Floating Fault Analysis of Trivium

Michal Hojsik! and Bohuslav Rudolf?

! Department of Informatics, University of Bergen, N-5020 Bergen, Norway
2 National Security Authority, Na Popelce 2/16, 150 06 Prague 5, Czech Republic
michal.hojsik@ii.uib.no and b.rudolf@nbu.cz

Abstract. One of the eSTREAM final portfolio ciphers is the hardware-
oriented stream cipher Trivium. It is based on 3 nonlinear feedback shift
registers with a linear output function. Although Trivium has attached
a lot of interest, it remains unbroken by passive attacks.

At FSE 2008 a differential fault analysis of Trivium was presented. It is
based on the fact that one-bit fault induction reveals many polynomial
equations among which a few are linear and a few quadratic in the inner
state bits. The attack needs roughly 43 induced one-bit random faults
and uses only linear and quadratic equations.

In this paper we present an improvement of this attack. It requires only
3.2 one-bit fault injections in average to recover the Trivium inner state
(and consequently its key) while in the best case it succeeds after 2
fault injections. We termed this attack floating fault analysis since it
exploits the floating model of the cipher. The use of this model leads to
the transformation of many obtained high-degree equations into linear
equations.

The presented work shows how a change of the cipher representation
may result in much better attack.

Keywords : Trivium, stream cipher, differential fault analysis

1 Introduction

The year 2008 is the last year of the European project ECRYPT. Within the
project a search for new stream ciphers, eSTREAM project, took place. After
3 project phases within 4 years the final results were announced on Eurocrypt
2008. The eSTREAM committee has pointed out four ciphers within each of
the two profiles (hardware/software oriented ciphers) and published them as
the eSTREAM portfolio.

At the very beginning of eSTREAM, 34 ciphers were proposed and evaluated
but only some have made their way up to the final phase or were even included to
the final portfolio. Among these (portfolio) ciphers, the stream cipher Trivium
is somehow special. First of all its design is indeed very simple. It brings us
again to the question how simple can a secure cipher be. Secondly, Trivium is
the fastest cipher among all proposals in many tested architectures (see e.g. [15]
or [14] for more details) and although Trivium was largely analysed, it remains
unbroken by passive attacks.



2 Michal Hojsik and Bohuslav Rudolf

Earlier this year at FSE 2008, a differential fault attack on Trivium was
presented [2]. It is based on the fact, that an injection of a one-bit fault (a
bit flip) into a Trivium inner state reveals to an attacker a few linear and a
few quadratic equations in the inner state bits. The attack requires roughly
43 fault injections at random positions and it assumes that all fault injections
are performed into the same inner state. This can be achieved in the chosen-
ciphertext attack scenario assuming that the initialisation vector is a part of
the cipher input. In this case, an attacker will always use the same cipher input
(cipher text and initialisation vector) which will lead to the same cipher inner
state during the decryption. This would allow him to perform the fault injection
to the same inner state during the deciphering process. Hence the attack can be
described as chosen-ciphertext fault injection attack.

In this paper, we present an essential improvement of this attack and we
describe a novel approach to the differential fault analysis of Trivium. Using
this approach, we have obtained much better results in the sense of number of
fault injections needed. Where the original attack needs 43 fault injections, our
approach reveals the secret key after 3.2 fault injections in average (over 10,000
experiments). In the best cases we have obtained the secret key after only 2 fault
injections.

The main idea behind our attack is a simple way of transforming polynomial
equations obtained during the attack into linear equations. This procedure is
based on what we call the floating description of Trivium and on some fault
propagation properties of Trivium’s inner state evolution.

Formally, we significantly extend the number of variables by denoting every
new inner state bit as a new variable, while not forgetting its connections given
by the Trivium inner state evolution. Consequently many keystream difference
equations become linear or have low degree. We use equations up to degree 4 and
we linearise them subsequently using already revealed inner state bits, which are
obtained by the use of Gauss-Jordan elimination for the linear equations.

In the beginning, we start off the equations system by the keystream equa-
tions and the inner state bit connections and afterwards we use fault injection
to obtain more equations. After each fault injection and the following equations
processing, we search the inner state bit sequences for a time ¢ in which the
Trivium inner state 1.S5; would contain a sufficient number of known bits. Since
shifting of the Trivium inner state (seen as an interval of the inner state bit
sequence) in time reminded us of floating of the inner state, we call this de-
scription the floating description and the attack the floating fault analysis. After
finding such a time ¢, for which the inner state I.S; is known, we clock Trivium
backwards until we obtain an initial state from which we can directly read used
secret key and IV.

