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Abstract

Background: Epithelial to mesenchymal transition (EMT) has been connected with cancer progression in vivo and the
generation of more aggressive cancer cell lines in vitro. EMT has been induced in prostate cancer cell lines, but has
previously not been shown in primary prostate cells. The role of EMT in malignant transformation has not been clarified.

Methodology/Principal Findings: In a transformation experiment when selecting for cells with loss of contact inhibition,
the immortalized prostate primary epithelial cell line, EP156T, was observed to undergo EMT accompanied by loss of
contact inhibition after about 12 weeks in continuous culture. The changed new cells were named EPT1. EMT of EPT1 was
characterized by striking morphological changes and increased invasion and migration compared with the original EP156T
cells. Gene expression profiling showed extensively decreased epithelial markers and increased mesenchymal markers in
EPT1 cells, as well as pronounced switches of gene expression modules involved in cell adhesion and attachment.
Transformation assays showed that EPT1 cells were sensitive to serum or growth factor withdrawal. Most importantly, EPT1
cells were not able to grow in an anchorage-independent way in soft agar, which is considered a critical feature of
malignant transformation.

Conclusions/Significance: This work for the first time established an EMT model from primary prostate cells. The results
show that EMT can be activated as a coordinated gene expression program in association with early steps of transformation.
The model allows a clearer identification of the molecular mechanisms of EMT and its potential role in malignant
transformation.
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Introduction

Epithelial to mesenchymal transition (EMT) is a developmental

process characterized by loss of epithelial markers, gain of

mesenchymal markers and changes in cellular morphology and

phenotype with increased ability to migrate and invade [1–3].

EMT is an important physiological process during embryogenesis

and wound healing, but may be exploited to play a central role in

cancer progression (reviewed in [2,4–7]). During progression to

metastatic competence, carcinoma cells acquire mesenchymal

adhesive properties and the activation of proteolysis and motility,

which allows the tumor cells to metastasize and establish

secondary tumors at distant sites [3–5]. Several models have been

proposed to show that EMT contributes to the progress of

established tumours in transformed cells [6,8,9]. The relationship

between EMT and early carcinogenesis has not been clarified, and

has so far been addressed by very few studies [10,11].

Recently, it was described that EMT has strong and significant

associations with multiple end points of prostate cancer

progression and cancer-specific death [12]. It is therefore

interesting to establish an EMT model based on prostate cells

in vitro. EMT has been described in prostate cancer cells,

including LNCaP [13,14], DU145 [15] and PC3 cells [16–18].

However, multiple genomic rearrangements have accumulated in

these cell lines during long term passages in different laboratories,

and they are likely to differ significantly from the original patient

cells. For PC3 cells, e.g., both mesenchymal to epithelial transition

(MET) [19] and EMT has been reported. More exact analysis of

EMT will benefit much from cell lines that are very close to

prostate cells in vivo.
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EP156T is a primary prostate cell line immortalized by

retroviral hTERT expression and retains many features of the

prostate basal cell phenotype [20]. In an attempt to select for

cells insensitive to contact inhibition [21,22], EMT was observed

in EP156T cells accompanied by loss of contact inhibition, and

these changed new cells were named EPT1. The progeny EPT1

cells exhibited a distinct morphology and increased migration

and invasion compared with the parental EP156T cells, and

gene expression analysis revealed a striking number of gene

expression changes previously found as markers of EMT

[2,9,10,23,24]. Downregulation of E-cadherin (CDH1) and

upregulation of N-cadherin (CDH2) - the so called cadherin-

switch - were most evident in EPT1 cells. It appeared that entire

gene modules involved in cell-to-cell and cell-to-matrix interac-

tions changed their transcription patterns in a coordinated

manner in EPT1 cells. Transformation assays revealed,

however, that EPT1 cells still were serum and growth factor

dependent and had not acquired ability to anchorage indepen-

dent cell growth. This model therefore allows a study of EMT in

primary prostate cells and separated from full malignant

transformation.

Results

EP156T cells lost contact inhibition after long term
culture at high confluence
The EP156T cell line is a primary prostate epithelial cell line

immortalized by hTERT and has been previously characterized

[20]. EP156T cells exhibit a significant pattern of authentic

prostate-specific features with the capacity to differentiate into

glandular buds that closely resemble the structures formed by

primary prostate epithelial cells. It has previously been shown

that ectopic expression of hTERT may be sufficient to

immortalize cells in vitro, but not sufficient to achieve transfor-

mation [25]. This is consistent with the behaviour of EP156T

cells, which exhibited properties of primary prostate basal cells

[20]. EP156T cells grow in a monolayer and cease proliferation

upon reaching confluence, a phenomenon referred to as cell

contact inhibition.

