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Abstract

We describe a methodology developed for 3-D parameter identification, with focus on large-
scale applications such as monitoring subsea oil production and geothermal systems [7].
The methodology is designed to handle challenges related to low parameter sensitivity,
nonuniqueness of the inverse solutions and costly numerical calculations. A reduced, com-
posite parameter representation is chosen to meet these challenges. Our contributions to
the methodology involves choosing a reduced representation with radial basis functions,
to maintain a low number of parameters. We also propose the use of a 1. order selection
measure in the refinement process to reduce the computational costs. The performance
of the proposed changes in the methodology is illustrated in a series of examples for esti-
mating the change in electric conductivity from time-lapse electromagnetic observations.
The results show some limitetions regarding the accuracy of the 1. order selection mea-
sure. For the investigated numerical examples, radial basis functions, together with the
described methodology, effectively provide an estimated of the electric conductivity field
using electromagnetic measurements.
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Outline and motivation

Before and during reservoir production, knowledge of the reservoir characteristics is vital.
The more knowledge we have, the better our choices will be, leading to a more efficient
production process. It may concern placement of wells prior to production, or monitoring
the reservoir during production.

Controlled source electromagnetic (CSEM) is a method that can help provide a more
accurate description of a reservoir. CSEM data is sensitive to spatial changes in the electric
conductivity in the reservoir. The electric conductivity of a saturated porous medium
is partly dependent on the saturating fluid. Therefore, the method has the ability to
distinguish between parts of a reservoir which is saturated with water and hydrocarbons
respectively. This means that the method is promising for monitoring the interface of the
injected water and oil during secondary production.

The aim of this thesis is to present a robust methodology for the inversion of CSEM
data, in order to identificatify the electric conductivity field in the reservoir.

In Chapter 1 we present the method of controlled source electromagnetic, what type of
information it provides us with, and what challenges that are associated with this method.
Then we state the governing equations for the system, and describe the solution using
the Integral Equation method. We present a numerical solution to the Fredholm integral
equation, and finally investigate how the size of the computational grid effects the solution
of the forward problem.

In Chapter 2 we describe the concept of inverse problems. We discuss why inverse
problems typically are harder to solve than forward problems, and discuss the concept of
ill-posedness. Regularization is presented as a strategy when solving ill-posed problems.
Finally we present the regularization methods that we apply in our estimation process.

In Chapter 3 we parameterize the electric conductivity in the reservoir, and motivate
our choice of an reduced representation. The choice of a composite parameterization with
an exterior function and an interior function is motivated. The interior function consists
of interior coefficients and basis functions. We apply two types of basis functions; trilinear
basis functions and radial basis functions. A multi-level strategy for solving the parameter-
ization problem is then presented, and we motivate an adaptive refinement strategy. For
the adaptive refinement strategy we describe two different selection measures; a 1. order
gradient based selection measure, and a 2. order selection measure based on an approxima-
tion of the Hessian matrix. We conclude the chapter by discussing different scalings of basis
functions, and how scaling the basis functions may effect the parameter representation.
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In Chapter 4 we present two basic ideas in optimization methodology, the line−search
strategy, and the thrust−region strategy. We describe the line-search method of Gauss−
Newton, before we replace it with the thrust-region method of Levenberg −Marquardt.
We present our choice of solution criterion, as well as calculations associated with solving
the sensitivity matrix.

In Chapter 5 numerical examples are presented. First, we consider the effect of scaling
of basis functions on the chosen parameter representation, and then evaluate the use of a
multi-level estimation strategy. Our two main results are presented next, which concern
comparison of trilinear and radial basis functions, as well as comparison of the two selection
measures (in the refinement process) presented in Chapter 3.

In Chapter 6 we give a summary of the results from Chapter 5, what consequences
these results have, and consider some new questions that have emerged during this work.



Chapter 1

Controlled source electromagnetics

Controlled source electromagnetics (CSEM) has been in commercial use for more than a
decade. Today it is regarded as an important geophysical tool in marine environments.
The method is sensitive to changes in electric resistivity, which e.g. take place during the
transition from water-filled sediments to more resistive oil-filled sediments. CSEM can be
used both in exploration and reservoir monitoring. Although the resolution power of the
data is not as high as for seismic methods, it provides the possibility of better reservoir
estimates compared to methods such as gravity and magnetic surveying [8].

1.1 Model parameters

The properties of a reservoir depends on a set of physical quantities which we call model
parameters. Before we go into details on the CSEM method, we present some important
model parameters in this section.

Porosity

A porous medium is composed of solid material, called the matrix VM , and void space VP .
The total volume is denoted by the bulk space VB = VM +VP , and the porosity of a porous
medium is defined as the volume fraction of the void space to the bulk space,

Φ =
VP
VB

.

Normal methods to measure the porosity are based on the ability of a fluid to saturate the
medium, so only interconnected pores are registered. Common practice is to consider the
effective porosity, for which VP is replaced by the volume of the interconnected pores.

Saturation

Consider a test volume of a porous medium, where at least one fluid phase is present, such
as water, gas and oil. The fraction of pore volume occupied by a fluid phase α, is known

3



4 Chapter 1. Controlled source electromagnetics

as the saturation of that phase;

Sα =
Vα
VP
.

Given that there are n phases present and the pores are fully saturated, the following
identities hold

n∑
α=1

Sα = 1,
n∑

α=1

Vα = VP .

Electric conductivity

The ability of a medium to conduct electromagnetic signals is described both by electric
conductivity, σ, and its reciprocal, the electric resistivity which is denoted by ρ = σ−1. The
units for these quantities are Siemens per meter (Sm−1) and Ohm-meters (Ωm) respectively.
The electric conductivity arises in Ohm’s law;

J = σE,

where J is current density and E is the electric field intensity. For a saturated porous
medium the electric conductivity depends mainly on the porosity of the medium, and the
saturating fluid [1].

1.2 Basic overview

Figure 1.1 illustrates the marine CSEM method. The target reservoir is located at a certain
depth below the seafloor. It consists of a distribution of water- and oil-saturated rocks.
The method seeks to discover this distribution.

A set of electromagnetic (EM) field receivers are deployed on the seafloor. During a
survey these receivers continuously record the electric and magnetic fields. These fields
are originally broadcasted by a 50 − 300 meters long horizontal antenna that is towed
approximately 20−100 meters above the seafloor. The EM signals generated by the antenna
is spread in all directions - into the overlying water column, directly to the receiver, and
downward into the seabed. By towing the antenna close to the seafloor the coupling with
seafloor rocks and sediments is maximized [14].

As mentioned, the CSEM data is sensitive to changes in electric resistivity. Water-
filled sediments represent good conductors with a resistivity value in the range 0.5−2 Ωm.
Hydrocarbon-filled sediments are more resistive (30-500 Ωm) [13]. For heterogeneous rocks
EM signals will be sensitive to variations in porosity and saturation. Furthermore, domains
with high electric resistivity are not necessarily hydrocarbon-filled sediments. Different
types of volcanic rocks, salts and carbonates represents resistive bodies that scatter EM
signals. Such disturbances are known as false positives [10].

To reach potential targets as deep as 3000 meters below the seafloor, it is necessary
to use frequency values in the range 0.1 − 1 Hz. With such low frequencies, the quality
of the data makes it difficult to obtain a high resolution estimates. We can therefore not
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Figure 1.1: Sketch of a CSEM monitoring situation. Receivers are deployed at the seafloor,
and records the electric and magnetic fields as the source emits electromagnetic waves. The
data collected are thus a combination of EM waves directly from the source, and EM waves
due to the reflection and scattering in oil-saturated and water-saturated sediments. Figure
from [13]

expect any detailed structures to appear in our estimate, more than on a coarse-scale.
Although this is a drawback, information on a coarse-scale is in many cases valuable in the
reservoir characterization process. Seismic surveying mainly results in higher resolution,
but seismics are sensitive to the elastic properties of the sediments, which are similar for
saturating oil and water. Thus seismic signals distinguish gas and fluid with high resolution
estimates, whilst CSEM is complimentary with its ability to distinguish between fluids.

In our work we have considered a monitoring setting, where a reservoir is injected with
water through a well to increase the reservoir pressure. This is known as secondary produc-
tion, as opposed to primary production where the oil is pumped out without any pressure
support. The aim is to use CSEM to monitor the increasingly water-filled domain. As the
EM signals are broadcasted by the antenna, the seafloor receivers start recording. How
these recordings are coupled to the electric conductivity field in the reservoir is presented
in the next section.

1.3 Maxwell’s equations

In problems where electromagnetism plays a part, Maxwell’s equations will typically arise.
For situations with time variation e−iωt and a monochromatic field1, Maxwell’s equations

1Monochromatic field - The frequency ω is constant
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Figure 1.2: The EM signals broadcasted by the source is distributed in all directions,
downward into the seafloor, directly to the receiver, and into the overlying water column.
Figure from [14]

take the form
∇× E = iωµH,
∇×H = σ̃E + je,
∇ · (µH) = 0,
∇ · (εE) = q + qe.

(1.1)

Here E and H are the electric field and the magnetic field correspondingly, σ̃ = σ − iωε
denotes the complex electric conductivity, ω denotes the frequency, µ denotes the magnetic
permeability, ε denotes the dielectric permittivity, q is the spatial densities of free charges,
and je and qe are the densities of extraneous electric currents and charges. It is shown in,
e.g. [9] and [19] that in this case the Helmholtz equations

∇2E + k̃2E = −iωµje + (∇qe)/ε̃,
∇2H + k̃2H = −∇× je,

(1.2)

must be satisfied. Here k̃ = iωµσ̃ = iωµσ + ω2µε and the value of k̃ is chosen to have

a positive real part
(

Re (k̃) > 0
)

. For situations with no free or extraneous charges,

Maxwell’s equations (1.1) reduce to

∇× E = iωµH,
∇×H = σ̃E + je,
∇ · (µH) = 0,
∇ · (εE) = 0.

(1.3)
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Figure 1.3: 3-D model of a inhomo-
geneity D with electric conductiv-
ity σ = σa + σb. The background
electric conductivity is denoted σ =
σb.The inhomogeneity structure is
illuminated by electromagnetic sig-
nals broadcasted from the source.

These are the governing equations for our problem. Consequently the Helmholtz equations
are reduced to

∇2E + k̃2E = iωµje,

∇2H + k̃2H = −∇× je.
(1.4)

Maxwell’s equations (1.3) can be solved with a variety of methods. In our work we apply
the Integral Equation (IE) method, which we reproduce from [19] in the next section.

