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ABSTRACT 

 

Although there has been a decline in the dietary fat intake over the last decade, the 

prevalence of obesity and type 2 diabetes is still rising. The contemporary Western diet 

provides an average of 49 % energy from carbohydrate, 35 % from fat and 16 % from 

protein. Earlier studies have demonstrated that increasing the dietary amount of protein at 

the expense of sucrose (i.e. increasing the protein:sucrose ratio) attenuates obesity 

development in mice fed high fat diets. Furthermore, an unpublished study in our group 

revealed that different protein sources have different (anti)-obesogenic properties when 

included in a high-protein high-fat diet. Interestingly, of all protein sources tested, casein 

was the only protein to attenuate body weight gain. We undertook this study to investigate 

the impact of protein:sucrose ratio in combination with other protein sources, such as cod 

and pork. Furthermore, we aimed to elucidate some of the underlying mechanisms by which 

different protein sources influence obesity development. Hence obesity prone C57BL/6J 

mice were fed either a high-sucrose or a high-protein diet containing casein, cod or pork as 

the protein source.   

Our results demonstrated that increasing the protein:sucrose ratio markedly reduced feed 

efficiency and fat mass gain when mice were fed casein or pork protein. Interestingly, when 

mice were fed cod protein the protein:sucrose ratio was of no significant importance for 

either energy efficiency nor fat mass gain. Furthermore, in agreement with earlier studies, 

our results showed that mice fed casein was protected against high-fat induce obesity.  

Surprisingly, cod and pork fed mice not only gained more weight but also experienced a 

reduced glucose tolerance compared to casein fed mice. These findings indicate that both 

protein amount and protein source is of importance in the development of obesity and 

suggest that it may be beneficial to partially replace refined carbohydrate with carefully 

selected protein sources.  
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1 INTRODUCTION 

1.1 OVERWEIGHT AND OBESTITY 

1.1.1 Definition and quantification of overweight and obesity  

The Word Health Organization (WHO) defines overweight and obesity as a state of 

“abnormal or excessive fat accumulation that presents a risk to health” [1]. The most widely 

used method to diagnose and classify overweight and obesity is determination of Body Mass 

Index (BMI). BMI is calculated by dividing body weight (BW) in kilograms by height in meters 

squared (kg/m2).  According to WHO an adult person with a BMI equal to or above 25 is 

classified as overweight, while a person with a BMI of 30 or more is considered obese [2]. 

BMI is a useful tool in monitoring an individual’s health status; however, it has some 

limitations. For example, BMI calculation is solely dependent on weight and height of the 

individual and does not account for differences in bone density and maybe more important, 

it does not distinguish fat mass from lean mass [3]. Waist circumference and waist-to-hip 

ratio (WHR) are also commonly used to identify overweight and obesity. Waist-to-hip ratio 

provides information about fat deposition in the upper body and, unlike BMI, it accounts for 

differences in body shape. This is of importance because individuals with increased visceral 

fat (apple shaped) are believed to have a higher risk of developing metabolic diseases, such 

as type 2 diabetes, compared to individuals with increased subcutaneous fat (pear shaped) 

[4]. Other more accurate measurements such as magnetic resonance imaging (MRI) and 

dual-energy X-ray absorptiometry (DEXA) also exist, however; these methods are 

comprehensive and expensive to perform.    

1.1.2 Prevalence of obesity and overweight 

Over the last decades the prevalence of overweight and obesity has become a major health 

problem and is now the fifth leading risk of global deaths [2].  Based on the most recent 

estimates by the WHO more than 1.4 billion adults (>20 yrs) worldwide are now considered 

overweight, and 500 millions of them are obese [2]. Childhood obesity is also an increasing 

problem, with numbers showing that more than 40 million children under the age of five are 

overweight [2]. One of the highest percentages of overweight is seen in the United States 

where about two-thirds of the population is classified as overweight or obese  [5]. 



7 
 

In Norway the average body weight has increased by 5-6 kg only the last 15 years and today 

more than half of the Norwegian population is overweight and 15-18 % is obese [6]. 

Overweight and obesity were once considered to be a problem related only to industrial 

countries, but are now also a rising challenge in low- and middle income countries. In fact, 

eight of the top ten countries in WHO`s ranking list of prevalence of overweight are found in 

the Pacific region [7].  

1.1.3 What causes obesity and overweight?  

Overweight and obesity develops when there is a long-term imbalance between energy 

intake relative to energy expenditure. Thus excess energy consumption and physical 

inactivity is considered the main causative factors of obesity. After the agricultural 

revolution (10, 000 years ago) there has been a huge change in the human diet. During the 

last century there has been an increased consumption of processed carbohydrates, dietary 

omega-6 polyunsaturated fatty acids (n-6 PUFAs) and energy-dense food, as well as an 

increased intake of sugar-sweetened beverages [8]. Additionally, there has been a decrease 

in physical activity due to advances in technology and transportation [9]. However, 

attributing overweight and obesity solely to these factors would be an oversimplification. 

Other aspects such as genetic, environmental, economic, social, psychosocial and even 

political factors interact in varying degrees to promote the development of obesity [10]. 

Some individuals seem to be more susceptible to today’s obesogenic environment and 

several twin studies have estimated that genes are responsible for 40-70 % of the 

phenotypic variance of obesity [11, 12]. The causes of overweight and obesity are clearly 

complex and several factors appear to contribute to its development. 

1.1.4 Health consequences associated with overweight and obesity  

The co-morbidities associated with obesity are of major public health concern and include 

development of insulin resistance and type 2 diabetes [13]. Obesity is also strongly 

associated with development of cardiovascular diseases such as heart diseases, stroke and 

atherosclerosis [13]. Furthermore, some types of cancer, including colon and breast cancer, 

have been linked to obesity [13]. Excess body fat is also a risk factor for complication such as 

osteoarthritis, as well as sleep apnea and respiratory problems due to extra weight placed 
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on joints and chest [13]. Consequently, overweight and obesity is not only a global health 

threat but also a huge economic burden for the society. 

1.2 ADIPOSE TISSUE 

The adipose organ is mainly made up of two types of tissue, white and brown adipose tissue. 

While white adipocytes store lipids which are used as fuel when needed, brown adipocytes 

have quite a different function; they oxidize lipids to produce heat.  

1.2.1 White adipose tissue (WAT) 

White adipose tissue mostly consists of white adipocytes. White adipocytes contain a single 

large lipid droplet which accounts for >90 % of the cell`s volume. Additionally, white 

adipocytes have a peripheral nucleus and few mitochondria which are situated in the narrow 

space between the droplet and the membrane. Traditionally white adipose tissue was 

considered to be solely a fat storage for excess energy intake in the form of triacylglycerides 

(TAGs). However, after Friedman and colleagues discovered the secretion of leptin from 

white adipose tissue this traditional view was changed [14]. Later the list of protein signals 

and factors released from white adipocytes has grown, including angiotensinogen, adipsin, 

acylation-stimulating protein, adiponectin, retinol-binding protein, tumour neorosis factor α, 

interleukin 6, and plasminogen activator inhibitor-1 [15]. Thus, white adipose tissue is now 

recognized to be a highly active endocrine organ. Some of the substances secreted from the 

adipose tissue organ are mediators in inflammatory processes, giving the adipose tissue an 

additional role as a regulator of the immune system [16]. In fact, extensive secretion of pro-

inflammatory cytokines is believed to play a role in the development of several of the co-

morbidities associated with obesity, including insulin resistance [17] 

 

1.2.2 Brown adipose tissue (BAT) 

In contrast to white adipocytes, brown adipocytes contain several smaller lipid droplets 

(multilocular). Brown adipocytes also have a much higher number of mitochondria and 

uniquely express uncoupling protein 1 (UCP1) [18]. UCP1 is localized in the inner 

mitochondrial membrane and acts to uncouple oxidative phosphorylation from ATP 

production, thereby releasing energy as heat (termed thermogenesis) [19]. The metabolic 
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activity of BAT is mainly regulated via input from the sympathetic nervous system (SNS). 

Norepinephrine (NE) released from axon terminals of sympathetic neurons binds to β-

adrenergic receptors on the surface of brown adipocytes and stimulates cAMP production 

and protein kinase A (PKA) activation. PKA activates CREB which binds to certain DNA 

sequences and affect nuclear transcription of UCP1, resulting in increased heat production 

(Figure 1.1).  

 

 

Figure 1.1: The adrenergic signaling pathway in mature brown adipocytes. From “Brown adipose 

tissue: Recent insight into development, metabolic function and therapeutic potential” [20]. 

Brown fat has long been known to exist in infants and in smaller animals such as mice where 

it plays an important role in regulating body temperature through non-shivering 

thermogenesis. Larger mammals often lose much of their brown fat depots after infancy and 

the role of BAT in adult humans has traditionally been considered absence.  However, this 

view dramatically changed in 2009 when several studies demonstrated the occurrence of 

UCP1-positive brown fat in adult humans using positron emission tomography (PET) [21-24]. 
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Brown adipocyte development  

White and brown adipocytes have previously been assumed to be localized in distinct sites, 

but after the demonstration of inducible expression of UCP1 in WAT depots of cold-exposed 

or β-adrenoceptor agonist treated rodents, the two types of adipocytes were proposed to be 

intermingled in the adipose organ [25-27]. Supporting this hypothesis, Wu et al. managed to 

isolate so called “beige” cells from white adipose depots [28]. These “beige” cells resembled 

white fat cells in having an extremely low expression of UCP1 in the basal unstimulated 

state, but once stimulated these cells activate expression of UCP1 to levels similar to those 

of classical brown fat. While Cinti and colleagues have reported that browning of white fat in 

response to cold is mainly due to transdifferentiation of mature white adipocytes into brown 

adipocytes [18], recent studies have revealed that there are distinct progenitors that give 

rise to adipocytes located in different anatomic locations in rodents. The classical brown fat 

cells found in the interscapular region are thought to develop during the prenatal stage from 

Myf-5 positive myoblast precursors, resembling the gene signature of skeletal muscle cells 

[29]. Whereas “beige” adipocytes located within the white adipose tissue, also called “brite” 

or “brown-like” adipocytes, are believed to originate from a non-Myf-5 lineage [29]. 

However, the Myf-5 expressing progenitor cells first believed to only give rise to “classical” 

brown adipocytes and muscle cells have now also been identified in white adipose tissue 

where they are found to give rise to a subset of white adipocytes, suggesting that “beige” 

adipocytes may have multiple origins [30]. Hence, the cellular origin of “beige” adipocytes is 

not conclusive and is currently under debate. 

1.2.3 Browning in white adipose tissue  

 

Several studies have shown that obesity-resistant strains of mice, such as A/J and Sv129 

mice, have higher amounts of “beige” adipocytes in white fat [31-33]. Furthermore, 

transgenic mice with increased amounts of UCP1-postive adipocytes in WAT are protected 

from high-fat diet-induced obesity [34]. Interestingly, the multilocular cells previously 

observed in humans are found to be more similar to “beige” fat cells rather than classical 

brown fat cells [28]. Consequently manipulation of inducible brown adipocytes in humans 

may be a potential target in the treatment and prevention of obesity and its related 

diseases. New data concerning BAT function in humans is still emerging, and one of the most 
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recent finding is that human infants have distinguishable interscapular BAT depots that 

consists of classical brown adipocytes, a cell type that has so far not been shown to exist in 

humans [35].  

