
Ray-Born Modelling and Full Waveform

Inversion

Hans Christian Bertelsen Tengesdal

Thesis for the degree

Master of Science

Department of Earth Science

University of Bergen

June 3, 2013



”Most people, if you describe a train of events to them will tell you what the result would be. They

can put those events together in their minds, and argue from them that something will come to pass.

There are few people, however, who, if you told them a result, would be able to evolve from their own

inner consciousness what the steps were which led up to that result. This power is what I mean when

I talk of reasoning backward.”

Sherlock Holmes, in A Study of Scarlet

by Arthur Conan Doyle (1859 - 1930)



Abstract

Seismic forward modelling is used to simulate seismic wave propagation in the subsurface. Common

modelling techniques include methods such as the ray-Born approximation and the finite difference

method. In this thesis I present a comparison between the ray-Born approximation and the finite

difference method. This comparison consists of computing synthetic seismograms using both methods

for several seismic velocity models and performing a comparison between them. The main motivation

for this comparison is to see if the ray-Born approximation, which is known to be faster, provides

enough accuracy to provide an efficient alternative to the finite difference method. The ray-Born ap-

proximation was found to be sufficiently accurate in cases where the velocity model did not have large

velocity contrasts and multipathing did not occur. In those cases the method can replace the finite

difference method in forward modelling algorithms.

Full waveform inversion is a technique that is used to compute a model of the subsurface given the

seismic data recorded at the surface. In order to perform full waveform inversion, forward modelling is

an obvious requirement. Traditional full waveform inversion algorithms use the finite difference method

to perform forward modelling and the cost of the computation is therefore high. In order to reduce

the cost of the inversion, a full waveform inversion algorithm that uses the ray-Born approximation

instead of the finite difference method has been developed. The results from the full waveform inversion

when using the ray-Born approximation show that it is possible to achieve an accurate reproduction

of the subsurface at a greatly reduced cost compared to the finite difference method. The ray-Born

approximation is therefore evaluated to be a method that can replace the finite difference method both

in forward modelling and in full waveform inversion algorithms.
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Introduction



2 Introduction

1.1 Introduction

The global energy demand is increasing while the production from mature hydrocarbon reservoirs is

decreasing. In order to accommodate this growing energy demand in the future it is crucial to increase

the hydrocarbon production by improving the hydrocarbon extraction rate from mature reservoirs as

well identifying new hydrocarbon reservoirs. Seismic exploration is the primary method of determining

the physical properties of the subsurface and identifying commercially economic deposits of oil and gas.

In order to increase the hydrocarbon production it is therefore crucial to continue the development of

the technology used in seismics.

Seismics consist of seismic acquisition and processing of seismic data. It is essential to develop process-

ing methods that will increase subsurface resolution and allow for accurate and efficient identification

of new reservoirs as well as maintaining the production from mature fields. Traditional seismic process-

ing techniques consist of increasing the signal to noise ratio, attenuation of surface multiples, velocity

model building and imaging. The velocity model is determined only through the use of travel times

and therefore only resolves the large scale structures of the subsurface. Imaging is used to identify

small scale structures such as faults and discontinuities by using the rough velocity model as a starting

point. Due to the inaccuracy of the rough velocity model, the small scale structures obtained from

imaging may appear at the incorrect location or not at all. An attempt to overcome this weakness has

resulted in the development of full waveform inversion.

Full waveform inversion methods use the entire waveform instead of just travel times and accurate

inversion algorithms instead of simplified inversion algorithms. By using the entire waveform it is

possible to resolve small subsurface structures with accurate position and velocity. Full waveform

inversion was first introduced by Tarantola (1984a). Among those who have performed it later we find

Gauthier et al. (1986) who performed full waveform inversion in the space-time domain and Pratt et al.

(1998) and Operto et al. (2006) who performed full waveform inversion in the space-frequency domain.

Most full waveform inversion algorithms are based on the finite difference method as the primary

forward modelling method. Inversion methods based on the finite difference method are slow and due

to the memory consumption of the method it is difficult to perform waveform inversion for large models.

The main objective of this thesis is to develop a full waveform inversion algorithm that is faster than

full waveform inversion algorithms based on the finite difference method while still resolving the sub-

surface structures with high accuracy. The ray-Born approximation has been evaluated as a potential

candidate to replace the finite difference method as the primary forward modelling method in full

waveform inversion. I will therefore give a review of the forward modelling techniques: the ray-Born

approximation and the finite difference method. This review includes the background theory as well as

the numerical implementation of the methods. I will perform a quantitative comparison between the

ray-Born approximation and the finite difference method for several seismic velocity models. Using this
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information it is possible to evaluate if the ray-Born approximation can be used as a fast and accurate

replacement for the finite difference method in both forward modelling and full waveform inversion.

Finally, I will present a full waveform inversion algorithm based on the ray-Born approximation and

perform a comparison between the results obtained from the ray-Born approximation full waveform

inversion algorithm with a full waveform inversion algorithm based on the finite difference method.

(The modelling methods that are presented in this thesis have been implemented in Matlab as a part

of the work of the thesis.)

The thesis has been divided into six different chapters. In chapter 1 I give an introduction to the thesis

where I discuss the motivation behind the work that has been done as well as the objectives of the

thesis. In Chapter 2 I give the relevant background theory for the forward modelling methods that

have been used in this thesis. In Chapter 3 I discuss the numerical implementation of the forward

modelling techniques and perform a comparison between the ray-Born approximation and the finite

difference method. In Chapter 4 I give the background theory required in order to perform full

waveform inversion. In Chapter 5 I discuss the numerical implementation and results from the full

waveform inversion algorithm that has been developed. In chapter 6 I discuss the results of the thesis

and suggest further improvements and directions that can be taken in order to further develop the full

waveform inversion algorithm.



Chapter 2

Forward Modelling: Theory
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2.1 Outline

In this chapter I present the theoretical background of the three different forward modelling methods

that are used in this thesis: geometrical ray theory, the ray-Born approximation and the finite difference

method. The methods have been applied to the constant density acoustic wave equation. This equation

will for the remainder of the thesis be referred to as the wave equation.

2.2 The Wave Equation

Seismic forward modelling consists of solving the acoustic wave equation with constant density (e.g

Auld (1973), Pujol (2003) and Cerveny (2005)) that is given as:

∇2P(x, t)− 1

c2 (x)

∂2P(x, t)

∂t2
= S (x, t), (2.1)

with initial conditions P(x, 0 ) and ∂2P(x,0 )
∂t2

given. ∇2 is the Laplace operator, P(x, t) is the acoustic

pressure at x and t , c(x) is the seismic velocity at x and S (x, t) is the source at position x in 2-D or

3-D and time t .

Solutions to the wave equation (2.1) (e.g Cerveny (2005)) for a point source in time and space S (x, t) =

−δ(x−xs)δ(t − t0 ) are called Green functions and are denoted by a G . Here xs is the source location

and δ is the Dirac distribution. We can set t0 = 0 as we assume that the velocity c is time independent.

In this case G satisfies:

∆G(x,xs, t)− 1

c2 (x)

∂2G(x,xs, t)

∂t2
= −δ(x− xs)δ(t). (2.2)

Once the Green function is known, it can be used to represent the solution to equation (2.1), P(x, t)

for a general source S (x, t).

P(x, t) =

∫
G(x,xs, t − t0 )S (x, t)dxdt . (2.3)

In this thesis S (x, t) = δ(x − xs)R(t), where R(t) is the Ricker wavelet (e.g Ricker (1953) and Ryan

(1994)):

R(t) = 1 − (t − 1

f0
)2 f 2

0 π
2exp

−(t− 1
f0

)2π2 f 20 , (2.4)

where f0 is the centre frequency of the synthetic source wavelet. The Ricker wavelet is plotted with

frequencies 5,10,15 and 20 Hz in figure 2.1. The Ricker wavelet is defined as the second derivative of

the error function and was chosen for it’s similarity to actual seismic wavelets.

It is often convenient to use the wave equation in the frequency domain by performing a Fourier

transformation (e.g Cerveny (2005)). This often simplifies the computations and can make the physical
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Figure 2.1: The Ricker wavelet

interpretation of the different terms clearer. The notation used for this thesis is:

p(x, ω) =

∫
P(x, t)e iωtdt ↔ f (x, t) =

1

2π

∫
p(x, ω)e−iωtdω. (2.5)

The wave equation (2.1) in the frequency domain is called the Helmholtz equation:

∇2p(x, ω) +
ω2

c(x)2
p(x, ω) = s(x, ω), (2.6)

where ω = 2πf , f is the frequency, p(x, ω) is the pressure field and s(x, ω) the source. Similarly, the

Green function G in the frequency domain, g , satisfies

∇2g(x,xs, ω) +
ω2

c2
0 (x)

g(x,xs, ω) = −δ(x− xs). (2.7)

The solution, p(x, ω), to the Helmholtz equation (2.6) is then written as:

p(x, ω) =

∫
g(x,xs, ω)s(x, ω)dxdω, (2.8)

where g(x, ω) is the solution of the pressure field and s(x, ω) is the input source wavelet for a given

position x and ω. The equations stated in this section are valid in both 2-D and 3-D media.
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2.3 Green Functions

In a constant velocity model, the frequency domain 3-D Green function is expressed as (e.g Bleistein

et al. (2001), Cerveny (2005) and Nowack (2010)):

g(x, ω) = A(x)e−iωT(x), (2.9)

and the frequency domain 2-D Green function is expressed as:

g(x, ω) =
i

4
H

(1 )
0 (ωT (x)), (2.10)

where H
(1 )
0 is the Hankel function of the zeroth order and first kind, A(x) is the amplitude and T (x)

is the travel time at position x. The amplitude is defined as the inverse of the distance between the

source and the receiver:

A(x) =
1√

x2
r − x2

s

, (2.11)

and the travel time is defined as the distance between the source and the receiver over the velocity:

T (x) =

√
x2
r − x2

s

c(x)
. (2.12)

If the velocity c(x) is constant then the solution obtained using the Green function is exact. Solving

the wave equation in this way allows for a fast and accurate solution of the wavefield for constant

velocity media. This method can for example be applied in acoustic oceanography where the velocity

is considered to be constant.

In heterogenous media such as the subsurface rocks encountered in seismic exploration, the previous

equations would give an inaccurate representation of the wavefield (e.g Bleistein et al. (2001), Cerveny

(2005) and Nowack (2010)). The frequency domain 3-D Green function is given as in equation (2.9),

but with a different amplitude and traveltime. The frequency domain 2-D Green function in such

media can be approximated as:

g(x, ω) =
A(x)e−i(ωT (x)+π

4
)

√
8πω

. (2.13)

The amplitude A(x) and travel time T (x) can not be directly solved in such media and one therefore

has to consider methods such as geometrical ray theory in order to find the travel time and amplitude.

2.4 Geometrical Ray Theory

Geometrical ray theory provides a high frequency approximation of the wave equation (2.1). The theory

can not be used unless the seismic properties of the model do not vary much over the distance of the
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dominant wavelength of the seismic source signal. The derivation follows Pujol (2003) and Cerveny

(2005). In geometrical ray theory one assumes a solution of the Helmholtz equation (2.6) similar to

equation (2.9) but now with a different traveltime and amplitude. Equations for the amplitude A(x)

and traveltime T (x) can be found by substituting the solution (2.9) into the Helmholtz equation (2.6)

and setting the source term equal to 0. The Helmholtz equation can then be written as:

∇2g(x, ω) = − ω2

c(x)2
g(x, ω). (2.14)

Since ∇2g(x, ω):

∇2g(x, ω) =
[
∇2A(x) + 2iω∇(A(x)T (x)) + iA(x)ω∇2T (x)− A(x)ω(∇T (x))2

]
e iωT (x), (2.15)

equation (2.15) can be inserted into equation (2.14). Dividing both sides by ω2A(x) and rearranging

the terms yields:

(
(∇T (x))2 − 1

c2 (x)

)
− i

ω

(
2

A(x)
∇(A(x)T (x)) +∇2T (x)

)
− 1

ω2A(x)
∇2A(x) = 0 . (2.16)

Due to the presence of ω−1 and ω−2 in the last two terms of equation (2.16) the first term will be

dominant for large ω. This yields the eikonal equation:

(∇T (x))2 =
1

c(x)2
. (2.17)

The eikonal equation (2.17) is a first order non-linear partial differential equation. The solution to this

equation can be found by solving a set of ordinary differential equations: the kinematic ray equations.