1.4 The Integral Equation method

In the following procedure, the complex conductivity σ̃ in a local inhomogeneity D is
regarded as a sum of a background complex conductivity σ̃b and the complex conductivity
change σ̃a, that is σ̃ = σ̃b + σ̃a. Outside this inhomogeneity the conductivity is given as
σ̃ = σ̃b. This is shown in Figure 1.3. Consequently we write the electric and magnetic
fields as a sum

E = Eb + Ea, H = Hb + Ha, (1.5)

where the background field is due to the background complex conductivity, and the anoma-
lous field is caused by the anomalous conductivity distribution σ̃a.

We know that the total electromagnetic field must satisfy equations (1.3). Thus for the
background fields Eb and Hb we have that

∇× Eb = iωµ0H
b,

∇×Hb = σ̃bEb + je,
(1.6)

and for the anomalous fields Ea and Ha we have

∇× Ea = iωµ0H
a,

∇×Ha = σ̃bEa + ja.
(1.7)
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Here ja is the density of excess anomalous electric currents within the inhomogeneity D,

ja = σ̃a(r)E(r) = σ̃a(r)[Eb(r) + Ea(r)]. (1.8)

If (1.6) and (1.7) are added, the top two equations of Maxwell’s equations (1.3) are ob-
tained. As this thesis considers the CSEM problem where only low frequency EM signals
are broadcasted from the antenna, the displacement currents can be neglected and the
conductivity will satisfy σ̃ = σ in equations (1.6) and (1.7).

1.4.1 Solution to Maxwell’s equations

The IE solutions to equations (1.6) and (1.7) can be written as

Eb(r′) =

∫
Ω

GE(r′|r)je(r)dV (1.9)

Ea(r′) =

∫
Ω

GE(r′|r)σa(r)(Eb(r) + Ea(r))dV (1.10)

Hb(r′) =

∫
Ω

GH(r′|r)je(r)dV (1.11)

Ha(r′) =

∫
Ω

GH(r′|r)σa(r)(Eb(r) + Ea(r))dV (1.12)

where GE,H denote Green’s tensors (electric or magnetic) for the background conductivity,
calculated as solutions to the differential system

∇× GH = σbGE + δI
∇× GE = iωµGH ,

(1.13)

where I denote the identity tensor. Derivations of these equations are outlined in, e.g.,
[19]. Note that for a monitoring setting, even for a computationally demanding calculation
of Green’s tensors, system (1.13) needs to be solved only once for the inverse problem.
This applies to the background terms of both the electric field Eb and the magnetic field
Hb, so the only calculations that must be repeated are those for finding the anomalous
terms Ea and Ha. Once Ea is found from equation (1.10), however, finding Ha from (1.12)
is straight-forward. Thus, the only significant computational cost when applying the IE
method to our problem, is obtaining Ea. Equation (1.10) is known as a Fredholm integral
equation of the second-kind.

1.5 Numerical solution to the Fredholm integral equa-

tion

We will next solve the Fredholm integral equation using the same approach as by [11]. We
discretize the reservoir into Ng cells Di, where i = 1, 2, . . . , Ng. For each grid cell Di we
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assume the electric conductivity and electromagnetic fields to be constant. We define ĜD

as the 3Ng × 3Ng matrix

ĜD =



Γ11
xx . . . Γ

1Ng
xx Γ11

xy . . . Γ
1Ng
xy Γ11

xz . . . Γ
1Ng
xz

...

Γ
Ng1
xx . . . Γ

NgNg
xx Γ

Ng1
xy . . . Γ

NgNg
xy Γ

Ng1
xz . . . Γ

NgNg
xz

Γ11
yx . . . Γ

1Ng
yx Γ11

yy . . . Γ
1Ng
yy Γ11

yz . . . Γ
1Ng
yz

...

Γ
Ng1
yx . . . Γ

NgNg
yx Γ

Ng1
yy . . . Γ

NgNg
yy Γ

Ng1
yz . . . Γ

NgNg
yz

Γ11
zx . . . Γ

1Ng
zx Γ11

zy . . . Γ
1Ng
zy Γ11

zz . . . Γ
1Ng
zz

...

Γ
Ng1
zx . . . Γ

NgNg
zx Γ

Ng1
zy . . . Γ

NgNg
zy Γ

Ng1
zz . . . Γ

NgNg
zz


(1.14)

where Γijαβ is the electric Green’s tensor integrals

Γijαβ =

∫
Dj

GαβE (ri|rj)dV, α, β = x, y, z, and i, j = 1, 2, . . . , Ng. (1.15)

Let eb and ea be the 3Ng × 1 column vectors of the background and anomalous field,

eb = [Eb
x,1 · · ·Eb

x,Ng
, Eb

y,1 · · ·Eb
y,Ng

, Eb
z,1 · · ·Eb

z,Ng
]T ,

ea = [Ea
x,1 · · ·Ea

x,Ng
, Ea

y,1 · · ·Ea
y,Ng

, Ea
z,1 · · ·Ea

z,Ng
]T ,

(1.16)

and let Σa denote the 3Ng × 3Ng matrix with the anomalous conductivities along the
diagonal;

Σa = diag([∆σa1 , . . . ,∆σ
a
Ng
,∆σa1 , . . . ,∆σ

a
Ng
,∆σa1 , . . . ,∆σ

a
Ng

]). (1.17)

The discretized Fredholm integral equation will be

ea = ĜDΣa(ea + eb), (1.18)

which we rearrange and obtain
Aea = ĜDΣaeb, (1.19)

and where A = I− ĜDΣa. In general, the matrix A may be ill-conditioned. This is typi-
cally the case for large models with high electric conductivity contrast. This might cause
slow convergence, or even divergence, for the iterative algorithms. In order to reduce the
condition number we use preconditioning, where we replace the matrix A with M1AM2,
where the left and right preconditioners M1 and M2 are defined as

M1 =
√

Σb, M2 = (2Σb + Σa)−12
√

Σb, (1.20)

where Σb is the 3Ng×3Ng matrix containing the background conductivities along its diag-
onal. We solve the resulting discretized Fredholm integral equation with the Biconjugate
Gradient Stabilized (BICGSTAB) method [17, 3].
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1.5.1 Numerical accuracy with respect to size of computational
grid

From the outline above on solving the Fredholm integral equation, it is clear that our
choice of computational grid may affect the final estimate. By choosing a discretized
computational grid, we introduce numerical error. As we do not want the computational
grid to influence the solution, this numerical error should not exceed the measurement
errors.

We use the forward solver presented by [19, 11] to solve the forward problem. The solver
has two important restrictions regarding the computational grid; its horizontal extent has
to be quadratic and the number of cells in x− and y− direction must be equal. Thus
Ng = Ns ×Ns where Ns is the number of grid cells in both x- and y-direction. The value
Ns is introduced to facilitate the following presentation of the optimal grid size.

(a) Plume 1 (b) Plume 2 (c) Plume 3

Figure 1.4: Reference time-lapse conductivity fields represented exactly for Ns =
24, 48, 96, 192, 384.

Consider the three examples of change in electric conductivity in the reservoir seen
in Figure 1.4. These three electric conductivity fields are designed so that they can be
represented on a computational grid with Ns = 24. It can also be represented exactly on
grids with Ns = 48, 96, 192, 384, . . .. The forward solver results in a vector d, which consists
of the measurements of the electric and magnetic fields at the receivers. As the number of
observations depends on the number of sources receivers, field components and frequencies
used in the estimation, and not the size of the computational grid, these observation
vectors can be compared. Consider a case with Ns = 384 as a reference case. Denote the
observations for this case dref . Then we compare the relative error in the observations
with Ns = 24, 48, 96, 192, according the the formula

E(Ns) =
‖dref − dNs‖
‖dref‖

, Ns = 24, 48, 96, 192. (1.21)

Here dNs is the observations from a problem with grid size Ns × Ns. As the number of
observations depends on the number of sources receivers, field components and frequencies
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used in the estimation, and not the size of the computational grid, these observation vectors
can be compared. We expect that the finer a grid is, the smaller the relative error will be.
In terms of accuracy, we expect that there is a value for Ns at which there is little to gain
in increasing the grid size even further.

Figure 1.5: The relative error E(Ns) versus for grid sizes Ns = 24, 48, 96, 192 with respect
to a reference grid size of Ns = 384.

The results are presented in figure 1.5. The relative numerical error is of the order 10−7,
thus measurement error of the order 10−2 (specified in Chapter 5) will be the dominating
source of error. Furthermore, there is a flattening of the relative error in the area between
Ns = 48 and Ns = 96. From this figure it is clear that we should choose one of these two
values for Ns. As there is still an improvement in accuracy associated with increasing grid
size from Ns = 48 to Ns = 96, we choose this Ns = 96. In the case of three dimensions,
we pick N3D

g = 48× 48× 5.
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Chapter 2

Inverse problems

We have already established some of the governing equations in the CSEM problem, and
further information on the electric conductivity field in the reservoir enable us to approxi-
mately predict the electric and magnetic fields measured by the receivers. More accurate
and comprehensive knowledge will result in better predictions.

Expressed mathematically, our knowledge about some parameters m should result in
good predictions of our observations or data d. This knowledge is embedded in the forward
operator G. It maps the parameters from the parameter space P to the data space D, as
in the mathematical model

G(m) = d. (2.1)

Any extra information incorporated in the forward operator should result in better pre-
dictions of the data. For an inverse problem the data d are known, we want to determine
the parameter m. It is well-known that inverse problems are generally harder to solve
than forward problems where you calculate d given m. In Section 2.1 inverse problems
with certain complicating properties are classified as ill-posed inverse problems. One such
complicating feature could be that real-life data include some amount of noise. This noise
can be caused by for example measurement error. The data is a sum of the true data from
the “perfect” experiment, dtrue, and the noise component η,

d = G(mtrue) + η (2.2)

= dtrue + η.

Here mtrue are the parameters that corresponds to dtrue, given that the forward modeling
is exact. The noise component η is unknown, otherwise we would simply exclude it from
our calculations. We realize that the true parameters mtrue, from which our observed data
arises, are not the parameters that “solves” our problem (2.1), considering that our data
are contaminated by noise.

When solving an inverse problem, we want to obtain an inverse operator F that maps
the data d back to the parameter space, and preferable not “very far” from the true
parameters, see Figure 2.1. For some simple problems, F can be found as an exact inverse
operator, F (G(m)) = m. For more realistic problems, the inverse operator F can be

13
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Figure 2.1: The parameters m are mapped by the forward operator from parameter space
P to data space D. Our aim is to obtain an inverse operator F that maps the observed
data d back to the parameter space Pe. In some sense regularization can be used to modify
this space Pe so that nonphysical or unlikely solutions are excluded. Figure from [4]

found as a process involving many steps, resulting in an approximation F (d) = me. The
estimated parameters me are included in the parameter space Pe, that is the attainable
parameter space for data d from D. In our work F is regarded as a process more than an
operator, where the process involves utilizing different techniques for obtaining me.

