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Chapter 1

Introduction

Dependence and copula theory are important and much studied subjects in
statistics. In this thesis we will describe some of the work that has been in
done in this field. We will also present a recently developed local dependence
measure called local Gaussian correlation, and try to use this to characterize
some of the best known copula models, together with som less knowns. In
chapter 2 we define the copula concept, and present some results that will be
of use to us in this thesis. Popular global dependence measures are presented
in chapter 3, where we specially are interested in its connection with copulas.
In chapter 4 we introduce the concept of local Gaussian correlation (LGC) and
in chapter 5 we show how a theoretical version of this dependence measure
can be developed for copula models. Elliptical distributions are used a lot
in applications and in chapter 6 we look closer at this class of distributions,
specially the Gaussian and the t distribution. Copula models is constructed
from these distributions, and the theoretical LGC is derived and analysed. In
chapter 7 we have a quick look at skewed versions of elliptical distributions, a
copula is constructed from the skewed normal distribution and the theoretical
LGC is calculated for this model. A method for calculating the theoretical LGC
for Arhimedean copulas is presented in chapter 8, and then 4 different copulas
from this class is analysed with the help of the LGC and other dependence
measures. In chapter 9 we mention some of the existing methods for estimating,
selecting and testing different copula models, and try to point out where the
LGC can be used. Plots will be presented when appropriate throughout this
thesis, and in the end there is an appendix with additional plots.
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Chapter 2

Copula

The term copula was first introduced by Sklar (1959), but the interest in it did
not really explode before recent years. One of the main reasons for the interest
in copula theory is the many applications in finance. The copula function de-
scribe the dependence structure between stochastic variables, and it gives one
the opportunity to separate the dependence structure and the marginal distri-
butions. Nelsen (2006) is a classic and good introductory book to copulas. We
are now going to define the concept of copulas and look at some properties. For
the most part we will consider 2-dimensional copulas in this thesis. Still we will
define the concept for the general n-dimensional case, and some of the result
will also be stated in n-dimensions where there are no serious complication by
doing so.

2.1 Mathematical introduction

In order to define the copula function in a proper way we need to define a couple
of other terms first and state a lemma, which all is from Embrechts, Lindskog
and McNeil (2001).

Definition 2.1. Let S1, . . . , Sn be nonempty subsets of R̄ = [−∞,∞] and let
H be a real valued function of n-variables with domain S1 × · · · × Sn. For
a = [a1, . . . , an] ≤ b = [b1, . . . , bn], that is ak ≤ bk for all kε{1, 2, . . . , n}, let
B = [a, b] = [a1, b1]× · · ·× [an, bn] be an n-box whose vertices are in the domain
of H.
We then say that the H-volume is given by

VH(B) =
∑

sgn(c)H(c).

The sum is taken over all vertices c of B, and the sgn-function is

sgn(c) =

{
1, ck = ak for even k’s
−1, ck = ak for odd k’s

For 2 variables we get VH(B) = H(b1, b2)−H(b1, a2)−H(a1, b2)+H(a1, a2).

Definition 2.2. A real function H of n variables is n-increasing if VH(B) ≥ 0
for all n-boxes B whose vertices lie in the domain of H.
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Definition 2.3. Let H be real function with domain S1 × · · · × Sn.

• Let each Sk has a smallest element ak. We say H is grounded if H(t) = 0
for all t in the domain where tk = ak for at least one k.

• If we also require that Sk is nonempty and has greatest element bk we say
that H has margins. The one dimensional margins to H are functions Hk

with domain Sk such that Hk(x) = H(b1, . . . , bk−1, x, bk+1, . . . , bn) for all
x in Sk.

Let (t1, . . . , tk−1, x, tk+1, . . . , tn) and (t1, . . . , tk−1, y, tk+1, . . . , tn) be in the
domain of the real valued function H, and let x ≤ y, then we say that H is in-
creasing in every argument ifH(t1, . . . , tk−1, x, tk+1, . . . , tn) ≤ H(t1, . . . , tk−1, y, tk+1, . . . , tn).

Lemma 2.4. Let S1, . . . , Sn be nonempty subsets of R̄ and let H be a grounded
and n-increasing function with domain S1 × · · · × Sn, then H is increasing in
every argument.

Definition 2.5. Let H be an n-dimensional function with domain R̄n. We say
that H is a distribution function if it is grounded, n-increasing and we have that
H(∞, . . . ,∞) = 1.

Now we are ready to define a copula.

Definition 2.6. A n-dimensional copula is a function C with domain [0, 1]n

such that

1. C is grounded and n-increasing

2. C has margins Ck, where k = {1, . . . , n}, which satisfies Ck(u) = u for all
u in [0, 1].

In other words we can say that an n-copula is a distribution function of a
stochastic vector in Rn with uniform [0, 1] margins.

2.2 Sklars theorem

This theorem is very important, and used a lot in applications. In the text I
will use RanF as a short cut for the range of a function F .

Theorem 1. Let H be a n-dimensional distribution function with margins
F1, . . . , Fn. Then there exists a n-copula C such that for all x ∈ Rn we have

H(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn))

If all F1, . . . , Fn are continuous, then C will be unique. Otherwise C will be
uniquely determined on RanF1, . . . , RanFn. Conversely, if C is a n-copula and
F1, . . . , Fn are distribution functions, then H is a n-dimensional distribution
function with margins F1, . . . , Fn.

For proof see Nelsen (2006) pages 17-24.
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If F is an univariate distribution function we define F−1(t) = inf {x ∈ R|F (x) ≥ t}
for t in [0, 1]. We then have a corollary following from Sklars theorem.

Corollary 2. Let H be a n-dimensional distribution function with continuous
margins F1, . . . , Fn and copula C. Then for all u in [0, 1]n we have that

C(u1, . . . , un) = H(F−1
1 (u1), . . . , F−1

n (un))

2.3 Properties and examples

An example of a trivial copula is the independence copula, or the product copula
as it also is called,

∏
d(u) = u1 · · ·ud, where the components to U = (U1, . . . , Ud)

are independent and uniformly distributed on [0,1]. We will from now one denote
the uniform distribution on the interval [a, b] as U(a,b). The two functions
M2(u) = min {u1, u2} and W2(u) = max {u1 + u2 − 1, 0} are also copulas. We
can see this by noting that if U is U(0,1) we have

M2(u) = P [U ≤ u1, U ≤ u2]

W2(u) = P [U ≤ u1, 1− U ≤ u2]

That is M2 and W2 are bivariate distribution functions for the vectors (U,U) and
(U,1-U), and it follows that they are copulas. For n ≥ 3Mn(u) = min {u1, . . . , un}
will still be a copula, while Wn(u) = max {u1 + · · ·+ un + 1− n, 0} never will
be (Embrechts, Lindskog, McNeil (2001)). These two functions appear in a well
known theorem which gives an upper and lower bound for every copula. We
call it the Fréchet-Hoeffding Bounds.

Theorem 3. Let C be any n-copula. Then for all u in [0, 1]n we have that

Wn(u) ≤ C(u) ≤Mn(u)

Proof is given in Frèchet (1957).

If we have random variables X1, . . . , Xn with joint distribution function H,
we know that the random variables are independent if and only if we have
H(x1, . . . , xn) = F1(x1) · · ·Fn(xn). From Sklars theorem the following result
follows.

Theorem 4. Let X1, . . . , Xn be a vector with continuous random variables
with copula C. Then X1, . . . , Xn are independent if and only if C(u1, . . . , un) =
u1 · · ·un. That is the product copula.

2.3.1 Density

For a copula C we have that the mixed kth order derivative, ∂kC(u)
∂u1...∂uk

, exists for

almost all u in [0, 1]n (Embrechts, Lindskog, McNeil (2001)), and we have that

0 ≤ ∂kC(u)

∂u1 . . . ∂uk
≤ 1. (2.1)
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The density for a n-copula C is in general given by

C(u) =
∂nC(u)

∂u1 . . . ∂un
. (2.2)

If we have a continuous n-dimensional distribution F, with density f, and contin-
uous margins F1, . . . , Fn with densities f1, . . . , fn, then the density for a implicit
copula can be written

c(u) =
f(F−1

1 (u1), . . . , F−1
n (un))

f1(F−1
1 (u1)) · · · fn(F−1

n (un))
. (2.3)

Hence

c(F1(x1), . . . , Fn(xn)) =
f(x1, . . . , xn)

f1(x1) · · · fn(xn)
. (2.4)

This means we can write a general n-dimensional density f as

f(x1, . . . , xn) = c(F1(x1), . . . , Fn(xn))f1(x1) · · · fn(xn). (2.5)

2.3.2 Increasing transformations

When working with a model of financial returns, one may want to change it to
a model of the logarithm of these returns. We then have the useful property
that this transformation will not affect the dependence structure given by the
copula C. In general we have that copula functions are invariant under strictly
increasing transformations.

Theorem 5. Let (X1, . . . , Xn) be a vector of continuous random variables with
copula C. If α1, . . . , αn are strictly increasing transformations on RanX1, . . . , RanXn,
respectively, then (α1(X1), . . . , αn(Xn)) also has copula C.

Proof is given in Embrechts, Lindskog and McNeil (2001).

2.4 Survival copulas

Some times in application we meet what we call the survival function, that
is F (x) = P (X > x) = 1 − F (x), where F is the distribution function to
the random variable X. For two random variables X,Y with joint distribution
function H, we have the joint survival function H(x, y) = P (X > x, Y > y).

For copulas we can define the function Ĉ: I2 → I as

Ĉ(u, v) = u+ v − 1 + C(1− u, 1− v),

and we call it the survival copula. This is not to be confused with the survival
function to the distribution function C with uniform margins. We have

C(u, v) = 1− u− v + C(u, v) = Ĉ(1− u, 1− v).

The reason for the definition becomes clear when we look at

H(x, y) = 1− F (x)−G(y) +H(x, y)

= F (x) +G(y)− 1 + C(F (x), G(y))

= F (x) +G(y)− 1 + C(1− F (x), 1−G(y)).

So we have
H(x, y) = Ĉ(F (x), G(y)) (2.6)
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2.5 Symmetry

When we are going to characterize the different types of copula functions, saying
something about the symmetry is essential. If we let X be a univariate random
variable we say that it is symmetric about a if F (a + x) = F (a − x). In the
bivariate case it is not that simple to know what is meant by symmetry. We are
going to consider two different symmetry concepts, and show how it effects the
copula. More details and also other kinds of symmetry can be found in Nelsen
(2006).

2.5.1 Radial symmetry

We say that (X,Y) is radially symmetric about (a,b) if (X − a, Y − b) and
(a−X, b−Y ) has the same distribution. When working with continuous random
variables it can be shown that (X,Y) is radially symmetric about (a,b) if and
only if

H(a+ x, b+ y) = H(a− x, b− y) (2.7)

for all (x,y) in R2. Here H is the joint distribution function of (X,Y). The
points (a+ x, b+ y) and (a− x, b− y) lie on rays emanating in opposite direc-
tions from (a, b), and that is where the term ”radial” comes from. Figure 2.1
shows areas with equal probability when we have radial symmetry around (a, b).

Figure 2.1: Shows the areas with the same probability when we have radial
symmetric random variables.

The next theorem gives a link between the copula function and radial sym-
metry.

Theorem 6. Let X and Y be continuous random variables with joint distribution
function H, marginal distribution functions F and G respectively, and copula C.

10



Figure 2.2: Shows the areas with the same probability when we have radial
symmetric random variables.

Assume that X is symmetric about a and Y is symmetric about b. Then (X,Y)

is radially symmetric about (a,b) if and only if C = Ĉ, that is if and only if

C(u, v) = u+ v − 1 + C(1− u, 1− v)

for all (u,v) in I2.

For proof see Nelsen (2006).

As shown in figure 2.2 this theorem has the geometrically interpretation that
the rectangles [0, u]× [0, v] and [1− u, 1]× [1− v, 1] have equal C-volume.

2.5.2 Exchangeable symmetry

We say that X,Y is exchangeable if (X,Y) and (Y,X) are identically distributed.
So if we have two random variables X and Y, with joint distribution function
H, margins F and G, and copula C, we can write

C(u, v) = H(F−1(u), G−1(v)) = H(G−1(v), F−1(u)) = C(v, u). (2.8)

Here we have clearly used Sklars theorem again. This shows that the exchange
symmetry of random variables is inherited by their copula. We can state this
more formally in a theorem.

Theorem 7. Let X and Y be continuous random variables with joint distribution
function H, margins F and G, respectively, and copula C. Then X and Y are
exchangeable if and only if F=G and C(u,v)=C(v,u) for all (u,v) in I2.

11



Copulas with the property that C(u,v)=C(v,u) for all (u,v) in I2 are often
referred to only as being symmetric.
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Chapter 3

Global dependence
measures

We are going to consider some of the most used global dependence measures,
and try to present the connections between them and the copula concept.

3.1 Linear correlation

The linear correlation coefficient is used in many applications, it is for example
used a lot as a dependence measure in financial theory. In Embrechts, McNeil
and Straumanm (1999) we can find a pretty thorough investigation of the use
of linear correlation as a dependence measure in finance and insurance. We are
only going to mention a couple of important points from there.

Definition 8. If we have two random variables X and Y with finite variances
the linear correlation between X and Y is

ρ(X,Y ) =
Cov(X,Y )√

Var(X)Var(Y )
,

where Cov(X,Y ) = E[XY ]−E[X]E[Y ] are the covariance of X and Y. ρ is
called the linear correlation coefficient because it measures the linear dependence
between random variables. Actually knowledge about ρ(X,Y ) is equivalent to
the coefficient β of the linear regression Y = βX + ε. Here ε is a residual which
is linearly uncorrelated of X. The correlation coefficient will be in the interval
[−1, 1], and in case of perfect linear dependence we have that |ρ(X,Y )| = 1. By
perfect linear dependence we mean that Y = aX + b almost surely, where a is a
real number except zero and b is a real number. If A and B are m×n matrices,
a and b ∈ Rm, and X and Y are stochastic n-vectors, we have that

Cov(AX + a,BY + b) = ACov(X,Y )BT

which again gives for α ∈ Rn

V ar(αTX) = αTCov(X)α

13



where Cov(X) is defined as an n×n matrix where the ij-element of the matrix is
given by Cov(Xi, Xj). In this way we can decide the variance of a linear combi-
nation in the portfolio theory by considering the covariances of the components
in pairs.

It follows from the definition of covariance that if we have independent stochas-
tic variables the covariance, and thus the correlation, becomes zero. But if two
stochastic variables are uncorrelated they are not necessarily independent. As
an example we can look at X ∼ U(−1, 1), Z ∼ U(0, 1

10 ) and Y = X2 +Z, where
X and Z are independent. Here U is the continuous uniform distribution. If we
look at the conditional distribution of Y given X = x, that is Y = x2 +Z, it will
have distribution U(x2, x2 + 1

10 ). We see that X and Y obviously will have some
sort of dependency. To calculate the covariance we use that E[X] = E[X3] = 0
since X ∼ U(−1, 1) and E[XZ] = E[X]E[Z] since X and Y are independent.
We get Cov(X,Y ) = E[X(X2 +Z)]−E[X]E[X2 +Z] = E[X3] +E[XZ]− 0 =
0 +E[X]E[Z] = 0. Only when considering the multivariate normal distribution
does ρ = 0 imply independence. Another possible problem with the correlation
coefficient is that it does not exist for distributions where the variance is not
finite, for example the bivariate student t distribution with degree of freedom
less then or equal two.

3.2 Perfect dependence

We remember the Frèchet-Hoeffding bounds, in the bivariate case they where
M2(u) = min {u1, u2} and W2(u) = max {u1 + u2 − 1, 0}, and they are both
copulas. We say that M2 represents perfect positive dependence and W2 perfect
negative dependence. The following theorem formalize this. See Embechts,
McNeil and Strauman (1999) for proof and further references.

Theorem 9. Let (X,Y) have one of the copulas M2 or W2. Then there exists
two monotone functions f,g: R → R and a real-valued random variable Z such
that

(X,Y ) =d (f(Z), g(Z)) (3.1)

In the case of W2 f will be increasing and g decreasing, and in the case of M2

both will be increasing. The converse of the result is also true.

If X and Y has continuous margins, respectively FX and FY , we have the
following stronger result (Embechts, McNeil and Strauman (1999)).

CX,Y = W2 ⇔ Y = F−1
Y (1− FX(X)) (3.2)

CX,Y = M2 ⇔ Y = F−1
Y (FX(X)) (3.3)

We say that X and Y is comonotonic if (X,Y) has copula M2 and countermono-
tonic if (X,Y) has copula W2.

3.3 Kendalls tau and Spearmans rho

If we have two observations (x, y) and (x̃, ỹ) from a vector (X,Y ) with contin-
uous stochastic variables. Then we say that (x, y) and (x̃, ỹ) are concordant if
(x− x̃)(y − ỹ) > 0 and discordant if (x− x̃)(y − ỹ) < 0.
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Definition 10. If (X̃, Ỹ ) is an independent copy of (X,Y ), then Kendalls tau
for the stochastic vector (X,Y ) is

τ(X,Y ) = P [(X − X̃)(Y − Ỹ ) > 0]− P [(X − X̃)(Y − Ỹ ) < 0].

With other words Kendalls tau is the probability of concordance subtracted
the probability of discordance. If we let X and Y be assets, we can from a
financial point of view consider Kendalls tau to be a comparison between the
probability of the two assets rising (or falling) together with the probability that
one of the assets rise (fall) while the other fall (rise). This is important when
trying to set up a portfolio with a diversification effect.

Definition 11. If (X̃, Ỹ ), (X ′, Y ′) and (X,Y ) are independent copies, then
Spearmans rho for the stochastic vector (X,Y ) is

ρs(X,Y ) = 3(P [(X − X̃)(Y − Y ′) > 0]− P [(X − X̃)(Y − Y ′) < 0]).

To see how we can describe these to dependence measures with the help of
copula functions we need the following theorem.

Theorem 12. Let (X,Y ) and (X̃, Ỹ ) be independent vectors of continuous
stochastic variables with joint distribution functions, H and H̃ respectively ,
and with common margins, that is marginal distribution function F for X and
X̃, and G for Y and Ỹ . Further on let C and C̃ be copulas for (X,Y ) and (X̃, Ỹ )
respectively, such that H(x, y) = C(F (x), G(y)) and H̃(x, y) = C̃(F (x), G(y)).
Let Q be

Q = P [(X − X̃)(Y − Ỹ ) > 0]− P [(X − X̃)(Y − Ỹ ) < 0].

Then

Q = Q(C, C̃) = 4

∫ ∫
[0,1]2

C̃(u, v)dC(u, v)− 1.

Proof is found in Embrechts, Lindskog and McNeil (2001).
We see by the definition of Kendalls tau that it fits with this theorem. In

this case we have H = H̃ and C = C̃, such that we get

τ(X,Y ) = Q(C,C) = 4

∫ ∫
[0,1]2

C(u, v)dC(u, v)− 1 = 4E[C(U, V )]− 1

Here U and V are U(0,1).
The theorem also gives an expression for Spearmans rho.

ρs(X,Y ) = 3Q(C,Π) = 12

∫ ∫
[0,1]2

uvdC(u, v)−3 = 12

∫ ∫
[0,1]2

C(u, v)dudv−3

Where Π is the independence copula, Π(u, v) = uv.