Loss of contact inhibition is one feature of malignant

transformation [26]. One approach of transformation is to select

cells that are insensitive to contact inhibition [22]. In order to

transform EP156T cells to prostate cancer cells, the cells were

kept growing at passage 43 at high confluence to select cells that

survived contact inhibition. Cell death increased once they

reached full confluence. Following 12 weeks thereafter with very

slow proliferation, cells started to grow faster and kept on

dividing and piled up despite high cell density. The changed cells

were named EPT1. The growth curves of EPT1 and EP156T

cells clearly displayed different behavior when cells were grown

at high confluence. Many of the EP156T cells died while EPT1

cells continued proliferation (Figure 1A). Actually, EPT1 cells

can grow on top of each other and pile up even under low cell

density as shown in the DAPI nuclear staining in Figure 1B. Loss

of cell contact inhibition may emerge before anchorage-

independent cell growth and tumour formation in animals

during the transformation process [27,28]. The ability of EPT1

cells to override contact inhibition suggested development in the

direction of transformation.

EMT emerged during the change from EP156T to EPT1
Apart from their loss of contact inhibition, EPT1 cells changed

significantly in morphological features compared with EP156T

cells. EP156T cells have a very clear and round boundary with

individual cells abutting on each other in a uniform array. There

are regularly spaced cell to cell junctions and adhesions between

neighbouring cells (Figure 2A). Very differently, EPT1 cells have

a much longer and irregularly scattered cell shape, character-

istically varying in composition and density like mesenchymal

cells (Figure 2A) and corresponding to known features of

epithelial to mesenchymal transition [2]. The morphological

traits of EMT were consistent with key differences between

EP156T and EPT1 cells regarding E-cadherin and N-cadherin

gene expression as shown in Figure 2B–D and detailed below.

hTERT was expressed at similar levels in both EP156T and

EPT1 and the exogenous nature was supported by very high

puromycin resistance of these cells, which is consistent with

hTERT expression from a puromycin resistance retroviral vector

(data not shown) [20]. EPT1 cells were trypsinized and

propagated in standard EP156T medium with FCS increased

to 5%.

Increased migration and invasion of EPT1 cells
EMT is characterized by increased motility and gain of

invasiveness. To determine whether EPT1 cells had become more

active in migration and invasion than the EP156T cells, we

evaluated the serum-induced migration of cells using transwell

chamber assays. As shown in Figure 3A, EPT1 migrated through

the pores more than 2.5 fold faster than EP156T cells. The

invasive ability of EPT1 and EP156T cells was examined by the

serum-induced invasion through the transwell extracellular matrix

layer. As shown in Figure 3B, EPT1 cells exhibited 3 fold increase

in invasion compared to EP156T cells after 24 h incubation. The

faster migration of EPT1 compared with EP156T cells was also

confirmed by the wound healing assay for 24 h (Figure 3C).

EP156T cells moved as a sheet en block as described for epithelial

cells, whereas EPT1 cells migrated considerably more dynamically

and moved individually and sometimes left a part of the trailing

region behind as described for mesenchymal cells [2]. All these

results indicated that the EPT1 cells had acquired much higher

ability to migrate and invade during the transition to mesenchy-

mal-like cells in comparison with EP156T cells.

EPT1 cells display striking gene expression switch
patterns characteristic of EMT
To identify gene markers involved in EMT from EP156T to

EPT1 cells, we profiled the gene expression of both cell lines using

the Agilent Human Whole Genome Oligo Microarray, which

contained 44 k probes. There were 965 genes downregulated and

893 genes upregulated more than 3 fold in EPT1 cells compared

with EP156T cells. A number of gene expression changes

associated with EMT varied significantly between EPT1 and

EP156T (Table 1). Loss of E-cadherin (CDH1), the prototypic

epithelial adhesion molecule in adherens junctions, and gain of N-

cadherin (CDH2) are among the main hallmarks of EMT [2].

CDH1 was downregulated 27 fold and CDH2 upregulated 33 fold

in EPT1 cells. The cadherin switch was verified by both real-time

qPCR (mRNA level) and Western-blotting (protein level)

(Figure 2B–C). Immunofluorescence staining showed very clearly

the disappearance of E-cadherin and gain of N-cadherin in the

membrane of EPT1 cells (Figure 2D). The epithelial markers

including cytokeratin 14 (KRT14), KRT5 and p63 that charac-

terized EP156T [20], were all downregulated more than 100 fold

in EPT1 cells. In contrast, many mesenchymal markers were

upregulated in EPT1 cells, including cadherin 11 (CDH11),

vimentin (VIM) and fibronectin (FN). Apart from these EMT

markers, several transcription factors that are known to regulate

EMT and Transformation
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EMT, such as TWIST2 and ZEB1, were also upregulated in

EPT1 cells (Table 1).

