabrielsen et al., 2010). Crustal stretching was accompanied by extensive 

volcanism, followed by thermal subsidence and development of several large basins (e.g. the 

Permian basins of the central and northern North Sea; Gabrielsen et al., 2010). Both the 

Permian Oslo Rift and the Permo-Triassic North Sea Basin are characterized by a pronounced 

N-S structural grain, indicative of an E-W extensional regime (Færseth et al., 1995). The 

formation of the Oslo Rift commenced at ~300 Ma with the development of brittle, 

extensional faults and simultaneous onset of volcanism. After ~240 Ma volcanic activity 

ceased and the rift appears to have been aborted before the beginning of Triassic times 

(Neumann et al., 1992). The inception of rifting in the North Sea is poorly constrained, but 

has traditionally been regarded as Middle to Late Permian (e.g. Færseth et al., 1995) or 

possibly Early Triassic (Roberts et al., 1995). Alkalifeldspar 40Ar/39Ar data from western and 

central southern Norway are suggestive of a Carboniferous-Permian episode of accelerated 

cooling, which is believed to reflect the onset of rifting in the Oslo Graben and perhaps also in 

the North Sea region (Dunlap & Fossen, 1998). Hence, early stages of North Sea rifting may 

date back to 300 Ma. The N-S-trending Øygarden Fault Complex is believed to have exerted 

the main control on the structural development of the North Sea during Permo-Triassic times 

(Færseth et al., 1995).   
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Onshore Permian extension is manifested by ~260 Ma, coast-parallel dolerite dykes, 

which crop out in the Sunnhordaland, Sotra and Sunnfjord regions (Fossen & Dunlap, 1999; 

Færseth et al., 1976; Løvlie & Mitchell, 1982; Torsvik et al., 1997). The dykes are generally 

found in association with N-S-trending brittle faults. A second generation of dolerite dykes 

with ages of ca. 220 Ma is contemporaneous with a Late Triassic phase of extension on the 

Horda Platform directly to the west of the Øygarden Fault Complex (Fossen & Dunlap, 1999). 

Additional evidence for tectonic activity is provided by paleomagnetic and K-feldspar 
40Ar/39Ar data from fault breccias (Andersen et al., 1999; Eide et al., 1997; Torsvik et al., 

1992) and K-Ar illite data from incohesive fault gouges (Ksienzyk, 2012), which indicate 

widespread Carboniferous-Permian to latest Permian fault activity in southwestern Norway. 

Permian extension was associated both with reactivation of post-Caledonian NE-SW-trending 

structures (e.g. Andersen et al., 1999; Torsvik et al., 1992) and with the formation, or possibly 

rejuvenation, of a second set of faults striking N-S (Færseth et al., 1995). A phase of Late 

Triassic to Early Jurassic fault reactivation has been reported from the region and appears to 

coincide with the intrusion of dykes at ca. 220 Ma (Ksienzyk, 2012).    

 

2.4.2 Late Jurassic rifting and shoulder uplift 

A second phase of rifting commenced in northwestern Europe in the Middle-Late Jurassic and 

led to the development of a triple rift system between southern Norway and the British Isles 

(e.g. Doré et al., 1999). The Viking Graben is the northernmost segment of this rift system, 

while the Central Graben and the Moray Firth Basin represent its southern branches. In 

contrast to the Permo-Triassic rifting, which affected the total width of the northern North Sea 

Basin, the Jurassic extensional phase was mainly localized to the axes of the Viking and Sogn 

Grabens (Færseth et al., 1995). A general NW-SE extension direction characterized the 

Jurassic tectonic activity in the northern North Sea. Interference between Jurassic NE-SW 

striking faults and pre-existing structures developed during Permo-Triassic E-W extension 

resulted in an overall obliquity of the rift system (Færseth et al., 1997). In addition to the 

development of grabens offshore, the Late Jurassic extensional phase involved rift shoulder 

uplift (Gabrielsen et al., 2010) and reactivation of faults onshore (Andersen et al., 1999; Eide 

et al., 1997; Fossen et al., 1997; Ksienzyk, 2012; Torsvik et al., 1992). There is no evidence 

for Jurassic igneous activity in southern Norway. Hence, the onshore effects of  rifting may 

have been relatively mild (Fossen & Dunlap, 1999). 
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2.4.3 Cretaceous and Cenozoic tectonic activity  

The most pronounced tectonic events in the proximity of western Scandinavia during the 

Cretaceous and Paleogene were related to multiphase rifting of the North Atlantic margins, 

which culminated with the initiation of sea-floor spreading in the early Eocene (e.g. Doré et 

al., 1999). From the Late Cretaceous to the Miocene far field compressional stresses induced 

by the Alpine collision, possibly in combination with the push exerted by the incipient ridge 

system in the North Atlantic, led to the inversion of old structures in the North Sea (Vågnes et 

al., 1998).  

Due to the scarcity of onshore sediments that may serve as marker horizons, there is 

limited evidence for late Mesozoic and Cenozoic fault activity in southern Norway. However, 

results from apatite fission track thermochronology indicate significant Late Cretaceous or 

possibly Cenozoic extensional displacement across segments of the Møre-Trøndelag Fault 

Zone (Redfield et al., 2005; 2004). Similarly, thermal history modelling of 

thermochronological data from southern Norway has yielded different cooling histories for 

adjacent fault-bound blocks. This signature has been taken as an indication of possible 

Cretaceous or Cenozoic fault reactivation (Ksienzyk, 2012; Leighton, 2007). K-Ar illite 

dating of fault gouges has revealed latest Cretaceous-Paleogene reactivation of the Lærdal-

Gjende Fault (Ksienzyk, 2012).  

 During late Pliocene and Pleistocene times large ice sheets covered Scandinavia. 

Following the last deglaciation approximately 11 500 years ago the region experienced 

significant post-glacial rebound. The glacioisostatic uplift has a dome-like character and has 

thus far attained a magnitude of ca. 1000 m in central southern Norway (Riis, 1996). Interior 

regions of Norway have continued rising until the present, and a current uplift rate of 1-4 

mm/yr has been estimated (e.g. Fjeldskaar et al., 2000).  

 

2.4.4 Neotectonics 

The seismicity in Norway and adjacent offshore areas is low to intermediate. Most 

earthquakes occur in vicinity to the Viking Graben, along the shelf edge from the northern 

North Sea to Svalbard and in coastal areas of western and northern Norway (Bungum et al., 

1991). Focal mechanism solutions indicate mainly normal faulting onshore, while there is a 

tendency for reverse to strike-slip fault reactivation in offshore areas. In western Norway and 

the northern North Sea region the maximum horizontal compressive stress is oriented roughly 

WNW-ESE. The estimated stress field is compatible with the direction of the ridge push force 

associated with spreading in the North Atlantic Ocean (Hicks et al., 2000). However, second 
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order sources of stress accumulation, such as postglacial uplift and lithospheric loading and 

unloading, are required to explain the overall pattern of seismic activity (Bungum et al., 1991; 

Fjeldskaar et al., 2000; Hicks et al., 2000).  The Hardangerfjord region is among the most 

seismically active areas in Norway and a small number of perceptible earthquakes are 

typically recorded each year. Although the seismic activity is largely confined to the 

Sunnhordaland area, occasional earthquakes occur further to the northeast. Recent seismicity 

in the central Hardangerfjord region includes a magnitude 3.3 earthquake registered in Voss 

in March 2012 and a magnitude 3 earthquake with epicentre below Nordheimsund recorded in 

July 2012 (Norwegian National Seismic Network).    

 

2.5 Mesozoic to present topographic evolution  
 
The geomorphology of southern Norway is characterized by a low relief plateau landscape at 

high elevations in interior parts of the country, deeply incised glacial valleys and fjords 

towards the west and gentle hills towards the east. Despite the fact that essential 

geomorphological features, such as the undulating surfaces at high altitudes in central 

southern Norway, were described more than a century ago (Reusch, 1901), their origin 

remains a mystery. Recently, renewed attention has been called to the topographic evolution 

of the Southern Scandes. Two contrasting models are featured in an ongoing debate regarding 

the geological processes responsible for the present expression of the Norwegian mountains; 

the traditional and widely accepted peneplanation-uplift-model and the relatively recent ICE 

(isostacy-climate-erosion) hypothesis. Below follows a review of each of these models. 

 

2.5.1 The peneplanation-uplift-model 

According to the supporters of the peneplanation-uplift-model (e.g. Gabrielsen et al., 2010; 

Mosar, 2003) the Caledonian orogen was completely obliterated during Devonian extensional 

collapse and late Paleozoic and Mesozoic rifting (Fig. 5). By the Late Cretaceous 

southwestern Norway was flooded by a shallow sea. Except for isolated pockets of Mesozoic 

sediments along the western coast (e.g. Fossen et al., 1997), post-Devonian sediments are 

generally absent onshore and the presumed transgression is difficult to constrain. The present 

topography in southern Norway is believed to be a result of considerable Cenozoic tectonic 

uplift, followed by glacial landscape modification. 
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Fig. 5. The topographical evolution of southern Norway according to the peneplanation-uplift model:  

a) Devonian orogenic collapse and subsequent rifting events obliterated the Caledonian topography; b) By the 

Cretaceous or possibly early Paleogene the previously high topography in southern Norway had been reduced to 

a submerged peneplain with local remnant peaks; c) Tectonic uplift caused topographic rejuvenation during 

Paleogene and particularly Neogene times. 

 

The peneplanation-uplift-model is rooted in traditional views on the development of 

landscape forms first presented by Davis (1889). Davis described the cyclic nature of 

landscape evolution and imagined that a progressive decline in surface gradients through time 

could lead to the development of a surface of subdued relief close to sea level. Such a surface 

was termed a peneplain. In the Davisian model rapid uplift of the low-relief surface would 

produce an elevated plateau landscape with incised river canyons. Given sufficient time this 

landscape would once again be graded to sea level and the cycle would be complete. The 

deeply eroded, undulating peneplain that is found at high elevations in interior parts of 

Norway was first described by Reusch (1901) and has traditionally been referred to as the 

paleic surface. Several different interpretations of the age of the paleic surface have been 

presented and a wide variety of distinct peneplains or remnants thereof have been defined. 

The position of the paleic surface has mainly been established through correlation of summit 

height envelopes, autochthonous block fields or lower elevation summit plains of greater areal 

extent. Doré (1992) constructed a summit envelope across southern Norway and correlated 

this surface with the base Paleogene surface offshore. Stuevold and Eldholm (1996) 

questioned the interpretation of Doré (1992) and suggested a link between the paleic surface 

and the offshore upper Oligocene unconformity. Riis (1996) defined the remnants of a 

Jurassic peneplain based on correlation of summit levels and autochthonous block fields. An 

additional erosional surface at an elevation of ca.1100 m was assigned a Paleocene age. 

Lidmar-Bergström et al. (2000) identified four erosional levels at different altitudes. Each 

level was interpreted as to represent an episode of erosion associated either with uplift or with 

a reduction of the general base level. Similar to the propositions by Riis (1996), a Mesozoic 

age was suggested for the upper summit envelope, while the common base at ca. 1000 m was 

inferred to be of Paleocene age (Lidmar-Bergström & Bonow, 2009; Lidmar-Bergström et al., 
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2000). Although the exact definition of the paleic surface is a matter of some controversy, it is 

generally agreed that the present low-relief-high-elevation landscape is a remnant of a limited 

number of uplifted late Mesozoic-early Cenozoic erosional surfaces with scattered residual 

peaks (Gabrielsen et al., 2010).  

The Cenozoic topographic rejuvenation is believed to have been tectonically induced. 

Several studies have aimed at revealing the cause of uplift, but hitherto no single model has 

gained widespread approval.  Rift flank uplift associated with the opening of the North 

Atlantic Ocean at ~55 Ma may have been the cause of tectonic activity in southern Norway 

and the North Sea during Paleogene times (Torske, 1972). Thermal disturbances of the 

asthenosphere in connection with the passage of the Icelandic plume and flexural bulging in 

response to sediment loading offshore may have triggered additional uplift (Doré, 1992). 

However, the present topography in southern Norway cannot solely be explained as a result of 

these processes (Doré, 1992; Japsen & Chalmers, 2000). Hence, additional mechanisms must 

have been in play. It is generally agreed that a Neogene episode of tectonic activity has 

affected the North Atlantic region. There is, however, little consensus regarding the exact 

timing of the inferred uplift event and the attributes of the processes in force (Japsen & 

Chalmers, 2000). According to Riis and Fjeldskaar (1992) significant portions of the required 

uplift may have been caused by post-glacial rebound during Pliocene-Pleistocene times, 

possibly aided by lithospheric phase changes due to pressure release. In other studies regional 

compression (Cloetingh et al., 1990), astenospheric diapirism (Rohrman & van der Beek, 

1996), volume expansion associated with mantle convection (Stuevold & Eldholm, 1996) and 

serpentinisation of the mantle (Skelton & Jakobsson, 2007) have been proposed as possible 

explanations for the Neogene tectonic pulse. 

Several techniques have been employed in order to constrain the timing of Cenozoic 

uplift and erosion. Low-temperature thermochronology and its possible implications will be 

discussed in a later section. Overburial estimates have been used to determine the extent of 

erosion offshore. Missing sedimentary sections in the North Sea have generally been 

interpreted as an indication of subaerial exposure of shallow parts of the basin as a result of 

regional uplift (e.g. Japsen, 1998). Important information regarding the character and 

magnitude of erosion has been revealed through studies of the North Sea sedimentary record. 

Jordt et al. (1995) reported an Eocene-Oligocene shift in sedimentation from smectite-rich 

mud derived from the Shetland platform to coarse-grained sediments sourced from the 

Scandinavian mainland and interpreted their findings as a sign of increased topographic relief 

in Scandinavia following an episode of uplift in the earliest Oligocene. A similar conclusion 
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was drawn by Faleide et al. (2002). In addition Faleide et al. (2002) documented a clear link 

between the timing of deposition of eastward prograding clastic wedges and presumed 

episodes of Paleogene and late Neogene uplift related to rifting in the North Atlantic and 

glacial rebound, respectively.  

 
2.5.2 The Isostasy-Climate-Erosion (ICE) hypothesis 

While the peneplanation-uplift-model portrays the Scandes as a mainly Neogene feature, the 

ICE hypothesis (Nielsen et al., 2009) suggests a rather different origin for the high topography 

in Norway. According to Nielsen et al. (2009) tectonic denudation associated with orogenic 

collapse and continental rifting failed to completely destroy the Caledonian topography. 

Hence, significant relief remained by the end of the Jurassic extensional phase (Fig. 6). From 

the Cretaceous onwards surface processes exerted the main control on exhumation rates. 

Removal of material by erosion was compensated by isostatic rebound of a buoyant crustal 

root formed during the Caledonian collisional phase. The presence of a thick root beneath the 

orogen would imply that considerable erosion could take place without a substantial reduction 

in the general surface elevation. Hence, according to the ICE hypothesis the Norwegian 

mountains are remnants of Caledonian topography and have been subjected to a progressive 

reduction in regional mean elevation since Early Devonian times. Concomitant with post-

extensional isostatic uplift onshore, the offshore crust, thinned by late Paleozoic and 

Mesozoic rifting, experienced subsidence and sedimentation. The coastline is believed to have 

functioned as a stable hinge zone, only mildly affected by vertical movements.  

 

 
Fig. 6. The topographical evolution of southern Norway as portrayed by the ICE hypothesis: a) Devonian 

extensional collapse and Mesozoic rifting reduced the general elevation of the Caledonides; b) The orogenic 

collapse was incomplete and significant relief remained towards the end of the Mesozoic Era; b, c) Protracted 

denudation during Mesozoic and Cenozoic times was accompanied by isostatic uplift induced by a buoyant 

crustal root.  

 

In the absence of peneplanation and tectonic uplift, another agent must have been 

responsible for the distinct geomorphology of southern Norway. Nielsen et al. (2009) interpret 
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the change in the nature of sedimentation in the North Sea at the Eocene-Oligocene boundary 

(Jordt et al., 1995) as a response to a global climatic deterioration and suggest that glaciers 

may have controlled the pattern of erosion in the mountainous interior of Norway. Recent 

studies have shown that warm-based cirques and alpine glaciers may effectively limit 

topography above the equilibrium line altitude (e.g. Mitchell & Montgomery, 2006), 

eventually producing a relatively low-relief landscape with isolated remnant peaks. Glacial 

erosion is aided by periglacial processes, such as frost weathering and frost-induced mass 

diffusion, which have been found to form flat landscape elements at high altitudes (Anderson, 

2002). New, independent data  by Steer et al. (2012) demonstrate that the volume eroded from 

the glacial fjords and valleys in western Norway is insufficient to account for the offshore 

Plio-Pleistocene sedimentary record. The mismatch is interpreted in terms of significant 

glacial erosion of low-relief surfaces at high elevations.  

According to Nielsen et al. (2009) observations and data from onshore and offshore 

Norway are in good agreement with the ICE hypothesis. Their interpretation of a buoyant root 

beneath the high topography in southwestern Scandinavia is supported by the presence of 

significant low-density material at the base of the crust, which is manifested by a large 

negative Bouguer anomaly. The overburial estimates from the North Sea are explained by 

extensive glacial erosion during Pliocene-Pleistocene times. Nielsen et al. (2009) 

acknowledge the evidence for late Mesozoic and Cenozoic fault activity that has been 

reported from onshore southern Norway (e.g. Redfield et al., 2005) and suggest that faulting 

may be explained by differential isostatic readjustments as a result of regional differences in 

erosional unloading. Active tectonic uplift during the Cenozoic is therefore not required.    

 

2.6 Previous fission track and (U-Th)/He studies in western Scandinavia  

 
Three decades of thermochronological studies in Norway has resulted in a good overall 

coverage of fission track data, especially for apatite (Fig. 7). Although a limited number of 

studies were undertaken in the 1970’s and early 80’s (e.g. Van den Haute, 1977), the real 

pioneers of low-temperature thermochronology in Scandinavia were Andriessen and Bos 

(1986) who applied zircon and apatite fission track analysis in order to unravel the thermal 

history of the Eidfjord area. Three zircon fission track ages between 294 Ma and 317 Ma were 

obtained. No correlation was found between age and altitude. Andriessen and Bos (1986) 

interpreted the relatively minor difference in ages at sea level and at an elevation of 1620 m as 

a result of rapid cooling through the 175-225 ºC isotherm during late Carboniferous times. 



2. REGIONAL GEOLOGICAL SETTING 

21 
 

Apatite fission track ages were found to increase systematically with elevation; from 110 Ma 

at sea level to 166 Ma at an altitude of 1620 m.  Based on the fission track age patterns 

Andriessen and Bos (1986) estimated a total removal of 13 km of crustal material since 

Caledonian times and 8 km since the late Carboniferous, assuming a constant geothermal 

gradient of 30 ºC and effective closure temperatures of 200 ºC and 105 ºC for the zircon and 

apatite fission track systems, respectively. The results were combined with previously 

published biotite Rb-Sr and K-Ar ages of ~385 Ma and ~420 Ma, respectively (Priem et al., 

1976) and were interpreted to indicate rapid uplift of the crustal column (100 m/Ma) 

following the termination of the Caledonian orogeny, succeeded by significantly lower uplift 

rates (20 m/Ma) from the latest Carboniferous onwards.  

 Nearly a decade later, Rohrman et al. (1995) presented an extensive apatite fission 

track dataset obtained mainly from central southern Norway and coast-proximal regions in 

western parts of the country. The Oslo rift and adjacent areas in eastern Norway were covered 

in a previous publication (i.e. Rohrman et al., 1994). Rohrman et al. (1995) reported mainly 

Triassic and Jurassic cooling ages and described a radial pattern of increasing fission track 

ages from the interior towards the coast and from sea level to the peaks in central southern 

Norway. The oldest ages (i.e. Middle to Late Triassic) were reported from the south coast, 

while the youngest ages in the study (i.e. Early Cretaceous) were obtained for samples from 

low elevations in the inner Hardangerfjord and Sognefjord regions. Along the western coast 

and at high elevations in the areas with the highest topography Jurassic ages were found to 

predominate. Four vertical profiles were included in the study, among them a profile from 

Eidfjord, sampled from sea level to an elevation of  1620 m (including ages from Andriessen 

& Bos, 1986). The reported ages range from 99 Ma to 181 Ma, and define a general trend of 

increasing age with elevation. Based on AFT data and thermal history modelling two major 

episodes of rapid exhumation were suggested: a) A Triassic-Jurassic phase that started in the 

east and migrated westwards. b) A Neogene uplift event characterized by domal warping of 

the AFT isochrons and thus greater exhumation in the interior than along the coastline. 

Rohrman et al. (1995) imagined that southern Norway behaved as a structurally coherent 

block since the Permian and remained unaffected by faulting throughout Mesozoic and 

Cenozoic times.  
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Fig. 7. A representative selection of the results obtained by previous apatite fission track studies in southern and 

central Norway. All ages are derived from samples located < 500 m above sea level. Age domains (faint colours) 

have been created by employing the contouring approach of Rohrman et al. (1995). Note that there are numerous 

exceptions from the general age pattern.  

 

The domal model of Rohrman et al. (1995) was challenged by Redfield et al. (2005; 

2004), who documented different Mesozoic and Cenozoic cooling histories for adjacent 

structural blocks bound by segments of the Møre-Trøndelag Zone. Juxtaposed ages, differing 

by as much as 97 Ma, were obtained across very short distances and were taken as clear 

indications of post-Permian fault activity. Four distinct structural blocks were identified and a 

general trend of increasing fission track ages towards the coast was described. The reported 

AFT ages range from 280 Ma in the hangingwall of the coast-proximal Hitra-Snåsa Fault to 

93 Ma in the footwall of the innermost Bæverdalen Lineament (excluding samples with 

anomalously high Cl-contents; cf. section 3.2.3). Redfield et al. (2005; 2004) interpreted the 

age distribution in the area as a result of top-to-the-west normal displacement along each of 

the investigated faults.   
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In accord with the study by Redfield et al. (2005; 2004), Leighton (2007) observed 

large offsets of apatite fission track ages across major fault zones in southern Norway and 

showed that Mesozoic and possibly Cenozoic fault activity had also taken place in this region. 

77 apatite fission track ages and 9 (U-Th)/He ages were reported, ranging from Permian to 

mid Cretaceous and Early Cretaceous to Oligocene, respectively. Based on inverse thermal 

history modelling Leighton (2007) suggested a Permo-Triassic phase of rapid cooling (1-5 

ºC/Ma) for the entire region, generally followed by slow cooling (< 1 ºC/Ma) from the 

Jurassic throughout the Paleogene. A second episode of accelerated cooling commenced in 

the Neogene. However, considerable variations in Mesozoic and Cenozoic thermal histories 

were found between structural blocks.  

A detailed apatite fission track record from the Bergen area was presented in a recent 

contribution by Ksienzyk (2012). The reported fission track ages range from 294 Ma to 160 

Ma. Early to Middle Jurassic ages were found to dominate throughout the region, while most 

Permian and Triassic ages were obtained from the coastal area west of Bergen. (U-Th)/He 

dating was performed for 10 samples collected from a ca. 85 km long transect across a 

number of major lineaments in the northern part of the studied area. In general, the reported 

(U-Th)/He ages are younger than the corresponding fission track ages and range from Triassic 

to Cretaceous, with a majority of Early Cretaceous ages.  Ksienzyk (2012) documented clear 

offsets of both fission track and (U-Th)/He ages across major faults in the region. The age 

distribution was thus suggested to be largely tectonically controlled and affected by episodes 

of Cretaceous and possibly Cenozoic fault activity. Thermal history models revealed constant, 

relatively rapid cooling (~2 ºC/Ma) during Permian to Early Jurassic times followed by slow 

cooling (< 1 ºC/Ma) from the Early Jurassic throughout the Cenozoic. Significantly different 

thermal histories were obtained for closely spaced samples derived from adjacent fault-bound 

blocks. Ksienzyk (2012) interpreted the rapid regional exhumation during Permian to Jurassic 

times as a response to rifting in the North Sea. After the North Sea rift was aborted during the 

latest Jurassic, the rate of uplift onshore decreased.  

Over the last few years a number of apatite fission track studies have been carried out 

by MSc students at the University of Bergen. The work has mainly been confined to the 

Hordaland area and the general aims of the projects have been to determine the role of fault 

reactivation on differential exhumation in the region. Johansen (2008) and Tørresen (2009) 

dated samples from lateral transects across major lineaments in the Sotra-Bergen area and in 

Nordhordaland, respectively. Both studies revealed increased cooling rates in Permo-Triassic 

times, consistent with the proposed timing of rifting in the North Sea. Tørresen (2009) further 
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documented accelerated exhumation rates during the second rift phase in the Late Jurassic. A 

general decrease in fission track age with distance from the coast was reported by Johansen 

(2008) and offset fission track ages were observed across some of the major faults in the 

region. Magerholm (2010) and Utami (2012) focused on the area around the Hardangerfjord 

and attempted to establish whether the Hardangerfjord Shear Zone has been subjected to 

Mesozoic reactivation. While Magerholm (2010) did not observe significant differences in 

fission track ages across the shear zone in the Tysnes-Kvinnherad area, Utami (2012) 

documented a considerable offset of ages in the outermost Hardangerfjord region. In general, 

Early-Middle Jurassic ages were obtained from the hangingwall block and Late Jurassic-Early 

Cretaceous ages were reported from the footwall block. 

A limited number of studies have been undertaken in southwestern Scandinavia east of 

the region with the highest topography. Rohrman et al. (1994) observed a pattern of 

continuously increasing apatite fission track ages across the Oslo Rift, from Triassic in the 

southeast to Jurassic in the northwest. Triassic, Jurassic and Neogene cooling phases were 

suggested to account for 3-4 km of post-rift denudation in the area. In southern Sweden 

exhumation generally occurred considerably earlier than in Norway. AFT ages are found to 

increase systematically from Triassic in the western part of the country to Cambrian in the 

east. The distribution of fission track ages has been explained by the former existence of a 

Caledonian foreland basin in the region (e.g. Cederbom et al., 2000). 

It is beyond the scope of this thesis to give a full review of the available fission track 

and (U-Th)/He data from southwestern Scandinavia. Recently, Hendriks et al. (2007) 

presented a compilation that includes the results of the majority of fission track studies from 

the region. Their contribution should thus be consulted for a complete overview of the work 

that has been conducted over the last decades.   

 

2.7 Geological framework of the inner Hardangerfjord area 
 
2.7.1 Lithology 

The inner Hardangerfjord region is dominated by Mesoproterozoic basement rocks that have 

experienced relatively little Caledonian reworking (Birkeland et al., 1997; Ragnhildstveit et 

al., 1994; Sigmond, 1998; Sigmond et al., 2000). Granitoids crop out over large areas and 

display varying degrees of deformation. Migmatitic gneisses are particularly abundant and 

occur throughout the region, locally in association with lenses of quartzite (Sigmond, 1998). 

U-Pb data on zircon from a migmatitic gneiss sampled on southeastern Hardangervidda 
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indicate crystallisation around 1670 Ma and attest to a high-grade metamorphic event 

associated with partial melting at ~1470 Ma (Sigmond et al., 2000). It is not known whether 

the migmatitic gneisses on the western part of the plateau share this history. Other prominent 

lithologies include banded orthogneisses as well as more massive varieties of granodioritic 

and tonalitic composition. A narrow belt of augen gneiss is exposed within the migmatites at 

Osafjellet in the northern part of the field area. Similar lithologies are more conspicuous 

elsewhere on Hardangervidda, particularly to the southwest of Hallingskarvet (Sigmond, 

1998). Weakly deformed fine to medium grained granites crop out as irregularly shaped 

bodies along both margins of the Eidfjord and the Sørfjord and are commonly found in 

association with the 1540 Ma, partly migmatized meta-andesites and -dacites of the 

supracrustal Ullensvang group. Field relations indicate that the metavolcanic lithologies may 

be older than some of the gneisses (Sigmond, 1998). A dome-shaped body of coarse grained 

biotite granite, hereafter referred to as the Eidfjord granite (cf. Priem et al., 1976), crops out in 

Eidfjord and along both margins of the Simadalsfjord. The emplacement of the Eidfjord 

granite is related to the terminal stage of the Sveconorwegian orogeny, and the intrusion has a 

Rb-Sr whole-rock age of 911±35 Ma (recalculated by Andriessen and Bos, 1986; after Priem 

et al., 1976). Similar late- to post-orogenic granites crop out in a belt extending from Mandal 

in the south to Finse in the north. U-Pb zircon ages of 1100-900 Ma have been reported for 

these intrusions (Andersen et al., 2002).  

Remnants of autochthonous and parautochthonous metasedimenary rocks, which 

constitute the Caledonian décollement zone, cover large areas on western Hardangervidda 

south of Eidfjord. The most prominent lithologies are quartzitic and calcareous phyllites and 

mica schists, in addition to less abundant conglomerates and marble layers of limited extent 

(Sigmond, 1998). Outliers of Caledonian allochthons are found locally in the same region. 

Northwest of the study area the vast, crystalline Jotun Nappe and associated nappes of the 

Lower and Middle Allochthon form a more or less continuous cover that extends for several 

tens of kilometers towards the Sognefjord in the north and can be traced from the Bergen Arcs 

in the west to the Valdres area in the east. The Hardanger-Ryfylke Nappe Complex is located 

to the south of the Hardangerfjord and mainly comprise Precambrian crustal lithologies with 

relatively strong Caledonian deformational imprints (Fossen, 1992).  

 
2.7.2 Tectonics 

The field area covered in the present study is situated in immediate vicinity of the 

Hardangerfjord Shear Zone, which is the largest tectonic feature in the Hardanger region. The 
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shear zone follows the Hardangerfjord northwestwards to the Granvin area, where it is 

exposed subaerially. As a result of large-scale footwall uplift and accelerated denudation in 

connection to the Devonian post-orogenic collapse (cf. section 2.2.1), Caledonian nappes are 

found merely as outliers to the SE of the shear zone where the bulk of the work presented in 

the present thesis has been conducted. A thick stack of Caledonian units are preserved in the 

down-faulted hangingwall west of Granvin. In the studied area, the onshore expression of the 

Hardangerfjord Shear Zone is a several km wide zone of mylonites (Fossen & Hurich, 2005). 

Shear zone structures are evident in the Precambrian basement from the western flank of the 

Granvinfjord in the west to Bruravik in the east. The HSZ may have originated in the 

Precambrian, but the bulk displacement is believed to have taken place in the Devonian 

(Fossen & Hurich, 2005). Brittle reactivation of some segments may have occurred during the 

Permo-Triassic rift phase (e.g. Færseth et al., 1995). At present, limited information is 

available regarding the Mesozoic and Cenozoic history of the HSZ. The brittle Lærdal-Gjende 

Fault (LGF) transects the Caledonian tectonostratigraphy in the area directly to the northwest 

of the Osafjord, where it forms an array of relay structures. Tectonic rejuvenation of the LGF 

is believed to have taken place during Permian and late Jurassic-Early Cretaceous times 

(Andersen et al., 1999). Evidence for Paleogene reactivation has recently been reported by 

Ksienzyk (2012). 

The density of lineaments is generally high in the inner Hardangerfjord region and on 

the western side of Hardangervidda. N-S-trending fractures are particularly abundant 

(Gabrielsen et al., 2002). This set of structures may have formed in the Precambrian and is 

possibly related to the Mandal-Ustaoset Fault Zone, which can be traced across the eastern 

part of Hardangervidda. Although field evidence indicates that movement along the Mandal-

Ustaoset Fault Zone has not taken place at least since earliest Cambrian times (Sigmond, 

1985), N-S-trending structures further to the west may have been reactivated during phases of 

North Sea rifting or possibly even at later stages (Færseth et al., 1995). The NNE-SSW-

trending Sørfjorden Fault, which coincides with a major glacially incised trough, is one of the 

most conspicuous lineaments in the field area. WNW-ESE and ENE-WSW-trending 

lineaments occur throughout the area. The WNW-ESE-trending structures are roughly parallel 

to major Svecofennian and Sveconorwegian suture zones and may belong to a Proterozoic 

fracture pattern that extends across large parts of Fennoscandia (Gabrielsen et al., 2002).  
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3. METHODOLOGICAL BACKGROUND 
 
Thermochronology is the study of the thermal evolution of rocks by temperature-sensitive 

methods. Apatite fission track and (U-Th)/He low-temperature thermochronology are among 

the most widely used approaches for investigating tectonic and erosional processes that affect 

thermal conditions at shallow crustal depths. Both systems are sensitive towards the 

prevailing temperatures in the upper few kilometres of the crust. Together, the apatite fission 

track and (U-Th)/He systems cover the temperature range between 40 °C and 120 °C, and 

thus provide a unique means of obtaining thermal information that is virtually inaccessible by 

other radiometric methods. The following sections include a review of the essential attributes 

of the apatite fission track approach and a brief description of the (U-Th)/He method. 

 
3.1 Background for the fission track method 
 
The potential for fission track analysis as a geochronological method was first recognized in 

the early 1960’s, following the first transmission electron microscope observation of fission 

tracks, which was undertaken by Silk and Barnes (1959). Pioneering discoveries were made 

by Fleischer, Price and Walker, whose comprehensive studies on the behaviour and 

significance of fission tracks (compiled in Fleischer et al., 1975), accompanied with 

experiments on track revelation (e.g. Fleischer & Price, 1964b; Price & Walker, 1962), led to 

rapid developments and recognition of the fission track method as an applicable tool in earth 

sciences. Early fission track studies were mainly concerned with absolute dating of impact 

glasses (e.g. Fleischer & Price, 1964a) and volcanic rocks (e.g. Naeser et al., 1980). The full 

potential for the utility of fission track thermochronology in orogenic and passive margin 

settings was not acknowledged until the 1980’s, following the contributions of a number of 

workers, among them Gleadow et al. (1986) and Gleadow and Fitzgerald (1987). Progressive 

advances in the fission track method have, over the past few decades, led to the recognition of 

a number of additional applications, including sedimentary provenance and landscape 

development modelling  (see summary by Gallagher et al., 1998).   

3.1.1 Track formation mechanisms 

Fission tracks are narrow damage features that are introduced into the lattices of U-bearing 

mineral grains upon spontaneous nuclear fission of 238U (Price & Walker, 1963). Other 

naturally occurring radioactive isotopes, such as 235U and 232Th, have exceedingly long 
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fission-half-lives, and their contribution to track production can be neglected (e.g. Wagner & 

Van den Haute, 1992). The fission process involves splitting of an unstable nucleus into two 

daughter nuclei of slightly different mass. Every fission event is associated with a release of 

energy (normally about 210 MeV; Wagner & Van den Haute, 1992), out of which a 

substantial fraction is kinetic. Both product nuclei possess a strong positive charge and are 

ejected in opposite directions away from the site of fission.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.  The ion spike explosion model for formation of 

fission tracks in minerals. a) Radioactive 238U (represented 

by dark spots) is present in trace amounts within the crystal 

lattice. b)  Occasionaly, an 238U atom undergoes 

spontaneous fission, which generates two heavy particles of 

slightly different mass.  As a result of Coulomb repulsion 

the positively charged product nuclei recoil. While 

travelling through the lattice the heavy particles capture 

electrons from neighbouring atoms. c) The fission product 

nuclei leave ionized lattice atoms along their paths. These 

atoms repel each other and thus impose damage to the 

crystal lattice. Modified from Gallagher et al. (1998) after 

Fleischer et al. (1975). 