By using this expression for ρs we can also find a relation with the linear
correlation ρ. Let X and Y have marginal distribution functions F and G re-
spectively, and let U=F(X) and V=G(Y). By remembering the definition of
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covariance, and that E(U)=1/2 and Var(U)=1/12, we get

ρs(X,Y ) = 12

∫ ∫
[0,1]2

uvdC(u, v)− 3 = 12E[UV ]− 3 =
E[UV ]− 1

4
1
12

=
Cov[UV ]− 1

4 + E[U ]E[V ]
1
12

=
Cov[UV ]− 1

4 + 1
4

1
12

Cov[UV ]√
V ar(U)

√
V ar(V )

= ρ(F (X), G(Y )).

This shows that ρs is nothing more than the linear correlation of the uniformly
distributed random variables U = F (X) and V = G(Y ).

Kendalls tau and Spearmans rho shares many properties, we list her some
essential common ones. We are considering two continuous random variables X
and Y with copula C, and we let k be either Kendalls tau or Spearmans rho. For
proof and more properties we refer to Embrechts McNeil and Strauman (1999)

1. k is defined for any pair of continuous random variables.

2. k is symmetric, that is we have k(X,Y ) = k(Y,X).

3. k=0 for independent random variables.

4. We have that k ∈ [−1, 1], and k(X,Y)=1 if and only if C=M and k(X,Y)=-
1 if and only if C=W.

3.4 Quadrant dependence

Definition 13. We say that two random variables X and Y are positive quad-
rant dependent, and write PQD(X,Y), if for all (x,y) in R2 we have

P (X ≤ x, Y ≤ y) ≥ P (X ≤ x)P (Y ≤ y),

or equivalent
P (X ≥ x, Y ≥ y) ≥ P (X ≥ x)P (Y ≤ y).

If X and Y has joint distribution function H, continuous margins F and G,
and copula C, we can say that X and Y are positive quadrant dependent if

H(x, y) ≥ F (x)G(y) for all (x,y) in R2

or
C(u, v) ≥ uv for all (u,v) in [0, 1]2

We can intuitively think that X and Y are PQD if the probability that they
are simultaneously small is at least as big as if they would be independent.
PQD is a copula property, and the graph of the copula of (X,Y) must lie on
or above the graph of the independence copula Π if X and Y are PQD. In the
same way as described for PQD we can define negative quadrant dependence
(NQD) by switching the inequalities in the equations above. In general quadrant
dependence is a global property, that is it must hold for all (x,y) in R2, but we
can look at the inequalities given above in subsets of R2 and in that way get
local PQD/NQD. See Nelsen (2006) for more and also connections with other
dependence measures.
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3.5 Tail dependence

Let us take a closer look at a local version of positive quadrant dependence. In
finance and insurance we are often specially interested in what happens in the
tails, that is in the lover left corner and upper right corner. So let us define tail
dependence.

Definition 14. Let (X,Y) be a vector of continuous random variables with
marginal distribution functions FX and FY . The coefficient for upper tail de-
pendence is

λu = lim
t→1−

P [Y > F−1
Y (t)|X > F−1

X (t)], (3.4)

and the coefficient for lower tail dependence is

λl = lim
t→0+

P [Y ≤ F−1
Y (t)|X ≤ F−1

X (t)].

This is provided that the limits exists.

When λu = 0 we say that X and Y are asymptotic independent in the upper
tail, and when λu ∈ (0, 1] we say that they have upper tail dependence and
large events tend to occur simultaneously. For λl it is similar.

Tail dependence is a copula property, something that is shown by the next
theorem.

Theorem 15. Let (X,Y), FX , FY , λu and λl be as in the definition of tail
dependence, and let C be the copula of X and Y. Then

λu = lim
t→1−

C(t, t)

1− t

and

λl = lim
t→0+

C(t, t)

t
, (3.5)

if the limits exists.

For proof see Nelsen (2006).

When we further on uses the notation λ it means that we are considering
either λu or λl. Let us look at X and Y which can be considered independent
for sufficient large values. That is where we have

lim
x,y→∞

F (x, y)

FX(x)FY (y)
= 1 (3.6)

If this is the case it can be shown (Malevergne and Sornette 2006) that

lim
t→1−

P (X > F−1
X (t)|Y > F−1

Y (t)) = lim
t→1−

1− FX(F−1
X (t)) = lim

t→1−
1− t = 0.

(3.7)
That is λ = 0 for independent variables, but it does not imply independence.
Later we will look at an example in the Gaussian case. We can now follow in
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the direction of Coles, Heffernan and Tawn (1999) and define a new coefficient
which will tell us more.

λu = lim
t→1−

2 logP (X > F−1
X (t)

logP (X > F−1
X (t), Y > F−1

Y (t))
− 1 = lim

t→1−

2 log(1− t)
logC(t, t)

− 1. (3.8)

We will call this the alternative tail coefficient, and generally denote it λ. We
have that λu will be in the interval [-1,1], where [-1,1) corresponds to asymptotic
independence. In the case of asymptotic independence λu will be an increasing
measure with respect to dependence strength. So when λ = 0 we will have the
necessary condition λ = 0 for true independence.

We remember that the survival copula is given by Ĉ(u, v) = u+v−1+C(1−
u, 1−v), while the survival function of two standard uniform distributed random
variables U and V with distribution C is given by C(u, v) = 1−u−v+C(u, v) =

Ĉ(1−u, 1−v). A sometimes useful property is to note that lower tail dependence

coefficient of C is the upper tail dependence coefficient of Ĉ, and also the upper
tail coefficient of C is the lower tail dependence coefficient of Ĉ. These two
properties is easily shown so we only show the last one. (Embrechts, Lindskog
and McNeil (2001))

lim
t→1−

C(t, t)

1− t
= lim
t→1−

Ĉ(1− t, 1− t)
1− t

= lim
t→0+

Ĉ(t, t)

t
.

18



Chapter 4

Local Gaussian Correlation

4.1 Introduction

In this thesis we will focus on an approach presented by Tjøstheim and Huftham-
mer (2012), which is called Local Gaussian Correlation, or just LGC for short.
It is well known that in a multivariate normal distribution the dependence is
completely determined by the correlation or covariance matrix. But in appli-
cations one often encounters other distributions than the normal distribution.
The idea behind the LGC is to locally approximate the real density of a sample
with the Gaussian distribution in every point. That is

φ(u, v, µ1(x), µ2(x), σ1(x), σ2(x), ρ(x)) =

1

2πσ1(x)σ2(x)
√

1− ρ(x)2
exp{− 1

2(1− ρ(x)2)
((
u− µ1(x)

σ1(x)
)2+

(
v − µ2(x)

σ2(x)
)2 − 2ρ(x)(

u− µ1(x)

σ1(x)
)(
v − µ2(x)

σ2(x)
))},

and then use the correlation parameter from the Gaussian approximation as a
measure of dependence locally. Then we can characterize dependence locally,
and we can also use the other properties of the Gaussian distribution on a
local scale. So if we now have a sample of n iid bivariate random variables

X(i) = (X
(i)
1 , X

(i)
2 ) with real density f(x), we want to approximate it with the

bivariate Gaussian distribution φ(w, θ(x)) = φ(u, v, θ(x)) in the neighbourhood
of every point x. Here θ(x) is the 5 dimensional parameter vector

θ(x) = (µ1(x), µ2(x), σ1(x), σ2(x), ρ(x)). (4.1)

For clarification we note that in some cases we will write the local parameter vec-
tor as θ(x) = (µ(x),Σ(x)), where µ(x) = (µ1(x), µ2(x)) and Σ(x) = (σij(x)) is

the local covariance matrix. The local correlation coefficient is ρ(x) = σ12(x)
σ1(x)σ2(x) .

We will also denote the j’th element in the vector θ(x) as θj . To estimate θ(x)
we will use the modified local log likelihood given in Tjøstheim and Huftham-
mer(2012)

L(X(1), ..., X(n), θ(x)) = n−1
∑
i

Kb(X
(i)−x)log(φ(X(i), θ(x)))−

∫
Kb(w−x)φ(w, θ)dw

(4.2)
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Here Kb(X
(i) − x) = (b1b2)−1K(b−1

1 (X
(i)
1 − x1))K(b−1

2 (X
(i)
2 − x2)) is a product

kernel with bandwidth b = [b1, b2]
T

in the x1 and x2 direction. Setting uj =
∂ log φ
∂θj

, we get the derivatives of the modified log likelihood

∂L

∂θj
= n−1

∑
i

Kb(X
(i)−x)uj(X

(i), θ(x))−
∫
Kb(w−x)uj(w, θ(x))φ(w, θ(x))dw

We can find an estimate θ̂(x) = θ̂n,b(x) for fixed values of n and b by solving
the equations δL

δθj
= 0 for j = 1, ..., 5. By fixing b and letting n→∞ we get the

equation ∫
Kb(w − x)uj(w, θb(x)) [f(w)− φ(w, θb(x))] dw = 0 (4.3)

A population value θb(x) can be defined as a solution to these equations. It can
be shown that, if we assume there is a bandwidth b0 such that there exists a
unique solution θb(x) for every b with 0 < b < b0, θ̂n,b(x) will converge to θb(x)
(Tjøstheim and Hufthammer(2012)). By letting b→ 0 we also get a population
vector θ(x), where θb(x)→ θ(x). Letting b approach 0 give us the equation

uj(x, θ(x)) [f(x)− φ(x, θ(x))] +O(bT b) = 0 (4.4)

If we ignore the solution uj = 0 we see that the local likelihood estimates requires
φ(x, θ(x)) to be close to f(x). The equation f(x) − φ(x, θ(x)) will in general
have infinitely many solutions for the unknown θ, so we must look at it in the
context of the local likelihood function. The limits here are calculated under
some regularity conditions, see Tjøstheim and Hufthammer (2012) for details.
It is also possible to make the same argument as above where we consider the
observations to be from an ergodic time series {Xt}.

4.2 Existence of θb(x)

If f has global Gaussian distribution with parameter vector θ = (µ1, µ2, σ1, σ2, ρ),
the existence of a solution is easily established. That is, θb = θ will satisfy equa-
tion (4.3). In the next step we follow Tjøstheim and Hufthammer (2012) and
start by defining a piecewise linear function gs as

X = gs(Z) =

k∑
i=1

(ai +AiZ)1(Z ∈ Ri). (4.5)

Here Z ∼ N(0, I2), where I2 is the two dimensional identity matrix. Ri for

i = 1, . . . , k is non overlapping regions of R2, such that R2 =
⋃k
i=1Ri. The ais

are corresponding vectors in R2 and the Ais are corresponding 2×2 non-singular
matrices. Further on we define the region Si to be Si = {x : x = ai + Aiz, z ∈
Ri}, and assumes that Si

⋂
Sj = ∅ for i 6= j and

⋃k
i=1 Si = R2. Now let the

Kernel function K have a compact support, and let x be an interior point of Si.
Now b can be made small enough so that w − x ∈ Si if w − x is in the support
of K. Now if we set µi = ai and Σi = AiA

T
i , this restriction on b gives us the

solution θb(x) := θi = (µi,Σi). We now have a local Gaussian approximation
φ(x, θb(x)).
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4.3 Non-linear transformations of Gaussian vari-
ables

By increasing k and letting the regions Ri be smaller we can use a sequence of
functions like in equation (4.5) to approximate more general non linear contin-
uous functions. We are now going to see how we can use non linear transfor-
mations of a bivariate normal distribution to find what we will call the theo-
retical LGC. This is also found in Tjøstheim and Hufthammer (2012). Now let
Z ∼ N(0, I2) and g be a one-to-one vector function g : <2 → <2 with inverse
h = g−1. The Jacobi matrix is denoted

∂g

∂z
=

[
∂g1
∂z1

∂g1
∂z2

∂g2
∂z1

∂g2
∂z2

]

We assume that g has continuous second order derivatives, so we can make a
Taylor expansion around z = (z1, z2) and get

Xi = gi(Z) = gi(z)+

2∑
j=1

∂gi
∂zj

(z)(Zj−zj)+
1

2

2∑
j=1

2∑
k=1

∂2gi
∂zj∂zk

(ξ)(Zj−zj)(Zk−zk)

(4.6)
for i = 1, 2. The mean value theorem produces the intermediate value ξ. We let
bz and bx be locality defined bandwidths for the Z and X variable respectively.
For the local likelihood method described earlier it is important to notice that we
try to fit the best Gaussian approximation to a density fX in a neighbourhood
around the point of interest x. X = g(Z) will therefore be considered in the
neighbourhoods N(z) = {z′ = |z′ − z| ≤ bz} and N(x) = {x′ = |x′ − x| ≤ bx}.
When these neighbourhoods gets sufficiently small, that is when bz → 0 and
bx → 0, the idea is that we can neglect the last term in the Taylor expansion in
probability. This will give us

P (X ∈ N(x)) ∼ P (U(z) ∈ N(x))

where

U(z) = g(z) +
∂g

∂z
(z)(Z − z).

The distribution of X is now approximated in the neighbourhood N(x) by U(z),
which is Gaussian because it is an affine transformation of a Gaussian variable.
In the limit U(z) give a Gaussian approximation of X at x. By computing the
expectation and covariance of U(z) and then substitute z = h(x), we can find a
local mean and covariance at x. We can now try to define our local parameters
as

µ(x) = g(z)− ∂g

∂z
(z)z = x− (

∂h

∂x
(x))−1h(x) (4.7)

and

Σ(x) =
∂g

∂z
(z)(

∂g

∂z
(z))T = (

∂h

∂x
(x))−1((

∂h

∂x
(x))−1)T (4.8)

By standard transformation theory we can now show that the local parameters
defined in (4.7) and (4.8) gives a representation fX(x) = φ(x, µ(x),Σ(x)).
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The first question now will be which distributions can be represented by such
a g function together with a bivariate standard normal variable Z. To answer
this we therefore state the following lemma

Lemma 16. Let Y have a density fY (y) on <2 with cumulative distribution
function FY (y) =

∫ y1
−∞

∫ y1
−∞ fY (w1, w2)dw1dw2. Then there exists a one-to-

one function g such that Y = g(Z) where Z ∼ N(0, I2) with I2 being the 2-
dimensional identity matrix.

Proof. We have X = (X1, X2) and Z = (Z1, Z2), where Z1 and Z2 will be
independent. We also have that fX(x) = fX1

(x1)fX2|X1
(x2|x1) Let us denote

the cumulative distribution function of the standard normal density by Φ. Now
U1 = F−1

X1
(X1) will be uniform, and there will also exist a standard normal

variable such that U1 = Φ(X1). In the same way there exists a uniform variable
U2, independent of U1, such that U2 = FX2|X1

(X2|X1), and there exists a
Z2 ∼ N(0, 1) independent of Z1 such that U2 = Φ(Z2). From this we now have[

X1

X2

]
=

[
F−1
X1

(Φ(Z1))

F−1
X2|X1

(Φ(Z2)|F−1
X1

(Φ(Z1))

]
= g(Z) (4.9)

Details can be found in Tjøstheim and Hufthammer (2012) and Rosenblatt
(1952). We see that the representation[

X1

X2

]
=

[
F−1
X1|X2

(Φ(Z1)|F−1
X2

(Φ(Z2))

F−1
X2

(Φ(Z2))

]
= g

′
(Z
′
) (4.10)

also is a possibility. Here g 6= g
′

and Z 6= Z
′

in general. This unfortunately
means that given a density f(x) the representation can be generated in several
ways and therefore is non-unique.

4.4 Theoretical LGC

We are now going to follow the approach presented in Berentsen et al. (2012).
Firstly we will illustrate the non-uniqueness by using the transformations from
equation (4.9) and (4.10), which we call Rosenblatt 1 (R1) and Rosenblatt 2
(R2) respectively. For the random variable X with margins F1 and F2, the g
function given by R1 is[

X1

X2

]
=

[
F−1

1 (Φ(Z1))
F−1

2|1 (Φ(Z2)|F−1
1 (Φ(Z1))

]
= g(Z),

with the inverse h given by[
Z1

Z2

]
=

[
Φ−1(F1(X1))

Φ−1(F2|1(X2|X1)

]
= h(X).

This gives us

(
∂h

∂x
)−1 = (

∂h1

∂x1

∂h2

∂x2
)−1

[
∂h2

∂x2
0

−∂h2

∂x1

∂h1

∂x1

]
,
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which again gives us

Σ(x) = (
∂h1

∂x1

∂h2

∂x2
)−2

[
(∂h2

∂x2
)2 −∂h2

∂x1

∂h2

∂x2

−∂h2

∂x1

∂h2

∂x2
(∂h1

∂x1
)2 + (∂h2

∂x1
)2

]
.

The local correlation would now be

ρR1(x) =
Σ12(x)

Σ11(x)Σ22(x)
=

−∂h2

∂x1√
(∂h1

∂x1
)2 + (∂h2

∂x1
)2

(4.11)

The g function given by R2 is[
X1

X2

]
=

[
F−1

1|2 (Φ(Z
′

1)|F−1
2 (Φ(Z

′

2))

F−1
2 (Φ(Z

′

2))

]
= g

′
(Z
′
)

with invers h
′ [

Z
′

1

Z
′

2

]
=

[
Φ−1(F1|2(X1|X2))

Φ−1(F2(X2))

]
= h

′
(X). (4.12)

In a similar matter as R1 we get that

(
∂h
′

∂x
)−1 = (

∂h
′

1

∂x1

∂h
′

2

∂x2
)−1

∂h′2∂x2

−∂h
′
2

∂x1

0
∂h
′
1

∂x1

 ,
which again gives us

Σ(x) = (
∂h
′

1

∂x1

∂h
′

2

∂x2
)−2

(
∂h
′
2

∂x2
)2 + (

∂h
′
1

∂x2
)2 −∂h

′
1

∂x1

∂h
′
1

∂x2

−∂h
′
1

∂x1

∂h
′
1

∂x2
(
∂h
′
1

∂x1
)2

 .
The local correlation would in this case be

ρR2(x) =
Σ12(x)

Σ11(x)Σ22(x)
=

−∂h
′
1

∂x2√
(
∂h
′
1

∂x2
)2 + (

∂h
′
2

∂x2
)2

. (4.13)

We can notice that h1 is independent of x2, while h
′

2 is independent of x1.
So the first local variance with respect to R1 would be σ2

1 = (∂h1

∂x1
)−2, that is

only dependent on x1. The second local variance with respect to R2 would be

σ2
2 = (

∂h
′
2

∂x2
)−2, which is only dependent on x2. This all means that if R1 and R2

was to define the same local parameters, the local variances σ2
1 and σ2

2 would
only depend on x1 and x2 respectively. This is not the case in general for the
likelihood approach.

Though ρR1(x) and ρR2(x) in general do not coincide, in some situations
and for some subsets of R2 they do. Later we are going to show that ρR1(s, s) =
ρR2(s, s), that is they coincide on the diagonal, when X1 and X2 are exchange-
able. More general along the curve given by F1(x1) = F2(x2) we will also
have the same local correlation. Actually, as pointed out in Berentsen et al.
(2012), when the two Rosenblatt transformations coincides it means that we
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have uniqueness. So let us now assume we can find a unique θ(x) = (µ(x),Σ(x))
from the Rosenblatt transformations. If we now remember equation (4.5), we

chose a stepwise linear representation with ai = µ(x) and Ai = Σ
1
2 , and make

it so that x ∈ Si. Now θb(x) = θi = (ai, AiA
T
i ) = (µ(x),Σ(x)) with a b small

enough. We now have a θb which solves the equations given by 4.3, and which
obviously converges to θ when b → 0. We conclude that in some cases and
in some points we have a unique LGC given by the R1 transformation, which
coincides with the likelihood approach described earlier. We will call this the
theoretical LGC. It must also be pointed out that in the cases where the Rosen-
blatt transformations do not coincides, we can still find an estimate which will
converge towards a unique solution θb(x) given by equation (4.3).