 

1.3  WEIGHT LOSS AND OBESITY PREVENTION  

1.3.1 Macronutrient composition 

Although obesity is known to be a disorder of energy balance, a true understanding of its 

causes and treatment remains elusive. The contemporary Western diet contains an average 

of 49 % energy from carbohydrate, 35 % from fat and 16 % from protein [36], which is an 

increase in the dietary level of carbohydrates at the expense of protein compared to Stone 

Age and Hunter-gatherer diets [8]. Since the adoption of the Western diet, the prevalence of 

obesity and type 2 diabetes has risen substantially. Therefore, it is plausible that changes in 

dietary macronutrient composition also play a role in the increasing incidence of obesity. 

Macronutrients not only supply calories but some components also directly or indirectly 

function as signaling molecules to affect appetite and metabolism [37]. The importance of 

the macronutrient composition of a diet in prevention and management of obesity is 

debated. However, despite the consistency among official recommendation, there has been 

a growing interest in alternative dietary approaches to reduce weight and fat mass. The ideal 

balance of macronutrients necessary to optimize weight loss and prevent obesity is an area 

of great controversy. Multiple strategies have been proposed, and in recent years low-

carbohydrate and high-protein diets have attracted considerable attention as strategies for 

successful weight loss. 

 

1.3.2 Low-carbohydrate diets  

The Atkins Diet is an example of a low carbohydrate diet and involves limited consumption 

of carbohydrate (less than 20 grams per day) to switch the body`s metabolism from 

metabolizing glucose as energy over to converting stored fat to energy. Moreover, because 

the body needs more than 20 grams of carbohydrates to cover its daily glucose 

requirements, low carbohydrate diets stimulate conversion of non-carbohydrate precursors 

to glucose, a process known as gluconeogenesis. Several trials have compared low-
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carbohydrate vs. traditionally low-fat, high-carbohydrate diets and considerable evidence 

has demonstrated that reducing the carbohydrate content in the diet improves body weight 

loss [38-40]. A meta-analysis of randomized controlled trials concluded that low-

carbohydrate, non-energy restricted diets are at least as effective as low-fat, high-

carbohydrate diets in inducing weight loss [41]. Additionally, the low-carbohydrate diets 

were associated with favorably changes in triglyceride and high-density lipoprotein (HDL) 

values [41]. However, low-carbohydrate diets have also been associated with unfavorable 

changes in total cholesterol and low-density lipoprotein (LDL) and the long-term effect of 

such diets is still unknown [42].  

The effect of carbohydrates on adipose tissue is not only determined by the amount of 

carbohydrate, but also the type of carbohydrate. Different types of carbohydrates have 

different effects on blood glucose levels and this knowledge has led to the term glycemic 

index (GI). High-GI carbohydrates such as pasta and white bread are rapidly digested and 

cause a high postprandial level of blood glucose, whereas whole grain carbohydrates give a 

steady rise in blood glucose levels and hence have a lower GI [43]. A study by Pawlak et al. 

demonstrated that rats and mice fed a low GI-diet gained less body fat compared to those 

fed a  high-GI diet [44]. Of further interest, a recent study reported that subjects assigned to 

a low-GI diet in combination with a high protein content had higher rates of weight loss 

maintenance than subjects receiving a low-GI, low protein diet [45].   

 

1.3.3 High-protein diets  

In recent years, particularly after the low carbohydrate diet wave settled down, high-protein 

diets have become increasingly popular as an effective way to lose weight. There are no 

standard definitions of high-protein diets, but based on intervention studies a protein intake 

of 30% of total energy is generally considered as high [8]. One of the most popular high-

protein diets are the “Zone diet”. The “Zone diet” centers on a 40:30:30 ratio of calories 

obtained from carbohydrates, proteins, and fats, respectively [46]. According to the Zone 

Diet doctrine a 0.75 protein to carbohydrate ratio will reduce insulin to glucagon ratio and 

allow excess body fat to be burned off and ultimately lead to weight loss. The efficiency of 

high-protein diets is not yet fully accepted by Health Authorities and the safety is debated as 

a high intake of proteins has been associated with potential dangers, such as bone mineral 
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loss [47] and kidney damage [48]. Yet, to this day there is not sufficient evidence to conclude 

that a high protein intake is dangerous for healthy individuals [49] and currently there is 

convincing evidence that protein-rich diets not only increases weight loss [50] but also 

attenuates loss of lean tissue [51] and improves glycemic control [52]. The mechanisms 

behind the weigh reducing effect of high-protein diets are not yet understood but seem to 

include enhanced satiety and increased energy expenditure [53, 54] .  

The effect of protein on satiety  

Increased satiety and subsequently reduced energy intake have often been cited as a 

possible explanation for the reported success of high-protein diets. Studies have shown that 

under experimental conditions, subjects consumed less energy when given high-protein 

meals versus high-carbohydrate meals and consumed less energy at the subsequent meal 

[55, 56]. Various physiologic consequences of protein ingestion are likely to impact satiety. 

Proteins, unlike fat and carbohydrate stimulate the appetite suppressant gastrointestinal 

hormone cholecystokinin (CCK) [57]. CCK is released from the stomach and induces satiety 

by suppressing the NPY (neuropetide Y) level in the doromedial hypothamalmus [58]. In 

other words by stimulating CCK secretion dietary proteins may have a greater ability to 

induce satiety and reduce food consumption for a longer period of time compared to 

carbohydrate- or fat rich diets. High levels of protein have also been shown to stimulate the 

intestinal secretion of PPY (peptid YY) [8], a hormone which is believed to have anorectic 

effects and inhibit food intake [59]. Of further interest is the finding that specific amino acids 

have been shown to regulate appetite. Branched chain amino acids (BCAA), especially 

leuicne (Leu), have been demonstrated to directly stimulate mTOR signaling in the 

hypothalamus and thereby decreasing food intake [60]. Leucine has also been reported to 

inhibit appetite and influence satiety by stimulating leptin secretion [61]. Another example 

of an amino acid believed to be involved in food intake regulations is tyrosin, which is a 

precursor of norephineprine and dopamine. Norepinephrine has been found to stimulate 

eating, through activation of α2-adrenergic receptors, and suppress appetite, through 

activation of a1-adrenergic receptors in the paraventricular nucleus (PVN) of the 

hypothalamus [62]. Dopamine has also been shown to play a role in the motivation to eat, as 

studies on knockout mice found that the absence of dopamine production caused an 

inability to initiate feeding [63, 64]. Furthermore, the essential amino acid tryptophan has 
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been pointed out for its role in the synthesis of serotonin, a classical neurotransmitter which 

plays an important role in regulating food intake in mammals [65]. A study demonstrated 

that administration of 5-HT (serotonin) or its analogue reduced food intake by the 

generation of reactive oxygen species (ROS) in the hypothalamus through an NADPH 

oxidase-dependent pathway [66]. Together these findings suggest that the ability of high-

protein diets to modulate body weight gain might, at least in part, be explained by their 

satiating effect. 

 

The effect of protein on energy expenditure  

Another potential mechanism by which high intake of proteins could promote weight loss is 

through their thermic effect and increased energy expenditure. The thermic effect can be 

defined as the energy required for digestion, absorption and disposal of an ingested nutrient 

[67]. Proteins have a relative high thermic effect (20-30 %) compared to carbohydrate (5-10 

%) or fat (0-3 %) [67]. The higher thermic effect of proteins is partly explained by the fact 

that the body has no flexible storage capacity for excess intake of amino acids, which are 

therefore actively oxidized or eliminated [68]. The high cost of protein oxidation and urea 

synthesis, as well as the high ATP requirement of postabsorptive protein synthesis positively 

affect energy expenditure and likely account for some of the reduced feed efficiency of high-

protein diets [68]. Of further interest is the finding that high-protein diets lead to a twofold 

higher meal-induced thermogenesis compared to high-carbohydrate diets in young women 

[69]. Moreover, studies have demonstrated an upregulation of UCP1 in inguinal fat pad of 

mice [70, 71], as well as in subcutaneous WAT of cattles fed a protein enriched diet [72]. The 

effect of high-protein diets on thermogenesis may partly be mediated through the amino 

acid tyrosin which is a precursor of norepeinephrine. Through interaction with alpha and 

beta adrenergic receptors norepinephrine have been found to activate different signaling 

pathways in brown adipocytes resulting in increased cell proliferation and greater expression 

of Ucp1 [19].  In summary, the increased energy expenditure from UCP1-dependent 

uncoupled oxidative thermogenesis  in combination with the high energy cost from 

gluconeogenesis and ureagenesis may attribute to the reduced energy efficiency observed 

for high-protein diets in both mice [70] and men [69].  
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The effect of protein on insulin:glucagon ratio  

Insulin is a powerful anabolic hormone and secretion of insulin stimulates glucose oxidation, 

glycogen synthesis, lipogenesis and protein synthesis. In other words insulin favors uptake 

and storage of all types of ingested nutrients, while it inhibits protein catabolism. Insulin has 

been found to play a vital role in development of obesity as it stimulates adipocyte 

differentiation and adipose tissue expansion. The importance of insulin signaling in 

adipocyte obesity development is underscored by the finding that mice lacking insulin 

receptor in adipose tissue [73] as well as mice lacking Ins2 gene expression in pancreas (i.e 

have reduced insulin secretion) [74] are completely protected against high-fat diet-induced 

obesity. Glucagon has mainly opposing effect on the body and in contrast to insulin it causes 

an increase in glycogenolysis, gluconeogenesis, lipolysis and fatty acid oxidation. The insulin 

to glucagon ratio in healthy subjects is determined by the nutritional status. After a meal the 

insulin:glucagon ratio is high but when the nutritional status is low glucagon is secreted 

leading to a high glucagon:insulin ratio. The insulin:glucagon ratio can also be influenced by 

the macronutrient composition of the diet.  Diets enriched in carbohydrates, in particular 

high-glycemic index carbohydrates, will lead to an enhanced insulin secretion and thereby a 

higher insulin:glucagon ratio [75], whereas high protein diets have been reported to reduce 

insulin:glucagon ratio after a meal [70, 76]. Additionally, the amino acid profile of the 

ingested protein itself may play a role in the control of insulin:glucagon ratio [77]. For 

example, amino acids such as alanin and arginine have been shown to stimulate glucagon 

release [78]. Thus, both the amount and the type of dietary proteins and carbohydrates may 

determine the insulin:glucagon ratio and thereby influence the adipogenic potential of a fat-

containing diet.  

 

 

 

 

 

 

 

 



16 
 

1.4  INTRODUCTION TO THE STUDY  

For decades, high-protein diets have been popular among bodybuilders and other athletes, 

as proteins are required  to repair and rebuild muscles. More recently, high-protein diets 

have become increasingly popular in the general population as a tool in weight 

management. A number of studies have reported that a high dietary content of protein 

increases satiety and thermogenesis [54, 69], as well as reduces energy efficiency in men, 

and several studies have demonstrated the benefical effects of high-protein diets in weight 

reduction in humans [53].   

A number of animal studies have confirmed the ability of high-protein diets to attenuate 

feed efficiency and weight gain [70, 71, 75, 79, 80]. Earlier studies from our group 

demonstrated that a high level of dietary protein totally prevented high fat diet induced 

obesety in C57BL/6J mice [70]. Of note, the high-protein fed mice needed almost 7 times 

more calories to achieve a weight gain of 1 g than mice on the high-carbohydrate diet. 

Moreover, the high-fat diet in combination with protein translated into a high 

glucagon:insulin ratio leading to increased cAMP signalling. Thus, although the mice were in 

a fed state, molecular signaling and biochemical processes associated with fasting, such as 

lipolyses and fatty acid oxidation, were ongoing. Furthermore, the enhanced cAMP signaling 

was associated with increased UCP1 expression in inguinal white adipose tissue and 

presumably an increased number of brown adipocytes, aka beige, allowing energy to 

dissipate in form of heat. The finding that UCP1 expression was increased in inguinal white, 

but not in interscapular brown adipose tissue is of great interest as brown adipocytes in 

human adults are mainly found as islets within the white adipose tissue. Thus, if high-protein 

diets are able to increase thermogenesis by a similar mechainsim in former white adipose 

tissue also in humans, this would provide an explanation, at least in part, to how high fat 

high protein diets, such as the Atkins diet can induce weight loss without a concomitant 

reduction in energy intake.   