The rest of the paper is organised as follows. In Sec. 2 we review the related
work, while Sec. 3 describes Trivium in the floating notation. In Sec. 4 we sum-
marise attack prerequisites, followed by the attack description in Sec. 5. The
paper is concluded by Sec. 6.



Floating Fault Analysis of Trivium 3

2 Related Work

As far as we known, the stream cipher Trivium has been, despite its simplicity,
secure against all non side-channel attacks. At this point, we would like to recall
some related work on Trivium as well as some results on stream cipher side-
channel analysis.

New methods of solving systems of sparse quadratic equations are applied by
Raddum to Trivium in [4]. The attack has complexity of O(216?). Maximov and
Biryukov in [5] tried to solve the system of equations given by Trivium keystream
by guessing some inner state bits, which would result in a reduction of degrees
of obtained equations. The complexity of their attack is O(c - 283-%), where c is
the time needed to solve a sparse system of linear equations. In [6], presented at
SASC 2007, Babbage pointed out different possible approaches to the analysis of
Trivium. Thuran and Kara presented a model of the Trivium initialisation part
as an 8-round function in [7]. Their linear approximation of 2-round Trivium
has bias 273!, Differential cryptanalysis is applied to the initialisation part of
Trivium in [8]. Recently at SASC 2008, Fisher, Khazaei and Meier presented a
new method for key recovery attacks [13]. They successfully applied their attack
to Trivium with a reduced number of initialisation steps (672 out of the original
1152 steps). In the same paper they also provide evidence that the proposed
attack is not applicable on Trivium with full initialisation.

Since the presented attack is a fault analysis attack, i.e. a side-channel attack,
we would also like to mention some previous work on the side-channel analysis of
stream ciphers. An overview on passive side-channel attacks on stream ciphers
can be found in [9], while fault attacks on stream ciphers are described in [10].
Recently, authors of [12] have theoretically analysed ciphers in phase 3 of the
eSTREAM project with respect to many types of side-channel analysis. Early
this year at FSE 2008, authors of [2] have described differential fault analysis of
Trivium. They have presented an attack that requires 280 keystream bits and
in average 43 fault injections to reveal the used secret key. The authors have
also designed a simple method for fault position determination. As already men-
tioned, our attack is an extension of their work which leads to a rapid reduction
in the number of fault injections needed.

3 Trivium Description in The Floating Model

The stream cipher Trivium is a bit-oriented additive synchronous stream cipher
with 80-bit secret key and 80-bit initialisation vector (IV). Trivium (as other
stream ciphers) can be divided into two parts: the initialisation algorithm, which
turns a secret key and an initialisation vector into the inner state of Trivium,
and the keystream generation algorithm, which produces the keystream (one bit
per step).

Necessarily condition for a simple description of our attack is the use of
the following notation (first described in [3]). In this notation the cipher inner
state registers are represented by the binary sequences they produce instead of



4 Michal Hojsik and Bohuslav Rudolf

describing them as finite length NLFSRs. We will refer to this notation as the
floating notation or the floating description. We have chosen this name since in
this notation a Trivium inner state is an interval which is “floating” on the inner
state bit sequences as time goes on.

The stream cipher Trivium consists of 3 non-linear feedback shift registers.
The sequences produced by the first, the second and the third register will be
denoted by {x,}, {yn} and {z,} respectively. Since Trivium registers are of
lengths 93, 84 and 111 these sequences will be indexed from —93, —84 and —111
onwards. So at time ¢ the Trivium inner state is equal to

ISt = (T41y ey Tt—03, Yt1s oo s Y84y Bt—1y - - - Zt—111)-

At the beginning of the initialisation part of Trivium, an 80-bit secret key
K = (ki1,...,kso) is used to initialise the sequence {x,}52 ¢4 so that z_; =
k;y, i =1,...,80 and an 80-bit initialisation vector IV = (uq,...,usg) is used
to initialise the sequence {y,}22 ¢, so that y_; = w;, ¢ = 1,...,80. Finally
Z_109, Z—110 and z_111 are set to one and all previously unset x,, v, and z, are
set to zero for all n < 0. We will refer to this state as to the initial state.