4.5 Some properties

We are quickly going to mention a couple of properties of the LGC from Tjøstheim
and Hufthammer (2012).

4.5.1 Limits

The LGC will have the same limits as the ordinary correlation, that is we have
−1 ≤ ρh(x, y) ≤ 1 and −1 ≤ ρ̂h,n ≤ 1. This is easily seen by noting that both

equation 4.2 and 4.3 contains the expression
√

1− ρ2. We also mention that if
X and Y are independent, then ρh(x, y) = 0

4.5.2 LGC and tail dependence

For a bivariate normal distribution X ∼ N(µ,Σ) the lower tail dependence is
given by (see section on Gaussian copula later in the thesis for justification)

λl = 2 lim
s→−∞

P (
X2 − µ2

σ2
≤ s|X1 − µ1

1
= s) = 2 lim

s→−∞
Φ(s

√
1− ρ√
1 + ρ

).

So if we now have the Gaussian approximation Vx = (Vx,1, Vx,2) ∼ N(µ(x),Σ(x))
at the point x = (s, s). We then have

λl = 2 lim
s→−∞

P (
Vx,2 − µ2(x)

σ2(x)
≤ s|Vx,1 − µ1(x)

σ1(x)
= s) = 2 lim

s→−∞
Φ(s

√
1− ρ(s, s)

1 + ρ(s, s)
).

This means that there will be no lower tail dependence if ρ(s, s) < 1 for all
s < 0. On the other if we have lower tail dependence we must have ρ(s, s)→ 1
as s→ −∞.

4.6 Local correlation plot

To illustrate the local dependence we will use the local Gaussian correlation
plot shown in Tjøstheim and Hufthammer (2012) and Berentsen et al. (2012).
That is a levelplot with the two variables (X,Y ) as horizontal and vertical
scales. The plot is divided into equally sized cells, where a colour indicates
the correlation. Cyan indicates negative LGC, magenta indicates positive LGC,
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while white indicates zero LGC. The LGC value in each cell is also printed with
two decimals precision. These leveplots contains a lot of information, and can
sometimes be confusing. A possibility is to only plot the diagonal or other lines.
This will often give a clearer picture of the dependence, and in many cases
it is the LGC on the diagonal we are interested in. Using only the diagonal
also makes it easier to compare different distributions, since we can have many
diagonals in one plot. In the theoretical LGC case we can only plot it where
it is defined, usually on the diagonal. If nothing else is mentioned we will use
the Gaussian kernel when estimating LGC. The choice of kernel will usually
not influence the result that much, while the bandwidth choice will have a big
impact on the LGC estimate. The bandwidths will in general be chosen after
some experiments with different values, where we will try to find a balance
between low variance and closeness to the usual kernel estimate with default
bandwidth. We will rather oversmooth than undersmooth and try not to get
to much noise in our LGC plots. Still to heavy smoothing will make the local
Gaussian approximation deteriorate. For a discussion on optimal bandwidth
choice and suggestions on algorithms see Tjøstheim and Hufthammer (2012)
and Berentsen et al. (2012). The estimated plots will be compared to the
theortical LGC where this is possible. Using scatter plots of the observations is
also a good way to assess the reliability of our estimates, since they will show
us where observations are scarce. We will see some clear boundary effects on
our plot. When we estimates the tails, we use points closer to the middle of
the plot in the estimation process. This will in general give a underestimation
if the dependence is increasing towards the tails, and a overestimation if the
dependence is decreasing towards the tails.

4.7 Example: The Gaussian distribution

A trivial example is the bivariate Gaussian distribution, where we will have
constant parameters, that is θb(z) = θ for all b. The estimate will naturally
vary with h and z, and in general improve with increasing values of b, since the
local likelihood equation in that case will tend to the global likelihood equation.
As an illustration we have made a Local Gaussian Correlation map (see figure
4.1) from 5000 observations from a bivariate Gaussian distribution with global
correlation 0.5. we have used bandwidths b1 = b2 = 1. The plot shows, as
expected, that the local correlation is approximately 0.5, with more deviating
values at the boundaries. This is because of less data in those regions. The local
Gaussian approximation could off course be improved by different methods, for
example by increasing the bandwidth.
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Figure 4.1: LGC of bivariate normal distribution with global correlation ρ = 0.5.

4.8 Symmetry

Let us have a look on how different forms of symmetry will effect the LGC.
We will follow the presentation in Tjøstheim and Hufthammer (2012) and use
the fact that these symmetries can be described by linear transformations. Let
us look at a random variable X = (X1, X2) with density f. It is assumed that
µ = E(X) = 0, since we otherwise can center the density at µ and discuss
the symmetry around µ. If y = Ax we have that ΣY (y) = AΣX(x)AT and
µY (y) = AµX(x).

4.8.1 Radial symmetry

As we know radial symmetry around 0 means that X = −X, which means that
we can write

−X =

[
−1 0
0 −1

]
X = X. (4.14)

This again lead us to

Σ(−x) =

[
−1 0
0 −1

]
Σ(x)

[
−1 0
0 −1

]
= Σ(x) (4.15)
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This shows that Σ(x) and then also ρ(x) has radial symmetry. The elliptic
distributions, a class of distributions which we will discuss in more depth later,
is known to have radial symmetry. So as an example let us look at an LGC-plot
of a sample from an elliptic distribution, in this case a bivariate t-distribution
with 4 degrees of freedom and ρ = 0. From the plot (figure 4.2) we can clearly
see the radial symmetry around zero.
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Figure 4.2: Local Gaussian correlation plot of bivariate t-distribution with 4
degrees of freedom and ρ = 0. Based on 5000 observations and bandwidth b=4.

4.8.2 Reflection symmetry

We say we have reflection symmetry if f(−x1, x2) = f(x1, x2) and/or f(x1,−x2) =
f(x1, x2), that is reflection around one of the coordinate axis. With the matrices

A1 =

[
1 0
0 −1

]
and A2 =

[
−1 0
0 1

]
(4.16)

we can describe the reflection symmetry by[
x1

−x2

]
= A1

[
x1

x2

]
and

[
−x1

x2

]
= A2

[
x1

x2

]
. (4.17)
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This gives us

Σ(x1,−x2) = A1Σ(x)AT1 =

[
σ1(x) −σ12(x)
−σ12(x) σ2(x)

]
. (4.18)

That is we have

ρ(x1,−x2) = −ρ(x1, x2) and ρ(−x1, x2) = −ρ(x1, x2). (4.19)

As a consequence of this we will have that ρ(x) is zero along the coordinate
axes. The t-distribution has reflection symmetry, and we can see the effect on
the LGC-plot on figure 4.2.

4.8.3 Exchange symmetry

We know the random variables X1 and X2 are exchangeable if (X1, X2) and
(X2, X1) are identically distributed. The matrix

A =

[
0 1
1 0

]
(4.20)

can be used to describe exchange symmetry by[
x1

x2

]
= A

[
x2

x1

]
. (4.21)

We have
Σ(x1, x2) = AΣ(x2, x1)AT = Σ(x2, x1), (4.22)

which again implies that ρ(x1, x2) = ρ(x2, x1). So we can conclude that ex-
change symmetry of f(x) implies exchange symmetry of ρ(x). Again figure
(4.2) illustrates this.
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Chapter 5

LGC and copulas

If we have a continuous random variable (X,Y ) with joint distribution func-
tion FX,Y and margins FX(x) and FY (y) we know from Sklars theorem that
we can write this as FX,Y (x, y) = C(FX(x), FY (y)), where C is the copula of
(X,Y ). On the other hand we can also couple two arbitrary distribution func-
tions FX(x) and FY (y) with a chosen copula an get a bivariate distribution
function FX,Y (x, y) = C(FX(x), FY (y)). In this case F is often called a meta-
distribution. We are now going to consider a general algorithm for generating
observations from copula models and meta-distributions. This method is de-
scribed for example in Embrechts, Lindskog and McNeil (2001). First we need
to remark that for a copula C(u,v) we have the following expression for the
conditional distribution for V given U=u:

Cu(u, v) = P (V ≤ v|U = u) =
∂

∂u
C(u, v). (5.1)

If we now have two independent standard uniformly distributed random vari-
ables U and T, then (U,C−1

u (T )) has distribution C. The method is very general,
and can be used for all copula models where Cu is invertible, and also for gener-
ating observations from a general n-copula. We get the observations (x, y) from
C(FX(x), FY (y)) by the following steps:

1. Generate two independent standard uniform variables u and t.

2. Set v = C−1
u (t).

3. Set x = F−1
X (u) and y = F−1

y (v).

5.1 Theoretical LGC for a copula

We can now define a function from R2 to R2 by

X = F−1
X (Φ(Z1)), Y = F−1

Y (C−1
Φ(Z1)(Φ(Z2))).

and we immediately recognise this as the g function given by the R1 transfor-
mation discussed earlier. The inverse function h will be

Z1 = Φ−1(FX(X)), Z2 = Φ−1(CFX(X)(FY (Y ))). (5.2)
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We follow the approach in Berentsen et al. (2012) and introduce the notation

C1(u, v) =
∂

∂u
C(u, v)

C11(u, v) =
∂2

∂u2
C(u, v).

(5.3)

The h function from (5.2) can be written as

h1(x, y) = Φ−1(FX(x)), h2(x, y) = Φ−1(C1(FX(x), FY (y))).

The partial derivatives of h is found by regular derivative rules, and we get

∂h1

∂x
=

fX(x)

φ(Φ−1(FX(x)))

∂h2

∂x
=

C11(FX(x), FY (y))fX(x)

φ(Φ−1(C1(FX(x), FY (y))))
.

(5.4)

We now put these expression into the expression for the LGC under the R1
transformation (4.11), and find that

ρR1(x, y) = − C11(FX(x), FY (y))φ(Φ−1(FX(x)))√
φ2(Φ−1(C1(FX(x), FY (y)))) + C2

11(FX(x), FY (y))φ2(Φ−1(FX(x)))
.

(5.5)
The same can be done for the R2 transformation. In this case we get the h

′

function

h
′

1(x, y) = Φ−1(C2(FX(x), FY (y))), h
′

2(x, y) = Φ−1(FY (y)).

The partial derivatives are

∂h
′

1

∂y
=

C22(FX(x), FY (y))fY (y)

φ(Φ−1(C2(FX(x), FY (y))))

∂h
′

2

∂y
=

fY (y)

φ(Φ−1(FY (y)))
.

(5.6)

Putting these into expression for the LGC under the R2 transformation (4.13)
gives us

ρR2(x, y) = − C22(FX(x), FY (y))φ(Φ−1(FY (y)))√
φ2(Φ−1(C2(FX(x), FY (y)))) + C2

22(FX(x), FY (y))φ2(Φ−1(FY (y)))
.

(5.7)
In general it is obvious that (5.5) and (5.7) does not necessarily give the same
value. Let us now consider the diagonal, that is x = y, and look at the case
when the two margins are equal, that is FX = FY = F . Now we see that
ρR1 = ρR2 if C1 = C2 and C11 = C22. We remember that for symmetric copula
models (that is when they are exchangeable) we have C(u, v) = C(v, u). This
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will imply that C1(u, v) = C2(v, u) and C11(u, v) = C22(v, u). If we now look
at the diagonal we have that C1 = C2 and C11 = C22. This means that for
symmetric copulas with the same margins chosen, we have ρR1 = ρR2 = ρ on
the diagonal. We can also see that for margins that are not equal, (5.5) and
(5.7) will coincide along the line given by the equation FX(x) = FY (y) when we
have a symmetric copula. This means that we in this cases will consider (5.5)
to be the theoretical LGC for a given copula model and margins.

5.2 Some properties

We give some properties presented in Berentsen et al. (2012).

5.2.1 The sign of the theoretical LGC

From (5.5) we see that the only element which is not necessarily positive is
−C11(FX(x), FY (y)), which means that it will decide the sign of the theoretical
LGC. This also have an intuitive interpretation. If we consider two stochastic
variables X and Y which is positively dependent in the neighbourhood of the
point (x1, y1). Positive dependence will in this setting mean that the function
defined by m(x) = P (Y ≤ y1|X = x) = C1(FX(x), FY (y1)) is decreasing with
regard to x around (x1, y1). This means that m

′
(x) = C11(FX(x), FY (y)) < 0

and ρ(x, y) > 0 in the neighbourhood of (x1, y1).

5.2.2 Independence

If the two random variables in question are independent we will have the inde-
pendence copula, that is C(u, v) = uv, which will imply that ρ(x, y) = 0 for all
(x, y) because C11(u, v) clearly is zero in this case. If we now have ρ(x, y) = 0
this implies that C11(FX(x), FY (y)) = 0, which again lead us to conclude that
C1(FX(x), FY (y)) = P (Y ≤ y|X = x) do not vary with respect to x. Naturally
X and Y have to be independent. This result is not valid in general, only at
areas where the thoretical LGC in (5.5) is defined.

5.3 Comments on problems and limitations

5.3.1 Uniqueness

The restriction on where the theoretical LGC is defined is of course a limitation
to the theory. But even though it would be interesting to be able to calculate the
theoretical LGC where ever we want, for the use of analysing the dependence
structure of copula models the line given by FX(x) = FY (y) is often enough to
get a good impression. We will in this text for the most part calculate (5.5) on
the diagonal where we choose FX = FY . This will give us a LGC line in the
area where there usual is most observations, and also in the tails. If we want to
use the LGC to measure the goodness of a fitted copula to a set of observations,
for example by measuring the distance between the theoretical LGC and the
estimated LGC, it is of course very limited to only be able to measure the fit
on a grid consisting of points given by FX(x) = FY (y).
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5.3.2 Restrictions on C

As mentioned this approach are restricted in the choice of copula and marginal
distributions. Firstly we have only considered the continuous case, and secondly
we are restricting us to symmetric copulas. Also we are assuming that the
marginal distribution functions and C1(u, v) are invertible. That C1(u, v) is
going to be invertible with respect to v is not the case for all copula models, but
as we will see it is true for many of the most used and interesting models. But
in general this is something that has to be checked before trying to calculate the
LGC in this way from a general copula function. The derivative of C1(u, v) with
respect to v is the density c(u, v) of the copula, so one way to check that C1(u, v)
is invertible will be to analyse the density function and look after possible points
where c(u, v) = 0. As a final thing we observe that the final expression for the
LGC contains C11 which has to exists and be calculated. These restrictions on
the choice of copula models is not to limited, and poses no problems for the
most common ones.

5.3.3 Complicated expression

The expression in equation (5.5) is not very nice, and in general it is difficult to
get easy interpretable analytic functions ρ(x, y) for real copula models. Some
computer capacity is usually needed to calculate the theoretical LGC, but it
is a lot faster than using the local likelihood approach. We have used the R
programming language for calculating the LGC. In many cases (5.5) can be
written with the help of already implemented functions in R, which makes it
pretty straight forward to create easy algorithms for ρ(x, y). One way to simplify
is to choose standard normal distribution for the margins, that is FX(x) = Φ(x)
and FY (y) = Φ(y). This will simplify the calculations. Now we have φx =
φ(Φ−1(Φ(x))) = φ(x), which give us

ρ(x, y) = − C11(Φ(x),Φ(y))φ(x)√
(C1(Φ(x),Φ(y)))2 + (C11(Φ(x),Φ(y)))2φ(x)2

. (5.8)

5.3.4 Choice of margins

This procedure leads to an expression for the LGC of meta distributions, that
is it depends on our choice of marginal distribution. It could sometimes be
more interesting to look at copula model itself, that is the uniformly distributed
random variables (U, V ) with distribution C. This is because while modelling
we would like to keep the fitting of the margins and the choice of dependence
structure (the copula) separated. The algorithm described in the start of this
section is used to generate observation (u, v) from a copula C also, in which we
omit the third step. So it is natural now to try and find a LGC ρ(u, v) by using
the function g given by

U = Φ(Z1), V = C−1
u (Φ(Z2)),

with the inverse function h given by

Z1 = Φ−1(U), Z2 = Φ−1(Cu(u, v)).
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Now we can do more or less the same calculation as above, and we get the same
expression only now without the marginal distribution, that is

ρ(u, v) = − C11(u, v)φ(Φ−1(C1(u, v)))√
φ(Φ−1(u))2 + C11(u, v)2φ(Φ−1(C1(u, v)))2

.

But we have now overlooked some essential things, for example that we now
have a g function which goes from R2 to [0, 1]2 and that gives us problems.
Actually the theory with the use of the non-linear transformation X = g(Z)
breaks down in the uniform case. The problem with the uniform distribution will
also sometimes be noticed when we estimate the LGC with the local likelihood
approach, especially at the boundaries. One question that arises now will be how
the choice of margins affect the LGC. In theory the LGC should describe the
whole dependence structure for the given data locally. But what is understood to
be the whole dependence structure is debatable. In a lot of copula related articles
it is often pointed out that the copula captures the whole dependence structure,
and with this point of view different margins in the same copula model should
not affect the dependence, nor preferably a dependence measure like the LGC.
Some authors have criticized this separation of dependence and margins, and
claims that the copula does not give a full picture of the dependence structure
(see for example the critic from Mikosch (2006) and the response from Genest
and Remillard (2006)). In this case the LGC might give a more complete insight
into the dependence structure than copula based dependence measures. It is
also possible that the LGC may contain other information than the dependence
structure, in which case it could be affected by the margins. It is also off course
an estimate, so the different margins may change the estimation process. In
any case it might be reasonable to assume that the choice of standard normal
margins will affect the procedure the least, and might come closest to showing
the dependence structure of the copula.
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Chapter 6

Ellitpical distributions and
copulas

6.1 Elliptical distributions

The elliptical distributions is a wide class of multivariate distributions which
have some of the same characteristics as the multivariate normal distribution.
These distributions are easy to simulate from, and is used in many applications.
The two most well-known elliptical distributions is the multivariate normal and
the multivariate student t. From Sklars theorem it is easy to use this class of
distributions to create useful Copula functions. Fang, Kotz and Ng (1987) gives
a good introduction to elliptical distributions, and most definitions and theorems
in this section is from their book. We start by defining spherical distributions,
and then proceeds to the elliptical distributions. The spherical distributions are
based on a famous property of the standard normal distribution, that is the
invariance of orthogonal transformation.

Definition 17. We say that a n× 1 random vector X is spherical distributed if
for every n× n orthogonal matrix A we have

AX =d X.

With the help of this definition we define elliptical distributions in the same
way as we make general normal distribution from the standard normal distri-
bution.

Definition 18. We say that a n × 1 random vector X is elliptical distributed
with parameters µ (n× 1 vector) and Σ (n× n matrix) if

X =d µ+ATY,

where Y is spherical distributed and A is a k × n matrix such that ATA = Σ
with rank(Σ)=k.

Elliptical distributions can be defined in other alternative ways. For example
will the characteristic function ψ(t) of an elliptical distribution X be of the form

ψ(t) = eit
Tµφ(tTΣt)
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for some scalar function φ. It is also true that X have the stochastic represen-
tation

X =d µ+ rATU (k) (6.1)

where r and U (k) is independent random variables, r > 0 and U (k) is uniformly
distributed on {z ∈ Rk|ztz = 1}. A and k are the same as in the definition.
φ is called the characteristic generator, and it is often depending on a shape
parameter, for example the degree of freedom in the multivariate t-distribution.
We must point out that in the case of elliptical distributions φ is not the same
as the density function of the standard normal distribution. The standard mul-
tivariate normal distribution has characteristic generator φ(u) = exp(−u2 ). In
general an elliptical distribution does not need to have a density. A necessary
condition for the existence of a density is that rank(Σ)=n. We will mostly be
interested in cases where the density exist, and then it must be of the form

|Σ|− 1
2 g((X − µ)TΣ−1(X − µ)),

where g is a non negative function and called the density generator. It is normal
to denote an elliptical distribution as En(µ,Σ, φ) or with the help of the density
generator as En(µ,Σ, g). An elliptical distribution is fully described by µ, Σ
and φ, but the representation En(µ,Σ, φ) is not unique. (Embrechts, Lindskog
and McNeil 2001) Σ and φ are only determined up to a positive constant, and
if cov(X) exist one can choose φ so that cov(X)=Σ. We can write this more
formally. That is if we have

X ∼ En(µ,Σ, φ) and X ∼ En(µ∗,Σ∗, φ∗) (6.2)

we get that

µ∗ = µ, Σ∗ = cΣ, φ∗(·) = φ(
·
c
) (6.3)

where c is a positive constant. We get cov(X)=Σ by choosing c = E(r2)
n .