Before we present this estimation process, we modify our problem slightly. For the
CSEM problem both the parameters and observations are finite sets. The observations
consist of measurements of the electric and magnetic field components at the receivers at a
given time. By discretizing the reservoir, the parameters becomes the electric conductivities
in the Ng grid cells in the computational grid. The observations can thus be represented
as a vector d. The discrete representation of the model parameters is denoted by m(r; a).
The general mathematical model (2.1) can therefore be rewritten as a system of equations,

G(m(r; a)) = d. (2.3)

Here G(m(r; a)) is a vector of length Nd, and a are the coefficients in the discrete param-
eterization. Problem (2.3) is called a parameter estimation problem.

2.1 Solving an inverse problem

Upon solving an inverse problem, three issues should be considered. Those are the

• existence,
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• uniqueness, and

• stability,

of the attained solution. Because of the data contamination, we will not pursue an exact
solution, as it can not be identified. For problems where an exact solution exists and
we are looking for it, there might be numerous solutions besides m(r; a)true that exactly
satisfy G(m(r; a)) = dtrue. That is a matter of uniqueness. The third issue is the stability
of a solution. Computing a solution estimate to an inverse problem can be an extremely
unstable process, with respect to small changes in observed data. A small uncontrollable
change in noise contribution might lead to a great change in the estimated parameters.
Inverse problems with these described features are referred to as ill-posed problems [2].

As no exact solution estimate m(r; a)true can be found, our aim is to identify parameters
that are “sufficiently close” to the true parameters. To obtain such estimates, we use the
standard strategy involving the minimization problem

a = arg min
{a |m(r;a)∈Pe}

J(m(r; a)), (2.4)

where the objective function J(m(r; a)) is defined as

J(m(r; a)) = (d−G(m(r; a)))HC−1(d−G(m(r; a))) + αφ(m(r; a)). (2.5)

Here C is the covariance matrix for measurement errors, φ(m) is a general regularization
term with weight α, and H is the Hermitian operator as the calculations include com-
plex numbers. We replace the parameter estimation problem (2.3) with the minimization
problem (2.4). The idea is that a set of parameters that solve (2.4) will be a good ap-
proximation to the true parameters m(r; a)true. This process involving replacement of the
original problem with a minimization problem, is an example of regularization.

2.2 Regularization

Regularization is a collective term used to describe methods where we include a priori
information to reduce the set of attainable solutions Pe. It is a process where we change
the problem to a similar and better posed problem. Some solutions will be preferred to
others based on this a priori information. But assuming that the changes are reasonable,
we might produce an usable solution to an otherwise unsolvable problem.

Modifying our problem from the mathematical model (2.1) to the parameter estimation
problem (2.3), regularization is applied as we restrict the solution space. Our parameters
consist of the value of the electric conductivity at a number of spatial grid points in our
reservoir. The reservoir itself is by the continuum hypothesis1 considered a continuous
medium, however, so we are not solving the original problem, but an approximation.

1Any matter is discontinuous or discrete at microscopic scales. The continuum hypothesis states that
as long as the system under consideration is much larger than the mean free part of the molecules in the
system, it is possible to ignore the discrete molecular structure of the matter and replace it by a continuous
distribution, called a continuum [12]
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We note that φ(a) = φ(m(r; a)) is a different example of regularization presented in
the objective function (2.5). This regularization term can be chosen to favour different
types of solutions. One standard choice of φ(a) is known as Tikhonov regularization. It
is a widely used method applied to stabilize parameter estimation problems. If reliable a
priori knowledge exist it can be incorporated into the regularization term

φ(m(a)) = (m(a)−m(a)prior)
HC−1

prior(m(a)−m(a)prior), (2.6)

and penalize solutions that deviate from this prior model mprior. Here Cprior denote the
positive definite weighting matrix which in a Bayesian framework corresponds to the prior
covariance matrix of error in m(a)prior [5]. The better your prior model fits the true
solution, the more effective this regularization term is. If the prior model m(a)prior is
unreliable for some reason, however, and the weighting variable α ensures that the regu-
larization term φ(m(a)) is included when minimizing the objective function (2.5), there is
a risk of a solution that is significantly different from the true solution.

In this thesis, the estimated parameters solves the minimization problem (2.4), where
the objective function is defined as in equation (2.5) with the regularization term φ(a) = 0.
For a realistic situation, the number of parameters Ng is significantly higher than the num-
ber of data Nd. A high number of unknowns and restricted resolution power of the data,
enhance the impact of the prior model on the estimates, and gives a considerable risk of
obtaining an unstable estimation. To overcome this, and the fact that a high number of
unknowns is computational demanding, we suggest to regularize the problem by reparam-
eterization. We choose a low-dimensional representation of the model parameters m(a),
and seek to obtain a correspondence to the available data d. Such a reduced representation
will bias the solution, however, hence we seek a representation with a high flexibility with
respect to expected structures in m(a).



Chapter 3

Parameter representation and
adaptive refinement

For the CSEM problem we have some knowledge about the initial electric conductivity
distribution, as the reservoir is oil-filled. During secondary production, water is injected.
It will spread out in the reservoir creating a new, water-flooded, connected area, whose
shape we wish to monitor using EM signals. We assume that the electric conductivity
field mainly consists of two regions of nearly constant conductivity. Between these regions,
the conductivity changes rapidly. If we know the location of this area of rapid change, we
know the main characteristics of the whole domain. The data we measure, however, is not
sufficient to discover fine-scale variations of the separation front, but the reduced repre-
sentation will nevertheless represent the front as a rapid change in estimated conductivity.
We choose a reduced representation that meet these requirements, first presented by [6].

3.1 Composite parameter representation

The parameter function m(r; a), representing the time-lapse electric conductivity change
in the reservoir, is given as

m(r; a) = c1E1(I(r; a)) + c2E2(I(r; a)), (3.1)

where the interior function is denoted by I, Ej are the exterior functions and cj are called
the exterior coefficients for j = 1, 2. We assume the exterior coefficients to be known and
equal to the conductivity change in the water-flooded and oil-flooded areas of the reservoir
respectively.

3.1.1 Exterior functions

The exterior functions are given as smoothened Heaviside-like functions as follows;

E1(I) = H̃(I), E2(I) = 1− H̃(I), H̃(I) =
1

π
tan−1(I) +

1

2
, (3.2)

17
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where the functional value of tan−1(I) is in the range (−π/2, π/2). This representation
makes it possible to handle large and almost constant-valued regions, but also transition
regions in between, with a varying degree of smoothness. For a gentle ∇I(r; a) across
the zero isocontour of I(r; a), there will be a wide transition region between domains of
constant electric conductivity. From figure 3.1 it is clear that a more rapidly varying I(r; a)
will result in a narrower transition region.

(a) I(r) (b) E1(I(r)) (c) E2(I(r)) (d) m(r)

Figure 3.1: Figures showing the effects of steepness of I(r) across the zero isosurface, for
E1(I(r)),E2(I(r)) and m(r), for two different interior functions I(r) where r ∈ [0, 1], and
where coefficients c1 = 1 and c2 = 2.

3.1.2 Interior function

From the composite parameter representation (3.1), where we assume that the exterior
coefficients cj are known, the degrees of freedom in the estimation process are now related
to I(r; a). We represent the interior function by

I(r; a) =
Na∑
k=1

akθk(r), (3.3)

where the functions {θk}Na
k=1 denote a set of basis functions, {ak}Na

k=1 the associated interior
coefficients, and Na is the number of basis functions. Note that in order to find the model
parameter m, we must choose a set of basis functions and find the interior coefficients.
Before we proceed to consider these interior coefficients, we present the basis functions θk.

3.2 Basis functions

From the presentation of our parameter representation (3.1) it is clear that the shape of
the interior function I(r; a), and thus the basis functions θk, play an important role in
the estimation process. The basis functions should be able to represent the structures we
expect to be present in the reservoir. In our work we consider two types of basis functions.
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3.2.1 Trilinear basis functions

Consider the computational grid with Ng cells. For trilinear basis functions (TBFs), the
cells in the computational grid are partitioned into a coarser parameterization grid. Each
cell in the parameterization grid consists of one or more cells from the computational grid.
For each vertex in the parameterization grid, there is a TBF with its center in it. A TBF
has value one in its center, and value zero in any other vertex. The shape of a TBF is, as
the name suggests, linear. The set of TBFs provides a continuous representation of I(r; a).

For a parameterization grid with only one cell, in which the entire computational grid
is embedded, eight basis functions exist, see Figure 3.2. Each basis function has center in
one of the eight vertices. If the parameterization grid has more than eight cells the trilinear
basis functions has local support, as each vertex has at most eight adjacent cells.

Figure 3.2: A reference parameterization cell, and the eight trilinear basis functions {θk}8
k=1

with support on this cell, Dr = [0, 1]× [0, 1]× [0, 1], and corresponding interior coefficients,
{ak}8

k=1.

3.2.2 Radial basis functions

A radial basis function (RBF) is characterised by that its value in any point r is given as a
function of the distance from that point to the center rk, see figure 3.3. We use a Gaussian
type1 RBF

θk(r) = exp
(
− 1

2σ2
k

(r− rk)
2
)
, k = 1, 2, . . . , Na (3.4)

where σk is a shape parameter 2, corresponding to the standard deviation in this case. An
RBF has global support, so is applies to the computational grid where the value of an RBF
in a cell depends on the distance from the cell to the RBF’s center. For the TBF it is the
partitioning of the computational grid that restricts what functions you can approximate.

1Gaussian RBFs are on the form ρ(r) = exp(−[εr]2).
2Note that the shape parameter σk not is related to the model parameters σ (electric conductivity).
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For RBFs the shape parameters σk and center location rk determine what forms can be
approximated on the computational grid.

Figure 3.3: A radial basis function with center r = (0, 0, 0) and shape parameter σ = 1.

3.3 Multi-level estimation strategy

Now consider the interior coefficients ak. For a reduced parameterization, Na is much
smaller than Ng. A coarse resolution will increase parameter sensitivity, and consequently
can stabilize the solution. It is also shown by [6] that for some inverse problems a coarse
representation reduce model nonlinearity. However, a coarse resolution might not have the
flexibility required to obtain the various structures of the solution. But as we know the
CSEM problem to have limited resolution power of the observed data, too many param-
eters will easily lead to over-parameterization or trapping us in a local minimum due to
nonuniqueness of the solution. For these reasons, finding the optimal set of basis functions
{θk}N

∗
a

k=1 with respect to center location and shape parameter, is imperative. This set can
not be known prior to the estimation process.