The kinematic ray equations are given as (e.g Bleistein et al. (2001) , Krebes (2004), and Cerveny

(2005)):

dx(s)

ds
= c(x)p(s), (2.18)

dp(s)

ds
= −1

2
∇c−2 (x(s)), (2.19)

where s is the arc length along the ray path, p(s) is the slowness vector that is perpendicular to

the wavefront (p(s) = ∇T (s)) and x(s) is a point along the ray path. The initial conditions to the

equations are given as x(0 ) = xs and p(0 ) = p0 where xs is the source position and p0 is in the x − z

plane given as:

p0 =

(
sin θ0
c(xs)

,
cos θ0
c(xs)

)
, (2.20)

and in 3-D given as:
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Figure 2.2: Takeoff angles used in geometrical ray theory( Fowler (1990))

p0 =

(
sin θ0 cosφ0

c(xs)
,
sin θ0 sinφ0

c(xs)
,
cos θ0
c(xs)

)
, (2.21)

where θ0 and φ0 are the takeoff angles of the ray as seen in figure 2.2. With a known ray path the

travel time can be found by integrating along the ray path:

T (x(s)) =

∫ s

0

ds ′

c(x(s ′))
. (2.22)

The amplitude of the ray is found by solving the transport equation. The transport equation is found

by considering the second term of equation (2.16) and is given as:

2∇A(x) · ∇T (x) + A(x)∇2T (x) = 0 . (2.23)

From the transport equation (2.23), one can find the geometrical spreading of the ray field, which is

inversely proportional to the amplitude (e.g Keers (1997) and Bleistein et al. (2001)). The geometrical

spreading is in 2-D given as:

J = det

[
∂x

∂θ
,

dx

ds

]1/2
, (2.24)

and in 3-D given as:

J = det

[
∂x

∂θ
,
∂x

∂φ
,

dx

ds

]1/2
, (2.25)

where det is the determinant of the matrix. The derivatives of x and p along the ray with respect to

the takeoff angles are governed by the dynamic ray equations (2.26) and (2.27):

d

dt

(
∂xi
∂α

)
= 2c

(
∂c

∂xj

)(
∂xj
∂α

)
pi + c2 ∂pi

∂α
, (2.26)



10 Forward Modelling: Theory

d

dt

(
∂pi

∂α

)
= c−2

(
∂c

∂xj

∂xj
∂α

)
∂c

∂xi
− c−1

∂2c

∂xi∂xj

∂xj
∂α

, (2.27)

where α is either θ or φ. The initial conditions to the equations in 2-D are given as:

∂x

∂θ0
= 0 , (2.28)

∂p

∂θ0
=

(
cos θ0
c(xs)

,
− sin θ0

c(xs)

)
, (2.29)

and in 3-D given as:

∂x

∂φ0

= 0 , (2.30)

∂p

∂θ0
=

(
cos θ0 cosφ0

c(xs)
,
cos θ0 sinφ0

c(xs)
,
− sin θ0

c(xs)

)
, (2.31)

∂p

∂φ0

=

(
− sin θ0 sinφ0

c(xs)
,
sin θ0 cosφ0

c(xs)
, 0

)
. (2.32)

In order to compute the amplitude and travel time along the ray paths we need to solve eight differential

equations (four kinematic ray equations and four dynamic ray equations) in 2-D and 18 differential

equations (six kinematic ray equations and 12 dynamic ray equations) in 3-D. The solution to the wave

equation for a given source and receiver pair (xs,xr) using raytracing is from equation (2.8) given as:

p(xs,xr, ω) =

∫
g(xs,xr, ω)S (ω)dxdω (2.33)

where g(s, r, ω) is (see equation (2.13)):

g(xs,xr, ω) =
A(xs,xr)e(−iωT (xs,xr)−i π4 )

ω
. (2.34)

and in 3-D (from equation (2.9)) given as:

g(xs,xr, ω) = A(xs,xr)e−iωT (xs,xr). (2.35)

By using geometrical ray theory, one replaces the partial differential equations of the wave equation

that are solved for a volume by ordinary differential equations that are solved along a line. The method

gives insight into wave propagation by separating the wavefield into a set of individual rays and allows

for the possibility to track paths through a smooth medium in a simple, fast and intuitive way. The

disadvantage of the method is that it requires the medium to be smoothly varying over the distance

of a seismic wavelength. If the medium has sharp interfaces, the ray paths generated from geometrical

ray theory will be incorrect. A second issues is that the amplitudes of the wavefield are incorrectly

computed in media where ray paths overlap each other and multipathing occur.
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2.5 Ray-Born Approximation

It is often convenient to split the seismic velocity model into a slowly varying part c0 and a rapidly

varying part c1 .

c(x) = c0 (x) + c1 (x). (2.36)

The Born approximation is a simple method that can be used to solve the wave equation (2.6) for

such media. The traveltime and amplitude are computed in the smoothly varying background model

c0 using raytracing, while scattering is generated from the contrast between the smoothly varying

background model and the small perturbations in the rapid varyingly part c1 . This will reduce the

complexity of the forward modelling problem and thus lowering the computation time of the problem.

The derivation of the Born approximation is as follows from Hudson (1977), (Cerveny, 2005, p. 93)

and Moser (2012). The Born approximation is derived by assuming that the Green function of the

slowly varying background model c0 satisfying equation (2.7):

ω2

c2
0 (x)

g0 (x,xs, ω) + ∆g0 (x,xs, ω) = δ(x− xs), (2.37)

is known and available. Our goal is to find a solution to the wave equation (2.6) in the form:

p = p0 + p1 . (2.38)

p0 is the solution to wave equation (2.6) when c1 ≡ 0 . Given a source s(xs, ω), the background wave

is given as:

p0 (x, ω) =

∫
g0 (x,xs, ω)s(xs , ω)dx. (2.39)

We can now insert equation (2.38) in equation (2.6) and subtract the background wave:

ω2c−20 (x)[p(x, ω)− p0 (x, ω)] + ∆[p(x, ω)− p0 (x, ω)] = ω2 [c−20 .(x)− c−2 (x)]p(xs, ω) (2.40)

Using the right hand side of ((2.40)) as the source and adding the background wave leads to:

p(x, ω) = p0 (x, ω) + ω2

∫
g0 (x,xs, ω)[c−20 (xs)− c−2 (x)]p(xs, ω)dx. (2.41)

This equation is called the Lippmann-Schwinger equation for the scattering of a wavefield p by a

scatterer c−20 (x) − c−2 (x): It is an exact, but implicit equation for the complete wavefield p. An

approximate solution to the wavefield can be found by linearization. From the Lippman Schwinger

equation we have that the complete wavefield p can be expressed as:

p = p0 + Lp. (2.42)
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By rearranging the equation we arrive at:

p = (L− I )−1p0 , (2.43)

where I is the identity matrix. The equation can be linearized by performing a Taylor series expansion

and ignoring the quadratic and higher order terms, resulting in the following equation:

p ∼= p0 + Lp0 , (2.44)

where Lp0 = p1 is expressed as:

p1 (x, ω) = ω2

∫
g0 (x,xs, ω)[c−20 (xs)− c−2 (x)]p0 (xs, ω)dx. (2.45)

The term on the right-hand side is the first order Born approximation for the scattered wave. For a

point source xs and a receiver at point xr the Born approximation is given as:

p1 (xs,xr, ω) = 2ω2 s(ω)

∫
g0 (xs,x, ω)g0 (xr,x, ω)c1 (x)c−30 (x)dx, (2.46)

where p1 (xs,xr, ω) is the pressure field created by the scatterer c1 (x) given a source xs and a receiver

xr as shown in figure 2.3, ω = 2πf , f is the frequency, and s(ω) is the source wavelet. It is often

useful to use geometrical ray theory to compute the Green functions g0 (xs,x, ω) and g0 (xr,x, ω) in

the background medium c0 . If the amplitude A(xs,x) and travel times T (xs,x) are computed using

geometrical ray theory, the Born approximation is called the ray-Born approximation. If the travel

times and amplitudes are computed using straight line distance in a homogenous velocity model it

is called the Born approximation. The ray-Born/Born approximation (2.46) is only valid for small

scatterers c1 relative to the background model c0.

 c0
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Figure 2.3: The Born approximation
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Forward Modelling: Numerics
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3.1 Outline

The purpose of this chapter is to perform a comparison between three different forward modelling

methods, geometrical ray theory, the ray-Born approximation and the finite difference method. The

implementation of each method will be discussed as a part of the comparison. The methods are used to

solve the wave equation in both homogenous and heterogenous media, but with different accuracy and

cost. The comparison is performed because the more accurate finite difference method is computation-

ally more expensive. The comparison will allow us to evaluate the accuracy and cost of the ray-Born

approximation relative to the finite difference method and it will give a good indication on when the

ray-Born approximation can be used as a replacement instead of the finite difference method. The

comparison between the finite difference method and the ray-Born approximation that is presented in

this chapter has not previously been performed.

The comparison is performed for four different velocity models; three basic ones and one complex one.

The three basic models that have been chosen are a model with a single Gaussian scatterer, a layered

medium and a random Gaussian medium. Each of the three basic models have been evaluated using a

constant velocity background model and a 1-D linearly increasing velocity model. The complex model

is the SEG/EAGE overthrust model.

3.2 Implementation of Geometrical Ray Theory

In order to perform raytracing we must solve the kinematic ray equations ((2.18) and (2.19)) and the

dynamic ray equations ((2.26) and (2.27)) with their respective initial conditions. These equations can

be solved using the Runge-Kutta method that is used to advance the solution of the equations one

step at the time (e.g Kincaid and Cheney (2002)). Let us first consider the differential equation:

dx

dt
= f (t , x ), (3.1)

with the initial condition x (t0 ) = x0 . The taylor series of x (t + h) is given as:

x (t + h) = x (t) + h
dx

dt
+

h2

2 !

d2x

dt2
+

h3

3 !

d3x

dt3
+ · · ·. (3.2)

From equation (3.1) the second order partial derivative of x can be defined as:

d2x

dt2
=
∂f (t , x )

∂t
+
∂f (t , x )

∂x

dx

dt
. (3.3)

By inserting equation (3.3) into equation (3.2) and truncating the Taylor series, the first three terms

can be written as:

x (t + h) = x + hf +
1

2
h2
(∂f (t , x )

∂t
+
∂f (t , x )

∂x

dx

dt

)
+ O(h3 ), (3.4)
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and rewritten as:

x (t + h) = x +
1

2
hf +

1

2
h
[
f + h

∂f (t , x )

∂t
+ h

∂f (t , x )

∂x

dx

dt

]
+ O(h3 ). (3.5)

The partial derivatives in the third term can now be eliminated by computing the Taylor series of

f (t + h, x + hf ):

f (t + h, x + hf ) = f + h
∂f (t , x )

∂t
+ h

∂f (t , x )

∂x

dx

dt
+ O(h2 ). (3.6)

By inserting equation (3.6) into equation (3.5) the equation is reduced to:

x (t + h) = x (t) +
h

2
f (t , x ) +

h

2
f (t + h, x + hf (t , x )). (3.7)

Solving differential equations in the way seen in equation (3.7) is called a second order Runge-Kutta

method. The derivation shown is performed using a scaler x (t), but holds equally well for a vector x(t)

with components [x (t), y(t), z (t)]. The Runge-Kutta method is used to solve differential equations by

advancing the solution one step at the time. The advantage of the method is that ones does not have

to determine formula’s for d2 x
dt2

, d3x
dt3

and d4x
dt4

by successive differentiation of equation (3.1) as is the

case when using the Taylor series method. The ode23 function in Matlab is used to solve differential

equations using the Runge-Kutta method and will select the proper time steps required in order to

solve the ray equations accurately. While keeping the source position constant and changing the takeoff

angles it is possible to trace rays originating from the source position throughout the entire model as

seen in figure 3.1. In order to get a good coverage of rays throughout the entire model, the takeoff

angle is increased by 0.5 degrees for each ray originating from the source position. The travel time,

amplitude and position are computed along the ray path of each ray and stored in a vector.

3.3 The Ray-Born Approximation

In order to compute the ray-Born approximation one needs to divide a velocity model into a background

velocity model c0 (x) and a scatterer c1 (x), where c(x) = c0 (x)+c1 (x). Raytracing is performed in the

background velocity model and the traveltime and amplitude is computed along the ray path of each

ray. The traveltime and amplitude along the ray paths are thereafter interpolated onto a square grid

x. The interpolation is performed using Delaunay triangulation. Delaunay triangulation will divide

data into a grid consisting of triangles. Using these triangles, interpolation onto a square grid can be

performed. Delaunay triangulation was chosen due to its ability to accurately perform interpolation

on scattered grids. This process is repeated for each source and receiver in the model. In figure 3.2

and figure 3.3, it is possible to see the traveltime and amplitude at all grid points given the source

position and ray paths seen in figure 3.1. Using the traveltimes and amplitudes computed for all grid

points for each source and receiver it is possible to compute synthetic seismograms using the ray-Born

approximation. The ray-Born approximation was derived in section 2.5 and is given as:
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p1 (xs,xr, ω) = 2ω2 s(ω)

∫
g0 (xs,x, ω)g0 (xr,x, ω)c1 (x)c−30 (x)dx. (3.8)

For each ω, the synthetic seismogram for the scatterers c1 can be computed for all source/receiver

pairs. When the synthetic seismogram for all ω has been computed, an inverse Fourier transformation

can be performed. This will yield the time domain synthetic seismograms for all source/receiver pairs.

It can be noted that it is possible to choose which x the synthetic seismogram is computed for. This

means that it is possible to target a specific area or reflector in the model and compute the synthetic

seismogram only for that area or reflector. This will reduce the computation time of the ray-Born

approximation.