For n > 0, the following recursions are used to compute new inner state bits
T, Yn and 2z, : 3

Tpn = Tn—69 + 2n—66 + Zn—111 + Zn—110%n—109,

Yn = Yn—78 T+ Tn—66 + Tn—93 + Tn—92Tn—91, (1)

Zn = Zn—87 t Yn—69 + Yn—84 + Yn—83Yn—s2-

The only difference between the initialisation part and the keystream genera-
tion part of Trivium is the keystream production function present in the latter
one, while the former consists of 1152 recursion steps. For the sake of notation
simplicity, we will denote the keystream sequence by {0,}52 1155 (i.e. it will be
indexed from 1152 onwards). It is computed as

On = Tp_66 + Tn—93 + Yn—69 + Yn—84 + 2n—66 + 2n—111, 7 > 1152. (2)

In the classical description, the cipher is represented by its 288 bit inner state
IS = (s1,...,89288) which is updated each cipher clock. This description can be
found e.g. in the cipher specification [1] and we will refer to this as the static
notation or static description.

In the rest of the paper we will start our investigations at some random, but
fixed time ¢. For simplicity, we will denote this time as time ¢ = 0. So the inner
state at this time will be IS() = (33_1, ey X935, Y1y Y—8452—15-- -, 2_111).
(This was denoted by IS;, = (s1,..., S2ss) by authors of [2].) From now on, by
x_1 we mean the value of z,, for n =t — 1 for the fixed but unknown time ¢ and
not the value k; as set in the initialisation part of Trivium.

3 All additions in this paper are carried modulo 2



Floating Fault Analysis of Trivium 5

4 Attack Prerequisites

The attack presented in this paper is a differential fault analysis attack, meaning
that an attacker has to be able to (repeatedly) insert a fault into a cipher inner
state 1.5p. As recently mentioned in Sect. 3, this is an arbitrary but fixed Trivium
inner state. In our case, inserting a fault means a bit flip on an unknown random
position. The inner state after the fault injection will be denoted by I5}.

We also assume that an attacker is able to obtain N consecutive keystream
bits after the fault injection, where in our implementation we have successfully
used N = 800. This keystream will be referred to as the faulty keystream and will
be denoted by {0, }. Further we assume that the attacker has also access to the
first N consecutive bits of so called proper keystream, {0, }, which is generated
from the proper inner state 1.5.

The last assumption we make is that the attacker is able to repeat the fault
injection to the same inner state ISy (each time inserting a fault into a new
random position). This means, that the attacker has to run Trivium more than
once with the same secret key and IV to reach the same inner state. This can
be achieved in the chosen-ciphertext scenario, assuming that the initialisation
vector is a part of the cipher input. In this case, the attacker will always use the
same cipher input (cipher text and initialisation vector) which will lead to the
same cipher inner state during the decryption. This would allow him to perform
the fault injection to the same inner state during the deciphering process.

All together, these are the prerequisites of our attack:

1. Attacker is able to obtain the first N consecutive bits of the keystream {o,,}
produced out of the inner state ISj.

2. Attacker is able to inject exactly one fault (a bit flip) into the inner state
ISy into an unknown random position.

3. Attacker is able to obtain the first N consecutive bits of the keystream {o/, }
produced out of the faulty inner state 15(.

4. Attacker is able to repeat the fault injection into a random position of 1.5y
M times.

In our implementation of the attack, we have used N = 800 and the attack
reveals the secret key in average after 3.2 fault injections. During our experiments
(we have run the attack 10000 times) the attack succeeded with the probability
2% for M = 2, 78.5% for M = 3, 99.8% for M = 4 and for M = 5 the attack
always revealed the secret key.

5 Floating Fault Analysis of Trivium

The authors of [2] described a differential fault analysis of Trivium based on the
static model. In this paper we take the advantage of the floating model and we
show that this model leads to much better results.