 

Casein is together with soy the most commonly used protein source in rodent studies, 

including ours. Animal proteins such as those from beef, pork or poultry, as well as fish 

proteins also play an important role in human nutrition worldwide. However, little data on 

the efficiency of different protein sources on obesity development exists [68]. Consequently, 
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a previous study by our group recently aimed to investigate whether intake of a high 

proportion of other protein sources than casein was able to reduce the adipogenic potential 

of high fat diets. Thus, obesity prone C57BL/6J mice were fed a high fat diet in combination 

with a high proportion of either milk casein, vegetable protein (soy), terrestrial animal 

proteins (beef, chicken and pork) or fish (cod) proteins. As references, a group of mice was 

given a low fat diet containing casein and another group was given a casein based high-fat 

high sucrose diet. In agreement with the earlier mentioned studies [70, 71, 75] a high 

content of casein in combination with a high fat diet totally prevented the high-fat diet –

induced weight gain (Fig 1.1) Of note, mice fed a high proportion of cod, beef, chicken and 

pork, became as heavy as, or more heavy, than the high fat high sucrose fed mice. Of the 

protein sources tested, only casein was able to protect against diet-induced obesity. 

 

 

 

Figure 1.2: Results from a previous unpublished study performed in our group with C57BL/6J mice fed a high fat 

diet in combination with various protein sources.  
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1.5  AIM OF THE STUDY  

The finding that only high proportion of casein, of the protein sources tested, were able to 

protect against diet-induced obesity demonstrate that  different dietary proteins have 

different (anti)-obesogenic  properties. Moreover, the finding that mice fed a high 

proportion of cod, beef, chicken and pork, became as heavy as, or more heavy than the mice 

fed a high-fat high-sucrose diet, challenging the earlier suggestion from our group that the 

protein:carbohydrate ratio determines the adipogenic potential of a high fat diet. This study 

aimed to investigate if the protein:carbohydrate ratio is of importance when other protein 

sources than casein is used. The possible relation between obesity development, energy 

expenditure and feed efficiency will be investigated. Furthermore, this study aimed to 

investigate if the obesogenic potential of the different diets was related to their capacity to 

stimulate insulin secretion. 
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2 MATERIALS AND METHODS 

2.1 ANIMAL EXPERIMENT 

THE ANIMAL MODEL 

Seventy male mice of the inbred strain C57BL/6JBomTac were obtained at 8 weeks of age 

from Taconic, Denmark. The mice were placed in single cages (Techniplast 1291) and 

allowed to acclimatize to their surroundings for 1 week. C57BL/6J is one of the most 

commonly used mice strains and was particular suitable for this experiment because of its 

ability to develop obesity, hyperglycemia and hyperinsulinemia when fed a high-fat diet [81].  

 

Figure 2.1: Picture of a C57BL/6J mouse (Retrieved from http://jaxmice.jax.org/strain/000664.html).  

ETHIC STATEMENT  

The animal experiments were approved by the Norwegian Animal Health Authorities. Care 

and handling were in accordance with local institutional recommendations.  

EXPERIMENTAL SET-UP  

After one week of acclimatization the mice were scanned and weighted. Based on body 

weight and fat percentage the lower and upper extremes were removed, leaving a total of 

63 mice for the experiment. The mice were then sorted into seven groups (n= 9), making 

sure that the average body weight, fat mass, lean mass and fat percentage in each group 

were similar.   

Housing: The mice were kept in single cages throughout the experiment to control the feed 

intake of each individual mouse. Each cage had standard wooden chips bedding (Scanbur 

Bedding Aspen, Norway) and nesting materials of shredded paper and cardboard. Tap water 

was constantly available. The animal room had artificial lighting with a twelve hour 

http://jaxmice.jax.org/strain/000664.html
http://www.google.no/url?sa=i&rct=j&q=c57bl/6j+mice&source=images&cd=&cad=rja&docid=PFc_mlqQhjHebM&tbnid=0bHUflN6O71sCM:&ved=0CAUQjRw&url=http://jaxmice.jax.org/strain/000664.html&ei=n-F3UdjXJsKR4ATDuICQDw&bvm=bv.45580626,d.bGE&psig=AFQjCNEqfuG6_HYEswErI1X3FbEJMl8sOg&ust=1366897323331983
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light/dark cycle. Room temperature was kept between 28.5 and 30 degrees to ensure 

thermoneutrality and avoid cold stress. The humidity was between 39 and 55. 

Food intake: The mice were fed three times a week for a total of 12 weeks. On the days of 

feeding, each mouse received a new food cup and the feed remnants from the previous food 

cup were weighed. Once a week the cages were changed and cleaned while the spillage was 

collected, weighed and counted for. From this data daily, weekly, and total caloric intake of 

each experimental group were calculated.  

Body weight and composition: Body masses of all animals were measured before initiation 

of the feeding experiments and subsequently once per week on a Mettler Toledo Weight. In 

week 6 and week 10 of the experiment the mice were scanned in a Bruker Minispec 

LF50mq7.5 scanning apparatus and fat mass, lean mass and free water were measured.  This 

apparatus uses a magnetic field to provide information about the animal’s body 

compositions in order to determine whether the increased body weight is due to gained fat- 

or muscle mass, or both.  

DIETS  

The seven groups of mice received different diets. One group was given a low-fat (LF) control 

diet as a reference, while the six other experimental groups received either a high-fat high-

sucrose (HF/HS) or a high-fat high-protein (HF/HP) diet containing different sources of 

protein. The sources of protein were casein, cod and pork. Casein powder (batch number 

BCBC3986V) was purchased from Sigma (batch number 080M0006) and cod fish powder was 

purchased from Seagarden AS. Pork sirloin was purchased from H. Brakstad AS, freeze dried 

and minced to powder at NIFES. The diets were prepared by weighing on a Mettler Toledo 

PG42002-S/PH weight and mixed in a Crypto Peerless EF20 blender. All diets were kept 

frozen throughout the experiment. The macronutrient distribution in the different diets is 

presented in figure 2.2. For a more detailed list of the composition of the diets see Appendix 

table A.1.  
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Figure 2.2: Distribution of protein, sucrose, fat and starch in the low fat control diet and the experimental diets.  

COLLECTION OF FECES  

In week 11 of the feeding trial the animals were moved to clean cages with less wooden 

bedding to allow collection of feces.  After 4-6 days the feces were collected, weighted and 

placed in small tubes which were stored at -80°C until analysis could be performed. 

TERMINATION  

After 12 weeks of feeding the mice were terminated. Prior to the termination all animals 

were weighted and fasted for four hours to ensure that they were all in the same metabolic 

state. The mice were then anaesthetized with Isofluran (Isoba-vet, Schering Plough, 

Denmark) using the anesthesia apparatus Univentor 400 Anesthesia Unit (Univentor Limited, 

Sweden) and sacrificed with cardiac puncture.  

Blood sample collection: 

Blood samples were collected directly from the hearth with a syringe and separated into two 

tubes containing EDTA as anticoagulant. The samples were immediately centrifuged at 

5000g in 4 degrees for 5 minutes, to separate plasma and red blood cells. The plasma was 

stored at -80°C until further analysis. 

Organ collection: 

During the termination three adipose depots (iWAT, eWAT and iBAT) were dissected out, 

weighted and freeze clamped in small plastic bags to ensure rapid freezing. The tibiales 

anterior muscle, pancreas, liver and kidneys were also excised, weighted and quickly frozen 

in liquid nitrogen.  All tissues were temporarily put on dry ice and later stored at -80°C until 

further analysis. 
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In addition, a second set of tissue samples of eWAT, iWAT and iBAT from twenty-one 

randomly selected mice (three from each group) were fixed in 4 % formaldehyde and later 

prepared for histological examination. Also, photographs of one representative mouse from 

each group were taken during the dissection.  

2.2 GLUCOSE TOLERANCE TEST (GTT) 

After 10 weeks of feeding an intraperitoneal injected glucose tolerance test (i.p GTT) was 

performed to determine which, if any, of the animals had become glucose intolerant. The 

mice were fasted for 6 hours as overnight fasting can cause major metabolic stress on such 

small animals [82].  Prior to the test the animals were weighted and doses of glucose were 

calculated based on body weight (2 mg glucose/g body weight). Before glucose 

administration drops of blood were obtained by tail puncture in the upper part of the tail 

and fasted glucose concentrations were measured using an automatic glucometer (Ascensia, 

COUNTOUR, USA). Glucose was administered with an intraperitoneal (i.p) injection in the 

abdomen and blood glucose levels were again measured at 15, 30, 60 and 120 minutes after 

the injection. Additionally, 20 µl of blood from each mouse were collected at T0 and T15.  

2.3 INSTULIN INTOLERANCE TEST (ITT) 

After 11 weeks of feeding an intraperitoneal insulin tolerance test (i.p ITT) was performed to 

determine which, if any, of the animals had become insulin resistant. For this test the mice 

were not fasted but moved to clean cages with no access to food while the experiment was 

conducted. As described above blood glucose was measured at T0, followed by an 

intraperitoneal injection of insulin (Humulin-R) and then measured again after 15, 30, 45 and 

60 minutes. Each mouse received 0.5 U insulin per kilo gram body weight.  
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2. 4 MEAL TOLERANCE TEST (MTT) 

A meal tolerance test (MTT) was performed on a second set of mice at the University of 

Copenhagen. The procedure was based on the method described by [83].  

 

Before testing mice were transferred into individual cages and fasted overnight 

(approximately 16 hours). The following morning, blood glucose concentrations were 

measured via tail vein using a handheld glycometer (Ascensia, COUNTOUR, USA). 

Additionally, 20 µl of blood were collected from each mouse using micro capillary. The 

animals were then given access to a previously weighed amount of food corresponding to 

their specific diet group. The experimental diets tested were casein HF/HS, casein HF/HP, 

pork HF/HS and pork HF/HP, along with a LF control diet (n=5). Mice had free access to the 

food for a 30-minute period and then the remaining food as well as any food-spillage were 

removed and weighed. This amount was subtracted from the weight of the food given to 

calculate total food intake. Blood glucose concentrations were obtained from the tail vein 

immediately after the food was removed and then again 15, 30, 60 and 120 minutes after 

food ingestion. Additionally, 20 µl of blood were collected from each mouse at T15 and T30. 

At completion of the MTT, mice were placed back into their original cages. The blood 

collected was later used to measure plasma insulin levels. 

 

2. 5 INDIRECT CALORIMETRY  

O2 consumption and CO2 production of the mice were measured in a PhenoMaster open-

circuit indirect calorimetry system (TSE, Systems GmbH, Germany). The animals were first 

acclimated in the chambers on a LF diet for 5 day before they received either a high-sucrose 

or a high-protein diet supplemented with casein or pork as protein source. The indirect 

calorimetry provided Respiratory Exchange Ratios (RERs) which was used to determine the 

energy source being utilized by the animals. A RER of 0.70 indicates that fat is the main fuel 

source, while a value of 1.00 or above indicates that carbohydrate is the predominant fuel.  
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2.6 HISTOLOGY  

2.6.1 Fixation with Paraformaldehyde and Phosphate Buffer (PB) 

Immediately after dissection the cassettes with tissue samples (iWAT and iBAT) were fixated 

in 4 % paraformaldehyde in 0.1 M phosphate buffer (PB) to preserve its structure and 

protect it from degradation and autolysis. The 0.1 M PB was made by dissolving 3.68 g 

NaH2PO4 x H2O and 16.82 g Na2HPO4 x 2H2O in 1000mL ddH2O and adjusting pH to 7.4. 