3.4 Finite Difference Method

The finite difference method is a method that is used to solve partial differential equations. Instead of

finding the exact solution at any point in the function, one attempts to find an approximate solution

at discrete points in the function. The second order central finite difference solution of the wave

equation is computed by using the second order numerical derivative. The derivation of the second

order numerical derivative follows Kincaid and Cheney (2002). Taylor expansion is performed on

f (x + h) and f (x − h):

f (x + h) = f (x ) + hf ′(x ) +
h2

2
f ′′(x ) +

h3

3 !
f ′′′(ξ) +

h4

4 !
f ′′′′(ξ), (3.9)

f (x − h) = f (x )− hf ′(x ) +
h2

2
f ′′(x )− h3

3 !
f ′′′(ξ) +

h4

4 !
f ′′′′(ξ). (3.10)

By adding one of these equations to the other and rearranging, we obtain the second order numerical

derivative:

f ′′(x ) =
1

h2

[
f (x + h)− 2f (x ) + f (x − h)

]
− h2

12
f ′′′′(ξ). (3.11)

We assume that h → 0 , which results in h2

12
f ′′′′(ξ) → 0 . Yielding the second order central finite

difference:

f ′′(x ) =
1

h2

[
f (x + h)− 2f (x ) + f (x − h)

]
. (3.12)

The equation is easily expanded into 2-D by adding another term:

f ′′(x , y) =
1

h2

[
f (x + h, y)− 2f (x , y) + f (x − h, y)

]
+

1

h2

[
f (x , y + h)− 2f (x , y) + f (x , y − h)

]
. (3.13)

We can now replace ∂2p
∂t2

with (3.13) in the wave equation (2.1) (e.g Youzwishen and Margrave (1999),
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Geiger and Daley (2003), and Lehtinen (2003)):

pn+1
i ,j − 2pn

i ,j + pn−1
i ,j

∆t2v2
−∇2pn

i ,j = 0 , (3.14)

and rearrange the equation in order to find the pressure field for the next time step:

pn+1
i ,j = 2pn

i ,j − pn−1
i ,j + ∆t2v2∇2pn

i ,j , (3.15)

where

∇2p =
pn
i+1 ,j − 2pn

i ,j + pn
i−1 ,j

∆x
+

pn
i ,j+1 − 2pn

i ,j + pn
i ,j−1

∆z
, (3.16)

and pn+1
i ,j , pn

i ,j , pn−1
i ,j are the pressure fields at the time steps n + 1 , n and n − 1 , ∆t is the sampling

frequency in time and ∆x ,∆z is the grid spacing in the x and z direction. The accuracy of the finite

difference solution of equation (3.15) depends both on the grid spacing ∆x and the sampling rate ∆t

in order for the solution to be accurate. The advantage of the finite difference method is that the

entire wave field will be computed accurately. The equation is solved iteratively for each time step ∆t

by first updating the pressure field and then inserting the amplitude at the nth element in the Ricker

wavelet (2.4) , Rn at the source position xs. This is performed for as many time steps as needed. The

entire wave field will be computed, including effects such as multiple scattering.

3.4.1 Absoring Boundary Conditions

One of the problems with the finite difference method is the boundaries of the model. When us-

ing the finite difference method, the wavefield will be reflected at the boundaries and back into the

model. These reflections affect the synthetic seismograms and will create a systematic error in the

seismograms. This problem is normally solved by expanding the boundaries and adding absorbing

boundary conditions that absorb the energy and prevents it from being reflected back into the model.

The choice that has been taken in this thesis is however to expand the boundaries so much that the

reflections from the boundaries do not occur within the set recording time. This choice was taken as

it is impossible for the absorbing boundary conditions to absorb all of the energy an some effect will

still be seen at the synthetic seismograms. The solution taken in this thesis is therefore slower but

more accurate than using absorbing boundary conditions.

3.5 Accuracy and Cost

When performing forward modelling it is essential that the result that is obtained is accurate and that

the computation is as computationally inexpensive as possible. This section will discuss the accuracy

of the ray-Born approximation and the finite difference method as well as how the computational cost

changes for different modelling parameters.
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3.5.1 Accuracy

There are several factors that decide whether or not the finite difference method will yield an accurate

result. These factors are the grid spacing ∆x and the time step ∆t. In order for the finite difference

method to remain stable the time step must satisfy the criteria shown in Lines et al. (1999):

∆t < η
∆x

vmax

, (3.17)

where η is set as 0.3 and vmax is the maximum velocity of the velocity model. If the time step ∆t

exceeds this value the finite difference method will not be reliable and give inaccurate results. The

gridspacing ∆x must satisfy the criteria (e.g Alford et al. (1974)):

∆x <
vmin

6fmax

, (3.18)

where vmin is the minimum velocity of the velocity model and fmax is the maximum frequency of the

source wavelet. If the gridspacing ∆x exceeds this value numerical dispersion will take place and the

wavefield after a reflection will be distorted. Assuming that the time step and grid spacing is suffi-

ciently small, the accuracy of the finite difference method is very high. It will effectively reproduce

direct arrivals, reflections, refractions, diffraction, multiple scattering.

Assuming that the time step and grid spacing is sufficiently small, the ray-Born approximation will

generally not be as accurate as the finite difference method. There are two reasons why this is not pos-

sible. The Green functions are computed in the background model, giving inaccuracy in the traveltime

and amplitude from reflections from scatterers c1 . In addition the ray-Born approximation only com-

putes first order scattering and not multiple scattering. This means that the ray-Born approximation

will not reproduce the full wavefield and can therefore not be completely accurate.

3.5.2 Cost

The criteria for the time step (3.17) and gridspacing (3.18) can be used to say something about the

computation time of the finite difference method. If the maximum frequency of the source wavelet was

increased by a factor of two, the gridspacing ∆x would have to be halved in order to avoid numerical

dispersion. In a 2-D model this would result in an increase of grid points by a factor of four. In a

3-D model this would increase the number of grid points by a factor of eight. As the time step is

also dependent on the grid spacing ∆x , the time step ∆t would need to be halved. This means that

increasing the maximum frequency of the source wavelet by a factor of two would result in an increase

of computation time of a factor of eight in a 2-D model and a factor of 16 in a 3-D model. The

significant increase in computation time with increasing frequency sets limits the maximum frequency

that we can use in forward modelling.

The ray-Born method is less strictly dependent on these criteria than the finite difference method.



22 Forward Modelling: Numerics

The raytracing does not need to be performed in the exact velocity model, but can be performed

in a coarse model with larger grid spacing. The ray paths can be computed in a coarse model with

larger grid spacing because the velocity and direction of the ray path is determined through linear

interpolation along the ray path. The accuracy of interpolation should not decrease unless the velocity

model is very complex. When all the ray paths are computed, the traveltime and amplitude can be

interpolated onto a denser grid that is used with the ray-Born approximation. The raytracing is the

computationally most expensive part of the ray-Born approximation and performing raytracing on a

coarser grid will therefore greatly reduce the cost. Another advantage of the ray-Born approximation is

that it is possible to target a specific part of a model and generate synthetic seismograms for only that

area. This allows for very fast forward modelling for small target areas. These advantages allow for a

quicker solution of the wave equation when using the ray-Born approximation compared to the finite

difference method, especially for larger models with a high cost. Although the ray-Born approximation

has a lot of advantages compared to the finite difference methods it also has a drawback. When using

the ray-Born approximation we have to compute the Green function for all the sources and all the

receivers. When using the finite difference method we only have to solve for the sources. If we have

very many receivers relative to the number of sources the ray-Born approximation might be a bit slower

than the finite difference method. This is because when using the ray-Born approximation we need to

compute the Green functions for all of the receivers, while when using the finite difference method we

only have to consider the sources. The computation time of the the finite difference method is given

as a function of number of sources and number of grid points:

Cfd = f (ns , n), (3.19)

where Cfd is the computation time of the finite difference method, ns is the number of sources and

n is the number of grid points. The computation time of the ray-Born approximation is given as a

function of the number of sources, number of receivers, number of grid points and a factor ξ that is

dependent on the roughness of the raytracing model.

Crb = f (ns , nr , n, ξ), (3.20)

where Crb is the computation time of the ray-Born approximation and nr is the number of receivers.

3.6 Models

In this section we will discuss the different models that have been used in this thesis. The three basic

models that have been chosen are a model with a single Gaussian scatterer, a layered medium and

a random Gaussian medium. Each of the three basic models are evaluated using a constant velocity

background model and a 1-D linearly increasing velocity model. In addition to the basic models,

the accuracy of the ray-Born approximation is evaluated for one complex velocity model resembling

an overthrust fault. Modelling will be performed for each of the three basic models with a velocity
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contrast from the background model of 23 m/s to 230 m/s. The velocity contrasts were defined as

one to ten percent of the constant velocity background model. This velocity contrast will hereafter be

referred to as the perturbation strength.

3.6.1 Background Models

In order to reproduce the scatterers from the three basic scattering models, two different background

models have been used. The first background model is a constant velocity model that can be seen in

figure 3.4. The second background model is a 1-D linearly increasing velocity model shown in figure 3.5.

In each of the figures the source position is marked with a red cross and the receiver array marked with

a green cross. This also holds for all models shown in this thesis. When performing forward modelling

in the 1-D background model it is expected that the accuracy of the ray-Born approximation relative

to the finite difference method is less accurate than in the constant background velocity model. The

reason for this is that in the constant background velocity model the ray paths will be straight and

it is therefore possible to compute the exact traveltime and amplitude for each grid point when using

the Born approximation. The Green function used for the 1-D background velocity model is not exact

but approximate. Doing this comparison with the same scatterer and two different background models

will show us how much the background model will affect the results from the ray-Born approximation.

It will give us an idea on whether or not the ray-Born approximation is an alternative to the finite

difference method in seismic exploration as well as acoustics oceanography.

3.6.2 Gaussian Model

The first model is a model with a Gaussian scatterer. The Gaussian model has been generated using

the following formula:

m = c1e
− r2

r20 , (3.21)

where c1 is the maximum amplitude of the Gaussian, r0 is the radius of the Gaussian and r is given

as:

r =
√
λx (x − x1 )2 + λz (z − z1 )2 . (3.22)

x and z is the position, x1 and z1 is the centre position of the Gaussian and λx and λz define the

shape of the Gaussian. Forward modelling for this model is performed for perturbation strengths (c1 )

ranging from 23 m/s to 230 m/s. In figure 3.6 the model is plotted with a maximum perturbation

strength of 230 m/s. In figures 3.7 and 3.8 the relative difference between the scatterer and the two

background models can be observed. The maximum relative difference is 10 percent in the constant

velocity background model and 7.5 percent in the 1-D velocity background model. The model is

designed to see how well the ray-Born approximation could reproduce the wavefield caused by a single

small and smooth scatterer relative to the finite difference method. This is the most basic model in



24 Forward Modelling: Numerics

 O
ffset(m

)

 Depth(m)

 

 

0
500

1000
1500

2000
2500

3000
3500

4000
4500

0

500

1000

1500

2000

2500

3000

Velocity (m/s)

2300

2300.1

2300.2

2300.3

2300.4

2300.5

2300.6

2300.7

2300.8

2300.9

2301

F
ig
u
re

3
.4
:

C
on

stan
t

b
ack

grou
n

d
V

elo
city

M
o
d

el



Models 25

 O
ffs

et
(m

)

 Depth(m)

 

 

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00
45

00

0

50
0

10
00

15
00

20
00

25
00

30
00

Velocity (m/s)

25
00

30
00

35
00

40
00

45
00

F
ig
u
re

3
.5
:

1D
b

ac
k
gr

ou
n

d
V

el
o
ci

ty
M

o
d

el



26 Forward Modelling: Numerics

 O
ffset(m

)

 Depth(m)

 

 

0
500

1000
1500

2000
2500

3000
3500

4000
4500

0

500

1000

1500

2000

2500

3000

Velocity (m/s)

0 50 100

150

200

F
ig
u
re

3
.6
:

V
elo

city
m

o
d

el
w

ith
a

sin
gle

G
au

ssian
scatterer



Models 27

 O
ffs

et
(m

)

 Depth(m)

 

 

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00
45

00

0

50
0

10
00

15
00

20
00

25
00

30
00

(%)

012345678910

F
ig
u
re

3
.7
:

R
el

a
ti

ve
d

iff
er

en
ce

b
et

w
ee

n
th

e
co

n
st

an
t

v
el

o
ci

ty
b

ac
k
gr

ou
n

d
m

o
d

el
an

d
th

e
G

au
ss

ia
n

sc
at

te
re

r



28 Forward Modelling: Numerics

 O
ffset(m

)

 Depth(m)

 

 

0
500

1000
1500

2000
2500

3000
3500

4000
4500

0

500

1000

1500

2000

2500

3000

(%)

0 1 2 3 4 5 6 7

F
ig
u
re

3
.8
:

R
elative

d
iff

eren
ce

b
etw

een
th

e
1-D

v
elo

city
b

ack
grou

n
d

m
o
d

el
an

d
th

e
G

au
ssian

scatterer



Models 29

 O
ffs

et
(m

)

 Depth(m)

 

 

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00
45

00

0

50
0

10
00

15
00

20
00

25
00

30
00

Velocity (m/s)

05010
0

15
0

20
0

F
ig
u
re

3
.9
:

A
ve

lo
ci

ty
m

o
d

el
w

it
h

a
la

ye
r



30 Forward Modelling: Numerics

 O
ffset(m

)

 Depth(m)

 

 

0
500

1000
1500

2000
2500

3000
3500

4000
4500

0

500

1000

1500

2000

2500

3000

(%)

0 1 2 3 4 5 6 7 8 9 10

F
ig
u
re

3
.1
0
:

R
elative

d
iff

eren
ce

b
etw

een
th

e
con

stan
t

v
elo

city
b

ack
grou

n
d

m
o
d

el
an

d
velo

city
m

o
d

el
w

ith
a

layer



Models 31

 O
ffs

et
(m

)

 Depth(m)

 

 

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00
45

00

0

50
0

10
00

15
00

20
00

25
00

30
00

%

01234567

F
ig
u
re

3
.1
1
:

R
el

at
iv

e
d

iff
er

en
ce

b
et

w
ee

n
th

e
1-

D
v
el

o
ci

ty
b

ac
k
gr

ou
n

d
m

o
d

el
an

d
ve

lo
ci

ty
m

o
d

el
w

it
h

a
la

ye
r



32 Forward Modelling: Numerics

 O
ffset(m

)

 Depth(m)

 

 

0
500

1000
1500

2000
2500

3000
3500

4000
4500

0

500

1000

1500

2000

2500

3000

Velocity (m/s)

−200

−150

−100

−50

0 50 100

150

200

F
ig
u
re

3
.1
2
:

V
elo

city
m

o
d

el
w

ith
a

ran
d

om
G

au
ssian

m
ed

ia
w

ith
a

correlation
len

gth
of

50
m



Models 33

 O
ffs

et
(m

)

 Depth(m)

 

 

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00
45

00

0

50
0

10
00

15
00

20
00

25
00

30
00

(%)

−8−6−4−202468

F
ig
u
re

3
.1
3
:

R
el

a
ti

ve
d

iff
er

en
ce

b
et

w
ee

n
th

e
co

n
st

an
t

ve
lo

ci
ty

b
ac

k
gr

ou
n

d
m

o
d

el
an

d
th

e
ra

n
d
om

G
au

ss
ia

n
m

ed
ia

w
it

h
a

co
rr

el
at

io
n

le
n

gt
h

of
50

m



34 Forward Modelling: Numerics

 O
ffset(m

)

 Depth(m)

 

 

0
500

1000
1500

2000
2500

3000
3500

4000
4500

0

500

1000

1500

2000

2500

3000

(%)

−6 −4 −2 0 2 4 6

F
ig
u
re

3
.1
4
:

R
ela

tive
d

iff
eren

ce
b

etw
een

th
e

1-D
velo

city
b

ack
grou

n
d

m
o
d

el
an

d
th

e
ran

d
om

G
au

ssian
m

ed
ia

w
ith

a
correlation

len
gth

of
50

m



Models 35

 O
ffs

et
(m

)

 Depth(m)

 

 

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00
45

00

0

50
0

10
00

15
00

20
00

25
00

30
00

Velocity (m/s)

−2
00

−1
50

−1
00

−5
0

05010
0

15
0

20
0

F
ig
u
re

3
.1
5
:

V
el

o
ci

ty
m

o
d

el
w

it
h

a
ra

n
d

om
G

au
ss

ia
n

m
ed

ia
w

it
h

a
co

rr
el

at
io

n
le

n
gt

h
of

50
0

m



36 Forward Modelling: Numerics

 O
ffset(m

)

 Depth(m)

 

 

0
500

1000
1500

2000
2500

3000
3500

4000
4500

0

500

1000

1500

2000

2500

3000

(%)

−10

−8 −6 −4 −2 0 2 4 6 8 10

F
ig
u
re

3
.1
6
:

R
ela

tive
d

iff
eren

ce
b

etw
een

th
e

con
stan

t
velo

city
b

ack
grou

n
d

m
o
d

el
an

d
th

e
ran

d
om

G
au

ssian
m

ed
ia

w
ith

a
correlation

len
gth

of
5
00

m



Models 37

 O
ffs

et
(m

)

 Depth(m)

 

 

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00
45

00

0

50
0

10
00

15
00

20
00

25
00

30
00

(%)

−8−6−4−2024

F
ig
u
re

3
.1
7
:

R
el

at
iv

e
d

iff
er

en
ce

b
et

w
ee

n
th

e
1-

D
ve

lo
ci

ty
b

ac
k
gr

ou
n

d
m

o
d

el
an

d
th

e
ra

n
d

om
G

au
ss

ia
n

m
ed

ia
w

it
h

a
co

rr
el

at
io

n
le

n
gt

h
of

50
0

m



38 Forward Modelling: Numerics

 O
ffset(m

)

 Depth(m)

 

 

0
2000

4000
6000

8000
10000

12000

0

500

1000

1500

2000

2500

3000

3500

Velocity (m/s)

3300

3400

3500

3600

3700

3800

3900

4000

4100

4200

4300

F
ig
u
re

3
.1
8
:

B
a
ck

g
ro

u
n

d
m

o
d

el
for

th
e

S
E

G
/E

A
G

E
O

verth
ru

st
m

o
d

el
from

A
m

in
zad

eh
et

al.
(1997)



Models 39

 O
ffs

et
(m

)

 Depth(m)

 

 

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

Velocity (m/s)

−3
00

−2
00

−1
00

010
0

20
0

30
0

40
0

F
ig
u
re

3
.1
9
:

S
ca

tt
er

er
fo

r
th

e
S

E
G

/E
A

G
E

O
v
er

th
ru

st
m

o
d

el
fr

om
A

m
in

za
d

eh
et

al
.

(1
99

7)



40 Forward Modelling: Numerics

 O
ffset(m

)

 Depth(m)

 

 

0
2000

4000
6000

8000
10000

12000

0

500

1000

1500

2000

2500

3000

3500

Velocity (m/s)

3200

3400

3600

3800

4000

4200

4400

F
ig
u
re

3
.2
0
:

S
E

G
/E

A
G

E
O

v
erth

ru
st

m
o
d

el
from

A
m

in
zad

eh
et

al.
(1997)



Models 41

the thesis and it is therefore expected that the results from the ray-Born approximation will be very

close to the results from the finite difference method for this model. The model will therefore only

produce one reflection and no multiple scattering.

3.6.3 One-Layer Model

The second model is a model with a sharp discontinuous layer. Forward modelling for this model

is performed for perturbation strengths ranging from 23 m/s to 230 m/s. The velocity model is

plotted with a perturbation strength of 230 m/s in figure 3.9. In figures 3.10 and 3.11 the relative

difference between the one-layer model and the two background models can be observed. The maximum

relative difference is 10 percent in the constant background velocity model and 7.5 percent in the 1-D

background velocity model. The model was designed for two different purposes. The first purpose

was to see how well the ray-Born approximation can reproduce reflections from sharp interfaces.

The second purpose was to identify how much the reflection from the lower boundary of the layer

is timeshifted when using the ray-Born approximation relative to the finite difference method. The

ray-Born approximation is expected to accurately reproduce the reflection from the upper boundary

of the layer, while the reflections from the lower boundary are shifted in time. The timeshift from the

lower boundary is expected to increase with increasing perturbation strength.

3.6.4 Random Gaussian Model

The third model is a model that has been generated with a Gaussian correlation function that is

presented in Baig and Dahlen (2004) as:

m(||x− x′||) = ε2σ2 exp−
||x−x′||

a2 , (3.23)

where ε is the RMS strength of the heterogeneity given as:

ε =
δσ2 (x)

σ2
. (3.24)

a is the correlation length, which determines the distance between two uncorrelated points, ε is the

slowness of the background velocity model c0 and δσ is the slowness of the scatterer. Forward modelling

for this model is performed for perturbation strengths ranging from 23 m/s to 230 m/s. Models have

been created with increasing correlation length from 50 to 500 m. In figure 3.12 a Gaussian medium

with a correlation length of 50 m and a perturbation strength of 230 m/s is plotted. In figure 3.13 and

3.14 the relative difference between the model and the two background models can be observed. The

maximum relative difference is 10 percent in the constant background velocity model and 7.5 percent

in the 1-D background velocity model. In figures 3.15 a Gaussian medium with a correlation length of

500 m and a perturbation strength of 230 m/s has been plotted. In figure 3.16 and 3.17 the relative

difference between the model and the two background models can be observed. The maximum relative

difference is 10 percent in the constant background velocity model and 8 percent in the 1-D background
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velocity model. These models have been used for several reasons. The first reason is the possibility

to see if the second order scattering produced by the finite difference method has a significant effect

on the relative difference between the ray-Born approximation and the finite difference method. It

is expected that significant second order scattering will be observed at higher perturbation strengths

while almost no second order scattering will be observed at low perturbation strengths. The second

reason is to observe how the size of the scatterer will influence the error of the ray-Born approximation

relative to the finite difference method. The larger scatterers will result in greater timeshifts, especially

at higher perturbation strengths.

3.6.5 Overthrust Model

The fourth model is a 2-D slice of the SEG/EAGE 3-D overthrust model from Aminzadeh et al.

(1997). Due to the fact that the raytracer used in this thesis does not compute amplitudes accurately

in the case of multipathing, the SEG/EAGE Overthrust model has been slightly modified in order

to reduce the multipathing effects. The model consists of a smoothly varying background model that

shown in figure 3.18 and a scatterer seen in figure 3.19. The sum of the background model and the

scatterer becomes the overthrust model seen in figure 3.20. The background velocity model increases

very smoothly with depth. Towards the centre of the model the velocity is higher and the velocity

increases more with depth. Due to the variations in the background model, multipathing will exist for

larger offset and the amplitudes and traveltimes that are computed will not be correct in areas with

multipathing. The scatterer is very complex with layers of varying thicknesses, perturbation strengths

and dip. The relative velocity difference to the background model is roughly 10-15 percent with a

maximum of 20 percent. It is expected that multipathing and second order scattering will make it

difficult for the ray-Born approximation to give accurate results for the entire model.

3.7 Results

In this section we will for the two background models and the four scattering models discussed in the

previous section perform a comparison between the finite difference method and the ray-Born approxi-

mation. The comparison consists of comparing the synthetic seismograms generated by raytracing and

the ray-Born approximation with the synthetic seismograms generated by the finite difference method.

The difference between the methods will be evaluated using the RMS (root mean square) error given

as:

εrms =

√∑n
t=0 (x1 ,t − x2 ,t)2

n
, (3.25)

where x1 ,t and x2 ,t are two time series and n is the number of samples in each time series. The

comparison is performed for centre frequency of the source wavelet between 5 and 15 Hz. For each

frequency, perturbation strength and offset, the RMS (root mean square) error of each trace will be

computed in order to evaluate how these parameters affect the accuracy of the ray-Born approximation.
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In order to increase the accuracy of the RMS error εrms computation and accurately evaluate the error

of the ray-Born approximation a few adjustments have been made. The first adjustment scales the

synthetic seismograms so that the maximum amplitude of each trace is equal to one. This scaling is

performed for several reasons: The first reason is that higher perturbation strengths will create stronger

reflections than weak perturbation strengths. Stronger reflections will create larger error between the

ray-Born approximation and the finite difference method even if the relative difference between the

methods do not change. With the scaling it is possible to compare the relative difference between the

methods for different perturbation strengths. The second reason is that due to geometrical spreading,

the amplitude will be lower at higher offset than at low offset. The error can therefore be seen as less

at higher offset, while the relative difference between the methods is higher. The second adjustment

that has been taken is that only the nonzero values of the traces have been used when computing

the RMS error. The reflections are longer in time for low frequencies than for high frequencies. If

we were to select the whole trace, the low frequency source wavelets would have less zeroes than high

frequencies and would therefore show higher error than high frequencies while the relative difference

was less.

3.7.1 Direct Arrival

A seismic trace consists of the direct arrival u0 and a scattered arrival u1 where u = u0 + u1 . Before

we attempt to compare the scattered arrivals u1 computed by the ray-Born approximation and the

finite difference method we need to do a comparison between the direct arrival produced by raytracing

and the finite difference method. The direct arrival will not be influenced by the perturbation c1 , but

will be generated from the background model only. In figure 3.21 a comparison between the finite

difference method and raytracing has been performed in the constant background velocity model 3.4

and the 1-D background velocity model 3.5. In the seismogram comparison a source wavelet with a

center frequency of 15 Hz has been used. In figure 3.21a the direct arrival in the constant velocity

background model has been plotted. The raytracing seismogram perfectly overlaps with the finite

difference seismogram. In figure 3.21b the direct arrival in the 1-D velocity background model has

been plotted. At the receivers closest to the source, the synthetic seismograms overlap quite well, but

at receivers further from the source it is seen that the amplitude of the raytracing seismograms is less

than the amplitude of the finite difference seismograms. In addition, there is a phase shift in the finite

difference seismogram relative to the raytracing seismogram. In figure 3.21c it can be seen how the

RMS error of the raytracing increases with increasing frequency and offset in the constant velocity

background model. In figure 3.21d it can be seen how the RMS error of the raytracing increases

with frequency and offset in a 1-D velocity background model. in both cases the RMS error increases

with both frequency and offset. The RMS error is however more strongly dependent on the offset

in the 1-D velocity background model. A higher error is also observed when using the 1-D velocity

background model. These tests show that the direct arrival is accurately reproduced in the constant

velocity background model, but due to the amplitude decay of the raytracing and the phase shift of
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the finite difference method, the raytracing is unable to reproduce the pressure field in the 1-D velocity

background model at larger offsets. It is unknown whether or not it is the finite difference method or

the raytracing that is inaccurate.