Entire modules of genes encoding structural
components of cell junctions and attachment were
changed in EPT1
Cell junctions, especially adherens junctions, tight junctions and

desmosomes, are required for the epithelial phenotype and

keeping neighbouring epithelial cells strongly attached to each

other [29]. The dynamic formation and dissolution of cell-cell

junctional complexes is a central process during EMT [3]. Apart

from the adherens junctions mentioned above, dissociated tight

junctions [30,31] or desmosomes [10] were reported as important

features of EMT, respectively.

Using Agilent Whole Human Genome Microarray data, we

compared the expression patterns of genes involved in adherens

junctions, tight junctions and desmosomes between EP156T cells

and EPT1 cells. As shown in Table 2, the majority of the

examined components of these three groups were expressed at a

much lower level in the EPT1 cells than in the parental EP156T

cells (Table 2), such as E-cadherin, P-cadherin, b1 and d1 catenins

in adherens junctions, claudin 1, 4 and 7 in tight junctions,

desmoglein 2 and 3 and desmoplakin 2 and 3 in desmosomes.

Very interestingly, it was also revealed that genes encoding

other structural components of cell junctions were significantly

downregulated in EPT1 compared to EP156T cells (Table 2). Gap

junctions connect the cytoplasms of adjacent cells through the end-

to-end docking of single-membrane structures. Most of the

Figure 1. EPT1 cells have lost contact inhibition. A. Representative growth curves of EP156T and EPT1 cells. Both EP156T and EPT1 cells (36103)
were seeded into 96-well plates and cultured in medium containing 1% FCS. Medium was changed every 3 days. At the indicated days (D) MTS
reagent was added directly to culture wells and cell proliferation was calculated from the absorbance at 490 nm following incubation for 3 hours at
37uC. Data are presented as the average OD490 in three independent experiments. B. DAPI nuclear staining of EP156T and EPT1 cells at low density
(a, c) and high density (b, d). White arrows indicate overlapping nuclei. White bars indicate 10 mm.
doi:10.1371/journal.pone.0003368.g001

EMT and Transformation

PLoS ONE | www.plosone.org 3 October 2008 | Volume 3 | Issue 10 | e3368



members of gap junction protein beta family exhibited dramat-

ically reduced expression in EPT1 cells (Table 2). Hemidesmo-

somes and focal adhesions are required for epithelial cells to attach

to the underlying basement membrane. Most components of the

hemidesmosomes were downregulated in EPT1 cells compared

with the parental cells, especially dystonin and keratins. Compo-

nents of the focal adhesions were also changed in EPT1 cells

(Table 2).

These observations, together with the consistently changed

EMT markers, indicated that the regulation of EMT was

orchestrated not only in cell phenotype transition, but also in

entire modules of cell junctions. The complete changes of cell

junctions make EPT1 an ideal model to study the complex

regulatatory networks of EMT.

EPT1 cells display gene expression patterns in common
with prostate cancer cell lines
EMT has been frequently observed in transformed cell lines.

We asked if EPT1 cells have similar gene expression profiles as

prostate cancer cells represented by PC3 and DU145. Differen-

tially expressed genes between EP156T and EPT1 and between

EP156T and prostate cancer cell lines were compared. In total

1858 genes differed more than 3 fold between EPT1 and EP156T

cells. As shown in Figure S1, most of the genes altered after EMT

in EPT1 cells were also altered when comparing the PC3 and

DU145 to the EP156T cells. More than 70% of the downregulated

genes in EPT1 overlapped with genes underexpressed in PC3 cells

compared to the EP156T cells. Interestingly, in PC3 cells many

epithelial markers including E-cadherin and the cytokeratins

KRT4 and KRT5 were also significantly downregulated, and the

mesenchymal markers including N-cadherin were also upregu-

lated. This is consistent with a previous report that PC3 cells are

mesenchymal-like cells that can be induced to mesenchymal to

epithelial transition (MET) by overexpression of secreted Frizzled-

related protein 3 (sFRP3) [19]. Both the loss of contact inhibition

of EPT1 and the similar gene expression changes of EPT1 and

prostate cancer cells versus EP156T cells indicated a development

towards transformation of EPT1 cells.

EPT1 cells are not transformed although they have
undergone EMT
The observation that changed genes in EPT1 share patterns