Elliptical distributions have many desirable properties. Marginal distribu-
tions, linear combinations, and conditional distributions of elliptical variables
will also bee elliptical. To write some of these important properties in a informal
way we will list a few theorems, which proofs can be found in Fang, Kotz and
Ng (1987).

Theorem 19. Let X ∼ En(µ,Σ, φ) with rank(Σ)=k. Also let B be an n ×m
matrix and v be an m× 1 vector. Then

v +BTX ∼ En(v +BTµ,BTΣB,φ).

We now partition X, µ and Σ into

X =

[
X(1)

X(2)

]
, µ =

[
µ(1)

µ(2)

]
,Σ =

[
Σ11 Σ12

Σ21 Σ22

]
.

Here X(1) and µ(1) is m× 1 vectors and Σ11 is a m×m matrix.

Theorem 20. Let X ∼ En(µ,Σ, φ), then

X(1) ∼ Em(µ(1),Σ11, φ) (6.4)

and
X(2) ∼ En−m(µ(2),Σ22, φ) (6.5)
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Theorem 21. Let X =d µ+ rATU (n) ∼ En(µ,Σ, φ), where Σ > 0. Then

(X(1)|X(2) = x
(2)
0 ) =d µ1.2 + r

q(x
(2)
0 )
AT11.2U

(n) ∼ Em(µ1.2,Σ11.2, φq(x(2)
0 )

) (6.6)

where
µ1.2 = µ(1) + Σ12Σ−1

22 (x
(2)
0 − µ(2)),

Σ11.2 = Σ11 − Σ12Σ−1
22 Σ21,

q(x
(2)
0 ) = (x

(2)
0 − µ(2))TΣ−1

22 (x
(2)
0 − µ(2)).

Also the distribution of r
q(x

(2)
0 )

is

r
q(x

(2)
0 )

=d ((r2 − q(x(2)
0 ))

1
2 |X(2) = x

(2)
0 ).

Linear correlation is a natural measure of dependence when working with
elliptical distributions. Remember that, when 0 < V ar(Xi), V ar(Xj) <∞, we

have the linear correlation ρij =
Cov(Xi,Xj)√
V ar(Xi)V ar(Xj)

. We can extend this to a

definition also usable when the variances does not exists, that is ρij =
Σij√
ΣiiΣjj

.

There is a simple relationship between the linear correlation coefficient and
Kendalls tau for elliptical distributed random vectors with continuous marginals.
We state it in a theorem, see Hult and Lindskog (2002) for details.

Theorem 22. Let X ∼ En(µ,Σ, φ), where Xi and Xj are continuous for i, j ∈
{1, . . . , n}. Then

τ(Xi, Xj) =
2

π
arcsin(ρij)

In the world of finance and risk management elliptical distributions is use-
ful because minimizing VaR are equivalent with the portfolio optimizing theory
introduced by Markowitz, where the variance is used as a risk measure. VaR
is also a coherent risk measure when using elliptical distributions. (Embrechts,
McNeil and Strauman (1999)) One should be aware off that the equivalence
between uncorrelated random variables and independence found in the multi-
variate normal distribution does not generalize to other elliptical distributions.

We will now only focus on the bivariate elliptical distribution. An important
property with elliptical distributions is that they are radially symmetric, so we
would expect the LGC plots to also be radial symmetric. If the principal axis
is along x1 = x2 the distribution will be exchangeable. Let us now assume
that µ1 = µ2 = 0 and that σ1 = σ2. We will have [x1, x2]Σ−1[x1, x2]T =
[x2, x1]Σ−1[x2, x1]T , which means that the distribution will be exchangeable.
This implies a reflection symmetry along the lines x1 = x2 and x1 = −x2 for
f(x) and ρ(x).

One problem with using this distribution class for multivariate modelling
is that the margins are of the same type. For example do the margins for
the bivariate student t-distribution have the same degree of freedom. A more
flexible way is to use suitable marginal distributions together with an elliptical
copula.
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6.2 Elliptical copulas

Elliptical copulas are created by using Sklars theorem on elliptical distributions.
In this way we can capture the dependence structure from the multivariate el-
liptical distributions, but choose marginal distributions freely. Elliptical copu-
las together with chosen margins is also called meta-elliptical distributions. See
Fang, Fang and Kotz (2002) and Abdous, Genest and Rèmillard (2005) for prop-
erties and applications. If we have an 2 dimensional elliptical distribution with
cdf Q and marginsQ1 andQ2, and choose two univariate cdfs F1 and F2, we have
a meta-elliptical distribution with cdf H(x, y) = Q(Q−1

1 (F1(x)), Q−1
2 (F2(y))).

We will in the following sections only consider continuous elliptical distribu-
tions with an existing density function. It is also common practice to standard-
ize the distributions slightly. So without loss of generality we will set µ = 0

and Σ = R =

[
1 ρ
ρ 1

]
. From (6.4) and (6.5) we know that this means that the

margins of the elliptical distribution will be the same, and we denote it by Qg.
We can now write the elliptical copula as

C(u, v) =
1√

1− ρ2

∫ Q−1
g (u)

−∞

∫ Q−1
g (v)

−∞
g(
x2 + y2 − 2ρxy

1− ρ2
)dxdy

6.2.1 Theoretical LGC

We remember that in order to calculate the theoretical LGC we need to find
C1(u, v) = P (V ≤ v|U = u) and C11(u, v). If we have a copula function C
based on an elliptical distribution E2(0, R, g) with margins Qg we know that
C(Qg(x), Qg(y)) will have distribution E2(0, R, g). This means that C1(u, v) =
P (V ≤ v|U = u) = P (Q−1

g (V ) ≤ Q−1
g (v)|Q−1

g (U) = Q−1
g (u)) = P (Y ≤ y|X =

x), where (X,Y ) ∼ E2(0, R, g), are given by (6.6). The conditional distribution
is a one dimensional elliptical distribution, but it is not always obvious which
kind of elliptical distribution. In some cases some general rules applies, which
makes the calculation of the theoretical LGC a pretty straight forward task. We
are going to have a look at some of these examples.

Normal distribution

It is a well known result that given a two dimensional standard normal dis-
tributed vector (X,Y) with correlation ρ, we have that Y |X = x0 ∼ N(ρx0, 1−
ρ2). This is a result of (6.6). We note that in the case of the normal dis-
tribution, the characteristic generator of the conditional distribution will be
φq(x0) = exp(−u2 ), that is independent of x0. This is actually a quality that
characterizes the normal distribution, see Fang, Kotz and Ng (1987).

Symmetric Pearson type V11 distributions

We say that a n × 1 random vector X is symmetric multivariate Pearson type
V11 distributed if it has the following density generator g

g(t) = (πm)−
n
2

Γ(N)

Γ(N − n
2 )

(1 +
t

m
)−N
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where N > n
2 and m > 0. In this case r2

m will be beta type 11 distributed with
parameters n

2 and N − n
2 . Here r is the generating variate in the stochastic

representation of X, see equation 6.1. A stochastic variable B that is beta type
11 distributed with parameters α and β will be denoted B ∼ Be11(α, β), and
its density will be

1

B(α, β)
bα−1(1 + b)−(α+β),

where b > 0 and B(α, β) = Γ(α)Γ(β)
Γ(α+β) is the beta function. In the bivariate

simplified version we are looking at we get Γ(N)

Γ(N− 1
2 )

= Γ(N−1)(N−1)
Γ(N−1) = N − 1.

Using µ = 0 and Σ = R we get the density

f(x1, x2) =
N − 1

πm
√

1− ρ2
(1 +

x2
1 + x2

2 − 2ρx1x2

m(1− ρ2)
)−N .

We now use (6.6) and find that

(X1|X2 = x0) =d µ1.2 + rΣ
1
2
11.2u, (6.7)

where µ1.2 = ρx0 and Σ11.2 = 1−ρ2. We also have that r2

m+x2
0
∼ Be11( 1

2 , N−
1
2 )

(see Fang, Kotz and Ng (1987)). This means that X1|X2 = x0 also will be
symmetric Pearson type V11 distributed with new parameters µ∗ = ρx0, m∗ =
m + x2

0 and N∗ = N . A special case of the symmetric Pearson type V11
distribution is the Student t distribution, which we get by setting N = 1

2 (n+m).
Here n is the dimension, and m is what we usually call the degree of freedom.
Let us now assume that (X1, X2) is t distributed (in the standard way with
µ = 0) with m degrees of freedom and correlation ρ, and we want to find the
distribution of X1|X2 = x0. We have the stochastic representation in equation

6.7, but let us now define another random variable r∗ :=
√

m+1
m+x2

0
r. This gives

us
r2
∗

m+ 1
=

1

m+ 1

m+ 1

m+ x2
0

r2 =
r2

m+ x2
0

∼ Be11(
1

2
, N − 1

2
).

Thus we can write

(X1|X2 = x0) =d ρx0 + r∗

√
m+ x2

0

m+ 1
(1− ρ2)u

and by standardizing we can write

P (X1 ≤ x1|X2 = x0) = tm+1(
x1 − ρx0√
m+x2

0

m+1 (1− ρ2)
)

where tm+1 is the cdf of a one dimensional standard t distribution with m+1
degrees of freedom. So we see that the conditional distribution of a two dimen-
sional t distribution can be written as a one dimensional t distribution. We are
going to use this result later to develop theoretical LGC expressions.

Let us now take a closer look at the two most used elliptical copulas, namely
the Gaussian copula and the t copula.

38



6.2.2 The Gaussian copula

The bivariate Gaussian copula is defined by

C(u, v) = Φ2,ρ(Φ
−1(u),Φ−1(v))

=

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π
√

1− ρ
exp{−x

2 − 2ρxy + y2

2(1− ρ2)
}dxdy

Here Φ2,ρ is the the bivariate standard normal distribution function with corre-
lation ρ, and Φ−1 is the inverse of the univariate standard normal distribution
function. As we can see the only parameter is the linear correlation ρ.

Tail dependence

We remember from (3.5) that we can write the coefficient for the lower tail de-

pendence as λl = limt→0+
C(t,t)
t . We can use L’Hopitals rule on this expression,

and then we use that ∂C(u,v)
∂u = P (V ≤ v|U = u). This give us (Embrechts,

Lindskog and McNeil (2001)

λl = lim
t→0+

C(t, t)

t

= lim
t→0+

dC(t, t)

dt

= lim
t→0+

∂C(u, v)

∂u
|u=t,v=t +

∂C(u, v)

∂v
|u=t,v=t

= lim
t→0+

P (V < t|U = t) + P (U < t|V = t)

= 2 lim
t→0+

P (V < t|U = t),

where the last equality comes from the fact that the Gaussian copula is ex-
changeable. If (X,Y ) is bivariate standard normal we have that (X,Y ) ∼
C(Φ(x),Φ(y)) where C is the Gaussian copula with correlation ρ. From earlier
we know that X|Y = y ∼ N(ρy, 1− ρ2), which gives us

λl = 2 lim
x→−∞

P (Φ−1(V ) < x|Φ−1(U) = x)

= 2 lim
x→−∞

P (X < x|Y = x)

= 2 lim
x→−∞

Φ(
x− ρx√

1− ρ2
)

= 2 lim
x→−∞

Φ(x

√
1− ρ
1 + ρ

= 0

for ρ ∈ (−1, 1). Because the Gaussian copula is radial symmetric we also have
λu = 0. We can say that the Gaussian copula is asymptotic independent, which
means that extreme events will happen independently. But it does not mean
that it is independent. Coles, Heffernan and Tawn (1999) points out that the
convergence λ → 0 is very slow for ρ > 0. They show that the alternative
coefficient λ (see (3.8)), which is an increasing dependence measure in the case
of asymptotic independence, for the Gaussian copula is λ = ρ.
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The LGC

Since the Gaussian copula is constructed by the multivariate normal distribu-
tion, we know that the correlation ρ will completely determine the dependence
structure. From earlier we know that the local Gaussian correlation will be
constant the same as ρ in the case of multivariate normal distribution. We will
now see that this is a property of the Gaussian copula.

From the calculations above, we know that

C1(u, v) = P (V ≤ v|U = u) = P (Φ−1(V ) ≤ Φ−1(v)|Φ−1(U) = Φ−1(u))

= Φ(
Φ−1(v)− ρΦ−1(u)√

1− ρ2
).

Let us set R(u, v) := Φ−1(v)−ρΦ−1(u)√
1−ρ2

to ease notation. If we differentiate one

more time we get

C11(u, v) =
∂

∂u
Φ(

Φ−1(v)− ρΦ−1(u)√
1− ρ2

)

=
− ∂
∂uΦ−1(u)ρ√

1− ρ2
φ(R)

=
−ρ√

1− ρ2φ(Φ−1(u))
φ(R).

Let us now choose some arbitrary margins FX and FY , and try to calculate the
LGC. We now have C1(FX(x), FY (y)) = Φ(R) which gives φ(Φ−1(C1(FX(x), FY (y))) =
φ(R). For simplification let us also denote φx := φ(Φ−1(FX(x))), which gives

us C11(FX(x), FY (y)) = − ρ√
1−ρ2

φ(R)
φx

. Putting all this into (5.5) gives us

ρ(x, y) =

ρ√
1−ρ2

φ(R)φx
φx√

φ(R)2 + ρ2

1−ρ2
φ(R)2φ2

x

φ2
x

=

ρ√
1−ρ2√

1 + ρ2

1−ρ2

=
ρ√

1− ρ2 + ρ2
= ρ

We see that the LGC for the Gaussian copula is constant and the same as the
linear correlation, and is not depending on the choice of margins. This is the
only copula we have encountered with this property. We get the same result for
the R2 transformation, which means that this result is valid for all points in R2.
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Figure 6.1: Estimated LGC plot of a Gaussian copula with ρ = 0.7 and t
distributed margins (4 degrees of freedom). Based on 5000 observations and
with bandwidth b=2.

6.2.3 t copula

The bivariate t-copula is defined by

Ctν,ρ(u, v) = tν,ρ(t
−1
ν (u), t−1

ν (v))

=

∫ t−1
ν (u)

−∞

∫ t−1
ν (v)

−∞

1

2π(1− ρ2)
1
2

{1 +
s2 − 2ρst+ t2

ν(1− ρ2)
}−

(ν+2)
2 dsdt.

If ν > 2 ρ is just the usual linear correlation coefficient of the corresponding
bivariate t-distribution.

Tail dependence

In contrast to the Gaussian copula the t-copula is not asymptotic independent.
We can find an expression for the tail dependence by using the fact that if
(X,Y ) ∼ tν,ρ we have P (X1 ≤ x1|X2 = x0) = tm+1( x1−ρx0√

m+x20
m+1 (1−ρ2)

). If we now

use this in the calculations done for the lower tail dependence in the Gaussian
case we get
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λl = 2 lim
x→−∞

P (X < x|Y = x)

= 2 lim
x→−∞

tν+1(
x− ρx√

ν+x2

ν+1 (1− ρ2)
)

= 2 lim
x→−∞

tν+1(−
√

1− ρ
1 + ρ

√
ν + 1

1 + ν/x2
)

= 2tν+1(−
√

1− ρ
1 + ρ

√
ν + 1)

Since the t-copula is exchangeable we know that λl = λu. We see from the ex-
pression above that tail dependence increases with increasing correlation ρ, and
decreases with increasing degree of freedom ν. This is illustrated in table(6.1),
where the tail dependence coefficient is calculated for some values of ρ and ν.
What can be noted is that even when ρ is zero or negative, we still have tail
dependence. We also see that as the degrees of freedom tends to infinity, the
t-copula tends towards the Gaussian structure.

The LGC

From the calculations above we know that

C1(u, v) = tν+1(
t−1
ν (v)− ρt−1

ν (u)√
(ν+t−1

ν (u)2)(1−ρ2)
ν+1

).

Set a = t−1
ν (v)− ρt−1

ν (u), b =

√
(ν+t−1

ν (u)2)(1−ρ2)
ν+1 and R = a

b . Then we get

C11 =
∂R

∂u
ftν+1

(R),

where ftν+1
is the density of the univariate t-distribution with ν + 1 degrees of

freedom.
∂a

∂u
=

−ρ
ftν (t−1

ν (u))
.

∂b

∂u
=

t−1
v (u)(1− ρ2

b(ν + 1)ftν (t−1
ν (u))

.

∂R

∂u
=
a
′
b− b′a
b2

= −
ρb

ftν (t−1
ν (u))

− at−1
ν (u)(1−ρ2)

b(ν+1)ftν (t−1
ν (u))

b2

=

−ρb
ftν (t−1

ν (u))
− Rt−1

ν (u)(1−ρ2)

(ν+1)ftν (t−1
ν (u))

b2

=
−ρb− Rt−1

ν (u)(1−ρ2)
ν+1

b2ftν (t−1
ν (u))

=
−1

ftν (t−1
ν (u))b2

(ρb+
1− ρ2

ν + 1
t−1
ν (u)R).
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These expressions can now be put into the LGC expression in (5.5). The fi-
nal theoretical LGC for the t-copula is not easy to interpret analytically, but
we note that the elements described above is only consisting of the known pa-
rameters and the density, distribution and quantile functions of the regular one
dimensional t distribution. As the t distribution has its own packages in R,
it is pretty easy to make R routines which calculates the theoretical LGC and
then plot it. For margin choices we have implemented the normal distribution,
t distribution and the skewed t distribution.

ν\ρ -0.9 -0.5 0 0.5 0.9 1
2 0.00 0.06 0.18 0.39 0.72 1.00
4 0.00 0.01 0.08 0.25 0.63 1.00

10 0.00 0.00 0.01 0.08 0.46 1.00
100 0.00 0.00 0.00 0.00 0.02 1.00

Table 6.1: Table of tail dependence for the bivariate t-copula.