3.7.2 Gaussian Model

In figure 3.22 a comparison between the finite difference method and the ray-Born approximation is

shown for the constant background model (figure 3.4) with a Gaussian scatterer (figure 3.6). In figure

3.22a the seismograms, generated using the ray-Born approximation and the finite difference method

are plotted on top of each other. A perturbation strength of 230 m/s and a centre frequency of 15 Hz

has been used. The relative perturbation strength between the background model and the scatterer

can be seen in figure 3.7. The second half of the reflection is slightly shifted in time in the ray-Born

approximation relative to the finite difference method. This timeshift is due to the fact that the

travel times and amplitudes used in the ray-Born approximation are generated from the background

model. At low offset the reflections are very weak, indicating that not much energy is reflected back

towards the source position. In figure 3.22b the RMS error is plotted as a function of frequency and

perturbation strength in order to see how these parameters affect the RMS error. The RMS error has

been summed over all offset in order to use as much data as possible for the comparison. The RMS

error increases with both frequency and perturbation strength, indicating a reduction in accuracy of

the ray-Born approximation. One should therefore be cautious when using high frequencies and large

perturbation strengths. In figure 3.22c and 3.22d I show how the offset affects the accuracy of the

ray-Born approximation. In 3.22c the highest error is observed with a Ricker wavelet centre frequency

of 15 Hz at offset 200m. The error increases again at roughly 2 km offset. In 3.22d the highest error is

observed at 230 m/s perturbation strength at 200 m offset. The error increases again at higher offset.

The result from these figures implicate that the ray-Born approximation is having problems with weak

reflections. At high offset the RMS error increases, indicating that the error is increasing with offset

with the exception of the weak reflections at low offset. Even though there is a large relative difference

between the ray-Born approximation and the finite difference method at low offset, this error can be

disregarded due to the low amplitude of the seismograms at this offset.

The same comparison has been performed with a 1-D background model (figure 3.5) and a Gaussian

scatterer (figure 3.6). In figure 3.23a the seismogram, generated using the ray-Born approximation and

the finite difference method are plotted on top of each other. A perturbation strength of 230 m/s and

a centre frequency of 15 Hz has been used. The relative perturbation strength between the background

model and the scatterer can be seen in figure 3.8. The second half of the reflection is slightly shifted in

time when using the ray-Born approximation relative to the finite difference method. This timeshift

is caused bythe fact that the travel times and amplitudes used are the ray-Born approximation is

generated from the background model. At low offset the reflections are very weak, indicating that

not much energy is reflected back towards the source position. The velocity in the 1-D background
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model is linearly increasing, the reflection is therefore registered at a earlier time than in the constant

velocity background model. It can also be observed that the reflection is shorter in time for the 1-D

background model, which occurs as an effect of having a smooth scatterer and a smooth background

model. In figure 3.23b the RMS error is plotted as a function of frequency and perturbation strength in

order to see how these parameters affect the RMS error. The RMS error increases with both frequency

and perturbation strength, indicating a reduction in accuracy of the ray-Born approximation. The

figure shows the same trend as seen in figure 3.22b. Some differences are however observed: in the

1-D model the perturbation strength of the scatterer is lower relative to the background model. As a

result, the RMS error does not increase as strongly with increasing perturbation strength compared

to the frequency. In figures 3.23c and 3.23d I show how the offset affects the accuracy of the ray-Born

approximation. In 3.23c the highest error is observed with a source wavelet centre frequency of 15 Hz

at offset 200m. In 3.23d the highest error is observed at 230 m/s perturbation strength at 200 m offset.

The results follow the same trend seen in figures 3.22c and 3.22d. The error is however larger when

using the 1-D velocity background model than when using the constant velocity background model.

3.7.3 Layer Model

In figure 3.24 a comparison between the finite difference method and the ray-Born approximation is

shown for the constant background velocity model (figure 3.4) with a layer scatterer (figure 3.9). In

figure 3.24a the seismogram generated from both the ray-Born approximation and the finite difference

method are plotted on top of each other. A perturbation strength of 230 m/s and a centre frequency

of 15 Hz is used. The relative perturbation strength between the background model and the scatterer

can be seen in figure 3.10. The reflection from the upper boundary of the layer is accurately repro-

duced when comparing the ray-Born approximation traces to the finite difference method traces. The

reflection from the lower boundary is shifted in time due to inaccurate traveltimes and amplitudes

when using the ray-Born approximation. This timeshift is increasing with increasing offset due to

the fact that at higher offsets a longer time is spent in the layer relative to smaller offsets, increasing

the traveltime error of the ray-Born approximation. Some smaller arrivals can be seen later in the

seismogram, these are produced by the edges of the layer. The smaller arrivals are not taken into

account in the error plots. These reflections are poorly reproduced by the ray-Born approximation

compared to the finite difference method for all offset. In figure 3.24b the RMS error is plotted as a

function of frequency and perturbation strength in order to see how these parameters affect the RMS

error. The RMS error has been summed over all offset in order to use as much data as possible for the

comparison. The RMS error increases with both frequency and perturbation strength, indicating a

reduction in accuracy of the ray-Born approximation. The error depends most strongly on the pertur-

bation strength. In figures 3.24c and 3.24d I show how the offset affects the accuracy of the ray-Born

approximation for the layer model. In both figures it is seen that the RMS error increases with offset,

frequency and perturbation strength. These results confirm our observations from the seismograms.
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The same comparison was performed for the 1-D background velocity model (figure 3.5) and the layer

scatterer (figure 3.9). In figure 3.25a the seismogram generated from both the ray-Born approximation

and the finite difference method are plotted on top of each other. A perturbation strength of 230

m/s and a centre frequency of 15 Hz has been used. The relative perturbation strength between the

background model and the scatterer is shown in figure 3.11. The reflection from the upper boundary

of the layer is accurately reproduced when comparing the ray-Born approximation traces to the finite

difference method traces. The reflection from the lower boundary is shifted in time due to inaccurate

traveltimes and amplitudes when using the ray-Born approximation. This timeshift increases with

offset due to the fact that at higher offsets a longer time is spent in the layer relative to smaller

offsets. This increases the traveltime error of the ray-Born approximation. Since the velocity in the

1-D background model increases linearly, the reflection occurs at a earlier time than in the constant

velocity background model. The timeshift is less for the 1-D background velocity model than for the

constant velocity background model for the same reason. Some smaller arrivals can be seen later in

the seismogram, these are produced by the edges of the layer. These reflections are not considered in

the RMS error computation. These reflections are poorly reproduced by the ray-Born approximation

compared to the finite difference method for all offset. The reflections from the edges are even more

poorly reproduced in the case of the 1-D background velocity model when compared to the constant

velocity background model. In figure 3.25b the RMS error is plotted as a function of frequency and

perturbation strength in order to see how these parameters affect the RMS error. The RMS error has

been summed over all offset in order to use as much data as possible for the comparison. The RMS

error increases with both frequency and perturbation strength, indicating a reduction in accuracy of

the ray-Born approximation. The figure shows the same trend as seen in figure 3.24b. Some differences

are however observed; in the 1-D model the perturbation strength of the scatterer is lower relative

to the background model. The RMS error does therefore not increase as strongly with increasing

perturbation strength compared to the frequency. In figures 3.24c and 3.24d I show how the offset

affects the accuracy of the ray-Born approximation for the layer model. In both figures it is seen

that the RMS error is increasing with offset, frequency and perturbation strength. At the receivers

closest to the source it is possible to observe an increase in error that is present for all frequencies and

perturbation strengths. The reason for this is most likely the inaccuracy of the 2-D Green function in

the near field.

3.7.4 Random Gaussian Model

Random Gaussian models have been generated with correlation lengths ranging from 50 m to 500

m. The models were generated with different correlation lengths in order to see how the size of the

scatterers affect the RMS error with different perturbation strengths and frequencies. The figures

presented in this subsection are for random Gaussian media with correlation lengths of 50 and 500 m.

In figure 3.26 a comparison between the finite difference method and the ray-Born approximationis
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shown for the constant velocity background model 3.4 with a random Gaussian media scatterer with

a correlation length of 50 m (figure 3.12). In figure 3.26a the seismograms generated from both the

ray-Born approximation and the finite difference method are plotted in top of each other. A per-

turbation strength of 230 m/s and a centre frequency of 15 Hz is used. The relative perturbation

strength between the background model and the scatterer is shown in figure 3.13. Observations from

the seismogram show that the ray-Born approximation accurately reproduces most of the wavefield

for all offsets. Some traces are however more accurately reproduced than others. This effect occurs

due to the random nature of the velocity model. At some areas there is a higher velocity relative to

the background velocity model and in other areas this is a of lower velocity relative to the background

velocity model. This effect will cause positive/negative traveltime errors at some offset while at other

offset the traveltime is correct. A second effect that occur is multiscattering. This means that the

reflections from the Gaussian scatterers are reflected from other Gaussian scatterers. This effect is

not modelled by the ray-Born approximation. This effect is strongest for the strongest scatterers and

will therefore not be seen at all offsets. Figures 3.26c and 3.26d confirm the observations seen in the

seismogram and the error can be seen to become high at offsets 100 m, 300 m, 1000 m, 1500, and 1800

m. It is important to note that this effect is unique for this particular realisation of a random Gaussian

media. If the error was averaged over many random Gaussian media, some pattern might be observed.

This means that the error is only valid for the model used in this thesis and not all models. In figure

3.26b it can be seen that the error is increasing with both perturbation strength and frequency. Of

these factors, the perturbation strength appear to be more dominant because the error is more steeply

increasing with increasing perturbation strength than frequency.

The same comparison was performed while using the 1-D background model and the same random

Gaussian media with a correlation length of 50 m. In figure 3.27 a comparison between the finite dif-

ference method and the ray-Born approximation has been performed for the 1-D velocity background

model (figure 3.5) with a random Gaussian media scatterer with a correlation length of 50 m (figure

3.12). In figure 3.27a the seismogram generated from both the ray-Born approximation and the finite

difference method are plotted in top of each other. A perturbation strength of 230 m/s and a centre

frequency of 15 Hz is used. The relative perturbation strength between the background model and

the scatterer is shown in figure 3.14. The seismogram follows the same trend as in figure 3.26a. The

ray-Born approximation accurately reproduces the wavefield for some offsets while at other offsets the

wavefield is less accurately reproduced. Figures 3.27c and 3.27d confirm the observations seen in the

seismogram and the error can be seen to become high at offsets 100 m, 300 m, 1000 m, 1500, and

1800 m. It is important to note that this effect is unique for this particular realisation of a random

Gaussian media. If the error was averaged over many random Gaussian media, some pattern might be

observed. In figure 3.27b it can be seen that the error is increasing with both perturbation strength

and frequency. Of these factors, the perturbation strength appear to be more dominant because the

error is more steeply increasing with increasing perturbation strength than frequency. The error is less

strongly dependant on the perturbation strength than when using the constant velocity background
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model as the error appear to increase more with frequency. This is an effect of having a lower velocity

contrast relative to the background velocity model.

In figure 3.28 a comparison between the finite difference method and the ray-Born approximation

has been performed for the constant velocity background model (figure 3.4) with a random Gaussian

medium scatterer with a correlation length of 500 m (figure 3.15). In figure 3.28a the seismogram

generated from both the ray-Born approximation and the finite difference method are plotted on top

of each other. A perturbation strength of 230 m/s and a centre frequency of 15 Hz is used. The

relative perturbation strength between the background model and the scatterer can be seen in figure

3.16. Observations from the seismogram show that the upper reflections are reproduced perfectly for

all frequencies and offsets. This reflection is produced from a sharp interface at the top of the random

Gaussian media and will therefore be disregarded in this comparison. The ray-Born approximation

has problems reproducing the reflections in this model and the error is significantly higher than in any

of the other scattering models. The increase in error does not appear in the random Gaussian medium

with a correlation length of 50 m. The ray-Born approximation seismogram does not appear to be

timeshifted relative to the finite difference method. Figure 3.28b show that the error increases with

both perturbation strength and frequency. It appears that the frequency and perturbation strength

are equally important factors when it comes to increase in error because the error increases equally

with both frequency and perturbation strength. In figures 3.28c and 3.28d it is seen that the highest

error is observed at low offset. It is important to note that this effect is unique for this particular

realisation of a random Gaussian media. If the error was averaged over many random Gaussian media,

some pattern might be observed.

In figure 3.29 a comparison between the finite difference method and the ray-Born approximation has

been performed for the 1-D velocity background model (figure 3.4) with a random Gaussian medium

scatterer with a correlation length of 500 m (figure 3.15). In figure 3.29a the seismogram generated

from both the ray-Born approximation and the finite difference method are plotted on top of each

other. A perturbation strength of 230 m/s and a centre frequency of 15 Hz is used. The relative

perturbation strength between the background model and the scatterer can be seen in figure 3.17. The

observations are very similar to what was observed in figure 3.28. Observations from the seismogram

show that the upper reflections is reproduced perfectly for all frequencies and offsets. This reflection is

however produced from a sharp interface at the top of the random Gaussian media and will therefore

be disregarded in this comparison. The ray-Born approximation has problems reproducing the reflec-

tions in this model and the error is significantly higher than in any of the other scattering models.

The increase in error does not appear in the random Gaussian medium with a correlation length of 50

m. The ray-Born approximation seismogram does not appear to be timeshifted relative to the finite

difference method. Figure 3.28b show that the error is increasing with both perturbation strength and

frequency. It appears that the frequency and perturbation strength are equally important factors when

it comes to increase in error because the error increases equally with both frequency and perturbation
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strength. In Figures 3.29c and 3.29d it is seen that the highest error is seen at low offsets. It is

important to note that this effect is unique for this particular realisation of a random Gaussian media.

If the error was averaged over many random Gaussian media, some pattern might be observed.

When considering the results obtained for different correlation lengths it is possible to observe a trend

in the error distribution. For small correlation lengths the perturbation strength is the dominant factor

that leads to increase in error between the ray-Born approximation and the finite difference method. As

the correlation length increases, the influence of the frequency becomes increases. With a correlation

length of 500 m the frequency and perturbation strength are equally significant factors when it comes

to increase in error of the ray-Born approximation. The error between the ray-Born approximation

appears to increase with increasing correlation length, indicating that the large scatterers relative to

the background model will reduce the accuracy of the ray-Born approximation relative to the finite

difference method.