 

 

The most widely acknowledged model for fission track generation is the ion spike 

explosion model (Fig. 8), put forward by Fleischer et al. (1965b). Details regarding the 

mechanisms behind track formation remain unknown and the model must thus be regarded as 
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a simplification (e.g. Gallagher et al., 1998). However, it provides a satisfactory 

approximation of the actual track-generating process. The ion spike explosion model 

attributes the formation of fission damage trails in insulating solids to the movement of highly 

charged, positive fission fragments through the lattice. These fission fragments capture 

electrons from the atoms along their trajectories. Coulomb repulsion leads to displacement of 

ionized lattice atoms away from the path of the fission product nucleus. The displaced atoms 

are relocated into nearby interstitial sites, leaving vacancies in the lattice within the damaged 

core region.  Hence, a trail of permanent damage develops in the affected area. Elastic 

relaxation of the disrupted region causes straining of the immediate surroundings. The area 

affected by fission is thus wider than the trail of the fission nucleus itself. Eventually, ejected 

fission fragments lose their kinetic energy through interaction and collision with neighboring 

lattice atoms. The distance over which fission nuclei travel before coming to rest is dependent 

on the properties of the host material and on the fission fragment’s mass and energy 

(Gallagher et al., 1998). Experimental results on apatite are generally consistent with a 

distance of ejection of approximately 8 μm for each of the two nuclei (Gleadow et al., 1986).  

An alternative to the ion spike explosion model is the thermal spike model 

(Chadderton, 1988; Vineyard, 1976), which involves intense heating of the crystal lattice 

along the path of the fission fragment. Thermal conduction to the surroundings leaves a 

quenched damage core, in which lattice defects are generated. The compound spike model 

(Chadderton, 2003) is another, relatively recent contribution that argues for the combined 

effect of ionization and thermal activation. Clearly, additional studies must be undertaken 

before a comprehensive understanding of the processes behind track formation can be 

attained.   

 

3.1.2 Track revelation 

Apatite fission tracks in their natural state are extremely narrow features that rarely exceed 14 

nm in width (Paul & Fitzgerald, 1992). Knowledge about the atomic-scale structure and 

properties of such latent (i.e. unetched) tracks has been obtained through transmission 

electron microscopy (e.g. Paul, 1993; Paul & Fitzgerald, 1992). Latent tracks are generally 

close to cylindrical in shape and are represented by a zone of amorphous material that clearly 

stands out from the surrounding crystalline solid (Bursill & Braunshausen, 1990). Chemical 

etching must be employed in order to make fission tracks visible under an optical microscope. 

The etchant serves to enlarge the area damaged by fission. As a result of the disordered lattice 

structure and low interatomic binding energy of the core of the damage zone, fission tracks 
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are much more susceptible to dissolution than the surrounding, undamaged apatite bulk 

material (Fleischer et al., 1975). The rate of etching is greater at the track tip than on the 

internal surface of each track, and etched tracks thus evolve into narrow, needle-like features 

(Wagner & Van den Haute, 1992). Due to the anisotropic nature of the apatite crystal, the 

efficiency of etching varies with crystallographic orientation. Etching has been found to 

progress most rapidly parallel to prismatic crystal faces (e.g. Green et al., 1986). 

 

3.1.3 Characteristics of the apatite fission track system 

Compared to the majority of other radiometric schemes the apatite fission track system is 

sensitive towards relatively low temperatures. The closure temperature in the context of 

fission track analysis is the temperature above which no tracks are effectively preserved. 

Fission tracks are generated at a constant rate even at temperatures above the upper limit of 

track preservation. However, such thermal conditions promote total erasure instantly after 

formation (Wagner & Van den Haute, 1992). The effective closure temperature of the apatite 

fission track system is conventionally approximated to 120 ºC. This estimate has been 

established through a combination of in situ borehole studies (e.g. Gleadow & Duddy, 1981; 

Hammerschmidt et al., 1984; Naeser & Forbes, 1976) and laboratory experiments involving 

extrapolation of the obtained results to geological time scales (e.g. Burchart et al., 1979; 

Duddy et al., 1988).  

Early in the evolution of the fission track technique, Price and Walker (1963) reported 

partial obliteration of tracks at temperatures well below the closure temperature of the system.  

This trait was initially regarded as a major shortcoming that could potentially prohibit 

successful application of the method. Decades of studies have, however, revealed that the 

partial obliteration of fission tracks that occur at relatively low temperatures can be exploited 

in order to constrain the thermal evolution of rocks (e.g. Gleadow et al., 1986). Hence, the 

temperature dependence on track retention is now recognized as a key property that allows 

geological cooling histories to be inferred based on fission track data.  

 

3.1.4 Objectives and applicability of fission track analysis  

Apatite fission track age data from individual grain analyses provide information about the 

timing of the low-temperature cooling history of the host rock. Fission tracks develop 

continuously over time, and their formation rate is determined by the fission decay constant 

for 238U. The number of tracks in a grain depends on both the time of residence at low 

temperatures and the abundance of 238U. In order to obtain a fission track age for any given 
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grain, it is necessary to know the number of spontaneous fission tracks per unit volume, as 

well as the initial content of 238U (e.g. Gallagher et al., 1998). While track density estimates 

form the basis for the calculation of a fission track age, the degree of track length reduction 

provides information about the time of residence at temperatures corresponding to reduced 

fission track stability (Gleadow et al., 1986). Both track density and length information are 

implemented during thermal history reconstructions (e.g. Ketcham, 2005). 

Fission track analysis may be successfully applied to grains that display a wide range 

of ages and U-concentrations. Only in rare cases does the method prove inadequate. Young, 

U-poor samples generally contain very few tracks. Fission track analysis on such samples 

gives highly imprecise results. Conversely, for very old, U-rich samples the damage inflicted 

by fission fragments is extensive enough to render individual tracks impossible to distinguish 

(Wagner & Van den Haute, 1992).  

 

3.2 Fission track annealing 
 
3.2.1 External factors responsible for track shortening and obliteration 

Latent fission tracks are metastable features. Compared to the surrounding, undamaged 

crystalline material, the tracks are in a higher energy state. Order tends to be restored within 

the damaged zone given sufficient time and appropriate external conditions. The process 

responsible for gradual restoration of the damaged crystal lattice is referred to as fading 

(Wagner & Van den Haute, 1992).  Under the general conditions that dominate at the surface 

of the Earth this restoration transpires at an extremely slow rate. Studies on fission track 

stability have demonstrated that certain physical parameters promote progressive shortening 

of tracks and act to increase the rate of track obliteration. Fleischer et al. (1965a) revealed a 

slight increase in fading rate for fission tracks in zircons subjected to hydrostatic pressures in 

excess of 80 kbar. Opposite effects, involving enhanced track stability with increased 

pressure, have later been reported for apatite (Wendt et al., 2002). The experiments of 

Fleischer et al. (1965a) further indicated a connection between track segmentation and 

exposure to shear stress. The track-modifying process is in this case not regarded as 

conventional track fading, but is rather related to microscopic slip-movements. In a recent 

study, Hendriks and Redfield (2005) suggested increased annealing rates for apatites that have 

accumulated considerable radiation damage. The conclusions of Hendriks and Redfield 

(2005) have been challenged by a number of workers (e.g. Green et al., 2006) and must at 

present be regarded as highly controversial. Although numerous experiments have aimed to 



3. METHODOLOGICAL BACKGROUND 

32 
 

provide additional knowledge on the factors responsible for track fading, several aspects 

regarding the physical processes in force remain incompletely understood.   

Temperature has long been known to represent the parameter of greatest importance in 

regard to track shortening and healing (e.g. Fleischer et al., 1965a). A great effort has been 

made in order to describe the thermal influence on track behaviour, and as a result a rather 

comprehensive understanding has been attained.  Fission tracks in apatite are generally 

unstable above 120±10 ºC (established for the Durango apatite age standard), but are sensitive 

towards significantly lower temperatures (e.g. Gleadow & Duddy, 1981; Naeser, 1979). 

Considerable variations in fission track stability have been reported for different apatite 

compositions (Barbarand et al., 2003a; Carlson et al., 1999; Green et al., 1986) and different 

cooling rates (Wagner & Reimer, 1972). The process that is responsible for thermal fading of 

fission tracks over time is termed annealing. Although the exact mechanism behind annealing 

is not entirely understood, diffusion of displaced lattice atoms and vacancies is believed to be 

essential (e.g. Gallagher et al., 1998; Tagami & O'Sullivan, 2005). Thermal annealing is 

associated with progressive track shortening and reduction in the number of observable 

fission tracks.  Initially, tracks anneal from the tips inward. Further annealing results in track 

segmentation and development of healed material within the previously damaged crystal 

lattice (Green et al., 1986; Paul, 1993).  

 

3.2.2 Partial annealing 

Partial annealing is the process by which fission tracks shrink without being completely 

erased. Apatite fission tracks principally experience partial annealing between ~60 ºC and 

~120 ºC (e.g. Gleadow & Duddy, 1981; Naeser, 1979). This temperature interval is associated 

with a progressive increase in degree of annealing and is commonly referred to as the partial 

annealing zone (PAZ; originally termed the partial stability zone; Wagner, 1972). Owing to 

track annealing at ambient surface temperatures (Donelick et al., 1990; Gleadow et al., 1986), 

the low-temperature boundary of the zone is difficult to establish accurately and has generally 

been defined as the temperature that corresponds to the maximum gradient of stability 

reduction (Wagner & Van den Haute, 1992). 

The concept of partial annealing has conventionally been implemented during 

interpretation of fission track ages with depth (e.g. Fitzgerald & Gleadow, 1990). Shallow 

crustal depths associated with relatively low temperatures (i.e. below 60-70ºC) are 

characterized by essentially zero annealing and progressive accumulation of fission tracks 

over time. The partial annealing zone is encountered at greater depths (2-4 km, assuming a 
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geothermal gradient of 30 °C). At the temperature condition of the PAZ, the accumulation of 

new tracks is accompanied with a gradual decrease in track length and density. A fission track 

age reduction between 0 and 100% is expected within this zone. The zone of total annealing is 

localized at even greater depths (>~4 km). Within this zone no fission tracks can be retained, 

and the fission track age thus decreases to zero (Wagner, 1972). Since the zone of total 

annealing includes all temperatures for which zero track stability is inferred, it does not have a 

maximum temperature limit. 

 

3.2.3 Internal parameters and their influence on annealing kinetics 

The relationship between track annealing efficiency and specific properties of individual 

apatites is at present not fully understood. Several internal factors may potentially affect the 

inception and progression of annealing (e.g. Carlson et al., 1999; Donelick et al., 2005). 

 

Chemical composition 

Green et al. (1986) demonstrated a significant between-grain variation in resistance towards 

annealing attributed to differences in chemical composition and suggested the Cl/(Cl+F) ratio 

to be of particular importance. Cl-rich apatites were found to be considerably less susceptible 

to annealing than their F-rich counterparts. Several later studies have supported this 

assessment (e.g. Barbarand et al., 2003a; Carlson et al., 1999; O'Sullivan & Parrish, 1995). 

The impact of compositional differences on annealing is not only important with regard to the 

annealing rate within the PAZ, but also appears to have an effect on the closure temperature 

of the system (Ketcham et al., 1999). For apatite crystals with near end member compositions 

of F, total annealing has been reported at temperatures of ~100 ºC. Experimental results 

suggest that the closure temperature increases with increasing Cl-content. Particularly Cl-rich 

varieties may contain stable fission tracks at temperatures in excess of 160 ºC (Ketcham et al., 

1999). Barbarand et al. (2003a) found that the dimensions of the unit cell profoundly affect 

apatite annealing properties. The actual structure of the crystal lattice is governed by the 

combination of ionic substituents in crystallographic sites and is thus a product of the bulk 

chemical composition. In addition to the Cl/(Cl+F) ratio, the content of rare earth elements 

(REE) in the Ca site has been observed to cause some variation in annealing behaviour. For F-

rich apatite varieties, elevated concentrations of REE are associated with increased annealing 

rates. The reduced annealing efficiency caused by high Cl-contents appears to mask any effect 

of additional substitutions in Cl-rich grains.    
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Dpar 

The parameter Dpar, first introduced by Donelick (1993), represents the mean maximum 

diameter of etch pits oriented parallel to the crystallographic c-axis. Dpar essentially reflects 

apatite solubility, but has been proven to correspond well with annealing behaviour. Grains 

that exhibit low values of Dpar (i.e. ≤ 1.75 μm) generally contain tracks that anneal relatively 

rapidly, while high Dpar varieties are more resistant towards annealing (Carlson et al., 1999). 

Chemical composition appears to be a controlling factor on the diameter of etch pits and Dpar 

is found to be positively correlated with wt% Cl (e.g. Burtner et al., 1994). The two 

parameters should, however, not be regarded as equivalent. Additional factors, such as the 

presence of crystallographic imperfections and ionic substitutions in the cation sites, may 

influence the diameter of fission track etch pits (Barbarand et al., 2003a). The etch pit 

parameter may in fact incorporate the combined effects of a range of ionic substitutions. 

Regardless of the actual size-determining factors, Dpar has proven to be one of the most 

suitable measures of resistance towards annealing for individual apatites (Barbarand et al., 

2003a; Donelick et al., 2005). Ideally, Dpar measurements should be included in every 

thermochronological study to assess the significance of differential annealing behaviour (e.g. 

Carlson et al., 1999). Given the range of responses to elevated temperatures observed for 

individual grains, it is clear that variations in apatite annealing properties must be accounted 

for when the thermal histories of rocks are interpreted. 

 

Crystallographic effects 

The annealing behaviour of fission tracks in apatite is found to be highly anisotropic (Green 

& Durrani, 1977). Partially annealed tracks oriented at a low angle to the basal plane 

generally display a significantly shorter mean etchable track length than tracks that are 

oriented parallel to the crystallographic c-axis. The divergence in track length has been 

proven to increase systematically as annealing progresses (Donelick, 1991; Green et al., 

1986). For strongly annealed samples only tracks oriented parallel to the c-axis may be 

detectable (Green et al., 1986). The general decrease in track length observed for fission 

tracks oriented perpendicular and at a high angle to the c-axis is accompanied by a reduction 

in track density (e.g. Green, 1988; Laslett et al., 1984; 1982). Fission track analysis may thus 

provide strikingly different results depending on which section of the apatite grain is 

considered. In order to avoid such inherent ambiguities, only apatite grains oriented with the 

c-axis parallel to the plane of view are conventionally included in the analysis (e.g. Donelick 

et al., 2005).   



3. METHODOLOGICAL BACKGROUND 

35 
 

3.3 Age data 
 
3.3.1 The external detector method 

A number of different techniques can be applied in order to determine the content of 
238U in apatite grains for which fission track analysis is performed (see Donelick et al., 2005; 

Hasebe et al., 2004; Wagner & Van den Haute, 1992). At present, most fission track studies 

utilize the external detector method (Fig. 9), which is based on the relative abundance of U-

isotopes. The ratio 238U/235U is constant in nature (Steiger & Jäger, 1977), and accordingly, 

the concentration of 238U can  be estimated by determining the abundance of 235U. Fission of 
235U occurs at extremely low rates in nature, but is favoured when the host mineral is exposed 

to low-energy thermal neutrons in the vicinity of the core of a nuclear reactor (Donelick et al., 

2005). Thermal neutrons rarely induce fission of 238U or 232Th (e.g. Donelick et al., 2005; 

Gallagher et al., 1998). Thus, virtually all tracks that are generated during irradiation originate 

through fission of 235U. The common procedure is to etch the apatite grain-mount before 

attaching it to an essentially U-free muscovite external detector. The grain-mount and the 

detector are placed in direct contact before being irradiated with thermal neutrons. During 

irradiation some of the fission particles generated in the apatite grain cross the interface 

between the crystal and the detector and thereby produce tracks in the muscovite. These tracks 

provide an estimate of the abundance and distribution of 235U in individual apatite grains. 

Ultimately, a fission track age is determined by establishing the relationship between the 

density of spontaneous tracks in the apatite and the density of induced tracks in the external 

detector (Gallagher et al., 1998; Tagami & O'Sullivan, 2005). The external detector method is 

advantageous in that it allows dating of individual grains. It can therefore successfully be 

applied to materials with extremely heterogeneous U-distributions or to sedimentary samples 

that consist of detrital grains with very different fission track ages (Tagami & O'Sullivan, 

2005). 

In recent years it has become increasingly more common to apply laser ablation 

inductively coupled mass spectrometry (LA-ICP-MS) in order to determine the 238U 

concentrations of apatites selected for fission track analysis (Hasebe et al., 2004). The LA-

ICP-MS approach is significantly faster than the conventional techniques for establishing U-

contents and will likely become a routine procedure in the years to come.  
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Fig. 9. The external detector method for determination of fission  

track age and 238U concentration: a) The apatite grain mount is 

ground and polished to expose internal sections of individual 

crystals; b) Chemical etching reveals spontaneous fission tracks that 

are connected to the surface of the grain mount; c) A U-free mica 

detector is placed in direct contact with the grain mount, d)  Low-

energy thermal neutron irradiation induces fission of 235U. Some of 

the fission particles cross the interface between the apatite mount 

and the detector; e) Chemical etching of the mica detector reveals 

the induced tracks. Ultimately, the grain mount displays the 

spontaneous fission tracks from 238U, while the detector displays the 

induced tracks derived from fission of 235U.  Modified from 

Gallagher et al. (1998) after Hurford and Carter (1991). 

 

 

3.3.2 Age equation 

Basic age equation for radioactive decay 

The standard formula for radioactive decay serves as the foundation for the fission track 

method. This equation describes the spontaneous decay of the radioactive parent atom to a 

stable daughter product. In its most fundamental form the equation can be written as  

d𝑁𝑃
𝑑𝑡

= −𝜆𝑁𝑃,                                                                                                                 (3.1) 

where dNp/dt represents the rate of decay, which is proportional to the number of remaining 

parent nuclides, NP, at any given time. The decay constant, λ, is expressed in yr-1. (NP)0 gives 

the initial concentration of the parent atom and integration of equation 3.1 yields 

𝑁𝑃 = (𝑁𝑃)0𝑒−𝜆𝑡                                                                                                               (3.2) 

Equation 3.2 displays the number of remaining parent atoms at any given time, t. For 

convenience equation 3.2 may be rewritten as 

(𝑁𝑃)0 = 𝑁𝑃𝑒𝜆𝑡                                                                                                            (3.3) 
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The number of daughter atoms, ND, equals the difference between the number of parent atoms 

initially present and the number of remaining parent nuclides. Equation 3.3 can thus be 

modified to   

𝑁𝐷 = 𝑁𝑃(𝑒𝜆𝑡 − 1)                                                                                                        (3.4) 

Equation 3.4 is the classical formula for radioactive decay, which forms the basis for the 

majority of geochronological methods. 

 

Fission track age equation 

The fission track approach differs from other radiometric dating methods in that spontaneous 

fission tracks rather than actual radiogenic nuclei represent the daughter product. A number of 

modifications are therefore necessary to make formula 3.4 applicable. In addition to 

spontaneous fission, 238U experiences α-decay. Such events are much more frequent than 

fission, and both the decay constant for α-decay, λα, and the fission decay constant, λf, must be 

included in the fission track age equation. Given that the ratio λf/(λα+λf) is constant for 238U 

(Wagner & Van den Haute, 1992), the basic fission track age formula can be expressed as 

follows: 

𝑁𝑠 = 𝜆𝑓
𝜆𝑑

𝑁𝑒𝜆𝑑𝑡238 − 1                                                                                                     (3.5) 

where λd is the total decay constant for 238U, which incorporates the constants for both α-

decay and spontaneous fission. t is the fission track age of the sample. Equation 3.5 displays 

the number of spontaneous tracks, Ns, (i.e. the abundance of the daughter product) as a 

function of the number of parent atoms (i.e. 238N) and time since closure of the system. Since 

the 238U/235U ratio is constant, the number of parent atoms is related to the number of induced 

tracks, Ni. Ni is a function of the abundance of 235U and is given by: 

𝑁𝑖 = 𝑁𝜎𝑓𝛷235 ,                                                                                                                (3.6) 

where 235N is the number of  235U atoms, σf is the thermal neutron fission cross section and Φ 

is the thermal neutron flux during irradiation. The following formula for fission track age is 

obtained by substituting the expression for Ni into equation 3.5: 

𝑡 = 1
𝜆𝑑
𝑙𝑛 �1 + �𝜆𝑑

𝜆𝑓
� �𝑁𝑠

𝑁𝑖
� 𝐼𝜎𝑓𝛷� ,                                                                                            (3.7)                           
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where I is the isotopic ratio 235N/238N. Only fission tracks that intersect the polished surface of 

the grain mount are counted. The areal density of tracks thus serves as an estimate of the 

spatial density. Ns and Ni represent the number of tracks per unit volume and must be 

converted into the number of tracks per unit area in order to suite the frame of study. The 

relationship between Ns and Ni and the spontaneous and induced track densities, ρs and ρi, can 

be expressed as follows:   

𝜌𝑖
𝜌𝑠

= 𝑁𝑖
𝑁𝑠
𝑔𝑞 ,                                                                                                                            (3.8) 

where the parameter g is the integrated geometric factor that corrects for the difference in 

effective volume for track production. Tracks that intersect the surface of the grain mount are 

derived from an effective volume that is twice as large as the volume that has produced the 

tracks that are apparent on the surface of the detector. q is the factor of efficiency of 

registration and observation of tracks. This parameter is essentially identical during analysis 

of unknown samples and age standards (see paragraph below) and may be ignored given that 

equal criteria are applied throughout the counting process (e.g. Tagami & O'Sullivan, 2005; 

Wagner & Van den Haute, 1992). Taking the relationship in equation 3.8 into account, 

equation 3.7 can be rearranged as: 

𝑡 = 1
𝜆𝑑
𝑙𝑛 �1 + �𝜆𝑑

𝜆𝑓
� �𝜌𝑠

𝜌𝑖
� 𝑞𝑔𝐼𝜎𝑓𝛷�                                                                                         (3.9) 

 

The zeta calibration approach 

Some of the parameters in equation 3.9 are poorly constrained or difficult to determine 

accurately. This is particularly the case for the fission decay constant, λf, and the neutron flux, 

Φ (e.g. Van den Haute et al., 1998). The latter has traditionally been established by measuring 

induced beta or gamma activity on metal activation monitors or by inducing fission in a 

standard glass with known U-content (Hurford & Green, 1983). The neutron flux is related to 

the induced track density in the dosimeter glass, denoted by ρd, by the empirically defined 

constant B: 

𝛷 = 𝐵𝜌𝑑                                                                                                                              (3.10) 

To overcome the uncertainties in estimation of the fission decay constant and the difficulties 

in precision during measurement of neutron flux, Hurford and Green (1982, 1983) proposed a 

new calibration approach based on analyses of standards with known ages. A personal zeta 
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factor, ζ, should be calculated by each analyst for every mineral species that is analysed. This 

parameter includes both the fission decay constant and the neutron capture cross section and 

is given by 

𝜁 = 𝜎𝑓𝐼𝐵
𝜆𝑓

                                                                                                                               (3.11) 

At present, the zeta calibration method is the recommended approach for calculation of fission 

track ages (Hurford, 1990). In practice, the zeta factor is calculated by conducting a series of 

calibrations on standards of known fission track age. The following equation is used to 

compute the zeta factor: 

𝜁 = 𝑒𝜆𝑑𝑡𝑠𝑡𝑑−1
𝜆𝑑(𝜌𝑠/𝜌𝑖)𝑠𝑡𝑑𝑔𝜌𝑑

 ,                                                                                                             (3.12) 

where tstd is the age of the standard, (ρs/ρi)std is the ratio of spontaneous to induced fission 

tracks counted on the standard and ρd is the estimated density of induced fission tracks 

derived from a dosimeter glass in the position of the standard at the time of irradiation. The 

fundamental fission track age equation for the zeta approach is obtained by substituting the 

expression for zeta in equation 3.11 by that in equation 3.12. Equation 3.9 may thus be 

rewritten as: 

𝑡 = 1
𝜆𝑑
𝑙𝑛 �1 + 𝜆𝑑𝜁𝑔𝜌𝑑

𝜌𝑠
𝜌𝑖
�                                                                                                  (3.13) 

The zeta calibration approach is of particular value because it serves to level the effect of 

personal variations in track recognition and counting and enables different analysts to obtain 

virtually identical results despite slight differences in counting techniques (Gallagher et al., 

1998).   

 

3.3.3 Age standards 

The most commonly used and recommended standards for apatite fission track zeta 

calibration are Fish Canyon Tuff and Durango. Both apatites fulfil the requirements for age 

standards listed by Hurford and Green (1983); i.e. accessibility, age homogeneity, rapid post-

formational cooling and compatibility of ages between several thermochronometers. The 

Durango apatite occurs as coarse, lemon-coloured crystals within the Cerro de Marcado open 

pit iron mine near Victoria de Durango, Mexico (Young et al., 1969). Based on sanidine-

anorthoclase 40Ar-39Ar ages from two ignimbrites that stratigraphically bracket the timing of 
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apatite crystallisation, a reference age of 31.44 ± 0.18 Ma has been established (McDowell et 

al., 2005). The Fish Canyon Tuff apatite is derived from a voluminous ignimbrite field in San 

Juan, Colorado, for which a 40Ar-39Ar biotite age of 27.8 ± 0.2 Ma has been reported (Hurford 

& Hammerschmidt, 1985). 

 

3.3.4 Error calculations 

For a fission track age that is calculated by the zeta calibration method the error estimate, st/t, 

is mainly based on the error on the track density ratio of spontaneous to induced tracks, sR/R, 

and the error on the track density of the dosimeter glasses, SΦ/Φ. The error on the zeta value is 

of less importance (Wagner & Van den Haute, 1992). st/t is given by the following formula:  

𝑠𝑡/𝑡 = 𝐾�(𝑆𝑅/𝑅 )2 + (𝑆𝛷/𝛷)2 ,                                                                                       (3.14) 

where K ≈ 1 for samples with fission track age < 600 Ma and sR/R may be expressed as 

𝑠𝑅/𝑅 = � 1
𝑁𝑠

+ 1
𝑁𝑖

                                                                                                                 (3.15) 

The error estimates on the age and the track density ratio are given with 1σ confidence.  

 

3.3.5 Chi-square test 

Fission track counts are governed by Poisson statistics. By the application of the external 

detector method, a matched pair of spontaneous and induced tracks, and hence an individual 

fission track age, is obtained for every grain. Since the U-concentration does not affect the 

relation between spontaneous and induced tracks, the ρs/ρi ratio is not expected to vary 

significantly between grains derived from the same crystalline sample (Wagner & Van den 

Haute, 1992). A chi-square test has been developed in order to detect dispersion in grain ages 

beyond the variation allowed for a Poissonian distribution (Galbraith, 1981; Green, 1981). In 

effect, the test assesses whether the ratio ρs/ρi is the same for each pair of counts. The 

following formula is used to calculate a chi-square value: 

𝜒2 = 1
𝑁𝑠𝑁𝑖

∑ (𝑁𝑠𝑗𝑁𝑖−𝑁𝑖𝑗𝑁𝑠)2

𝑁𝑠𝑗+𝑁𝑖𝑗
𝑛
𝑗=1                                                                                  (3.16) 

Ns, Ni and n denote the total number of spontaneous and induced tracks and the total number 

of grains, respectively, while Nsj and Nij represent the number of spontaneous and induced 

tracks in grain j. A p-value is calculated for each sample. This value reflects the probability 
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that the critical value of the χ2-function at n-1 degrees of freedom and at the desired 

confidence level exceeds the calculated χ2. If the p-value falls below 5%, the chi-square test is 

regarded as failed, and the ρs/ρi ratio is not homogenous within the sample (e.g. Galbraith, 

2005). Sedimentary samples quite commonly contain a range of detrital components and are 

generally expected to exhibit more than one grain age population. In contrast, crystalline 

samples that fail the chi-square test should be treated with caution during interpretation, and a 

reason for the age dispersion should be sought (Wagner & Van den Haute, 1992).    

The radial plot (Galbraith, 1988, 1990) is a graphical means of evaluating the 

distribution of individual grain ages within a sample. A standardized estimate, y, which is a 

function of the grain age, the standard error and the central age of all grains, is plotted against 

precision, x. Because the radial plot considers the precision of each calculated age, it is well 

suited for visual comparison of single grain fission track age estimates. 

 

3.4 Length data 
 
3.4.1 Track classification 

Fission tracks are generally classified as semi-tracks or confined tracks according to their 

position relative to the polished plane of the grain mount. All tracks that intersect the polished 

surface are referred to as semi-tracks (Laslett et al., 1982). Such tracks have been truncated 

during mount preparation and do not display their full original length. Semi-track length 

estimates are obtained by projecting points on each track vertically up to the surface (Wagner 

& Storzer, 1972). The information extracted from such projected track length measurements 

has proven to be insufficient when it comes to resolving differences in cooling style and 

generally does not provide an adequate image of the true track length distribution (Laslett et 

al., 1994). For these reasons, the previously customary practice of measuring projected track 

lengths has been abandoned.  

Over the last few decades considerable attention has been devoted to the study of 

tracks that are confined within the grain volume. Confined tracks reside fully beneath the 

surface of the mount and can only be reached by the etchant through conduits in the crystal 

lattice (Bhandari et al., 1971; Laslett et al., 1982). Lal et al. (1969) and Bhandari et al. (1971) 

described two major groups of confined tracks, characterized according to the nature of their 

conduits (Fig. 10). TINT (track in track) type tracks are connected to the surface through 

semi-tracks, while TINCLE (track in cleavage or crack) type tracks are reached by the etchant 

through cleavage planes or cracks. Donelick et al. (2005) further identified a third, minor 
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variety, TINDEF (track in defect), which is linked to the surface through a defect or a fluid 

inclusion. Measurements of confined track lengths involve significantly smaller biases than 

the estimation of projected track lengths (Laslett et al., 1982). Furthermore, the confined track 

length distribution is more sensitive to variations in the true length distribution (Gleadow et 

al., 1986; Green et al., 1989). Consequently, track length measurements are at present 

generally performed only for confined tracks that are subparallel to the polished crystal 

surface. Recent technological advances have incited new interest in semi-track lengths and 

their possible applications in fission track analysis. New software is currently on the way and 

will enable utilization of a combination of confined tracks and semi-tracks in order to gain 

more detailed thermal information (Gleadow, in press).  

In order to address issues related to poor reproducibility of length data, Ketcham et al. 

(2007a) proposed c-axis projection as a means of converting individual track length 

measurements into an estimated value for each length in an orientation parallel to the c-axis. 

The necessity for normalisation of track angles is a direct result of the annealing anisotropy 

observed in apatite (cf. section 3.3.3).  

 

 
Fig. 10. A schematic illustration of various track types in an etched apatite crystal. Semi-tracks (dark grey) are 

truncated during grinding and polishing and their traces appear on the polished mineral surface. Confined tracks 

reside fully within the crystal volume. Two types of confined tracks are displayed; tracks in tracks (TINTs) and 

tracks in cleavage (TINCLEs). Modified from Tagami and O’Sullivan (2005). 

 

 

 



3. METHODOLOGICAL BACKGROUND 

43 
 

3.4.2 Initial track lengths 

The etchable length of a fission track is the specific part of the latent track that can be 

revealed by chemical etching under standardized conditions (Wagner & Van den Haute, 

1992). Experimental studies suggest that the majority of induced tracks in apatite exhibit 

etchable lengths within the range 15.8 μm to 16.6 μm (Gleadow et al., 1986). Naturally 

occurring fission tracks in rapidly cooled volcanic rocks are generally somewhat shorter than 

experimentally induced tracks (Gleadow et al., 1986; Green, 1980). Consequently, some 

annealing must occur even at temperatures below that of the lower boundary of the partial 

annealing zone (Donelick et al., 1990).  

 

3.5 Qualitative interpretation of fission track data 
 
3.5.1 Track length distributions 

The size reduction experienced by tracks at slightly elevated temperatures is highly significant 

for the utility of the fission track method. Each spontaneous fission track represents a 

different age of formation and records a specific portion of the thermal history experienced by 

the host rock (Gleadow et al., 1986). The length of any fission track is directly related to the 

prevailing temperature conditions since track formation. A great deal of information can be 

extracted from track length studies by establishing the relative contributions of different track 

length components  and identifying separate generations of fission tracks. Gleadow et al. 

(1986) were among the first to recognize the importance of track lengths for the interpretation 

of fission track age data. Their study mainly concerned the discrimination of cooling styles 

based on track length distribution signatures. Four major spontaneous track length distribution 

types and corresponding thermal histories were identified (Fig. 11): 1) Relatively narrow, 

unimodal track length distributions associated with mean track lengths in the range 14.0 μm to 

15.5 μm are generally concordant with rapid cooling followed by thermal quiescence. This 

specific distribution is typical for volcanic rocks, but may be attained by any rock that has 

experienced particularly rapid cooling through the temperature interval of enhanced track 

sensitivity. 2) For slowly cooled, crystalline basement rocks a distinct, negatively skewed 

track length distribution is characteristic. The mean track length generally ranges from 12.5 

μm to 13.5 μm and the standard deviation is somewhat greater than for rapidly cooled 

volcanic rocks. For the track length distribution to attain the observed shape, it is essential 

that the basement remains thermally undisturbed. Monotonous cooling through the PAZ is 

thus inferred. Slow and steady cooling to ambient surface temperatures involves gradual 
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accumulation of tracks and progressive annealing. Partial annealing has been proven to be 

particularly effective in the uppermost interval of track stability, i.e. above c. 80 ºC (Gallagher 

& Brown, 1997). Thus, virtually no tracks formed at higher temperatures will be apparent 

when sufficient cooling time is permitted.  The track length distribution for undisturbed 

basement-type samples are therefore dominated by relatively longer tracks, formed at the 

prevalent conditions of the low-temperature portion of the PAZ.  

 

 
Fig. 11. Four distinct track length distribution signatures indicative of different cooling histories: a) Rapidly 

cooled volcanic type; b) Undisturbed basement type; c) Bimodal type; d) Mixed type. e) Representable cooling 

paths for the track length distributions in a-d. See text for details. Redrawn after Gleadow et al. (1986). 