with prostate cancer cell lines made us ask whether EPT1 cells

were transformed. An ability to survive and proliferate under

serum-free condition is one of the well-known features of cancer

cells in vitro [32]. We examined the proliferation of EPT1 cells in

medium with different concentrations of fetal calf serum (FCS). As

shown in Figure 4A, both EP156T and EPT1 cells grew much

slower in 1% FCS than in 5% FCS and completely stopped

growing and died in medium without FCS after 48h incubation,

while prostate DU145 cancer cells still grew well in FCS-free

medium although slower than in complete medium. The long

Figure 2. EPT1 cells have undergone EMT. A. Representative light microscopic images show morphological changes of EPT1 cells derived from
EP156T cells at both low density (a, d) and high density cultures (b, c, e, f). EPT1 cells are fusiform and much longer than EP156T cells. Overlapping
growth of EPT1 cells is also shown (d, e, f). B. Real-time qPCR showing the cadherin switch of mRNA levels in EPT1 compared to EP156T using TaqMan
assays for E-cadherin (Hs00170423_m1) and N-cadherin (Hs00169953_m1). C. Western blots show the cadherin switch of protein levels. Both primary
antibodies against E-cadherin and N-cadherin (BD Transduction Labs.) were diluted 1:2500. The anti-actin mouse Mab was diluted 1:250. The HRP-
conjugated anti-Ig was diluted 1:8000. Molecular weights (kD) were estimated based upon the ECL DualVue Marker in wells labelled M. D. Indirect
immunofluorescence images (206) show decreased E-cadherin and increased N-cadherin in EPT1 cells (right panels). The primary antibody against E-
cadherin was diluted 1:50 and against N-cadherin (BD Transduction Labs.) 1:25 and the FITC-conjugated secondary antibody 1:250.
doi:10.1371/journal.pone.0003368.g002
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term culture showed that EPT1 cells not only grew faster, but also

looked more vigorous in medium containing 5% FCS than in the

standard EP156T medium, so the concentration of FCS in the

medium for EPT1 cells was adjusted from 1% to 5%.

One of the most important capabilities of cancer cells is self-

sufficiency in growth signals [33]. The complete medium of

EP156T and EPT1 cells contained many kinds of growth factors

including bovine pituitary extract, insulin and EGF [25]. When

the EP156T and EPT1 cells were cultured in basic medium

without the above growth factors, most of the cells in both cell lines

stopped to proliferate and died after 48 h, while the parallel cells in

complete medium grew well (Figure 4B).

Anchorage-independent growth is considered a hallmark of

transformed cells [34,35]. We tested anchorage-independent

growth of EPT1 cells in soft agar. Following 7 days incubation

in soft agar, neither EP156T nor EPT1 cells were able to form

colonies in contrast to positive control DU145 cells (Figure 4).

Although neither formed colonies in soft agar, a difference was

observed. Nearly half of EPT1 cells divided during the first 3 days,

but then proliferation stopped without colony formation in the

end. In contrast, EP156T cells did not divide at all in soft agar.

These differences in soft agar growth suggested that EPT1 cells are

in a stage of premalignancy following EMT (Figure 4). EMT and

transformation assays of EPT1 are summarized in Table 3.

Figure 3. Migration and invasion of EP156T and EPT1 cells. The migration (A) and invasion (B) abilities of EP156T and EPT1 cells were
examined as described in methods. Data are presented as the average OD560 of migrating cells (A) or invading cells (B) in four independent
experiments. C. Representative light microscopic images (106) show increased migration into a wound line of EPT1 compared to EP156T cells.
doi:10.1371/journal.pone.0003368.g003

EMT and Transformation
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Cytogenetic analysis of EP156T and EPT1
Abnormal karyotypes are typically observed in transformed

prostate epithelial cells [36–38]. By G-banding we found no

pronounced chromosomal alterations occurring between EP156T

and EPT1 cells (Figure S2). Most likely a clonal selection has

occurred as the EPT1 cells did not show any of the additional

marker chromosomes. Both the EP156T cells and the progeny

EPT1 cells harboured a marker chromosome which by FISH

(fluorescent in situ hybridization) analysis was shown to be a

derivative chromosome 20 (der(20), Supplementary Figure 2),

Whether gain of der(20) occurred prior to immortalization or as a

consequence of EP156T immortalization is unknown. However, a

gain of chromosome 20 was found in both non-malignant and

malignant cells immortalised by hTERT [39]. As this gain is not a

common finding in prostate cancer [40–42] this could result from

the immortalization process.

Discussion

This work is the first report of an EMT model based on primary,

immortalized prostate epithelial cells. The derivation of EPT1 from

EP156T was clearly verified by the similar expression levels of

hTERT, the puromycin resistance and the very similar karyotypes

of both cell lines, including a common derivative chromosome,

der(20). Several ways to induce EMT in prostate cancer cells have

been described, including overexpression of CAV1 and ID1 or

MMP14 in LNCaP cells [13,14], EGF treatment of DU145 cells

[15], depletion of PDEF [16] or BMP7 treatment of PC3 cells [18].

However, some of these studies cannot easily be reconciled, such as

both EMT and MET induction of PC3 cells [16–19]. Long term

passages of these cell lines in different laboratories may cause them

to differ significantly from the original patient cells, and new models

closer to prostate tissue are desirable.

EMT is not easily observed in histological examinations of

cancer tissue sections, even by experienced pathologists [2,43].