To meet the challenges described, we select a sequential multi-level estimation strategy
[7]. In this procedure, the resolution of the representation is found during the estimation
process. For a coarse initial representation at level s = 1, the coefficients ak are optimized
in order to minimize the objective function (2.5). If the solution criterion is met, the final
estimate is found. Otherwise, we continue to the next level, where we add one or more
basis functions to the existing set. The process of adding basis functions to the existing
representation in order to increase resolution, is known as a refinement process. With a new
representation, and an extended structure matrix, the coefficients are again optimized to
minimize the objective function. This whole process continues until the solution criterion
is met, or the maximum number of levels is exceeded, see Figure 3.4.

The refinement process is presented next, while the optimization process follows in
Chapter 4.
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Figure 3.4: The multi-level estimation strategy

(a) (b) (c) (d)

Figure 3.5: An illustration of the effects on a basis function due to refinement. For a TBF
θT in figure (a) and (b) refinement might lead to a decrease in domain of support(shaded
area). For an RBF θR as in figure (c) and (d) there is no change, as RBFs are global.
Figure (a) and (b) are also examples of the higher increase in coefficients associated with
TBFs than RBFs.

3.4 Adaptive refinement and selection measure

Finding an efficient rule for refinement is not trivial. We need a set of guidelines to aid us in
the execution of this successive increase of basis functions. One straight-forward rule is to
apply regular refinement, which means that basis functions are added so that the resolution
increases but remains constant throughout the computational grid. Adaptive refinement is
an alternative refinement strategy, which enables us to increase the resolution in sensitive
areas, while keeping a low resolution in the non-sensitive areas.

Refinement was presented as including basis functions to an existing parameterization.
The refinement process is different for the two types of basis functions. For TBFs, a new
basis function can only arise as a result of subdivision of the parameterization grid, for
which at least one more cell is created. In two dimensions this corresponds to including
one or more lines, see Figure 3.5. By adding new lines, we create a basis function not
only in each new grid node, but we also affect the support of the “old” basis functions.
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As the “steepness” of TBFs are determined by the support of the function, the structure
matrix Θ has to be calculated for each refinement candidate in the refinement process.
For RBFs, a new basis function can be included in any location with any shape parameter
value, without affecting the existing basis functions. Thus the only change for the structure
matrix is the extra basis vector(s) corresponding to the new basis function(s).

(a) (b)

(c) (d)

Figure 3.6: Two-dimensional examples of regular and adaptive refinement. Figure (a) and
(b) shows examples of regular and adaptive refinement with TBFs, whilst (c) and (d) shows
the same for RBFs.

Having addressed the differences between TBFs and RBFs in the refinement process,
we consider the differences regarding regular and adaptive refinement. Regular refinement
ensure a parameter estimation m(r; a) for which the resolution is constant over the entire
domain, see Figures 3.6a and 3.6c. This leads to an exponential growth in the number
of interior coefficients. This strategy might lead to over-parameterization, and we might
obtain an unstable solution.

We assumed that the electric conductivity is more or less constant for the different
regions in our domain. The adaptive refinement strategy allows us to increase the resolution
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in areas where we expect a change in the electric conductivity, without having to increase
the resolution in areas where only a few basis functions are needed. The difference between
the two refinement strategies is illustrated in Figure 3.6. It is clear that the use of RBFs
can be more conservative compared to TBFs, as TBFs might include basis functions in
non-sensitive areas due to “crossing lines”. We proceed to present a multi-level estimation
strategy with adaptive refinement for RBFs. The use of TBFs in the same process is
presented by [7].

Assume that the optimization at level s is finished without fulfilling the solution crite-
rion, and we consider the refinement process at level s+1. A large number of basis functions
or refinement candidates, can be added. By combining two or more such basis functions,
new potential candidates are created, and can be added to the existing representation.

To avoid over-parameterization, we impose a maximum number of added basis functions
at each level, ∆Nmax, such that the number of added basis functions ∆N is lower than the
maximum, ∆N ≤ ∆Nmax. We also assume that we have some parameterization candidates

{P l}Ll=1. Here P l = {{a}N
l
a

j=1, {θ}
N l

a
j=1}, where L is the total number of candidates, and N l

a

denotes the number of interior coefficients for candidate P l. Given a refinement candidate
P 1, how can we be sure that this is a refinement candidate we prefer over refinement
candidate P 2? For the adaptive refinement strategy to work, we need a selection measure
to choose between the different candidates. In this thesis, we consider two different selection
measures, predicted attainable objective function value and the steepness of the objective
function gradient. The predicted attainable objective function values is a 2. order strategy.
This is because it includes an approximation of the 2. order derivative of the objective
function. The steepness of the objective function gradient is a 1. order selection measure, as
it compares the gradient (first order derivative) of the objective function for the compared
candidates. We expect the 2. order selection measure to make better choices in the
refinement process, and thus result in better estimates compared to the 1. order selection
measure. The question is whether or not the 1. order measure can produce usable estimates,
compared to the estimates from the 2. order measure. The computational time associated
with the 1. order measure is negligible compared to that of the 2. order measure. Thus a
result indicating that the 1. order measure is sufficient would be of importance. The fact
that we do not expect any detailed information about the separation front reinforce the
hope that a 1. order selection measure can be used.

3.4.1 Predicted attainable objective function values

We group the refinement candidates {P l}Ll=1 into subsets {{P l
W}

LW
l=1}∆Nmax

W=1 , according to the
number of basis functions added. For the candidate P l

W , we associate a predicted attainable
objective function value J̃(P l

W ). This value is an approximation to minal
W
J(P l

W ), that
follows from linearization of the model output;

J̃(P l
W )

∆
= min

al
W

(d− L(G(alW )))HC−1(d− L(G(alW ))), (3.5)
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where G(a) = G(m(r; a)) and the linearization operator is L(G(alW ))
∆
= G(al,IW )+SW (alW−

al,IW ). Here al,IW denotes the initial estimate of alW at the start of level s+ 1 and SW denotes
the sensitivity matrix of G(alW ) evaluated at al,IW . Observe that the right hand side of
approximation (3.5) is quadratic with respect to alW . The minimizer al

∗
W is found to be

al
∗

W = al,IW + (SHWC−1SW )−1SHWC−1(d−G(al,IW )). (3.6)

When we insert the minimizer (3.6) into equation (3.5), we obtain the predicted attainable
objective function value

J̃(P l
W ) = (d−G(al,IW ))H(C−1 − [C−1SW (SHWC−1SW )−1SHWC−1])(d−G(al,IW )). (3.7)

Let P l∗
W be the parameterization within subset {P l

W}W with the lowest associated value of
J̃ . Then J̃(P l∗

W+1) ≤ J̃(P l∗
W ) follows from the fact that PW+1 is in a larger solution space

than PW . Thus, in a sense, it is always advantageous to include more basis functions. On
the other hand, we need the improvement on the predicted attainable objective function
value to be significant. We do not choose PW+1 over PW if

J̃(P l∗

W+1) + ς̃(P l∗

W+1) ≥ J̃(P l∗

W ) (3.8)

where

ς̃(P l
W ) =

√
4J̃(P l

W )− 2(Nd −N l
a). (3.9)

The selected parameterization P l∗
W will then be the lowest dimensional parameterization

that also satisfies the criterion (3.8).

3.4.2 Objective function gradient steepness

Predicting the attainable objective function values involves calculating the sensitivity ma-
trix. This is a computational demanding operation. Thus the number of potential candi-
dates we consider for refinement is restricted. We now present a method where the actual
calculation of the sensitivity matrix is not needed, and thus allows us to evaluate more
candidates. Our aim is still to discover the potential each basis function has in reducing
the objective function, and then to choose the one(s) with the best potential.

Let

∇aJ =

(
∂J

∂a1

, . . . ,
∂J

∂aNa

)T
(3.10)

denote the coarse-scale gradient of the objective function, that is the gradient with respect
to the interior coefficients. Further, let

∇IJ =

(
∂J

∂I1

, . . . ,
∂J

∂INg

)T
(3.11)
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Figure 3.7: The partial derivative
∂m/∂I given positive or negative
constant(c1 − c2). It displays that the
amount of change in m(r) per change
in I(r) depends strongly on the value
of the interior function.

denote the fine-scale gradient of the objective function with respect to the interior function
in each grid cell. For our composite representation (3.1) the relation between the coarse-
and fine-scale gradient is given as

∇aJ = Θ ∇IJ, (3.12)

= [θ1, θ2, . . . , θNa ]T ∇IJ,

(3.13)

where Θ is the Na×Ng structure matrix. Relation (3.12) is found with the use of the chain
rule for functions of several variables [4]. An element of the coarse-scale gradient can be
written as

∂J

∂ak
=
∂J

∂m

∂m

∂I

∂I

∂ak
. (3.14)

Here
∂m

∂I
= (c1 − c2)

1

π(1 + I2)
(3.15)

and
∂I

∂ak
= θk. (3.16)

Consider the partial derivative (3.15). It contains information of the amount of change in
model parameters m(r; a) per change in the interior function I(r; a). From the composite
representation (3.1) we know that, unless I(r; a) is close to zero, there is not much change
in m(r; a), even for a considerable change in I. This is illustrated in figure 3.7.

Consider again the relation between the fine-scale and coarse-scale gradients (3.12). The
fine-scale gradients ∇IJ are generally computational demanding to calculate, but they are
independent of the reduced representation. This observation allows us to calculate it only
once per level. Given the fine-scale gradient, we only need the partial derivative (3.16) to
obtain the coarse-scale gradient ∇aJ , and this is found to be exactly the structure vector
θk for the given coefficient, which is known to us.

We know the coarse-scale gradient, and we can use it as a refinement selection measure.
Consider the norm of the coarse-scale gradient, ‖∇aJ(a)‖. The idea is that the basis
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function which results in the largest norm, will be located in the area where the objective
function has largest potential of decreasing. Let Θold be the structure matrix from the
previous level. The structure matrix on the new level will then be on the form Θnew =
[Θold, Θtest]. Correspondingly the norm of the coarse-scale gradient can be split in two
parts;

‖∇aJ(anew)‖ = ‖[∇aJ(aold)
T ,∇aJ(atest)

T ]‖. (3.17)

As ‖∇aJ(aold)‖ is equal for all parameterizations, we need to find the basis functions that
gives the largest ‖∇aJ(atest)‖. If we consider one basis function at the time, the basis
function with the largest |∂J/∂atest| is chosen. In the case where you want to add more
basis functions at each level, it is common either to add the two or three basis functions
with the highest norm, or add all basis functions for which |∂J/∂a| is within 95% of the
highest value. The drawback with this strategy is that once you choose one basis function,
the resolution is no longer as on the previous level. Thus the sensitivities will change, and
the second best basis function is perhaps no longer the best of the remaining potential
basis functions. Consider the case where all potential basis functions are duplicated, and
the duplications also considered as basis functions. Then the two best basis functions
with respect to the value of the norm are identical. But once one of them is included in
the representation the duplication will at best have no effect, and might even lead to an
unstable estimate. In our work we only consider the case where one basis function is added
at the time.