3.7.5 Modified SEG/EAGE Overthrust Model

The forward modelling comparison between the ray-Born approximation and the finite difference

method has been performed for four different sources in the modified SEG/EAGE overthrust model.

The background model can be seen in figure 3.18 while the scatterer is seen in figure 3.19. As usual,

the sources are marked with a red cross while the receivers are marked with a green cross. The Ricker

wavelet with a centre frequency of 10 Hz has been used in this modelling. In figure 3.30 the ray

paths for a source located at 0 km offset are shown. After 6 km offset from the source, multipathing

occurs. In figure 3.31 the synthetic seismogram for the source located at 0 km offset with receivers

between 0 and 12 km offset is plotted. When comparing the ray-Born approximation with the finite

difference method it is possible to see that near offset traces are very well reproduced, while the traces

at offsets higher than 7 km are poorly reproduced. The reason for the decrease in accuracy when

using the ray-Born approximation is most likely a result of incorrect amplitude computation due to

multipathing when using raytracing. In figure 3.32 the synthetic seismogram for the source located at

4 km offset with receivers ranging between 0 and 12 km offset are shown. The traces from 4 km offset

to 0 km and the traces from 4 km to 8 km offset are well reproduced by the ray-Born approximation

while the traces from 9 km to 12 km offset are more poorly reproduced. In figure 3.33 the synthetic

seismogram for the source located at 8 km offset with receivers between 0 and 12 km offset is shown.

The traces from 4 km offset to 8 km and the traces from 8 km to 12 km offset are well reproduced

by the ray-Born approximation while the traces from 4km to 0 km offset are more poorly reproduced.

In figure 3.34 the synthetic seismogram for the source located at 12 km offset with receivers ranging

from 0 to 12 km offset is plotted. The traces from 12 km offset to 2 km offset are well reproduced

by the ray-Born approximation while the traces from 1km to 0 km offset are more poorly reproduced.

The results from these figures show that the ray-Born approximation has problems reproducing the

pressure field accurately at offset higher than 5 km from the source position for this velocity model
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and frequency. As stated earlier, the reason for the decrease in accuracy with increasing offset is most

likely caused by the multipathing that takes place when performing raytracing. The error could also

be contributed to multiscattering which can be more prominent at higher offsets but this is unlikely

for this model as the increase in error matches very well with where we see multipathing start to occur.

3.7.6 Computation Time

In this section I will perform a comparison between the computation time of the ray-Born approx-

imation and the finite difference method for the velocity models that are used in this thesis. The

computation time of the methods were computed for the two basic background models, the three

basic scatterers, every perturbation strength and every frequency. The computation time of the finite

difference method is constant for any scatterer, frequency and perturbation strength. An increase in

computation time occurs when going from the constant velocity background model to the 1-D veloc-

ity background model. This increase in computation time occurs because the velocities in the 1-D

velocity background model is higher than in the constant velocity background model and as a result

a lower time step has to be used. The computation time of the ray-Born approximation varies with

background model, scatterer and frequency. The computation time of the raytracing is however so

large relative to the ray-Born approximation that the effect of changing the scatterer or frequency is

miniscule. The computation time of the ray-Born approximation was computed to be roughly a factor

of two lower than the computation time of the finite difference method. It should however be noted

that the geometry used consists of one source and 20 receivers. The computation time of the finite

difference method is linearly increasing with the number of sources while the computation time of the

ray-Born approximation is linearly increasing with both sources and receivers. If the same number

of sources and receivers were used, the computation time of the ray-Born approximation would be a

factor of 40 times faster than the finite difference method. Several optimisations can be applied to

each method, and especially the finite difference method would get a great reduction in cost with the

introduction of effective absorbing boundary conditions.

3.8 Discussion

In this chapter a thorough comparison between the ray-Born approximation and the finite difference

method has been performed. The results show that the accuracy of the ray-Born approximation is

dependent on the background model, the size, shape and roughness of the scatterer and the pertur-

bation strength. The accuracy of the ray-Born approximation diminishes with increasing frequency

and perturbation size and strength but still remains sufficiently accurate for perturbation strengths

below 10 percent. The largest limitation of the ray-Born approximation appears in cases where mul-

tipathing occur in the background model. In such cases the traveltime and amplitude generated by

the ray-Born approximation will be inaccurate. Despite some inaccuracy for strong scatterers and

background models where multipathing occur, the ray-Born approximation has many benefits. The
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cost of using the ray-Born approximation is a factor of two lower than the finite difference method

for the specific geometries and models used in this thesis. In geometries where the same number of

sources and receivers are present, the ray-Born approximation can be as much as a factor of 40 times

faster. Another benefit is that raytracing only needs to be performed once for a given background

model. This means that any number of scatterers could be reproduced in the same background model

when using the ray-Born approximation, whereas the complete wavefield needs to be computed every

time when using the finite difference method. Due to these properties, the ray-Born approximation is

evaluated to be able to act as a good replacement for the finite difference method in forward modelling

and in full waveform inversion.



Chapter 4

Inversion Theory
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4.1 Outline

In this chapter I present the background theory for full waveform inversion. The act of performing

full waveform inversion consists of finding a seismic velocity model given seismic data recorded at the

surface. The method used to perform inversion as well as the regularization used to stabilise the result

will be discussed.

4.2 Inversion

The derivation of inverse theory in this chapter follows Menke (1984), Tarantola (2005) and Aster

et al. (2012). The forward modelling problem can be expressed in the following way:

G(m) = d, (4.1)

where m is the model, d is the synthetic data and G is the forward modelling operator. The goal

of the forward modelling problem is to compute the synthetic data, d given the model, m and the

forward operator, G . Examples of models can be the seismic velocity models expressed in chapter 3

and examples of forward operators can be the ray-Born approximation discussed in chapter 2 or the

finite difference method discussed in chapter 3. For a given velocity model, the synthetic seismogram

can be computed by either of the forward modelling methods. For a given model and a given forward

operator one unique solution exists. The forward modelling problem stated in equation (4.1) can be

written in the form of a linear system of algebraic equations:

Gm = d, (4.2)

where G is a forward modelling operator. The focus of this chapter is to solve the inverse problem

which involves finding the model, m, given the data, d. The inverse problem is more difficult to solve

than the forward modelling problem for several reasons; Due to the presence of noise in the data or

because the forward operator is approximate there may not exist a model that exactly fits the data.

Another problem is that there exists many models that satisfy the same data. As a result, the inverse

problem does not have an unique solution and it is difficult to determine the accuracy of the result.

In addition, small changes in the data can result in large changes in the estimated model. Inverse

problems with these instabilities are referred to as ill-conditioned problems. In the following sections

we will discuss how inverse problems are solved and how they can be made more stable by the use of

regularization.

4.3 Least Squares Solution

A reasonable approach to solving the inverse problem is to find a best approximate solution to the

model m that minimizes some misfit measure, computed from the differences between the observed
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data and a theoretical prediction of the forward problem. The misfit between the observed data and

the theoretical predicted data are called residuals. The most used strategy is to find the model that

minimises the 2 norm (or least squares norm) of the residual vector:

||d−G(m)||2 =

√√√√ m∑
i=1

(di −G(m)i)2 . (4.3)

The least square solution of a linear system is used in cases where there is no solution m that satisfies

equation (4.2) exactly. The problem arises in cases where the dimension of G in equation (4.2) is

smaller than the dimension of the model, m. The goal is then to find an approximate model m̂ that

minimises ||d−Gm̂||. From Lay (1994) we have that the least squares solution is derived as follows.

Given G and d, let d be projected onto the subspace Col G:

d̂ = projColGd. (4.4)

Since d̂ is in the column space of G, the equation Gm = d̂ is consistent and there exists an m̂ such

that:

Gm̂ = d̂. (4.5)

If m̂ satisfies Gm̂ = d̂, the projection d̂ has the property that d− d̂ is orthogonal to the column Col

G, so d−Gm̂ is orthogonal to each column of G. If Gj is any column of G, then Gj · (d−Gm̂) = 0

and GT
j · (d−Gm̂) = 0 . Since each GT

j is a row of GT ,

GT · (d−Gm̂) = 0 , (4.6)

and

GTGm = GTd. (4.7)

The matrix equation represents a system of equations called the normal equations for Gm = d. An

expression for the model m is from the normal equations given as:

m = (GTG)−1GTd. (4.8)

GTG has an inverse as it is square. G is not always square and does therefore not always have an

inverse.

4.4 Regularization

The solution obtained from the least square solution can be made more stable by using Tikhonov

regularization, which is a very easily implemented technique for regularizing discrete ill-conditioned
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problems. When using Tikhonov regularization, we consider all the solutions with ||d −Gm||2 ≤ δ,

and select the one that minimises the norm of m. We wish to minimise the norm of m in order to

arrive at a solution that contains sufficient model feature complexity but still manages to adequately

fit the data. This minimisation is achieved by considering the problem as a damped least squares

problem.

min||d−Gm||22 + α2 ||m||22 , (4.9)

where α is a regularisation parameter between zero and one. For such problems, the normal equations

can be expressed as:

(GTG + α2 I)m = GTd, (4.10)

where I is the identify matrix and α is the regularization parameter controlling the damping. While

the zeroth order Tikhonov regularization will minimise the norm of m, higher order Tikhonov regu-

larization can be used to minimise other features of the solution of m. The least square problem will

then take the following form:

min||d−Gm||22 + α2 ||Lm||22 . (4.11)

L can be expressed as the first or second derivative of m, reflecting a preference for either a flat or a

smooth model. In this thesis, zeroth order and second order Tikhonov regularization has been used,

resulting in the following formulation of the normal equations:

(GTG + α2 I + β2L)m = GTd. (4.12)

The model m can then be expressed as:

m = (GTG + α2 I + β2L)−1GTd, (4.13)

where α is the regularisation parameter controlling the damping and β is regularization parameter

controlling the smoothing of m. α will allow us to control how much the model changes for each

iteration of the inversion, making sure that the model does not change too much, too fast. β will

allow us to control the smoothness of the model, which will decide how sharp features it is possible to

resolve.

4.5 Iterative Method

When solving linearized inverse problems it is often convenient to use an iterative method to solve

the problem. Iterative methods are used because the inversion result from one iteration is only an

approximate solution due to the linearization. Iterative inversion methods consist of computing a

sequence of trial solutions that gradually converge towards a final solution. One starts with a model
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m(0 ) and then move to the updated model m(1 ). Similarly one starts with the data d(0 ) that is

computed as the contrast between the data from the real model and the the starting model m(0 ), and

then move to the updated data d(1 ) that is computed as the contrast between the data from the real

model and the updated model m(1 ). The updated model is computed using the following equation:

mi+1 = mi + (GT
i Gi + α2 I + β2L)−1GT

i di , (4.14)

and the updated data is computed using:

di+1 = dReal −Gi+1mi+1 . (4.15)

The process of computing the updated model and the updated data can be repeated for as many

iterations as required to accurately retrieve the real model. Solving inverse problems by linear approx-

imation is however not without disadvantages. If the starting model m(0 ) is not sufficiently close to

the real model m, the linear approximation of the inverse may not be a good one. In such cases the the

sequence of trial solutions will not converge towards the true solution and the solution obtained will

be inaccurate. In the next chapter an iterative inversion algorithm using the regularised least squares

solution will be presented and discussed.



Chapter 5

Inversion Implementation
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5.1 Outline

In this chapter full waveform inversion using the ray-Born approximation will be discussed; Both the

implementation as well as the cost and accuracy of the method. The method will be applied to the

SEG/EAGE overthrust model and the optimal regularization parameters, source/receiver spacing and

geometry will be identified. The result will be compared with a frequency domain finite difference

waveform inversion that is discussed in Sourbier et al. (2009a) with numerical examples shown in

Sourbier et al. (2009b). The results from the different methods will be compared and discussed.

5.2 Full Waveform Inversion Implementation

The goal of full waveform inversion is to reproduce a velocity model of the subsurface by using seismic

data P(xs,xr, t) from a seismic survey. In this section I will discuss how seismic waveform inversion

can be performed by using the ray-Born approximation as the primary forward modelling method.

The inversion algorithm holds some similarities to traditional full waveform inversion algorithms (e.g

Pratt et al. (1998), Operto et al. (2006), Sourbier et al. (2009a) and Sourbier et al. (2009b)) but it

is different in the way it performs the inversion and updates the model. The waveform inversion is

implemented in the frequency domain, but some of the forward modelling has been performed in the

time domain. Figure 5.1 shows a flowchart illustrating the implementation of the waveform inversion.

The data is simulated in velocity model c(x) by using the finite difference method in the time domain.

The forward modelling in the velocity model yields the synthetic data P(xs,xr, t). Full waveform

inversion uses the synthetic data P(xs,xr, t) to compute a seismic velocity model that is as close to

the real velocity model c(x) as possible. In order to perform full waveform inversion, a background

velocity model c0 (x) which is our best guess to what we believe the subsurface structures look like

needs to be created. The background velocity model is usually very smooth as we normally only have

a rough idea about the subsurface structures. Forward modelling is then performed in the background

velocity model by using the finite difference method to compute the modelled data P0 (xs,xr, t). The

finite difference method is used to compute the synthetic seismogram in the background velocity

model because geometrical ray theory alone is unable accurately reproduce the direct wave and the

scattering that occurs in the background model. We can now compute the data residual that is given

as the difference between the real data and the data generated in the background model.