 

3) A bimodal distribution is expected for samples that have experienced elevated temperatures 

subsequent to the initial cooling. This distribution is characterized by two well-defined peaks 

with distinctively different means. Each peak corresponds to a particular component that 

records a portion of the thermal history. Tracks that formed prior to or during the thermal 

event have experienced a phase of enhanced annealing, and are thus shorter than tracks that 

were generated during and subsequent to the most recent episode of cooling. Under ideal 

circumstances the proportion of long tracks may reveal the extent of the period over which the 

rock has resided at near-surface temperatures. The size and shape of the short track-length 

component provides information about the duration and magnitude of the thermal event. 4) 

Complex cooling histories are in many cases difficult to resolve in practice. A thermal event 

of relatively short duration or insufficient maximum temperatures may fail to produce a clear 

bimodal distribution. Under such circumstances the peaks in the distribution signature merge 

to form a broad, unimodal distribution, characterized by a rather high standard deviation. 

Poorly resolved bimodal distributions are generally referred to as mixed types. 
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3.5.2 Geological significance of fission track ages 

To a first-approximation fission track ages may be taken as to represent the time of residence 

at temperatures below those of the zone of total annealing (Wagner & Van den Haute, 1992). 

Implied in this statement is the assumption that all fission tracks that have formed over the 

given period of time have remained unaltered. In practice, however, the relationship between 

fission track age and cooling history is not straightforward, and the concept of closure 

temperature is not strictly valid for the fission track system (Gallagher et al., 1998). Actual 

closure may be represented by any temperature within the partial annealing zone (Wagner, 

1972).  

Fission track ages and track length distributions are related in a rather complicated 

manner, and a coeval evaluation of both is necessary in order to fully appreciate the 

geological meaning of the data. The probability of a track intersecting the polished surface of 

a grain is proportional to the length of the track (Laslett et al., 1982). Theoretically, a linear 

relationship between track length and track density reduction is expected. A reduction in 

length leads to a corresponding reduction in track density, and hence a lowered fission track 

age (Green, 1988; Laslett et al., 1994). In practice the linear relationship only holds for 

apatites that have experienced less than 25 % track length reduction (Green, 1988).   

As a consequence of the observed track length/density relationship, the proportion of short 

tracks that are included during counting is not equal to the actual share of short tracks in the 

grain as a whole. An apatite grain that chiefly contains relatively short tracks will display a 

younger age than a grain with the same true number of tracks, but with a majority of long 

tracks. It is thus clear that the obtained fission track age for any given sample is highly 

dependent on the sample’s time of residence and thermal evolution within the partial 

annealing zone (Gleadow et al., 1986; Wagner & Van den Haute, 1992). Slow cooling 

through the zone of partial annealing implies progressive shortening of tracks and declining 

probability of observing individual tracks during the counting procedure. The fission track 

age obtained from a sample that has experienced such a cooling path should not be taken as to 

indicate the exact time at which the rock attained a temperature below the closure temperature 

of the system. In fact, the acquired age may be significantly younger than the time of entry 

into the PAZ and should rather be regarded as a cooling age that reveals residence at 

temperatures somewhere within the PAZ at the given time (Wagner, 1972). The fission track 

ages of slowly cooled rocks do not reflect specific thermal events, and should thus be 

considered apparent ages rather than absolute ages in the conventional sense (e.g. Gleadow et 

al., 1986). For samples that have suffered multiple episodes of reheating, the interpretation of 
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fission track ages is particularly problematic (Wagner & Van den Haute, 1992). The fission 

track age obtained from a sample that displays a mixed or bimodal type track length 

distribution is typically a composite value that is not geologically meaningful when 

considered independently (Gleadow et al., 1986). Conversely, the fission track ages of rapidly 

cooled rocks may indeed be interpreted as actual cooling events. As a consequence of the 

dominance of long track lengths in such samples, the number of fission tracks that intersects 

the polished grain surface gives a good estimate of the number of tracks within the total 

volume of the grain (Laslett et al., 1982). For rapidly cooled rocks, the fission track method 

serves to establish the timing of entrance into the PAZ (Wagner, 1972). 

 
3.5.3 Vertical profiles 

Detailed information about the cooling path within a geographically restricted area can be 

made available through fission track analysis of a suite of samples collected from a near 

vertical profile. Early work by Wagner and Reimer (1972) demonstrated a positive correlation 

between apatite fission track age and elevation for samples from the Swiss and Italian Alps. 

The observed trend was interpreted as to reflect the movement of the rock column through the 

temperature gradient associated with increased fission track stability. Implicit in the concept 

of vertical profiles is the assumption that all samples have experienced the same thermal 

history (Gallagher et al., 2005). At any time in the geological past, rock samples derived from 

low portions of the profile were exposed to higher temperatures than samples that presently 

reside at higher elevations. Correspondingly, fission track studies of samples from drill holes 

demonstrate a gradual decrease in fission track age with depth, down to the point at which the 

age is reduced to zero (e.g. Gleadow & Duddy, 1981; Wagner et al., 1997). It has long been 

known that fossil partial annealing zones may be identified when fission track age data from 

vertical profiles are plotted against sample elevation (e.g. Fitzgerald & Gleadow, 1990; 

Gleadow & Fitzgerald, 1987). The base of a partial annealing zone is typically perceived as a 

break in slope associated with a change in the gradient of the regression line (Fig. 12). 

Samples below the break in slope are found to display similar fission track ages, and are 

therefore inferred to have experienced rapid cooling from depths associated with total 

annealing. The position of the break in slope itself thus represents the timing of the onset of 

the cooling event. All samples that presently reside at the surface have cooled through the 

PAZ and some degrees of partial annealing must be accounted for. Consequently, the age 

corresponding to the break in slope represent a minimum age for the onset of cooling 

(Fitzgerald et al., 1995). An exhumation rate for the period of accelerated cooling can be 
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calculated from the gradient of the regression line below the break in slope. Samples above 

the break in slope are derived from a pre-cooling fossil partial annealing zone. The gradient 

associated with this particular part of the age-elevation plot is not solely related to an 

exhumation rate, but also reflects the inherent annealing signature of the PAZ (Fitzgerald & 

Gleadow, 1990). The actual shape of the profile above the break in slope is dependent on the 

paleogeothermal gradient and the time of residence for each sample within the PAZ 

(Fitzgerald et al., 1995).  

 

 
Fig. 12. Typical appearance of an age-elevation-plot from an area that has experienced an episode of rapid 

cooling. The break in slope (red circle) represents the timing of the onset of accelerated cooling. Similar ages are 

found for the lowermost part of the profile. 

 

A number of studies (e.g. Fitzgerald & Gleadow, 1990; Gallagher & Brown, 1997) have 

reported track length distributions that are in good agreement with the described interpretation 

of the age-elevation plot. Typically, samples from below the break in slope display unimodal 

distributions dominated by long tracks. A track length component of this kind is 

conventionally taken as to indicate rapid cooling through the PAZ associated with concurrent 

and subsequent accumulation of fission tracks (e.g. Gleadow et al., 1986). Conversely, 

samples above the break in slope characteristically contain a component of shorter tracks that 

must have experienced partial annealing over an extended period prior to the cooling event.   

For a break in slope to be identified, it is usually required that samples are collected 

over a significant relief. This is particularly the case in regions where a substantial period of 

time has lapsed since the episode of enhanced cooling. Gradual accumulation of long fission 

tracks is associated with a reduced proportion of short tracks. The signature indicative of 

residence within a fossil PAZ thus becomes less pronounced (Gallagher et al., 2005). As a 

result, discrete cooling events become progressively more difficult to recognize in time. 
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Absence of a well-defined break in slope may in some cases indicate that the region in 

question never experienced a cooling event of sufficient magnitude. Alternatively, the 

transition between the fossil PAZ and the previous zone of total annealing may be outside the 

range of the vertical profile. 

Fission track data obtained from vertical profiles are quite commonly used to calculate 

the paleogeothermal gradient from the time prior to the onset of accelerated cooling. The 

calculations can be performed in a number of different ways depending on the characteristics 

of the sampled profile. Bray et al. (1992) proposed an algorithm based on weighted least-

square regression of modelled maximum temperatures for sedimentary samples from a range 

of depths in a bore hole. Fitzgerald and Gleadow (1990) estimated the paleogeothermal 

gradient for a vertical profile sampled in the Transantarctic Mountains by simply dividing the 

total thickness of the rock column above the break in slope for the time in question by the 

temperature difference between the base of the PAZ and the surface. Although the approach is 

straightforward, significant uncertainty is introduced into the estimates if the previous 

stratigraphic thickness and the paleo-surface temperature are not well constrained.  

 
3.6 Apatite (U-Th)/He analysis 
 
The production of radiogenic He from actinide decay formed the basis of the very first 

attempts of establishing absolute ages through geochronology (Rutherford, 1905). At the time, 

the temperature-sensitive diffusive behaviour of He was not understood, and the technique 

became known for yielding erroneously young ages. Consequently, the (U-Th)/He scheme 

was abandoned shortly after its conception and received limited attention until Zeitler et al. 

(1987) discovered a way to quantify diffusive He loss and relate it to the cooling histories of 

rocks within the upper few kilometres of the earth’s crust. In recent years the (U-Th)/He 

method has experienced a renaissance. At present the technique is a widely acknowledged 

tool for exploring the near-surface cooling histories of rocks and the thermal perturbations in 

the uppermost crust. Assuming a cooling rate of 10 °C/Ma, the effective closure temperature 

of the (U-Th)/He system is ~70 °C (e.g. Farley, 2002). Given its sensitivity towards lower 

temperatures, the (U-Th)/He system effectively compliments apatite fission track analysis. 

Used together the two methods have the potential of revealing detailed information regarding 

the timing and style of cooling through the uppermost 1-4 km of the crust. 
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3.6.1 4He generation in apatite  

The (U-Th)/He method is based on ingrowth of 4He (α-particles) produced by the series decay 

of 238U, 235U and 232Th. In addition, minor amounts of 4He are generated by the decay of 
147Sm. The total amount of accumulated 4He depends on the concentration of the radioactive 

parent nuclides, the α decay constants, λ, and the time, t, since closure of the system and is 

expressed as 

𝐻𝑒4 = 8 𝑈 �𝑒𝜆238𝑡 − 1� + 7 𝑈�𝑒𝜆235𝑡 − 1� + 6 𝑇ℎ�𝑒𝜆232𝑡 − 1�232235238 ,                       (3.17) 

where all isotopic abundances are given as present-day values. The constants that precede 

each of the isotopic abundances represent the number of alpha particles generated in the 

individual decay chains. 147Sm normally produces undetectable amounts of 4He and is ignored 

in the formula. Equation 3.17 assumes that no non-radiogenic 4He is present in the crystal.  

 

3.6.2 4He diffusion behaviour 

He retention in crystals is governed by thermally activated volume diffusion processes. In 

apatite, He diffusion obeys a linear Arrhenius relationship that is given by 

𝐷
𝑎2

= 𝐷0
𝑎2
𝑒−𝐸𝐴/𝑅𝑇                                                                                                                 (3.19) 

(Fechtig & Kalbitzer, 1966), where D is the diffusivity and D0 is the diffusivity at infinite 

temperatures. “a” denotes the diffusion domain radius, and EA, R and T represent the 

activation energy (≈ 33 ± 0.5 kcal/mol for the Durango apatite; Farley, 2000), the gas constant 

and the temperature, respectively. In the case of the Durango apatite, for which the majority 

of studies on He diffusivity has been undertaken, the diffusion domain is represented by the 

entire grain  (Farley, 2002). From equation 3.19 it is evident that the diffusivity increases with 

temperature. According to Fick’s first Law (Fick, 1855), diffusion is driven by the He 

concentration gradient in the crystal. A high concentration gradient (i.e. a substantial 

difference in He concentration between the crystal rim and the internal portions of the grain) 

promotes rapid He loss. Thus, diffusion is most effective in old grains or grains with high 

abundances of parent nuclides. Fick’s first Law is conventionally written as   

𝐹 = −𝐷 𝜕𝐶
𝜕𝑥

 ,                                                                                                                         (3.20) 

where F denotes the mass flux, D the diffusivity and ∂C/∂x the concentration gradient 

(concentration, C, divided by distance, x). Fick’s second Law (Fick, 1855) describes the 
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change in concentration with time as a function of the concentration gradient. For objects with 

spherical geometries Fick’s second Law is given by 

𝜕𝐶
𝜕𝑡

= 𝐷 �𝜕
2𝐶
𝜕𝑟2

+ 2 𝜕𝐶
𝑟 𝜕𝑟

� ,                                                                                                           (3.21) 

where r is the radius of the sphere. The (U-Th)/He age equation presented in section 3.6.1 

does not account for diffusional loss of He subsequent to its formation. In order to prove 

useful in the context of (U-Th)/He thermochronology, equation 3.17 must be combined with 

Fick’s Laws of diffusion. The following equation gives an expression for the amount of He 

retained in a crystal at a given time, t, provided that the crystal experiences continuous 

accumulation and thermally dependent diffusive loss of radiogenic He: 

𝜕 𝐻𝑒4 (𝑟,𝑡)
𝜕𝑡

=  

8 𝜆238 𝑈 (𝑡) + 7𝜆235 𝑈(𝑡) + 6𝜆232 𝑇ℎ(𝑡) + 𝐷(𝑡)
𝑎2

232235238 �𝜕
2 𝐻𝑒(𝑟,𝑡)4

𝜕𝑟2
+ 2

𝑟
× 𝜕 𝐻𝑒(𝑟,𝑡)4

𝜕𝑟
�      (3.22) 

 

3.6.3 Effective closure temperature and partial He retention 

The effective closure temperature of  the (U-Th)/He system is a function of cooling rate and 

mineral grain size and varies between ~55 °C  and ~75 °C. As described by Dodson (1973), 

the closure temperatures of thermochronometers in general are positively correlated with 

cooling rates, meaning that rapidly cooled rocks record higher closure temperatures than 

slowly cooled rocks. Experimental studies have documented this relationship for the (U-

Th)/He system (Farley, 2000). Mineral grain size exerts a significant effect on the closure 

temperature. Small grains have shorter holding times than larger grains and consequently 

record cooling through lower temperatures. In apatite, the shortest pathway for He diffusion is 

perpendicular to the c-axis, and the prism radius is therefore the most relevant parameter 

when considering variations in effective closure temperature (Farley, 2002).  

The (U-Th)/He system is in general particularly sensitive to temperatures between ~80 

°C and 40 °C (Wolf et al., 1998). This specific interval is termed the partial retention zone 

(HePRZ) and is characterized by progressive loss of He from the apatite crystal through 

diffusion. Apatite (U-Th)/He ages reflect the thermal history of a sample in the HePRZ. At 

temperatures above 80 °C He escapes to the surroundings more rapidly than it is produced 

and the age remains zero. Below 40 °C virtually all generated He is retained in the crystal and 

gas accumulates over time, causing a progressive age increase. The HePRZ represents the 

temperature range, over which (U-Th)/He ages change most dramatically with temperature. 
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Eventually, samples residing within the partial retention zone achieve equilibrium between He 

production and loss and a steady state He age is attained  (Wolf et al., 1998). 

3.6.4 Alpha-ejection 

Αlpha-particles produced by radioactive decay of the actinides possess relatively high kinetic 

energies, which allow them to travel a substantial distance within the apatite crystal before 

coming to rest. As a result, parent and daughter nuclei are spatially separated. The initial 

energy and the lattice density determine the exact distance an alpha particle is capable of 

travelling (Farley et al., 1996). In apatite, the α-stopping distance is between ~18.8 μm and 

~22.3 μm, depending on which parent nuclide is considered (Ketcham et al., 2011).  

 

 

 

 

 

 

 

 

Fig. 13.  Schematic illustration of three possible outcomes of 

long α-stopping distances: α-retention, α-ejection and less 

frequent α-implantation. Circles represent sites at which the 

α-particle may come to rest, while arrows indicate possible 

particle trajectories. α-ejection may occur if the parent 

nuclide is situated less than a stopping-distance from the rim. 

The lower plot displays the probability of alpha retention 

along a cross-section through the grain. From Farley (2002). 

 

 

There are three possible outcomes of alpha decay with regard to He retention (Fig. 13; Farley, 

2002): 1) Alpha-particles are retained in the grain regardless of particle trajectory, provided 

that the parent nuclide is positioned more than ~20 μm from the grain edge. 2) If the parent 

nuclide is located within a stopping distance from the crystal surface, there is a probability 

that the α-particle may be ejected from the grain. Whether the produced He is ejected or 

retained in the crystal depends on the particle trajectory. The probability of ejection rises to its 

maximum when the parent nuclide is located at the edge of the grain. 3) Alpha-decay 

occurring in the neighbouring grains or in the surrounding matrix may cause implantation of 
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He into the apatite. Alpha-particle implantation is generally not considered to have a 

pronounced effect on the concentration of He in individual grains.  

Alpha-ejection effects represent a major challenge for the (U-Th)/He method since 

underestimation of the amount of retained He leads to measured ages that are considerably 

younger than the true ages. To account for α-ejection in apatite, Farley  et al. (1996) presented 

a parameter that effectively corrects for the loss of He from the portion of the grain that is 

located less than a stopping-distance from the crystal surface. The FT correction factor 

incorporates the surface to volume ratio of the grain and the α-stopping distance and is given 

by 

𝐹𝑇 = 1 − 𝑆
4

× 𝛽 ,                                                                                                                  (3.23) 

where S is the alpha stopping distance and β is expressed as  

𝛽 = 2.31𝐿+2𝑅
𝑅𝐿−1

                                                                                                                        (3.24) 

L represents the crystal length, while R denotes the half prism width of the apatite. The grain 

dimensions are crucial when considering the importance of alpha-ejection for individual 

apatites. Small grains have large surface to volume ratios and are particularly influenced by 

reduced ages as a result of He loss. The alpha-ejection correction entails a homogeneous 

spatial distribution of parent nuclides within the apatite crystal. A corrected (U-Th)/He age is 

obtained by dividing the single grain raw-age by the FT factor (Farley et al., 1996).  

 

3.6.5 Pre-analytical requirements 

A number of pre-analytical requirements must be fulfilled to ensure successful application of 

the (U-Th)/He method. The characteristics of the apatite crystals selected for analysis is of 

great importance and must be thoroughly assessed. Ideally, (U-Th)/He analysis should be 

performed on intact, euhedral grains, for which the physical dimensions are easy to determine. 

Cracks should be avoided since they represent pathways for rapid He diffusion loss and may 

cause ages that are too young (Farley, 2002). The greatest problems during (U-Th)/He 

analysis arise from the presence of small U-Th-rich mineral inclusions within the analysed 

apatite grains (Lippolt et al., 1994). Mineral inclusions of zircon and monazite may contribute 

significant He to the analysis, but generally remain undissolved after the standard dissolution 

processes that are employed prior to U-Th-measurements (cf. section 5.4). The excess He is 

thereby not accounted for by increased concentrations of parent nuclides and the resulting (U-



3. METHODOLOGICAL BACKGROUND 

53 
 

Th)/He ages are anomalously old. Grains with recognizable mineral inclusions can normally 

be avoided by careful inspection under a binocular microscope prior to analysis. This 

approach is, however, not fully adequate for grains that contain sub-microscopic inclusions 

(Belton et al., 2004). The (U-Th)/He method inherently assumes a homogeneous distribution 

of parent nuclides in the crystal. Zoned grains are problematic because of their unpredictable 

retentivities. Reduced He retention is expected if the bulk of the U and Th in the crystal are 

concentrated along the rim. This particular zoning pattern causes (U-Th)/He ages that are too 

young. Conversely, increased retention and erroneously old ages are expected for grains with 

U-Th-rich cores (Farley et al., 1996). Since He production may vary significantly from the 

core to the rim, alpha-ejection correction is normally not fully successful for zoned grains 

(Hourigan et al., 2005).  
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4. FIELDWORK AND SAMPLING 
 
As part of the current study, 31 samples were collected for apatite fission track and (U-Th)/He 

analysis during July-September 2011. 6 additional samples were collected by A. Ksienzyk in 

2007 and 2008. 

 

4.1 Sampling strategy 
 
The geological map Odda 1:250 000 by Sigmond (1998) was consulted during the 

development of a sampling strategy. The ideal lithology for maximum apatite yields and good 

quality grains is a medium- to coarse-grained, biotite-rich granitic gneiss. As such lithologies 

are quite common in the field area, sampling was not to any significant degree restricted by 

the availability of suitable rocks. From a total of 31 samples 30 were obtained from the 

Precambrian basement. The autochthonous and parautochthonous phyllites of the décollement 

zone were largely avoided, since low apatite yields are generally expected for fine-grained 

metasedimentary rocks. Fig. 14 displays a representative selection of the lithologies chosen 

for sampling.  

 
4.1.1 Vertical profiles 

The aim during the fieldwork component of the current project was to attain evenly 

distributed samples from a range of elevations without sampling over significant horizontal 

distances within each profile. In order to provide detailed information regarding the cooling of 

the area, and concurrently manage to cover a sufficient elevation, the vertical spacing between 

samples was set to approximately 200 m. Since the low-elevation samples were expected to 

contain most information on the latest cooling events, the sample density in the lowermost 

parts of the profiles are generally higher.  

Three vertical profiles were sampled, each positioned on a steep flank of one of the 

fjords in the area (Fig. 15). Transect one is located to the northeast of Osafjorden and is 

referred to as the Osa profile. Eight samples (KJ-1 to KJ-8, KJ-26 and BG-14) were obtained 

along a steep, curvy road up to Rundavatnet. Another two samples (KJ-24 and KJ-25) were 

collected from the gentle hills between the road and the peak Nipahøgdi to the northwest.  
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Fig. 14. A selection of the sampled lithologies: a) Augen gneiss with large (~5 cm) feldspar porphyroclasts, 

sampled on Osafjellet (sample no. KJ-26); b) Stromatic migmatite from the southeastern flank of Onen near 

Kjeavatnet (KJ-19); c) Strongly foliated biotite gneiss from Osa (KJ-31); d) Quartzitic phyllite with quartz 

segregations, sampled close to the summit of Nipahøgdi (KJ-24); e) Coarse-grained Eidfjord Granite from 

Simadalen (KJ-23); f) Massive, medium-grained granite from Bruravik (KJ-27).  

 

 

 



4. FIELDWORK AND SAMPLING 

57 
 

Transect number two, hereafter referred to as the Kjeåsen profile, is located southeast of 

transect one, on the Eidfjord-side of the prominent summit Onen. Three samples (KJ-23, KJ-

29 and KJ-30) were obtained along a steep hiking trail from sea level in Simadalsfjorden to 

Kjeåsen. Further sampling was conducted along a slightly gentler gradient from Kjeåsen to an 

elevation of 1226 m asl on the southeastern side of Onen. Four samples (KJ-19 to KJ-22) 

were collected from this part of the profile. Transect three, which is designated as the Bu 

profile, is located on the southern side of Eidfjorden and extends from sea level near Brimnes 

towards the southeast. Seven samples (KJ-12 to KJ-18) were collected along a steep gradient 

from sea level to an elevation of nearly 1000 m asl. An additional sample (KJ-28) was 

obtained from the peak Vatnasetenuten on the Hardangervidda plateau.  
 

4.1.2 Additional samples 

Scattered sampling close to sea level was conducted in order to reveal possible juxtaposition 

of AFT ages across the Eidfjord and its tributaries and shed light on the more recent cooling 

history of the area. The additional samples KJ-9, KJ-10, KJ-27, BG-13, BG-16, BG-26, BG-

27 and BG-53 were all collected from road outcrops located within 50 m of sea level.   

 

4.2 Field measurements and structural mapping 
 
At each sample location the most prominent joint directions were measured. The fracture 

spacing was recorded in order to assess the influence of advective and convective heat 

transfer. Field observations and measurements were combined with aerial photographs to 

reveal the presence of large scale structures, and lineament maps were produced in order to 

determine possible sites where faulting may have caused juxtaposition of 

thermochronological ages. 
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Fig. 15. Overview of sample locations. Three vertical profiles were sampled as part of the current study; the Osa 

profile (furthest to the north), the Kjeåsen profile (on the northern flank of the Simadalsfjord, some kilometers 

south of the Osa profile) and the Bu profile (further to the east on the southern side of the fjord). Additional 

sampling was conducted close to sea level. Samples with BG numbers were collected by A. Ksienzyk in 2007 

and 2008.  
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5. ANALYTICAL PROCEDURE 
 

5.1 Sample preparation 
 
From 31 collected samples from the Eidfjord-Ulvik area, 30 were prepared for analysis. 

Sample preparation was conducted at the University of Bergen from August to December 

2011.  

 

5.1.1 Mineral separation 

Approximately 4 kg of in situ rocks were collected for each sample. The samples were 

downsized to relatively small pieces in the field in order to avoid the risk of contamination 

that is associated with the use of a jaw crusher or a chopping block in the laboratory. Standard 

procedures for mineral separation were employed in order to isolate apatite. Initially, gravel-

sized fragments were disaggregated in a Pulverisette 300 disc mill and the product was 

sieved. The <315 μm fraction was collected and the heavy mineral constituents were 

separated from the bulk of lighter, rock forming minerals on a Wilfley table. Magnetic 

separation was performed for the heavy fraction, using a Frantz magnetic separator set at  

0.3 A, with forward and side slopes of 15 °. The non-magnetic components were further 

separated based on their specific gravities. A sodium polytungstate (SPT) solution with a 

density of ca. 2.87 g/cm3 was used for this purpose. In order to separate weakly magnetic 

minerals like titanite from the non-magnetic, apatite-bearing fraction, the remaining heavy 

components were run through the Frantz magnetic separator at 1.2 A.  Finally, the separate 

was introduced into diiodomethan (DIM), which has a density of 3.3 g/cm3. The purpose of 

this step was to separate apatite from heavier minerals like zircon and pyrite. After the 

described steps had been performed, relatively pure apatite extracts had been obtained for 

most samples.  

 

5.1.2 Grain mount preparation 

Prior to mounting, the apatite extracts from each sample were sieved through a mesh cloth 

with mesh widths of 100 μm. For apatite-rich samples only the >100 μm fraction was used for 

analysis. Grains of apatite were mounted in epoxy and ground in order to expose internal 

sections of each grain. Subsequently, the grain mounts were polished with 6μm and 3μm 

diamond polish, before finally being hand-polished for 60 seconds with 0.05 μm Al2O3 

powder.  
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5.1.3 Etching of latent tracks in apatite 

For the current study, each sample was etched in 5 molar nitric acid (HNO3)  for 20 seconds at 

20 ± 1ºC, following the scheme proposed by Green et al. (1986) and Gleadow et al. (1986). 

Immediately following etching, the mounts were washed in water and ethanol. The samples 

were left to dry at slightly elevated temperatures (i.e. ~40 ºC) to ensure full evaporation of any 

remaining etchant.  

 

5.2 Thermal neutron irradiation 
 
5.2.1 Preparation and irradiation 

Subsequent to etching and drying, each sample was covered with a muscovite external 

detector and wrapped tightly with adhesive tape. Thermal neutron irradiation was conducted 

at the Garching Forschungsreaktor FRM II at the Technical University of Munich on the 21st 

of February 2012, using a thermal neutron flux of 1 x 1016 neutrons/cm2. The neutron flux 

was monitored by a series of IRMM-540R dosimeter glasses with a known U-concentration 

of 15 ppm. Prior to irradiation, these glasses were paired with muscovite detectors and placed 

in front and at the end of the sample stack. An additional dosimeter glass was placed in the 

middle of the sequence.  

 

5.2.2 Post-irradiation procedure 

Subsequent to irradiation, the samples required nearly 4.5 months of cooling in order to reach 

a radioactivity below 5.0 μSvh-1, which is regarded as safe for handling. Before the adhesive 

tape was removed, each sample-mica pair was pierced with five pin holes that are necessary 

as reference points. Induced tracks in mica were revealed through etching in 40 % 

hydrofluoric acid (HF) for 20 minutes at room temperature. After etching, the mica detectors 

were left in running water overnight to remove HF residue. Before analysis, each mount and 

the corresponding mica detector were glued on a standard petrological glass slide (Fig. 16). 

The mica was placed on top of a second glass so that the surfaces of the grain mount and the 

detector would attain approximately the same height. Finally, a small copper-grid crosshair 

was attached to the glass slide below the lower left corner of the mica. 
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Fig. 16. Photograph of prepared glass slide with apatite grain mount and mica detector. Irradiation number, 

sample number and container position are displayed on the slide. Pin holes are encircled. The crosshair is used as 

the initial reference point during the development of a computer-generated coordinate system that correlates 

individual apatites with their corresponding prints.  

 

5.3 Analytical steps 
 
Training, calibration and analyses were executed in the fission track laboratory at the 

University of Bergen from January to August 2012. In total, 32 samples were analysed.  

 

5.3.1 Equipment 

Fission track analysis was performed with an Olympus BX51 optical microscope, equipped 

with a CalComp Drawing-board III digitizing tablet and a computer-controlled Kinetek stage, 

run by the FTstage software by Dumitru (1993). A cursor with a light-emitting diode (LED) 

was used for length measurements.  

 

5.3.2 Counting of dosimeter glasses and estimation of ρd 

Prior to zeta calibration and fission track analysis the detectors of the dosimeter glasses were 

counted in order to estimate the decrease in track density with distance from the neutron 

source. Throughout the analytical process, counting was performed in transmitted light and 

with a magnification of 1250 x. 25 grids, arranged in a 5x5 pattern, were counted on the 

detector of each dosimeter glass. After counting was completed, the density of induced tracks 

in the detector, ρd, was calculated for each dosimeter glass. The ρd values were placed 
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according to the position of the dosimeter glasses during irradiation, and a general track 

density trend was estimated for each batch using linear regression.   

 

5.3.3 Counting technique for age standards and samples 

Equal procedures were implemented both during counting of age standards for zeta 

calibration and samples. Prior to counting it is important to obtain a good alignment between 

the mount and the detector. The external detector displays a mirror image of the apatite grains 

in the mount (Fig. 17). This mirror image generally appears as a limited area with 

significantly higher track density than the surrounding mica. In order to establish a coordinate 

system for the FTstage software, identical points on the grain mount and the detector must be 

correlated. A series of reference points are used for this purpose. Pin holes function as coarse 

reference points and allow approximate alignment. Further correlation of fine reference 

points, such as tiny U-rich zircon inclusions within apatite grains or even small zircons in the 

mount, are required for a precise alignment.  

 

 
Fig. 17. Schematic illustration of a sample-detector pair. The prints in the mica represent a mirror image of the 

apatites in the grain mount.  

 

Following conventions, only grains oriented parallel to the crystallographic c-axis 

were analysed. These grains are easily recognizable in reflected light because of their parallel 

etch pits. Grains with countable surface areas big enough to accommodate at least 25 squares 

were taken as qualified for analysis. The number of squares used during counting of 

individual grains was recorded and an equal number of squares were counted on the print. 

Twenty grains were counted in each sample and in nine of ten age standards. For samples 

containing big grains, several non-overlapping grids were counted within the same grain. 
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Fission tracks were identified and separated from dislocations and other features based 

on the following criteria (presented by Fleischer & Price, 1964b): 1) Etched fission tracks are 

always straight. Dislocations commonly appear as bent or spiral-shaped track-like features. 2) 

The length of fission tracks is limited. Abnormally long features are almost certainly not 

tracks and should thus be excluded during the counting procedure. 3) Fission tracks should 

not display a preferred orientation. Arrays of parallel features are typically made up of 

dislocations rather than tracks. Prior to counting, the quality of individual grains was assessed 

and grains that were found to contain dislocations were excluded. Truncated dislocations are 

in some cases impossible to distinguish from fission tracks and may cause erroneous results if 

counted. Strongly fractured and zoned grains, as well as grains with obvious inclusions, were 

omitted whenever possible.  

 
5.3.4 Zeta calibration procedure 

According to the recommendations of the IUGS Subcommission on Geochronology (Hurford, 

1990), a minimum of five analyses should be implemented during the zeta calibration 

procedure. At least two different age standards should be included, and the mounts on which 

analyses are performed should represent several different irradiations. In the current study five 

grain mounts of Durango apatite and five mounts of Fish Canyon Tuff were analysed in order 

to establish a personal zeta value. A zeta value and a corresponding standard deviation were 

calculated for each analysis, using the software TrackKey (Dunkl, 2002). The final zeta was 

calculated as the weighted mean of the individual values, using the open source Meanzeta 

program by Mark Brandon.  
 

5.3.5 Calculation of fission track ages 

The TrackKey software (Dunkl, 2002) was used to calculate fission track ages. In addition to 

the arithmetic mean age, a pooled age and a central age is reported. The central age is the 

weighted mean of the log normal distribution of individual grain ages and will be used 

throughout this study. A chi-square and a p-value are calculated from the density parameters 

for single grains.  
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Fig. 18. Recognition of horizontally confined tracks: a) Reflected light: Confined tracks are easily identified 

because of their bright appearances. Four tracks are readily evident; b) Transmitted light: Confined tracks are 

simultaneously focused on both ends. The track in the upper left portion of the grain appears to be shallowly 

dipping, since it is not perfectly focused along its entire length. Conduit tracks are visible for all four confined 

tracks. The uppermost track is dissected by a fracture and is therefore classified as a TINCLE. 

 

5.3.6 Track length and Dpar measurements 

All measurements were performed with a magnification of 2000 x. Fission track length data 

were obtained by measuring horizontally confined tracks with the LED. These tracks have a 

bright and easily recognizable appearance in reflected light (Fig. 18a) and are simultaneously 

focused along their entire lengths (Fig. 18b). Ideally, 100 track lengths should be measured 

for each sample in order to produce a statistically sound and robust thermal model (e.g. 

Donelick et al., 2005). The crystallographic c-axis was marked for each analysed grain (Fig. 

19), and the angle between the c-axis and the measured track was recorded. Some TINCLEs 

are unusually resistant towards annealing and may drive the length distribution towards a 

greater mean (Jonckheere & Wagner, 2000). Following the recommendation of Barbarand et 

al. (2003b), only TINT-type tracks were therefore included in this study. As a consequence of 

the etching anisotropy in apatite (cf. section 3.1.2), fission track etch pits most commonly 

exhibit elliptical shapes and are aligned with the maximum diameter parallel to the c-axis. 

Five Dpar values and their corresponding Dperp values (i.e. widths of etch pits perpendicular to 

the c-axis) were measured for each counted grain and three additional values were attained for 

every grain that had been selected for track length measurements.  
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Fig. 19. Etch pits aligned parallel to the crystallographic c-axis (red line). 

 

5.4 (U-Th)/He analysis 
 
Four samples were selected for (U-Th)/He analysis, two from the Osa profile and two from 

the Kjeåsen profile. In order to reveal important aspects regarding the low-temperature 

cooling history over a relatively large elevation span, one sea level sample and one sample 

from Hardangervidda was included from each of the profiles. In addition to sampling 

location, general apatite quality was taken into consideration during the selection process. 

Sample properties were assessed by studying mineral inclusion densities and zoning 

characteristics in the fission track grain mounts.  

(U-Th)/He analysis was performed at the Geoscience Centre at the University of 

Göttingen, Germany, during July and August, 2012. Prior to apatite selection, crystals from 

each of the samples were carefully studied under binocular and petrographic microscopes in 

order to reveal the presence of problematic features, such as mineral inclusions and cracks. 