This has led to the idea that EMT may be transient during cancer

progression [44,45] or occur only in a subpopulation of the

tumour cells, such as cells at the invasive front [5,8,46–48] or

cancer stem cells [11,49,50]. The successful establishment of an

EMT model based on primary prostate cells with many traits of

the prostate basal cell phenotype is important in light of a recent

report on the significance of EMT in prostate cancer[12].

EMT has been considered an event following malignant

transformation to endow cancer cells invasive and metastatic

competence [6,8,9]. The present work shows that primary prostate

epithelial cells underwent complete EMT, while most of the

transformation assays remained negative, including serum and

growth factor independent growth, as well as anchorage

independent growth and chromosome instability (Figure 4). At

the same time, loss of contact inhibition combined with similar

differential gene expression patterns as in prostate cancer cell lines

indicated that EPT1 cells are in the early steps towards

transformation. Regarding the temporal relationship between

transformation and EMT, one recent report has also observed that

EMT emerged at a very early stage of transformation (early HF1

cells) [10]. However, EMT in that system was far from full

completion, lacking mesenchymal characteristics in both early and

later transformation stages, and the downregulation of E-cadherin

was significant neither in early (0.960.1) nor in later (0.560.2)

stages of transformation, and N-cadherin was not found

upregulated. To our knowledge, EPT1 cells represent the first

model in which EMT has finished completely at very early stages

of malignant transformation.

It has previously been shown that ectopic expression of hTERT

may be sufficient to immortalize cells in vitro, but not sufficient to

achieve, anchorage-independent cell growth or tumorigenesis

[25]. Full malignant transformation is a stepwise process and can

be achieved by additional expression of oncogenes such as the

SV40 early region plus activated RAS [25,51]. EMT was induced

in the hTERT immortalized primary prostate epithelial EP156T

cells without exogenous introduction of oncogenes and without

transformation. Furthermore, karyotype analysis revealed that the

EPT1 cells were diploid and apparently contained much less

karyotypic abnormalities than previously described for the prostate

cancer cell lines LNCaP, PC3 or DU145 [52,53]. This work shows

that EMT itself appears as a coordinated gene expression program

that may be switched on in either non-transformed or transformed

cells. It is possible that EMT may contribute towards malignant

transformation in non-transformed cells, and that in transformed

cells EMT may contribute to a more aggressive phenotype.

Genomic features of transformation such as loss of heterozygocity

or chromosomal rearrangements cannot easily be reversed. In this

respect EMT regulation may provide an important target for

cancer therapy. Work is ongoing to further transform EPT1 cells

by additional stimulation or oncogene introduction. This model is

therefore valuable for understanding the mechanistic relationship

between EMT and transformation.

EPT1 cells lost contact inhibition accompanied by EMT during

the selection of cells insensitive to full confluence. EP156T cells

ceased growing once cells abutted on each other in contrast to

EPT1 cells whose protrusions passed across neighbouring cells,

eventually leading to heaps of cells. It is still unknown what

happened first or emerged simultaneously in EPT1 cells. Actually,

Table 1. Known markers of epithelial and mesenchymal cells
were changed in EPT1 cells.

Genes
Fold change
EPT1/EP156T p-value References

Epithelial cell markers

CDH1 228 3E-6 Kim JB [62]

CDH3 2138 2E-10 Jarrard DF [63]

DSP 29 6E-5 Savagner P [64]

OCLN 27 5E-3 Medici D [65]

KRT5 2538 4E-11 Kogan I [20]

KRT14 232 2E-13 Kogan I [20]

Mesenchymal cell markers

CDH2 33 1E-10 Lee JM [2]

CDH11 6 1E-14 Sarrió D [67]

FN1 4 7E-3 Yang Z [68]

VIM 3 13E-3 Billottet C [69]

FBN1 74 8E-15 Kiemer AK [23]

FGF1 3 2E-6 Billottet C [69]

FGFR1 9 1E-12 Acevedo VD [66]

SPARC 6 2E-2 Gotoh N [70]

Known regulators of EMT

TWIST2 3 9E-5 Yang J [71]

WNT5A 4 1E-4 Dissanayake SK [72]

BMP4 3 1E-3 Theriault BL [73]

FZD7 3 1E-3 Vincan E [74]

ZEB1 3 10E-12 Eger A [75]

doi:10.1371/journal.pone.0003368.t001

EMT and Transformation
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both contact inhibition and increased invasion and migration in

EMT are associated with cell to cell junctions [54]. The gene

expression of entire modules of cell junctions such as adherens

junctions, gap junctions, tight junctions, desmosomes and

hemidesmosomes were downregulated almost simultaneously as

EPT1 arose from EP156T cells. These cell junction modules not

only can contribute to the interaction of epithelial cells and

provide a barrier against increased migration and invasion in

EMT[2], but also can lead to cell contact inhibition based on cell

communication [55]. It has been shown that adherens junctions

play an important role in contact inhibition of cell growth [56] and

components of gap junctions induce cell contact growth inhibition

[57]. One recent publication showed that EMT mediated loss of

contact inhibition in hepatocarcinoma cells, and reexpression of E-

cadherin restored cell-cell contacts [58]. Work is ongoing to

identify the key regulatory mechanisms behind the observed

switches of entire functional gene expression modules in EPT1

during EMT and the relationship between loss of contact

inhibition and EMT in EPT1 cells.