Before describing the attack itself, let us introduce some more notation. For
each of the sequences {z,}, {yn}, {zn} and {o0,} we define a delta sequence



6 Michal Hojsik and Bohuslav Rudolf

{6z}, {0yn}, {02} and {d0,} respectively as a difference between the proper
sequence (a sequence without the fault injection) and the faulty sequence (the
sequence after the fault injection). All faulty variables are marked by a prime.
Using (1), (2) and the following equation describing the difference induced by
multiplication

d(ab) =d't/ +ab=da-b+a-6b+ da- b

we obtain the following equations describing the delta sequences:

00y, = 6xp_g6 + 0Tn_93 + 0Yn—co + 0Yn—84 + 02n_c6 + 02n_111 (3)

0Tn = 6Xn_69 +02n—66 + 02n—111 + 02n—_109 - Zn—110 + (4)
+ 2n—109 - 02n—110 + 02n—109 - 6Zn—110

0Yn = OUYn—78 + 0Tn—66 + 0Tpn—93 + 0Tn_91 - Tn—92 + (5)
+ Tp_91 - 0Tn_92 + 0Ty _91 - 0Ty _g2

0zn = 02n—87 + 0Yn—69 + 0Yn—s8a + 0Yn—s2 * Yn—83 + (6)

+ Yn—s82 - OYn—83 + 0Yn—_s2 - OYn—_s3.

According to the assumptions 1 and 3 in Sec. 4 an attacker is able to obtain
the proper keystream {o,} as well as the faulty keystream {0}, }. During the
attack he will compute the delta keystream {do,} for each fault injection and
express its bits as expressions in variables {x,}, {y»} and {z,} using equations
(3), (4), (5) and (6). We will refer to this equations as the delta keystream
equations. Afterwards he will try to solve these equations.

5.1 Faults in the Floating Model and the Corresponding
Delta-Equations

We claim that using the floating notation, an attacker will obtain many more
linear and quadratic equations than with the static notation, using the same at-
tack model and having the same assumptions. Why is there a difference between
the static model and the floating model? In fact there is no difference in the ob-
tained equations - they are equivalent. The difference is in the representation, in
our viewpoint. In the static model, at time ¢ for some ¢ > 0, the floating model
variable z; (or y; or z; equivalently) would be expressed as a polynomial in bits
of the fixed initial state I.S) = (T—1,...,Z—03,Y—1,- s Y84y Z—1,- -+, 2—111) =
(s1,...,8288). Hence some of the obtained delta keystream equations which are
in fact linear in the floating variables ({z,}, {yn}, {2n}), are polynomial in the
static initial state variables ((s1,...,S2ss)). In other words, do,, is in the static
model often a linear combination of nonlinear terms {6z, }, {0yn}, {d2,} which
are expressed in the variables (s1,. .., S2ss). On the other hand, in the floating
model we have clearly many more variables. Instead of 288 variables of the fixed
inner state in the static model, we have 3NN + 288 variables in the floating model,
which gives us 2688 variables for N = 800 as we have used in our implementation
(288 initial state variables plus 3 new variables for each Trivium step). Since we



Floating Fault Analysis of Trivium 7

do not forget about the connections between variables, the floating model can
be seen as a useful extension of the static model.

Another important difference between these two models is the following: In
the static model we fix the set of variables as bits of the inner state into which
the fault injections are performed. So before the single injected fault spreads
over the inner state and produces many linear equations, the expressions for
the new inner state bits become polynomial and therefore in fact linear delta
keystream equations contain high-degree polynomials. In the floating model we
decide which inner state we would like to compute according to the obtained
equations. So we wait until the fault spreads over the inner state and only then
do we try to compute the inner state for the best possible time. More precisely,
during the attack we try to determine values of all the variables {x,}, {y,} and
{zn} and we wait until there are enough known variables in an interval of a single
inner state, regardless of the actual position of this state in time. For illustration,
in our experiments during the attack we have obtained enough equations in the
bits of inner state I.S; which is reached after approximately 300 steps of Trivium,
i.e. we have obtained a Trivium inner state that appears roughly 300 steps after
the fault injection. Afterwards we clock Trivium backwards until we reach a state
1S, similar to the initial state. Then the secret key equals to (xy—1,...,Tu—s0)
and IV = (Yu—1,- - Yu—s0)-

In the floating model, the attack starts with the initial delta inner state
{62,302 oa {0yn it a4y {020} 1 111, where all the bits are equal to zero ex-
cept one (the bit where the fault injection occurred). So for example if the fault

was injected into x;,i € {—93,...,—1} (a bit of the first register), the initial
delta state would be
(51‘,93,...,5$i,1,6$i,6$i+1,...,(51‘,1) = (0,...70,1,0,...,0)
(5y—84a"'a6y—l) = (07,0>
(52_111,...,52_1) = (O,,O)

Afterwards we inductively use equations (4), (5) and (6) to express {0x,, }, {0yn }
and {0z,} for n > 0 as polynomials in variables {z,}, {yn}, {2n}. These are af-
terwards used to represent bits of known sequence {do, } as terms in the variables
{zn}, {yn}, {zn}, i.e. they are used to create the delta keystream equations.