We mentioned earlier that the fine-scale gradient ∇IJ has to be calculated once per
level. As ∂m/∂I is known, the remaining partial derivative is the change in objective
function value per change in electric conductivity ∇mJ . This expression is obtained from
the objective function 2.5 directly:

∇mJ = F∗mR, (3.18)

where R = C−1(G(m(r; a)) − d) is the residual vector and C−1 is the weighting matrix
of the data. Fm is known as the Frechet derivative matrix, or the sensitivity matrix. The
preceding section presents a method where the sensitivity matrix is found explicitly. In
the sensitivity matrix is known, a simple matrix-gradient multiplication with the residual
vector would provide us with the exact gradient. However, as this is just as computa-
tional demanding as the 2. order method, we propose a different method to obtain an
approximated “quick” gradient, called quasi-analytical (QA) approach. The QA approach
is presented in Section 4.3.2.

3.4.3 The set of potential basis functions for refinement

The success of the adaptive refinement strategy is strongly dependent on the performance
of the set of potential refinement candidates. The 2. order selection measure can combine
basis functions to make new candidates, while the 1. order selection measure considers
only single basis functions. However, for both measures the set of potential basis functions
is of fundamental importance. The characteristics of a radial basis function is the shape



3.5. Scaling of basis functions 27

Figure 3.8: The location and shape
of potential basis functions: We have
three different values for the shape pa-
rameter σ of the basis functions. No
basis function is placed at the bound-
ary. The black dots mark the loca-
tion of a basis function with the largest
shape parameter. Basis functions with
the two smallest shape parameter val-
ues are placed in each vertex, includ-
ing the ones where there already is
an overlap with a basis function with
large shape parameter.

parameter σk and the center location rk. Thus we need a strategy for how these character-
istics are varied and combined to make a set with a conservative number of RBFs which
represent a broad range of shapes in the solution. For the two-dimensional computational
grid with 96 × 96 grid cells, we choose 7 potential centers for the RBFs in the x- and
y-direction. Thus we have a 7 × 7 grid of potential centers rk. For the three dimensional
computational grid of size 48 × 48 × 5 we choose a 7 × 7 × 5 grid of potential centers rk.
In all examples we exclude centers on the boundary in the x- and y-direction.

Regarding the shape parameter σk we should keep in mind that we do not know the
shape of the separation front, and thus should be able to represent both large and tiny
areas of changing electric conductivity. From the literature regarding the use of RBFs in
function interpolation, we have found some general formulas for how the shape parameters
can be determined. We have not, however, found anything regarding the use of RBFs in
parameter representation in inverse problems. Inspired by some of the formulas from the
interpolation-theory, and some trial and error with different shape parameters, we end up
with three different shape parameters. One of the shape parameter values is chosen to
be the total number of computational grid cells in on direction, divided by the number of
potential basis function centers in that direction. The two other shape parameter values
are created by multiplying or dividing by

√
2 respectively.

By combining the center locations and shape parameter we obtain a set of 123 potential
basis functions for both selection measures, shown in figure 3.8.

3.5 Scaling of basis functions

From the relation between the fine-scale gradient and the coarse-scale gradient (3.12), the
coarse-scale gradient can be viewed as a weighted sum of the fine-scale gradient. The
weighting is determined by the structure matrix Θ. As the coarse-scale gradient is used in
the refinement process for the 1. order selection measure, the “structure” of the structure
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(a) (b)

(c) (d)

Figure 3.9: Figures (a) and (c) shows a wide radial basis function φ1 scaled by the max-
norm, on two domains with different sensitivities ∂J/∂I. Figures (b) and (c) shows the
same for a narrower radial basis function φ2, on the same domains. φk = φ(σk, rk) with
corresponding coefficient ak.

matrix has a direct effect when choosing a new parameterization.
Both the trilinear basis functions and the radial basis functions has a maximum value

θk = 1 at their center. If we scale the basis functions, will this affect the coarse-scale
gradient and thus the choices made in the refinement process? The answer is yes. In fact,
we already applied scaling to these basis functions. Consider the formula 3.4 for the radial
basis functions, with a slight modification;

φk(r) =
1

λk
exp
(
− 1

2σ2
k

(r− rk)
2
)

=
1

λk
θk(r), (3.19)

where λk is a scaling coefficient. Let λk be the max-norm

λk = max
r
|θk(r)|. (3.20)

Thus the scaled basis function 3.19 with the scaling given by equation 3.20 (λk = 1) is the
same basis function as 3.4. In that sense, the radial basis functions as we presented them
are scaled by the max-norm. Consider the case illustrated in Figure 3.9. Let φk = φk(r)
be a radial basis function with center rk, shape parameter σk and corresponding coefficient
ak, where k = 1, 2. In the situation on (a) and (b), the weighted sum |∇akJ | will be
larger for function φ1 than for φ2, thus φ1 will be preferred. This is a desired outcome,
as the sensitivity is high throughout the domain. However, in the situation in (c) and
(d), the sensitivity is concentrated in the center interval, thus the narrowest function φ2

should be preferred. But as in the first situation, |∇a1J | is larger than |∇a2J |, and thus
φ1 is chosen. We therefore conclude that for basis functions scaled by the max-norm the
1. order selection measure will prefer wide basis functions, even in situations where it is
clearly not the best choice.
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(a) (b)

(c) (d)

Figure 3.10: Figures (a) and (c) shows a wide radial basis function φ1 scaled by the L1-
norm, on two domains with different sensitivities ∂J/∂I. Figures (b) and (c) shows the
same for a narrower radial basis function φ2, on the same domains. φk = φ(σk, rk) with
corresponding coefficient ak.

Consider an alternative scaling, the L1-norm:

λk =
∑
r

|θk(r)|. (3.21)

We scale the new radial basis functions with the sum of the absolute values of the basis
functions for all grid cells. This will ensure that a wide basis function as in figure 3.9 is
not preferred over a narrow basis function, when they cover the same areas of sensitivity.
Consider Figure 3.10, (a) and (b). As φ1 and φ2 are scaled with the L1-norm, the weighted
sum |∇a2J | is larger than |∇a1J |, and φ2 will be preferred as a new basis function. This
is the best choice, but for (c) and (d), the situation is different. Because of a wider
sensitivity domain, we would prefer the wide basis function φ1, but as the weighted sum
|∇a2J | dominates, φ2 is chosen.

Clearly none of these two norms are perfect, in the sense that we came up with simple
problems for which both scaling factors favour the “wrong” basis function. In a case where
both basis functions cover the area of most interest, the max-norm favours wide basis
functions, while the L1-norm as a scaling factor favours narrow basis functions.

As the L1-norm and the max-norm are extreme norms in a certain sense, see Figure
3.11, we know of other norms that could perhaps result in better choices. The Lp-norms
are obvious choices, defined as

λk =

[∑
r

θk(r)p

]1/p

, p = 1, 2, 3, . . . . (3.22)

In fact, any norm would suffice as scaling factor, but we limit ourselves to compare the
L1-, L2- and max-norm in several numerical examples, see also comment in Chapter 5.
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Figure 3.11: Unit balls in R2 for different norms. From center and outwards: L1-norm,
L2-norm, Lp-norm and max-norm. The Lp-norm is shown with a dashed line as its shape
depends on the value of p.



Chapter 4

Optimization and sensitivity
calculations

Chapter 3 presented the parameter representation, the multi-level strategy, and different
methods for refinement. In this chapter we consider the two remaining subjects that were
sketched in Figure 3.4; the optimization process and the termination criterion. We also
consider the sensitivity matrix calculations, and present the quasi-analytical approximation
involved in the 1. order selection measure.

4.1 Optimization

We have a set of coefficients {ak}Na

k=1 from which we wish to recreate the observations

{dj}Nd

j=1. The coefficients and the data are related by the nonlinear system of equations
(2.3) and the composite parameter representation (3.1). Our goal is to find coefficients
whose output G(m(r; a)) best fit the data d. This is done by finding the interior coefficients
that minimize the objective function J(m(r; a)) from equation (2.5). As mentioned we set
the regularization term φ(m(r; a)) to zero, and for simplicity, let J(a) = J(m(r; a)) and
Jh = J(m(r; ah)).

We start out with a set of initial coefficients a0, and use the optimization routine to
generate a sequence of iterates {ah}∞h=1, and then terminate when a solution criterion has
been met or there has been no update in objective function value. To generate the iterate
ah+1, the optimization routine may use information from the previous iterates, ah, or
even earlier iterates a0, a1, . . . , ah−1. In general, all new iterates will result in a decreased
objective function value, J(ah+1) < J(ah). Before we present our optimization routine, we
consider the two fundamental strategies for choosing new iterates.

For a line-search strategy, the routine chooses a direction qh, and search along this
direction to find a new iterate

ah+1 = ah + αqh. (4.1)
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The step length is chosen by approximately solving the minimization problem

min
α > 0

J(ah + αqh). (4.2)

Equation (4.2) can be solved exactly, but due to computational costs it is common to do
some trial steps, and choose an approximation to this minimizer. The process is repeated
until it terminates.

The thrust-region strategy collects information about the objective function in order
to make a model function ph that approximates the behaviour of the objective function J
in the vicinity of the previous iterate ah. Both elliptic, box-shaped and spherical thrust
regions can be used. We consider a spherical thrust region. This region is defined by a
radius ∆ > 0, and within it we find the best minimizing iterate ah + q, that is we solve
the minimization problem

min
q
ph(m(r; ah + q)) ‖q‖ < ∆. (4.3)

If the candidate q does not produce sufficient decrease in J , we shrink the thrust region,
and re-solve the minimization problem.

One way to describe the difference between these two methods is to say that while the
line-search method chooses the direction first, and the find the step length, the thrust-
region determines the maximum “distance” ∆ first, and then decides on the direction and
actual step length. If this is unsatisfactory, we reduce the distance measure ∆, and try
again [16].