Materials and Methods

Antibodies, cell lines and cell culture
Mouse monoclonal antibodies were used to detect E-cadherin

(BD Transduction Labs., BD Biosciences, San Jose, CA USA,

Cat#610181), N-cadherin (BD Transduction Labs. Cat# 610920

and Abcam, Cambrigde, GB, Cat.#ab19348) and b-actin (Abcam

Cat# ab11003). The prostate cancer cell lines DU145 and PC3

were obtained from the American Type Culture Collection

(ATCC, Rockwell, MD, USA). The derivation and growth

conditions for the EP156T cell line have been described [20].

Additional reagents were from Sigma-Aldrich, St. Louis, MO,

USA unless indicated otherwise.

Generation of EPT1 cells
EP156T cells were allowed to grow to full confluence at passage

43 in 6 well plates in EP156T standard medium essentially as

described [20]. This medium was modified MCDB153 (Biological

Ind. Ltd, Israel) and was supplemented with 1% MEM non-

essential amino acids solution, 200 nM hydrocortisone, 10 nM

triiodothyronine, 5 mg/ml insulin, 5 mg/ml transferrin, 5 mg/ml

sodium selenite, 100 ng/ml testosterone, 5 ng/mL EGF, 50 mg/
mL bovine pituitary extract (Invitrogen), 100 U/ml penicillin,

100 mg/ml streptomycin and 1% fetal calf serum (FCS). The

Table 2. Expression of cell junction genes in EPT1 cells.

Genes Fold change EPT1/EP156T p-value

Desmosome

DSG2 22 1.9E-3

DSG3 293 7.0E-7

DSC2 28 2.7E-7

DSC3 26 7.7E-7

DSP 29 1.5E-3

JUP 218 2.9E-7

PKP1 27 7.2E-6

PKP2 26 4.0E-7

PKP3 219 5.0E-9

PPL 239 4.9E-5

EVPL 22 1.0E-4

Adherens junction

CDH1 224 6.9E-8

CDH2 33 1.0E-8

CDH3 2120 6.5E-8

CTNNB1 23 8.0E-4

CTNND1 22 1.7E-3

Nectin 4 2.5E-6

Gap junction

GJB2 220 7.7E-7

GJB3 287 7.3E-10

GJB4 217 3.8E-7

GJB5 236 6.0E-10

GJB6 239 5.8E-6

Tight junction

CLDN1 23 2.5E-2

CLDN4 22 9.6E-4

CLDN7 220 1.2E-5

OCLN 24 4.8E-3

Hemidesmosome

DST 237 5.1E-8

KRT4 23 4.2E-2

KRT5 2538 3.5E-11

KRT 13 212 1.2E-4

KRT 14 232 2.2E-13

KRT 15 244 8.6E-15

KRT 16 242 3.3E-4

KRT 17 2177 2.0E-7

KRT 23 241 5.0E-4

COL17A1 278 3.2E-5

ITGB4 211 2.5E-5

Focal adhesion

CAV1 23 9.8E-4

LAMA3 211 4.3E-5

LAMA5 24 5.0E-5

ITGB4 211 2.5E-5

ITGB6 26 2.6E-6

ITGB8 25 1.0E-5

PFN1 22 2.0E-3

Genes Fold change EPT1/EP156T p-value

PTK2 22 1.7E-6

PTK2B 25 4.1E-2

CFL2 6 3.3E-5

ENAH 2 2.4E-5

ITGA11 4 4.6E-9

LPXN 3 3.3E-5

PARVA 2 2.8E-3

TLN2 2 1.2E-5

Expression changes of cell junction genes in EPT1 cells according to Agilent
Human Whole Genome Oligo Microarrays. Results were presented as fold
change compared with EP156T cells. GAPDH expression is given as internal
control. Three arrays were done for each cell type. Minus fold change represents
underexpressed genes in EPT1 cells.
doi:10.1371/journal.pone.0003368.t002
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medium was changed every 3 days. Twelve weeks later cells were

trypsinated and transferred to new plates and grown in EP156T

medium with FCS increased to 5%.