Plots

The next couple of pages contains different LGC plots based on the t copula
(figures 6.2 to 6.9), and some additional plots concerning the t copula can be
found in the appendix (figures A.1 to A.5). Figure 6.2 shows the theoretical
LGC on the diagonal for the t copula with normal margins and 4 degrees of
freedom, and with different correlations ρ. As expected the LGC is symmetric
around zero. The minimum value occurs at the origin, and the LGC at this
point is very close to the correlation value. We see that the LGC increases with
ρ. With negative correlations an area around zero has negative LGC, but still
we see that the tails has positive dependence as expected. Lower ρ only means
that the LGC in the tails approaches 1 slower. The estimated LGC plots in
figures 6.3 to 6.5 show the same patterns, except some small deviations caused
by the estimation. We see there is area around the origin where the LGC is more
or less the same as ρ, and that the LGC is increasing when you move towards
quadrant one and three. In addition we see that the other two quadrants has
negative LGC. The symmetry in the dependence structure is obvious also on
these plots. We can see that the LGC is symmetric around x = y and x = −y.
Figure 6.6 shows theoretical LGC plots for t copula with ρ = 0.5 and different
values of the degree of freedom ν. Increasing values of ν gives a LGC where the
value around the origin gets closer to the correlation value, and in the tails the
LGC approaches one with a slower rate when ν gets larger. We know that the
t copula converges to the gaussian when ν → ∞, so it is no surprise that the
LGC approaches the constant LGC value of 0.5 when the degree of freedom gets
large on this plot. The estimated plots in figures 6.7 and 6.8 shows more or less
the same. There is some noise in those plots, especially in 6.8, but still we see
that the area with positive dependence close to 0.5 increases as we increase ν.
Figure 6.9 shows the theoretical LGC calculated with a t copula with ρ = 0 and
ν = 4, but different kinds of margins. It is of great interest to see how different
choices of margins affects the LGC and the dependence in general, and if it
is possible to create an asymmetric dependence structure with the help of the
symmetric t copula together with some choice of margins. We have looked at t
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distributed margins with 4 degrees of freedom, which only gives us the structure
of the bivariate t distribution. We have also used the skewed t distribution from
the R package sn. This is a generalisation of the regular t distribution, but
with an extra shape parameter which controls the skewness. If we set the shape
parameter equals to zero we get the t distribution. For details see Azzalini, A.
and Capitanio, A. (2003), and the section on skewed elliptical distributions in
this thesis. By using the t distributed margins we see that the LGC has similar
shape as when we use normal margins, the difference is that with t margins the
LGC increases slower in the tails. But with the use of the skewed t margins the
LGC gets an asymmetric shape. We see that the point of the minimum is shifted
to the right. There is clearly stronger dependence in the left tail than in the
right tail. It interesting to note that with increasing shape parameter the left
tail gets higher LGC value, while the right tail looks the same. The figures A.1
to A.3 shows the estimated LGC with the different margins choices. We see the
same pattern here. With the t margins we have a symmetric pattern, but with
a little less dependence in the tails than with normal margins. It might look like
there is a little less dependence in quadrant one compared to quadrant three in
A.1, but this is probably only estimation errors. We clearly see the asymmetric
shape when we use the skewed t margins, with stronger dependence in quadrant
three. With larger shape parameter the area with positive dependence is also
larger in the third quadrant. Figure A.4 and A.5 shows the estimated LGC
for t copula with uniform margins, that is the LGC estimated directly on the
copula model without choosing margins. We can perhaps say that these plots
shows the dependence structure of the copula model itself. As mentioned in an
earlier section we can not calculate a theoretical LGC value when we use uniform
margins, at least not with the method we have used on the other models. Still
we can estimate the LGC, though we have to be careful cause it can be difficult
to get good estimates when we are using the uniform distribution on [0, 1]. The
plots looks reasonable, and by comparing it with figures 6.3 and 6.4 we see that
it is pretty much the same pattern.
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Figure 6.2: Theoretical LGC plot of t-copula with ν = 4, ρ =
−0.9,−0.5, 0, 0.5, 0.9 and normal margins.
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Figure 6.3: Estimated LGC plot of t-copula with ρ = 0.5, ν = 4 and normal
margins. Based on 5000 generated observations and bandwidth b=1.

46



x

y

−4

−2

0

2

4

+0.58

+0.58

+0.56

+0.53

+0.49

+0.45

+0.41

+0.33

+0.17

−0.09

−0.30

−0.46

−0.57

−0.64

−0.68

−0.70

−0.71

+0.57

+0.56

+0.54

+0.50

+0.45

+0.40

+0.35

+0.28

+0.15

−0.05

−0.24

−0.39

−0.50

−0.57

−0.61

−0.64

−0.66

+0.53

+0.53

+0.51

+0.47

+0.42

+0.37

+0.31

+0.24

+0.13

−0.03

−0.19

−0.32

−0.42

−0.50

−0.55

−0.59

−0.61

+0.47

+0.48

+0.47

+0.43

+0.39

+0.34

+0.28

+0.21

+0.11

−0.02

−0.15

−0.26

−0.35

−0.42

−0.49

−0.54

−0.57

+0.39

+0.40

+0.40

+0.38

+0.34

+0.30

+0.25

+0.19

+0.10

−0.01

−0.11

−0.19

−0.27

−0.34

−0.41

−0.47

−0.52

+0.28

+0.30

+0.31

+0.30

+0.28

+0.24

+0.20

+0.15

+0.08

+0.00

−0.07

−0.13

−0.19

−0.26

−0.33

−0.39

−0.45

+0.15

+0.18

+0.20

+0.21

+0.20

+0.17

+0.14

+0.11

+0.06

+0.01

−0.03

−0.07

−0.12

−0.17

−0.23

−0.29

−0.35

+0.02

+0.05

+0.08

+0.09

+0.10

+0.09

+0.07

+0.06

+0.04

+0.02

+0.00

−0.01

−0.03

−0.07

−0.11

−0.16

−0.20

−0.12

−0.09

−0.06

−0.04

−0.02

−0.01

−0.01

+0.00

+0.01

+0.03

+0.04

+0.06

+0.06

+0.06

+0.04

+0.01

−0.02

−0.24

−0.21

−0.18

−0.15

−0.12

−0.10

−0.08

−0.05

−0.01

+0.04

+0.08

+0.12

+0.15

+0.17

+0.19

+0.18

+0.17

−0.33

−0.31

−0.28

−0.24

−0.21

−0.17

−0.13

−0.09

−0.02

+0.05

+0.12

+0.18

+0.22

+0.26

+0.29

+0.30

+0.30

−0.40

−0.38

−0.35

−0.32

−0.27

−0.23

−0.18

−0.11

−0.03

+0.07

+0.16

+0.23

+0.29

+0.34

+0.38

+0.39

+0.39

−0.46

−0.44

−0.42

−0.37

−0.33

−0.28

−0.22

−0.14

−0.03

+0.10

+0.20

+0.29

+0.36

+0.42

+0.45

+0.47

+0.46

−0.52

−0.50

−0.47

−0.42

−0.37

−0.32

−0.25

−0.17

−0.03

+0.12

+0.25

+0.34

+0.42

+0.48

+0.52

+0.54

+0.52

−0.59

−0.56

−0.51

−0.46

−0.41

−0.35

−0.29

−0.19

−0.04

+0.14

+0.28

+0.39

+0.47

+0.54

+0.58

+0.60

+0.58

−0.68

−0.63

−0.56

−0.49

−0.43

−0.38

−0.32

−0.23

−0.06

+0.14

+0.31

+0.42

+0.51

+0.58

+0.63

+0.65

+0.63

−0.77

−0.70

−0.62

−0.53

−0.45

−0.40

−0.35

−0.26

−0.09

+0.13

+0.32

+0.44

+0.54

+0.61

+0.67

+0.70

+0.68

−4 −2 0 2 4

rho

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.4: Estimated LGC plot of t-copula with ρ = 0, ν = 4 and normal
margins. Based on 5000 generated observations and bandwidth b=1.
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Figure 6.5: Estimated LGC plot of t-copula with ρ = −0.5, ν = 4 and normal
margins. Based on 5000 generated observations and bandwidth b=1.
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Figure 6.6: Theoretical LGC plot of t-copula with ρ = 0.5, ν = 3, 6, 10, 100, and
normal margins.
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Figure 6.7: Estimated LGC plot of t-copula with ρ = 0.5, ν = 3 and normal
margins. Based on 5000 generated observations and bandwidth b=1.
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Figure 6.8: Estimated LGC plot of t-copula with ρ = 0.5, ν = 6 and normal
margins. Based on 5000 generated observations and bandwidth b=1.
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and skewed t distributed margins with 4 degrees of freedom and shape parameter
5.
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Chapter 7

Skew elliptical distributions
and copulas

As we have seen we can get skewed LGC plots from putting skewed marginals
into the symmetric t copula. Now we are going to look at copulas created
from distributions with asymmetric dependence structures. The last couple of
decades a lot of effort has been put into the work of finding skewed alternatives
to the symmetric distributions. A lot of different alternatives has been proposed.
Let us now present one approach which seems like a reasonable way to make
skew versions of elliptical distributions. To start with we state a theorem from
Azzalini (2005).

Theorem 23. If f0 is a d-dimensional pdf such that f0(x) = f0(−x) for x ∈
Rd, G is a one-dimensional differentiable function such that G

′
is a density

symmetric about 0, and w is a real-valued function such that w(−x) = −w(x)
for all x ∈ Rd, then

f(z) = 2f0(z)G{w(z)}, z ∈ Rd

is a density function on Rd.

By choosing elliptical distributions for f0 and G we get what we will call
skew elliptical distributions. An interesting example is the skewed t distribution
which we get by inserting a t density for f0 and a t distribution function for G.
This is useful because it gives us the possibility to regulate both the skewness
and tail thickness. It is the one dimensional version of this distribution we have
used as margins in some of the LGC plots.

7.1 Skewed normal distribution

Let us now choose f0(x) = φd(x; Ω), that is the density of the d-dimensional
normal distribution Nd(0,Ω). Also choose G(x) = Φ, and let w be a linear func-
tion. This gives us the skewed normal distribution, also denoted SN(ξ,Ω, α),
with density

f(x) = 2φd(x− ξ; Ω)Φ(αTw−1(x− ξ)) (7.1)
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where x ∈ Rd. Here ξ is a location parameter vector, w is a diagonal matrix
formed by the standard deviations of Ω, α is a shape parameter vector, and
Ω = w−1Ωw−1 is a correlation matrix associated to Ω. Immediately we note
that the skewed normal distribution is reduced to the regular normal distribution
when α = 0. The SN distribution have many nice properties, see for example
Azzalini (1985), Azzalini and Valle (1996), Azzalini and Capitanio (1999) and
Azzalini (2005) for detailed descriptions. We are only going to consider a couple
of properties which are going to be useful when we want to create a SN copula
and calculate the LGC. Firstly we note that the skewed normal distribution
are closed under marginalization. Now suppose that X ∼ SNd(ξ,Ω, α), and

let us partition it into X =

[
X1

X2

]
, where X1 has dimension h. Let also Ω =[

Ω11 Ω12

Ω21 Ω22

]
and α =

[
α1

α2

]
. Then (Azzalini (2005))

X1 ∼ SNh(ξ,Ω11, α1)

where Ω22 − Ω21Ω
−1

11 Ω12 and α1 =
α1+Ω

−1
11 Ω12α2√

1+αT2 Ω22.1α2

. Let us now look at the

conditional distribution X2|X1 = x1, which density can be written like (Azzalini
and Capitanio (1999))

φd−h(x2 − ξc2; Ω22.1)Φ(αT2 w
−1
2 (x2 − ξc2) + x

′

0)

Φ(x0)
. (7.2)

Here ξc2 = ξ2+Ω21Ω−1
11 (x1−ξ1), x0 = αT1 w

−1
1 (x1−ξ1) and x

′

0 = x0

√
1 + αT2 Ω22.1α2.

We see that it is not on the form (7.1), which means that the SN family is not
closed under conditioning like the regular normal distribution. But it is a proper
density function, and in Azzalini and Capitanio (1999) it is pointed out that
(7.2) in most cases resembles the density of the skew normal distribution. They
proposes to approximate the conditional distribution with a SN distribution
which matches the cumulants up to the third order. It is also worth mentioning
that an extended SN distribution has been proposed, which has density on the
form (Azzalini (2005))

f(x) =
φd(x− ξ; Ω)Φ(α0 + αTw−1(x− ξ)

Φ(ψ)
.

Here α0 = ψ
√

1 + αTΩα and ψ is a new parameter. We see that when ψ = 0
the density is reduced to (7.1). Clearly (7.2) is of this form, so the extended
SN distribution has the advantage of being closed under conditioning. But as
far as we know no R routine is yet implemented for the extended skew normal,
only for the regular SN distribution (and the skewed t distribution).

7.2 SN copula

We have not seen copula functions constructed by the skewed normal distribu-
tion many places, and there is to our knowledge no standard way of doing so.
Like we did with the elliptical distribution copulas we are going to standard-
ize the distribution in a natural way and use Sklars theorem to construct the
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copula. So we choose ξ = 0 and Ω = R =

[
1 ρ
ρ 1

]
, which gives us the density

q(x1, x2) = 2φ2(x1, x2;R)Φ(α1x1 + α2x2). (7.3)

We will denote the distribution function as Q, with margins Qα1
and Qα2

. This
give us the copula function

C(u, v) = Q(Q−1
α1

(u), Q−1
α2

(v)).

We would like the copula to be symmetric when we calculate the theoreti-
cal LGC. From the section on elliptical distributions we know that the den-
sity φ2(x1, x2;R) is exchangeable, and looking at (7.3) we see that q(x1, x2) =
q(x2, x1) if α1x1 + α2x2 = α2x1 + α1x2. This is obviously true if α1 = α2. In

this case we have for the marginal parameter α1 = α(1+ρ)√
1+α2

2(1−ρ2
= α2, which

implies that the marginal distribution in this case has the same distribution.
That is Qα1 = Qα2 = Qα. Now we have a continuous and symmetric copula
model with two parameters α and ρ

C(u, v) = Q(Q−1
α (u), Q−1

α (v))

7.2.1 Theoretical LGC

Like before we are going to to develop the theoretical LGC by conditioning.
From (7.2) and by using our simplified parameters we get that the density
function of the distribution X2|X1 = x1 is

1√
1−ρ2

φ(x2−ρx1√
1−ρ2

)Φ(α(x1 + x2))

Φ(αx1)
.

To ease the calculations let us define

K(x1, x2) =
1√

1− ρ2
φ(
x2 − ρx1√

1− ρ2
)Φ(α(x1 + x2))

such that the cdf of the conditional density can be written

FK(x1, x2) =
1

Φ(αx1)

∫ x2

−∞
K(x1, t)dt.

Since no R routines to our knowledge exists for this density, we have chosen to
integrate numerically the necessary integrals. Now we have

C1(u, v) = FK(Q−1
α (u), Q−1

α (v)). (7.4)

Let us now differentiate FK(x1, x2) with respect to x1, and denote it fK , that
is

fK(x1, x2) =
∂

∂x1
FK(x1, x2) =

Φ(αx1) ∂
∂x1

∫ x2

−∞K(x1, t)dt− αφ(αx1)
∫ x2

−∞K(x1, t)dt

Φ(αx1)2
.

Move the derivation sign inside the integral, and note that

∂

∂x1
K(x1, x2) =

ρ(x2 − ρx1)

1− ρ2
K(x1, x2) +

α√
1− ρ2

φ(
x2 − ρx1√

1− ρ2
)φ(α(x1 + x2)).
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We now have

C11(u, v) =
1

qα(Q−1
α (u))

fK(Q−1
α (u), Q−1

α (v)). (7.5)

Now put (7.4) and (7.5) into the theoretical LGC expression and choose margins.
For the SN pdfs and cdfs we have used the R package SN.

7.2.2 Plots

The next couple of pages contains different LGC plots based on the skewed
normal copula (figures 7.1 to 7.5), with an additional scatterplot in the appendix
(figure A.6). Figure 7.1 to 7.3 shows theoretical LGC plots on the diagonal. In
some of the plots there have been some problems in the tails for very high and
very low α values, probably because of problems with the numerical integration
in those cases. We have decided to cut off the problematic parts since they do
not give any information regarding the LGC. As we would expect the LGC is
constant ρ when α = 0 since the SN distribution in that case is reduced to the
regular normal distribution. It seems like ρ is an upper limit for the LGC. For
positive parameter values we see that the LGC is approximately ρ for positive
x values, and with sinking values in the left tail. The difference between the
constant LGC of the normal distribution and the LGC for the SN copula gets
larger for increasing values of the shape parameter, as we would expect. For
negative shape parameters the situation is opposite, with almost constant LGC
for negative x values and low LGC in the right tail. So the dependence structure
for the SN copula is highly asymmetric, but in practice we would probably be
more interested in a dependence structure with stronger dependence in the tail
compared to the normal distribution, not weaker dependence as given by the
SN copula. Comparing 7.1 and 7.4, and 7.2 and 7.5 we see that the estimated
LGC plots resembles the theoretical LGC pretty good.
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Skew Gaussian copula
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Figure 7.1: Theoretical LGC for SN copula with ρ = 0.5 and normal margins.
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Skew Gaussian copula
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Figure 7.2: Theoretical LGC for SN copula with ρ = 0.5 and normal margins.
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Skew Gaussian copula
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Figure 7.3: Theoretical LGC for SN copula with ρ = 0 and normal margins.

59



Skewed normal copula
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Figure 7.4: Estimated LGC for SN copula with ρ = 0.5 and normal margins.
Based on 5000 generated observations and bandwidth b=1.5. We could have
estimated the LGC for a SN copula with different shape parameters, but for
comparison with the theoretical LGC we have chosen shape1=shape2.
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Skewed normal copula
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Figure 7.5: Estimated LGC for SN copula with ρ = 0.5 and normal margins.
Based on 5000 generated observations and bandwidth b=1.5. We could have
estimated the LGC for a SN copula with different shape parameters, but for
comparison with the theoretical LGC we have chosen shape1=shape2.
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Chapter 8

Archimedean copulas

We have seen that copulas constructed from skewed versions of the elliptical
distributions offers an opportunity to model asymmetric dependence structures.
Now we are going to look at a family offering many different dependence struc-
tures with the help of, in many cases, only one parameter. We call them
Archimedean Copulas and they are not constructed from well known distribu-
tions, but from a special type of functions. These functions need to be imposed
some conditions to make sure that we get proper distributions functions, and
this will be addressed shortly. Most of these copulas can be written in closed
form expression. A lot have been written about Archimedean copulas over the
years (see for example Nelsen (2006) for a thorough introduction). We hope
that we with the help of LGC plots will be able to shred some new light over
the dependence structure of some of the most useful copulas from this family.
Because of the easy expression of the Archimedean copulas we can in many
cases easily calculate the theoretical value of the locale Gaussian correlation
when marginal distribution has been chosen. This will also give us a chance to
explore more of the properties of the LGC.

8.1 Definitions and properties

8.1.1 Definition

We are going to follow the same procedure as in Embrechts, Lindskog and
McNeil(2001) and Nelsen(2006). Let ϑ be a continuous, strictly decreasing
function from [0, 1] to [0,∞] such that ϑ(1) = 0. We define the pseudo-inverse
of ϑ, ϑ[−1], to be the function from [0,∞] to [0, 1] given by

ϑ[−1](t) =

{
t, 0 ≤ t ≤ ϑ(0)
0, ϑ(0) ≤ t ≤ ∞. (8.1)

ϑ[−1] is continuous and decreasing on [0,∞], and strictly decreasing on [0, ϑ(0)].
We have that ϑ[−1](ϑ(u)) = u on [0, 1], and

ϑ(ϑ[−1](t)) =

{
t, 0 ≤ t ≤ ϑ(0)
ϑ(0), ϑ(0) ≤ t ≤ ∞. (8.2)

We now state a theorem which will show how we can use ϑ to create copula
functions, and we call these copulas Archimedean.
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Theorem 24. Let ϑ be a continuous, strictly decreasing function from [0, 1] to
[0,∞] such that ϑ(1) = 0, and let ϑ[−1] be the pseudo-inverse of ϑ. Then the
function C from [0, 1]2 to [0, 1] given by

C(u, v) = ϑ[−1](ϑ(u) + ϑ(v)) (8.3)

is a copula if and only of ϑ is convex.

Proof can be found in Nelsen(2006).
The function ϑ is called the generator of the copula. We note that in case of
ϑ(0) = ∞, ϑ[−1] will just be the regular inverse function, and in this case we
say that ϑ(t) is a strict generator and the copula is called a strict Archimedean
copula.