Now let’s look closer on these equations. When do they contain non-linear
dependencies? From (3) it follows, that do, is a linear combination of values
{6}, {dyn} and {0z,}. So it will contain non-linear terms if and only if any
of these values will be non-linear. Let’s examine e.g. the case of dx,,. For some
J >0, 0z; depends non-linearly on {z,},{yn}, {2n} if and only if at least one of
the following conditions is satisfied:

1. at least one of the values 0z;_g9, 02j_66 Or dz;_111 is non-linear in {z,},

{un}, {zn},

2. dzj_109 Or 0zj_110 (or both of them) has degree at least 1 as a polynomial
in {zn}, {yn} and {z,}.

Clearly, case 1 is only a transition of a non-linearity from other terms so a new
non-linearity is created only in the case 2. As described in the above example,



8 Michal Hojsik and Bohuslav Rudolf

the starting delta inner state is all zero except one bit and consequently there are
only few non-linearity creations and transitions for small values of j. Although
afterwards both cases occur more often, we are still able to obtain low degree
equations thanks to the simple substitution we use to eliminate non-linearities
(we substitute already known variables into the higher degree equations). More-
over many variables are known directly from the delta keystream equations, since
they appear as a linear equation with only one term.

Tab. 1 shows the average number of obtained equations of degree up to four
after one, two, tree and four fault injections. Each table entry contains two
values, where the first one stands for the number of equations right after the
fault injection while the second one stands for the number of equations after
they were processed by methods described in Sect. 5.3. The average is computed
over 10000 experiments.

Table 1. The average number of equations after different numbers of fault injections.
FI stands for fault injection(s).

# equations before/after eq. processing
degree 1 degree 2 | degree 3 | degree 4
Before FI | 800/800 |2400/2400 0 0
After 1 FI | 825/992 |2466/2350 35/2 57/1
After 2 FI |1017/1232 | 2419/2236 36/3 57/1
After 3 FI | 1258/2396 | 2298/484 37/1 56/0
After 4 FI |2402/2685 498/6 8/0 12/0

5.2 Fault Position Determination

During the fault injection phase of the attack, a fault (a bit flip) is injected
at a random position of the actual Trivium inner state. In order to be able
to proceed with the attack, we need to know this position. Authors of [2] have
described a very simple fault position determination technique. In this paper, we
will use their technique as described in section 5.3. of [2]. Briefly, the technique
is based on the fact that the distribution of ones in the delta keystream uniquely
determines the position of the induced fault within the inner state. After the
fault injection, an attacker computes the delta keystream {do,,} and determines
the fault position (by a single table look-up) according to the distance between
the first occurrences of non-zero bits in {do, }.

This technique is deterministic and leads to the right result for all possi-
ble fault positions, assuming that exactly one fault was injected. In the attack
description, we will refer to this technique as the fault_position_determination().

5.3 The Equations System and Its Processing

All the equations used during the attack are in variables {z,}, {y,} and {z,}.
The corresponding system will contain equations from 3 different sources:



Floating Fault Analysis of Trivium 9

— The first set of equations is given by the proper keystream {o,} for n =
0,...,N — 1. In the floating description, all keystream equations are linear
and have the form of Eq. (2). These are the 800 linear equations in the first
line of Tab. 1.

— The second set of equations comes from the Eq. (1) which describes the
connections between the variables {z,}, {y,} and {z,} and these are the
2400 quadratic equations in the first line of Tab. 1.

— The last set of equations are those coming from the fault injections and we
term them delta keystream equations.

During the attack we try to solve the actual equation system by the use of two
simple methods. The first one is the Gauss-Jordan elimination which we apply
to the system of obtained linear equations and we term this procedure Gauss().
The second used technique is the substitution. By the term Substitution() we
will denote a procedure which substitutes values of already known variables into
the equations of higher degree (in our implementation we use equations up to
degree 4). Since the number of revealed variables after each fault injection is
fairly high, the substitution reduces the degree of many non-linear equations.
Hereby we utilise the higher degree equations as a potential source of new linear
equations and this is the only way how we use them.