Three grains with good crystal morphologies were hand-picked from each sample (grain 

selection was performed by A. Ksienzyk). All selected crystals appeared to be free of 

inclusions and microfractures. The length and width of each apatite was measured and the 

grains were packed in separate platinum capsules. He-degassing was performed under 

vacuum in a sealed furnace by heating the sample to ca. 870 °C for 20 min with an infrared 

diode laser. A hot blank was established prior to every analysis and measurements on the 

Durango apatite age standard were performed regularly for control. Subsequent to degassing, 

the obtained 4He was spiked with a known amount of 99+% 3He and purified with a  
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SAES Ti-Zr getter at 450 °C. The isotopic ratio analysis was performed with a Hiden triple-

filter quadrupole mass spectrometer, equipped with an ion counting detector. Re-extraction of 

He was executed in order to quantify excess gas derived from mineral inclusions within the 

apatite. Following re-extraction, the platinum capsules were retrieved from the vacuum 

chamber. Each apatite grain was then dissolved in 2% nitric acid and spiked with a solution 

containing known concentrations of 235U and 230Th. The isotopic ratios in the solution were 

measured by a Perkin Elmer Elan DRC ICP-MS with an APEX micro flow nebuliser, and the 
238U, 232Th and Sm contents were calculated from the obtained ratios. Alpha-ejection 

correction was performed for all the calculated (U-Th)/He ages, following the 

recommendation of Farley et al. (1996).  

 

5.5 Thermal history modelling strategy 
 
Thermal history modelling was performed with the software HeFTy 1.7.5 (Ketcham, 2005). 

Single grain fission track ages, track length measurements and etch pit diameters function as 

basic parameters for modelling. The HeFTy program develops a forward model to predict the 

outcome of a given thermal history for an assumed starting condition (e.g. regarding apatite 

annealing resistance) and utilizes this model in an inverse sense to find an appropriate time-

temperature-path based on the ending conditions (i.e. the calculated age and the observed 

track length distribution). The annealing model of Ketcham et al. (2007b) was applied as a 

basis for estimation of kinetic behaviour. Dpar was selected as kinetic parameter. The confined 

track lengths were corrected by c-axis projection, as proposed by Ketcham et al. (2007a). Dpar 

values were used to calculate a default initial mean track length and the length reduction in 

the standard was set to 0.893.  

From 32 samples analysed by the fission track method, 11 were selected for thermal 

history modelling. 20 counted grains, 100 track length measurements and a sufficient number 

of Dpar values had been obtained from all except for one of these samples. The Monte Carlo 

search method with random subsegment spacing was employed to identify possible time-

temperature paths. While establishing an inverse model, the HeFTy program tests a large 

number of cooling paths against the input data. From all possible cooling paths that were 

identified, 100 good time-temperature paths and a weighted mean curve were determined for 

each sample, with uncertainties given as 1σ error. 
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6. RESULTS 
 

The following subchapters report the results obtained from apatite fission track analysis of 32 

samples and (U-Th)/He dating of 4 samples from the inner Hardangerfjord. Detailed studies 

of fracture patterns have been undertaken in order to create a structural framework that may 

aid the interpretation of the thermochronological data. The results of the structural 

investigations are therefore presented first.  

 

6.1. Brittle structures 
 
Structural complexity characterizes the inner Hardangerfjord region.  The field area explored 

in the present study extends across several major linear features, including a number of fjords 

and deeply incised glacial valleys. Several of the lineaments that have been identified from 

aerial photographs have been found to coincide with zones of high fracture density observed 

in the field. The nature of the large-scale, densely spaced fractures in the region is largely 

unknown and has received limited attention in the past. It is not known whether the structures 

record displacement and when and how movement may have occurred. Because of the general 

absence of marker horizons and shear sense indicators these issues are not readily addressed. 

Furthermore, the steep terrain that characterizes the area makes detailed observations and 

recognition of brecciated material or fault gouge difficult. In order to avoid premature 

assumptions about possible displacements while presenting the results, all large-scale brittle 

structures are consistently referred to as fractures or lineaments rather than faults. Because the 

sensitivity ranges of the apatite fission track and (U-Th)/He systems are well below the 

temperatures associated with the brittle-ductile transition for rock forming minerals, only 

brittle structures are included in the present contribution. Folds and ductile shear sense 

indicators may reveal interesting aspects regarding the Precambrian and Caledonian 

geological evolution in particular, but pre-date thermochronological ages by several hundred 

Ma to > 1.5 Ga (Sigmond, 1998) and are not regarded significant for the results obtained in 

the current study. 

Two fracture sets appear to be particularly well-represented in the inner regions of the 

Hardangerfjord; the first set running N-S and the second set trending NE-SW. Additional E-

W- and NW-SE-trending structures are evident locally. In the current study the most 

prominent joint directions have been recorded at most sample locations. In addition, the 
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orientation of particularly pronounced fracture zones has been measured on several sites in the 

field area. Individual orientations are listed in Appendix A together with the sample 

information and a stereographic plot of all measured brittle structures is presented in Fig. 20a. 

In the following sections the field area is subdivided into areal domains (Fig. 20b) in order to 

facilitate the recognition of the most pronounced fracture systems and the detection of local 

differences in structural patterns. Special emphasis is put on the areas in which vertical 

profiles were sampled, and a map of lineaments is presented from each of these areas. The 

lineament maps have been produced by careful study of aerial photographs, partially in 

combination with field observations. Some of the identified lineaments coincide with river 

trajectories. Although rivers generally follow weak zones in the substrate, it is not given that 

all rivers in the area are located on sites of major fracture zones. Therefore, river trajectories 

have been treated with caution and are only indicated where they make up clearly defined 

lineaments that parallel other structures in the region or continue across valleys. However, the 

fracture pattern in the inner Hardangerfjord region is found to correspond well with the 

orientation of fjords and valleys, and many rivers appear to coincide with recognized 

fractures. All stereographic plots presented in the following sections have been drawn in 

Stereonet 7 by Allmendinger et al. (2012). Aerial photographs have been obtained from 

Norge i Bilder and digital elevation models are taken from Norgeskart.  

 

a)                                                      b) 

 
Fig. 20. a) Equal area lower hemisphere stereographic plot showing the poles to of all measured joints in the 

inner Hardangerfjord region. Moderately to steeply SE-dipping structures are particularly abundant. An 

additional set of N-S- to NE-SW-trending, mostly W-NW-dipping fractures is found throughout the area.  

b) Overview map showing the areal domains in which structural data have been collected. 
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6.1.1 The Osa area 
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Fig. 21. (Previous page) a) Aerial photograph of Osa in the northernmost part of the field area. Lineaments are 

marked by red lines. The area is dissected by numerous fractures, but only the most obvious lineaments are 

included here. Three main fracture sets are apparent: 1) N-S-trending; 2) NE-SW-trending; and 3) NNW-SSE-

trending. The fracture zones that are shown in b, c and d are indicated by letters. b) Zone with densely spaced 

SW-dipping joints (orientation: 146/53) located between the sampling localities of KJ-1 and KJ-3. Similarly 

oriented joints are apparent over an extended distance perpendicular to the strike, but the density is particularly 

high in vicinity to the river portrayed in the photograph. View towards the NNW. c) E-dipping fractures 

(orientation: 000/ 58) that coincide with a major topographical depression. Photograph is taken directly to the E 

of the sampling location of KJ-3. View towards the NNW. d) Large-scale fracture zone with a steep dip towards 

the SE. Traces of additional brittle structures with different orientations are apparent on the steep cliff face. 

Measurements of fracture orientation could not be obtained. View towards the WNW from the road near the 

sampling site of KJ-4. 

 

The lineament density is particularly high around Osa. A variety of fracture orientations are 

evident, reflecting the complexity of the structural geology in this area. From the lineament 

map and the stereographic plot in Fig.22a, a limited number of main fracture sets can be 

determined. N-S- trending lineaments are predominant in the eastern part of the area. Densely 

spaced fractures belonging to this set are evident both towards Hardangerjøkulen in the east 

and Eidfjord in the south. The large-scale N-S-trending lineaments correspond to a set of 

steeply W- and locally E-dipping joints that are apparent in the field. In the northernmost part 

of the area, two subvertical, oppositely dipping NNE-SSW-trending fracture systems are 

dominant. An additional regional set of steeply dipping, NE-SW-trending structures roughly 

parallels the trend of the Osafjord. Directly to the SE of the fjord this fracture set is mainly 

represented by SE-dipping structures. NW-dipping structures are present, but less abundant. 

Intermediately NW-dipping fractures occur locally and may represent a conjugate array to the 

pervasive SE-dipping set. A number of intermediately to steeply dipping, NNW-SSE- 

trending structures extend across the valley between Nipahøgdi and Kyrelvfjellet (Fig. 21b), 

where the majority of the samples in the study were collected.  

  

6.1.2 The Simadalen area 

The area around Simadalen is dissected by a number of major N-S-trending structures, which 

are evident both on the aerial photograph and the stereographic plot in Fig. 22a.  These 

structures belong to a regional set of relatively large subvertical fracture zones. Individual 

lineaments can be traced from the Simadalen area northwards to Osa (c.f. Fig. 21a) and 

probably even over significantly greater distances. Subvertical, both E- and W-dipping joints 

are dominant in  
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Fig. 22. (Previous page) a) Aerial photograph of Simadalen and surrounding areas. Lineaments are marked by 

red lines. As in the Osa area to the north, N-S-trending structures are particularly conspicuous. Due to the very 

limited topographical effect on the map-view traces, the majority of the N-S-trending fractures in the area appear 

to be subvertical or steeply dipping. This assessment is confirmed by the field measurements that are displayed 

in the stereographic plot. A possible W-dipping structure crosses Simadalen in the right part of the image. 

Additional fracture systems include a NE-SW to ENE-WSW-trending set, with individual structures that parallel 

the Simadalsfjord, and a second set consisting of structures that vary in orientation between W-E and WNW-

ESE. NW-SE-trending lineaments are abundant in the area directly to the north of Kjeavatnet (i.e. northeast of 

KJ-19). Note the location of the lineaments that are portrayed in b (blue and yellow arrows). b) Steeply dipping 

to subvertical, roughly N-S-trending fracture zones in the southern flank of Simadalen (blue and yellow arrows). 

Note the array of moderately to steeply SE-dipping structures that are evident in the depression associated with 

the major fracture zone (blue arrow). View towards the SSW from the Hardangervidda plateau north of Kjeåsen. 

 

the mountains north of Kjeåsen, from which the majority of the measurements presented in 

the stereographic plot in Fig. 22a were obtained. Although not visible on the aerial 

photograph, numerous SE-dipping fractures clearly dissect the southeastern flank of 

Simadalen (Fig. 22b). Similarly oriented NE-SW-trending joints are present on the 

northwestern side of the valley, and several lineaments that are evident on the aerial 

photograph may possibly belong to the same fracture system. Fig. 22a reveals the presence of 

additional W-E to WNW-ESE-trending lineaments that clearly parallel the trend of the 

Eidfjord, suggesting that the fjord may coincide with a major fracture zone. 

 

6.1.3 The Eidfjord south flank 

Two main lineament populations are evident in the mountainous area south of Bu (Fig. 23a). 

Subvertical NW-SE- to NNW-SSE-trending fractures are mainly recognized around 

Vatnasetenuten (Fig. 23b), while NE-SW-trending structures are abundant throughout the 

area. Field observations from the eastern side of Vatnasetenuten across the valley to 

Skoddedalsfjellet (central right part of image) have revealed a general pattern of SE-dipping 

joints and fracture zones (Fig. 23c). Most of the measurements displayed in the stereographic 

plot in Fig. 23a were obtained from this area, and the SE-dipping fractures may therefore be 

slightly over-represented with respect to structures with other orientations. The structural 

pattern that predominates in the outer portions of the Eidfjord south flank deviates from that 

observed in the Osa and Simadalen areas in that N-S-trending lineaments are not as readily 

evident. An ENE-WSW-trending lineament is found to cross the vertical profile directly to the 

southeast of Bu. This structure has a similar orientation to one of the dominant fracture sets in 

the Simadalen area.   
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Fig. 23.  a) Aerial photograph of the Bu area on the southern side of the Eidfjord. Lineaments are marked by red 

lines. Two fracture orientations are dominant: NW-SE and NE-SW. The fracture zones portrayed in b and c are 

indicated by letters. b) Large-scale NNW-SSE-trending fracture that dissects Vatnasetenuten to the west of KJ-

28. No measurements of fracture orientation could be obtained. View towards the SSE from the sampling 

location of KJ-12. c) SE-dipping fracture zone (orientation: 030/70) between the summits of Vatnasetenuten and 

Skoddedalsfjellet. Similarly oriented joints, although less densely spaced, are apparent over great distances. 

View towards the NE from the eastern flank of Vatnasetenuten.   
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6.1.4 The outer Eidfjord north flank 

NE-SW-trending joints with steep, southeasterly dips are dominant on the northern flank of 

Eidfjorden in the Granvin and outer Ulvik areas. A second set of subvertical, WNW-dipping 

fractures may correspond to the orientation of the NNE-SSW-trending Sørfjorden Fault to the 

south. Joint measurements from the outer portion of the Eidfjord north flank are presented in 

Fig. 24a. 

 

6.1.5 The Sørfjord west flank 

Four main fracture sets are recorded in the Sørfjord west block (Fig. 24b), including a 

subvertical set of SE-dipping joints that is pervasive throughout the field area and a well-

represented W- to NW-dipping set that may possibly relate to the Sørfjord Fault. A secondary 

set of roughly E-W-trending joints with shallow dips towards the S is observed in the Jåstad 

area. NW-SE-trending joints with intermediate dips towards the SW are not abundant 

elsewhere in the field area, but are pronounced on the western flank of the Sørfjord.  

 

a)                                                 b)              

                
 

Fig. 24. a) Measurements from joints in the Granvin and outer Ulvik areas north of the Eidfjord. Subvertical, 

SE-dipping fractures are common. NNW-SSE-trending and NNE-SSW-trending sets are represented by fewer 

measurements. b) Joint measurements obtained west of the Sørfjord. The main fracture sets are NE-SW-, WNW-

ESE-, NNE-SSW- and E-W-trending. 
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6.2 Apatite description 
 
6.2.1 Apatite yields  

Precambrian lithologies derived from the autochthonous basement in the inner Hardangerfjord 

region are generally rich in apatite (Fig. 25). Sufficient grains were obtained from all gneissic 

rocks and most granites sampled as part of the current study. The only low-grade 

metasedimentary lithology included in the study, sample KJ-24, yielded very few apatite 

grains, but still a sufficient amount for analysis. Four of the samples derived from the Eidfjord 

granite in Simadalen, KJ-10, KJ-23, KJ, 29 and KJ-30, were found to contain considerable 

amounts of fluorite. Fluorite is quite common in granites from southern Norway and 

represents a challenge during mineral separation, since it is difficult to isolated from apatite 

through standard heavy liquid and magnetic separation procedures. Hand-picking of apatite 

crystals was attempted in order to acquire a sufficient amount of grains, but was ultimately 

unsuccessful.  

 

 
Fig. 25. Thin sections from two of the analysed samples (plane polarised light): a) Apatite grains situated within 

biotite in granodioritic gneiss (KJ-3). The left apatite is oriented with the c-axis perpendicular to the plain of 

view and displays a characteristic hexagonal cross-section; b) Ideomorphic to slightly rounded apatites in granite 

(KJ-11). Apatite grains reside within K-feldspar.  

 

6.2.2 Grain quality 

The grain quality of the samples analysed in the current study is highly variable (Fig. 26). 

Most samples contain relatively large apatite crystals. Euhedral, rounded and elongated grains 

are common, although broken fragments of large crystals are abundant in some samples. A 

number of samples, most notably KJ-12 and KJ-15, contain grains that display a brown 

discolouration, which is frequently accompanied by densely spaced, parallel, black lines (Fig. 
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26a). This particular trait is extremely problematic during counting, since fission tracks are 

barely visible through the disrupted surface. Another major problem in the analysed grains is 

zoning, which is a very common feature in apatites obtained from southern Norway. Apatites 

derived from gneissic lithologies generally display a particularly pronounced concentric 

zoning. U-rich cores are most abundant, although a few samples predominantly contain grains 

with U-rich rims. Some U-rich mineral inclusions (e.g. zircon and monazite) are present in 

most samples, but generally do not affect the analysis. Abundant mineral inclusions are found 

in some samples. Normally, these inclusions are easily recognizable and can be avoided 

during counting. Poor quality grains with weakened crystal lattices have a tendency to 

fracture during mount preparation. Cracks limit the countable surfaces of the grains, and 

strongly fractured and scratched apatites are therefore difficult to analyse. A restricted number 

of cracked grains are found in most mounts. These grains can be excluded from the analysis, 

given that the mount contains a sufficient number of intact apatites. In a few samples the 

damage caused by cracks and scratches is extensive enough to potentially affect the counting 

results (see Table 1). The majority of analysed samples from the inner Hardangerfjord area 

are U-poor. Low-U-concentrations are generally associated with low track densities, which 

severely limit the number of confined tracks available for track length measurements. 100 

confined track-in-tracks should be measured in order to fulfil the criterion for thermal history 

modelling. This number of measurements is rarely possible to obtain for samples with U-

concentrations below 15 ppm. Zoned grains, which may contain sections of particularly high 

track density, are normally avoided during the counting procedure. As a result, the U-

concentration estimated from the induced track density does not necessarily give a correct 

impression of the typical U-content of grains in the sample. Table 1 displays the general 

quality and characteristics of the individual samples, listed according to sampling area and 

affiliation to a vertical profile. The grain quality of a representative range of samples is 

documented in Fig. 26.  
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Table 1. Apatite quality for individual samples. 

Sample no. 
 

Zoning 

  Cracks 
and 

scratches 

 

General grain     
quality 

Mineral 
inclusions 

U-
concentration 

[ppm] 

   
Vertical profiles    

 Osa 
     KJ-1 Good X 

  
8.0 

KJ-3 Good X 
  

5.5 
KJ-4 Intermediate 

 
X 

 
7.2 

KJ-5 Good 
   

8.7 
KJ-6 Intermediate X X 

 
4.4 

KJ-7 Poor 
 

X 
 

4.1 
KJ-8 Poor X X 

 
10.3 

BG-14 Intermediate X X X 10.6 
KJ-24 Poor 

 
X 

 
0.7 

KJ-25 Good X 
  

10.8 
KJ-26 Good X 

  
9.4 

KJ-31 Poor X   X 5.2 
Bu 

     KJ-12 Poor 
  

X 9.4 
KJ-13 Good 

   
24.1 

KJ-14 Intermediate X 
  

31.9 
KJ-15 Poor X 

  
13.6 

KJ-16 Good X 
  

8.7 
KJ-17 Intermediate X 

  
8.6 

KJ-18 Intermediate X 
  

13.4 
KJ-28 Poor       19.3 
Kjeåsen 

     KJ-11 Good X 
  

10.3 
KJ-19 Good X 

  
10.6 

KJ-20 Intermediate X X 
 

10.5 
KJ-21 Intermediate X X 

 
14.8 

KJ-22 Good X     11.5 
            
Additional samples 

    Sørfjord west flank 
    BG-27 Intermediate X 

  
17.7 

BG-53 Good       4.5 
Inner Eidfjord south flank 

    KJ-9 Intermediate X     8.5 
Outer Eidfjord north flank 

   KJ-27 Intermediate 
   

17.0 
BG-16 Poor 

  
X 18.7 

BG-26 Intermediate X 
  

21.4 
BG-13 Good       9.8 
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Fig. 26. Photomicrographs of a selection of apatites from the analysed samples: a) Poor quality apatite grain 

typical of KJ-15 from Bu. The exposed crystal surface is obscured by a set of parallel dark lines. Similar grains 

occur in several samples. b) Strongly scratched and fractured grains common in BG-16 from Skår. Fission tracks 

are not readily evident; c) Concentric zoning of apatite from KJ-19, Kjeavatnet. This particular grain is 

characterized by a U-rich core and a rim with a slightly elevated U-concentration; d) Zoning in apatite from KJ-

14, Bu, evident by a core of relatively low track density surrounded by a concentric zone of higher track density; 

e) Relatively high track density typical of KJ-28, Vatnasetenuten; f) Low U-concentration reflected by a very 

low track density (only three tracks evident), KJ-24 from Nipahøgdi.    
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6.3 Pre-analytical calculations and calibrations  
 
6.3.1 Track density gradients 

Three IRMM-540R standard glass mica detectors were counted for each of the three 

irradiation batches included in the study and track density gradients were obtained by 

applying linear regression to the ρd values calculated for each standard glass (Fig. 27). The 

calculated ρd values range from 16.66 x 105 cm-2 to 21.26 x 105 cm-2 and a decreasing 

gradient with distance from the neutron source is found for all irradiations. A complete list of 

the container positions of individual samples and their respective ρd values is enclosed in 

Appendix B.    

 

 
Fig. 27. ρd gradient for the NoB-017 irradiation tube, in which all KJ samples were included. The equation used 

for the calculation of individual ρd values is displayed in the upper right corner. IRMM 3-1 has the highest ρd and 

was located closest to the neutron source during irradiation.   

 

6.3.2 Zeta calibration 

A personal zeta value of 251.61 ± 7.02 was calculated as the weighted mean of ten analyses 

on Durango and Fish Canyon tuff standards. The calibration results obtained from individual 

age standards are displayed in Fig. 28 and details regarding each calculation are listed in 

Table 2.  
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Fig. 28. Individual zeta values with 1σ error bars. The stippled blue line represents the weighted mean zeta. All 

calculated values except for NoB-006, DUR 2 and NoB-008, FCT 2 overlap when considering their errors.  

NoB-006, DUR 2 is less weighted than the remaining analyses due to its comparatively high zeta value.  

 
Table 2. Zeta calibration results for AFT age standard analysis. 

Irradiation Standard 
no. 

Number of  Spontaneous Induced Dosimeter Zeta  
crystals ρs (10^5) Ns ρi (10^5) Ni ρd (10^5) Nd (Ma ± 1σ) 

NoB-002 DUR 1 20 1.623 127 10.990 860 16.797 9223 253.7 ± 24.6 
NoB-002 DUR 2 20 1.623 146 10.159 914 16.827 9223 234.3 ± 21.3 
NoB-006 DUR 1 20 2.383 261 20.909 2290 21.617 5811 255.5 ± 17.5 
NoB-006 DUR 2 20 2.492 195 27.348 2140 21.460 5811 322.0 ± 25.0 
NoB-008 DUR 1 15 1.412 70 11.280 559 20.495 8071 245.3 ± 31.5 
NoB-002 FCT 1 20 2.413 157 16.970 1104 16.767 9223 234.5 ± 20.6 
NoB-003 FCT 20 2.479 109 20.081 883 18.088 9944 250.5 ± 25.9 
NoB-008 FCT 2 20 2.196 136 16.679 1033 20.258 8071 209.6 ± 19.6 
NoB-011 FCT 20 2.126 185 17.549 1527 16.755 6971 275.4 ± 22.2 
NoB-014 FCT 20 2.183 173 14.791 1172 14.548 8054 260.4 ± 21.9 

            Weighted mean zeta 251.6 ± 7.0 

i) All age standards were analysed by the external detector method (c.f. sections 3.3.1 and 3.3.2), applying a 

4π/2π geometry correction factor of 0.5.  

ii) The following ages were adopted in the calculations: 

Durango (Dur) = 31.4 ± 0.5 Ma (McDowell & Keizer, 1977), Fish Canyon Tuff (FCT) = 27.9 ± 0.5 (Hurford & 

Hammerschmidt, 1985). 

iii) Individual zeta values are weighted according to the magnitude of their errors and their disparity with respect 

to the remaining values. 
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6.4 Apatite fission track analysis 
The AFT ages obtained in the current study range from 97 to 221 Ma, with a majority of ages 

between 120 and 170 Ma. Except for the Late Triassic KJ-24 and the Late Cretaceous BG-16 

all ages are Jurassic or early Cretaceous. The youngest sample, BG-16 (97 Ma), is derived 

from the Precambrian basement at Skår northwest of Granvin and is the only sample collected 

from the hangingwall of the Hardangerfjord Shear Zone. KJ-24, which is derived from the 

parautochthonous décollement zone at Hardangervidda north of Osa, exhibits the oldest age 

(221 Ma).  

Single grain ages for all samples are displayed in radial plots in Appendix C. The span 

in grain ages within individual samples is typically between 80 and 100 Myr. As expected, the 

youngest ages are displayed by grains within the young samples BG-16, BG-26 and KJ-8, and 

cluster around 80 Ma. KJ-24 exhibit single grain ages as old as 445 and 860 Ma. Possible 

reasons for these anomalously old ages are discussed in section 8.1.2. 

Mean track lengths (MTL) were measured for eleven evenly distributed samples and 

display a limited range of values between 10.41 ± 0.25 μm and 11.66 ± 0.23 μm.  Except for 

BG-26, for which only 63 horizontally confined tracks were recognized, all samples selected 

for track length measurements fulfil the criterion of 100 measured track-in-tracks.  

 Customary Dpar measurements were performed for all samples, resulting in mean 

values between 1.18 and 1.69. The limited range of attained Dpar values suggests that all 

samples have similar chemical compositions. Their ages are thus regarded as comparable. 

Most of the analysed apatites from the inner Hardangerfjord region display rather low Dpar 

values, which are believed to reflect near end-member fluorapatite compositions. The 

requirement of five measured Dpar values per analysed grain was met in most samples. Due to 

the extremely low track density observed in the apatites of KJ-24, five measurements were 

not accomplished in all grains within this sample.   

The following sections contain a presentation of the full results obtained from apatite 

fission track analysis, subdivided into vertical profiles. Additional samples are grouped 

according to structural domains. The results obtained from AFT analysis of individual 

samples are presented in Table 3 and Fig. 29 displays the age and location of all samples 

included in the study. A cross-section with the obtained AFT results is presented for each 

vertical profile. The approximate locations of the sketched cross-sections are shown in Fig. 

30. 
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Table 3. Apatite fission track data.  

Sample no. Elevation No. of Spontaneous Induced Dosimeter Central age ± 1σ P (χ2) MTL ± 1σ SD No. of Mean Dpar SD Dpar U  

  (m a.s.l.) grains ρs (105) Ns ρi (105) Ni ρd (105) Nd (Ma) (%) (μm) (μm) tracks (μm) (μm) (ppm) 

BG-13 25 20 6.840 600 13.155 1154 18.914 8071 123 ± 8 30.3 N/A N/A 0 1.62 0.10 10 

BG-14 1060 20 11.654 679 13.610 793 16.942 6971 184 ± 12 67.8 N/A N/A 0 1.34 0.10 11 

BG-16 510 20 10.043 743 21.952 1624 16.895 6971 97 ± 5 36.6 N/A N/A 0 1.55 0.09 19 

BG-26 25 20 12.957 916 25.546 1806 16.661 6971 105 ± 5 80.1 10.41 ± 0.25 2.00 100 1.50 0.12 21 

BG-27 130 20 12.898 1099 23.555 2007 19.072 8071 130 ± 6 95.6 11.43± 0.18 1.82 63 1.31 0.09 18 

BG-53 5 20 2.944 227 5.370 414 18.993 8071 130 ± 11 98.0 N/A N/A 0 1.18 0.09 4 

KJ-1 950 20 7.508 708 12.090 1140 21.257 7923 166 ± 11 21.2 N/A N/A 0 1.40 0.08 8 

KJ-3 750 20 5.119 483 7.949 750 21.140 7923 169 ± 11 58.1 N/A N/A 0 1.45 0.13 5 

KJ-4 550 20 6.722 692 10.763 1108 21.022 7923 163 ± 9 87.5 N/A N/A 0 1.47 0.07 7 

KJ-5 330 20 7.864 708 12.563 1131 20.904 7923 163 ± 9 82.8 N/A N/A 0 1.59 0.10 9 

KJ-6 200 20 3.170 304 6.237 598 20.786 7923 132 ± 10 99.6 N/A N/A 0 1.51 0.07 4 

KJ-7 105 20 3.081 274 5.757 512 20.668 7923 138 ± 11 99.1 N/A N/A 0 1.53 0.07 4 

KJ-8 45 20 6.179 357 14.28 825 20.550 7923 111 ± 9 12.2 10.59 ± 0.25 2.47 100 1.51 0.09 10 

KJ-9 30 20 6.067 510 12.051 1013 20.432 7923 128 ± 8 49.4 N/A N/A 0 1.48 0.10 8 

KJ-11 15 20 6.963 755 14.683 1592 20.314 7923 120 ± 7 32.7 11.51 ± 0.19 1.86 100 1.46 0.07 10 

KJ-12 980 20 9.446 569 13.779 830 20.196 7923 172 ± 13 5.2 N/A N/A 0 1.27 0.12 9 

KJ-13 790 20 22.592 2264 34.128 3420 20.078 7923 165 ± 7 24.3 N/A N/A 0 1.57 0.10 24 

KJ-14 640 20 24.665 1822 44.726 3304 19.960 7923 137 ± 6 24.2 10.90 ± 0.24 2.37 100 1.47 0.13 32 

KJ-15 440 20 9.806 770 18.644 1464 19.842 7923 131 ± 10 0.1 N/A N/A 0 1.59 0.08 14 

KJ-16 190 20 7.568 523 11.909 823 19.724 7923 155 ± 10 33.7 N/A N/A 0 1.67 0.10 9 

KJ-17 100 20 5.709 397 11.173 777 19.606 7923 125 ± 9 94.0 N/A N/A 0 1.49 0.10 9 

KJ-18 1 20 8.092 701 15.93 1380 19.488 7923 124 ± 8 27.3 11.22 ± 0.19 1.95 100 1.55 0.10 13 

KJ-19 1225 20 9.674 801 13.769 1140 19.370 7923 169 ± 10 56.8 11.52 ± 0.20 1.95 100 1.50 0.12 11 

KJ-20 1025 20 9.186 829 13.907 1255 18.662 7923 153 ± 8 73.7 N/A N/A 0 1.38 0.07 10 

KJ-21 805 20 9.919 906 18.513 1691 18.544 7923 124 ± 7 26.9 10.93 ± 0.20 2.04 100 1.39 0.08 15 

KJ-22 605 20 8.010 829 14.899 1542 18.426 7923 123 ± 7 66.2 N/A N/A 0 1.38 0.09 11 
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Table 3 (continued). Apatite fission track data. 

Sample no. Elevation No. of Spontaneous Induced Dosimeter Central age ± 1σ P (χ2) MTL ± 1σ SD No. of Mean Dpar SD Dpar U  

  (m a.s.l.) grains ρs (10^5) Ns ρi (10^5) Ni ρd (10^5) Nd (Ma) (%) (μm) (μm) tracks (μm) (μm) (ppm) 

KJ-24 1345 20 0.890 76 0.913 78 18.308 7923 221 ± 36 98.7 N/A N/A 0 1.35 0.12 1 

KJ-25 1210 20 9.773 837 13.895 1190 18.190 7923 159 ± 9 96.8 11.11 ± 0.26 2.60 100 1.33 0.10 11 

KJ-26 1050 20 8.262 780 11.800 1114 18.073 7923 155 ± 10 6.2 N/A N/A 0 1.50 0.07 10 

KJ-27 50 20 11.25 958 21.761 1853 17.955 7923 116 ± 6 99.6 10.55 ± 0.18 1.76 100 1.40 0.08 17 

KJ-28 1310 20 19.547 1961 24.791 2487 17.837 7923 175 ± 8 10.7 11.66 ± 0.23 2.32 100 1.65 0.08 19 

KJ-31 15 20 3.555 366 6.275 646 17.719 7923 125 ± 9 78.3 N/A N/A 0 1.47 0.08 5 

i)   ρ = track density in 105.  N = number of counted tracks,   

ii)  Apatite analysis by the external detector method, using a 4π/2πgeometry factor of 0.5.   

iii) Calculations performed by applying an IRMM-540R zeta of 251.6 ± 7.0.   

iv)  P(χ2) = probability value of the chi-square function at n-1 degrees of freedom, where n = No. of crystals. The chi-square test is passed when P(χ2) ≥ 5 (Galbraith, 1981). 
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Fig. 29. Simplified geological map of the study area (after Sigmond, 1998) with sample locations and apatite 

fission track ages. 
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Fig. 30. Location of sketched profiles: A-A’ = Osa; B’B’ = Kjeåsen; C-C’ = Bu. The Kjeåsen profile is divided 

into two segments in order to incorporate KJ-11, which is located several kilometers southwest of the remaining 

samples in the profile. 

 

6.4.1 Osa profile 

The Osa profile comprises 12 samples collected over a relief of 1330 m and displays a wide 

range of AFT ages from 111 ± 9 to 221 ± 36 Ma. A general positive correlation between age 

and elevation is evident (Fig. 31). The lowermost 200 m of the profile are characterised by 

Early Cretaceous ages. A great span of ages from Albian (KJ-8) to Valanginian (KJ-7) is 

observed across minor vertical distances. KJ-31 is the only sample obtained from the 

northwestern flank of the Osafjord and displays an age of 125 ± 9 Ma. This age overlaps 

within 1σ error with all ages obtained from the lower part of the profile on the opposite flank. 

In the middle part of the Osa transect, between 332 and 948 m asl, a very limited variation in 

age is observed with increasing elevation, and Middle Jurassic ages are found to predominate. 

Significantly greater variation is evident in the uppermost part of the profile, which 

encompasses samples derived from various elevations on the Hardangervidda plateau. BG-14 

records an age of 184 ± 12 Ma, which is the second oldest age obtained in this study. The 

adjacent samples, KJ-25 and KJ-26, exhibit relatively young ages of 159 ± 9 Ma and 155 ± 10 
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Ma, respectively. The top sample, KJ-24, is characterized by an exceptionally old age of 221 

± 36 Ma. Taking the markedly high error into consideration, this age is found to overlap with 

the age of BG-14, which was collected further to the east and 288 m below KJ-24.  Confined 

track lengths were measured for KJ-8 and KJ-25, yielding MTLs of 10.59 ± 0.25 μm and 

11.11 ± 0.26 μm, respectively. The spatial relation between the samples in the Osa profile are 

shown together with the results from the AFT analysis in Fig. 32. 

 

       
Fig. 31. Age-elevation plot for the samples from the Osa profile. A general trend of increasing ages with 

elevation is apparent. Some samples deviate significantly from this trend, in particular two young samples 

collected at high elevations (KJ-25 and KJ-26) and two relatively old samples collected from the lower part of 

the profile (KJ-5 and KJ-7). Error bars are 1σ. 

 

 
Fig. 32. Sketched profile from Osa, with sample locations, ages and track length distributions indicated. Note 

that the figure displays two topographical features, namely the valley that extends E-W from Osa to Rundavatnet 

and the Nipahøgdi summit that is located to the north of (behind) the valley.  
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6.4.2 Kjeåsen profile 

The Kjeåsen profile originally comprised seven samples collected from sea level to an 

elevation of 1226 m. None of the three lowermost samples in the transect yielded sufficient 

apatite for AFT analysis (cf. section 6.2.1). Hence, KJ-11 from Eidfjord/outer Simadalen is 

included in the discussion in order to facilitate the establishment of an age-elevation 

relationship. The AFT ages from the Kjeåsen profile range from 120 ± 7 Ma to 169 ± 10 Ma. 