8.1.2 Properties

Theorem 25. Let C be an Archimedean copula with generator ϑ. Then

1. C is symmetric, that is C(u,v)=C(v,u) for all u,v in [0, 1].

2. C is associative, that is C(C(u,v),w)=C(u,C(v,w)) for all u,v,w in [0, 1].

Proof. Property 1 follows directly from the definition. The other is reached by
straight forward calculations. See Embrechts, Lindskog and McNeil (2001).

That C is symmetric will, as we have discussed earlier, affect the LGC plots.
We will expect the plots to show rotation symmetry around u=v. This property
will also able us to calculate the theoretical LGC.

8.1.3 Kendall’s tau

From the section on dependence measures we remember that Kendall’s tau
could be expressed with the help from the expected value of the random vari-
able C(U,V). This can be used to derive an easy relationship between the
Archimedean copula and Kendall’s tau. We state it in a theorem.

Theorem 26. Let X and Y be random variables with Archimedean copula C
and generator ϑ. Kendall’s tau is then given by

τ = 1 + 4

∫ 1

0

ϑ(t)

ϑ′(t)
dt (8.4)

For proof see Embrechts, Lindskog and McNeil (2001).

8.1.4 Tail dependence

Also the coefficients of tail dependence can be written with the help of the
generator function. This theorem is from Nelsen (2006)
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Theorem 27. Let C be an Archimedean copula with generator ϑ, then the upper
and lower tail dependence coefficients can be written

λu = 2− lim
t→1−

1− ϑ[−1](2ϑ(t))

1− t
= 2− lim

x→0+

1− ϑ[−1](2x)

1− ϑ[−1](x)
(8.5)

λl = lim
t→0+

ϑ[−1](2ϑ(t))

t
= lim
x→∞

ϑ[−1](2x)

ϑ[−1](x)
(8.6)

We could also have used the L‘Hopital and expressed the tail dependence by
the derivative of the generator functions. Actually this theorem can be stated
in a slightly more useful way if we restrict ourself to ”nice” generator functions.
This theorem is from Embrechts, Lindskog and McNeil (2001) and the proof
can be found there.

Theorem 28. Let ϑ be a strict generator such that ϑ−1 belongs to the class
of Laplace transforms of strictly positive random variables. Let C be copula
generated by ϑ. If ϑ−1′(0) is finite then C does not have upper tail dependence.
If C has upper tail dependence, then ϑ−1′(0) = −∞ and

λu = 2− 2 lim
t→0+

ϑ−1′(2t)

ϑ−1′(t)
. (8.7)

We also have the following expression for the lower tail dependence.

λl = 2 lim
t→∞

ϑ−1′(2t)

ϑ−1′(t)
. (8.8)

8.1.5 Theoretical LGC

As we have seen Kendall’s tau and the tail dependence coefficient can be stated
pretty nicely by using the generator function, so let us now try to state the ex-
pression for the LGC with the help off the generator function and its derivatives.
We remember we can write the LGC as

− C11(FX(x), FY (y))φ(Φ−1(FX(x)))√
(C1(FX(x), FY (y)))2 + (C11(FX(x), FY (y)))2(φ(Φ−1(FX(x))))2

, (8.9)

which means that we need to find C11(u, v) and C1(u, v), where C1 is also re-
quired to be invertible. To avoid getting in trouble we will now look at strict
absolute continuous Archimedean copulas, where ϑ′′(t) > 0. First we differenti-
ate C given by equation (8.3) one time with respect to u, which gives us

C1(u, v) =
ϑ′(u)

ϑ′(C(u, v))
. (8.10)

If we differentiate again, now with respect to v, we get the density

c(u, v) = C12(u, v) = −ϑ
′′(C(u, v))ϑ′(u)ϑ′(v)

[ϑ′(C(u, v))]3
.

We note that C1(u, v) is invertible with respect to v if c(u, v) > 0, which is
guaranteed by the condition that ϑ′′(t) > 0 (ϑ′(t) < 0 is true because ϑ(t) is
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strictly decreasing). Now we can differentiate equation (8.10) with respect to u,
and we get

C11 =
ϑ′′(u)ϑ′(C(u, v))2 − ϑ′(u)2ϑ′′(C(u, v))

ϑ′(C(u, v))3
. (8.11)

Now we can put (8.10) and (8.11) into (8.9) together with margins of our choice.
This gives us an expression for the LGC of an Archimedean copula, but it is not
a particular easy expression. The good thing is that it is easily implemented
on the computer. In R there is available several packages where the most fa-
mous Archimedean copulas can be chosen, and where it possible to extract the
generator function together with its first and second derivative, and also its
inverse. So in this case we can calculate C1 and C11 with the help from such
a package, and choose marginal distribution functions from one of the many
packages available for that. Too illustrate this method I have made a little
function in R working together with the package ”fCopulae”, where one can
choose between the 22 copulas presented in Nelsen (2006), though it will not
be possible to calculate the theoretical LGC for all of them. We have picked
out four different Archimedean copulas to analyse a bit more. This is Clayton
(number 1), Gumbel (number 4), Frank (number 5) and CG (number 12). The
first three are the most common Archimedean copulas presented in literature,
both because they are easy to analyse and represents three different kinds of
dependence structures. Hopefully we will be able to investigate these models a
bit more with the help from the LGC plots. The CG copula is also presented
in Nelsen (2006) but we have not seen it discussed other places.

8.2 Clayton

The Clayton family are the copulas given by C(u, v) = (u−θ + v−θ − 1)−
1
θ for

θ > 0. It has generator ϑ(t) = t−θ−1
θ , and since limt→0 ϑ(t) = ∞ it is a strict

generator with inverse ϑ−1(s) = (1 + θs)
−1
θ . The derivative of the generator is

ϑ′(t) = −t−(θ+1), and the second derivative is

ϑ′′(t) = (θ + 1)t−(θ+2) > 0

for t > 0. If we use the expression for Kendall’s tau given by the generator
function we get

τ = 1 + 4

∫ 1

0

ϑ(t)

ϑ′(t)
dt = 1 + 4

∫ 1

0

tθ+1 − t
θ

= 1 +
4

θ
(

1

θ + 2
− 1

2
) =

θ

θ + 2
. (8.12)

We can see that the coefficient goes towards 0 when θ approaches 0, which would
make us think that C approaches the independence copula when θ gets small.
On the other end we can see that limθ→∞ τ = 1, that is perfect dependence,
which means that C →M when θ gets big. Since θ > 0 we see that the Clayton
copula only offers positive dependence. For the lower tail dependence we get

λl = lim
t→∞

ϑ−1(2t)

ϑ−1(t)
= lim
t→∞

(
1 + 2θt

1 + θt
)
−1
θ = lim

t→∞
(

1
t + 2θ
1
t + θ

)
−1
θ = 2

−1
θ . (8.13)

Figure (8.1) shows a plot of the lower tail dependence for different parameter
values, and it shows that the lower tail dependence approaches zero as θ ap-
proaches zero, while it goes to one as θ gets larger. We have that ϑ−1′(0) = −1,
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and since it is finite this implies that the Clayton copula is asymptotic inde-
pendent in the upper tail. The alternative tail dependence coefficient in (3.8)
can now be analysed for potentially more information. This turned out to be
difficult analytically, so instead we can write

λ(u) =
2 log(1− ϑ−1(u))

log(1− 2ϑ−1(u) + ϑ−1(2u))
, (8.14)

and make a plot for decreasing values of u (u→ 0) to get an approximate value.
After done this for several different θ values it seems that the alternative upper
tail coefficient also is 0, which indicates independence in the upper tail for the
Clayton copula. Figure (8.2) show a plot for θ = 1.

Some places the Clayton family is also defined for parameter values in the
interval [−1, 0). Then we need to write the copula as C(u, v) = [max(u−θ +

v−1θ − 1, 0)]
−1
θ . For θ < 0 this copula is no longer strict, and for θ = −1

it becomes W (Nelsen 2006). Allowing for negative parameters will open for
modelling negative dependence with the Clayton family.

8.2.1 Plots

The next couple of pages contains different LGC plots based on the Clayton
copula (figures 8.1 to 8.7), and some additional plots concerning the Clayton
copula can be found in the appendix (figures A.7 to A.13). Figure 8.3 show plots
of the theoretical LGC for different parameter values. As expected we see strong
lower tail dependence, and independence in the upper tail. With increasing
values of Kendall’s tau we see that the LGC value also increases. Figures 8.4
to 8.6 shows estimated LGC plots for Clayton copulas with normal margins for
three different Kendall’s tau values, while figures A.7 to A.9 shows scatterplots
for the same observations. The scatter plots clearly gets significantly narrower in
the left tail which indicates strong dependence, while in the right tail the points
look more independent. We also see that the scatter plots in general gets more
narrow with increasing values of τ , but in the far right tail it could look like there
is independence for every value of τ . This is as expected from the theoretical
LGC, and we also see that the estimated LGC plots shows the same patterns.
Figure 8.5 and 8.6 indicates some dependence in the first quadrant, which does
not show on the theoretical LGC plot. It is not surprising that the LGC is a
bit overestimated in the first quadrant since in the estimation process we uses
points from closer to the origin where the dependence is higher. With a smaller
bandwidth the plot would probably have shown less dependence in the first
quadrant, though it might be difficult to distinguish this effect from the noise
we get from a smaller bandwidth. As we see from the scatter plots there is not
that many points at the boundaries, which clearly makes the estimates here more
uncertain. The estimated LGC plots also shows us that the symmetric property
of the Archimedean copulas gives us plots which is rotational symmetric around
the diagonal. Figure 8.7 shows theoretical LGC for Clayton copula with different
margins. As we can see the choice of margins affects the dependence structure
very little. The skewed t margins gives a little more dependence, while the t
margins has a little less dependence in the lower tail and a little more in the
upper tail than the normal margins. This we can also see from the estimated
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LGC plots in figure A.10 to A.12. The plots with the skewed t margins gives
a little more dependence, but in general it looks very similar. They are also
still symmetric around the diagonal. One curious thing is that all these three
estimated plots gives negative LGC values at the far upper tail. This is not in
accordance with the theoretical plot, which shows slightly more dependence in
the right tail for the alternative margins. This is probably just a boundary effect
caused by very few observations in this area. Figure A.13 shows an estimated
LGC plot of the Clayton copula with uniform margins. From experience with
the t copula we would expect this plot to look like figure 8.4, and it looks
similar except from the first quadrant. So it seems like the estimation procedure
has problems capturing the independence in the right tail. There might be to
few observations in this area, or perhaps it is possible to find a more suitable
bandwidth to get it more right.
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Figure 8.1: The lower tail dependence coefficient for different parameter values
for Clayton copula.
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Figure 8.2: Plot of equation (8.14) for decreasing u values.
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Figure 8.4: Estimated LGC plot of a Clayton copula with τ = 1
4 and normal

margins. Based on 5000 generated observations and bandwidth b=1.2.
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Figure 8.5: Estimated LGC plot of a Clayton copula with τ = 1
2 and normal

margins. Based on 5000 generated observations and bandwidth b=1.
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Figure 8.6: Estimated LGC plot of a Clayton copula with τ = 3
4 and normal

margins. Based on 5000 generated observations and bandwidth b=1.
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Figure 8.7: Theoretical LGC of Clayton copula with τ = 1
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8.3 Gumbel copula

The Gumbel copula is given by

C(u, v) = exp(−((− log u)θ + (− log v)θ)
1
θ ), (8.15)

for θ ∈ [1,∞). The generator function is ϑ(t) = (− log t)θ, with inverse ϑ−1(t) =

exp(−t 1
θ ). limt→0 ϑ(t) = ∞ which shows that ϑ is strict. We have ϑ′(t) =

− θt (− log t)θ−1 and ϑ′′(t) = θ
t2 (− log t)θ−1+ θ

t2 (θ−1)(− log t)θ−2. Since log t < 0
for t ∈ (0, 1), we have that ϑ′′(t) > 0 for t ∈ (0, 1). If we put θ = 1 we get
C(u, v) = exp(−((− log u) + (− log v))) = exp(log u) exp(log v) = uv, which is
the independence copula. Using (8.4) we can calculate Kendall’s tau, that is

τ = 1 + 4

∫ 1

0

ϑ(t)

ϑ′(t)
dt = 1− 4

∫ 1

0

t(− log t)θ

(− log t)θ−1
dt

= 1 + 4

∫ 1

0

t log t

θ
dt = 1 +

4

θ
[
1

2
t2 log t|10 −

1

2

∫ 1

0

tdt]

= 1 +
4

θ
(−1

4
) = 1− 1

θ
, (8.16)

where we used partial integration. We notice that limθ→∞ τ = 1− 0 = 1, which
implies that C → M when θ gets big. In addition we can see that τ ≥ 0 for
all parameter values. If we use (8.7) we can find the upper tail dependence
coefficient.

λu = 2− 2 lim
t→0

ϑ−1′(2t)

ϑ−1′(t)
= 2− 2 lim

t→0
2

1
θ−1 exp(−(2t)

1
θ + t

1
θ )

= 2− 2
1
θ lim
t→0

exp(t
1
θ (1− 2

1
θ ) = 2− 2

1
θ . (8.17)

This shows us that the Gumbel copula has positive upper tail dependence, which
increases with increasing θ values. By using (8.8) we get that

λl = 2 lim
t→∞

2
1
θ−1 exp(t

1
θ (1− 2

1
θ ) = 0, (8.18)

which tells us that the Gumbel copula is asymptotic independent in the lower
tail. So the dependence structure is pretty opposite to the Clayton copula. As
usual we would like to make a more thorough investigation of the tail, to see
if there might be some dependence despite the fact that λl = 0. We use that
the coefficient of lower tail dependence for C is the coefficient of upper tail
dependence for Ĉ, which enable us to use the alternative tail coefficient in (3.8).
This gives us

λ = lim
t→1

2 log(1− t)

log Ĉ(t, t)
− 1 = lim

t→1

2 log(1− t)
logC(1− t, 1− t)

− 1

= 2 lim
u→0

log u

logC(u, u)
− 1 = −2 lim

u→0

log u

((− log u)θ + (− log u)θ)
1
θ

− 1

= −2 lim
u→0

log u

(2(− log u)θ)
1
θ

− 1 = 21− 1
θ lim
u→0

log u

log u
− 1

= 21− 1
θ − 1. (8.19)

When θ = 1 we get λ = 0 which make sense since this is the independence
copula, but as θ increases so does the dependence in the lower tail.
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8.3.1 Plots

The next couple of pages contains different LGC plots based on the Gumbel
copula (figures 8.8 to 8.12), and some additional plots concerning the Gumbel
copula can be found in the appendix (figures A.14 to A.20). We have used the
same type of plots and with the same Kendall’s tau value as for the Clayton
copula to better compare them. As expected 8.8 shows that the Gumbel copula
has strong right tail dependence, but also some dependence in the left tail.
The dependence in both tails are, as shown above, increasing with increasing
parameter values. For τ = 3

4 there is not that much difference left between the
tails. If we compare with figure 8.3 of the Clayton copula, we see that they are
pretty much opposite, though the dependence structure for the Gumbel copula
is less asymmetric between the tails. For the estimated plots in figures 8.9, 8.10
and 8.11 we see the same patterns, that is increasing from left to right, and
increasing with τ . We see that most of these plots are clearly overestimated in
the left tail and underestimated in the right tail compared to the theoretical
LGC. This is, as explained before, an anticipated effect of the estimation since
we use points closer to the middle of the plot when estimating the tails. In this
case, when the LGC value is increasing from left to right we get to high levels in
the left tail and to small in the right tail. It also important to notice from the
scatterplots how few observations there are at the boundaries, which makes the
information from these areas on the LGC plot not very exact. Figures 8.12 and
A.17 to A.19 show us that changing the margins does not change the dependence
structure that much. It seems like the other choices of margins gives a slightly
smaller LGC value, especially in the right tail. The estimated plots have a bit of
noise at the boundaries, but we can still see that there is increasing dependence
from left to right, and symmetry around the diagonal. Figure A.20 shows the
estimated LGC for the copula model with uniform margins, and by comparison
with 8.9 we see that they are really similar. Only in the third quadrant is the
LGC estimate a bit higher with the uniform margins.
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Figure 8.9: Estimated LGC plot of a Gumbel copula with τ = 1
4 and normal

margins. Based on 5000 generated observations and bandwidth b=1.2.
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Figure 8.10: Estimated LGC plot of a Gumbel copula with τ = 1
2 and normal

margins. Based on 5000 generated observations and bandwidth b=1.
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Figure 8.11: Estimated LGC plot of a Gumbel copula with τ = 3
4 and normal

margins. Based on 5000 generated observations and bandwidth b=0.8.
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and shape parameter 5.
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8.4 Frank copula

The Frank copula is given by

C(u, v) = −1

θ
log(1 +

(e−θu − 1)(e−θv − 1)

e−θ − 1
), (8.20)

where the generator function is ϑ(t) = − log( e
−θt−1
e−θ−1

) and its inverse is ϑ−1(t) =

− 1
θ log(e−t(e−θ−1)+1). The parameter θ must be in the set R\{0}. It is easily

seen that limt→0 ϑ(t) =∞, which shows that it is a strict copula. The derivatives

of the generator function are ϑ′(t) = θ
1−eθt and ϑ′′(t) = θ2eθt

(1−eθt)2 > 0. It can

be shown that the Frank copula is the only Archimedean copula with radial
symmetry (Frank 1979). In some ways the Frank copula is more difficult to
analyse analytical than the other two families we have described. Its relationship
with Kendall’s tau can be expressed with a integral, which is as follows (Genest
1987)

τ = 1− 4

θ
(1− 1

θ

∫ θ

0

t

et − 1
dt). (8.21)

When θ → 0 C approaches the independence copula, while it approaches W
when θ → −∞ and M when θ → ∞. So the Frank copula gives us possibil-
ity of modelling both negative and positive dependence. If we differentiate the

inverse generator function we get ϑ−1′(t) = − e−t(1−e−θ)
θ(1−e−t(1−e−θ))

. This gives us

ϑ−1′(0) = − e
−θ−1
θ , which is finite and implies that the Frank copula is asymp-

totic independent in the upper tail, and by radial symmetry also in the lower
tail.