We use the Levenberg-Marquardt method as our optimization routine. It is a thrust-
region strategy, but in order to describe it, we start out with the outline of a line-search
method, the Gauss-Newton method.

4.1.1 The Gauss-Newton method

We wish to minimize the objective function J(a). Assume that the coefficients can be
written as a = a0 + ∆a, where a0 is some initial guess. If J is twice differentiable, its
Taylor series expansion is

J(a0 + ∆a) ≈ J0 + (∇J0)T∆a +
1

2
∆aT (∇2J0)∆a (4.4)

where
∇J0 = (∂J0/∂a1, . . . , ∂J0/∂aNd

)T , (4.5)

and ∇2J0 is the Hessian matrix

∇2J0 =


∂2J0
∂a21

· · · ∂2J0
∂a1∂aNd

...
. . .

...
∂2J0

∂aNd
∂a1

· · · ∂2J0
∂a2Nd

 . (4.6)
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Let a∗ be the minimizer for J . Thus ∇J(a∗) = 0. By Taylor expansion around a∗, it
follows that

∇J(a∗) = ∇J(a0 + ∆a) ≈ ∇J0 +∇2J0∆a. (4.7)

As the approximate gradient in this equation is zero, we rearrange it and obtain

∇2J0∆a = −∇J0. (4.8)

The arbitrary initial guess a0 is replaced by a coefficient at a general step h, ah, and
equation (4.8) may be written as;

∇2Jh∆a = −∇Jh. (4.9)

The iterative method
ah+1 = ah + ∆a, (4.10)

where ∆a is given by (4.9), is known as the Newtons method for minimizing function J(a).
Next, rewrite the objective function (2.5) as

J =

Nd∑
j=1

Rj(m(r; a))2, (4.11)

where the Rj is referred to as the residuals. The residuals form the vector R(a) =
R(m(r; a));

R(a) = (R1(m(r; a)), R2(m(r; a)), . . . , RNd
(m(r; a)))T . (4.12)

Here

Rj(m(r; a)) =
G(m(r; a))j − dj

γj
j = 1, 2, . . . , Nd, (4.13)

where γj is the standard deviation in measurement j. We now collect the derivatives of
J(a) in the Nd ×Ng Jacobian matrix S(m(r; a)) of partial derivatives:

S(m(r; a)) =

[
∂Rj

∂mi

]
j=1,2,...,Nd
i=1,2,...,Ng

. (4.14)

Let S = S(m(r; a)) and Sh = S(m(r; ah)). The gradient∇J(a) and Hessian matrix∇2J(a)
of the objective function are given by

∇J(a) = 2

Nd∑
j=1

Rj(m(r; a))∇Rj(m(r; a)) = SHR(m(r; a)), (4.15)

∇2J(a) = 2

(
Nd∑
j=1

∇Rj(m(r; a))∇Rj(m(r; a))H +

Nd∑
j=1

Rj(m(r; a))∇2Rj(m(r; a))

)

= 2STS + 2

Nd∑
j=1

Rj(m(r; a))∇2Rj(m(r; a)). (4.16)
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We ignore the second term in the Hessian matrix, by assuming near-linearity of the model
near the solution (small ∇Rj(m(r; a))), or small residuals Rj(m(r; a)). Thus the approx-
imated Hessian matrix includes only the first term of the exact Hessian matrix (4.16),
which is the matrix product of the Jacobian with itself, an consequently can be calculated
explicitly for our problem. Insert equation (4.15) and (4.16) into (4.9) for a step h and
obtain

SHh Sh∆a = −SHh R(ah), (4.17)

and then solve the system of equations (4.17) and insert for ∆a in the iterative step (4.10)
to obtain the Gauss-Newton method.

4.1.2 The Levenberg-Marquardt method

One weakness with the Gauss-Newton method is its performance when the Jacobian matrix
S is rank-deficient. Replacing the line-search strategy with a thrust-region strategy may
increase the performance in that situation. We still ignore the second term in the Hessian
matrix (4.16), of the same reason as above.

We must reformulate our problem to accommodate a thrust-region method. Our new
minimization problem is

min
q

1

2
‖Shq + R(ah)‖2

2 ‖q‖ < ∆h, (4.18)

rather then minimizing the objective function J , which is equivalent to a model function
ph given as

ph(q) =
1

2
‖R(ah)‖2 + qTSThR(ah) +

1

2
qTSThShq. (4.19)

For simplicity we suppress the iteration counter h. From [15] we know that when a solution
to the Gauss-Newton equations (4.17) lies strictly inside the thrust region, it also solves
the thrust-region problem (4.18), and if that is not the case, there exists a λ > 0 such that
q = qLM satisfies ‖q‖ = ∆, and(

STS + λI
)
q = −STR(a). (4.20)

This is known as the Levenberg-Marquardt method [16].

4.2 Termination criterion

The multi-level strategy needs a termination criterion. As the measurements contain noise
that we cannot exclude from the calculations, we need a target value for the objective
function for which to terminate when reached. We assume the measurements error to be
normally distributed, and that G(P l) is close to linear in the region around the minimiser
of J(P l). Remember that P l is a parameterization candidate, defined in Section 3.4. The
minimum value of the objective function at the solution of the inverse problem J∗(P l) is
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then χ2-distributed, with Nd−Na degrees of freedom. From the theory of χ2-distributions
we know that

E(J∗(P l)) = Nd −Na (4.21)

ζ(J∗(P l)) =
√

2(Nd −Na) (4.22)

where E is the expectation value and ζ the standard deviation. In our work the termination
criterion is set to be the expectation value plus one standard deviation,

J(P l) < Nd −Na +
√

2(Nd −Na). (4.23)

4.3 Sensitivity matrix

The sensitivity matrix plays an important role in this thesis. The 2. order selection measure
presented in Section 3.4.1 need it to estimate how sensitive the model output is to the
interior coefficients. The Levenberg-Marquardt method uses it in the optimization process.
In this section we will derive the sensitivity matrix for the IE method presented in Section
1.4.

Recall that {(G(m(r; a)))j}Nd
j=1 and {ak}Na

k=1 are model output and interior coefficients
respectively. Let F denote both E and H, so that G(m(r; a)) = ∆F(r). Upon solving
Maxwell’s equations (1.9) - (1.12), we consider the expression for the time-lapse signal F:

∆F =

∫
D

GFσan+1(Ea
n+1 + Eb

n+1)dV −
∫
D

GFσan(Ea
n + Eb

n)dV

=

∫
D

GF [σan+1(Ea
n+1 + Eb

n+1)− σan(Ea
n + Eb

n)]dV

=

∫
D

GF [σan(Ea
n+1 + Ea

n)−∆σ(Ea
n+1 + Eb)]dV. (4.24)

We used that Eb
n+1 = Eb

n = Eb, as the background electric field component is constant.
We also inserted for the electric conductivity σan+1 = σan + ∆σ. The subscript n refers to a
survey at time t, and subscript n+ 1 refers to a survey conducted at a time t+ ∆t.

The expression for sensitivity of time-lapse signal with respect to time-lapse conduc-
tivity is now given as

∂∆F

∂∆σ
=

∂

∂∆σ

∫
D

GF [σan(Ea
n+1 + Ea

n)−∆σ(Ea
n+1 + Eb)]dV

=

∫
D

GF [σan
∂

∂∆σ
(Ea

n+1 + Ea
n)− ∂

∂∆σ
(∆σ(Ea

n+1 + Eb))]dV

=

∫
D

GF [σan
∂(Ea

n+1 + Ea
n)

∂∆σ
− (Ea

n+1 + Eb)−
∂Ea

n+1

∂∆σ
]dV

=

∫
D

GF [(σan + ∆σ)
∂(Ea

n+1 − Ea
n)

∂∆σ
+ (Ea

n+1 + Eb)]dV, (4.25)
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where we have used that ∂Eb
n/∂∆σ = 0, ∂Ea

n/∂∆σ = 0 and inserted for ∂Ea
n+1/∂∆σ =

∂(Ea
n+1−Ea

n)/∂∆σ. The expression (4.25) is in fact the general sensitivity matrix, ∂∆F/∂∆σ.
Given our composite representation (3.1), we let ∆σ = m(r; a) to obtain

∂∆F

∂ak
=

∫
D

GF [(σan +m(r; a))
∂(Ea

n+1 − Ea
n)

∂ak
+ (Ea

n+1 + Eb)
∂m(r; a)

∂ak
]dV. (4.26)

Recall from Section 3.4.2, that the partial derivative ∂m/∂ak can be found from the iden-
tities

∂m

∂I
= (c1 − c2)

1

π(1 + I2)
, and

∂I

∂ak
= θk. (4.27)

so that we are able to calculate each term in the sensitivity matrix (4.26).

4.3.1 Numerical calculation of the sensitivity matrix

We found an expression for the sensitivity matrix through equation (4.26) above. The
Green’s tensors and En+1 are available from the forward simulations, and ∂m(r; a)/∂ak
can be found by matrix multiplication. The computationally demanding part is to find
∂(Ea

n+1 − Ea
n)/∂ak within D [7].

Let Ŝ be the 3Ng ×Na sensitivity matrix,

Ŝ = [s1, s2, . . . , sNa ] , (4.28)

where each sk is a 3Ng × 1 column vector with entries ∂(ean+1 − ean)/∂ak, and ea is given
as a numerical discretization of Ea as defined by equation (1.16). Consider F = E, and let
vk be a 3Ng × 1 column vector defined as

vk = [Ex,1
∂m1

∂ak
. . . Ex,Ng

∂mNg

∂ak
,

Ey,1
∂m1

∂ak
. . . Ey,Ng

∂mNg

∂ak
, Ez,1

∂m1

∂ak
. . . Ez,Ng

∂mNg

∂ak
]T . (4.29)

Finally remember ĜD as defined in Section 1.5. Then the sensitivity matrix (4.26) can be
written as

sk = ĜD(Σa
n+1sk + vk), k = 1, 2, . . . , Na. (4.30)

Rearrange to get

(I− ĜDΣa
n+1)sk = ĜDvk, k = 1, 2, . . . , Na, (4.31)

hence the 3Ng × 3Ng coefficient matrix A = I − ĜDΣa
n+1 from the discretized Fredholm

integral equation (1.19) appears, and we write our system as

Ask = ĜDvk k = 1, 2, . . . , Na. (4.32)
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This enables us to consider the sensitivity calculations during the forward calculations. For
solving equations (4.32), we utilize the BICGSTAB method with preconditioning (Section
1.5). The extra calculations will increase the costs with about 20% of a forward simulation,
for each sensitivity coefficient [7]. Thus the computational cost increase rapidly with the
number of coefficients in the representation.