Proliferation, migration, invasion and wound closure
assay
For the proliferation assay, 3500 cells in complete medium were

added to each well of the 96-well plate. After time course

incubation, cell proliferation was assayed using the CellTiter96-

HAQueous One Solution Cell Proliferation Assay (MTS) (Promega,

Madison, WI, USA). MTS reagent was added directly to culture

wells, and following incubation for 3 h at 37uC absorbance was

recorded at 490 nm using a 96-well plate reader (Powerwave

spectrophotometer). For trans-well migration assays and invasion

assays, 1.86105 overnight serum starved cells in serum-free

medium were added to the top chambers of 24-well trans-well

plates (8 mm size, Cell Biolabs Inc., San Diego, CA, USA) and

media containing 10% fetal calf serum (FCS) were added to the

bottom chambers. Incubation was for 12 h in the migration assay

and 24 h in the invasion assay. Top (nonmigrating) cells were

removed, bottom (migrating) cells were stained and absorbance

was recorded at 560 nm. All of these assays were done in triplicate

and the data are presented as the average absorbance of migrating

cells and invading cells.

For the scratch wound closure assay, 56105 cells were seeded in

6-wells. A wound was incised 24 h later in the high density area,

detached cells were removed and fresh medium was added. Photos

were taken of the wounded area at indicated time points.

Microarray analysis and real-time quantitative PCR
Total RNA was extracted from subconfluent monolayers of

cells. One mg of DNAse-treated total RNA was converted into

cDNA and next to Cy3-labeled cRNA using the Low RNA Input

Linear Amplification Kit PLUS, One-Color kit (Agilent Tech.,

Santa Clara, CA, USA), according to instructions. The Agilent

Human Whole Genome (4644 k) Oligo Microarray with Sure

Figure 4. Transformation assays of EPT1 cells. A. EP156T, EPT1 and DU145 cells were cultured in medium containing 0%, 1% and 5% FCS,
respectively. B. EP156T and EPT1 cells were cultured in the absence (GF2) or presence (GF+) of growth factors in the medium. C. Assay of anchorage
independent growth a. Representative images (106) of colony formation in soft agar at different times as indicated. During the first 3 days, some
EPT1 cells kept dividing while EP156T did not. Neither EP156T nor EPT1 cells could grow in soft agar eventually, while many colonies formed in
prostate cancer DU145 cells. b. Following 7 days incubation in soft agar cells were quantified as absorbance at OD570 nm as described in methods.
doi:10.1371/journal.pone.0003368.g004
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Print Technology (Agilent Technologies, Inc., Palo Alto, CA) was

used to analyze samples in the present study. The hybridization

and features extraction were described in [59]. Significant Analysis

of Microarray (SAM) using the significantly up- or downregulated

genes in EPT1 cells were performed in J-Express (www.molmine.

com) [60]. Annotated microarray data were uploaded in the BASE

database and formatted and exported to ArrayExpress at the

European Bioinformatics Institute (http://www.ebi.ac.uk/

arrayexpress (Accession number: E-BASE-8)) in agreement with

the MIAME guidelines. Differentially expressed genes in micro-

array data were confirmed by real-time quantitative reverse

transcription PCR (qPCR) using TaqMan assays (Applied

Biosystems, Foster City, CA, USA) and mean quantitative values

were normalized according to ACTB expression as described [59].

Indirect immunofluorescence and Western blot assays
Indirect immunofluorescence (IF) and western blot (WB)

analyses were done essentially as previously described [61]. For

IF cells were grown on 10 mm Assistant glass coverslips in 24 well

plates, then washed with PBS, fixed (4% fresh paraformaldehyde

in PBS for 20 min. at room temperature), permeabilized (0.5%

Triton X-100 for 10 min.), blocked (100 mM glycin for 10 min)

and stored (100% methanol at 4uC) with PBS wash between each

step. Following blocking with 0.5% BSA/PBS for 15 min. primary

mouse monoclonal antibodies were added overnight at 4uC at

indicated dilutions in 0.5% BSA/PBS. The FITC-labelled

secondary anti-mouse Ig (SouthernBiotech, Birmingham, AL,

USA, Cat# 4050-02) was added for 1 h at room temperature in

0.5% BSA/PBS. Coverslips were mounted in SlowFade with

DAPI (Molecular Probes, Invitrogen, Carlsbad, CA, USA) on glass

slides and analysed using Leica confocal microscopy.

For WB analysis cells were lysed in 200 mM Tris.Cl pH 6.8,

13% ultrapure glycerol, 3.2% b-mercaptoethanol, 40 g/l SDS and

Protease Inhibitor Cocktail Set I diluted 1:100 (Calbiochem, Cat#
535142). Protein concentrations were measured using the BCA

protein Assay kit (Pierce, Rockford, IL, USA, Cat# 23227), and

20 mg protein lysates were separated by 10% polyacrylamide gel

(Biorad Labs., Hercules, CA, USA, Cat#161-1173) SDS electro-

phoresis followed by blotting to PVDF membranes (GE Health-

care Life Sciences, Uppsala, Sweden, Cat# RPN1416F). Primary

mouse monoclonal antibodies and HRP-labelled secondary

antibodies (GE Healthcare, Cat.# NA931) were used at the

indicated concentrations and the bands detected using enhanced

chemiluminescence (GE Healthcare, Cat# RPN2132) and the

Biorax Fluor-s multiImager. Molecular weight markers used were

ECL DualVue Marker (GE Healthcare, RPN810) and Magic-

Mark XP Western Protein Standards (Invitrogen, Cat# LC5602).