8.4.1 Plots

The next couple of pages contains different LGC plots based on the Frank
copula (figures 8.13 to 8.17), and some additional plots concerning the Frank
copula can be found in the appendix (figures A.21 to A.27). We continue with
the same plots, but since the Frank copula also allow negative dependence we
include some example of that also. On figure 8.13 we clearly see that the radial
symmetry of the Frank copula is inherited by the LGC. As expected there is no
dependence in the tail for any parameter value. We can notice that for positive
τ values the LGC graphs is more round. The scatter plots gives us an indication
of the general dependence, if its positive or negative, and also how strong the
dependence is. A.22 clearly shows more positive dependence than A.21. Maybe
we also can sense some stronger dependence in the middle of the plots than in
the tails, which coincides with the LGC plots. Clearly there is few points in
the tails, and we see from all the estimated LGC plots for the Frank copula
that a lot of funny things happens. These estimates are only reliable closer
to the middle of the plot. Here we see that they coincide with the theoretical
LGC. We have increasing LGC towards the middle, and symmetry around the
origin. As anticipated the estimates around the origin is a little lower than in
the theoretical plot, this is because the LGC reaches its maximum around the
origin. For the plots with negative τ values it is opposite. These plots also shows
that the LGC estimation has special problems dealing with independence in low
density areas. Figure 8.17 shows the Frank copula with different margins. We

81



see that the use of t margins gives some more dependence in the tails, though
the symmetric property around zero is still there. As for the t copula, the use
of skewed t margins also creates asymmetries in the LGC plot for the Frank
copula. The maximum point is shifted to the right. Also there is a larger
interval with independence in the left tail, and more dependence in the right
tail. As we might expect the LGC plot is more skewed when we use the most
skewed margins (that is shape=5). It is hard to see the effect of the t margins
on the estimated LGC plot in figure A.24 when you compare with figure 8.14,
because the theoretical difference is pretty small and also in the area where
there are few points and therefore a lot of noise in the plots. In figure A.25 you
can perhaps see a shifting of the dependence to the right. While figure A.26 is
quite opposite of what we expected, and does not really make any sense at all.
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Figure 8.13: Theoretical LGC of Frank copula with τ = 1
4 ,

1
2 ,

3
4 , 0,−

1
4 ,−

1
2 ,−

3
4 ,

and normal margins.
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Figure 8.14: Estimated LGC plot of a Frank copula with τ = 1
4 and normal

margins. Based on 5000 generated observations and bandwidth b=1.1.
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Figure 8.15: Estimated LGC plot of a Frank copula with τ = 1
2 and normal

margins. Based on 5000 generated observations and bandwidth b=1.
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Figure 8.16: Estimated LGC plot of a Frank copula with τ = − 1
4 and normal

margins. Based on 5000 generated observations and bandwidth b=1.
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8.5 CG-copula

We denote the CG-copula as

C(u, v) = (1 + [(u−1 − 1)θ + (v−1 − 1)θ]
1
θ )−1,

for θ ≥ 1. The generator function is ϕ(t) = ( 1
t − 1)θ. This copula does not

have any particular name in Nelsen (2006), but we will denote it as the CG
copula because it has the same lower tail dependence coefficient as the Clayton
copula and the upper tail dependence coefficient as the Gumbel copula. That
is λl = 2−

1
θ and λu = 2 − 2

1
θ . Kendalls tau for the CG copula is given by

τ = 1− 2
3θ . We see that for the limiting parameter value θ = 1 we have τ = 1

3 ,
and when θ →∞ we get τ → 1. This means that the CG copula only can model
dependence for Kendall’s tau values in the interval [1

3 , 1). For θ = 1, the CG
copula looks like C(u, v) = 1

1
u+ 1

v−1
, which is the same as the Clayton copula

for θ = 1. This also fits together with the fact that the upper tail dependence
becomes zero for this parameter value.

8.5.1 Plots

The next couple of pages contains different LGC plots based on the CG copula
(figures 8.18 to 8.22), and some additional plots concerning the CG copula
can be found in the appendix (figures A.28 to A.34). We see from figure 8.18
that the left tail dependence is strong and approaches one quickly for every
parameter value, while the right tail has a slower convergence towards one. The
tail dependence decreases with decreasing parameter values, but it is in the
right tail the differences are biggest. For the limiting case τ = 1

3 we get as
expected that the right tail dependence is zero The minimum LGC value also
decreases and is shifted to the right for lower values of τ . It is also possible to
see these patterns on the scatterplots. Clearly there is strong dependence in the
left tail for all parameter values, while in the right tail the dependence increases
significantly with increasing values of τ . One can also sense that there is a bit
more spreading in the points around the middle of the plot, which coincides
with the LGC. The estimated LGC plots also shows the same patterns. Namely
a general increase in LGC values for increasing τ , where the left tail has a small
increase and the right tail a significantly increase. The estimates in figure 8.20
and 8.21 also shows that the dependence decreases in the middle of the plot
(or a little bit to the right to be more precise). Surprisingly this effect is really
small (almost not visible) in figure 8.19. It looks like the right tail is really
underestimated here. The use of the other margins shifts the minimum point
a bit to the right, and gives lower values in the right tail. Especially with the
skewed t margins with shape parameter 5 we get a bigger difference between
left and right tail. The estimated LGC plot with uniform margins in figure A.34
seems to capture the dependence structure nicely, though the right tail is a bit
lower than the theoretical LGC with normal margins.
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Figure 8.19: Estimated LGC plot of a CG copula with τ = 2
5 and normal

margins. Based on 5000 generated observations and bandwidth b=1.
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Figure 8.20: Estimated LGC plot of a CG copula with τ = 1
2 and normal

margins. Based on 5000 generated observations and bandwidth b=1.
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Figure 8.21: Estimated LGC plot of a CG copula with τ = 3
4 and normal

margins. Based on 5000 generated observations and bandwidth b=0.8.
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Figure 8.22: Theoretical LGC of CG copula with τ = 2
5 and with four different

choices for margins: Normal margins, t distributed margins with 4 degrees of
freedom, skewed t distributed margins with 4 degrees of freedom and shape
parameter 1, and skewed t distributed margins with 4 degrees of freedom and
shape parameter 5.
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Chapter 9

Estimation, selection and
goodness of fit

Modelling dependence by using the copula framework can be fruitful, and there
is an abundant amount of different copula functions to choose from. The big
problem is often to find the best suitable copula function for a given data set.
No real procedure has been established, but several different approaches has
been presented over the years. We will now first have a look at some ways of
estimating copula functions, and then present a couple of model selection tools
and Goodness-of-Fit test. This will all be done in a general setting. Some of the
copula families have special properties that can simplify the estimation. We are
mainly interested in the dependence structure, not the marginal distributions.
This means that the estimation and validation of the margins will not be pre-
sented in any detail here. One of the good qualities about the copula approach
is that the margins and the copula itself can be dealt with separately.

9.1 Estimation

9.1.1 Parametric estimation

Let xt = (x1,t, . . . , xn,t) for t = 1, 2, . . . , k be a random sample of iid n-
dimensional vectors. Consider a n-dimensional distribution with distribution
function F and density f, and univariate margins F1, . . . , Fn with densities re-
spectively f1, . . . , fn. Let C(u1, . . . , un) be its copula with density c(u1, . . . , un).
Now we remember that we can write the joint density as

f(x1, . . . , xn) = c(F1(x1), . . . , Fn(xn))

n∏
i=1

fi(xi).

Let θ be the parameter vector for the copula, and αi be the parameter vector for
marginal distribution i for i = 1, 2, . . . , n. Now we can write the log-likelihood
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as

L(α1, . . . , αn, θ) =

k∑
j=1

log f(x1,j , . . . , xn,j)

=

k∑
j=1

log c(F1(x1,j ;α1), . . . , Fn(xn,j ;αn); θ) +

k∑
j=1

n∑
i=1

log fi(xi, j;αi).

(9.1)

We can notice that the log-likelihood is split into two parts, one representing the
dependence through the copula and one part consisting of the marginal densi-
ties. The MLE (maximum likelihood estimate) for the paramters (α1, . . . , αn, θ)
is found by maximising the log likelihood function L for all parameters simul-
taneously. That is we can write

(α̂1
MLE

, . . . , α̂n
MLE

, θ̂MLE) = argmaxα1,...,αn,θL(α1, . . . , αn, θ).

This method can often be very computationally intensive, especially in higher
dimensions. So instead we can use the noted fact about the copula representa-
tion of the log-likelihood (9.1), that is we can split the expression into different
parts where we can estimate the different parameters alone. We call the follow-
ing method IFM (inference for the margins). Firstly we estimate every marginal

parameter αi by maximizing
∑k
j=1 log fi(xi,j ;αi), that is

α̂i
IFM = argmaxαi

k∑
j=1

log fi(xi,j ;αi).

Then we use the estimated marginal parameters when we maximize

k∑
j=1

log c(F1(x1,j), . . . , Fn(xn,j); θ)

to find the estimate for the copula parameter. That is

θ̂IFM = argmaxθ

k∑
j=1

log c(F1(x1,j ; α̂1
IFM

), . . . , Fn(xn,j ; α̂n
IFM

); θ).

This method is computationally more simple. Both the MLE and the IFM
estimators are consistent and asymptotic normal for both the multivariate model
and for the margins under regularity conditions (see for example Triverdi and
Zimmer 2005).

9.1.2 Semi-parametric estimation

The IFM estimator tends to work well in many cases, but because it involves
estimates of the marginal distribution we always have the risk that the model
selected for the margins will be bad and then effect the estimation of the depen-
dence parameter. This is among the reasons why in practise probably the most
used technique is a semi-parametric method some places called PML/CML. The
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idea is to put the empirical distribution functions, F̂i, in for the margins in the
copula log-likelihood. We remember that the empirical distribution functions
for a sample X1, . . . Xd is given by

F̂ =
1

d

d∑
i=1

1(Xi ≤ x). (9.2)

If we have a sample Xt = (X1,t, . . . , Xn,t), we say that

Ut = (U1,t, . . . , Un,t) = (F̂1(X1,t), . . . , F̂n(Xn,t)) (9.3)

is pseudo observations. The CML method gives us the following estimate for
the copula parameter

θ̂CML = argmaxθ

k∑
j=1

log c(F̂1(x1,j), . . . , F̂n(xn,j); θ). (9.4)

Under suitable regularity conditions θ̂CML is consistent and asymptotically nor-
mal (see Genest, Ghoudi and Rivest (1995)).

9.1.3 Empirical copula

From any copula of an empirical distribution function we could create an em-
pirical copula, but it would not be unique. We will use the definition from
Deheuvels (1981), that is

Definition 29. The empirical copula Ĉ is any copula defined on the lattice

{( t1
T
, . . . ,

tn
T

) : 1 ≤ i ≤ n, ti = 0, 1, . . . , T}

by

Ĉ(
t1
T
, . . . ,

tn
T

) =
1

T

T∑
t=1

n∏
i=1

1(rti ≤ ti).

Here {x(t)
1 , . . . , x

(t)
n } is the order statistic and {rt1, . . . , rtn} is the rank statis-

tic, where their relationship is given by x
rtn
n = xn, t for t = 1, . . . , T . The

Radon-Nikodym density for the empirical copula Ĉ is given by

ĉ(
t1
T
, . . . ,

tn
T

) =

2∑
j1=1

· · ·
2∑

jn=1

(−1)j1+···+jnĈ(
t1 − j1 + 1

T
, . . . ,

tn − jn + 1

T
).

So we can write

Ĉ(
t1
T
, . . . ,

tn
T

) =

t1∑
j1=1

· · ·
tn∑
jn=1

ĉ(
j1
T
, . . . ,

jn
T

).

We say that ĉ is the empirical copula frequency. Deheuvels (1978,1981) proves

that Ĉ converges uniformly to the underlying copula C. The empirical copula
gives us sample versions of some of the dependence measures described earlier.
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For example can we define the sample version of the coefficient for upper tail
dependence as (Durrleman, Nikeghbali and Roncalli (2000))

λ̂u = lim
t→T

2−
1− Ĉ( tT ,

t
T )

1− t
T

.

The sample versions of Spearmans rho ρ̂s and Kendalls tau τ̂ will be (Nelsen
(2006))

ρ̂s =
12

T 2 − 1

T∑
t1=1

T∑
t2=1

(Ĉ(
t1
T
,
t2
T

)− t1t2
T 2

)

and

τ̂ =
2T

T − 1

T∑
t1=2

T∑
t2=2

t1−1∑
i1=1

t2−1∑
i2=1

(ĉ(
t1
T
,
t2
T

)ĉ(
i1
T
,
i2
T

)− ĉ( t1
T
,
i2
T

)ĉ(
i1
T
,
t2
T

)).

For many parametric copula models we can find closed expressions linking the
copula parameter with Kendalls tau, which means that we can use the sample
version of the dependence measure to estimate the copula parameter. This is
the case for many Archimedean copula families.

9.1.4 Kernel methods

Because off the differentiable property of the copula, using the smooth kernel
functions in estimation can be a way to go. In this case we can estimate the
dependence structure without having to make initially guess on certain para-
metric copula families. Fermanian and Scaillet (2002) presented in their paper
a kernel approach in the context of multivariate stationary processes satisfying
strong mixing conditions. We will denote the observation as before, that is
(X1,t, . . . , Xn,t) for t = 1, . . . , n, where F is the joint distribution function and
Fj the margins. We remember the formula

C(u1, . . . , un) = F (F−1
1 (u1), . . . , F−1

n (un)), (9.5)

which comes from Sklars theorem. We assume that Fj is such that we get a
unique solution ξj from the equation Fj(x) = uj . The right kernel function has
to be chosen, and then we use the regular kernel methods to get estimates for
fj , which again leads to estimates for f , Fj and F . Let now ξ̂ = (ξ̂1, . . . , ξ̂n)

where ξ̂j = infx∈R{x : F̂j(x) ≥ uj}. Then we get the estimate by plugging F̂

and ξ̂ into equation 9.5, that is we get

Ĉ = F̂ (ξ̂).

We refer to Fermanian and Scaillet (2002) for a more thorough presentation and
for discussion about properties and applications.

9.2 Detecting dependence

To use the parametric estimation methods we need to have an initial idea of
what the underlying copula is, we need to find out as much as possible about
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the dependence structure of the data. The first thing we could try is to make
a scatter-plot of the observed data, but it is difficult to separate the depen-
dence structure from the effect of the margins on the plot. Then it is better to
plot the ranks or the pseudo observations. These plots will be invariant under
strictly increasing transformations of the margins, and gives more insight into
the dependence between the data. We could compare the plot with simulated
scatter-plots from known copula families, and then choose those that look most
similar. Still it can be hard to distinguish patterns from just random variation
on such plots. So we will present two other graphical procedures which is suit-
able to detect dependence, and then discuss how we can use the LGC-plots to
choose the right copula.

9.2.1 Chi plots

Say we have a bivariate random sample (X1, Y1), . . . , (Xn, Yn). For a given pair
(Xi, Yi), let

Hi =
1

n− 1

n∑
j=1,j 6=i

1(Xj ≤ Xi, Yj ≤ Yi),

Fi =
1

n− 1

n∑
j=1,j 6=i

1(Xj ≤ Xi)

Gi =
1

n− 1

n∑
j=1,j 6=i

1(Yj ≤ Yi).

We note the resemblance with the empirical distribution function, and that Hi,
Fi and Gi depend on the ranks of the observations. Further let

χi =
Hi − FiGi√

Fi(1− Fi)Gi(1−Gi)

and
λi = 4sign(F̃iG̃i)max(F̃ 2

i , G̃
2
i ),

where F̃i = Fi − 1
2 and G̃i = Gi − 1

2 . We get the Chi plot by plotting the
pairs (λi, χi). This was proposed by Fisher and Switzer (1985,2001), and they
recommended to only plot pairs for which |λi| ≤ 4( 1

n−1 −
1
2 )2 to avoid outliers.

We have that λi and χi will be in the interval [−1, 1]. λi will be a measure of
the distance between the pair (Xi, Yi) and the center of the scatter plot. Under
independence we would expect Hi ≈ FiGi which means that values of χi far
from zero indicates non-independence. It is useful to plot horizontal guidelines,
χ = ± cp√

n
, where cp is chosen such that p×100% of the pairs (λi, χi) lays between

the lines. Monte Carlo simulations can be used to determine the correct cp. We
can compare Chi plot of our data with Chi plot of different copula functions,
and then choose the copula function with the most similar plot. This is not
always a practical approach though because of the amount of different copula
functions and the fact that there is no simple connection between the concept
of copulas and the Chi plots.
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9.2.2 K-plot

Genest and Boies (2003) suggest another plot, which in their opinion is easier
to interpret. This is because the curvature these plots displays is related in a
definite way to the copula in case of association. They call it Kendall plots or just
K-plots, and are similar to the well known QQ-plot. Let us continue to consider
the random sample (X1, Y1), . . . , (Xn, Yn), where H is the joint distribution
function, and F and G are the margins. The K-plot will be the plot of the pairs
(Wi:n, H(i)). Here H(1) ≤ H(2) ≤ · · · ≤ H(n) is the order statistic of the His
defined in the previous section. Let

K(w) = P (W ≤ w) = P (H(X,Y ) ≤ w) (9.6)

for w ∈ [0, 1], and let K0 be the distribution function of H(X,Y) under the
null hypothesis of independence between X and Y. Now Wi:n represents the
expectation of the ith order statistic in a random sample of size n from K0.
From regular techniques regarding order statistics we get that

Wi:n = n

(
n− 1

i− 1

)∫ 1

0

w(K0(w))i−1(1−K0(w))n−idK0(w).

What we need is some sort of expression for K0 to put into the equation above.
This is done by some simple calculations, where we remember that X and Y
(and therefore also U and V) is considered to be independent

K0(w) = P (H(X,Y ) ≤ w) = P (C(U, V ) ≤ w) = P (UV ≤ w)

=

∫ 1

0

P (U ≤ w

v
)dv =

∫ 1

0

w

v
dv =

∫ w

0

dv +

∫ 1

w

w

v
dv

= w − w log(w).

We can interpret K to be a univariate summary of the dependence embodied
in C, and by this define a stochastic ordering in the following way. Let us
consider two random pairs (X,Y ) and (X ′, Y ′) with distribution H and H’
respectively. We say that (X,Y ) is less positive dependent than (X ′, Y ′), and
write (X,Y ) ≺K (X ′, Y ′), if and only if K(w) ≥ K ′(w) for all w ∈ [0, 1]. K is
connected to Kendalls tau in the following way

τ(X,Y ) = 4E[C(U, V )]− 1 = 3− 4

∫ 1

0

K(w)dw

When we have independence the plot will be linear and follow the line x=y.
Positive dependence will give plots over this line, while negative dependence
will give plots under. The stronger the dependence the greater the distance
will be between the line x=y and the plots. For perfect positive dependence the
data points will follow the curve K0(w), while perfect negative dependence gives
points along the x-axis. One problem is that different copulas does not necessary
imply different K’s, which means that it can be difficult to precisely decide the
dependence structure from the K-plot. This can be seen by the relation between
K and Kendalls tau when we now that Kendalls tau do not give a complete
description of the dependence. While the K-plots may be easier to interpret
than the Chi-plots, it may give less information about the dependence structure
do to its univariate nature. The K-plots are extendable to the multivariate case.
For more properties and some examples of K-plots see Genest and Boies (2003).
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9.2.3 LGC plot

The LGC plots gives an easy interpretable method for detecting dependence.
Even though estimating the LGC can be a bit computer intensive, it is still
pretty fast, specially if we restrict our self to one line like the diagonal. We can
compare the LGC estimated from the data with the LGC for different copula
models. If we can use the theoretical LGC, like the ones derived in this thesis,
this can be done quickly. For comparing it is probably easiest to draw all lines
in one plot. It is important to chose bandwidth with care, and to be aware that
the estimated LGC is not that reliable in low density areas. Otherwise it is easy
to interpret estimation noise as changes in the underlying dependence.

9.3 Model diagnostics and Goodness-of-Fit

Let us now assume that we have fitted the copula Cθn by one of the methods
described above. It is crucial to figure out if our estimated copula really do
describe our data in a good way. Let us first consider some quick graphical
diagnostic methods.

9.3.1 Graphical diagnostic

One easy way to get a first impression of our fit is to simulate random observa-
tions from the copula Cθn and plot them together with the pseudo observations
we got from our data. If the pseudo observations differs a lot from the sim-
ulated data we know that our model may need improvement. By using the
estimated marginal distributions F̂ and Ĝ we can also transform our simu-
lated data back into original units. That is we get the scatter plots (Xi, Yi) =

(F̂−1(Ui), Ĝ
−1(Vi)) which we compare with the observed data. Another way to

go is to use the K introduced in the K-plots (see Genest and Boies (2003). We
have

Wi =
1

n

n∑
j=1

1(Xj ≤ Xi, Yj ≤ Yi),

for i = 1, . . . , n. Let Kn be the empirical distribution function to W1, . . . ,Wn.
Now we can compare Kn with the distribution function of Cθn(U, V ), denoted
by Kθn , where (U,V) is drawn from Cθn . There is two different approaches for
the comparison. The first one is to plot Kn and Kθn in the same plot. Here Kn

will be a step function, but we know that Kn → K and Cθn → Cθ, such that if
we have a large sample the two graphs should be close to each other if the model
is correct. Another way is to make a QQ-plot by using the pairs (Wi:n,W(i)),
where in this case Wi:n will be the expected value of the ith order statistic from
a random sample consisting of n observations from Kθn . If the copula we have
fitted is correct the points should lay approximately along the diagonal straight
line.