The tissues were stored in the fixative overnight at 4ºC. The next morning the tissues were 

washed once in 0.1 M PB and then left in the buffer until further treatment (approximately 

one week). 

 

2.6.2 Dehydration with ethanol and xylene 

To remove fixation solutes and water from the tissue the formaldehyde phosphate buffer 

was replaced with gradually increasing concentration of alcohol, following the time schedule 

given below (table 2.1). When the tissue was completely dehydrated in 100 % alcohol, the 

alcohol was replaced with Xylen. While alcohol is insoluble in paraffin, xylen is soluble in 

both alcohol and paraffin. The exchange of alcohol with xylene is therefore a necessary step 

before paraffin infiltration.  

Table 2.1: List of reagents and time of each step in the dehydration process performed manually.  

    

Reagent  Time 

75 % Alcohol  45 min 

95 % Alcohol 2 x 45min 

100 % Alcohol 3 x 45 min 

Xylene 2 x 45 min 

Parafine overnight  

Parafine 2 x 15 min 
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2.6.3 Paraffin infiltration and embedding  

The cassettes with the tissues were placed in liquid paraffin (Histowax, Histolab products AB, 

Sweden) holding a temperature of 59 °C, and stored overnight. Next day, the cassettes were 

put in a new bath of liquid paraffin for 30 minutes to remove all the remnants of xylen.  

Subsequently the tissues were embedded in paraffin using EC 350 Paraffin embedding 

center (Microtom International GmbH, Germany). First, a suitable metal mould had to be 

filled with small amount paraffin. Then, the tissue had to be placed in the mould and 

covered with the bottom of the cassette. Finally, the mould could be filled completely with 

paraffin and put on a cold board.  When it was completely stiffened the block of paraffin 

could easily be removed from the mould and stored in the fridge.  

2.6.4 Sectioning and staining  

A microtome (Leica RM2165, Germany) was used to cut 3 µm thin sections of the embedded 

tissue. The slices were then carefully placed in dissected water heated to 35°C to help the 

slices stretch. Finally, the sections were placed on glass slides and left to dry.  

In order to examine the slides with a microscope the section was stained with hematoxylin 

and eosin (table 2.2). Hematoxylin stains the nucleus of the cell, while eosin stains the 

cytoplasm. After staining, the slides were mounted with xylem based mounting medium 

(microscopy, Entellan, Germany). 
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Table 2.2: Overview of the rehydration, staining and dehydration process.  

    

Reagent  Time 

Xylene 2 x 10 min 

100 % EtOH 2 x 10 min 

95 % EtOH 2 x 5 min 

75 % EtOH 5 min 

50 % EtOH 5 min 

ddH2O 5 min 

Hematoxylin 2 min 

H20 wash  

ddH2O 1 min 

50 % EtOH 2 min  

75 % EtOH 2 min 

95 % EtOH 2 x 2 min  

100 % EtOH 2 x 5 min 

Xylene 2 x 5 min 

   

2.6.5 Microscopy  

Cell size of eWAT and iWAT from the different groups was compared using a binocular 

microscope (Olympus BX5, system microscope, Japan) and representative parts were 

photographed using a camera (Olympus DP50 3.0) combined with the microscope.  

2.7 REAL TIME qPCR  

Small samples of the adipose tissues (iWAT and iBAT) collected during termination were 

extracted in Quiazol and isolated RNA was quality checked before transcribed into cDNA 

templates by reverse transcriptase. The cDNA templates were run in a real-time PCR 

instrument and relative mRNA expressions were measured.  
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2.7.1 RNA extraction with Qiazol  

Principle:  

The first step in RNA extraction is homogenization of the tissue in Triazol. Triazol is a 

monophasic reagent which contains phenol and guanidine salt and facilitates lysis of the 

tissue and inactivates RNases. After homogenization RNA is separated from DNA and 

proteins by adding chloroform. RNA is then extracted from the water phase by adding 

isopropanol. Precipitated RNA is washed in etanol and finally dissolved in RNase free water.  

Procedure:  

Small tissue samples collected during termination were placed in small RNase free tubes 

with 1 mL of QIAzol and zirconium beads. The tubes were homogenized at 6000 rpm, 3 x 15 

sec. in a homogenizer instrument (Precellys 24 lysis & homogenization instrument, Bertin 

Technologies, Franze). Afterwards, the homogenate were centrifuged at 1200 x g for 10 

minutes at 4°C and incubated in room temperature for 5 min. Then 300 µl of chloroform was 

added to each tube and shaken manually for 15 seconds before incubated for another 2-3 

minutes in room temperature. After incubation the samples were again centrifuged at 1200 

rpm x g for 15 minutes at 4°C to separate the solution into three phases: a phenol-

chloroform phase, an interphase and a colorless upper aqueous phase. The upper layer was 

transferred to a new set of tubes and 500 µl of isopropanol was added to each tube. The 

samples were first incubated for 10 min in room temperature and then incubated another 

10 min at 4°C. After incubation the samples were centrifuged at 1200xg for 20 minutes at 

4°C. The supernatant was removed with a vacuum suction apparatus (IBS Integra 

Bioscienses, Vacuboy, Switzerland). The pellet was washed twice with 1 mL 75 % ethanol in 

DEPC and once with 1 mL 100 % ethanol. Finally, 50 µl of ddH2O were added to each tube to 

dissolve the pellet.  All RNA samples were then frozen at -80ºC until further analysis.  

2.7.2 Measuring RNA quantity and quality on Nandrop ND-100 

Principle:  

The NanoDrop ND-1000 (Saveen Werner, Sweeden) is a spectrophotometer who enables 

highly accurate measurements of the absorbance of small samples of RNA. The instrument 
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measures absorbance at 230 nm, 260 nm and 280 nm and calculates both the A260/A280 

ratio and the A260/A230 ratio which are indicators of RNA quality.   

The optimal A260/A280 ratio is 1.8-2.1; a lower ratio might indicate that RNA has not 

completely been dissolved in the water or that there are protein remnants in the sample, a 

higher ratio on the other hand might indicate that there are phenol remnants in the 

samples. The A260/A230 ratio should not be below 1.8; a lower ratio might indicate that 

there are high salt content or other impurities in the sample. NanoDrop ND-1000 also 

measures sample concentration and it is preferable to have a RNA concentration of more 

than 150 µl when performing a PCR.  

Procedure:  

1.8 µl of the RNA sample was placed directly onto the lower pedestal on the Nanodrop 

instrument. The sampling arm was closed and measurement initiated using the software on 

the PC. When measurement was completed, the sample arm was opened and both the 

lower en upper pedestals were wiped using a soft tissue. Nanodrop measurements are listed 

in Appendix Table A.7.  

2.7.3 Measuring RNA integrity on BioAnalyzer (RNA 6000 Nano)  

Principle: 

The RNA sample integrity was evaluated using a special RNA LabChip kit and a BioAnalyzer. 

This is a widely used instrument design to determine size and quality of RNA before running 

real-time PCR analyzes. The method uses a microfluidic-based platform to separate RNA 

fragments based on molecular weight and the BioAnalyzer detects the fragments by 

fluorescence. The results are shown as RNA integrity numbers (RIN), gel-like images (bands) 

and electropheroprograms (graphs). A high RIN number indicates high sample quality.  

Procedure:  

Twelve RNA samples were randomly selected and thawed on ice while kit reagents where 

allowed to reach room temperature before use. The selected RNA samples were measured 

on NanoDrop and diluted with RNAse free water to concentrations between 25 and 500 

ng/µl. A gel dye mix was prepared by adding 0.5 µl of dye concentrate to 32.5 µl filtered gel 
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matix followed by centrifugation for 10 min at 15 rcf.  Then, 9 µl of the prepared gel dye mix 

was placed on the RNA 6000 Nano chip in the well marked “G“. The chip was placed in the 

chip priming station which was closed and reopened. Another 9 µl of the prepared gel dye 

mix was placed in each of the wells marked “g”. Additionally, 5 µl of RNA 6000 Nano Marker 

was added to all the sample wells and 1 µl of RNA ladder was transferred into the well 

marked with ladder symbol to serve as an external standard. The RNA samples were 

incubated for 2 minutes at 70°C before 1 µl of each samples was loaded onto the chip. The 

chip was vortexed at 2400g for 1 minute and placed into the Bioanalyzer and analyzed. 

Before and after use the electrodes in the BioAnalyzer were carefully washed with water and 

RNaseZap. A more detailed list of chemicals and reagents, as well as the results are 

presented in Appendix Table A.3 and Figure A.1.  

2.7.4 cDNA synthesis using reverse transctiprion (RT)  

Principle:  

Before the extracted single stranded RNA can be analyzed by quantitative real-time PCR it 

has to be converted to cDNA. The generation of cDNA from RNA requires the enzyme 

reverse transcriptase which originally is used by retroviruses to create DNA from viral RNA.  

Procedure:  

Frozen RNA samples were thawed and put on ice before a portion of each RNA sample were 

extracted and diluted with RNAse free water until the concentration reached 50 ng/ µl (+/- 5 

%). Additionally, 1 µl of each of the original RNA samples were mixed into a RNA pool and 

diluted to different concentrations to make a standard curve. The RT reaction mixture was 

prepared as described in table 2.3 and 40 µl of this mix was added to each well in a 96-RT 

plate (Thermo Scientific, USA). Then, 10 µl of the diluted RNA samples were placed into the 

wells in order. Two negative controls:  non-amplification control (nac) lacking the multiscribe 

enzyme and non-template control (ntc) with no RNA template were also added to one well 

each for quality assessment.  A clean plastic cover was placed on top of the plate and the 

plate was centrifuged for 1 min at 50 g. Finally the plate was placed in the GeneAm.PCR 

system 9700 PCR machine (Applied Biosystems, USA) and a specified thermal cycle program 

was run. The finish RT plate was stored in – 20°C until further use.     
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Table 2.3: Ingredients for the RT reaction mix.  

    

Reagent Amount (µl) 

ddH2O 890 

10 x TagMan RT buffer 500 

25 mM MgCl2 1100 

10 mM dNTP mix 100 

Oligo D 250 

RNase Inhibitor 100 

Multiscribe rev. T 167 

   

2.7.5 Real Time quantitative PCR  

Principle:  

Real-time quantitative polymerase chain reaction (qPCR) is a method used to amplify and 

quantify small sequences of cDNA. The reaction is run in a real-time PCR instrument with 

thermal cycling and fluorescence detection capabilities. Sequence specific primers are used 

to allow amplification of particular genes of interest while a fluorogenic DNA-binding dye 

makes it possible to monitor the magnification process. Every target molecule is copied once 

each cycle and data are captured throughout the thermal cycling. The speed of which the 

fluorescent signal reaches a threshold correlates with the amount of original gene expressed 

in the sample.  

Procedure:  

The prepared cDNA (see section 2.7.4) was thawed on ice and then vortexed at 1100 rpm for 

3 minutes. Subsequently, the plate was diluted adding 50 µl ddH2O and centrifuged for 1 

minute at 1000g. The real-time reaction mix was made by mixing 5.7 µl of the both forward 

and reverse primer selected to detect the gene of interest with 570 µl Cyber Green and 331 

µl ddH2O. 8 µl of the reaction mix and 2 µl of the cDNA were transferred to a 384-well real-

time PCR plate and mixed using pipette robot (Biome 3000 Laboratory Automation 
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Workstation, Beckman Coulter, USA). The PCR plate was then coated with an optical cover 

and centrifuged at 1500g for 2 minutes. Finally, the PCR plate was placed in a Light Cycler 

480 machine and a real-time PCR reaction was run. The different primers used and their 

sequences are shown in Appendix A.6.  