Serum independent, growth factors independent assays
For the serum independent assay, cells were cultured in medium

with 0%, 1% and 5% FCS, respectively. For the growth factors

independent assay, cells were cultured in basic MCDB medium

and complete medium, respectively [20]. The proliferation of each

group was measured 48 h later as described above.

Anchorage-independent growth assay
The anchorage independent growth was examined in soft agar.

50 ml of base agar matrix (Cell Biolabs; CytoSelectTM Cell,

Colorimetric kit) was added in the bottom of each well of a 96-well

plate. When the agar was solid, 75 ml of cell suspension/soft agar
matrix containing 3000 cells was layered on top followed by 50 ml
of 26 complete medium. After 7 days of incubation, the agar

matrix was solubilized and cells stained and absorbance was

recorded at 570 nm. Data show the quantification of proliferation

of EPT1 cells, EP156T cells and positive control DU145 cells in

the soft agar assay.

Cytogenetic analysis
Prior to harvesting, the cells where treated with 20 ng/ml

colcemid for 25 min at 37uC followed by trypsination. The cell

suspension was washed once before exposing the cells to

prewarmed (37uC) hypotonic solution (0.22% (v/v) NaCl,

0.3 mM KH2PO4, 80 mM Na2HPO4, pH 8.0). Cells were

pelleted and re-suspended in 4 ml fresh fixative (3:1 methanol:a-

cetic acid) which was repeated four times before storing the cell

suspension at 220uC. G-banding was performed by the standard

Giemsa staining procedure and metaphase spreads were analysed.

The karyotype was described according to ISCN 2005. FISH

(fluorescent in situ hybridization) analyses using probes (CEN20,

TEL12q, LSI MLL) from Vvsis (Abbott Molecular–Vysis, Des

Plaines, IL; Abbott Diagnostics, Maidenhead, UK) were per-

formed according to the manufacturer’s instruction.

Supporting Information

Figure S1 Hierarchical clustering analysis of differentially

expressed genes among DU145, PC3, EP156T and EPT1 cells.

In total 1858 genes differed more than 3 fold between EPT1 and

EP156T cells. The red and the blue represent low expression and

high expression, respectively.

Found at: doi:10.1371/journal.pone.0003368.s001 (4.20 MB

DOC)

Figure S2 G-banding of metaphases of the EP156T cells (A)

showed few chromosomal aberrations compared to prostate cancer

cell lines. A marker chromosome was found in all cells (der(20), red

arrow), but diverging clonal evolution as often seen in cell lines was

also seen in the EP156T cells. One subclone had trisomy 13 (blue

arrow), another loss of chromosome 8 and 20 and gain of

chromosome 2, whereas others showed different marker chromo-

somes. The composite karyotype can be described as 46–

Table 3. Summary of EMT and transformation assays of EPT1
cells.

EMT Yes or No

In vitro functional markers

Elongation of cell shape Yes

Increased scattering Yes

Increased migration Yes

Increased invasion Yes

Increased mesenchymal markers

N-cadherin/Vimentin/Fibronectin/Integrin Yes

Decreased epithelial markers

E-cadherin/Desmoplakin/Cytokeratin/Occludin Yes

Transformation Yes or No

Loss of contact inhibition Yes

Chromosomal instability No

Serum independent growth No

Self-sufficiency in growth signals No

Anchorage independent growth No

doi:10.1371/journal.pone.0003368.t003
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48,XY,+2[2],28[3],+13[4],220[2],+der(20)[10],+mar[3][cp10]. G-

banding analysis of the EPT1 cells (B) showed the same marker

chromosome in all as found in the EPT156 cells (red arrow) but in

addition a loss of the normal chromosome 20 (black arrow). Clonal

evolution involving chromosome 13 (blue arrow) was also found.

The composite karyotype can be described as: 46–47,XY,+13[3],
+i(13)(q10)[2],der(20)[10],221[3][cp10]. In order to gain more

information on the source of the marker chromosome FISH analysis

(C) was performed. A probe against centromer 20 revealed that the

marker chromosome was a chromosome 20 derivative (der(20), red

arrow), whereas a probe against the subtelomeric region of 12q

showed no involvement of that chromosome.

Found at: doi:10.1371/journal.pone.0003368.s002 (2.76 MB

DOC)
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