9.3.2 GoF

Let us consider an iid sample Xt = (X1,t, . . . , Xd,t) for t = 1, . . . , n, with dis-
tribution function H and marginal distributions F1, . . . , Fd. We are interested
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in establishing some formal test procedures in order to get some idea if our
estimated copula is any good. That is we are considering problems like

H0 : C = C0 against Ha : C 6= C0 (9.7)

H0 : C = Cθ against Ha : C /∈ Cθ. (9.8)

Here C0 is a known copula, and in this case we say that H0 is a simple zero-
assumption. Cθ is known parametric copula family, and we say the zero-
assumption in this case is composite. It is in general difficult to construct
such goodness off fit tests for copulas because the marginal distributions are
unknown. Some authors have proposed to test for the fit of the marginal and
joint behaviour at the same time, that is construct tests for H itself in the way
usually done for multivariate distributions. But this is probably not the most
fruitful approach, we would prefer to find ways to test the fit of the dependence
structure alone. Usually empirical margins are used. A natural way to start
would be to consider the distance between the empirical copula Cn and our
chosen copula model C0. But the limiting distribution of

√
n(Cn − C0) is very

complex, which leads to extensive use of computer intensive bootstrap methods.

9.3.3 Probability integral transformation

There has been several suggestions of GoF tests based on the probability integral
transformation (PIT). This is a way of transforming a set of dependent variables
into independent U(0,1) variables, and we can use a test for multivariate inde-
pendent uniformity and use it on any model. We see that this transformation
is the same as the Rosenblatt transformation discussed earlier. Let us look at a
random vector X = (X1, . . . , Xd) with marginal distributions Fi(xi). We define
T (X) = (T1(X1), . . . , Td(Xd)) as (Berg and Bakken (2005))

T1(X1) = P (X1 ≤ x1) = F1(x1)

T2(X2) = P (X2 ≤ x2|X1 = x1) = F2|1(x2|x1)

... (9.9)

Td(Xd) = P (Xd ≤ xd|X1 = x1 . . . Xd−1 = xd−1) = Fd|1...d−1(xd|x1, . . . , xd−1).

Now the variables Ti(Xi) for i = 1, . . . , d are independent and uniformly dis-
tributed on [0, 1]d, and we say that T (X) is the PIT of the random variable X. If
we now have a parametric copula family as null hypothesis, we can use the PIT
transformation on the data set, and test for multivariate independence. There
are several different test statistic that can be used.

9.3.4 Dimension reduction approaches

We are first going to look at a couple of different dimension reduction ap-
proaches. The common idea is to reduce the data to one dimension, and then use
a univariate test statistic. Let Y = (Y1, . . . , Yd) be the iid uniformly distributed
variables we get from performing the PIT on a data set X = (X1, . . . , Xn).
Breymann,Dias and Embrechts (2003) proposes the following dimension reduc-
tion approach

MG =

d∑
i=1

Φ−1(Yi)
2.
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MG is χ2
d distributed since Φ−1(Yi) is independent standard normal. Now

WG = Fχ2
d
(MG)

is U(0,1) distributed. Let

FG(w) = P (WG ≤ w), w ∈ [0, 1].

Under H0 we will have FG(w) = w and density function fG(w) = 1. Now we can
apply a univariate test statistic to FG or fG. This approach is computationally
efficient, but not consistent. Berg and Bakken (2005) proposes an extension

which is consistent and also with more flexible weighting. Let Ŷ = (Ŷ1, . . . , Ŷd)
be the sorted counterpart of Y and ri is rank variable i. We now define Y ∗ as

Y ∗i = P (ri ≤ Ŷi|r1, . . . , ri−1) = 1− (
1− Ŷi

1− ri−1
)d−(i−1).

Let γ be a weighting function depending on Yi and weighting parameters α. We
now get the dimension reduction

MB =

d∑
i=1

γ(Yi;α)Φ−1(Y ∗i )2.

Let
WB = FYB (YB)

where the distribution of YB can be found numerically or by simulation. Under
H0 WB will be uniformly distributed. A different dimension reduction approach
is presented in Genest, Quessy and Remillard (2006), and it is based on the K
function from (9.6). The expression for the K function have to be found for
the specific copula model under H0, and then we can make a test based on the
difference between this expression and the empirical K function. This approach
is most suited for Archimedean copulas where there is a nice analytic expression
for K. Berg and Bakken (2005) presents an alternative way to this last approach,
see their paper for details and also test results for the methods presented.

9.3.5 Other GoF

Fermanian (2005) proposes a distribution free goodness of fit test based on a
kernel estimate of the copula which leads to a chi-square type test procedure.
We use the L2 norm to measure the proximity between the smoothed copula
density and the estimated parametric density. They will be near each other
under H0. Panchenko (2005) also presents a full multivariate approach. Among
the most recent papers presenting new copula selection methods are Huard et al.
(2006), which proposes an Bayesian method for choosing the copula family most
probable in a given set, and Karlis and Nikoloupoulos (2008), which uses the
Mahalanobis squared distance between original and simulated data to construct
a GoF test.

Several of the GoF tests presented here is evaluated and tested in Berg (2009).
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9.3.6 GoF based on the LGC

In Berentsen et al. (2012) a GoF test for copulas based on the LGC is proposed.
Let ρθ(·) be the LGC for the distribution Cθ(F1(x1), F2(x2)). If we have a set
of iid observations X1, . . . , Xn the copula parameter θ can be estimated by θn
as described above. We let ρθn(·) be the estimate of ρθ(·), that is ρθ(·) where

we have used θn and the empirical distribution functions F̂j for j = 1, 2. The
local likelihood estimate of the LGC from the observations is denoted ρn,b. The
proposed GoF test in Berentsen et al. (2012) is now based on the process
Pn(·) = ρn,b(·)− ρθn(·). We specify a grid (x1, . . . , xn) and calculate

Tn =

p∑
i=1

Pn(xi)
2.

H0 is now rejected if Tn gets to big. To obtain approximate p-values Berentsen
et al. (2012) suggests using a parametric bootstrap method similar to the one
used in Genest, Remillard and Beaudoin (2009), see their papers for details.
Preferably we want to use an analytic expression for ρθn . But as we remember
the theoretical LGC in (5.5) is only consistent with the local likelihood estimate
ρn,b along F1(x1) = F2(x2). This means that we are restricted to choosing

gridpoints where F̂1(xi1) ≈ F̂2(xi2). To be able to perform a GoF test also
when the theoretical LGC (5.5) is not available, and to get to chose the grid
(x1, . . . , xp) freely, Berentsen et al. (2012) also proposes a double parametric
bootstrap procedure where ρθ is estimated by monte carlo approximation. This
is computationally considerably more demanding.

As a graphical diagnostic tool and a way to investigate the departures from
the null hypothesis, Berentsen et al. (2012) proposes two different plots. First
the curves ρn,b(·) and ρθ(·) can be drawn in the same plot, together with boot-
strap confidence intervals. Also a plot based on local ”goodness-of-fit” tests
performed over a grid on R2 is proposed. If we have ρθ(·) under the origi-
nal H0, the idea is to test the null hypothesis ρ(xj) = ρθ(xj) for every point
xj on the grid (x1, . . . , xp). The test statistic used is ρn,b(xj). By sampling

from F ∗(x) = Cθn(F̂1(x1), F̂2(x2)) we generate R bootstrap samples of size n.
Now the LGC estimate at xj based on bootstrap sample number p is denoted
ρ∗,pn,b(xj). By significance level α we now reject the hypothesis ρ(xj) = ρθ(xj)
if ρn,b(xj) is smaller or bigger than the (α/2)% or (1 − α/2)% quantile of

ρ∗,1n,b(xj), . . . , ρ
∗,R
n,b (xj) respectively. This is then presented in plots similar to

the R2 LGC plots shown earlier in this thesis. Here magenta is used where
ρn,b(xj) is significantly larger and cyan is used when it is significantly smaller.
White is used if the null hypothesis is not rejected. Examples of these plots, a
simulation study and a real data study can be found in Berentsen et al. (2012).
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Chapter 10

Conclusion

We have seen that we can find an explicit expression for the theoretical LGC
in some cases, and that the estimated LGC mostly agrees with the theoretical
LGC. Of course some predictable (and a few surprising) estimation errors oc-
curs. Especially problems arise at the boundaries and other low density areas.
The choice of bandwidth do play a big part when we are trying to get good es-
timates, and we have seen that bandwidth has to be chosen with care. It shows
the importance of creating good algorithms for choosing bandwidth, preferably
one that allows local bandwidth. All in all the LGC has shown itself to be a
useful tool for analysing copulas. Even though the theoretical LGC usual is
not easy interpretable analytical, it is for the most part easily implemented on
a computer, and the diagonal plots are fast to produce. In the future we will
hopefully find a more general way to define a theoretical LGC, which will open
up for plotting larger areas than one line. But it is clear that the diagonal
gives us a lot of information, and it is often easier to extract the structure from
the diagonal than from a full LGC plot. Plotting the diagonal (or other lines)
also gives us the possibility to plot several different models in one plot, for easy
comparison and for showing trends when for example we vary a parameter. It
has been positive to see how well the LGC plots for the different copula models
have coincided with our expectations built on other dependence measures, like
the tail dependence. It is always reassuring when many approaches points in
the same direction. Using the LGC for selection and goodness-of-fit also seems
very promising, and the development of these applications will continue. We
should in the future develop theoretical LGC algorithm for more copula models.
The skewed t copula would for example be an interesting case to explore.
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Genest, C., Quessy,J.-F., and Rèmillard, B. (2006). Goodness-of-fit procedures
for copula models based on the probability integral transform. Scandinavian
Journal of Statistics 33, pages 337-366.
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229-231.

Tjøstheim D. and Hufthammer K.O. (2012). Local Gaussian correlation: A
new measure of dependence. Unpublished manuscript.

106



Triverdi, P.K. and Zimmer, D.M. (2005). Copula modeling: An introduction
for practitioners. Foundations and trends in econometrics, 1,1, pages 1-
111

Wuertz, D. and many others, see the SOURCE file (2009). fCopulae: Rmet-
rics - Dependence Structures with Copulas. R package version 2110.78.
http://CRAN.R-project.org/package=fCopulae

107



Appendix A
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Figure A.1: Estimated LGC plot of t-copula with ρ = 0, ν = 4 and t distributed
margins with 4 degrees of freedom. Based on 5000 generated observations and
bandwidth b = 1.5.
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Figure A.2: Estimated LGC plot of t-copula with ρ = 0, ν = 4 and skewed t
distributed margins with 4 degrees of freedom and shape parameter 1. Based
on 5000 generated observations and bandwidth b = 1.5.
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Figure A.3: Estimated LGC plot of t-copula with ρ = 0.5, ν = 4 and skewed t
distributed margins with 4 degrees of freedom and shape parameter 5. Based
on 5000 generated observations and bandwidth b = 1.5.
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Figure A.4: Estimated LGC plot of t-copula with ρ = 0, ν = 4 and uniform
margins. Based on 5000 generated observations and bandwidth b = 0.2.
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Figure A.5: Estimated LGC plot of t-copula with ρ = 0.5, ν = 4 and uniform
margins. Based on 5000 generated observations and bandwidth b = 0.2.
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Figure A.6: 5000 generated observations from SN copula with ρ = 0.5 and
normal margins.
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Figure A.7: 5000 generated observation from Clayton copula with τ = 1
4 and

normal margins.
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Figure A.8: 5000 generated observation from Clayton copula with τ = 1
2 and

normal margins.
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Figure A.9: 5000 generated observation from Clayton copula with τ = 3
4 and

normal margins.
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Figure A.10: Estimated LGC plot of a Clayton copula with τ = 1
4 and t dis-

tributed margins with 4 degrees of freedom. Based on 5000 generated observa-
tions and bandwidth b=1.2.
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Figure A.11: Estimated LGC plot of a Clayton copula with τ = 1
4 and skewed

t distributed margins with 4 degrees of freedom and shape parameter 1. Based
on 5000 generated observations and bandwidth b=1.2.
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Figure A.12: Estimated LGC plot of a Clayton copula with τ = 1
4 and skewed

t distributed margins with 4 degrees of freedom and shape parameter 5. Based
on 5000 generated observations and bandwidth b=1.2.
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Figure A.13: Estimated LGC plot of a Clayton copula with τ = 1
4 and uniform

margins. Based on 5000 generated observations and bandwidth b=0.25.
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Figure A.14: 5000 generated observation from Gumbel copula with τ = 1
4 and

normal margins.
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Figure A.15: 5000 generated observation from Gumbel copula with τ = 1
2 and

normal margins.
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Figure A.16: 5000 generated observation from Gumbel copula with τ = 3
4 and

normal margins.
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Figure A.17: Estimated LGC plot of a Gumbel copula with τ = 1
4 and t dis-

tributed margins with 4 degrees of freedom. Based on 5000 generated observa-
tions and bandwidth b=1.2.

124



x

y

−4

−2

0

2

4

−0.66

−0.47

−0.28

−0.12

−0.01

+0.06

+0.11

+0.15

+0.19

+0.24

+0.29

+0.35

+0.42

+0.51

+0.61

+0.70

+0.76

−0.41

−0.27

−0.13

−0.01

+0.07

+0.12

+0.15

+0.17

+0.20

+0.23

+0.27

+0.32

+0.38

+0.44

+0.51

+0.56

+0.58

−0.24

−0.14

−0.04

+0.06

+0.12

+0.16

+0.18

+0.20

+0.22

+0.25

+0.28

+0.32

+0.35

+0.38

+0.41

+0.42

+0.40

−0.13

−0.05

+0.03

+0.10

+0.16

+0.19

+0.21

+0.23

+0.25

+0.28

+0.30

+0.31

+0.33

+0.33

+0.33

+0.31

+0.27

−0.05

+0.02

+0.07

+0.13

+0.18

+0.22

+0.25

+0.27

+0.29

+0.30

+0.31

+0.31

+0.31

+0.30

+0.27

+0.24

+0.20

+0.02

+0.06

+0.10

+0.15

+0.20

+0.25

+0.28

+0.30

+0.31

+0.32

+0.32

+0.31

+0.30

+0.28

+0.25

+0.21

+0.18

+0.09

+0.11

+0.13

+0.16

+0.21

+0.26

+0.30

+0.32

+0.34

+0.34

+0.33

+0.32

+0.30

+0.27

+0.25

+0.22

+0.20

+0.15

+0.15

+0.15

+0.18

+0.22

+0.27

+0.31

+0.33

+0.35

+0.35

+0.34

+0.33

+0.31

+0.29

+0.27

+0.25

+0.23

+0.22

+0.20

+0.18

+0.19

+0.22

+0.26

+0.30

+0.33

+0.35

+0.36

+0.35

+0.35

+0.33

+0.32

+0.30

+0.29

+0.28

+0.29

+0.24

+0.21

+0.21

+0.22

+0.25

+0.29

+0.32

+0.34

+0.36

+0.37

+0.37

+0.36

+0.35

+0.34

+0.33

+0.32

+0.36

+0.29

+0.24

+0.22

+0.23

+0.24

+0.27

+0.30

+0.33

+0.36

+0.38

+0.39

+0.39

+0.39

+0.38

+0.38

+0.37

+0.43

+0.34

+0.28

+0.24

+0.23

+0.24

+0.26

+0.29

+0.32

+0.35

+0.38

+0.40

+0.41

+0.41

+0.42

+0.41

+0.40

+0.49

+0.39

+0.31

+0.27

+0.25

+0.25

+0.27

+0.29

+0.32

+0.35

+0.38

+0.40

+0.42

+0.44

+0.45

+0.45

+0.44

+0.55

+0.44

+0.35

+0.30

+0.27

+0.27

+0.28

+0.30

+0.32

+0.35

+0.38

+0.40

+0.43

+0.45

+0.47

+0.48

+0.47

+0.62

+0.49

+0.40

+0.34

+0.31

+0.30

+0.30

+0.31

+0.33

+0.35

+0.38

+0.41

+0.44

+0.47

+0.49

+0.51

+0.50

+0.68

+0.54

+0.44

+0.38

+0.34

+0.33

+0.32

+0.33

+0.34

+0.35

+0.38

+0.41

+0.44

+0.48

+0.51

+0.53

+0.54

+0.71

+0.57

+0.46

+0.40

+0.37

+0.35

+0.34

+0.33

+0.34

+0.35

+0.37

+0.40

+0.44

+0.48

+0.52

+0.55

+0.56

−4 −2 0 2 4

rho

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure A.18: Estimated LGC plot of a Gumbel copula with τ = 1
4 and skewed

t distributed margins with 4 degrees of freedom and shape parameter 1. Based
on 5000 generated observations and bandwidth b=1.2.
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Figure A.19: Estimated LGC plot of a Gumbel copula with τ = 1
4 and skewed

t distributed margins with 4 degrees of freedom and shape parameter 5. Based
on 5000 generated observations and bandwidth b=1.2.
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Figure A.20: Estimated LGC plot of a Gumbel copula with τ = 1
4 and uniform

margins. Based on 5000 generated observations and bandwidth b=0.25.
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Figure A.21: 5000 generated observation from Frank copula with τ = 1
4 and

normal margins.
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Figure A.22: 5000 generated observation from Frank copula with τ = 1
2 and

normal margins.
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Figure A.23: 5000 generated observation from Frank copula with τ = − 1
4 and

normal margins.
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Figure A.24: Estimated LGC plot of a Frank copula with τ = 1
4 and t distributed

margins with 4 degrees of freedom. Based on 5000 generated observations and
bandwidth b=1.1.
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Figure A.25: Estimated LGC plot of a Frank copula with τ = 1
4 and skewed t

distributed margins with 4 degrees of freedom and shape parameter 1. Based
on 5000 generated observations and bandwidth b=1.2.
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Figure A.26: Estimated LGC plot of a Frank copula with τ = 1
4 and skewed t

distributed margins with 4 degrees of freedom and shape parameter 5. Based
on 5000 generated observations and bandwidth b=1.5.
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Figure A.27: Estimated LGC plot of a Frank copula with τ = 1
4 and uniform

margins. Based on 5000 generated observations and bandwidth b=1.2.
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Figure A.28: 5000 generated observation from CG copula with τ = 2
5 and

normal margins.
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Figure A.29: 5000 generated observation from CG copula with τ = 1
2 and

normal margins.
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Figure A.30: 5000 generated observation from CG copula with τ = 3
4 and

normal margins.
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Figure A.31: Estimated LGC plot of a CG copula with τ = 2
5 and t distributed

margins with 4 degrees of freedom. Based on 5000 generated observations and
bandwidth b=1.
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Figure A.32: Estimated LGC plot of a CG copula with τ = 2
5 and skewed t

distributed margins with 4 degrees of freedom and shape parameter 1. Based
on 5000 generated observations and bandwidth b=1.
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Figure A.33: Estimated LGC plot of a CG copula with τ = 2
5 and skewed t

distributed margins with 4 degrees of freedom and shape parameter 5. Based
on 5000 generated observations and bandwidth b=1.
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Figure A.34: Estimated LGC plot of a CG copula with τ = 2
5 and uniform

margins. Based on 5000 generated observations and bandwidth b=0.2.
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