5.4 The Attack Algorithm

The attack algorithm is described by Alg. 1. We have used equations up to degree
4 and N = 800. Afterwards the attack has revealed the secret key after 3.2 fault
injections in average.

Since Eq. (3), (4), (5) and (6) are simple, we do not need any precomputations
compared to the attack from [2]. After we determine the fault position at step 10
of Alg. 1 using the function fault_position_determination(), we compute symbolic
delta equations (described by Eq. 3) for the actual fault position. Afterwards we
insert these equations into our equations system using the values of the actual
delta-keystream {do, } computed at step 9 of Alg. 1 as the right-hand-side.

Table 2 shows the average maximal number of known variables in a single
inner state I.5; (maximum over all possible inner states, i.e. over all positions of
the inner state in time ¢) after 1, 2, 3, 4 and 5 fault injections as well as the
estimated probability that the attack will succeed after a given number of fault
injections. We see that the attack will succeed after 2 fault injections only with
probability 2%, while after 4 fault injections the attack had revealed the secret
key in 99.8% of all the cases.

5.5 Implementation and Complexity

In the floating model, the number of variables depends on the number of Trivium
steps performed. In our implementation we have used N = 800 which gives us
24004288 (initial state) = 2688 variables. Clearly, all obtained equations are
very sparse. However, we have used the straight-forward implementation of the



10 Michal Hojsik and Bohuslav Rudolf

Algorithm 1 Floating Fault Attack

: get Trivium in an unknown fixed inner state ISy
obtain the first N consecutive bits of {0, }, starting from inner state ISo
insert keystream equations (Eq. 2 in Sect. 3) into the eq. system
insert connection equations (Eq. 1 in Sect. 3) into the eq. system
while for all ¢ I.S; not known do
reset Trivium to the state 1.Sg
insert a fault into I.Sg
obtain the first N consecutive bits of the faulty keystream {oy, }
80y < 0p +0,, n=0,...,N—1
e — fault_position_determination({0on})
compute delta keystream equations for e and insert them into the eq. system
repeat
do Substitution()
until it keeps changing the equation system
do Gauss()
if new variables obtained by Gauss() then
goto 12
end if
: end while
: // at this point we have a known inner state 1.5
: run Trivium backwards starting with 1.5, until an inner state similar to the initial
state is reached
: read the secret key from the reached initial state

R e e e e el el
PO 0D WY 2O ©

N
[\V]

Table 2. The average maximal number of known variables in a single inner state and
the estimated probability of success after different numbers of fault injection. Average
made over 10,000 experiments with random key, IV and fault position.

# fault injections | 1 2 3 4 5
# known variables in a single state | 30 | 70.4 | 245.5 | 287.5 | 288
probability of success 0 |0.02| 0.79 | 0.99 1




Floating Fault Analysis of Trivium 11

Gauss-Jordan elimination. Due to the implementation complexity, we use only
equations up to degree 4.

According to the nature of the proposed algorithm, it is indeed very hard to
do any theoretical complexity analysis. Hence we have used the average number
of procedure calls to do the following complexity estimate. The most complex
procedure used in the attack algorithm is the Gauss-Jordan elimination. We
suppose that for a m x n matrix it has the complexity of O(nm?) operations.
Since the number of columns equals 2688 and if we suppose that the number
of linear equations is in average lower than 1024, we gain the running time
of roughly 2114 . 220 — 2314 gimple operations per an average Gauss-Jordan
elimination used in the attack. We have performed 10000 runs of the attack and
in the average one attack makes 80 = 253 calls of the Gauss() procedure. All
together we can retrieve the secret key in the time of 2314 . 263 = 2377 gimple
operations. Since the average running time of the attack was only 40.3 seconds
on our desktop computer with AMD Athlon 64 X2 Dual-Core 3800+ processor,
the complexity estimate can be seen as the upper limit.

5.6 Effort for Further Improvements

During our experiments, we have tried to stop the attack at the point when we
have found an inner state 15, (for any u) with at least 288 — G’ known bits for
a given G. Then we could use the brute force to determine the rest of the inner
state bits. We have tried G = 20 and G = 30 but in the average over 10000
experiments, these attacks led to very similar results.