4.3.2 Quasi-analytical approximation

We now present the QA approximations associated with the 1.order selection measure.
Recall the Integral Equation solution 1.10 for the anomalous part of the electric field:

Ea(r′) =

∫
Ω

GE(r′|r)σa(r)(Eb(r) + Ea(r))dV. (4.33)

The quasi-analytical approximation as presented by [18] is based on the assumption that the
anomalous field Ea inside the anomalous domain is linearly proportional to the background
field through some tensor Q̂;

Ea(r) ≈ Q̂(r)Eb(r). (4.34)

Substituting the approximation (4.34) into equation (4.33), we obtain

Ea(r′) =

∫
Ω

GE(r′|r)σa(r)(I + Q̂(r))Eb(r)dV, (4.35)

where I is the identity tensor. So far we have presented what is known as the quasi-linear
(QL) approximation. If we further assume the tensor to be a scalar one,

Q̂ = QI, (4.36)

then the anomalous field can be written as

Q(r)Eb(r′) =

∫
Ω

GE(r′|r)σa(r)(1 +Q(r))Eb(r)dV. (4.37)

For a slowly varying Q(r) in D, it can be moved outside the integration

Q(r)Eb(r) ≈ (1 +Q(r))EB(r), (4.38)

where EB(r) denotes the Born approximation:

EB(r′) =

∫
Ω

GE(r′|r)σa(r)Eb(r)dV. (4.39)

Multiply with the complex conjugate of Eb on both sides of equation 4.38 to obtain

Q(r)Eb(r) · Eb∗(r) ≈ (1 +Q(r))EB(r) · eb∗, (4.40)
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from which we obtain an expression for Q(r):

Q(r) =
g(r)

1− g(r)
. (4.41)

where

g(r) =
EB(r) · Eb∗(r)

Eb(r) · Eb∗(r)
. (4.42)

Substituting the expression (4.41) into Equation (4.35), we finally determine

Ea
QA(r′) =

∫
Ω

GE(r′|r)
σa(r)

1− g(r)
Eb(r)dV. (4.43)

Note that this QA approximation is similar to the Born approximation (4.39) apart from the
scalar function (1− g(r))−1. The computational cost of generating the QA approximation
and the Born approximation is practically the same, and negligible compared to the full
IE forward solver. We use this QA approximation to obtain an approximated sensitivity
matrix, and solve the system (3.18) with an adjoint method.
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Numerical examples

The theory presented in previous chapters will now be employed in several numerical
examples. In the examples we consider identification of time-lapse electric conductivity
changes corresponding to saturation changes within oil reservoir structures from time-lapse
CSEM data.

The various example settings are presented in Section 5.1, followed by a discussion
regarding the effect of scaling of the basis functions follows, as well as the use of a multi-
level strategy. Our two main results involving the performance of radial basis functions,
and the introduction of a 1. order selection measure, are presented in Section 5.4 and 5.5
respectively.

The last section present the two main results, the performance of radial basis functions
(RBFs) in parameter representation in CSEM inversion, and the performance of a first
order selection measure in the refinement process.

5.1 Example setup

We use the forward solver based on [19, 11] for the forward simulations using equations on
(1.9) - (1.12). The background electric conductivity is set to σ = 3.33 S/m in the sea water
column, and σ = 1 S/m in the water saturated subsediments. The electric conductivity
of hydrocarbon-filled and water-filled areas of the reservoir is dependent on the value of
the interior function and the asymptotic values for the parameter representation. For the
hydrocarbon saturated parts of the reservoir the “target value” is σ = 0.001 S/m, whilst
the corresponding value for water-filled parts is σ = 1 S/m, just as for the water saturated
subsediments. The reservoir is located 1055 meters below the seafloor, and it covers the
volume D = {r |x ∈ [0, 2400], y ∈ [0, 2400], z ∈ [2020, 2120]} m3. The forward simulations
are made on the computational grid that was presented in Section 1.5.1.

The receivers are distributed at the seafloor, 995 meters below the surface. They
measure the field components Ex, Ey, Ez, Hx and Hy. The 100 meters long sources are
towed 40 meters above the seafloor. The fields are created by a current of 1000 A and
0.5 Hz frequency. We use two different setups for the sources and receivers, as presented
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(a) (b)

Figure 5.1: In setup (a) the 12 receivers are distributed in a line at y = 1200 meters,
from x = −1500 meters to x = 4000 meters, with an equidistance of 500 meters. The two
sources are located along the same line, at approximately x = −1000 meters and x = 3400
meters. For setup (b) we have two parallel lines with 12 receivers at y = 800 meters and
y = 1600 meters, with 500 meters between each receiver. Correspondingly there are four
sources, allocated along these lines, with the same distance to the reservoir as the sources
in setup (a).

in Figure 5.1.
For the examples in this thesis we include some Gaussian noise of 1% in the reference

conductivity field, to represent small variations in e.g. porosity or saturation. To represent
measurement error in the observations, we include 5% Gaussian noise.

We use the multi-level estimation strategy outlined in Section 3.3. If the solution
criterion is met, or if the objective function value does not improve in three successive
levels, the estimation process will be terminated.

5.2 Scaling of basis functions

Since there is a possibility of significant effect from scaling, as indicated in Section 3.5, we
include an investigation of the performance when using these different scalings. Due to
low sensitivity of the interior coefficients with respect to time-lapse variations, we seek a
representation with broad support. However, the representation should have the flexibility
to represent different structures. We include an example to illustrate some trends in our
results.

As Figure 5.2 shows, the basis functions scaled with the max-norm or the L2-norm
provide better results than when the L1-norm. We know employing the max-norm could
result in “wider” basis functions even though a “narrower” choice would lead to better
results, so we choose the L2-norm as a scaling factor for our basis functions.
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Figure 5.2: Top left to bottom right: Reference time-lapse conductivity field, initial time-
lapse conductivity, final time-lapse conductivity estimates for RBFs scaled with the max-
norm, L1-norm and L2-norm respectively, and objective function values versus number of
iterations for all choices of scalings. White points mark the center of each basis function.

5.3 A multi-level strategy compared to a one-level

strategy

We have chosen a multi-level strategy for solving the parameter estimation problem. This
strategy keeps the final number of basis functions Na unknown until the solution criterion
is met or the maximum number of levels is exceeded. Our aim is to find the Na basis
functions best suited to solve the problem. This is a combination of two aspects; Not only
do we seek the Na basis functions that best corresponds to the information content of the
available data, we need a suitable choice of basis functions with respect to center location
and shape parameters. The optimization routine seeks to obtain the best coefficient values,
given the parameterization.

In this section we compare the use of a multi-level strategy with a one-level strategy,
for which all potential basis functions, described in Section 3.4.3, are included in the
optimization. We include two figures to illustrate the results of the multi-level and one-
level strategies. Figure 5.3 shows the results when a setup as in Figure 5.1a is used. The
multi-level approach provides a better solution than the one-level approach, both for the
objective function value and the field estimate.

Figure 5.4 shows the results when more data is included. Here we use 4 sources and 144
receivers. The receivers are distributed in a 12 × 12 grid on the seafloor, and the sources
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Figure 5.3: Left to right: Reference time-lapse conductivity field, final time-lapse conduc-
tivity estimates for one-level strategy, final time-lapse conductivity estimates for multi-level
strategy, and objective function values versus number of iterations. White points mark the
center of each basis function.

Figure 5.4: Left to right: Reference time-lapse conductivity field, final time-lapse conduc-
tivity estimates for one-level strategy, final time-lapse conductivity estimates for multi-level
strategy, and objective function values versus number of iterations. White points mark the
center of each basis function.

placed on all four sides. The one-level strategy results in a visual conductivity estimate
nearly identical to the reference conductivity field, and it also meets the solution criterion.

Figures 5.3 and 5.4 show the importance of the quality of the data we consider for
inversion. They also show the importance of using an appropriate set of Na basis functions.
The choice of this set can generally not be determined before the inversion. The multi-level
strategy with its possibility to determine Na during the process, can be a robust alternative
to other strategies in inversion of CSEM observations.

5.4 Comparison of different basis functions in param-

eter representation

In this section, we compare the use of trilinear basis functions to radial basis functions in
parameter representation. We consider three examples, one of which is a three-dimensional
reservoir. This is included to show that our solution methodology works in three dimensions
as well as in two dimensions, and also to show that results obtained in two dimensional cases
can be generalized into three dimensions. For the adaptive refinement process, we use the
2. order selection measure as presented in Section 3.4.1. The initial guess consists of one
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Figure 5.5: The log-objective function values versus number of iterations, for both choices
of basis functions. The inverse problem solution criterion for the last level is indicated by a
horizontal line where the length corresponds to the number of iterations in the optimization
algorithm. A star marks the end of the optimization process at a given level.

basis function with center in the injection well. We consider two types of basis functions,
and the initial guesses are as similar as possible given the different parameterizations.
The effect of different initial guesses is not believed to have a decisive impact on the final
estimates, so we treat the basis functions equally in the comparison.

5.4.1 Example 1

In the first example, we consider a two-dimensional reservoir with a time-lapse conductivity
change illustrated in Figure 5.6. We distribute the sources and receivers as sketched in
Figure 5.1a.

Figure 5.5 shows the resulting objective function values at each iteration for different
levels. Both types of basis functions give a significantly improvement in the objective
function value from level s = 1 to s = 2. The TBFs provide a slight decrease in objective
function value from level s = 2 to level s = 3, but after that only minor improvements are
made in the remaining levels. This is illustrated in Figure 5.6. From s = 4 to s = 10 the
number of basis functions Na is increased from 25 to 64, without any visible change in the
conductivity field.

For the estimation process with RBFs, the refinement choice at level s = 3 results in
an objective function value close to the solution criterion. The refinement processes at
the final four levels do not result in any major improvement. Note that for the last three
levels, a total of three extra basis functions are added. This illustrates the larger increase
in number of coefficients for TBFs than for RBFs.

5.4.2 Example 2

For the second example, we consider a reservoir with a time-lapse conductivity change
shown in Figure 5.8, where sources and receivers are located as shown in Figure 5.1b.
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Trilinear basis functions:

Radial basis functions:

Figure 5.6: Top left to bottom right: Reference time-lapse conductivity field, initial time-
lapse conductivity field, and time-lapse conductivity estimates for trilinear and radial basis
functions respectively. The estimates are given at levels s = 2, 4, 10 for TBFs and at levels
s = 2, 3, 7 for RBFs. White points mark the center of each basis function.
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Figure 5.7: The log-objective function values versus number of iterations, for both choices
of basis functions. The inverse-problem solution criterion for the last level is indicated by
a horizontal line where the length corresponds to the number of iterations done by the
optimization algorithm.