2.8 ELISA INSULIN KIT  

Quantitative levels of plasma insulin were measured using an ELISA kit for mouse (DRG 

Instruments, GmbH, Germany). The ELISA kit reagents are listed in Appendix Table A.8. 

Frozen plasma samples were thawed on ice and ELISA kit reagents were allowed to reach 

room temperature. Then, 25 µl of different calibrators and plasma samples were placed in 

appropriate anti-insulin antibody-coated wells. 100 µl of Enzym Conjugat containing 

peroxidase-conjugated anti-insulin antibodies was also added to each well. Subsequently, 

the plate was covered with plastic and incubated on a shaker for 2 hours. The incubation 

period enables insulin to react with both the enzyme-linked antibodies and the antibodies 

on the coated wells. After incubation the plate was washed 6 times in a washing buffer, 

using an automatic plate washer, to remove unbound conjugate. Then 200 µl TMB substrate 

solution was pipette into each well followed by 15 minutes incubation. During the second 

incubation period the colorless TMB solution was converted into a colored product by the 

antibody-bound enzymes. After the incubation 50 µl of Stop Solution was added in each well 

and the plate was put on a shaker for 10 minutes. Finally, the plate was placed in a 

spectropotometric plate reader (iEMS Reader MF, Labsystems, Helsinki) and optical density 

was measured at 450 nm and 620 nm. The intensity of the produced color is proportional to 

the amount of insulin in the plasma sample.  

2.9 STATISTICAL ANALYSES  

2.9.1 Microsoft Excel 2007  

Microsoft Excel 2007 was used for data preparation and to calculate standard error of the 

mean (SEM). All data are presented as mean +/- SEM.  
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2.9.2 Graph Pad Prism 5 

Graph Pad Prism 5 was used to perform an unpaired t-test with Welch's correction to test 

for differences among the means between the high-protein and high-sucrose groups within 

individual protein sources.  All data were initially tested for normality using Shapiro Wilk 

normality test and D`Agostino-Pearson normality test.  Results were considered significant 

different with P-values < 0.05. 

 

2.9.3 STATISTICA 9.0  

The treatment effects of protein:sucrose ratio and different protein sources was analyzed 

with STATISTICA 9.0 using a factorial ANOVA test with protein amount and protein source as 

categorical predictors. All data were initially tested for homogeneity and normality using the 

Levene`s Test for Homogeneity of Variance and P-plot, respectively. Data with 

heterogeneous variance were log-transformed before statistical analyses. A value of P < 0.05 

was considered as statistical significant. The mice fed the LF diet were used as a reference 

group only and data from these mice was not included in the statistical analyses.  
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3 RESULTS 

3.1 BODY WEIGHT GAIN AND DEVELOPMENT OF OBESITY  

3.1.1 Body weight gain  

It has earlier been demonstrated that increasing the protein:sucrose ratio in a high-fat diet 

reduced body weight gain when casein was used as protein source [70, 75, 84]. To assess the 

importance of protein:sucrose ratio in diet-induced obesity when other protein sources are 

ingested, obesity-prone C57BL/6J mice were fed the experimental diets shown in table A.1 

for 12 weeks. The body weight gain of the different groups is shown in figure 3.1. 

G
ra

m
 (

g
)

0

5

1 0

1 5

2 0

2 5
H F /H P H F /H S

   L F          C a s e in            C o d              P o rk

H F /H S H F /H P

H F /H P

H F /H S

*

*

G
ra

m
 (

g
)

H F /H S H F /H P

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

C a s e inC o dP o rk

*

G
ra

m
 (

g
)

C a s e in  C o d  P o rk  

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0 H F /H S H F /H P

a

b

c

B W  g a in

A

B

C

 

Figure 3.1: Body weight gain in C57BL/6J mice fed high-fat high-sucrose (HF/HS) or high-fat high-protein 

(HF/HP) diets with casein, cod or pork as protein source. A: * denotes statistical significance (p<0.05) between 

HF/HS and HF/HP groups of the same protein source. B and C: Data from the HF/HS and HF/HP groups were 

analyzed using a 2-way ANOVA test with protein amount (B) and protein source (C) as categorical predictors. B: 

* denotes statistical significance (p<0.05) between HF/HS and HF/HP diets independent of protein source. C: 

different letters denotes statistical significance (p<0.05) between casein, cod and pork, independent of protein 

amount. The results are presented as mean ± SEM. 

 

In agreement with the earlier published results, when casein was used as protein source 

mice fed the HF/HS diet gained significantly more body weight than mice fed the HF/HP diet 

(Fig 3.1 A). Also when pork was used as protein source the HF/HS group gained significantly 

more weight than the HF/HP group. However, when cod was the protein source, the 
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difference in weight gain between the HF/HS and HF/HP group did not reach statistical 

significance. 

To evaluate the impact of protein:sucrose ratio independent of protein source in the diet, 

the data was analyzed using a 2-way ANOVA test with protein amount and protein source as 

categorical predictors. As illustrated in figure 3.1 B, mice fed HF/HS diets gained significantly 

more body weight compared to mice fed HF/HP diets, independent of protein source in the 

diet.  

Furthermore, to evaluate the impact of protein source in the diet, independent of 

protein:sucrose ratio, the data was once more analyzed using a 2-way ANOVA test. As 

illustrated in figure 3.1 C, casein-fed mice gained significantly less weight compared to mice 

receiving cod or pork as protein source. There was also a significant difference in weight gain 

between cod and pork, with pork fed mice gaining most body weight. Thus, both the type 

and amount of dietary protein impacted on body weight gain. 

3.1.2 MRI scanning  

To determine if the observed weight gain was due to increased fat mass and/or lean mass 

the mice were MRI scanned prior to the start of the experiment and after 10 weeks on 

experimental diets. The results from the MRI scan performed at week 10 are shown in figure 

3.2.  

When casein and pork were used as protein source, mice fed the HF/HS diet had significantly 

more body fat mass than mice fed the HF/HP diet (Fig 3.2 A). However, there was no 

significant difference in fat mass between the HF/HP and HF/HS group when cod was used as 

protein source. Further analyses of the data from the MRI scan showed that independent of 

protein source; mice fed HF/HS diets had significantly more fat mass compared to mice fed 

HF/HP diets (Fig 3.2 B).  Furthermore, evaluating the impact of different protein sources 

showed that independent of protein:sucrose ratio, mice given casein had significantly less fat 

mass compared to both cod and pork fed mice (Fig 3.2 C). Moreover, mice fed pork had 

significantly more fat mass than mice fed cod.  
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Figure 3.2: Fat mass after 10 weeks on experimental diets. A: * denotes statistical significance (p<0.05) 

between HF/HS and HF/HP groups of the same protein source. B and C: Data from the HF/HS and HF/HP groups 

were analyzed using a 2-way ANOVA test with protein amount (B) and protein source (C) as categorical 

predictors. B: * denotes statistical significance (p<0.05) between HF/HS and HF/HP diets independent of 

protein source. C: different letters denotes statistical significance (p<0.05) between casein, cod and pork, 

independent of protein amount. The results are presented as mean ± SEM. 
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Figure 3.3: Lean mass after 10 weeks on experimental diets. A: * denotes statistical significance (p<0.05) 

between HF/HS and HF/HP groups of the same protein source. B and C: Data from the HF/HS and HF/HP groups 

were analyzed using a 2-way ANOVA test with protein amount (B) and protein source (C) as categorical 

predictors. B: * denotes statistical significance (p<0.05) between HF/HS and HF/HP diets independent of 
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protein source. C: different letters denotes statistical significance (p<0.05) between casein, cod and pork, 

independent of protein amount. The results are presented as mean ± SEM. 

There were no significant differences in lean mass between the HF/HS and HF/HP group 

when mice were fed casein and pork as protein source. However, when cod was the protein 

source mice fed the HF/HP diet had significantly more lean mass than mice fed the HF/HS 

diet (Fig 3.3 A). Despite few differences between the HF/HS and HF/HP group of the 

individual protein sources, a 2-way ANOVA test showed independent of protein source mice 

fed HF/HS diets had significantly less lean mass than mice fed HF/HP diets (Fig 3.3 B). 

Furthermore, evaluating the impact of different protein sources showed that cod fed mice 

had significantly more lean mass compared to pork fed mice (Fig 3.3 C).  

Although there were some differences in lean mass after 10 weeks of feeding, the observed 

body weight variations between the different experimental groups were most likely due to 

differences in adipose tissue composition and not differences in lean body mass or free 

water.  

3.1.2 Adipose tissue depots  

To further verify differences in fat mass, one representative mouse from each group was 

photographed at the termination before dissection and the adipose tissue depots were 

weighted and their masses documented.  

These pictures illustrate the differences found from statistical analysis of adipose tissue 

masses. As expected from the MRI scan, the adipose depots were more pronounced in mice 

fed HF/HS diets compared to mice fed HF/HP diets. Moreover, mice given casein as the 

protein source appeared to have smaller adipose tissue depots than cod and pork fed mice.  
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Figure 3.4: Picture of one representative mouse form each group after 12 week on experimental diet. 

  

eWAT, iWAT and prWAT masses:  

Mice fed the HF/HP casein diet had significantly less eWAT, iWAT and prWAT masses than 

mice fed the HF/HS casein diet (Fig 3.5 A). Also when mice received cod as protein source 

the eWAT and iWAT masses were significantly lower in the HF/HP group compared to the 

HF/HS group, but, there were no differences in prWAT mass between these two groups. 

When mice were fed pork there was only a significant difference in iWAT mass, and the 

HF/HS group had more iWAT mass than the HF/HP group. Further statistical analyses 

demonstrated that independent of protein source mice fed HF/HS diets had significantly 

more eWAT, iWAT and prWAT masses than mice fed HF/HP diets (Fig 3.5 B).  Furthermore, 

analyses of the impact of protein source demonstrated that independent of protein:sucrose 

ratio casein fed mice had significantly less eWAT, iWAT and prWAT masses then mice fed 

cod and pork (Fig 3.5 C). There were also significant differences in eWAT, iWAT and prWAT 

masses between mice given cod and pork, with pork having the largest WAT depots. Thus, 

both the amount and source of dietary protein influenced the development of obesity.  
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Figure 3.5: Mass of various white adipose depots. A: * denotes statistical significance (p<0.05) between HF/HS 

and HF/HP groups of the same protein source. B and C: Data from the HF/HS and HF/HP groups were analyzed 

using a 2-way ANOVA test with protein amount (B) and protein source (C) as categorical predictors. B: * 

denotes statistical significance (p<0.05) between HF/HS and HF/HP diets independent of protein source 

(p<0.05). C: different letters denotes statistical significance (p<0.05) between casein, cod and pork, 

independent of protein amount. The results are presented as mean ± SEM. 
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BAT mass: 

The iBAT mass were significantly higher in the HF/HS group compared to its respective 

HF/HP group (Fig 3.6 A) for all protein sources. Thus, increasing the protein amount reduced 

iBAT mass irrespective of protein source (Fig 3.6 B). Further analyses demonstrated that 

casein fed mice had developed significantly less iBAT mass than cod and pork fed mice (Fig 

3.6 C). Additionally, there was a significant difference in iBAT development between cod and 

pork fed mice, with pork fed mice having the highest iBAT masses.  
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Figure 3.6: iBAT mass. A: * denotes statistical significance (p<0.05) between HF/HS and HF/HP groups of the 

same protein source. B and C: Data from the HF/HS and HF/HP groups were analyzed using a 2-way ANOVA 

test with protein amount (B) and protein source (C) as categorical predictors. B: * denotes statistical 

significance (p<0.05) between HF/HS and HF/HP diets independent of protein source. C: different letters 

denotes statistical significance (p<0.05) between casein, cod and pork, independent of protein amount. The 

results are presented as mean ± SEM. 
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3.1.3 Adipocyte size  

Adipose tissue (iWAT) collected during termination was stained and representative parts 

were photographed to evaluate differences in adipocyte size.  