Another way to improve our attack could be the trick described in [5].
Namely, we tried to do an educated guess of up to 30 variables in the following
way: after the second fault injection when we have already gathered many high-
degree equations, we have guessed those variables which maximised the number
of higher-degree terms eliminated by this guess. In this way we obtain not only
30 new known variables, but also more low-degree equations. However experi-
ments have shown that the contribution of this smart guess to the final number
of fault injections needed is in fact neglectable (even if applied on different places
of the attack algorithm).

6 Conclusion

The paper describes a new approach to the fault analysis of Trivium. We have
taken advantage of the so called floating model and have proposed and imple-
mented an attack which can reveal the secret key after 3.2 fault injections in
average using 800 keystream bits. In the best cases, we were able to reconstruct
the secret key only after 2 fault injections.

Our results show how important it is for cryptanalysis to choose the right
model for cipher representation.



12 Michal Hojsik and Bohuslav Rudolf

References

1. De Canniére, C., Preneel, B.: Trivium: A Stream Cipher Construction Inspired
by Block Cipher Design Principles. eSTREAM, ECRYPT Stream Cipher Project,
Report 2005/30, http://www.ecrypt.eu.org/stream (2005)

2. Hojsik, M., Rudolf, B.: Differential Fault Analysis of Trivium. In: Nyberg, K. (Ed.)

FSE 2008. LNCS, vol. 5086, pp. 158-172. Springer (2008)

ECRYPT discussion forum, http://www.ecrypt.eu.org/stream/phorum/read.php?1,448

4. Raddum, H.: Cryptanalytic Results on Trivium. eSTREAM, ECRYPT Stream
Cipher Project, Report 2006/039, http://www.ecrypt.eu.org/stream (2006)

5. Maximov, A., Biryukov, A.: Two Trivial Attacks on Trivium. eSSTREAM, ECRYPT
Stream Cipher Project, Report 2007/006, http://www.ecrypt.eu.org/stream
(2007)

6. Babbage, S.: Some Thoughts on Trivium. eSTREAM, ECRYPT Stream Cipher
Project, Report 2007/007, http://www.ecrypt.eu.org/stream (2007)

7. Turan, M.S., Kara, O.: Linear Approximations for 2-round Triv-
ium. eSTREAM, ECRYPT Stream Cipher Project, Report 2007/008,
http://www.ecrypt.eu.org/stream (2007)

8. Biham, E., Dunkelman, O.: Differential Cryptanalysis in Stream Ciphers. COSIC
internal report (2007)

9. Rechberger, Ch., Oswald, E.: Stream Ciphers and Side-Channel Analysis. SASC
2004 - The State of the Art of Stream Ciphers, Workshop Record, pp. 320-326.
http://www.ecrypt.eu.org/stream (2004)

10. Hoch, J. J., Shamir, A.: Fault Analysis of Stream Ciphers. In: Joye, M., Quisquater,
J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 240-253. Springer (2004)

11. Biham, E., Granboulan, L., Nguyen, Ph.: Impossible Fault Analysis of RC4 and
Differential Fault Analysis of RC4. SASC 2004 - The State of the Art of Stream
Ciphers, Workshop Record, pp. 147-155. http://www.ecrypt.eu.org/stream (2004)

12. Gierlichs, B., et al.: Susceptibility of eSSTREAM Candidates towards Side Channel
Analysis. SASC 2008 - The State of the Art of Stream Ciphers, Workshop Record,
pp. 123-150. http://www.ecrypt.eu.org/stream (2008)

13. Fisher, S., Khazaei, S., Meier, W.: Chosen IV Statistical Analysis for key Recovery
Attacks on Stream Cipher. SASC 2008 - The State of the Art of Stream Ciphers,
Workshop Record, pp. 33-41. http://www.ecrypt.eu.org/stream (2008)

14. Hwang, D., et al.: Comparison of FPGA - Targeted Hardware Implementations
of eSTREAM Stream Cipher Candidates. SASC 2008 - The State of the Art of
Stream Ciphers, Workshop Record, pp. 151-162. http://www.ecrypt.eu.org/stream
(2008)

15. Good, T., Benaissa, M.: Hardware Performance of eSTREAM Phase-III Stream
Cipher Candidates. SASC 2008 - The State of the Art of Stream Ciphers, Workshop
Record, pp. 163-174. http://www.ecrypt.eu.org/stream (2008)

@