All samples collected from sea level to an elevation of 604 m asl exhibit Aptian ages spanning 

from 120 ± 7 Ma to 124 ± 7 Ma. A perfect correlation between age and elevation is observed, 

although limited age variation is recorded by this specific portion of the profile. In fact, when 

1σ errors are taken into consideration the ages of KJ-11, KJ-22 and KJ-21 are found to 

overlap. The uppermost samples reveal a strong trend of progressively increasing AFT ages 

with elevation and display a greater span of ages over approximately the same relief as the 

lowermost portion of the profile. KJ-19 exhibit the oldest age in the transect, while KJ-20, 

sampled approximately 200 m below KJ-19, has an age of 153 ± 8 Ma. Track lengths were 

measured for three samples from the Kjeåsen profile. The middle sample, KJ-21, has a short 

MTL of 10.93 ± 0.20 μm, while the top and lowermost samples KJ-19 and KJ-11 display 

similar MTLs of 11.52 ± 0.20 μm and 11.51 ± 0.19 μm, respectively. Fig. 33 shows the age-

elevation trends that are apparent in the Kjeåsen profile. In Fig. 34 the obtained data for 

individual samples are presented in a cross-section. 

 

 
Fig. 33.  Age-elevation relationship in the Kjeåsen profile. The profile may be divided into two distinct segments 

that both show excellent correlation between age and elevation.  
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Fig. 34.  Sketched profile from Kjeåsen, with topography, position of samples, ages and track length 

distributions. Note that KJ-11 is located far southwest of the remaining samples (see Fig. 29). The actual 

distance between KJ-23 and KJ-11 is thus significantly greater than the apparent distance in the figure. KJ-23, 

KJ-29 and KJ-30 yielded insufficient apatite for analysis.  

 

6.4.3 Bu profile 

The Bu profile consists of eight samples collected from sea level to an elevation of 1310 m. 

The obtained ages span from 124 ± 8 to 175 ± 8 Ma, with the oldest age displayed by KJ-28 

from Vatnasetenuten. KJ-18 is the lowermost sample and exhibits the youngest age. A fairly 

strong positive correlation between age and elevation is evident (Fig. 35). Except for KJ-16, 

all samples collected below 700 m asl record Early Cretaceous cooling ages that increase 

systematically with elevation. A discontinuity in the general age-elevation trend is present 

between KJ-14 (137 ± 6 Ma) and KJ-13 (165 ± 7 Ma), where AFT ages are found to jump 

abruptly from Early Cretaceous in the lower portion of the profile to Middle Jurassic in the 

upper part of the transect. Similar age-elevation gradients are apparent within both segments. 

KJ-16 is derived from an elevation of 189 m asl and displays an unexpectedly old AFT age of 

155 ± 10 Ma. This sample thus deviates from the otherwise well-defined age-elevation trend 

that is characteristic of the lower portion of the transect. Track lengths were measured in three 

of the samples in the Bu profile. The lowermost sample, KJ-18, and the top sample, KJ-28, 

exhibit MTLs of 11.22 ± 0.19 μm and 11.66 ± 0.23 μm, respectively, while the middle 

sample, KJ-14, has a shorter MTL of 10.90 ± 0.24 μm. The data obtained from the Bu profile 
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are presented in an age-elevation plot in Fig. 35 and according to sample position in the cross-

section in Fig. 36. 

 

 
Fig. 35. Age-elevation plot from Bu. Good correlation between age and elevation is found when the lower and 

upper portions of the profile are considered separately. KJ-16 has a considerably older age than its neighbouring 

samples and is excluded from the linear regression.  

 

 

 
Fig. 36. Sketch of the Bu profile, showing topography, sampling locations, AFT ages and track length 

distributions.  
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6.4.4 Additional samples  

Sørfjord west flank 

BG-27 and BG-53 are both derived from the Sørfjord west block and exhibit similar AFT 

ages of 130 ± 6 and 130 ± 11 Ma, respectively.  An MTL of 11.43 ± 0.18 μm is obtained for 

BG-27.  

 

Inner Eidfjord south flank 

KJ-9 is the only sample collected outside a vertical profile in the Eidfjord area. An age of 128 

± 8 Ma is obtained for this sample. Similar ages are evident at low elevations along the entire 

southern margin of the Eidfjord.   

 

Outer Eidfjord north flank 

KJ-27 from Bruravik displays an AFT age of 116 ± 6 Ma and a short MTL of 10.55 ± 0.18 

μm. Compared to KJ-18, which is derived from the opposite margin of the Eidfjord in Bu, 

KJ-27 records a slightly younger age. However, the ages overlap when errors are considered 

and thus cannot be regarded different from a statistical point of view. The samples collected 

from the western margin of the Granvinfjord have the youngest ages of all samples analysed 

in the present study. BG-26 from the outer Granvinfjord records an age of 105 ± 5 Ma, while 

BG-16 from the valley northwest of Granvin displays an even younger age of 97 ± 5 Ma. BG-

16 is derived from an elevation of 511 m asl and is thus significantly younger than 

comparable samples elsewhere in the study area. 63 confined track lengths were measured in 

BG-26. The resulting MTL of 10.41 ± 0.25 μm is the shortest value obtained in the study.  

BG-13 is derived from the Oksen peninsula directly across the Hardangerfjord from BG-27 

and has a relatively young age of 123 ± 8 Ma. 

 

6.5 Interaction of AFT data 

6.5.1 Age and elevation 

When considered independently all three vertical profiles show a moderate to strong 

correlation between age and elevation, as demonstrated in section 6.4. In Fig. 37 all ages 

obtained in the study are considered together. As would be expected in a structurally complex 

area such as the inner Hardangerfjord, the joint plot reveals significantly greater scatter than 

the plots created from individual profiles. A general trend of progressively increasing ages 

with elevation is, however, discernible. In an attempt to detect changes in the AFT age pattern 
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across the Eidfjord, all samples are colour-coded, reflecting their relative position north or 

south of the fjord. A pronounced difference is observed in the lowermost part of the plot. 

Close to sea level AFT ages are consistently younger on the north flank than on the south 

flank, although most ages overlap when 1σ errors are accounted for. At higher elevations no 

distinct pattern is apparent, and the variation in AFT age that is evident for samples collected 

at similar elevations is independent of sample position north or south of the fjord.  As a result 

of the comparably old ages at sea level on the south flank, the general age-elevation trend 

obtained from this block displays a steeper gradient than that obtained from the Eidfjord north 

block.  

 

 
Fig. 37.  Age elevation relationship for samples collected north (green) and south (red) of the Eidfjord. 

Regression lines are displayed for each group and indicate weak and moderate correlation for the north block and 

the south block, respectively. The greater scatter of data observed for the north block possibly results from the 

incorporation of two vertical profiles under this population, whereas the south block only encompasses one 

vertical profile and thus displays a more consistent relationship. See text for further details.  

 

6.5.2 Age and mean track length 

Mean track lengths of 11 samples are plotted against fission track age in Fig. 38.  A strong 

positive correlation between MTL and age is observed for the samples derived from the 

Eidfjord north block. No trend is apparent among the samples from the south block, although 

the two oldest samples are compatible with the pattern observed north of the fjord. The three 

youngest ages from the south block deviate from the linear trend as a result of their relatively 

long MTLs.  
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Fig. 38.  Relationship between mean track length (μm) and AFT age (Ma). A progressive increase in MTL with 

increased age is evident north of the Eidfjord. The samples from the southern flank do not reveal the same 

relationship. Note that the regression line is based on the data from the north block only. The coefficient of 

determination is 0.91 and thus indicates good correlation. Error bars are 1σ for both axes. 

 

6.5.3 Mean track length and elevation 

Fig. 39 reveals a general increase in MTL with elevation. This is not surprising, considering 

the established correlation between age and MTL together with the general link between age 

and elevation. The three lowermost samples from the southern block correspond to the young 

samples in Fig. 39 and do not comply with the observed linear trend.  

 

 
Fig. 39.  Relationship between MTL (μm) and elevation (m a.s.l.). Good correlation is evident for the samples 

from the north flank of the Eidfjord. The data from the south flank are rather ambiguous. Note that the regression 

line is drawn for the data from the north flank only. Error bars are 1σ. 
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6.5.4 Age and mean etch pit diameter (Dpar) 

In order to assess the influence of compositional differences on annealing behaviour, AFT 

ages are plotted against mean etch pit diameters for all samples (Fig. 40). As a result of the 

sampling scheme applied in the current study a general comparison of age and Dpar may 

inadvertently incorporate additional variables that are not accounted for, e.g. changes in 

elevation. Elevation has been shown to exert a primary control on the AFT age pattern in the 

region (cf. section 6.4) and may possibly mask the impact of Dpar. In an attempt to filter the 

age variability caused by the range of sample elevations from the potential effect of Dpar, the 

sample population is divided into two groups according to elevation. Samples collected within 

500 m of sea level have been regarded as comparable in previous studies (e.g. Hendriks et al., 

2007), and an altitude of 500 m is thus set as the boundary between the groups. No correlation 

between AFT age and mean Dpar is apparent in any of the age groups, and the compositional 

influence on differential annealing is inferred to be minor. This result is not unexpected given 

the modest range of mean Dpar values observed.  

 

 
Fig. 40. Relationship between mean etch pit diameter (μm) and AFT age (Ma) for samples collected below 

(blue) and above (red) 500 m. a.s.l. No correlation is evident in either of the groups. Error bars are 1σ. 
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single grain ages range from 69 Ma to 170 Ma, with a majority of Late Cretaceous ages close 

to sea level and Early Cretaceous ages on Hardangervidda. The full results from the  

(U-Th)/He analysis are presented in Table 4. In Fig. 41 the obtained single grain ages are 

displayed together with the corresponding fission track ages. FT-corrected ages are included 

for comparison. 

 
Table 4. Apatite (U-Th)/He data. 

Sample Elevation He 1σ U 1σ Th 1σ eU Sm 1σ FT Uncorr.  FT-corr.  1σ Prism 

no. (m a.s.l.) (ncc) (%) (ng) (%) (ng) (%) [ppm] (ng) (%)  He age (Ma) He age (Ma) (Ma) rad. (μm) 

KJ-8 45 0.499 2.5 0.037 2.4 0.015 2.6 11.7 0.169 5.6 0.70 99 141 8 54 

  
1.813 1.9 0.094 1.9 0.045 2.4 32.4 0.243 5.5 0.70 140 200 10 52 

KJ-11 15 0.444 2.4 0.035 2.4 0.051 2.4 13.1 0.255 5.6 0.71 75 106 6 56 

  
0.461 2.6 0.039 2.3 0.061 2.4 18.8 0.262 5.5 0.73 69 93 5 58 

  
1.444 2.0 0.090 1.9 0.140 2.4 20.6 0.649 5.4 0.74 93 125 6 63 

KJ-19 1226 2.425 1.9 0.098 1.9 0.113 2.4 23.1 0.871 5.4 0.74 151 204 9 61 

  
0.757 2.3 0.039 2.3 0.042 2.5 5.3 0.629 5.4 0.78 115 147 6 74 

  
1.859 2.0 0.098 1.9 0.088 2.4 14.4 0.930 5.4 0.78 120 155 6 70 

KJ-25 1210 1.091 2.1 0.067 2.0 0.029 2.5 12.3 0.451 5.5 0.76 115 150 7 65 

    1.176 2.0 0.047 2.2 0.032 2.5 17.1 0.251 5.5 0.68 170 252 14 49 
Amount of 4He is given in nano-cubic-cm at standard temperature and pressure. Amounts of radioactive 

elements are given in nanograms, with standard errors in percent. eU is the effective U-concentration in ppm 

(eU = [U] + 0.235 [Th]). FT-correction according to Farley et al. (1996). 

 

 
Fig. 41. Uncorrected (U-Th)/He ages (left) and FT-corrected (U-Th)/He ages (right) displayed with their 

corresponding AFT ages. The majority of the uncorrected (U-Th)/He ages are younger than the ages obtained 

from fission track analysis performed on the same samples. In both KJ-8 and KJ-25 one single grain (U-Th)/He 

age is found to be older than the AFT age. The FT-corrected ages show a greater spread within individual 

samples. Five grains display corrected (U-Th)/He ages that are older than the AFT ages. Error bars are 1σ. 
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From the samples collected as part of the Kjeåsen profile, KJ-11 from sea level and 

KJ-19 from the Hardangervidda plateau were dated by the (U-Th)/He method. KJ-11 shows 

relatively good reproducibility, evident by a spread in single grain ages of only 24 Ma. A 

mean age of 78 ± 7 Ma is obtained from this sample. The scatter is significantly greater for 

KJ-19. Two of the analysed grains display rather similar ages of 115 ± 6 Ma and 120 ± 6 Ma, 

while the third grain exhibits a considerably older age of 151 ± 9 Ma. Due to its incongruence 

with respect to the remaining ages, the oldest age is considered unreliable and will be 

excluded from further considerations. A mean age of 118 ± 4 Ma, obtained from the two 

youngest grains, will be implemented as a constraint in the AFT thermal history models in 

chapter 7.  

Both samples included from the Osa profile, KJ-8 and KJ-25, show poor 

reproducibility of single grain (U-Th)/He ages. Only two grains from each sample were 

successfully analysed. For both samples the third grain analysis was discarded as a result of 

U- and Th-concentrations below the detection limit.  Given the large scatter in ages observed 

for the remaining pairs of analysed grains (41 Ma and 55 Ma for KJ-8 and KJ-25, 

respectively) no valid conclusion regarding the timing of cooling through the HePRZ can be 

drawn for either of the samples. The (U-Th)/He results from the Osa profile will therefore not 

be discussed further.  

Fig. 42 shows uncorrected (U-Th)/He ages plotted against effective U-concentrations 

for each analysed grain. A general increase in single grain ages with concentration of 

radioactive isotopes is evident. Possible reasons for this pattern and its interpretational 

implications will be discussed in section 8.1.4.    

 

 
Fig. 42. Relationship between effective U-concentration and uncorrected (U-Th)/He age for individual grains. A 

positive correlation is evident for all samples, although the scatter is minor for the youngest sample, KJ-11.  
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6.7 Summary of results from AFT and (U-Th)/He analyses 
 
When all the analytical results presented in the previous subchapters are considered together, 

some distinct trends appear: Early Cretaceous AFT ages predominate close to sea level, while 

Jurassic ages are recorded by most samples from the Hardangervidda plateau. Strikingly 

consistent ages, generally within the range 111-130 Ma, are evident at low elevations 

throughout the study area. However, the samples collected close to sea level north of the 

Eidfjord systematically display younger AFT ages and shorter MTLs than samples at 

corresponding elevations from the southern margin of the fjord. This pattern is not as 

pronounced at higher elevations. The (U-Th)/He system records cooling through the 70-40 °C 

temperature interval in the Early Cretaceous on Hardangervidda and in the Late Cretaceous at 

low elevations, i.e. roughly 40-50 Ma later than the ages obtained from the fission track 

analyses. Possible explanations for the observed patterns of AFT and (U-Th)/He data will be 

discussed in chapter 8. 
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7. THERMAL HISTORY MODELLING 

 

7.1 Thermal constraints 
 
Constraints must be applied to the HeFTy models in order to confine the cooling paths 

according to the limitations given by previous geochronological work conducted in vicinity of 

the study area. Any constraint applied to the model must be justified by geological 

observations or independent data. A basic set of constraints, encompassing start and end 

conditions, is required for the software to run properly and is included in all models. In the 

present study zircon fission track data from Eidfjord (Andriessen & Bos, 1986) are applied as 

the initial constraint. The reported ages indicate rapid cooling through 175-225 ºC at 306 ± 22 

Ma. Similar results have been obtained from the same area in a more recent study by Leighton 

(2007). The closure temperature of the zircon fission track system is poorly constrained and 

has been found to vary according to cooling history. An average late Carboniferous-Late 

Jurassic cooling rate of 0.5 °C/Myr was calculated from the zircon and apatite fission track 

data of Andriessen and Bos (1986) and applied to the field-based relationship between closure 

temperature and cooling rate proposed by Bernet (2009). This approach resulted in an 

estimated closure temperature of the zircon fission track system of 200°C, which corresponds 

to the value adopted by Andriessen  and Bos (1986). The zircon fission track data from 

Eidfjord record nearly identical ages over a range of elevations, allowing the same boundary 

condition to be applied to all the models, regardless of sampling altitude. An assumed present-

day mean surface temperature of 7 ± 3 ºC was applied to the thermal history models as the 

final constraint. Where available, (U-Th)/He ages obtained in the present study were set as a 

third constraint. For samples derived from the Hardangervidda plateau, additional constraints 

were introduced to some models in order to test the viability of the peneplanation-uplift 

model. For simplicity, these constraints are described in detail together with the model 

descriptions in chapter 7.3.  
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7.2 Models with start and end constraints only 
 
7.2.1 Osa profile 

Inverse thermal modelling was performed for KJ-8 and KJ-25 from the Osa profile (Fig. 43). 

The sea level sample, KJ-8, reveals rapid cooling into the PAZ in Permo-Triassic times, 

followed by slow cooling (~0.1 °C/Ma) within the upper portion of the PAZ from the Late 

Triassic-Early Jurassic onwards. A slight increase in cooling rate is recorded in the upper part 

of the PAZ in the Paleogene. The relatively high proportion of short confined tracks in this 

sample is reflected by a long time of residence in the PAZ and a late exit at 40 Ma. Rapid 

cooling (1-3 °C/Ma) is suggested for the last 40 Myr. The modelled thermal history of the top 

sample, KJ-25, suggests entrance into the PAZ between the Permian and the earliest Late 

Triassic and involves rapid cooling until the Middle-Late Triassic. Slow cooling (~0.1 °C/Ma) 

at temperatures below 80 °C is inferred from the Late Triassic until the Early-Late 

Cretaceous. The sample appears to exit the PAZ at ~80 Ma, i.e. 40 Ma earlier than KJ-8.  

Accelerated cooling is suggested for the Cenozoic, but appears to have commenced already in 

the Late Cretaceous.  

 

7.2.2 Kjeåsen profile 

Thermal history modelling was performed for three samples from the Kjeåsen profile, 

including KJ-11 from Eidfjord/outer Simadalen (Fig. 44). The two lowermost samples, KJ-11 

and KJ-21, record rapid cooling into the PAZ between the Permian and the Early-Middle 

Jurassic. In a similar manner as for the samples from the Osa profile, slow cooling is evident 

from the Jurassic throughout most of the Cretaceous. For KJ-11 the upper boundary of the 

PAZ is encountered at ~60 Ma. Gradually enhanced cooling rates are suggested from the 

Paleogene onwards, with particularly high rates inferred for the last 20 Myr. Interestingly, the 

middle sample, KJ-21, is found to cool out of the PAZ at ~40 Ma, i.e. at a later stage than the 

lowermost sample. The thermal history model indicates progressively increasing cooling rates 

from 50 Ma until a stable rate of ~2 °C is attained at 20 Ma. A similar pre-Cretaceous thermal 

history is evident for the top sample, KJ-19. Slow cooling is suggested until 80 Ma when the 

sample crosses the upper boundary of the PAZ. Accelerated cooling is inferred for the 

Cenozoic.  
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Fig. 43. Results from inverse thermal history 

modelling of the Osa samples, with constraints 

implemented as boxes. Acceptable t-T-paths 

are marked in green, while 100 good paths are 

indicated by purple curves. One dark blue 

curve is displayed in each model and 

represents the weighted mean path. The 

temperature interval of the PAZ is marked in 

pale yellow. Proposed thermal histories of a) 

KJ-25 and b) KJ-8. Both models indicate rapid 

cooling into the PAZ in the Permian-Triassic, 

followed by a prolonged interval of residence 

in the upper PAZ. Note that KJ-8 requires a 

later exit from the PAZ than KJ-25. See text 

for further details.  
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Fig. 44.  Thermal history models for the Kjeåsen samples. 

a) KJ-19 b) KJ-21 c) KJ-11. Colour-coding as in Fig. 43. 

All samples record rapid cooling into the PAZ within the 

time interval from the Permian to the Early Jurassic. In the 

high-temperature portions of the models, the good paths 

are confined to a narrower age interval at high elevations 

than close to sea level. The latest exit from the PAZ is 

suggested for KJ-21. See text for further details. 
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7.2.3 Bu profile 

Thermal history models were generated for samples KJ-18, KJ-14 and KJ-28 from the Bu 

profile (Fig. 45). The sea level sample, KJ-18, records rapid cooling (1-5 °C/Ma) until the 

Jurassic, succeeded by slow cooling through the upper portion of the PAZ. Enhanced cooling 

rates are observed as the sample crosses the upper boundary of the PAZ at ~50 Ma. In 

comparison, the middle sample, KJ-14, reveals an earlier entrance into the PAZ and an 

extended time of residence between 80 and 60 °C. The proposed cooling paths indicate exit 

from the PAZ at 60 Ma. In contrast to the other modelled samples in the study area, KJ-28 

reveals continuous, relatively slow cooling from the Late Triassic until the present, albeit with 

slightly increased cooling rates during the last 40 Myr. According to the inverse model, the 

sample cooled out of the PAZ at 110 Ma, which is considerably earlier than the proposed 

exits of samples from similar elevations on the north flank of the Eidfjord.   

 

7.2.4 Additional samples 

Thermal history models were produced for three samples from the outer Eidfjord area (Fig. 

46). BG-27 from the Sørfjord west block appears to have cooled into the PAZ concurrently 

with the other modelled samples collected from low elevations, i.e. between the Permian and 

the Early Jurassic. A shift between rapid and slow cooling is suggested in the Jurassic at 

temperatures of ~80 °C. The sample records an early exit from the PAZ at ~80 Ma, and thus 

appears to have cooled out of the sensitivity range of the apatite fission track system 

significantly earlier than all other sea level samples included in the study. BG-26 from the 

opposite margin of the Hardangerfjord reveals a strikingly different thermal history. Because 

of its short MTL, the sample is bound to have remained in the PAZ for an extended period of 

time. A late exit from the PAZ at 20 Ma implies an abrupt change from slow (~0.3 °C/Ma) to 

rapid (2-3 °C/Ma) cooling in the Miocene. KJ-27 displays a similar thermal history to that of 

BG-26, but appears to have experienced lower temperatures during the entire interval between 

~160 and 20 Ma.  
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Fig. 45. Inverse thermal models based on AFT data 

obtained from the Bu profile. The samples are arranged 

according to their elevations: a) KJ-28; b) KJ-14; c) KJ-18. 

Note the progressively earlier exit from the PAZ with 

increasing altitude. The proposed thermal history model for 

KJ-28 indicates cooling out of the PAZ already in Albian 

times. See text for further details. 
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Fig. 46. Inverse thermal models of samples derived from 

western parts of the study area. a) Proposed thermal 

evolution for BG-26 from the western flank of the 

Granvinfjord. b) Suggested t-T history for BG-27 from 

Utne west of Sørfjorden. c) Thermal history for KJ-27 

from Bruravik north of Eidfjorden. BG-26 and KJ-27 both 

record residence at PAZ temperatures throughout the 

Paleogene, followed by rapid Neogene cooling. This 

cooling signature is not observed in the model for BG-27, 

which indicates early cooling from the upper limit of the 

PAZ in the Late Cretaceous.   

 

 

 

7.2.5 Comparison of models 

Some general trends are shared by the majority of the thermal history models presented in the 

previous subchapters, i.e. rapid Permo-Triassic cooling into the PAZ followed by slow 

cooling through the temperature interval between 80 °C and 60 °C and, finally, accelerated 

cooling starting in the Late Cretaceous-Paleogene. There are some exceptions to this general 

pattern. KJ-28 from a high elevation in the Bu profile records a virtually linear cooling trend 

from the latest Triassic onwards and is found to cool out of the PAZ already in the Early 
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Cretaceous. The modelled thermal histories of KJ-27 and BG-26 from the outer Eidfjord north 

flank indicate slow cooling until the Neogene when the samples are suggested to cool out of 

the PAZ.  Interestingly, the samples from the Eidfjord north flank consistently record a later 

onset of accelerated cooling, and hence a later exit from the PAZ, than samples from 

corresponding elevations on the south flank. The similarities and differences between the 

modelled thermal histories are illustrated in Fig. 47.  

 

 
 

Fig. 47. Schematic comparison of modelled cooling paths. The exact time of cooling into the PAZ is difficult to 

determine. Here it is estimated from the weighted mean path. Although poorly constrained, the change from 

rapid to slow cooling rates appears to have taken place in the Late Triassic-Early Jurassic. The onset of the most 

recent rapid cooling is confined to the Cretaceous-Paleogene in most models. Note the differences in the timing 

of exit from the PAZ for samples from the Eidfjord north flank (marked N) relative to samples from the south 

flank (marked S). Sample elevations are displayed in the right column.  
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7.3 Alternative models 
 
7.3.1  Paleocene peneplanation and reburial 

Additional constraints were applied to some models  in order to force the samples to the 

surface in the Paleocene, following the interpretations of Lidmar-Bergström et al. (2000) and 

Riis (1996) (cf. section 2.4.1). The time at which the samples attained surface temperatures 

(0-20 °C) was set to 70-50 Ma and a second box between 70 Ma and the present and 20-80 °C 

was implemented to allow reheating. Due to their proximity to the assumed Paleocene 

surface, KJ-19, KJ-25 and KJ-28 were chosen to test the outlined combination of constraints. 

The modelled t-T history of KJ-19 (Fig. 48a) reveals relatively rapid cooling (1-2 °C/Ma) to 

surface temperatures in the latest Early Cretaceous to Paleocene, followed by reheating to 

maximum temperatures of 80 °C in the Eocene-Oligocene. A consistent cooling rate of 1-2 

°C/Ma is suggested for the most recent portion of the thermal history. Similar thermal 

histories are evident for KJ-25 and KJ-28 (Appendix E). 

 In order to test the possible prolonged existence of a peneplain without a sedimentary 

cover, the constraint that implies reheating was removed from the modelled t-T history of KJ-

19, thus forcing temperatures below 20 °C from the entire interval between 50 Ma and present 

time (Fig 49b). The attempt of generating a model that supports this scenario is clearly not 

fully successful, considering that the proposed good paths enter the box towards the very end 

of the time interval given by the constraint. It is thereby apparent that the constraint is forcing 

a model that is not well-suited to the data.  

 

7.3.2 Mesozoic peneplanation and reburial  

A wide range of ages has been suggested for the peneplain in southern Norway (c.f. section 

2.4.1). In order to acknowledge the previous literature on this topic, further constraints were 

added to the basic model of KJ-19 to force the sample to the surface at various times during 

the Mesozoic (Fig. 49). Given the required time of residence in the PAZ for the samples to 

acquire the observed track length distributions, reburial is a necessity. Consequently, two 

series of constraints were included in the models. The first constraint accounts for cooling to 

surface temperatures (i.e. 0-30 °C) and is implemented as a series of boxes that span 20 Ma 

and altogether cover the time interval between 160 and 60 Ma. According to Fossen et al. 

(1997), the coastal regions of southwestern Norway were transgressed in Oxfordian times. 

Hence, only post-Middle Jurassic peneplanation scenarios are tested. Reburial is accounted 

for by applying a large box that extends from the youngest age limit of the first constraint to 
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the present and from 30-100°C. It is evident that cooling to surface temperatures prior to 140 

Ma implies high cooling rates throughout much of the Jurassic, while later cooling involves 

residence within the PAZ until the Cretaceous period, followed by accelerated cooling prior to 

the inferred peneplanation. Relatively rapid reheating to temperatures between 60 °C and 80 

°C is suggested in all models, although the steepness of the curve increases as the constraints 

are moved towards younger ages. Late Jurassic and Early Cretaceous peneplanation scenarios 

imply residence within the PAZ for as much as 60 Myr following reburial. All models suggest 

stable, moderately high cooling rates (0.6-1 °C/Ma) after the peak temperature of the 

reheating event (i.e. between the Early Cretaceous and the Eocene). In order to document the 

thermal effects of the Mesozoic peneplanation scenario, similar constraints have been tested 

for additional samples from the Hardangervidda plateau. The obtained models are enclosed in 

Appendix E.  

 

  
Fig. 48. Thermal history models of KJ-19, with additional constraints according to the peneplanation-uplift-

model:  a) Surface temperatures in the Paleocene and subsequent reheating to temperatures between 20 °C and 

80 °C b) Paleocene surface temperatures without subsequent reheating. The model infers nearly instantaneous 

cooling from the PAZ at ~ 60 Ma, followed by thermal quiescence.  
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Fig. 49. Thermal history models accounting for Mesozoic 

peneplanation. Surface temperatures are reached in: a) the 

Late Jurassic; b) the Early Cretaceous; c) the late Early 

Cretaceous; d) the Late Cretaceous; e) the Late Cretaceous-

Paleocene. See text for details. 
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8. INTERPRETATION AND DISCUSSION 

 
The analyses performed during the course of the present study have resulted in thirty-two 

fission track ages, two (U-Th)/He ages and a range of thermal history models. In the 

following sections the quality and possible implications of the obtained data will be 

addressed. In order to create a basis for interpretation, the first section will assess the 

influence of data quality and analytical bias on the obtained results. This is followed by the 

interpretation of fission track and (U-Th)/He data, thermal history models and observed 

structures. The obtained results will then be compared with the results from previous studies 

undertaken in the vicinity of the study area and local and regional exhumation histories will 

be proposed. Finally, the thermochronological results will be compared to the predictions of 

the peneplanation-uplift model and the ICE hypothesis.  

 

8.1. Assessment of data quality 
 
8.1.1 AFT ages 

The quality of the results obtained from fission track analysis is highly dependent on the 

specific characteristics of the analysed samples. One of the factors that may lead to systematic 

errors is inhomogeneous U-distributions within the analysed grains. A considerable 

proportion of the analysed samples were found to contain strongly zoned grains. If counting is 

performed on the U-poor section of a zoned grain, imprecise alignment may shift the grid 

towards the print of the U-rich portion of the crystal, thus causing an overestimation of 238U 

and a grain age that is too young. Gradual changes in the density of tracks are not always 

easily detectable and the effect of zoning on the resulting ages is therefore not readily 

assessed.  

The errors on the fission track ages obtained in the study are generally very low (i.e. 

typically between 5% and 8% of the calculated central age), possibly reflecting the good 

quality of the majority of the analysed grains. KJ-24 has an older age and a considerably 

higher error than all other samples included in the study (i.e. 16 % of the central age). The 

main reason for this is probably the extremely low U-content of this sample (cf. Fig. 26f). 

Few counted tracks give an imprecise ratio of the spontaneous to induced track density that 

may be prone to significant variability between grains. The thermal effect of the Caledonian 

orogeny caused total resetting of the apatite fission track system throughout southwestern 
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Norway (inferred by reset 40Ar/39Ar ages; e.g. Fossen & Dunlap, 1998), and pre-Caledonian 

ages are thus not expected for samples from the inner Hardangerfjord region. It is assumed 

that the Ordovician and Precambrian ages obtained from individual apatites in KJ-24 reflect 

the uncertainties associated with the analysis of extremely U-poor samples. 

 The chi-square test is passed by all samples analysed in the study with the exception of 

KJ-15 (Table 3). A failed chi-square test indicates the presence of more than one grain age 

population. KJ-15 is a granitic lithology obtained from the Precambrian basement and all 

grains are thus expected to have experienced identical cooling histories. The failed chi-square 

test is therefore inferred to reflect analytical complications rather than real differences in grain 

ages. KJ-15 was found to suffer from particularly poor grain quality (cf. Fig. 26a), which may 

have affected the counting results. 

 Sample BG-16 from the Granvin area exhibits a young AFT ages that deviate from the 

general age pattern observed in the inner Hardangerfjord region (i.e. Barremian to Aptian ages 

at sea level north of the fjord and progressively increasing ages with elevation). The 

particularly young age of BG-16 is surprising, considering that the sample was collected at an 

elevation of 500 m asl and is expected to have cooled out of the PAZ relatively early 

compared to the majority of sea level samples from the area. Difficulties were encountered 

during the analysis of BG-16 as the surfaces of most grains were found to be obscured by 

numerous cracks and scratches (cf. Fig. 26b). The scratched crystal surfaces lower the 

perceptibility of spontaneous tracks significantly, thus causing a decrease in the apparent AFT 

age. For analytical reasons the age of BG-16 is therefore considered a minimum age, and the 

sample will be treated with caution during the discussion of the possible geological 

implications of the data obtained in the study.   

 

8.1.2 Mean track lengths 

The generally low U-concentration that characterises the apatites from the basement of the 

inner Hardangerfjord region limits the number of samples suitable for confined track length 

measurements. 100 measured track lengths were obtained for 10 samples. In BG-26 only 63 

tracks could be measured, and therefore the thermal history model generated from this sample 

is less robust than the remaining models.  

The reproducibility of apatite fission track length data was assessed in a recent 

contribution by Ketcham et al. (2009).  As part of this study a number of different analysts 

were invited to measure track lengths in two pre-selected grain mounts. The resulting MTLs 

and track length distributions were found to show great scatter. It is thereby clear that the 
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track length measuring procedure is significantly affected by biases introduced by the analyst, 

and the estimated MTLs hold considerable uncertainty.  According to Ketcham et al. (2009), 

an important part of the problem is related to the lack of an efficient calibration procedure.  

Commonly, the analyst fails to recognize short confined tracks and the resulting MTL is 

driven towards a high value. The fact that long confined tracks are more likely to intersect 

surface tracks contributes to this bias (Laslett et al., 1982). In the present study the obtained 

track length distribution signatures are found to be dominated by rather short tracks, evident 

by MTLs within the range 10.41 ± 0.25 μm to 11.66 ± 0.23 μm.  Problems associated with 

overestimation of MTLs thus appear to have been avoided. Instead, the recognition of the 

total lengths of some of the measured tracks was impeded by poorly defined track tips. F-rich 

apatite varieties, which are predominant in the analysed samples, have particularly low 

etching efficiencies. Consequently, local underetching of tracks may be a problem and the 

obtained track length distributions may possibly contain an overly high proportion of 

relatively short tracks. 

 

8.1.3 Inverse thermal history models 

Inverse thermal modelling is a useful tool for acquiring knowledge about the regional cooling 

style. However, thermal history models do not by any means provide the ultimate solution to 

the thermal evolution of the analysed samples. The models present a range of possible cooling 

histories and can be used as a guide to which conditions are required for the sample to attain 

its specific AFT characteristics. As demonstrated in chapter 7, the suggested time- 

temperature paths are highly dependent on the constraints applied to the model. Hence, a 

model is no better than the assumptions that constitute its basis. The low-temperature 

thermochronological data from which a model is generated, are subject to analytical biases 

that introduce additional errors. Track length distribution signatures exert a major impact on 

the suggested cooling paths. An MTL that is biased towards a low value will force the model 

to suggest a long residence time within the partial annealing zone. Conversely, an 

overestimated MTL entails rapid cooling through PAZ temperatures. In the inner 

Hardangerfjord region there are no independent observations or data that reveal aspects of the 

thermal history from the time of closure of the zircon fission track system to the present. It is 

not justifiable to introduce additional constraint solely to restrict the paths, and consequently, 

a vast range of possible cooling histories are supported by the data. In the present study, 

additional thermal constraints have been implemented in order to test a range of geological 
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scenarios proposed in previous studies. The purpose of this approach is to determine the 

degree to which the data are in agreement with the inferred geological processes.  