Histology of iWAT samples illustrated that adipocyte size of iWAT in mice fed HF/HS diets 

was enlarged compared to mice fed HF/HP diets. Furthermore, there were visible differences 

in adipocytes size between mice fed casein and pork, with larger cells in the pork groups.  

The adipocytes from the low fat group had a size somewhere in-between the casein HF/HS 

and casein HF/HP group.   

 

Figure 3.7: Adipocyte morphometry. Representative parts of iWAT (magnified to 400x). 

 

  3.1.4 Other organ masses  

To investigate if the diets influenced on other organ masses, liver, muscle, pancreas and 

kidney were dissected out and weighed.  

When casein and pork were used as protein source, the liver masses were significantly 

higher in HF/HS fed mice than in HF/HP fed mice (Fig 3.8 A). However, when cod was the 

protein source there was no signficant difference in liver mass between the HF/HS and 

HF/HP group. Still, as illustrated in figure 3.8 B, independent of protein source mice fed 

HF/HP diets had significantly higher liver masses compared to mice fed HF/HP diets. Of 
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further interest, mice fed casein as protein source had  significantly lower liver masses 

compared to both cod and pork fed mice (Fig 3.8 C). 
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Figure 3.8: Liver mass. A: * denotes statistical significance (p<0.05) between HF/HS and HF/HP groups of the 

same protein source. B and C: Data from the HF/HS and HF/HP groups were analyzed using a 2-way ANOVA 

test with protein amount (B) and protein source (C) as categorical predictors. B: * denotes statistical 

significance (p<0.05) between HF/HS and HF/HP diets independent of protein source. C: different letters 

denotes statistical significance (p<0.05) between casein, cod and pork, independent of protein amount. The 

results are presented as mean ± SEM. 

When the HF/HS and HF/HP group within the same protein group was analysed sepratly, no 

significant differences in kidney mass were found (Fig 3.9 A).   However, when analysed 

independent of protein type, kidney masses were significantly lower in mice fed HF/HS diets 

compared to HF/HP diets (Fig 3.8 B). Furthermore, kidney masses were significantly lower in 

casein fed mice then in cod and pork fed mice (Fig 3.9 C). 
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Figure 3.9: Kidney mass. A: * denotes statistical significance (p<0.05) between HF/HS and HF/HP groups of the 

same protein source. B and C: Data from the HF/HS and HF/HP groups were analyzed using a 2-way ANOVA 

test with protein amount (B) and protein source (C) as categorical predictors. B: * denotes statistical 

significance (p<0.05) between HF/HS and HF/HP diets independent of protein source. C: different letters 

denotes statistical significance (p<0.05) between casein, cod and pork, independent of protein amount. The 

results are presented as mean ± SEM. 

Neither pancreas nor Musculus Tibiales masses were influenced by the experimental diets 

(Fig A.2 and A.3). Despite the small variations in kidney and liver weight between some of 

the experimental groups, differences in body mass after 12 weeks of feeding seemed to be 

caused by difference in adipose tissue mass. 
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3.2 GLUCOSE TOLERANCE AND INSULIN SENSITIVITY  

3.2.1 Glucose tolerance test (GTT)  

To investigate the impact of dietary protein amount and source on glucose tolerance mice 

were subjected to an intraperitoneal glucose tolerance test (i.p GTT) after 10 weeks of 

experimental feeding. The results of the GTT are shown in figure 3.10.  
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Figure 3.10: Intraperitoneal glucose tolerance test performed after 10 weeks on experimental diets. Figure 

3.10 A. The modification in glucose level following an injection of glucose. Figure 3.10 B. Area under curve 

(AUC). Figure 3.10 C. Fasting plasma insulin.  Figure 3.10 D. Glucose-stimulated insulin secretion (GSIS). Figure 

3.10 E. Delta insulin. B-E: * denotes statistical significance (p<0.05) between HF/HS and HF/HP groups of the 

same protein source, p value denotes statistical significance between HF/HS independent of protein source 

(p<0.05), different letters denotes statistical significance between casein, cod and pork, independent of protein 

amount. The results are presented as mean ± SEM. 

 

From figure 3.10 A it appears that glucose tolerance is inversely correlated with body weight. 

The basal blood glucose concentrations at time 0 were approximately 5 (mmol/L) and did 

not differ among the treatment groups. In response to injected glucose, blood 
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concentrations of glucose peaked after 15-30 minutes in all the mice.  Fifteen to 30 minutes 

postadministration of glucose, blood glucose concentrations were significantly higher in all 

the treatment groups when compared to the LF reference group, except for the HF/HP 

casein group. The same tendency was seen 60 minutes after glucose injection. Additionally, 

at this time point the HF/HP casein fed mice had a significantly lower blood glucose 

concentration than the HF/HP cod and HF/HP pork fed mice. 120 minutes after glucose 

injection, blood glucose concentrations in the HF/HS pork group were significantly higher 

than all of the other groups, except from the HF/HS cod group. Moreover, at this time point 

the glucose concentrations in the LF and HF/HP casein group had decreased back to basal 

levels, whereas the blood glucose concentration in the other groups remained elevated.   

Analysis of the glucose AUC showed that when mice were fed casein or cod as protein 

source, there were no significant differences in glucose clearance between the HF/HP and 

the HF/HS group (Fig 3.10 B). However, pork feed mice in the HF/HS group had a significantly 

higher glucose AUC compared to mice in the HF/HP group. Evaluating the effect of protein 

amount, independent of protein source, showed that mice fed HF/HP diets had a 

significantly better glucose clearance than mice fed HF/HS diets. Furthermore, analyzing the 

AUC of the different protein sources showed that casein fed mice had a significantly lower 

glucose AUC compared to mice given cod and pork. 

Glucose stimulated insulin secretion (GSIS): 

As shown in figure 3.10 C fasting plasma insulin levels tended to be higher in the HF/HS 

group compared to the HF/HP group when mice received casein as protein source (p=0.058). 

When pork was the protein source differences between the HF/HS and HF/HP group reached 

statistical significance and mice in the HF/HS group had higher insulin levels compared to the 

HF/HP group. However, when mice were fed cod there were no differences in fasting plasma 

insulin levels between the HF/HS and HF/HP group. Still, a 2-way ANOVA test showed that 

independent of protein source, HF/HS diets lead to higher fasting insulin levels than HF/HP 

diets. Furthermore, mice fed casein had significantly lower fasting insulin levels than pork 

fed mice. Plasma levels 15 minutes after glucose injection were significantly higher in the 

HF/HS than the HF/HP group when casein and pork was used as protein source (Fig 3.10 D). 

However, when cod was the protein source there were no differences in plasma levels of 
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insulin between the HF/HS and HF/HP group. Anyhow, 2-way ANOVA analyses showed that 

independent of protein source, mice fed HF/HS diets had higher glucose-stimulated insulin 

levels than mice fed HF/HP diets. Furthermore, casein fed mice had significantly lower 

insulin levels than both cod and pork fed mice. Calculations of delta insulin (changes in 

insulin from 0 to 15 minutes) showed that there was only a significant difference in delta 

insulin between the HF/HS and HF/HP group in mice fed casein, with higher delta insulin 

values for the HF/HS group (Fig 3.10 E).   

3.2.3 Insulin tolerance test (ITT)  

To explore the role of dietary protein on development of insulin-resistance, an insulin 

tolerance test was performed after 11 weeks of experimental feeding. The blood glucose 

levels during the ITT and AUC calculations are presented in figure 3.11. 
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Figure 3.11:  Insulin tolerance test performed after 11 weeks on experimental diets. Figure 3.11 A. The 

modification in glucose level following an injection of glucose. Figure 3.11 B. Area under curve (AUC): * denotes 

statistical significance (p<0.05) between HF/HS and HF/HP groups of the same protein source, p value denotes 

statistical significance between HF/HS independent of protein source (p<0.05), different letters denotes 

statistical significance between casein, cod and pork, independent of protein amount. The results are 

presented as mean ± SEM. 

 

From figure 3.11 A it appears that insulin sensitivity is reduced with increasing adiposity of 

the animals. At time 0 there were no significant differences in the blood glucose levels of the 

treatment groups. Fifteen minutes after insulin administration all groups had a decline in 

plasma glucose, however glucose levels remained significantly higher in the pork HF/HS 
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group compared to the LF group and both casein groups at all time-points up to 60 minutes 

Furthermore, at time 45 and 60, plasma glucose was significant higher in the pork HF/HS 

group compared to the other experimental groups. Hence, the pork HF/HS group was not 

able to take up glucose in response to insulin at the same rate as the other groups. Of 

further interest, 60 minutes after insulin injection all treatment groups had a significantly 

elevated plasma glucose concentration compared to the LF control group, except for the 

casein HF/HP group.  

Analysis of the insulin AUC values (Fig 3.11 B) showed that there were significant differences 

in insulin response when mice were fed casein or pork with greater insulin AUC in the HF/HS 

group compared to the HF/HP group. However, when mice were fed cod as the protein 

source no significant differences were observed between the HF/HS and HF/HP group. 

Furthermore, comparing the HF/HS diets versus the HF/HP diets showed that independently 

of protein source mice given HF/HP diets had a significantly better uptake of glucose in 

response to insulin compared to mice receiving HF/HS diets.  Of further interest, mice fed 

casein had significantly lower insulin AUC compared to mice given cod and pork. 

 

3.3 FEED EFFICIENCY AND DIGESTIBILITY   

3.3.1 Energy intake  

To exclude the possibility that the observed differences in weight gain was simply not due to 

variations in energy intake, feed consumption and total caloric intake was calculated. The 

total energy intake of the different groups is presented in figure 3.12. 
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Figure 3.12: Total energy intake. Different letters denotes statistical significance between casein, cod and pork, 

independent of protein amount. The results are presented as mean ± SEM. 
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No differences in energy intake were observed between the HF/HS group and HF/HP group 

within the individual protein sources. Thus, increasing the protein amount did not have any 

effect on total energy intake (Fig 3.12 B). However, analyses of protein source demonstrated 

that independent of protein:sucrose ratio in the diet, mice fed pork consumed significantly 

more energy than both casein and cod fed mice.  

 

3.3.2 Feed efficiency  

To investigate if the type and amount of dietary protein had any impact on energy efficiency 

body weight gain from each individual mouse was divided by kilocalories eaten during the 

same period.  

In agreement with earlier studies energy efficiency was significantly lower in the HF/HP 

group compared with the HF/HS group when casein was used as the protein source (Figure 

3.13 A). In the high protein group of casein 184 kcal were needed to produce a weight gain 

of 1 g, whereas the high sucrose group only needed half as much calories to produce the 

same weight gain.  A similar result was seen when pork was used as a protein source. 

However, when cod was used as protein source no significant difference in energy efficiency 

between the HF/HS group and HF/HP group was seen. As illustrated in figure 3.13 B, 

independently of protein source, mice fed HF/HP diets had markedly lower energy efficiency 

than mice fed HF/HS diets. Furthermore, independent of protein:sucrose ratio in the diet, 

mice fed casein had a significantly lower feed efficiency compared to cod and pork fed mice 

(Figure 3.13 C).  There were also differences in energy efficiency between mice receiving cod 

and pork as a protein source with a significantly lower feed efficiency for cod fed mice. 
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Figure 3.13: Energy efficiency. A: * denotes statistical significance (p<0.05) between HF/HS and HF/HP groups 

of the same protein source. B and C: Data from the HF/HS and HF/HP groups were analyzed using a 2-way 

ANOVA test with protein amount (B) and protein source (C) as categorical predictors. B: * denotes statistical 

significance (p<0.05) between HF/HS and HF/HP diets independent of protein source. C: different letters 

denotes statistical significance (p<0.05) between casein, cod and pork, independent of protein amount. The 

results are presented as mean ± SEM. 