D(xs,xr, t) = P(xs,xr, t)− P0 (xs,xr, t). (5.1)

In the frequency domain the data residual is expressed as D(xs,xr, t)→ d(xs,xr, ω). The data residual

is on the same form as generated by the ray-Born approximation. The ray-Born approximation is used

to generate synthetic data using a smoothly varying background model c0 (x) and a scatterer c1 (x)

where the synthetic seismogram is generated from the contrast between the background model and

the scatterer. It is possible to perform full waveform inversion by using the ray-Born approximation



Full Waveform Inversion Implementation 73

Compute synthetic seismogram u for the
overthrust model c using finite difference

Compute synthetic seismogram
u0 for the overthrust background
model c0 using finite difference

Compute datal residual d = u − u0

perform raytracing in the
background model, c0

loop over frequencies

loop over iterations

Compute synthetic seismogram d∗ us-
ing the ray-Born approximation for the

scatterer c1 (first iteration c1 = 0)

Update residual d → d + d∗ c0 → c0 + c1 , c1 = 0

compute the forward operator g
given from the ray- Born approxi-

mation for the background model c0

Perform inversion c∗1 = g−1d

Update scatterer c1 =→ c1 + c∗1

max
iteration
reached?

is c1 too
large?

c = c0 + c1

yes

no

Next frequency

Next iteration

yes

Figure 5.1: Implementation of full waveform inversion using the ray-Born approximation
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and the data residual d(xs,xr, ω). The scattered wavefield can be written as (e.g Tarantola (1984b)):

d(xs,xr, ω) = p(xs,xr, ω)− p0 (xs,xr, ω) =
∂p(xs,xr, ω)

∂c(x)
, (c(x)− c0 (x)) =

∂p(xs,xr, ω)

∂c(x)
c1 (x) (5.2)

where G(xs,xr, ω) = ∂p(xs,xr,ω)
∂c(x)

is the sensitivity matrix. By using the ray-Born approximation ((2.46)),

the sensitivity matrix is expressed as:

G(xs,xr, ω) = 2ω2 s(ω)

∫
g0 (xs,x, ω)g0 (xr,x, ω)c−30 (x)dx. (5.3)

By using the sensitivity function, the scattered wavefield d(xs,xr, ω) is given as:

d(xs,xr, ω) = G(xs,xr, ω)c1 (x). (5.4)

This equation is here of the form shown in equation (4.1) where G(xs,xr, ω) is the forward operator.

d(xs,xr, ω) is the data and c1 (x) is the model. The equation is solved as a least squares problem with

Tikhonov regularization. By applying equation (4.12) the regularised least squares solution becomes:

c1 (x) = (GT (xs,xr, ω)G(xs,xr, ω) + α2 I + β2L)−1GT (xs,xr, ω)d(xs,xr, ω), (5.5)

where α is the damping parameter, β is the smoothing parameter, I is the identity matrix and L is a

matrix of second derivatives. The least squares problem is solved by using QR factorization. QR factor-

ization solves the linear system by decomposing the sensitivity matrix into a orthogonal matrix Q and

an upper triangular matrix R. QR factorization is used because it is fast and efficient for large matrices.

Traditional waveform inversion algorithms (e.g Pratt et al. (1998), Operto et al. (2006), Sourbier

et al. (2009a) and Sourbier et al. (2009b)) would at this point do the following operation: c0(x) →
c0 (x) + c1 (x). This step will update the background velocity model and the entire inversion routine

could be repeated. The inversion implemented here is however performed in a slightly different way.

Our model now consists of a starting model c0 and a scatterer c1 . Using these models it is possible

to perform forward modelling using the ray-Born approximation. The traveltime and amplitude that

was computed by raytracing in the initial background model is used. The synthetic data d∗(xs,xr, ω)

generated using the ray-Born approximation can be used to update our data residual.

d(xs,xr, ω)→ d(xs,xr, ω) + d∗(xs,xr, ω). (5.6)

The new data residual can be used to perform a new inversion iteration using equation (5.5). We can

update the scatterer c1 (x) and get a more accurate inversion result.

c1 (x) = c1 (x) + c∗1 (x). (5.7)

The process of performing waveform inversion (5.5), updating the scatterer (5.7) and updating the data
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residual (5.6) can be repeated for as many iterations as required to achieve a satisfactory inversion

result. For each iteration c∗(x) = c0 (x) + c1 (x) will be more similar to the real model c(x). In the

first inversion iteration, the scatterer c1 is equal to zero and the data generated using the ray-Born

approximation is equal to zero. The data is therefore generated using the finite difference method

only in the first iteration. The traveltime and amplitude computed using raytracing in the initial

background model can be used for the entire inversion. This will greatly reduce the computation time

of the forward modelling compared to traditional approaches. If the velocity contrast of the scatterer

c1 relative to the background model becomes too large, it is possible to update the starting model:

c0 (x) = c0 (x) + c1 (x), (5.8)

set c1 (x) = 0 and start over again by performing forward modelling using finite difference in the new

background model c0 (x). This process will however make the inversion process more time-consuming.

5.3 Inversion Iterations

The inversion has been implemented by iterating over nine frequencies between 2 Hz and 20 Hz. Two

iterations are performed for each frequency. It is expected that there is a higher offset between the

data for high frequencies than for low frequencies. If the difference between the data from the real

model and the background model is too large, then the inversion result will become inaccurate. It

is therefore useful to invert for the low frequencies first and then gradually increase the frequency.

As the frequency increases the model will gradually become more accurate and the resolution in the

model increases, thus making sure that the data from the background model is as close to the data

from the real model as possible. Due to traveltime inaccuracy when using the ray-Born approximation

to perform the inversion, it is performed with a few low frequencies after the high frequencies. This

is done because the relative difference between the ray-Born approximation and the finite difference

method is less at low frequencies than at high frequencies as seen in chapter 3. Tests show that this

will improve the inversion result. Two sets of inversion iterations have been used. The first inversion

iteration set is seen in Table 5.1. This is a basic inversion iteration scheme that is used to find the

optimal source/receiver geometry and the regularization parameters. In the basic inversion iteration

scheme, two iterations are performed for each frequency from low to high frequency before doing some

iterations at low frequency again. The second inversion iteration set can be seen in Table 5.2. This

is an advanced inversion iteration scheme that is used to obtain the best inversion result after the

best regularization parameters and the best source/receiver geometry have been identified. When

using this advanced inversion iteration scheme we perform the waveform inversion as done previously,

but instead of stopping after we reach the final iteration, we update the background velocity model,

perform a new finite difference iteration and perform raytracing in the new background velocity model.

This will result in more accurate waveforms when using an extra finite difference iteration that will

decrease multi scattering effects. It will also result on more accurate travel times and amplitudes from
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the raytracing.

Frequency 2 4.25 6.5 8.75 11 13.25 15.5 17.75 20 2 4.25 6.5
Number of iterations 2 2 2 2 2 2 2 2 2 2 2 2

Table 5.1: basic inversion iteration scheme

Order 1 2 3
Action Inversion using Table (5.1) finite difference in updated c0 (x) Inversion using Table (5.1)

Table 5.2: Advanced inversion iteration scheme

5.4 Models

The velocity model that has been used to perform full waveform inversion is the SEG/EAGE overthrust

model. Due to the fact that the raytracer used in this thesis does not support multipathing, the

SEG/EAGE Overthrust model has been slightly modified in order to reduce the multipathing effects.

This modification consisted of reducing the gradient of the velocity model, thereby decreasing the

maximum velocity contrast in the model. The model consists of a smoothly varying background

model that is shown in figure 3.18 and the full overthrust model shown in figure 3.20. The seismic

data for the real velocity model will be generated using the full overthrust model. The goal of the

waveform inversion is to reproduce the overthrust model using the background velocity model and

the seismic data generated from the overthrust. The model and forward modelling in the model is

discussed in more detail in chapter 3.

5.5 Results

5.5.1 Damping and Smoothing Parameters

The stability and accuracy of the waveform inversion depends strongly on the regularization param-

eters. The regularization parameters determine the damping and smoothing of the solution. The

damping parameter is used to minimise the length of the model c1 and stay close to the stationary

model c0 . A high damping value will result in small model variance while a very small damping value

will result in large model oscillations. The smoothing parameter is used to minimise the roughness

of the model. For large smoothing values, the model will have a low resolution and become very

smooth while for a small smoothing value the model will have large variations and high resolution.

In order to properly determine the damping and smoothing values, a series of inversions with one

iteration have been performed. The results from these inversions were used to compute the L-curve

(e.g G. Rodriguesz (2005)) for the damping and smoothing parameters. The smoothing parameter
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Figure 5.2: L-curve for the damping parameterl

was set to zero while the damping parameter was changed from a value of one to a value of zero as

shown in figure 5.2. The damping parameter that gave the lowest data residual while still minimising

the length of the model was chosen. The damping parameter was held constant for all iterations.

The optimal smoothing parameter was found by using the best damping value and then iterating over

smoothing values from one to zero as shown in figure 5.3. The smoothing parameter that gave the

lowest data residual while still minimizing the length of the model was chosen. This smoothing value

was used as the initial smoothing value for the first frequency. The smoothing was gradually reduced

with increasing frequency, as more high resolution structures were identified. This procedure resulted

in a stable inversion result with high resolution. In figure 5.4 three different inversion results have

been plotted. The top figure shows the result from the waveform inversion when using a damping

parameter that is too high. The high damping value resulted in very little change in the model for

each iteration of the inversion, the inverted model is therefore very similar to the starting model. The

middle figure shows the result from the waveform inversion when using the best damping parameter.

The inverted model is very similar to the real overthrust model. The bottom figure shows the result

from the waveform inversion when using a damping parameter that is too low. The inverted model

has a high resolution and resolves most structures well. The inversion result is however very noisy

and some unrealistic features are present in the inversion result. These inversion results illustrate the

importance of choosing the best damping and smoothing parameter to obtain the best inversion result

possible.
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Figure 5.3: L-curve for the smoothing parameterl

5.5.2 Source and Receiver Geometry

The cost and accuracy of the waveform inversion is greatly affected by the spacing between sources

and receivers. A very large receiver spacing will result in a very fast inversion while the accuracy of

the inverted model will be low. A very small receiver spacing will result in a slower and more memory

consuming inversion while the accuracy of the inverted model will be higher. Inversions have been

performed with receiver spacings from 200 m to 1800 m in order to evaluate the model error with

increasing receiver spacing. Figure 5.5 shows that the error between the real model and the inverted

model is increasing with increasing receiver spacing. The model error does not change much when in-

creasing the receiver spacing from 200 m to 400 m. For receiver spacings higher than 400 m, a roughly

linear trend in error increase can be observed with increasing receiver spacing. Figure 5.6 shows the

inversion result when using three different receiver spacings in order to visualise the effect of changing

the receiver spacing. In the upper figure a receiver spacing of 1800 m has been used. The structures

in the model are reproduced poorly and a significant ringing can be observed in the inversion result.

In the middle figure a receiver spacing of 1000 m has been used. The structures are more accurately

reproduced and the ringing is reduced. In the lower figure a receiver spacing of 200 m has been used.

The structures are accurately reproduced and the ringing is completely removed. These results tell us

that in order to accurately reproduce structures in the subsurface, you need to have sufficiently low

source and receiver spacing. If only a rough image of the subsurface is required, higher source and

receiver spacings can be used. The inversion will then be much faster, but the result will be that much

more inaccurate.

The source and receiver spacing of the inversion can be further optimized. If we look at the forward

modelling performed for the overthrust model in chapter 3 in figures 3.31, 3.32, 3.33 and 3.34 it is
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Figure 5.5: Correlation between receiver spacing and inversion accuracy

possible to see that the ray-Born approximation inaccurately reproduces the wavefield at offsets higher

than 5 km from the source position. This error will affect the accuracy of the inversion and will yield

a more inaccurate model. For each source, we can therefore limit the number of receivers and only

include receivers that are closer than 5 km from the source. This will increase the accuracy of the

forward modelling in the inversion and will lead to a more accurate inversion result. The number of

receivers for each source will be less, but the inverted model will be more accurately reproduced. In

figure 5.7 the optimised geometry has been used. It can be seen that the all the layers are more clearly

defined, the velocities are more correct and the result contains less noise.

5.5.3 Inversion Optimization

In the previous sections we have found the optimal regularization parameters and the optimal source

and receiver geometry. We will now discuss how to obtain the best inversion result possible for the

discussed method and model. Up to this point we’ve only been using the travel times and amplitudes

that were computed in the original background velocity model. This will limit the maximum velocity

contrast from the background model that it is possible to obtain from the inversion. It is possible to

improve the inversion result by using the inversion iteration scheme given in Table 5.2. When using

this advanced inversion iteration scheme we perform the waveform inversion as done previously, but

instead of stopping after we reach the final iteration, we update the background velocity model, per-

form a new finite difference iteration and perform raytracing in the new background velocity model.

This will result in more accurate waveforms when using an extra finite difference iteration that will

decrease multi scattering effects. It will also result on more accurate travel times and amplitudes from

the raytracing. We can then continue with the new background velocity model and perform the inver-
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sion all over again with a more accurate starting model. The improved inversion result is plotted in

figure 5.8. It is possible to see some improvements compared to the inversion result achieved in figure

5.7. The first difference is that the velocity contrasts between the layers in the model are stronger,

indicating that the peak velocities in the model are more accurately reproduced. The second difference

is that the near surface constant velocity layer is more accurately reproduced.