 

8.1.4 (U-Th)/He ages 

Two (U-Th)/He single grain analyses yielded unreliable ages due to U- and Th-concentrations 

below the detection limit. For the remaining grains the total analytical error ranges from  

2.4 % to 3.2 %, which is regarded as acceptable. The poor reproducibility observed for the 

samples KJ-8 and KJ-25 may be attributed to a variety of factors, including the presence of 

minute mineral inclusions and other impurities. Differential zoning characteristics alone are 

not sufficient to account for the spread in single grain ages, but may contribute to the 

mineralogical bias. Normally, He re-extraction signatures are expected to be indistinguishable 

from blank levels. Excess He in the crystal subsequent to the main degassing may indicate the 

presence of U-Th-rich mineral inclusions within the analysed grain (Farley, 2002). Two of the 

grains from sample KJ-19 yielded slightly elevated He re-extraction values (Appendix D). As 

explained in section 3.6.5, mineral inclusions introduce parentless He to the apatite crystal 

and thus increase the grain age. Although no inclusions were detected in the crystals prior to 

analysis, a potential effect of excess He derived from foreign mineral species cannot be ruled 

out completely.   

The alpha-ejection correction of Farley et al. (1996) requires a homogeneous U-Th-

distribution and may not provide a good representation for the samples from the inner 

Hardangerfjord region. Pronounced concentric zoning is evident for both the samples that 

show reliable (U-Th)/He results. KJ-19 principally displays grains with U-rich cores and 

relatively wide, U-poor rims. The U-distribution pattern in KJ-11 is more complex, with thin, 

concentric zones of extremely high U-concentration within a bulk material characterized by a 

rather low content of U. Since the samples included in the study generally exhibit increasing 

concentrations of parent nuclides from the rim towards the core, the FT- correction will 

overestimate alpha-ejection, and the corrected (U-Th)/He ages will be too old. In comparison, 

uncorrected (U-Th)/He ages do not account for alpha-ejection from the U-poor rim and will 

be too young. Considering the higher contribution of He from the core of the grain relative to 

the rim, the uncorrected age is suggested to represent the best approximation for the samples 

analysed in the present study.  Fig. 50 illustrates the influence of zoning on the corrected  

(U-Th)/He age for typical grains from KJ-11 and KJ-19. 
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Fig. 50. Typical zoned apatites from KJ-11 and KJ-19 with qualitative U-distribution profiles: a) Grain from KJ-

11. Elevated U-concentration is evident in the core region. The rim is characterized by a very low track-density, 

which implies that the effect of alpha-ejection is limited; b) Apatite from KJ-19. This grain displays a wider U-

rich core than the grain in a. The outermost U-poor rim is generally more than a stopping distance (i.e. ~20 μm) 

wide and the effect of alpha-ejection is probably not pronounced. Both distribution patterns are associated with 

over-corrected (U-Th)/He ages when applying the approach of Farley et al. (1996).   

 

The (U-Th)/He system records cooling through lower temperatures than the AFT 

system and is generally expected to yield younger ages. When considering the uncorrected 

(U-Th)/He ages, this relationship holds for most grains. However, some single grain ages are 

found to be considerably older than the corresponding AFT ages. This is obviously 

challenging to explain, since it implies earlier cooling through the PAZ than through the 

HePRZ. As discussed above, anomalously old (U-Th)/He ages may be attributed to minute 

mineral inclusions and to some extent zoning. Additionally, internal factors that influence the 

production and retention of He in apatite may lead to erroneous results. Based on step-heating 

diffusion experiments, Shuster et al. (2006) discovered that the effective closure temperature 

of the (U-Th)/He system increases with concentration of radiogenic He. Alpha recoil damage 

may impede He diffusion, which ultimately leads to (U-Th)/He ages that are too old. This 

effect is believed to be most pronounced for old samples that have accumulated extensive 

radiation damage. A general positive relationship between effective U-concentration (eU) and 
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(U-Th)/He age is found for the samples analysed in the present study (Fig. 42). As expected 

from the He trapping model of Shuster et al. (2006), the relationship is least pronounced for 

the youngest sample, KJ-11. It is thus concluded that the cumulative effect of radiation 

damage may have significantly affected the retentive properties of the analysed grains, 

causing overestimated (U-Th)/He ages. The degree to which this process has influenced the 

results is not known and the presumably reasonable ages obtained from KJ-11 and KJ-19 will 

still be discussed in terms of their geological implications in following sections. 

 

8.2 Interpretation of apatite fission track and (U-Th)/He data 
 
All samples measured in the present study display wide confined track length distributions 

and short mean track lengths that are suggestive of slow cooling through the PAZ. The 

obtained fission track ages are therefore interpreted as apparent ages that record cooling 

through the temperature interval between 120°C and 60 °C. As a result of the presumed slow 

ascent through the crustal depths associated with PAZ temperatures, the cooling and 

exhumation rates obtained from the vertical profiles partly reflect the relative positions of the 

samples within the PAZ (cf. Fitzgerald & Gleadow, 1990; Gallagher et al., 1998). Based on 

the heat flow data of Pascal et al. (2010), a low present-day geothermal gradient of ~20 °C is 

estimated for the inner Hardangerfjord region. Similarly low paleogeothermal gradients have 

previously been calculated for the Mesozoic (e.g. Leighton, 2007). Hence, a gradient of 20 °C 

is inferred for the Jurassic-Cretaceous and is implemented in the cooling rates presented in 

following sections. The supposedly low geothermal gradient implies relatively limited 

temperature differences between samples in the vertical profile and justifies the estimation of 

cooling rates based on age-elevation relationships. Nevertheless, the lowermost samples are 

inferred to have resided at higher temperatures throughout the cooling history and are more 

strongly affected by annealing-related age reduction. Consequently, the cooling rates 

presented below may be slightly underestimated.   

 Several studies have stressed the influence of topography on isotherms and its 

potential effect on low-temperature thermochronometers such as AFT and particularly 

(U-Th)/He (House et al., 1998; Mancktelow & Grasemann, 1997; Stüwe et al., 1994). 

Isotherms are generally found to be far apart beneath ridges and closely spaced beneath 

valleys (e.g. Stüwe et al., 1994). The high-relief topography that characterises the inner 

Hardangerfjord region could potentially have a pronounced effect on the position of isotherms 

in the uppermost crust. However, the main geomorphological features in southwestern 
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Norway were attained during a series of glaciations between ca. 2.5 Ma and 11.5 ka (Nesje & 

Whillans, 1994), and thus post-date the youngest AFT and (U-Th)/He ages obtained in the 

present study by more than 94 Ma and 66 Ma, respectively. Although fjords and glacial 

valleys were likely carved into pre-existing topographic lows, extreme longevity is required 

for the topographic features to be preserved over the time interval in question. The position of 

the isotherms may have shifted significantly since the samples entered the PAZ and the 

HePRZ, and the topographic effect, if any, is difficult to assess. Consequently, the deflection 

of isotherms is not taken into account in the interpretations presented below.  

 

8.2.1 Osa profile 

Samples collected at high elevations are generally inferred to have cooled through the 

isotherms at an earlier stage than samples collected close to sea level and apatite fission track 

ages are therefore expected to increase with altitude. In the Osa area the complete picture is, 

however, much more complex. The middle-upper part of the profile displays nearly identical 

ages (from 155 ± 10 Ma to 169 ± 11 Ma) over a relief of > 850 m. Significant scatter is found 

across short vertical distances in the lowermost and particularly the uppermost portions of the 

transect. As described in chapter 6.1.1 the Osa area is characterised by numerous lineament 

populations and displays a generally high fracture density. The distribution of fission track 

ages is thus suggested to be strongly influenced by faulting (Fig. 51). Differences in cooling 

ages for adjacent fault-bound blocks are expected where the displacement is of sufficient 

magnitude to be resolved by the AFT method. The ages obtained from opposite sides of major 

lineaments in the Osa area generally do not differ by more than their 1σ errors. Consequently, 

the fission track record is not conclusive with regard to fault activity, but the disordered and 

locally inverted age-elevation relationship strongly suggests displacement along some of the 

observed lineaments. KJ-26 and BG-14 are relatively closely spaced, but record significantly 

different AFT ages of 155 ± 10 and 184 ± 12 Ma, respectively. From the aerial photograph in 

Fig. 51 it is clear that the two samples are separated by a distinct N-S-trending lineament. It 

could be argued that down-to-the-west displacement along this structure may have caused 

exhumation of rocks from deeper crustal levels in the eastern block, thus causing the young 

age of KJ-26. However, further field observations are required to validate this interpretation. 

It should be noted that BG-14 is significantly older than KJ-25 (159 ± 9 Ma), which is derived 

from a higher elevation to the west. The possibility for differential exhumation across mainly 

N-S trending structures in the area between the samples cannot be ruled out, considering the 

high density of lineaments with such attributes to the east of the Nipahøgdi peak. The middle 
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part of the profile is dissected by several major NW-SE- to N-S-trending structures. Two 

pronounced lineaments are evident between KJ-1 and KJ-3. KJ-3 is derived from a lower 

elevation than KJ-1, but displays a similar age (169 ±11 Ma, as opposed to the age of 166 ± 

11 Ma obtained from KJ-1). Juxtaposition across one or both of the intervening structures is 

conceivable. The inferred faults are found to exhibit opposite dip directions. It is therefore not 

clear which sense of movement is required to produce the observed age pattern, and the 

effects of the individual structures cannot be determined. A substantial jump in AFT age is 

found between KJ-5 (163 ± 9 Ma) and KJ-6 (132 ± 10 Ma) in the lower part of the profile. 

The age difference may be attributed to down-to-the-east extensional displacement along a N-

S-trending fault that extends across the valley between the sampling localities. The age 

obtained from KJ-31 on the northwestern margin of the Osafjord (125 ± 9 Ma) is slightly 

older than the age of KJ-8 (111 ± 9 Ma) from a higher elevation on the opposite 

 

 

 
Fig. 51. Interpretation of the AFT ages from the Osa profile, illustrated schematically. Stippled lines indicate 

insufficient field data for determination of fault orientation. The proposed sense of shear along individual 

structures is based on the fission track ages of the fault-bound blocks. Question marks indicate that the 

presumably offset ages overlap within error. Consequently, the data are not conclusively in favour of fault 

displacement. A section of the aerial photograph from Osa is shown for comparison.  



8. INTERPRETATION AND DISCUSSION 

117 
 

margin, and thereby suggests down-to-the-northwest displacement across the fjord. However, 

the ages overlap within error and differential exhumation cannot be substantiated. The 

juxtaposed AFT ages in the Osa profile require Middle-Late Jurassic or later reactivation of 

structures.  Assuming that faulting in general causes enhanced denudation of the up-faulted 

block, the pattern of ages is concordant with mainly extensional displacement. Since no 

apparent age-elevation gradient can be established, the magnitude of displacement for the 

individual faults cannot be determined. The complex pattern of brittle structures in the Osa 

area makes it difficult to assess which of the individual fault populations may have been 

reactivated during post-Middle Jurassic times. Offset fission track ages are observed across 

N-S-, NW-SE- and possibly NNE-SSW – NE-SW-trending lineaments.  

 The MTLs obtained from the Osa samples KJ-8 and KJ-25 are 10.59 ± 0.25 μm and 

11.11 ± 0.26 μm, respectively. According to the general shape of the cooling paths obtained 

from the thermal history models, both samples experienced rapid cooling into the PAZ in the 

Permian-Early Jurassic, followed by protracted, slow cooling (cf. Fig. 42). This cooling 

history would imply a prolonged time of residence in the PAZ for the lower sample, KJ-8, and 

thus reduced track lengths as a result of extensive annealing. The observed relation between 

MTL and elevation is therefore reasonable. Interestingly, KJ-8 displays a bimodal track length 

distribution. According to Gleadow et al. (1986) bimodal distribution signatures are generally 

associated with reheating events. Potential causes of reheating include reburial by sediments, 

thermal disturbances in relation to intrusions and hydrothermal circulation along fault 

systems. Reburial is considered highly unlikely as a cause of the observed bimodal 

distribution in KJ-8, considering that KJ-25 does not record reheating. There is no evidence 

for igneous activity onshore southern Norway since the Triassic. Hydrothermal circulation in 

the densely spaced brittle structures in vicinity to the Osafjord may potentially have caused 

enhanced annealing of fission tracks in KJ-8. It is, however, uncertain whether numerous, 

short episodes of hydrothermal heating could have produced two distinct peaks in the track 

length distribution histogram.  

 

8.2.2 Kjeåsen 

From the age-elevation plot in Fig. 33, a break in slope is apparent at 124 Ma. An abrupt 

change in the slope of the regression line, from steep in the lower portion of an age-elevation 

plot to gentle at higher elevations, has traditionally been interpreted as an indication of a 

recent episode of accelerated exhumation (e.g. Gleadow & Fitzgerald, 1987; cf. chapter 

3.5.3). The upper portion of the Kjeåsen profile records an apparent cooling rate of ~0.2 
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°C/Ma, which is very slow compared to the rate of ~5.4 °C/Ma obtained from the lower part. 

Late Cretaceous accelerated cooling is not recorded elsewhere in the study area, nor has it 

been recognized by independent means. It is thus important to assess whether the apparent 

break in slope represents a real cooling event. For basement rocks that have cooled relatively 

rapidly from temperatures below those of the PAZ (i.e. samples from the lower part of the 

profile), the expected MTL is normally >14 μm (Gallagher & Brown, 1997). Samples that 

record prolonged residence within the PAZ (i.e. samples derived from the portion of the 

profile above the break in slope) are expected to exhibit shorter MTLs and wider track length 

distributions. The uppermost and lowermost samples from the Kjeåsen profile display nearly 

identical MTLs of ~11.5 μm. Since the short MTL of KJ-11 is not in concord with rapid 

cooling through the PAZ, an Early Cretaceous episode of accelerated cooling is considered 

unlikely. This interpretation is corroborated by the thermal history models from the Kjeåsen 

samples, which do not support enhanced cooling rates at ~120 Ma (cf. Fig. 44). In fact, 

thermal quiescence and residence within the upper PAZ is required throughout the Early 

Cretaceous in order to produce the observed track length distributions. Provided that the age-

elevation trend observed for the Kjeåsen samples is not a result of a cooling event, other 

geological processes must be responsible for the nearly identical ages obtained from the lower 

800 m of the transect. As demonstrated for the Osa profile in the previous section, faulting 

can produce unrealistically steep and locally reversed age-elevation gradients. The age 

distribution in the Kjeåsen profile is thus interpreted to be a result of fault-related differential 

exhumation. For reasons discussed in section 8.3.4, it is reasonable to infer that the inner 

portion of the Hardangerfjord may function as a major structural discontinuity. In order to 

reveal the nature of the identified discontinuity and evaluate its possible implications for the 

tectonic evolution of the area, it is necessary to consider the results from all vertical profiles 

and additional samples jointly. Thus, the thermochronological results from the Kjeåsen profile 

will be further elaborated when the combined exhumation history of the entire inner 

Hardangerfjord region is discussed in chapter 8.6. As a first-order assessment, the AFT age 

pattern obtained from the Kjeåsen profile may be interpreted as an indication of down-to-the-

southeast displacement across the Simadalen segment of the structure. A throw of ~750 m is 

inferred from the age of KJ-11 and the age-elevation gradient in the upper part of the profile. 

Assuming a general error of ± 10 Ma on the fission track ages, the minimum throw that can be 

detected by the AFT data from the Kjeåsen profile is ~250 m. This estimate assumes that the 

samples from the northern margin of the Simadalsfjord have not been juxtaposed subsequent 

to the time of entry into the PAZ. A small number of NE-SW - NNE-SSW-trending 
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lineaments are found to dissect the upper part of the sampled profile (see Fig. 22). Due to 

limited field data from these structures, no inference about dip direction and sense of 

movement can be made. Differential exhumation across these structures may potentially have 

contributed to the very shallow age-elevation gradient observed for the upper part of the 

Kjeåsen profile (Fig. 52). However, the low apparent cooling rate may also reflect actual, very 

slow exhumation during Middle Jurassic-Early Cretaceous times. Assuming that all samples 

derived from the northwestern margin of the Simadalsfjord have experienced the same 

thermal history, an apparent cooling rate of 0.3 °C/Ma and an exhumation rate of 14 m/Ma are 

estimated.  

The MTLs obtained from the Kjeåsen profile are within the range 10.93 ± 0.20 μm - 

11.52 ± 0.20 μm. Wide track length distributions are obtained for all samples and reveal 

complex cooling histories that involve prolonged residence within the PAZ and possibly 

episodes of mild reheating. The MTL of KJ-11 from sea level south of the Simadalsfjord 

(11.51 ± 0.19 μm) is significantly longer than the MTL of KJ-21 obtained from an elevation 

of 807 m asl on the opposite flank (10.93 ± 0.20 μm). This relation implies a longer period of 

residence in the PAZ for KJ-21 and suggests later juxtaposition of the fjord flanks, possibly as 

a result of down-to-the-southeast displacement across the Simadalsfjord. Hence, the MTLs for 

the Kjeåsen profile are in good agreement with the interpretations drawn from the AFT ages.  

 

   
Fig. 52. Interpretation of the age-elevation relationship of the Kjeåsen profile. The lowermost sample, KJ-11, is 

located on the southern margin of the Eidfjord, which is suggested to coincide with a major crustal discontinuity. 

The samples from higher elevations on the north flank are inferred to record steady cooling through the PAZ. 
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The spatial separation between the sea level sample, KJ-11, and the Hardangervidda 

sample, KJ-19, is large and the obtained (U-Th)/He data unfortunately do not provide detailed 

information on the cooling path of the Simadalen area. In order to shed light on aspects of the 

post-Jurassic thermal evolution, the (U-Th)/He ages can be combined with the data from 

fission track analysis. The mean (U-Th)/He ages of KJ-11 and KJ-19 are younger than the 

obtained AFT ages by ~40 and ~50 Ma, respectively, and indicate cooling through the 

temperature interval between 80°C and 40° C in the Cretaceous. By assuming lowered 

effective closure temperatures for the AFT and (U-Th)/He systems during slow, monotonous 

cooling (cf. Dodson, 1973), an average cooling rate of < 1 °C/Ma is calculated for the Middle 

Jurassic-Late Cretaceous. This estimate is in accord with the rate obtained from the AFT data 

in the upper part of the profile and the thermal history models. (U-Th)/He data have the 

potential of revealing further information on the timing of faulting along the Simadalsfjord. If 

down-to-the-southeast fault activity occurred mainly before the (U-Th)/He signatures of the 

samples were attained, equal (U-Th)/He ages would be expected from corresponding 

elevations on both margins, and the temporal separation between the AFT age and the (U-

Th)/He age would be greater on the southeastern flank than on the northwestern flank. The 

nearly similar separation found on both flanks of the fjord may indicate significant post-Early 

Cretaceous differential exhumation. However, the credibility of this assessment is greatly 

reduced due to the generally poor reproducibility of (U-Th)/He ages achieved in the current 

study.    

 

8.2.3 Bu 

In general, the Bu profile shows a good correlation between age and elevation, but there is a 

marked discontinuity in the trend between 640 m and 790 m asl. The good age-elevation 

correlation that is evident when the upper and the lower portion of the profile are considered 

separately possibly indicates common cooling histories for all samples within each of the 

segments. The relatively young AFT ages below ~640 m asl imply that the lower part of the 

profile records later exhumation than what would be expected from the cooling trend of the 

upper portion of the transect. The observed distribution may possibly reflect faulting along a 

structure that extends across the Bu valley and divides the profile between KJ-13 and KJ-14 

(Fig. 53a). It should be noted that no such structure is readily evident from the lineament map 

in Fig. 23. The two segments of the age-elevation plot record strikingly similar gradients, 

which further support the interpretation of differential exhumation as a result of faulting. KJ-

16, with its Late Jurassic age, does not fit into this interpretation, and hence must be classified 
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as an outlier. The legitimacy of such an assessment is questionable, considering the absence 

of analytical explanations for the old age of KJ-16. Alternatively, the observed distribution of 

AFT ages may be explained by down-to-the-west displacement across a roughly N-S-trending 

structure that divides the profile into two distinct blocks (Fig. 53b). Interestingly, the 

comparably younger samples are all located further to the east than the older samples. 

Pronounced, densely spaced NNW-SSE-trending lineaments are observed directly across the 

Eidfjord in the Bruravik area. Whether these structures continue across the fjord and dissect 

the southern flank is not known for certain, but structures belonging to the NNW-SSE - NNE-

SSW-trending system generally appear to make up large-scale discontinuities that can be 

traced across considerable lateral distances in the inner Hardangerfjord region. It is considered 

likely that such faults may also dissect the Bu area, although aerial photographs do not 

immediately reveal the presence of a distinct lineament, across which the AFT ages may have 

been offset. As evident from Fig. 53b, KJ-16 fits excellently into the age-elevation trend of 

the westernmost samples. KJ-28 is derived from Vatnasetenuten and is the easternmost 

sample included in the profile. Despite its location within the presumed eastern block, KJ-28 

records an old age that is compatible with the age-elevation gradient of the western samples. 

From the aerial photograph in Fig. 23 it is clear that KJ-28 is separated from the remaining 

samples in the profile by several additional lineaments. Although their records of 

displacement are unknown, it is considered likely that differential movement across some of 

these structures may have produced a slightly different exhumation history for KJ-28 than for 

the other samples derived from the presumed western block. Regardless of which fault is 

interpreted to have caused the distinct difference between the two segments of the profile, the 

AFT age pattern implies a throw of ~1200 m. The Caledonian thrust boundary, which clearly 

predates the recorded faulting in the Bu area, is located at rather similar elevations throughout 

western Hardangervidda. Consequently, the estimated throw appears to be unreasonably 

large. In this respect, it should be noted that the calculations are based on the age-elevation 

gradient determined by regression and do not account for the errors on individual ages. AFT 

ages may be applied in order to constrain the timing of displacement. The youngest age 

recorded in the down-faulted block is assumed to reflect the maximum age at which 

displacement would produce different AFT signatures across the fault. Thus, faulting must 

have occurred during the time interval between the latest Jurassic and the present. As a result 

of the relatively steep age-elevation gradient, the minimum detectable throw calculated for the 

Bu profile is ~950 m, i.e. significantly greater than for the Kjeåsen profile. An apparent 
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cooling rate of 1 °C is estimated for the Middle Jurassic-Early Cretaceous. This corresponds 

to an exhumation rate of 49 m/Ma. 

   

 

 
Fig. 53. Possible interpretations of the Bu profile: a) Age-elevation relationship explained in terms of down-to-

the-south movement along a fault that crosses the Bu Valley between KJ-14 and KJ-13. The age of KJ-16 is not 

consistent with this interpretation. Accordingly, KJ-16 is assumed to be an outlier. b) Scenario involving down-

to-the-west movement along a presumably N-S-trending fault. KJ-28 (marked outlier) is located far from the 

other samples and may belong to a third structural block. 
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lower temperatures than the sea level sample throughout the inferred slow cooling in the 

Jurassic-Cretaceous and should thus have experienced less annealing. It should be noted that 

the track length distribution of KJ-14 contains three frequency peaks. Trimodal track length 

distributions are normally not encountered, and it is difficult to envision which thermal 

history could have produced this distinct signature. Hence, it is considered likely that the 

MTL of KJ-14 is affected by significant analytical bias, possibly as a result of particularly 

poor perceptibility of track tips.  

 

 8.2.4 Summarised interpretation of vertical profiles 

Assuming that the Kjeåsen profile is best explained by juxtaposition across the Simadalsfjord, 

there are no indications of any rapid cooling events within the time interval defined by the 

obtained ages. Thermal history modelling of samples from the inner Hardangerfjord region 

suggests possible accelerated cooling during the Cenozoic. It is thus considered likely that 

rocks residing below the PAZ prior to the assumed cooling event are not yet exposed at the 

surface. In a typical age-elevation diagram, the sampled profiles are therefore inferred to plot 

above the break in slope.  

 

8.2.5 Additional samples 

An easily noticeable feature in the AFT record from the inner Hardangerfjord region is the 

remarkably young ages and short track lengths obtained from the samples from the Granvin 

area. For analytical reasons, the age of BG-16 may be unreasonably young (cf. section 8.1.1) 

and is not taken into account in the following discussion. BG-26 from the western flank of the 

Granvinfjord displays an age of 105 ± 5 Ma and is considerably younger than the majority of 

nearby samples. Interestingly, the sampling site of BG-26 is situated within internal portions 

of the HSZ. Numerous densely spaced lineaments are found in association with the shear zone 

in this area. These parallel features may represent brittle structures developed during late 

stages of Caledonian orogenic collapse (Fossen & Hurich, 2005). The abnormally young age 

of BG-26 is interpreted as a result of Mesozoic reactivation of the NE-SW-trending fracture 

set, accompanied by convective heat transfer from circulating meteoric water along the fault 

surfaces. Previous studies (e.g. Wölfler et al., 2010) have shown that hydrothermal fluids of 

sufficient temperature may affect the apatite fission track system by partially resetting ages 

and track length signatures. Heat transfer principally affects a narrow zone in immediate 

vicinity to the fault surface. The timing of hydrothermal alteration is constrained by the 

obtained fission track age. For BG-26 this implies post-Early Cretaceous fault reactivation. 
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Mylonitic fabrics related to the Hardangerfjord Shear Zone have been reported from the 

Bruravik area (Fossen & Hurich, 2005), from which the relatively young sample KJ-27 was 

obtained. In a similar manner as for BG-26, KJ-27 may potentially have been influenced by 

hydrothermal activity associated with brittle reactivation of structures within the deformation 

zone of the HSZ. High fracture densities (generally dm-m scale spacing between joints) are 

observed throughout the studied area. In this respect, the sampled outcrops in Granvin and 

Bruravik do not differ substantially from the inner Hardangerfjord region in general, and the 

fracture densities of the sampling sites of BG-26 and KJ-27 cannot unequivocally explain 

why these samples in particular would have been affected by hydrothermal fluid flow.  All 

four remaining samples collected outside the vertical profiles record cooling through the PAZ 

in the Early Cretaceous (120-130 Ma). 

  

8.3 Interpretation of inverse thermal history models 
 
8.3.1 Rapid Permo-Triassic cooling 

The thermal history models presented in chapter 7 indicate rapid cooling during the Permo-

Triassic, consistent with the timing of the earliest, well-documented North Sea rift phase (e.g. 

Færseth et al., 1995) and with previous thermochronological studies from southern Norway 

(Andriessen & Bos, 1986; Dunlap & Fossen, 1998). Rift flank uplift associated with basin 

development is suggested as the dominant cause of the high exhumation rates. An average 

Permo-Triassic cooling rate of 2-6 °C/Ma is calculated from the basic thermal history models 

from the inner Hardangerfjord region. In general, the pre-Jurassic cooling is found to be 

poorly constrained, and a precise estimate is difficult to obtain. The time prior to the Early 

Jurassic is not resolved by the AFT ages, and hence there is no basis for comparison of 

cooling rates inferred from thermal history models and age-elevation gradients.  

 

8.3.2 Jurassic-Cretaceous thermal quiescence 

The shift from rapid cooling in association with the first phase of rifting to the lower cooling 

rates found for the Jurassic-Cretaceous is not well constrained by the thermal history models, 

but is tentatively pinned to the Late Triassic-Early Jurassic. A great scatter is observed 

between the 100 good paths identified in each model, especially at high temperatures. 

Consequently, the range of feasible ages for the break in slope exceeds 100 Ma. Low cooling 

rates (< 1°C/Ma) appear to have characterised the inner Hardangerfjord region at least until 

the early Late Cretaceous. Enhanced Late Jurassic cooling is not confirmed by any of the 
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models, suggesting that the Jurassic North Sea rifting did not significantly affect onshore 

areas inland of the coastal region. Previous studies have suggested a minor effect of the 

Jurassic rift phase even in coast-proximal areas (e.g. Færseth et al., 1995), which is 

corroborated by the lack of evidence for post-Triassic igneous activity onshore (Fossen & 

Dunlap, 1999). 

 

8.3.3 Cenozoic accelerated cooling 

A second phase of accelerated cooling appears to have commenced in the inner 

Hardangerfjord region in the latest Cretaceous-Paleogene, i.e. approximately concomitantly 

with the breakup of the North Atlantic and the arrival of the Iceland mantle plume (Doré et 

al., 1999; Skogseid & Lunt, 2012).The inflection point of the cooling paths is found in the 

uppermost part of the PAZ for most models. Thus, the thermal evolution following the shift in 

cooling rate occurs outside the sensitivity range of the AFT method and cannot be inferred. 

The majority of the presented models display accelerated cooling in the most recent 

geological past. Neogene cooling is a well-known modelling artefact in thermal history 

models from apatite fission track data (Redfield, 2010 and references therein) and has 

previously been observed in models from areas where recent cooling is not supported by 

independent geological observations (e.g. Danišík et al., 2012). The sensitivity range of the 

fission track system does not extend beyond the boundaries of the PAZ, and the modelled 

cooling paths at temperatures below 60 °C should merely be regarded as vague suggestions. 

However, the short MTLs and exceptionally young ages obtained from the samples BG-26 

and KJ-27 from the outer Eidfjord north block imply prolonged residence within the PAZ. 

According to the modelled thermal history of BG-26, the sample did not exit the PAZ until 20 

Ma. Rapid, recent cooling is thus required to account for the data. As discussed in section 

8.2.5, the samples from the Granvin area may have been influenced by convective heating 

associated with the circulation of hydrothermal fluids along brittle faults within the HSZ. 

Hydrothermal activity may have produced a complex thermal history that is not accounted for 

by a simple model. If hydrothermal heating did occur, it is likely to have involved several 

brief episodes of reheating to temperatures in excess of 100 °C, thus causing a reduced fission 

track age and a track length distribution containing a majority of short tracks.  Although the 

thermal history models of BG-26 and KJ-27 imply residence within the PAZ until ~20 Ma, 

the samples may therefore have been exhumed to shallower crustal levels before this time. 

For samples derived from sea level and to a lesser degree intermediate elevations, Pliocene-

Pleistocene glacial erosion is believed to account for a substantial part of the most recent 
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cooling. Assuming that ~1 km of overburden was removed from the inner fjord arms during 

the last 2.5 Ma, the particularly high cooling rate inferred for temperatures below ~35 °C 

reflects fjord incision rather than general uplift and denudation. This effect explains why 

samples collected at low elevations require more rapid Neogene cooling than samples from 

the Hardangervidda plateau.    

 

8.3.4 Differences between thermal history models 

Provided that the crustal column experienced undisturbed cooling through the isotherms, it is 

expected that samples at higher elevations (i.e. shallower paleodepths) cooled to surface 

temperatures at an earlier stage than samples from low elevations. In the thermal history 

models from the studied vertical profiles this relationship is reflected by a later exit from the 

PAZ for sea level samples than for samples from the Hardangervidda plateau.  

A small, but systematic difference between the timing of exit from the PAZ is evident across 

the Eidfjord (Fig. 54). Irrespective of elevation, the samples from the south flank record 

earlier exhumation than corresponding samples from the opposite flank. Taking both fission 

track ages, track length data and proposed thermal histories into consideration, it is suggested 

that the north flank of the Eidfjord has experienced a cooling history that deviates from that of 

the south flank. Hence, the Eidfjord is interpreted to represent a major structural discontinuity. 

While the sea level samples from the south flank of the fjord record cooling from the PAZ at 

~50-80 Ma, none of the corresponding samples from the north flank appear to have cooled 

below temperatures of 60 °C prior to ~40 Ma. Paleogene or later differential exhumation is 

thus required. The Kjeåsen profile is particularly interesting in this respect, because it 

comprises samples derived from both margins of the Simadalsfjord. In order to account for 

the obtained fission track age and track length data, KJ-21 from the middle part of the profile 

on the north flank of the fjord requires a later exit from the PAZ than the sea level sample KJ-

11 derived from the southern margin. Despite its location in the outer Simadalsfjord, KJ-11 

appears to share the thermal history of the samples in the Bu profile, thus supporting the 

interpretation that the inner portion of the Hardangerfjord coincides with a major structural 

boundary. Interestingly, the samples from the southern margin of the fjord record higher 

cooling rates than the samples from the northern margin throughout the Jurassic-Cretaceous 

interval of relative thermal quiescence. The differences are marginal, but consistent. 

As described in section 8.2, the average cooling rate calculated from the apatite fission 

track ages from the vertical profiles is significantly higher for the Bu profile than for the 

Kjeåsen profile. From the thermal history models a cooling rate of < 1 °C/Ma is evident for 
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both blocks, thus supporting the estimate of 0.3 °C/Ma from the Simadalen area. The 

calculated 1 °C/Ma from Bu is a little higher than the rate indicated by the models. However, 

the suggested t-T- paths represent a range of feasible cooling paths only, and the apparent 

discrepancy does not imply that the models are incompatible with the estimated rate. In 

addition, the calculated cooling rates are dependent on the assumed paleogeothermal gradient, 

which unfortunately is poorly constrained. Possible exhumation scenarios and tectonic causes 

of the differential AFT signatures will be discussed in section 8.6. 

  

 
Fig. 54. Differential cooling across the Eidfjord evident from thermal history model path envelopes (good paths 

only): a) Comparison of the suggested thermal histories of KJ-8 (purple) and KJ-11 (transparent) from sea level 

on the north flank and on the south flank, respectively. A marginally higher Cretaceous cooling rate and an 

earlier exit from the PAZ is evident for KJ-11; b) Proposed thermal histories of KJ-25 (green) from the north 

block and KJ-28 (transparent) from the south block, both collected on the Hardangervidda plateau. KJ-28 

appears to have resided at lower temperatures throughout the entire interval between the Early-Middle Jurassic 

and the present and records cooling through the upper boundary of the PAZ at an earlier stage than KJ-25. The 

boundaries of the PAZ are marked by dashed brown lines.  