 

3.3.3 Digestibility  

To investigate if the differences in energy efficiency were simply due to differences in energy 

absorption feces were collected, weighed and analyzed for total fat content. The amount of 

fat ingested during the same time period was calculated, and thus the Apparent Feed 

Digestibility (AFD) could be calculated using the formula:   

AFD = ((amount of fat eaten- amount of feces excreted)/amount of fat eaten)x100%. 

Analysis of the AFD showed that when mice were given casein as the protein source, fat 

absorption was significantly lower in the HF/HS group compared to the HF/HP group. In 

contrast, no significant differences in fat digestibility were found between the HF/HS and 

HF/HP group when mice were given cod or pork. However, independent of protein source, 

mice given HF/HS diets had a lower fat absorption than mice fed HF/HP diets. Furthermore, 

evaluating the apparent fat digestibility in mice given different protein sources showed that 

mice fed casein had a significantly lower fat absorption compared to cod and pork fed mice.  
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Figure 3.14: Apparent fat digestibility. A: * denotes statistical significance (p<0.05) between HF/HS and HF/HP 

groups of the same protein source. B and C: Data from the HF/HS and HF/HP groups were analyzed using a 2-

way ANOVA test with protein amount (B) and protein source (C) as categorical predictors. B: * denotes 

statistical significance (p<0.05) between HF/HS and HF/HP diets independent of protein source. C: different 

letters denotes statistical significance (p<0.05) between casein, cod and pork, independent of protein amount. 

The results are presented as mean ± SEM. 

 

3.4 GENE EXPRESSION 

Increasing the amount of casein in a high-fat diet has earlier been demonstrated to dose-

dependently increase the expression of Ucp1 and other markers for brown adipocytes in 

iWAT, but not in iBAT [70]. Increased Ucp1 expression might allow energy to dissipate in 

form of heat and thereby protect against diet-induced obesity. To investigate if the 

protein:sucrose ratio was of importance in energy dissipation also when other protein 

sources than casein is used,  expression levels of Ucp1 and other markers for brown 

adipocytes were measured in both iBAT and iWAT.  
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Gene expression in iWAT: 

Gene expression levels of Ucp1 in iWAT, as well as other adipocyte selective genes such as 

Dio2 and Ppargcα were analyzed, but no significant differences were detected. The 

expression of CideA was significantly higher in mice fed HF/HP diets compared to HF/HS 

diets when analyzed independent of protein source.  
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Figure 3.15: Relative gene expression of BAT-specific genes in iWAT. * denotes statistical significance (p<0.05) 

between HF/HS and HF/HP groups of the same protein source, p value denotes statistical significance between 

HF/HS and HF/HP diets independent of protein source (p<0.05), different letters denotes statistical significance 

between casein, cod and pork, independent of protein amount. The results are presented as mean ± SEM. 
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Gene expression in iBAT:   

The Ucp1 expression levels in iBAT were only significantly higher in the HF/HS group 

compared to the HF/HP in mice given pork as protein source. No differences were found in 

expression levels of Dio2, Ppargcα or CideA between any of the groups. 
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Figure 3.16: Relative gene expression in iBAT. * denotes statistical significance (p<0.05) between HF/HS and 

HF/HP groups of the same protein source, p value denotes statistical significance between HF/HS and HF/HP 

diets independent of protein source (p<0.05), different letters denotes statistical significance between casein, 

cod and pork, independent of protein amount. The results are presented as mean ± SEM. 
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3.5 INDIRECT CALORIMETRY 

To investigate if the experimental diets have any impact on energy expenditure a second set 

of mice were placed in metabolic cages and CO2 production and O2 consumption was 

measured. From these measurements the respiratory exchange ratio (RER) was calculated by 

dividing CO2 produced on O2 consumed. The RER of the different groups is shown in figure 

3.17. 
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Figure 3.17: Respiratory Exchange Ratio (RER). * denotes statistical significance (p<0.05) between HF/HS and 

HF/HP groups within the same protein source. The results are presented as mean ± SEM. 

The RER (the ratio of carbon dioxide produced to oxygen consumed) was significantly higher 

in the HF/HS group compared to the HF/HP group of both casein and pork fed mice, thus, 

indicating a lower rate of fatty acid oxidation in mice fed the HF/HS diets.   
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3.6 MEAL TOLERANCE TEST (MTT) 

To further investigate by which mechanisms the different experimental diets influenced the 

feed efficiency and body mass development a meal tolerance tests was performed. The 

results of the MTT are presented in figure 3.18. 

As expected, glucose AUC was significantly higher in mice given HF/HS diets than HF/HP diet 

when both casein and pork were used as protein source. Thus, a higher amount of sucrose in 

the diet significantly increased AUC compared to diets high in protein (p< 0.001).  However, 

there were no significant differences in AUC between the casein and pork diet, when 

analyzed independent of protein:sucrose ratio.   
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Figure 3.18: Meal tolerance test (MTT). Figure 3.18 A. Plasma glucose response for meal tolerance test 

(MTT) by dietary treatment. Figure 3.18 B. Area under curve (AUC).  Figure 3.18 C. Fasting plasma insulin. * 

denotes statistical significance (p<0.05) between HF/HS and HF/HP groups of the same protein source, p value 

denotes statistical significance between the HF/HS and HF/HP diets independent of protein source (p<0.05). 

The results are presented as mean ± SEM. 
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4 DISCUSSION 

A number of rodent studies have demonstrated that the balance between carbohydrates 

and casein in the feed is a powerful regulator of the obesogenic effect of fat [70, 71, 75, 79, 

80]. In fact, increasing the dietary casein:sucrose ratio strongly protects against high fat diet 

induced obesity (Madsen et al., 2008, Ma et al., 2011, Hao et al., 2012.) However, a recent 

unpublished study in our group, aiming to investigate whether intake of a high proportion of 

other protein sources also was able to reduce the adipogenic potential of dietary fat, 

demonstrated that of the protein sources tested, only a high proportion of casein were able 

to protect against diet-induced obesity. Terrestrial animal proteins, such as pork actually 

stimulated obesity whereas fish protein (cod) had an intermediate effect. Based on these 

previous findings we considered it important to determine if the dietary protein:sucrose 

ratio also is a regulator of obesity development when other sources of dietary proteins, such 

as pork and cod, are used as protein source. Here we demonstrate that although the type of 

proteins is of pivotal importance, increasing the protein:sucrose ratio suppresses obesity 

development  in general. Thus, both dietary protein source and amount are of importance in 

obesity development. The mechanisms by which protein amount and source influence 

obesity development are not yet elucidated, but appear to involve satiety, energy 

expenditure and fat absorption, as well as insulin secretion.  

4.1 Increasing the dietary proein:sucrose ratio attenuates obesity 

development  

The present study demonstrated that increasing the protein:sucrose: ratio attenuated body 

weight gain and obesity development when mice were fed casein and pork as protein 

source. Surprisingly, this ratio was of no significant importance when cod were used as the 

protein source. However, although the protein:sucrose ratio did not affect body weight gain 

when cod was the protein source, the 2-way ANOVA analyses revealed that independent of 

protein source a high dietary amount of protein reduced weight gain and obesity 

development. Thus, the amount of dietary protein is of pivotal importance in obesity 

development and several possible explanations that may explain this exists.  
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4.1.1 The effect of protein:sucrose ratio on satiety  

Enhanced satiety and subsequent reduced energy consumption has often been cited reasons 

for the weight reducing effect of high-protein diets. Several studies have demonstrated that 

protein is more satiating than carbohydrate and fat [56, 85]. Moreover, ingestion of high-

protein meals have been shown to have a stronger appetite suppressive effect than normal 

protein meals, both in short term and long term studies [50, 86]. The mechanisms behind 

the appetite suppressive effect of high-protein diets are not fully understood, but 

stimulation and secretion of various anorexic hormones are believed to play a role. For 

instance, higher plasma levels of PYY and GLP-1 in subjects consuming high-protein meals 

have been linked to satiety [68, 87]. Stimulation of CCK have also been linked to the satiating 

effect of high protein diets as proteins, but not carbohydrate and fat, stimulate secretion this 

peptide hormone. [58]. However, variability in protein amount, duration, meal size and 

subjects (normal weigh or overweight) in studies regarding this topic, makes it difficult to 

draw clear conclusion on the contribution of various hormones in protein-induces satiety. 

More research is therefore needed before nutrient-induced secretion of anorexigenic 

hormones can be related to satiety. Another theory implies that the satiating effect of high-

protein diets are associated with elevated blood concentration of amino acids. This is 

termed the aminostatic hypothesis and suggests that there is a ”satiety center” in the brain 

which are sensitive to serum amino acids levels, and once levels reaches a certain point, 

hunger is induced [88] . Increased energy expenditure has also been related to the appetite 

suppressing effect of high protein diets. For instance, Westerp-Plantenga observed that 

differences in dietary induced thermogenesis over a 24-hour period were significantly 

correlated with differences in satiety [89]. In contrast to the convincing evidence that high 

protein diets enhances satiety, our study did not demonstrate any differences in energy 

intake and hence no differences in the satiating effect of the high-protein and high-sucrose 

diets. This contradicting finding may be explained by the fact that although the 

sucrose:protein ratio in the experimental diets varied, the level of protein was relatively high 

in all the diets. Hence, we were not comparing normal protein diets versus high-protein 

diets, but rather moderate (17 E%) versus high (33E %) protein diets, indicating that all the 

diets had a satiating effect compared to diets with less than 20 E % protein.  Satiety is clearly 
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influenced by a wide variety of factors and the mechanisms behind the satiating effect of 

high protein diets require further investigation. 

4.1.2 The effect of protein:sucrose ratio on energy expenditure  

Since no differences were observed in energy intake between mice fed high-sucrose and 

high-protein diets, other mechanisms must underlie the diets diverse obesogenic effects. An 

interesting finding of this study is the notable differences in feed efficiency. For example, in 

the HF/HP group of casein 184 kcal were needed to produce a weight gain of 1 g, whereas 

the HF/HS group of casein only needed half as much calories to produce the same weight 

gain. The finding that mice fed HF/HP diets had a significantly lower feed efficiency 

immediately raised the question of where the energy was dissipated and we speculated if 

energy expenditure or energy wasting may be increased in mice fed the high-protein diets.   