In figure 5.9 the model residual has been plotted with increasing number of iterations. The model

residual is given as the norm of the real model minus the inverted model. The blue line shows how

the model residual changes with increasing iterations while the red line separates the iterations before

and after the finite difference iteration. In the first ten iterations a rapid decrease in model residual

can be observed. A slight increase in model residual can be observed up to iteration number 18 before

a rapid decrease in model residual is observed. This rapid decrease in model residual occurs when the

frequency goes from 20 Hz and back down to 2 Hz. At iteration 24 a new finite difference iteration

is performed and a new raytracing is performed in the updated background velocity model. This will

improve the travel times and amplitudes for the inversion, allowing for a more accurate reproduction

of the model. Only a small decrease in model residual is observed after the finite difference iteration,

indicating that the ray-Born approximation inversion is already giving a very good result without

having to perform a second finite difference iteration and update the traveltime and amplitude in the

model.

In figure 5.10 the data residual has been plotted with increasing number of iterations. The green

line separates the iterations performed for each frequency, the blue line separates the data residual

that was computed before the second finite difference iteration and after the second finite difference

iteration and the red dots indicate the actual data residual per iteration. From the figure it is seen

that the data residual for a given frequency is decreasing with increasing number of iterations for that

frequency. The blue line that is separating the iterations performed before and after the second finite

difference iteration show a large decrease in data residual after the second finite difference iteration

for most frequencies. This large decrease in data residual is caused as a combination of having more

accurate travel times and amplitude from the raytracing and having more accurate waveforms from

the finite difference method. More iterations have been performed for low frequencies than for high

frequencies as tests indicated that this gave a better inversion result.

5.5.4 Comparing the ray-Born Inversion with the Finite Difference In-

version

We will now perform a comparison between the inversion result achieved by using the ray-Born approx-

imation with an inversion result achieved by using the finite difference method. The finite difference

full waveform inversion algorithm used to generate the inversion result is called FWT2D and its im-

plementation is discussed in Hustedt et al. (2004) and Sourbier et al. (2009a) with numerical examples
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shown in Sourbier et al. (2009b). In figure 5.11 the inversion result using only the FWT2D method

has been plotted. The inversion result is very similar to what we achieved when using the ray-Born

approximation inversion seen in figure 5.8. Some differences can however be observed. At first glance it

can be seen that the small thin layers are better resolved when using the FWT2D inversion. The veloc-

ity contrasts within the layers are smaller and the boundary between layers are more clearly defined.

In figure 5.12 the real velocity model minus the ray-Born approximation inversion result has been

plotted. In figure 5.13 the real velocity model minus the FWT2D inversion result has been plotted.

From the figures it can be seen that both methods have problems reproducing the velocity model in

the boundaries of the model. The ray-Born approximation inversion result has a slightly better defined

velocity structure at the boundaries. The FWT2D inversion reproduces the central parts of the model

very well while the ray-Born approximation inversion has problems with reproducing the velocity in

the lower part of each layer. In figure 5.14 three 1-D profiles have been plotted for the starting model,

the real model, the ray-Born approximation inversion and the FWT2D inversion. The inversion result

obtained using the ray-Born approximation and FWT2D are very similar. In most areas both methods

reproduce the real model very well. The exception is that the ray-Born approximation inversion in

a few areas reproduces a lower peak velocity than the FWT2D method inversion. The results from

this comparison shows that the ray-Born approximation will give a very good inversion result when

compared to the FWT2D method and that it is a viable replacement for the finite difference method

in waveform inversion.

5.6 Computation Time

Synthetic seismograms have been generated for the SEG/EAGE Overthrust background velocity model

using the finite difference method and the ray-Born approximation for all source/receiver pairs. The

finite difference method is a factor of 10 times slower than the ray-Born approximation for this given

model. In the case of full waveform inversion using the finite difference method, the wavefield needs

to be solved for each source and then the residuals need to be backwards propagated through the

model for each receiver. This means that when performing 1 inversion iteration, the finite difference

method is a factor of 20 slower than the ray-Born approximation. Assuming that the basic inversion

iteration scheme was used (Table 5.1), a total number of 24 iterations need to be performed. As

raytracing only needs to be performed for the first inversion iteration, the computation time of the

waveform inversion using only the finite difference method implemented in this thesis is roughly 480

times higher than when using the ray-Born approximation inversion discussed in this chapter. This

is a very large difference that occurs for several reasons. The first reason is that if only the finite

difference method was used, the entire wavefield would need to be computed for each iteration. The

raytracing on the other hand is an expense that needs to be taken only once, reducing the computation

time drastically compared to traditional waveform inversion methods. The second factor is that the

finite difference method has been implemented in the time domain. If the finite difference method was

implemented in the frequency domain it would reduce the computation time of the finite difference
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method because the synthetic seismogram could be generated for all the sources at the same time.

The third factor is that the boundaries of the model were expanded when using the finite difference

method. This was done in order to prevent reflections from the boundary to affect the synthetic

seismograms recorded at the receivers. The computation time of the finite difference method could

therefore be improved by implementing effective absorbing boundary conditions that remove boundary

reflections. The raytracing can however also be performed more efficiently by interpolating the model

onto a coarser grid and perform raytracing in the coarser model. This could drastically reduce the

computation time of the raytracing. The computation time of the ray-Born approximation inversion

compared to the FWT2D program has not been performed in this thesis as the FWT2D is paralellized

and implemented with a different programming language, preventing direct comparison.

5.7 Discussion

In this chapter the ray-Born approximation has been used in a full waveform inversion algorithm. The

inversion algorithm was implemented in the frequency domain and iterations were performed with

frequencies ranging from 2 to 20 Hz. The lowest frequencies were inverted for first and the frequency

was gradually increased so that gradually more features in the model were resolved. The accuracy

of the waveform inversion algorithm was evaluated with varying receiver spacing and source/receiver

geometries. By performing inversions with on iteration, the optimal regularization parameters, the

damping and smoothing parameters were found. The inversion results were further improved by

performing an additional finite difference iteration. The inversion result shows that the ray-Born

approximation is able to accurately reproduce structures and velocities in the subsurface in a fast and

efficient way. The benefit of the method is that the raytracing does not need to be performed for every

iteration, but will yield a good result by just using the traveltime and amplitude computed for the

original background model. The method has some disadvantages, if raytracing is only performed in the

original background model, the traveltime in the background model will be inaccurate and it is hard

to retrieve the largest velocity contrasts relative to the background model. This inaccuracy will be

largest close to the lower boundary of each layer. The second disadvantage is that thin layers are not

reproduced very well. The inversion result obtained using the ray-Born approximation was compared to

the inversion result achieved by using FWT2D for the same frequencies and source/receiver geometry.

The results showed that the FWT2D inversion will better reproduce the small thin layers and that

the largest velocity contrasts are better retrieved. Despite the advantages of the finite difference

method, the ray-Born approximation inversion is considerably faster than the finite difference method

implemented in this thesis and will resolve all the subsurface structures. It is therefore a viable

alternative to full waveform inversion algorithms using finite difference only.



Chapter 6

Discussion and Conclusion
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6.1 Forward Modelling

A thorough comparison has been performed between the finite difference method and the ray-Born

approximation. This comparison was performed in order to evaluate if the ray-Born approximation

could be used as a replacement for the finite difference method in forward modelling. The compar-

ison was performed using three background velocity models and four scattering models. Synthetic

seismograms were generated for each model for several frequencies and perturbations strengths. The

results show that the ray-Born approximation accurately reproduces the pressure field in models where

the relative difference between the scatterer and the background model is ten percent or less. The

ray-Born approximation will however have problems in velocity models where multipathing occur or

in models where the relative difference between the background model and the scatterer is large. The

ray-Born approximation is faster than the finite difference method, except in cases where there are a

lot of receivers relative to the number of sources.

6.2 Inversion

The ray-Born approximation was evaluated to yield sufficiently accurate forward modelling results

at a low cost relative to the finite difference method. It was therefore decided that the ray-Born

approximation could be used as the primary forward modelling technique in a full waveform inver-

sion algorithm. The full waveform inversion algorithm was developed and applied to the modified

SEG/EAGE Overthrust model. The optimal regularization parameters were found by computing the

L-curve. By performing several inversions it was found that the accuracy of the waveform inversion

decreases with increasing source/receiver spacing and that due to multipathing in the background

velocity model one should not use receivers with larger distance than 5 km from the source for this

specific velocity model. Using this information it was possible to achieve a very good inversion result.

The inversion result was compared to a result that was obtained using a full waveform inversion al-

gorithm with the finite difference method as the primary forward modelling method. The comparison

showed that the inversion algorithm that was developed in this thesis could produce an inversion result

with a high accuracy when compared to the finite difference full waveform inversion.

6.3 Future Work

The ray-Born approximation has proven to be a viable option both for forward modelling and full

waveform inversion. Using the current implementation as a basis, there are several directions that can

be taken to further develop the method.
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6.3.1 Generalized ray-Born

The ray-Born approximation is solved by computing traveltime and amplitude from a smoothly vary-

ing background velocity model c0 (x), where the reflections are generated from a scatterer c1 (x). If

the scatterer is large or the velocity contrast relative to the background velocity model is large, the

traveltime and amplitude computed using the ray-Born approximation will be inaccurate. Coates and

Chapman (1990) describes the generalized ray-Born approximation that will allow the traveltime and

amplitude to be computed in the real velocity model c(x) = c0 (x)+ c1 (x). The implementation of the

generalized ray-Born approximation can remove the timeshift that occur for large velocity contrasts

and improve the forward modelling results. Tests should therefore be performed while using the gen-

eralized ray-Born approximation in order to evaluate the accuracy and cost of the method relative to

the ray-Born approximation and the finite difference method.

6.3.2 Multipathing

One of the weaknesses of the ray-Born approximation is that the amplitude and traveltime computed

with raytracing are inaccurate in heterogenous media where multipathing occur. The raytracer can

therefore be further improved by correcting for the multipathing effect. Techniques that can be used

to correct for the multipathing effect are discussed in Chapman and Keers (2002) and Amodei et al.

(2006). These techniques are computationally more expensive and complex than traditional raytracing

techniques.

6.3.3 Full Waveform Inversion in 3-D

Traditionally full waveform inversion algorithms have been limited to 2-D for several reasons. Tradi-

tional full waveform inversion algorithms are computationally very expensive and the increase in cost

of going from 2-D to 3-D is very large. The second limitation is that the size of the problem. The

Helmholtz matrix can be computed when using the finite difference method in the frequency domain.

Due to the size of the Helmholtz matrix the finite difference method cannot be used in the frequency

domain for very large problems. The results obtained show that the ray-Born approximation is compu-

tationally less expensive and less memory consuming than the finite difference method in the frequency

domain. The ray-Born approximation waveform inversion algorithm should therefore be expanded to

3-D in order to evaluate the computation time and accuracy in 3-D.

6.3.4 Full Waveform Inversion in Elastic Media

Most full waveform inversion algorithms are limited to using the acoustic wave equation due to the

increased computation time of the problem in the elastic case. The computation time is higher when

using the elastic wave equation because the synthetic seismograms for the S-waves need to be computed

in addition to the synthetic seismograms for the P-waves. Not only is it needed to perform extra

computations, the velocity of S-waves is also lower than the velocity of P-waves. A denser grid is
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therefore needed in order to satisfy the criteria stated in equation (3.18). Some of the attempts to

perform full waveform inversion include Brossier et al. (2009) who performed full waveform inversion

using the elastic wave equation using the SEG/EAGE overthrust model and Xiong et al. (2013) who

performed full waveform inversion using the elastic wave equation in 2.5-D using the elastic Marmousi

model discussed in Martin et al. (2006). The ray-Born approximation full waveform inversion algorithm

can be expanded to use the elastic wave equation and attempts could be made to perform full waveform

inversion in both 2-D and 3-D.

6.3.5 Applications to Real Data

The goal of any full waveform inversion algorithm is its application to real data. Among those who

have attempted full waveform inversion with the acoustic wave equation using real data in 2-D are

Pratt and Shipp (1999), Hicks and Pratt (2001) and Operto et al. (2006). The ray-Born approximation

full waveform inversion algorithm has several interesting applications. Not only can the algorithm be

used to find a model of the subsurface, it can also be applied very efficiently in 4-D full waveform

inversion algorithms. When working with 4-D seismic data, we have an image of the subsurface after

the first waveform inversion. After a given timespan the next waveform inversion will be performed

for the same model using a new dataset. In cases such as these, we can in many cases know that no

changes have occurred in the model with the exception of the reservoirs. It is therefore possible to

limit the target area of the ray-Born approximation to only include an area close to the reservoir. This

will greatly limit the size of the model, increase the speed of the waveform inversion and allow the use

of higher frequencies in the target area.

6.4 Conclusion

The ray-Born approximation full waveform inversion algorithm has successfully been applied to the

SEG/EAGE overthrust model and the ray-Born approximation has proven to be able to create forward

modelling results with comparable accuracy to the finite difference method. The method can be

further developed by using the generalized ray-Born approximation and using a raytracer that takes

multipathing into account. The method can further be applied to the elastic wave equation, expanded

into 3-D and applied to real data. One can conclude that the possibilities of the method are vast and

more research needs to be performed to further define the limitations and possibilities of the method.
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