 

8.4 Interpretation of structural data 
 
From the interpretations presented in the previous sections, it is possible to assess which 

structures may have been reactivated during the time interval between the Jurassic and the 

present. In Fig. 55, lineaments are grouped into six populations that are found to correspond 
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with the orientations of the main segments of the Eidfjord and its tributaries. The majority of 

the fracture sets are probably legacies from Precambrian times, with possible formation of 

new structures during post-Caledonian extensional collapse and Permo-Triassic rifting 

(Gabrielsen et al., 2002). NE-SW-trending lineaments (set I) are abundant in the immediate 

vicinity of the HSZ in the Granvin and Ulvik areas and appear to have formed in the same 

stress field as the shear zone. Subvertical to steeply southeasterly dipping fractures, which are 

found to be dominant in Granvin, may represent a conjugate set to the moderately dipping 

HSZ and related brittle structures with dips towards the northwest. NW-dipping structures 

belonging to set I are less conspicuous east of Osa and appear to be absent on the Eidfjord 

south flank. Due to the generally low sample density west of the Osafjord where set I 

structures are most abundant, the obtained fission track data do not provide any direct 

indications of whether this set has been reactivated during the Mesozoic or Cenozoic.  

N-S-trending structures (set II) appear to have accommodated more displacement than 

any other set since the Middle-Late Jurassic. The obtained fission track data suggest that 

significant movement along regional N-S-trending faults has affected both structural blocks 

bounding the Eidfjord. Considerable down-to-the-west displacement along a presumably N-S-

trending structure is suggested from the fission track data from the Bu area. In the Osa area 

offset ages are evident across several N-S-trending lineaments. AFT results obtained from 

Måbødalen south of the Simadalsfjord (Leighton, 2007) indicate down-to-the-west 

displacement along an array of faults that extend across the valley northwards to the Osa area. 

Large-scale N-S to NNW-SSE-trending structures have been identified throughout the 

Hardangerfjord area and in the coastal region near Bergen. Movement along this set has been 

found to postdate the NE-SW-trending faults formed in connection to the post-Caledonian 

collapse (Fossen & Hurich, 2005; Larsen et al., 2003). The data obtained in the present study 

confirms this relationship for the inner Hardangerfjord and suggest reactivation of the N-S-

trending set subsequent to the Middle Jurassic. 

The NE-SW-trending Osafjord (set III) exhibits an orientation that differ from that of 

the set I structures and is thus suggested to be unrelated to the Hardangerfjord Shear Zone. 

From Fig. 55 it is evident that the Osafjord is linked with the Bu valley to the south of the 

Eidfjord. There is no conclusive evidence for reactivation of this structure on either flank of 

the fjord. Similarly oriented lineaments are abundant in the Bu and Osa areas, but the 

available data are insufficient to resolve possible differential exhumation across these 

structures. Ages from sea level samples are quite similar across the NNE-SSW-trending 

Sørfjord, although slightly older ages are evident on the west flank. When comparing the 
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thermal history models of KJ-18 from the east block with that of BG-27 from the west block, 

it is apparent that the latter sample records considerably earlier cooling from the PAZ. Later 

exhumation of the east block implies down-to-the-west displacement across the fjord. The 

same sense of movement has been inferred by Leighton (2007), based on the identical pre-

Neogene thermal histories obtained from samples from distinctly different elevations on the 

opposite margins. At present, the fission track record from the Sørfjord margins is incomplete. 

More samples, particularly from the eastern flank, are required to confirm differential 

exhumation across this particular segment of the Hardangerfjord.  

 

 
Fig. 55. Digital elevation model with main lineament orientations. The observed lineaments are divided into six 

sets:  Set I (dark blue) is suggested to represent brittle structures related to the HSZ. Set II lineaments (brown) 

parallel the Osafjord.  Set III (red) encompasses structures that vary in orientation between NNW-SSE and NNE-

SSW. This set is well-represented on both margins of the Hardangerfjord. The NNE-SSW-trending structure that 

is marked by a stippled line south of the Eidfjord, represents the fault that is interpreted to have caused the offset 

AFT ages in the Bu profile.  The Simadalen segment of the Eidfjord and similarly oriented structures constitute 

set IV (green). Lineaments belonging to this set are most abundant south of the Eidfjord. Set V (purple) and VI 

(black) lineaments are less common. 

 
The Eidfjord comprises a number of segments, with trends varying between and ENE-

WSW (set IV) and WNW-ESE (set V).  Set IV lineaments are most pronounced south of the 

Hardangerfjord and directly north of Simadalen. Consistent offset and systematic differences 
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in MTLs and modelled cooling paths may suggest different exhumation histories for the 

structural blocks bounding the fjord to the north and south, although the fission track ages are 

not conclusive with regard to juxtaposition. Except from a potentially greater offset across the 

Simadalsfjord (cf. section 8.2.2), the fission track results do not resolve dissimilarities in 

displacement between the different segments of the Eidfjord.  

The fission track record does not conclusively imply displacement along the NNW-

SSE-trending structures that transect the Osa area (set VI), although the steep age-elevation 

gradient may suggest differential vertical movement of structural blocks within the vertical 

profile. 

 

8.5 Comparison with previous studies 
 
8.5.1 Apatite fission track thermochronology 

The apatite fission track data obtained in the present study are generally in good agreement 

with the results from previous work conducted in the inner Hardangerfjord region (i.e. 

Andriessen & Bos, 1986; Leighton, 2007; Rohrman et al., 1995). Andriessen and Bos (1986) 

analysed two samples derived from the Simadalen and Eidfjord areas. A third sample was 

collected from the top of Hardangerjøkulen, some distance from the field area covered in the 

present contribution. Their lowermost sample yielded an age of 110 ± 18 Ma, which 

corresponds well to the age of 120 ± 7 Ma obtained from the nearby sample KJ-11. Ages of 

134 ± 8 Ma and 166 ± 31 Ma were obtained for samples from elevations of 700 m and 1620 

m asl, respectively. In comparison, Middle Jurassic-Early Cretaceous and Early-Middle 

Jurassic ages were found to dominate at similar elevations in the present study. Thus, the 

results are found to be compatible.  

The study by Leighton (2007) comprises eleven samples obtained within or proximal 

to the area covered in the present work, and the reported ages range from 129 ± 7 Ma to 178 ± 

7 Ma. Overall, these ages agree reasonably well with the results presented herein, although 

Leighton (2007) generally obtained significantly older ages for samples from low elevations. 

The study includes a vertical profile sampled from sea level in Eidfjord along the road 

through Måbødalen. Interestingly, some of the youngest samples (~140 Ma) are found at 

relatively high elevations on the Hardangervidda plateau, while ages of ~170 Ma predominate 

within the lowermost 300 m of the profile. According to Leighton (2007), this inverted age-

elevation relationship may be a result of faulting. It is here suggested that the structures that 

offset the AFT ages in the profile sampled by Leighton (2007) belong to the same N-S-
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trending set that dissects the Simadalen and Osa areas to the north (cf. sections 6.1.1 and 

6.1.2).   

The MTLs reported by Leighton (2007) range from 11.40 ± 0.38 μm and 12.32 ±0.17 

μm and are generally found to be 0.7-1.0 μm longer than the MTLs presented in the current 

work. The differences are systematic and presumably reflect dissimilarities associated with 

the analytical approach (cf. Ketcham et al., 2009), rather than pronounced local variations in 

cooling histories. Through thermal history modelling Leighton (2007) revealed two episodes 

of rapid cooling, confined to the Permo-Triassic and the Neogene. Similar cooling paths are 

evident in the majority of the models presented in this thesis. 

The ages obtained in the current study are in good agreement with the results of  

Rohrman et al. (1995), whose study included five apatite fission track ages from the Eidfjord 

area. All samples were collected as part of a vertical profile sampled along the road through 

Måbødalen. Ages between 98 ± 8 Ma and 181 ± 19 Ma were reported and a relatively good 

correlation between age and elevation was observed. The sea level samples of Rohrman et al. 

(1995) yielded ages of 98 ± 8 Ma and 113 ± 8 Ma, i.e. slightly younger, but within error of the 

majority of sea level samples presented in the present work (ranging from 105 ± 5 Ma - 130 ± 

11 Ma). In both studies, Early-Middle Jurassic ages were obtained from the Hardangervidda 

samples. The MTLs of Rohrman et al. (1995) range from 11.5 ± 0.2 μm close to level to  

13.1 ± 0.1 μm at the Hardangervidda plateau, and are thus significantly longer than those 

obtained in the present study. However, Rohrman et al. (1995) did not employ a standard 

etching protocol (cf. Rohrman, 1995), and their MTLs are therefore not reproducible. 

According to Gleadow et al. (1986) and Donelick et al. (2005), consistency in etching 

conditions between different samples is crucial, and the elucidation of thermal history 

information based on track lengths may be rendered invalid if this requirement is not met. 

Based on thermal history modelling, Rohrman et al. (1995) suggested Triassic-Jurassic and 

Neogene pulses of accelerated cooling. In the present study the first rapid cooling is confined 

to the Permian-Triassic and may be linked to the rifting of the North Sea. Similarly high 

Permo-Triassic cooling rates have previously been documented throughout southwestern 

Norway (Ksienzyk, 2012; Leighton, 2007). Rohrman et al. (1995) put considerable emphasis 

on the latest portion on the cooling history, i.e. from ~30 Ma onwards, and argued for rapid 

Neogene cooling resulting from 1-2 km of domal tectonic uplift. The proposal of a Neogene 

uplift event was largely based on the generally high proportions of short tracks measured in 

the samples from the Eidfjord area. Neogene accelerated cooling is also suggested by some of 
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the models generated in the current study. However, substantial portions of the Cenozoic 

thermal history occur outside the temperature range resolved by the fission track method. 

Hence, the most recent parts of the proposed cooling paths should not be regarded conclusive 

and consequently should not be used as a basis for a model for topographic evolution. In an 

effort to produce a regional fission track record for southern Norway, the study of Rohrman et 

al. (1995) largely failed to resolve local differences in cooling signatures. Clearly, their domal 

uplift model does not successfully describe the pattern of AFT ages in the inner 

Hardangerfjord region. The model suffers from the implicit presumption that southern 

Norway behaved as a coherent block since Permian times and is flawed in that it does not 

account for the documented structural control on the distribution of apatite fission track ages. 

Offset fission track ages are observed across minor distances and fault activity is not only 

confined to large, mapped structures. Considerable displacement along small-scale faults 

clearly contributes to the complex exhumation history of the rift margin.  

 

8.5.2 Quality of vertical profiles 

The current study includes three vertical profiles that each covers a relief of ~1300 m. All 

transect have been constructed with the purpose of obtaining closely spaced samples, and 

consequently, the maximum lateral sampling distance within each profile do not exceed 7 km. 

In previous studies (i.e. Leighton, 2007; Rohrman et al., 1995), the requirement for restricted 

lateral separation of samples has been assigned less importance, resulting in vertical profiles 

that extend over distances of 20-30 km. Where the distance between samples is large enough 

to stretch across several possible faults, important information regarding differential 

exhumation, and thereby aspects of the tectonic evolution, may be overlooked. The 

complexity of the profiles revealed in the present work stresses the necessity for closely 

spaced samples and demonstrates the advantages of sampling the steepest profile, rather than 

the profile with the easiest accessibility. Even with the sampling strategy employed in the 

current study, the obtained vertical profiles are not ideal. Unfortunately, none of the profiles 

are found to provide a common thermal history for all samples, and thus do not reveal 

detailed information about the continuous cooling path of the crustal column over a 

significant time span. The main reason is the ubiquitous presence of closely spaced structural 

discontinuities in the inner Hardangerfjord region. A broad spectrum of fracture orientations 

is identified, thus making it difficult to determine and isolate the influence of individual faults 

on the thermochronological results. Potentially, less disturbed profiles may be sampled in 

structurally less complex areas located further to the east of the Hardangerfjord Shear Zone.  
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8.5.3 (U-Th)/He analysis 

Few studies have thus far involved (U-Th)/He analysis of samples from southern Norway. 

The present thesis presents the first attempt of dating samples from the inner portions of the 

Hardangerfjord by the (U-Th)/He method. Leighton (2007) obtained a majority of Late 

Cretaceous uncorrected (U-Th)/He ages from the Sognefjord region to the north of the present 

study area. The majority of the samples in the study were found to suffer from poor 

reproducibility, resulting in high uncertainties. No distinct age increase was observed with 

distance from the coast, as has been documented for the AFT system. In fact, some of the 

youngest ages (i.e. Eocene) were obtained from the outer portion of the fjord. By applying 

thermal history modelling, Leighton (2007) found that the reported (U-Th)/He ages were 

incompatible with the thermal history inferred from the AFT record. Problems with 

incompatible AFT and single grain (U-Th)/He ages have also been encountered in the present 

study, suggesting that the (U-Th)/He ages obtained from southern Norway may be 

significantly influenced by radiation-enhanced He retention or other factors that complicate 

the analysis. Ksienzyk (2012) obtained FT-corrected single grain ages from the Bergen area 

ranging from Middle Triassic to Late Cretaceous. A majority of Early Cretaceous ages were 

reported, i.e. similar to the results obtained in the present study. Apatite fission track ages are 

generally found to be significantly older in the Bergen area than in the inner fjord regions. 

The age differences between the coast and the interior appear to be less pronounced for the 

(U-Th)/He system. This may suggest greater exhumation directly inland of the 

Hardangerfjord Shear Zone in the Jurassic, followed by relatively uniform cooling throughout 

southwestern Norway from the Cretaceous onwards. The present (U-Th)/He record from the 

inner Hardangerfjord region comprises two sample ages only. Hence, further data from the 

interior are clearly required to draw any valid conclusions.  

 

8.6 Proposed exhumation history for the inner Hardangerfjord  
 
8.6.1 General notions 

From the wide track length distributions and short MTLs obtained in the current study it is 

apparent that the thermal history of the inner Hardangerfjord region is characterised by 

prolonged time intervals dominated by slow cooling. All analysed samples are inferred to 

have experienced similar, protracted cooling histories. Local variations in AFT ages and 

MTLs are suggested to be a result of differential exhumation attributed to periodic fault 

activity. The obtained apatite fission track data provide information about the thermal 
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evolution from the Permian until the Paleogene. Consequently, this specific time interval will 

be the focus in the following attempt to reconstruct the exhumation history of the study area.    

The rapid cooling rates obtained through thermal history modelling suggest that the 

Permian and Triassic periods were associated with significant unroofing of the inner 

Hardangerfjord region. Evidently, the effect of the North Sea rifting was pronounced even in 

areas situated far from the coastline. While flexural rebound effects induced by rifting may 

have led to regional exhumation of the rift shoulder (cf. van der Beek et al., 1994), down-to-

the-northwest extensional reactivation of the Lærdal-Gjende Fault and affiliated structures 

(Andersen et al., 1999) is believed to have controlled local exhumation patterns by causing 

enhanced denudation of the uplifted footwall blocks. Leighton (2007) estimated significantly 

lower Permo-Triassic exhumation rates for the hangingwall of the LGF (20-40 m/Ma) relative 

to the footwall (40-90 m/Ma), which clearly demonstrate significant displacement and 

probably repeated reactivation of the brittle segment of the HSZ during the development of 

the North Sea rift. The area studied in the current work is located in the transition zone where 

the ductile shear zone disappears beneath the Caledonian thrust sheets and the first clear 

indications of brittle overprint are evident. Although Permo-Triassic reactivation of the 

ductile southwestern portion of the HSZ has been proposed (Færseth et al., 1995) there is no 

conclusive evidence for post-Devonian brittle displacement (Fossen & Hurich, 2005). The 

Permo-Triassic cooling rate inferred from the thermal history models for the inner 

Hardangerfjord samples suggest an exhumation rate of >100 m/Ma in the footwall of the 

shear zone, assuming a geothermal gradient of 20 °C. Taking this comparably high 

exhumation rate into account, it is considered likely that Permo-Triassic brittle reactivation of 

the inner Hardangerfjord segment may have taken place. The onshore expression of the 

Permo-Triassic rift phase thus appears to have been related to both regional rift flank uplift 

and extensive reactivation of post-Caledonian structures resulting in differential denudation of 

adjacent fault-bound blocks. 

From the thermal history models presented in chapter 7.1, the Jurassic and Cretaceous 

periods appear to have been characterised by general thermal quiescence. However, the 

fission track record suggests episodes of accelerated cooling, possibly associated with fault-

related uplift and denudation. Such local cooling events of limited magnitude are not resolved 

by the thermal history models. The distribution of fission track ages in the inner 

Hardangerfjord area reveals significant age differences over short lateral distances and 

suggests post-Middle Jurassic-Early Cretaceous fault activity. Paleomagnetic and radiometric 

data from fault rocks obtained from Hordaland and adjacent regions indicate reactivation of 
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structures during Late Jurassic-Early Cretaceous times (Andersen et al., 1999; Eide et al., 

1997; Fossen et al., 1997; Ksienzyk, 2012; Torsvik et al., 1992). It is considered likely that 

the fault activity documented in the current study is confined to roughly the same time 

interval. Hence, although the North Sea rift phase appears to have had a limited effect on the 

regional exhumation rate, extensive fault reactivation is suggested to have exerted a major 

control on local exhumation patterns.  

Fission track ages, track length distributions and thermal history models generally 

indicate later exhumation of the northern side of the Eidfjord relative to the southern side. 

Samples obtained from similar elevations on opposite margins of the fjord display slightly 

offset cooling paths in the upper PAZ (see Fig. 54), suggesting that juxtaposition may have 

taken place subsequent to the time at which the sea level samples cooled out of the sensitivity 

range of the AFT method. It is thus considered plausible that the observed differential cooling 

signatures are in part attributed to Cenozoic episodes of fault reactivation. The most obvious 

explanation for possible tectonic rejuvenation during the Cenozoic is the rifting and 

subsequent opening of the North Atlantic Ocean in the Paleocene-Eocene. Hence, the 

juxtaposition of structural blocks in the Eidfjord area is assumed to partially be a result of 

Late Cretaceous-Paleogene fault activity. This interpretation is supported by previously 

published K/Ar illite data that indicate reactivation of the Lærdal-Gjende Fault at ~60 Ma 

(Ksienzyk, 2012).  No further record of Paleogene fault reactivation is available from 

southwestern Norway. In this context, it is essential to note that most previous studies 

attempting to date fault activity (e.g. Andersen et al., 1999; Larsen et al., 2003) have focused 

on cohesive fault rocks. Cohesive breccias and cataclasites are generally believed to originate 

from brittle processes operating at greater crustal depths (Sibson, 1977) and are thus not 

expected to record the most recent episodes of fault activity. The present-day seismicity 

around the Hardangerfjord implies ongoing periodic reactivation of brittle structures in the 

area. Faulting related to differential glacio-isostatic compensation may account for a portion 

of the recorded seismic activity. The stress induced by sea-floor spreading in the North 

Atlantic is, however, suggested to be of greater importance (Hicks et al., 2000), thus 

indicating that southern Norway may have been subjected to active tectonic processes 

throughout the Cenozoic.  
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8.6.2 Detailed structural evolution of the study area 

Two scenarios are proposed to explain the pattern of differential exhumation that is evident 

from the obtained fission track data and thermal history models. These scenarios are not 

necessarily mutually exclusive. A combination of both interpretations may well represent the 

best reconstruction of the structural evolution of the inner Hardangerfjord region. 

 

Scenario I: Footwall uplift of the Eidfjord north block 

The observed distribution of fission track age data and MTLs in the inner Hardangerfjord 

region may be explained by a simple model that involves juxtaposition across a fault that is 

presumed to underlie the Eidfjord (Fig. 56). The AFT record is consistent with down-to-the-

south-southeast displacement across this structure: Younger fission track ages and shorter 

MTLs are found north of the fjord, thus implying later exhumation of the north block relative 

to the south block. The AFT ages obtained from equal elevations on the opposite flanks 

generally overlap within errors. This implies that the presumed fault has accommodated 

moderate displacement during post-Middle Jurassic-Early Cretaceous times. Fission track 

ages from the Kjeåsen profile reveal potentially greater displacement along the Simadalen 

segment (cf. section 8.2.2). However, no fission track ages are available from low elevations 

on the northern margin of the Simadalsfjord and the fission track record from the area is 

therefore insufficient to confidently draw a conclusion. There are no direct indications of the 

character of faulting along the Eidfjord. However, southwestern Norway has been situated in 

an overall extensional tectonic regime since the Paleozoic (Doré et al., 1999) and previous 

work has confirmed extensional movement along major structures in the coastal regions (e.g. 

Fossen et al., 1997). Normal displacement is thus considered most feasible for the inner 

Hardangerfjord region and the fault that follows the Eidfjord is suggested to be south-

southeasterly dipping. This interpretation is supported by structural data, which show a 

predominance of SE-dipping joints and possible faults on both sides of the fjord (cf. Fig. 20a). 

The large, SE-dipping fracture zones that dissect the south flank of the Simadalsfjord may 

represent secondary brittle structures formed in vicinity to the presumed main fault, which 

underlies the fjord. Footwall uplift related to the suggested down-to-the-south-southeast 

displacement may partly be responsible for the complete erosion of the Caledonian nappes on 

the north flank. However, the Eidfjord north block also borders the HSZ, which is known to 

have accommodated extensional displacement in the order of 10-15 km since Devonian times 

(Fossen & Hurich, 2005), and the bulk uplift and erosion is probably attributed to movement 

along this structure.    
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Fig. 56. Proposed structural evolution of the inner Hardangerfjord region according to scenario I. The general 

thermal evolution of the analysed vertical profiles are displayed to the right: a) The Permo-Triassic was 

characterised by rapid regional exhumation related to the rifting in the North Sea and localized accelerated 

exhumation associated with footwall uplift of along the HSZ. At this time the inner Hardangerfjord samples 

cooled into the PAZ. b) Extensive small-scale reactivation of structures affected the area during the Middle-Late 

Jurassic-Early Cretaceous. By the latest Early Cretaceous, rocks derived from the Hardangervidda plateau south 

of the Eidfjord had cooled out of the PAZ. c)  Cenozoic reactivation of the Eidfjord Fault (EF) and related 

footwall uplift resulted in accelerated exhumation of the north block. The samples from the north flank, which 

had resided at deeper crustal levels throughout the Mesozoic, were then juxtaposed to their southern 

counterparts. Since the paleotopography of the area remains largely unknown, no distinct topography is 

indicated.  
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Scenario II: Internal deformation of the Eidfjord north block 

The scenario presented in Fig. 56 fails to explain the higher apparent cooling rate of the 

Eidfjord south block throughout the Jurassic and Cretaceous. Repeated reactivation of a 

south-southeast-dipping structure beneath the Eidfjord would result in more efficient 

denudation of the footwall block in the north and thus imply higher cooling rates in this part 

of the study area. Both fission track age-elevation gradients and thermal history models 

indicate more rapid cooling south of the fjord. The Eidfjord north block is dissected by 

densely spaced lineaments with a wide range of orientations (see Fig. 55). Offset fission track 

ages in the Osa area in particular, are suggestive of extensive fault activity. Complex internal 

deformation, possibly involving rotation of local fault-bound blocks, may represent one viable 

explanation for the apparently lower cooling rates obtained from the northern margin of the 

Eidfjord (Fig. 57). It is important to note that the fission track ages obtained from the north 

flank are not exclusively younger than the ages from the south flank. Locally, the ages from 

the Osa profile are found to be significantly older than ages at similar elevations in the Bu 

profile. Oppositely dipping faults are suggested to produce local horst-graben structures, 

resulting in particularly old AFT ages (e.g. KJ 24 and KJ-5) in the down-faulted blocks. 

Rocks from deeper crustal levels are exposed in the up-faulted blocks, giving younger ages 

(e.g. KJ-1 and KJ-6). In comparison to the northern margin of the Eidfjord, the southern 

margin appears to display a smaller number of pronounced structures with less variable 

trends, and may thus be less affected by local differences in vertical crustal movement. Hence, 

the deviating AFT records obtained from the opposite margins of the Eidfjord may reflect 

more extensive differential exhumation across small-scale structures within the northern 

structural domain. According to this interpretation, movement along a presumed large-scale 

fault that follows the trend of the fjord is not necessary to account for the obtained data. There 

is no obvious explanation for the inferred variations in structural style, but it may be 

speculated whether the documented change in crustal architecture across the HSZ (Hurich & 

Kristoffersen, 1988) may have had an effect on the deformation of the footwall in the 

immediate vicinity to the shear zone.  
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Fig. 57. Exhumation history of the inner Hardangerfjord region according to scenario II: a) Rapid Permo-

Triassic exhumation as in scenario I. b) Extensive fault activity during the Middle-Late Jurassic-Early 

Cretaceous affected both flanks of the Eidfjord. c) Continued internal deformation of the north block during the 

Cenozoic produced a complex pattern of apatite fission track ages, reflecting differential denudation across 

small-scale structures. There are no indications of whether faulting affected the south block at this time.  
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8.7 Regional perspective 
 
The long-term evolution of passive continental margins reflects a complex interplay between 

tectonics, denudation, drainage patterns and lithological controls (Gallagher et al., 1998). In 

the following paragraphs, the evolution of the Norwegian margin will be discussed in terms of 

traditional models for passive margin landscape development. 

Three main classes of passive margin landscape evolution models have been proposed 

in order to explain the development of margins characterised by a low-elevation coastal plain 

separated from a high-elevation inland plateau by a prominent escarpment (Fig. 58a-c): 

Downwarp models (Ollier & Pain, 1997) describe passive margin development in terms of 

flexure of a rigid lithosphere and imply limited fault activity. Maximum removal of material 

and young fission track ages are expected directly seaward of the escarpment, while the 

interior is characterised by negligible denudation and thus old ages. Scarp retreat models 

(Gilchrist & Summerfield, 1990) explain margin formation by an initial phase of extensional 

faulting followed by inland retreat of the fault scarp and imply a progressive increase in 

fission track ages from the coast towards the interior. Limited vertical denudation and old 

ages are expected inland of the escarpment. Initial extensional faulting is also invoked by the 

pinned divide class models (Kooi & Beaumont, 1994), which depict a drainage divide situated 

inland of the fault scarp.  Incision by seawards draining streams leads to vertical denudation 

of the coastal region and development of a new escarpment that coincides with the position of 

the pinned drainage divide. The pinned divide models predict young AFT ages close to the 

coastline, while the oldest ages occur at the locus of the drainage divide. Moderate denudation 

is inferred for the region inland of the fault scarp. Despite some essential differences, all three 

models generally predict old fission track ages along the rift flank and in the hinterland, while 

younger ages are expected seaward of the scarp. Together, these models have been found to 

successfully describe the AFT age distributions from a wide variety of passive margins 

worldwide (Gallagher & Brown, 1997; Gallagher et al., 1998). The data presented in the 

current contribution covers a geographically restricted area and do not independently provide 

information on the style of margin evolution in southern Norway. However, valuable 

information can be obtained by combining the ages presented in this thesis with the results 

from previous studies undertaken in coast-proximal areas of southwestern Norway. Fission 

track data from the Bergen and Sunnhordaland areas are generally consistent with relatively 

early exhumation to shallow crustal levels (Ksienzyk, 2012; Leighton, 2007; Rohrman et al., 

1995). Samples from coast-proximal regions are typically characterised by Triassic-Jurassic 
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ages and intermediate mean track lengths in the order of 12-14 μm. Permian ages are evident 

locally, but are largely restricted to the outermost coastline. In comparison, the data collected 

in the present study reveal relatively late exhumation of the margin hinterland, evident by 

mainly Jurassic-Cretaceous fission track ages and short mean track lengths. According to 

Mosar (2003), the North Atlantic rift shoulder is delineated by the Hardangerfjord Shear Zone 

and its northwards continuations, implying that the HSZ separates the coastal domain affected 

by rifting from the relatively undisturbed rift margin. This interpretation is substantiated by a 

documented change in the thickness of the crust across the Hardangerfjord Shear Zone, from 

28 km in the hangingwall to 34 km in the footwall (Hurich & Kristoffersen, 1988), suggesting 

that the coastal region may have been subjected to rift-related crustal thinning. According to 

Mosar (2003) the locus of rifting shifted northwards to the final position of the breakup after 

the North Sea rift was aborted in the earliest Cretaceous, but the position of the rift flank in 

southern Norway remained stationary. The inner Hardangerfjord region is located in the 

footwall of the HSZ and is thus suggested to form the outermost rift flank. Taking the 

observed regional age distribution into consideration, the traditional models for passive 

margin evolution described above do not provide a satisfactory approximation of the 

development of the North Sea rift margin. The ages obtained from coastal regions are clearly 

not significantly younger than the ages from the Hardangervidda plateau, as would be 

expected from scarp retreat and pinned divide scenarios. The fault activity documented by the 

present and previous low-temperature thermochronological studies is not compatible with 

flexural downwarping. Furthermore, the Jurassic ages obtained from the escarpment (i.e. the 

Hardangervidda plateau) are much younger than the ages predicted by the downwarp model. 

Hence, the fission track data from southwestern Norway suggest that the evolution of the 

North Sea margin is more complex than the scenarios portrayed by the landscape 

development models. There are several possible reasons for this: The Norwegian margin has 

been subjected to polyphase rifting, culminating with opening of the Atlantic Ocean in the 

Eocene (e.g. Mosar, 2003). In-between the individual rift phases, the margin has experienced 

changes in the orientation of the stress field (Færseth et al., 1995), which has complicated the 

structural evolution. The traditional landscape development models furthermore fail to 

account for pre-rift structural inheritance. This is critical, considering that the Precambrian 

structural grain is believed to have exerted a major control on the tectonic development of the 

North Sea rift and the Norwegian margin (Doré et al., 1999; Færseth et al., 1995; Gabrielsen 

et al., 2002).   
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The general pattern of fission track ages from the Bergen-Hardangerfjord region 

reveals progressively later exhumation from the coastal regions towards the interior. As 

pointed out by Ksienzyk (2012) the AFT age distribution in southern Norway appears to be 

largely structurally controlled. It is suggested that landscape development has been governed 

by mainly down-to-the-west displacement along large-scale extensional structures in 

association with the Permian and Mesozoic rift phases (Fig. 58 d). Local exceptions to the 

general trends are abundant both in coastal and inland areas and are suggested to reflect 

differential vertical movement across small-scale structures, as is extensively documented for 

the inner Hardangerfjord region. Larger-scale structures with easterly dip directions (e.g. the 

Hjeltefjord Fault Zone; Fossen, 1998) are found to produce locally reversed age distribution 

patterns (cf. Ksienzyk, 2012).    
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Fig. 58. (Previous page). Models for passive margin landscape evolution: a) Downwarp model: margin 

development as a denudational response to lithospheric flexure. b) Scarp retreat model: initial extensional 

faulting followed by landward retreat of the escarpment. c) Pinned divide model: vertical denudation of the 

initial rift flank from fluvial incision. d) Suggested evolution of the North Sea margin:  denudation patterns are 

controlled by differential vertical movement of fault-bound blocks.  e) Predicted AFT ages with distance from 

the coast for each of the presented models. The lowermost stippled line is taken to correspond to the North 

Atlantic rift phase in the Paleogene. According to the interpretation by Mosar (2003), the rifting of the 

Norwegian margin was initiated in the North Sea in the Permian and culminated with the North Atlantic breakup 

in the Eocene. In order to be comparable to the passive margin evolution models, which do not incorporate fjord 

incision, the portrayed age pattern inland of the escarpment is representative of the ages obtained from the 

Hardangervidda plateau. a-c and e are redrawn after Gallagher et al. (1998).  

 
8.8 Comparison with models for topographic evolution 
 
Although the peneplanation-uplift model and the ICE hypothesis present distinctly different 

views on the timing of landscape development, similar fission track signatures are expected 

for both scenarios. The most important clues as to how the Norwegian landscape formed 

probably lie in the Paleogene and particularly Neogene cooling paths. Unfortunately, most of 

the Cenozoic thermal evolution of the inner Hardangerfjord samples is outside the sensitivity 

range of the apatite fission track method and cannot be inferred. Even samples obtained from 

low elevations within the innermost Hardangerfjord represent crustal levels that are too 

shallow to provide detailed information on recent cooling events. However, some information 

is available through thermal history modelling. Below follows a discussion of the alternative 

thermal history models presented in chapter 7.2 and an assessment of the compatibility 

between the AFT data and each of the models for topographical evolution. 

In order to determine the thermal effect of peneplanation, a number of different 

cooling scenarios were tested against the AFT results from the Hardangervidda plateau. The 

models that were created to account for the Mesozoic peneplanation scenario are generally 

found to display prolonged episodes of pronounced cooling. High Cretaceous cooling rates 

are proposed by some of these models. Rapid cooling during the Cretaceous period is not 

supported by independent geological observations, which suggest tectonic quiescence from 

the time of the termination of the North Atlantic rift phase in the earliest Cretaceous until the 

onset of rifting in the North Atlantic in the Paleogene (e.g. Færseth & Lien, 2002). There are 

no indications of any major tectonic events capable of causing regional enhanced exhumation 

within this time interval. In all models that force surface temperatures during the Mesozoic, 

reheating to temperatures of 60-90 °C is required, thus suggesting reburial by up to ~3 km of 
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sediments. Paleocene peneplanation, as suggested by Riis (1996) and Lidmar-Bergström et al. 

(2000), implies accelerated cooling commencing at ~60 Ma. The suggested cooling event is 

found to correspond with the initial stages of the North Atlantic break-up and the timing of 

cooling is therefore considered geologically reasonable. For southern Norway, which borders 

the intracratonic North Sea Basin,  the effects of margin flexure during the initial stages of 

sea-floor spreading may not have been pronounced (Doré, 1992). The gradient indicated by 

the cooling paths may therefore be unrealistically steep. In a recent contribution, Skogseid 

and Lunt (2012) presented new evidence for significant dynamic uplift of the North Atlantic 

realm in relation to the arrival of the Iceland mantle plume at ~62 Ma. Thermally induced 

uplift with a magnitude of 500-2500 m may partly explain the accelerated cooling in the Late 

Cretaceous-Paleogene, although the magnitude of uplift, and thus the denudational response, 

is disputed (Hartz et al., 2012). Rapid reburial is required for the samples to achieve 

temperatures of ~80 °C in the Paleocene-Eocene. According to the thermal history model in 

Fig. 48a, the basement must have been buried by > 2 km of sediments less than 20 Myr after 

having reached surface temperatures. Such a scenario implies relatively high sedimentation 

rates, which suggest total submergence of the western part of the Hardangervidda plateau 

during the Paleocene-Eocene. Consequently, accommodation space must have been generated 

by post-rift thermal subsidence of the outer portion of the rift flank, possibly in combination 

with general down-to-the-west displacement across major structures. Due to the scarcity of 

onshore sediments, the inferred reburial is not readily verified by independent geological 

observations. The Bjorøy Formation, described by Fossen et al. (1997), represents a rare 

pocket of Mesozoic sediments onshore southern Norway. The formation comprises upper 

Jurassic sedimentary rocks and unconsolidated sands and was discovered within a fault zone 

during the construction of a subsea tunnel in the Sotra region west of Bergen. Seismic data 

from the area suggest that the sediments were deposited discordantly on the gneissic 

basement. Hence, the presently exposed rocks in this area were already at the surface in the 

Late Jurassic. The occurrence of coal fragments and the assemblages of pollen and spores 

within the sediments testify to a near-shore marine depositional environment. According to 

Fossen et al. (1997), this suggests that the present coast-proximal areas of southwestern 

Norway were flooded following a Late Jurassic marine transgression that started offshore.  At 

a first glance, the proposed transgression appears to be compatible with the thick sedimentary 

cover that is required to account for the fission track data from the Hardangervidda plateau. 