With more information we expect the estimates to give a better visual agreement with
the reference conductivity fields. From Figure 5.8 we observe that both choices of basis
functions are easily detected in the final estimates. This is perhaps most conspicuous for
the TBFs. As the number of basis functions increases, the shapes of the TBFs are clearly
visible in the estimated conductivity field. For the RBFs the radial profile is also present,
but not as striking.

We prefer the visual estimate from the RBFs, and this choice is further motivated by
the objective function values shown in Figure 5.7. Here, the RBFs almost fulfill the solution
criterion, whilst the TBFs finishes at a higher value.



46 Chapter 5. Numerical examples

Trilinear basis functions:

Radial basis functions:

Figure 5.8: Top left to bottom right: Reference time-lapse conductivity field, initial time-
lapse conductivity field, and time-lapse conductivity estimates for trilinear and radial basis
functions respectively. The estimates are given at levels s = 2, 3, 10 for TBFs and s = 2, 3, 5
for RBFs. The white circles mark the center of each basis function.
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Figure 5.9: 3-D reference time-lapse conductivity field and isosurface for ∆σa = 0.5.

5.4.3 Example 3

We include a case with a three-dimensional reservoir with a time-lapse conductivity change
shown in Figure 5.9, both for the conductivity field and the isosurface for the change of
conductivity, ∆σa = 0.5. We use the setup as presented in Figure 5.1a. Figure 5.10
presents the estimated isosurfaces at some given levels for the TBFs and RBFs, and also
the final estimation of the conductivity field. The shape of the basis functions are evident
in the shape of the isosurfaces, but not as conspicuous as in 2-D. From the final estima-
tion of the reference field, we observe that both reflect the major shape of the reference
conductivity field. The values of the objective function further emphasize that these are
decent estimates.

5.4.4 Remarks

We conclude that the use of RBFs in parameter representation in the inversion of CSEM
observations provide useful estimates in the numerical examples we have considered. The
process of including an RBF in the parameterization does not result in any extra included
basis functions, so the use of RBFs keep the number of interior coefficients at a minimum.

The lack of hierarchical structure for the set of potential basis functions is the main
challenge we have experienced with RBFs. In our work, the set of basis functions for use
in the refinement process are chosen as presented in Section 3.4.3. The set of potential
basis functions has been evenly distributed throughout the reservoir. If prior information
suggest that the sensitivity will be higher in certain areas, we could increase the number
of potential basis functions in such areas, and only have a few potential basis functions in
areas of low sensitivity.

In the examples above the water-filled area made up 20 − 40% of the total area. No
comparisons has been made for cases with lesser amount of injected water. In our synthetic
examples we have prior information about the amount of injected water. In a situation
where the amount of water and oil in an reservoir is unknown, for example in exploration
surveys, the range of the shape parameters becomes more important than it already is. In
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Trilinear basis functions:

Radial basis functions:

Figure 5.10: Top left to bottom right: Initial time-lapse isosurface for ∆σa = 0.5, and
time-lapse isosurface for ∆σa = 0.5 for TBFs and RBFs respectively. The isosurfaces are
for levels s = 1, 2, 3, 9 for TBFs and levels s = 1, 2, 3, 10 for RBFs. Then a 3-D plot of the
time-lapse conductivity field estimate.
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Figure 5.11: The log-objective function values versus number of iterations, for both choices
of basis functions. The inverse-problem solution criterion for the last level is indicated by
a horizontal line where the length corresponds to the number of iterations done by the
optimization algorithm.

the case of 5 − 10% of water-flooded area, there is a need for RBFs with lower values of
the shape parameter, to be able to represent the water-flooded area.

We have not found a structure for such a hierarchical set of RBFs presented in the
literature.

5.5 Comparison of first order and second order selec-

tion measure

In the comparison of RBFs to TBFs, the refinement choices was based on the 2. order
selection measure presented in Section 3.4.1. We now compare the use of a 1. order
selection measure to the use of the 2. order measure. For completeness we consider two
different 1. order selection measures, both an exact gradient of the objective function, and
an approximated gradient of the objective function. These are described in Section 3.4.2.
The 2. order selection measure has a maximum number of three new basis functions at
each level, whilst the 1.order selection measures are only allowed to include one new basis
function at each level.

5.5.1 Example 4

Consider again the two-dimensional reservoir from the second example, and the sources
and receivers in Figure 5.1b.

In Figures 5.12 and 5.13, we observe that the 2. order selection measure results in a
better estimate than the two 1. order estimates, as expected. The exact gradient provide
a better objective function value than the approximated gradient.

Although the 2. order selection measure gives better results for this example, we can
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2. order selection measure:

1.order selection measure, exact gradient:

1. order selection measure, approximated gradient:

Figure 5.12: Top row left to right: Initial time-lapse conductivity field, time-lapse conduc-
tivity field for level s = 1, reference time-lapse conductivity field. These are common for all
three selection measures. Second row: 2. order selection measure at levels s = 2, 3, 5. Third
row: Exact 1.order selection measure at levels s = 2, 3, 10. Fourth row: 1.order selection
measure at levels s = 2, 6, 10. White points mark the center of each basis function.
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Figure 5.13: The log-objective function values versus number of iterations, for all choices
of selection measures.

not conclude that it is the most accurate yet. Remember from equation (3.12) for the
coarse-scale gradient ∇aJ , and that the computational demanding part was calculating the
fine-scale gradient ∇IJ . As the fine-scale gradient is the same regardless the number of
potential basis functions we consider, it only has to be calculated once. The cost associated
with testing the sensitivity for extra basis functions is related to the cost of obtaining
the structure matrix Θ and the extra costs in the matrix-gradient multiplication Θ∇IJ .
Will an extended potential solution space give better estimates, and can it provide better
estimates than the 2. order selection measure? We choose an extended set of potential
basis functions, where the basis functions are distributed in the 2-D computational grid in
a 17× 17 grid of potential basis functions. This way, the original potential basis functions
are still candidates in the refinement, and extras are included. The shape parameters are
the same as for the original set of potential basis functions.

The results are shown in Figure 5.14. The larger set of potential basis functions does
not result in better estimates. By the position of the centers of the included basis functions
it seems as the sensitive parts of the reservoir are located at the “top” and “bottom”, at
the expence of the accuracy in other parts of the reservoir.

5.5.2 Example 5

In example 5 we use the same 3-D reference conductivity field as in example 3 (Figure 5.15),
and distribute the sources and receivers as in Figure 5.1a. We compare the approximated
1. order selection measure with the 2. order selection measure. The 2. order selection
measure is as in Example 3. These results are good with respect to the objective function
(Figure 5.17) value, as well as estimated conductivity field (Figure 5.16). The 1. order
selection measure is fairly good, but differs at some important details. From Figure 5.16
we observe that the isosurface of ∆σa = 0.5 has not reached the top of the reservoir. This
is a significant difference compared to the reference isosurface in Figure 5.15.
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Figure 5.14: Top left to bottom: Reference time-lapse conductivity field, time-lapse con-
ductivity estimate for a conservative number of potential refinement candidates, time-lapse
conductivity estimate for extended set of potential refinement candidates and objective
function values plotted versus the number of iterations. White points mark the center of
each basis function.

Figure 5.15: 3-D reference time-lapse conductivity field and reference isosurface for ∆σa =
0.5.
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2. order selection measure:

1. order selection measure:

Figure 5.16: Top left to bottom right: Initial time-lapse isosurface for ∆σa = 0.5, and
time-lapse isosurface for ∆σa = 0.5 for 1. order and 2. order selection measure. The
isosurfaces are for levels s = 1, 2, 3, 9 for TBFs and levels s = 1, 2, 3, 10 for RBFs. Then a
3-D plot of the time-lapse conductivity field estimate.
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Figure 5.17: The log-objective function values versus number of iterations, for both choices
of selection measure. The inverse-problem solution criterion for the last level is indicated
by a horizontal line where the length corresponds to the number of iterations done by the
optimization algorithm.

5.5.3 Remarks

The results from the preceding examples show that the 1. order selection measure is not as
accurate as the 2. order selection measure. The fact that an extended set of potential basis
functions did not result in a better estimate in Example 4, tells us that the information
content in the data perhaps is not enough for making good choices with a 1. order selection
measure for that example. We have not found any examples where the 1. order measure
gives better results then the 2. order measure. We should, however, remember that the 1.
order selection measure was limited to add only one basis function at each level. We have
seen the risk of ending up in a local minimum if we include too few interior coefficients in
our parameterization. If a method for comparing the combined effect of adding more than
one basis function at the time can be found for the 1. order selection measure, we might
get different results.
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Summary and further work

In this thesis we have considered parameter identification in two and three dimensions
by solving an inverse problem based on sparse data. We use a solution algorithm first
presented in [7], where the parameter function is given by a reduced, composite, nonlinear
representation. The degrees of freedom in the reduced representation are determined as
part of the adaptive multi-level strategy, where the parameter representation is sequentially
refined.

We contribute to the solution process by testing the possibility of using radial basis
function in the parameter representation. Our numerical examples show that one advantage
of RBFs is the ability to keep the number of coefficients low. We only include basis
functions whose incorporation in the representation has the potential of giving a significant
reduction in the objective function. Another advantage with RBFs is that they provide a
simple refinement process as the basis functions have global support, and consequently the
computational cost associated with updating the structure matrix is kept at a minimum.
Our numerical tests show that the RBFs in many cases provide good estimates of the
reference conductivity fields.

As RBFs keep the number of coefficients low, this increases the importance of an ac-
curate selection measure in order to increase resolution in the proper areas. We have
considered an approximated 1. order selection measure as an alternative to the 2. order
selection measure. For our numerical examples the 1. order selection measure do not pro-
vide the desired accuracy in the refinement choices. It might, however, need the possibility
to add more than one basis function at each level to be comparable to the 2. order selection
measure. In this work we have not investigated how the combined effect of two or more
basis functions can be measured.

Further work may concern obtaining a generalized hierarchical structure for the set of
potential radial basis functions for refinement is a priority. If we could find a method for
constructing such a set regardless the problem, it would most likely result in more accurate
solution estimates for the RBFs. As an alternative, we could find another hierarchical
representation with similar features as the RBFs. Furthermore, it would be interesting to
run more systematic tests with an extended set of potential basis functions for the 1. order
selection measure. Further work on the 1. order selection measure should consider the
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ability to measure the combined effect of more than one basis function. Finally, it would
be interesting to incorporate this parameter identification process into a larger reservoir
characterization process where more model parameters were considered, to investigate its
effects.
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