However, vitrinite reflectance data obtained from coal within the Bjorøy Formation were 

found to indicate a maximum burial depth of 1 km (Fossen et al., 1997). AFT thermal history 
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models of basement samples derived from the same area suggest reheating to 40-65 °C in the 

Cretaceous-Paleogene (Ksienzyk, 2012) and are thus in fair agreement with the conclusion 

drawn from the vitrinite reflectance analysis. Interestingly, all thermal history models with 

additional constraints presented in the present study suggest considerably greater burial 

depths for the Hardangervidda plateau. This is unexpected since the coastal region 

presumably would have been affected by the transgression at an earlier stage than inland 

areas.  

Without allowing for reheating, the constraint that forces surface temperatures in the 

Paleocene is found to produce a model that is poorly supported by the data. This is evident by 

a low goodness of fit value of 0.47 for the track length distribution inferred by the best-fit 

cooling path. In comparison, the best-fit paths in most models with start and end constraints 

only display goodness of fit values in excess of 0.80 for both track length distribution and age 

data. According to the thermal history model in Fig. 48b, the Hardangervidda samples must 

have experienced a cooling rate of ~8 °C/Ma around 60 Ma in order to reach the surface in the 

Paleocene. This rate is regarded unreasonably high, even with rift flank and plume-induced 

uplift operating in conjunction. Based on the obtained model, Paleocene peneplanation and 

subsequent sustained residence close to the surface is therefore considered unlikely. 

All attempts of generating thermal history models without inferred reburial and with 

surface temperatures constrained to pre-Paleocene time intervals were unsuccessful. This 

clearly demonstrates that Mesozoic peneplanation followed by limited sedimentation is not in 

accordance with the AFT data from the Hardangervidda plateau. Furthermore, the (U-Th)/He 

data obtained from KJ-19 indicate cooling through HePRZ temperatures in the Early 

Cretaceous and are incompatible with prolonged residence at the surface prior to ~100 Ma.  

The present study documents extensive post-Middle Jurassic displacement along faults 

in the inner Hardangerfjord region. Considerable fault activity is suggested for the time 

interval between the Middle-Late Jurassic and Early Cretaceous. Differential Cenozoic 

thermal histories for adjacent fault-bound blocks indicate possible later reactivation. The 

peneplanation-uplift model does not provide an answer to how the paleic surface, presumably 

formed during the Late Cretaceous or Paleogene (Doré, 1992; Gabrielsen et al., 2010; 

Lidmar-Bergström et al., 2000; Riis, 1996), has remained intact throughout episodes of post-

formational fault activity. Fault displacements in the order of several hundred meters (as is 

required for faulting to be resolved by AFT data) would be expected to offset the paleic 

surface and thus produce pronounced local relief. However, no indications of preserved up-

faulted blocks have been described. Provided that the Hardangervidda plateau at some stage 
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was covered by several kilometres of sediments, it would be reasonable to expect remnants of 

preserved sedimentary rocks in down-faulted blocks and fault zones. Thus far, no such 

sedimentary pockets have been identified.  

The track-length distributions of the Hardangervidda samples are unimodal, positively 

skewed and display a wide range of track lengths, resulting in rather high standard deviations. 

These features are generally associated with mixed distribution signatures, which are 

traditionally interpreted to indicate a prolonged or complicated thermal history within the 

partial annealing zone (Gleadow et al., 1986). A bimodal track length distribution is generally 

expected for rocks that have been subjected to a distinct reheating episode, such as that 

portrayed by the model in Fig. 48a. Forward modelling of KJ-19 (Appendix F) indicates that a 

bimodal track length distribution would only be pronounced for peak reheating temperatures 

between 90°C and 100 °C. Thus, the absence of two well-defined peaks in the track length 

distribution diagrams of the samples from the Hardangervidda plateau does not necessarily 

preclude reburial of the basement by substantial volumes of sediments during Paleogene 

times. Shallow reburial would be expected to produce a bimodal distribution consisting of a 

component of short tracks formed during the protracted slow cooling through the upper PAZ 

and a component of long tracks generated subsequent to the final cooling to surface 

temperatures. Neither of the analysed Hardangervidda samples displays such a track length 

distribution.     

The ICE hypothesis suggests general monotonous cooling following the climax of the 

Caledonian orogeny. Consequently, the predicted cooling paths are not time-dependently 

constrained to specific thermal conditions and the ICE hypothesis therefore cannot be tested 

in the same detailed manner as the peneplanation-uplift model. However, the fission track and 

(U-Th)/He data obtained in the current study are compatible with the general exhumation 

scenario portrayed by the ICE hypothesis, i.e. protracted exhumation governed mainly by rift-

related extension along the coast and by isostatically compensated erosion further inland. 

According to the flexural isostatic exhumation model presented by Nielsen et al. (2009), AFT 

ages of 120-140 Ma are expected at low elevations in the inner fjord regions. In the present 

study the majority of sea level samples exhibit ages between 120 Ma and 130 Ma, with local 

exceptions on the Eidfjord north flank. The slow Mesozoic cooling that is evident from the 

thermal history models are in agreement with the notion of Nielsen et al. (2009) of the Late 

Jurassic and Cretaceous as periods of relative tectonic quiescence and warm climate 

associated with modest erosion. The ICE hypothesis predicts accelerated exhumation in the 

Cenozoic, attributed to a climatically driven increase in erosion rates. Unfortunately, 



8. INTERPRETATION AND DISCUSSION 

147 
 

thermochronological techniques cannot directly differentiate between tectonically and 

climatically induced exhumation. The thermal history models obtained in the present study 

strongly indicate accelerated Cenozoic cooling rates, but it cannot be inferred whether the 

cooling signals are attributed to topographic rejuvenation following uplift (as implied by the 

peneplanation-uplift model) or increased efficiency of surface processes as a response to 

climatic changes.  

In light of the new thermochronological data presented in the current contribution, pre-

Eocene peneplanation and subsequent uplift is suggested to provide an inadequate explanation 

for the morphotectonic evolution of southwestern Norway. Taking the thermal conditions 

required by the AFT data into account, the peneplanation scenario is found to be in conflict 

with independent geological observations. This assessment is based on thermal history 

modelling of three samples. In order to draw a firm conclusion with regard to the 

compatibility between the AFT record and the peneplanation-uplift model, the results 

obtained in the present study must be verified by additional data from the Hardangervidda 

plateau. It should be noted that the alternative thermal history models presented in this thesis 

were constructed to acknowledge the main perspectives on the age of the paleic surface 

portrayed in previous studies and do not cover the full range of possible scenarios. By shifting 

the timing of peneplanation towards the present, the compatibility between the resulting 

cooling paths, the AFT data and the geological observations is expected to improve. 

Although, the presented data are in accordance with the thermal conditions inferred by the 

ICE hypothesis, the most recent cooling history, which is essential for understanding the 

topographic evolution, cannot be resolved by the AFT and (U-Th)/He methods. Hence, the 

key principles of the ICE hypothesis are neither disproved nor verified. 
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9. CONCLUSION 

 
From the thermochronological and structural data obtained in the present study, the following 

main conclusions can be drawn:   

• A general correlation between AFT age and elevation is found throughout the studied 

area. Early Cretaceous cooling ages predominate close to sea level, while Jurassic ages 

are widespread on the Hardangervidda plateau. This implies that samples from high 

elevations reached shallower crustal depths at an earlier stage than samples from low 

elevations and suggests that progressive, uniform exhumation of the crustal column 

has exerted the main control on the thermal evolution. The age-elevation gradients 

from the Kjeåsen and Bu profiles imply low cooling rates of ~1°C within the time 

interval bracketed by the AFT ages. Short mean track lengths and mixed distribution 

signatures suggest a thermal history characterized by slow cooling through the 

temperatures associated with the upper kilometres of the crust. Surprisingly young 

ages and short mean track lengths within the Hardangerfjord Shear Zone may be 

explained by hydrothermal heating. 

• The obtained (U-Th)/He ages suggest cooling through the 70-40 °C isotherms in the 

Cretaceous, i.e. ~50 Ma after cooling through the apatite partial annealing zone. This 

relation substantiates the low Jurassic-Cretaceous cooling rates estimated from the 

AFT age-elevation trends. The generally poor reproducibility of single grain  

(U-Th)/He ages may be attributed to He trapping effects associated with accumulated 

radiation damage. 

• Thermal history modelling indicates two main time intervals characterized by rapid 

cooling. The first is constrained to the Permo-Triassic and is suggested to reflect 

accelerated denudation rates in relation to rift flank uplift and reactivation of major 

structures. A second cooling episode commenced in the latest Cretaceous-Paleogene, 

concomitant with the onset of rifting in the North Atlantic and proposed episodes of 

uplift attributed to the thermal effects of the Icelandic plume. Accelerated Neogene 

cooling is pronounced in thermal history models of samples from sea level. A 

substantial portion of this recent cooling is probably attributed to Quaternary fjord 

incision.  
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• Fission track ages are locally offset across lineaments. This is interpreted to reflect 

significant post-middle-late-Jurassic fault activity. Considerable brittle deformation 

has been accommodated by N-S-trending structures. Reactivation of other fracture sets 

is likely to have taken place, but the displacements are below the resolution of the 

AFT method and firm conclusions cannot be drawn. Differential fission track 

signatures and offset PAZ exits across the Eidfjord suggest Cenozoic displacement 

along a fault that underlies the fjord, possibly in combination with reactivation of 

smaller-scale structures within the Eidfjord north block. 

• Decreasing apatite fission track ages are generally evident from the coast towards the 

interior of southwestern Norway. This age pattern may be explained in terms of 

general down-to-the-west extensional displacement along structures that dissect the 

coastal plain and the outer rift flank. 

• The required reburial depths and possible Cenozoic fault activity inferred from 

thermal history modelling of samples from the Hardangervidda plateau are found to 

conflict with pre-Eocene peneplanation of southern Norway. However, more recent 

peneplanation is not precluded by the data. The obtained results are in agreement with 

the ICE hypothesis, but the most recent thermal history, which is essential for the 

understanding of the topographic evolution of the southwestern Norwegian margin, is 

outside the sensitivity range of the applied thermochronometers and cannot be 

resolved from this study alone. 

 

 

 



10. OUTLOOK 

151 
 

10. OUTLOOK 

 
The present study has provided new perspectives on the tectonic evolution of the inner 

Hardangerfjord region through low-temperature thermochronology of densely spaced 

samples. There are still numerous unresolved aspects regarding the morphotectonic 

development of the areas surrounding the Hardangerfjord and further sampling is clearly 

required.  As a regional pattern of fission track ages in southwestern Norway has already been 

established, future studies should focus on detailed sampling in geographically restricted areas 

in order to contribute a better understanding of the structural complexity. The sampling 

scheme utilized in the present study (i.e. vertical profiles) is most successful when faults are 

avoided entirely (although this must be regarded as a nearly impossible task). Future studies 

should employ systematic sampling across lineaments of equal orientations in order to 

elucidate the displacement records of individual fault populations. In the inner Hardangerfjord 

region, the pervasive N-S-trending fracture set is of particular interest. Additionally, it would 

certainly be worthwhile studying the possible displacement records of brittle structures that 

parallel the Hardangerfjord Shear Zone. Granvin and Ulvik would make interesting targets for 

future studies attempting to reveal whether the Hardangerfjord Shear Zone has experienced 

post-Devonian brittle reactivation and associated circulation of hydrothermal fluids. 

Additional samples should be collected in the hangingwall immediately to the west of the 

HSZ in order to detect possible differential cooling patterns across the innermost exposed 

segment and thus improve the understanding of how the HSZ has influenced the topographic 

evolution of the area. An extensive study involving apatite fission track and apatite and zircon 

(U-Th)/He analysis of samples from the central Hardangerfjord region is currently in 

preparation and is expected to provide new insights into the exhumation history across the 

Hardangerfjord Shear Zone.  Thermochronological studies across the transitional relay 

structures of the Lærdal-Gjende Fault to the north of the present study area could potentially 

yield valuable information on possible differences in exhumation style from southwest to 

northeast along the strike of the HSZ.   

The samples collected from low elevations in Simadalen were unfortunately not 

datable. Considering the young ages obtained from relatively high elevations in this particular 

area, samples from sea level may provide new information about the more recent thermal 

history of the inner Hardangerfjord region and should be included in future studies. The 

Eidfjord Granite is obviously not an ideal lithology for fission track analysis, but migmatitic 
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gneisses are abundant directly northeast of the sampled outcrops and are generally found to 

contain sufficient apatite of good quality. In order to constrain the Cretaceous and Cenozoic 

cooling history, the vertical profiles should be extended by sampling below sea level in the 

fjords. The tributaries of the inner Hardangerfjord are shallow and are therefore not obvious 

targets for such a sampling strategy. However, the outer Eidfjord is relatively deep and may 

potentially hold intriguing clues to the topographic evolution of the southern Scandes. 

By applying the (U-Th)/He method to closely spaced samples from lateral transects 

and vertical profiles it may be possible to constrain the proposed Cenozoic cooling event and 

determine whether the extensive fault activity that is documented in the present work also 

continued into the Late Cretaceous and possible even the Paleogene. However, the  

(U-Th)/He method still yields unreliable results for many Norwegian samples. Clearly, 

problems regarding the possible retentive effects of radiation damage and the nearly 

ubiquitous zoning observed in samples from southern Norway must be addressed in the future 

for this approach to be successful.  

Joint modelling of samples from vertical profiles may significantly constrain the 

cooling paths, considering that temperature recorded by a sample at any given time is highly 

dependent on the temperatures of the remaining samples in the profile. In the modelling 

approach applied in the current study every sample is treated independently. A joint 

modelling approach is normally most successful if all included samples have experienced the 

same cooling history. It is thereby essential that sampling is accompanied by detailed 

structural mapping.  

Although the inner Hardangerfjord region has been targeted by several detailed 

thermochronological studies in the past, the present contribution reveals some new aspects 

regarding the exhumation history and structural evolution of the area. Clearly, regional studies 

cannot fully elucidate the structural complexity of southern Norway and detailed studies of 

restricted areas are required. Despite the effort of a number of workers over the last couple of 

decades, a considerable amount of thermochronological and structural work thus remains for 

a thorough understanding of the intricate post-Permian evolution of the Norwegian North Sea 

margin.  
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Outcrop 

number

Sampling 

date
Location

Elevation 

(m asl)

UTM N         

UTM E

Outcrop type and 

description
Sample description Joints Spacing

BG-13 07.09.2007 Ulgenes 25 371904  

6701787

Freshly exposed road 

outcrop beween Ulgenes 

and Tjoflot.

Coarse-grained granite with qtz, 

pink kfsp and bt. Pegmatite 

dykes (~3 dm wide).

059/82 

057/90 

053/83 

048/85 

019/72 

347/55 

053/64 

352/53

dm-m-

spacing

BG-14 08.09.2007 Osafjellet 1055 398209  

6719094

Relatively freshly exposed 

road outcrop.

Coarse-grained augen gneiss 

with fsp, qtz and bt. Fsp augen 

are < 5 cm. Pegmatite dykes (dm-

m-scale). Felsic "schlieren" - 

migmatite? Well-foliated.

272/81 

312/83 

257/75 

m- several m-

spacing

BG-16 08.09.2007 Skår 510 372345  

6719421

Road outcrop next to 

sideroad to Skår.

Augen gneiss. Grain size varies 

between layers. Qtz, fsp and bt 

are abundant. Pink kfsp augen 

are < 1 cm. Layers of pink kfsp 

and lenses of qtz.

193/82 

205/81 

206/82 

127/74

dm-m-

spacing

BG-26 Kvanndal 25 370234  

6706814

Road outcrop along the 

Granvinfjord between 

Kvanndal and Granvin. ~6 

m high.

Medium-grained, light grey 

granite with pegmatitic 

"schlieren" of qtz, pink kfsp and 

bt. Xenoliths of dark grey gneiss. 

No 

dominant 

joint 

direction

BG-27 Utne 130 367631  

6701607

Freshly exposed road 

outcrop. 1-3 m high. 

Medium-grained , light grey 

granite with qtz, fsp and bt. Light-

coloured fsp-bands occur locally. 

Cut by qtz-fsp pegmatite dyke 

(~30 cm wide).

312/75 Jointing not 

significant

Appendix A: List of samples
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number

Sampling 
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Location

Elevation 

(m asl)

UTM N         

UTM E

Outcrop type and 

description
Sample description Joints Spacing

BG-53 04.06.2008 Jåstad 3 368998  

6691882

Road outcrop. Medium-grained, light grey 

granite with qtz, fsp, bt. Blocks of 

gneiss in the granite. Fine-

grained mafic dyke.

171/20 

186/31 

213/39 

135/42 

116/45 

090/10 

029/86 

040/87 

047/85 

119/56 

205/41 

076/16

dm-several m-

spacing

KJ-1 06.07.2011 Osafjellet 950 397022        

6717880

Freshly exposed road 

outcrop.

Augen gneiss. Coarse grained 

qtz. White, <10 cm fsp augen. 

Minor mafics, mostly bt. Well-

foliated.

060/74  

202/84  

057/82  

030/46

dm-scale

KJ-2 06.07.2011 Osafjellet, 

Langevatn

1115 396599     

6715530

Freshly exposed road 

outcrop close to Langevatn.

Coarse-grained migmatitic 

gneiss. Light bands are 

dominated by qtz and fsp. Bt-rich 

dark bands.

018/60 2-3 m

KJ-3 06.07.2011 Osafjellet 750 395211     

6717419

Steep slope close to the 

road to Osafjellet.

Coarse-grained, homogeneously 

dark-coloured granodioritic (?) 

gneiss with qtz, plg and 

abundant bt. Weak foliation. 

Pegmatite dykes.

216/82 

144/43 

146/53

>1m

KJ-4 06.07.2011 Osa 550 394777   

6717210

Freshly exposed road 

outcrop 

Migmatitic gneiss. Leococratic 

layers contain coarse-grained qtz 

and white K-fsp. Some layers 

contain dominantly qtz. Dark 

grey, finer-grained mafic layers 

with mainly bt and hbl. Complex 

folding. 

206/81  

202/84  

028/84

dm-m-

spacing



Outcrop 

number

Sampling 

date
Location

Elevation 

(m asl)

UTM N         

UTM E

Outcrop type and 

description
Sample description Joints Spacing

KJ-5 06.07.2011 Osa 330 394223  

6717643

Freshly exposed road 

outcrop 

Dark grey/black amphibolitic 

gneiss. Medium-grained. 

Abundant hbl, plg and bt. Weakly 

foliated. Coarse-grained fsp 

veins are foliated together with 

the host rock. 

232/47 1-2 m

KJ-6 06.07.2011 Osa 195 393337   

6718091

Freshly exposed road 

outcrop Grey, medium-grained migmatitic 

gneiss with pegmatoidal fsp 

veins. Stromatic layers. 

Leocosome with qtz and plg.  Bt-

rich mafic layers. 

224/35  

228/83  

036/77 

Several m

KJ-7 16.07.2011 Osa 105 392936   

6718446

River outcrop close to steep 

cliff. Light-coloured, medium-grained 

gneiss with abundant plg and 

qtz. Thin (<1 cm), discontinuous 

melanocratic layers with 

abundant bt. Weakly foliated. 

No 

prominent 

joints 

detected

KJ-8 16.07.2011 Osa 45 392399   

6718079

Steep cliff behind red 

house.

Medium-coarse-grained 

leococratic gneiss. Rich in qtz 

and fsp. Local clusters of bt. 

Weakly-moderately foliated. 

No single 

dominant 

orientation

KJ-9 02.08.2011 Between 

Brimnes and 

Eidfjord

30 387723   

6706130

Road outcrop. Steep cliff 

close to the road between 

Brimnes and Eidfjord.

Medium-grained, dark grey 

gneiss. Abundant coarse-grained 

qtz and plg. Weakly foliated. 

Wide,qtz- and fsp-rich 

pegmatoidal veins. No preferred 

orientation.

270/34  

110/20

>1m

KJ-10 02.08.2011 Sima 15 397384   

6707611

Relatively fresh, but dirty 

road outcrop, located in the 

innermost fjord near Sima.

Coarse-grained, white granite. 

Massive. Mostly qtz, some fsp. 

Large bt-crystals, locally > 1 cm.

Exfoliation >1m



Outcrop 

number

Sampling 

date
Location

Elevation 

(m asl)

UTM N         

UTM E

Outcrop type and 

description
Sample description Joints Spacing

KJ-11 02.08.2011 Eidfjord 15 394397   

6705845

Freshly exposed, dirty road 

outcrop by the intersection 

between the road to Sima 

and the road to Blurneslia.

Coarse-grained, light granite. 

Massive. High content of qtz, plg 

and bt. Additional hbl and brown 

ttn. Pegmatoidal fsp veins (1-30 

cm) occur locally. 

176/40 Several m

KJ-12 04.08.2011 Bu 980 382092    

6703384

Mountain outcrop on the 

outer margin of the 

Hardangervidda plateau. 

Steep terrain. Moderatly to 

strongly weathered outcrops 

covered by lichen.

Fine-medium-grained granite. 

Mainly qtz and white kfsp. Some 

bt. Weakly deformed. 

KJ-13 04.08.2011 Bu 790 382239   

6703732

Mountain outcrop by dry 

river bed along a steep 

track from Bu to 

Hardangervidda.

Light grey, medium-coarse-

grained granite. Abundant qtz 

and fsp. Some bt. Weakly 

deformed. 

No single 

dominant 

orientation

KJ-14 04.08.2011 Bu 640 382410   

6704005

River outcrop in Budalen. 

Relatively fresh, but dirty 

surfaces.

Light grey, medium-grained 

granite. Mainly qtz and fsp. Fine 

crystals of bt. Weakly deformed.

No single 

dominant 

orientation

KJ-15 04.08.2011 Bu 440 382646   

6704522

Beneath steep cliffs in the 

woods slightly west of the 

marked track.

Light grey, medium-coarse-

grained granite. Rich in qtz and 

fsp. Some fine bt. Weakly 

deformed. Abundant qtz veins. 

No single 

dominant 

orientation

KJ-16 05.08.2011 Bu 190 382574   

6705192

Road outcrop by tractor 

road close to the farm at 

Bu.

Fine-grained, grey gneiss. 

Parallel leucocratic bands with 

mainly fsp and some qtz. 

Melanocratic bands with fine-

grained bt. dm-scale pegmatitic 

veins (fsp). 

061/65 <10 cm -      2 

dm

KJ-17 05.08.2011 Bu 100 382736   

6705609

Road outcrop just west of 

Bugjelet.

Dark grey meta-dacite(?). Fine-

grained. Contains plg, qtz, hbl 

and bt. dm- m-scale pegmatoidal 

veins of fsp. 

039/65 1 dm- 1m



Outcrop 

number

Sampling 

date
Location

Elevation 

(m asl)

UTM N         

UTM E

Outcrop type and 

description
Sample description Joints Spacing

KJ-18 05.08.2011 Between Bu 

and Brimnes

1 383695   

6705475

Fjord outcrop. Abrased 

rocks. Good quality outcrop.

Fine-medium-grained banded 

gneiss. Rich in fsp and qtz. Mafic 

layers consist mainly of bt. 

Pegmatoidal veins (~1 dm) of 

fsp. Strongly foliated.

KJ-19 20.08.2011 Kjeavatnet 1220 397243   

6711186

Mountain outcrop west of 

Kjeavatnet. 

Medium-grained migmatitic 

gneiss. Abundant qtz and fsp. 

Prominent dark layers with bt. 

Stromatic. 

069/87 

002/86 

016/71 

005/78 

171/78 

179/72 

182/89 

030/84 

205/65 

207/76 

ca 2 m

KJ-20 20.08.2011 Kjeavatnet 1025 397235   

6710405

Flat mountain outcrop on 

the plateau north of 

Kjeåsen. Only flat, polished 

outcrops are evident in the 

surrounding area. 

Coarse-grained banded gneiss. 

Light-coloured.  Mainly qtz and 

fsp in lecocratic layers. Mafic 

layers are bt-rich. Prominent 

foliation. 

078/40 

077/68

KJ-21 20.08.2011 Kjeåsen 805 397021   

6709857

Mountain outcrop situated 

above a steep cliff. 

Weathered. 

Medium-coarse-grained banded 

gneiss. Abundant qtz and kfsp. 

Bt and hbl in dark layers. Well-

defined foliation. 

313/80 0,5 m

KJ-22 21.08.2011 Kjeåsen 605 397618   

6709345

Cliff face by gravel road 

next to tunnel.

Medium-coarse-grained banded 

gneiss. Leococratic layers are 

thick and coarse-grained. 

Melanocratic layers are finer-

grained, but large (~0.5 cm) bt-

crystals occur locally.

055/60 

338/64

0,5m - 10 m



Outcrop 

number

Sampling 

date
Location

Elevation 

(m asl)

UTM N         

UTM E

Outcrop type and 

description
Sample description Joints Spacing

KJ-23 21.08.2011 Sima 1 397359   

6708517

Fjord outcrop by the track to 

Kjeaneset.

Coarse-grained, white granite. 

Massive. Abundant qtz and kfsp. 

Some plg. Big crystals of bt 

occur locally. 

Exfoliation

KJ-24 23.08.2011 Nipahøgdi 1345 395733   

6720845

Mountain outcrop in the 

valley to the southeat of the 

Nipahøgdi peak. 

Carbonaceous  and 

micaceous phyllites are 

evident in the nearby areas. 

Fine-grained quartzitic phyllite. 

Light grey, semi-shiny foliation 

planes. Contains mainly qtz. Thin 

bands of ms and bt. Abundant 

qtz-segregations. Meso- and 

microfolds. 

KJ-25 23.08.2011 Nipahøgdi 1210 397460   

6720443

Mountain outcrop between 

Nipahøgdi and 

Rundavatnet. First outcrop 

with augen gneiss when 

approaching from the west.

Coarse-grained augen gneiss. 

Large (<5 cm) fsp pophyroclasts, 

qtz and fine-grained bt. Well 

defined foliation is cross-cut by 

granitoid. 

009/74 

026/55 

028/56

1m - >10 m

KJ-26 23.08.2011 Osafjellet 1045 398231   

6719552

Road outcrop by gravel 

road next to Rundavatnet. 

Good quality outcrop.

Dark-coloured augen gneiss with 

large (< 5 cm), elongate feldspar 

porphyroclasts. Fine-medium-

grained dark layers rich in bt. 

Well-foliated.

228/85  

042/85 

028/56 

038/76 

178/72 

165/56 

338/61

0,5 m - 1 m

KJ-27 23.08.2011 Bruravik 50 383168   

6707545

Road outcrop close to the 

ferry terminal. Oxidized 

meta-volcanics with felsic 

dykes are found in the 

same area.

Coarse-grained, light grey 

granite. Qtz, fsp, hbl and bt. 

Massive.

082/90 Several m



Outcrop 

number

Sampling 

date
Location

Elevation 

(m asl)

UTM N         

UTM E

Outcrop type and 

description
Sample description Joints Spacing

KJ-28 01.09.2011 Vatnasetenuten 1310 383333   

6702043

Mountain outcrop close to 

the summit of 

Vatnasetenuten. 

Weathered.

Medium-coarse-grained 

migmatitic gneiss. Light-coloured 

due to high content of qtz and 

fsp. Large (~0.5 cm) crystals of 

hbl and px. Some bt.

034/84 

027/80 

100/90 

030/70 

018/74 

030/64 

030/64

KJ-29 02.09.2011 Kjeåsen 170 397291   

6708672

Cliff face on the track from 

Simadalen to Kjeåsen. 

Right before log bridge and 

extremely steep track with 

ladders. 

Coarse-grained, white granite 

with large (> 1 cm) bt crystals. 

High content of qtz. Some fsp. 

Pinkish weathering colour.

Exfoliation

KJ-30 02.09.2011 Kjeåsen 410 397343   

6708863

Cliff face below Kjeåsen. Coarse-grained, white granite. 

Big crystals and qtz and bt. 

Some fsp. Pinkish weathering 

colour.

348/78 1 m - several 

m

KJ-31 02.09.2011 Osa 15 391372   

6718152

Road outcrop along steep 

cliff directly west of Osa. 

Abundant scree material.

Banded gneiss. Variable grain 

size. Large bt crystals (several 

cm) occur locally. Lecocratic 

bands consist mainly of qtz and 

kfsp. Melanocratic bands are rich 

in bt and hbl. 

189/68 2 m - several 

tens of m



Appendix B: Container positions and track density gradients 
a)                                                                                             b) 

Irradiation NoB-008   
 

Irradiation NoB-011   
  

 
  

 
  

 
  

Position NoB-017 ρd (10^5) 
 

Position NoB-017 ρd (10^5) 
1 IRMM 3-1 21.522 

 
1 IRMM 1 17.927 

2 BG-01T 21.443 
 

2 TM 04 17.880 
3 BG-87 21.364 

 
3 TM 05 17.833 

4 BG-86 21.285 
 

4 TM 06 17.786 
5 BG-83 21.206 

 
5 TM 07 17.739 

6 BG-78 21.127 
 

6 TM 08 17.692 
7 BG-88 21.048 

 
7 TM 12 17.645 

8 BG-112 20.969 
 

8 TM 13 17.598 
9 BG-111 20.890 

 
9 TM 14 17.552 

10 BG-107 20.811 
 

10 TM 15 17.505 
11 BG-84 20.731 

 
11 TM 17 17.458 

12 BG-108 20.653 
 

12 TM 18 17.411 
13 IRMM 3-2 20.574 

 
13 BG-32 17.364 

14 Dur 1 20.495 
 

14 IRMM 2 17.317 
15 Dur 2 20.416 

 
15 BG-70 17.270 

16 FCT 1 20.337 
 

16 BG-72 17.223 
17 FCT 2 20.258 

 
17 BG-73 17.177 

18 NPD 16/1-4 20.179 
 

18 BG-75 17.130 
19 NPD 16/3-2 20.100 

 
19 BG-05 17.083 

20 NPD 16/5-1 20.021 
 

20 BG-08 17.036 
21 NPD 36/1-1 19.942 

 
21 BG-11 16.989 

22 IRMM 3-3 19.863 
 

22 BG-14 16.942 
23 BG-103 19.784 

 
23 BG-16 16.895 

24 BG-104 19.704 
 

24 BG-17 16.848 
25 BG-105 19.625 

 
25 DUR 16.802 

26 BG-106 19.546 
 

26 FCT 16.755 
27 BG-113 19.467 

 
27 IRMM 3 16.708 

28 BG-114 19.388 
 

28 BG-26 16.6610 
29 BG-24 19.309 

 
29 BG-42 16.614 

30 BG-25 19.230 
 

30 PMM 03019 16.567 
31 BG-28 19.151 

 
31 PZ 03005 16.520 

32 BG-27 19.072 
 

32 PMM 0325 16.473 
33 BG-53 18.993 

 
33 PZ 03057 16.427 

34 BG-13 18.914 
 

34 PZ 03062 16.380 
35 BG-49 18.835 

 
35 PZ 99 16.333 

36 BG-50 18.756 
 

36 IRMM 4 16.286 
37 BG-51 18.677 

    38 BG-52 18.598 
    39 IRMM 3-4 18.519 
     



                                                c) 

  
Irradiation NoB-017   

  
  

  
 

  
  

  
Position NoB-017 ρd (10^5) 

  
  

1 IRMM 3-1 21.375 
  

  
2 KJ-1 21.257 

  
  

3 KJ-3 21.140 
  

  
4 KJ-4 21.022 

  
  

5 KJ-5 20.904 
  

  
6 KJ-6 20.786 

  
  

7 KJ-7 20.668 
  

  
8 KJ-8 20.550 

  
  

9 KJ-9 20.432 
  

  
10 KJ-11 20.314 

  
  

11 KJ-12 20.196 
  

  
12 KJ-13 20.078 

  
  

13 KJ-14 19.960 
  

  
14 KJ-15 19.842 

  
  

15 KJ-16 19.724 
  

  
16 KJ-17 19.606 

  
  

17 KJ-18 19.488 
  

  
18 KJ-19 19.370 

  
  

19 DUR 1 19.252 
  

  
20 FCT 1 19.134 

  
  

21 IRMM 3-2 19.016 
  

  
22 DUR 2 18.898 

  
  

23 FCT 2 18.780 
  

  
24 KJ-20 18.662 

  
  

25 KJ-21 18.544 
  

  
26 KJ-22 18.426 

  
  

27 KJ-24 18.308 
  

  
28 KJ-25 18.190 

  
  

29 KJ-26 18.072 
  

  
30 KJ-27 17.955 

  
  

31 KJ-28 17.837 
  

  
32 KJ-31 17.719 

  
  

33 PMM03014 17.600 
  

  
34 IRMM 3-3 17.482 

   
Position of standard glasses, age standards and samples in irradiation tube a) NoB-008, b) NoB-011 and c) NoB-
017, numbered according to distance from the neutron source. Estimated ρd values are displayed in the right 
column. Counted samples and standard glasses are marked in bold font. 

 



Appendix C: Radial plots 

 



 



 
 

Radial plots from TrackKey, showing the distribution of single grain ages from apatite fission track analysis. Ages are 
read of the radial logarithmic scale in the outer right part of the diagram by extrapolating a line from the origin through 
the grain coordinate. The most precise grain ages are located furthest from the origin.  

 

 

 



Appendix D: (U-Th)/He analytical data 
 

Grain no. TAU (%) Estim. error 
on FT (%) 

First He re-
extract (%) 

KJ-8a 3.2 4.5 0.1 
KJ-8b 2.5 4.5 0.3 
KJ-11a 3.0 4.3 0.0 
KJ-11b 3.1 4.0 0.1 
KJ-11c 2.5 3.9 0.0 
KJ19a 2.4 4.0 1.7 
KJ-19b 2.9 3.3 0.0 
KJ-19c 2.5 3.4 4.1 
KJ-25a 2.7 3.5 0.3 
KJ-25b 2.7 4.9 0.3 
 
Aalytical data indicative of the quality of (U-Th)/He measurements for individual grains. TAU is the total 
analytical uncertainty in percent. Elevated first He re-extracts are evident for two of the grains in KJ-19. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix E: Alternative inverse models 

 
Alternative thermal history models for samples from the Hardangervidda plateau: a-c) Mesozoic peneplanation 
and reburial; d-f) Paleogene peneplanation and reburial.  



Appendix F: Forward models for KJ-19 

        a) 

 



     b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



       c) 

 

Forward modelling of KJ-19, assuming Paleogene peneplanation and reburial: a) Maximum burial depth as 
suggested by the inverse model. No bimodal track length distribution. b) Deep reburial. Bimodal track length 
distribution with a majority of short tracks. c) Shallow reburial. Bimodal track length distribution with a majority 
of long tracks. Red histograms show the c-axis projected track length distribution. Thick, black lines represent 
predicted distribution signature for the given thermal history.  