Earlier studies by our group have reported that feeding mice high-fat high-casein diets 

increased cAMP-signaling and expression of Ucp1 in inguinal white adipose tissue compared 

to high fat high sucrose diets [70, 84].  An upregulation of Ucp1 has also been found in 

subcutaneous WAT of cattles fed protein-enriched diets [72]. Increased Ucp1 expression in 

white adipose tissue might allow energy to dissipate in form of heat and thereby protect 

against diet induced obesity. In fact, reduced adiposity in transgenic mice expressing Ucp1 

has been associated with increased energy dissipation in white, but not interscapular brown 

adipose tissue [90]. Collectively these findings indicate that high protein diets might increase 

thermogenesis and dissipate energy as heat through upregulation of Ucp1. However, in 

contrast to the above mentioned studies this present study did not detected any significant 

differences in expression of Ucp1 or other brown adipocyte markers in inguinal white 

adipose tissue. The reason for this discrepancy results is not clear, but differences in dietary 

levels of protein may be an explanation. Whereas the high-protein diet in our study 

comprised 47 E%, 17 E% and 33 E% from fat, sucrose and protein respectively, the above 

mentioned studies had the same percentage of fat but a higher percentage of protein (45 

E%) at the expense of sucrose (8 E%). However, it should be noted that there was a pattern 

toward a higher expression of Ucp1 and other brown adipocyte markers in mice fed high-

protein diets compared to high-sucrose diets. 
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Since diet-induced thermogenesis could not explain the low feed efficiency and reduced 

obesity development in mice fed high-protein diets, we speculate if other energy-demanding 

processes might have been stimulated by the high intake of protein. In contrast to 

carbohydrate and fat, excess intake of protein cannot be stored in the body and needs to be 

processed or eliminated immediately. The high energy cost of peptide bond syntheses, as 

well as urea production and de novo synthesis of glucose from amino acids 

(gluconeogenesis) positively affect energy expenditure and might be likely contributors to 

the reduced feed efficiency in the high protein fed mice. A previous study by our group 

demonstrated that gluconeognesis was markedly induced in mice fed high-protein diets 

compared to mice fed high-sucrose diets [84]. This finding was verified by measuring 

expression levels of enzymes involved in amino acid degradation and gluconeogenesis, as 

well as measuring the rise in blood glucose after injection of pyruvate.  Unfortunately, we 

did not measure any of these parameters. The same study also reported that mice fed the 

high-sucrose diets had a higher CO2 production than the high-protein fed mice and 

consequently had a significant higher RER. This finding is consistent with the results from our 

study showing that RER was significantly higher in the HF/HS groups compared to the HF/HP 

groups, indicating a lower rate of fatty acid oxidation in mice fed high-sucrose diets. In 

summary, it is reasonable to believe that increased energy expenditure, due to increased 

protein synthesis, ureagenesis and gluconeogenesis, together with increased fatty acid 

oxidation accounted for some of the reduction in feed efficiency in mice fed high-protein 

diets. 

4.1.3 The effect of protein:sucrose ratio on fat absorption  

Another potential explanation for the anti-obesogenic effect of high-protein diets is reduced 

digestibility and/or increased secretion of fat. Calculation of apparent fat digestibility (AFD) 

showed that mice fed high-protein diets had a significantly lower fat absorption than mice 

fed high-sucrose diets. The amount of energy or fat that is taken up from the intestinal 

lumen has been linked to gut bacteria composition [91]. Although time series data indicates 

that the composition of gut bacteria is relative stable in healthy individuals over time [92], 

diet-induced changes have been demonstrated to occur [93]. Interestingly, Trunbaugh et al. 

reported that a shift from a low-fat, plant polysaccharide-rich diet to a high-fat high sugar 

“Western” diet changed the microbiota in mice within a day [94]. Based on these findings it 
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is tempting to speculate if the experimental diets in our study may have influenced gut 

bacteria and thereby increased or decreased the capacity to absorb dietary fat. To date, we 

are not aware of any studies where possible changes in gut bacteria in response to different 

protein sources in mice are studied. However, a study on intestinal microbiota of adult cats 

demonstrated that a high dietary protein concentration resulted in a shift in the microbiota 

composition [95]. In conclusion, reduced fat absorption via modification of gut bacteria may 

also be a possible mechanism by which an increase in dietary protein:sucrose ratio reduced 

feed efficiency and suppressed obesity development.  

4.2 Substituting casein with cod or pork protein promotes obesity 

development 

A novel and exciting finding of this study is that different dietary proteins have different 

(anti)-obesogenic properties. In agreement with earlier studies by our group we found that 

increasing the amount of casein in the diet at the expense of sucrose protected against high-

fat diet induced obesity. Surprisingly, obesity development was not prevented when the 

amount of cod and pork was increased. In fact, both cod and pork fed mice developed 

significantly more body fat than mice fed casein. Of note, mice fed pork even more body 

mass than mice fed cod. Thus, we demonstrate that the type of dietary protein is of pivotal 

importance.   

4.2.1 The effect of different protein sources on satiety  

Some studies have reported that different types of protein appear to exert differential 

effects on satiety, but little evidence exist regarding which type of protein are the most 

satiating. In this study, we demonstrate that mice fed pork consumed significantly more 

energy than mice fed cod and casein, indicating that pork may have a lower satiating effect 

compared to the two other protein sources. This is in agreement with an earlier study 

showing that a meal composed of beef or chicken induced a lower satiety than a fish meal 

[96]. Another study confirmed the satiating effect of fish protein, and additionally found that 

whey proteins had even greater effect on appetite compared to turkey and egg proteins 

[97]. Differences in the satiating efficacies of various proteins have been related to their 

specific amino acids patterns and changes in hormone concentrations. Particularly, leucine 

has been pointed out for its suppressing effect on appetite through its stimulation of leptin 
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secretion and mTOR signaling in the hypothalamus [60]. Interestingly, milk proteins contain 

a high proportion of BCAA, especially leucine. Thus a higher content of BCAA could, at least 

in part, be responsible for the lower energy intake in mice fed casein compared to mice 

given pork. However this would not explain the differences in energy intake between cod 

and pork, as these two proteins contain the same amount of BCAA. Protein-induced satiety 

might also be mediated through the involvement of CCK; an hormone which induces satiety 

by suppressing NPY levels in the hypothalamus [58]. Diepvens et al. observed that milk 

proteins elevated CCK more than whey proteins and pea protein; however they did not 

relate it to any satiating effect [98]. Another interesting finding is that incomplete protein, 

which lack one or more essential amino acids lack, are more satiating than complete 

proteins, which have adequate amounts of the essential amino acids [98-100]. The proposed 

mechanism behind this finding is that consumption of incomplete protein disrupts the 

protein synthesis process and leads to a higher concentration of circulating amino acids, 

which thereby function as a satiety signal [88]. Another mechanism to explain the appetite 

suppressive effect of incomplete protein involves recognition of protein sources low in EAA 

and rejection of such EAA deficient food due to adaptive behavior [101]. Casein protein, 

which is low in cysteine and glycine, might have a similar effect and thereby induce a 

stronger satiating signal than cod and pork protein. In summary, increased feed intake due 

to a less satiating effect of pork might, at least in part, explain why mice fed pork protein 

gained more weight than mice fed casein and cod. However, it is more likely that other 

factor such as taste, smell and texture accounted for the differences in energy intake as 

these factors varied greatly between the different feeds.  

 

4.2.2 The effect of different protein sources on energy expenditure 

Although pork fed mice had a higher energy intake compared to mice fed casein and cod, 

the most remarkable differences between the three protein sources were observed in their 

effect on feed efficiency. Independent of protein:sucrose ratio in the diet, mice fed casein 

had a significantly lower feed efficiency compared to cod and pork fed mice. There were also 

differences in energy efficiency between mice receiving cod and pork, with a significantly 

lower feed efficiency in cod fed mice. These differences in feed efficiency might be related to 
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the ability of the protein sources to affect energy expenditure or energy wasting. Since high 

protein and high sucrose diets have been shown to trigger Ucp1 expression in white adipose 

tissue differently, there might be a possibility that various proteins sources also trigger 

expression of Ucp1 in different degrees. Increased energy expenditure due to diet induced 

thermogenesis could therefore be a potential explanation for the reduced feed efficiency of 

casein fed mice. However, no differences in expression levels of Ucp1 or other brown 

markers were found between any of the experimental groups. We therefore speculate if the 

reduced feed efficiency and adipose tissue mass of mice fed casein were due to other means 

of increased energy expenditure such as increased protein synthesis, urea production and 

gluconeogenesis. A study by Mikkelsen et al. demonstrated that during a 24-h stay in a 

respiratory chamber subjects consuming pork meals had higher energy expenditure than 

those consuming soy meals [102]. Tan et al. on the other hand did not find any significant 

differences in the effect of meat protein rich meals and dairy or soy protein meals on energy 

expenditure and fat oxidation [103]. At the moment the literature contains little information 

about this topic and no clear evidence showing that different protein sources affect energy 

expenditure differently exist. More studies comparing the effect of different protein sources 

on energy expenditure is therefore needed before any conclusions can be made.   

4.2.3 The effect of different protein sources on fat absorption   

Another potential explanation for the reduced feed efficiency and body fat mass in casein 

fed mice is reduced digestibility and/or increased secretion of fat. Indeed, calculations of 

Apparent Feed Digestibility (AFD) showed that casein significantly reduced fat absorption 

compared to cod and pork. This is consistent with previous work showing that mice fed a 

very high-fat diet in combination with casein extracted a much higher percentage of fat in 

feces than mice receiving a very high-fat diet with salmon as protein source [104]. 

Furthermore, a study by Lorenzen et al. reported that subjects consuming a high amount of 

calcium from dairy products had a lower postprandial lipidemia [105]. This suggests that the 

reduced fat absorption in mice fed casein might be related to the calcium content. Several 

studies, both in animals and humans, have shown that calcium intake increases the fecal 

excretion of fat, presumably via formation of insoluble calcium fatty acid soaps or by binding 

of bile acids [106, 107]. However, the fact that we used casein sodium salt from bovine milk 

(Sigma, batch number 080M0006) which is relatively low in calcium excludes dietary calcium 
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content as an explanation for the reduced fat absorption in casein fed mice.  However, we 

cannot exclude the possibility that the amino-acid composition of the different protein 

sources may influence on the absorption of fat. In contrast to cod and pork protein, casein 

has a relatively low content of the sulfur amino acids cysteine and glycine, which both are 

known to play a role in bile secretion [108]. It is a possibility that the low content of cystein 

and glycine in casein reduces bile secretion and thereby decreases fat absorption and 

increases faecal fat extraction. However, at the moment the literature contains no 

information to support or discard this theory and more research is needed in order to reveal 

the mechanism behind the differential effect of various proteins on postprandial fat 

absorption. Taken together, our finding that casein protein reduced fat absorption indicates 

that increased faecal secretion of fat might be a contributing factor to the lower feed 

efficiency in mice given casein as protein source. However, apparent fat digestibility fails to 

explain differences in feed efficiency between cod and pork as there were no differences in 

fat absorption between these two protein groups.  

 

4.3 The effect of protein amount and protein source on glucose tolerance and 

insulin sensitivity  

 

Obesity and glucose intolerance often co-occur. Obesity is also frequently associated with 

insulin resistance and is a major risk factor for non-insulin-dependent diabetes type 2 [13]. 

The mechanisms linking obesity to insulin resistance and diabetes in humans is not well 

understood but is believed to involve production of various secretory products from the 

adipose tissue [17]. The results from the GTT demonstrated that mice fed high-protein diets 

had a significantly lower glucose AUC than mice given high-sucrose diets. Additionally, the 

GTT showed that casein fed mice had a significantly lower glucose AUC than mice fed cod or 

pork. Furthermore, fasting plasma insulin levels were significantly higher in mice fed the 

high-sucrose diets compared to mice fed the high-protein diets. The higher fasting insulin 

level suggests that the pancreas already was trying to compensate for a lower glucose 

tolerance with increased secretion of insulin. To investigate if the lower levels of blood 

glucose were due to increased secretion of insulin, plasma insulin levels fifteen minutes after 

glucose administration were also measured. The insulin levels fifteen minutes after 



62 
 

administration of glucose increased in all experimental groups but calculation of delta insulin 

revealed a significant difference between the HF/HS and HF/HP only in mice fed casein. This 

indicates that the low levels of glucose seen in mice fed the high-proteins diets compared to 

the high-sucrose diets, and casein fed mice compared to cod and pork fed mice, most likely 

were not due to increased secretion of insulin from pancreas. However, since the 

administrated glucose dose was based on body weight (2 mg glucose/g body weight) we 

speculate if the differences in glucose levels simply just reflect differences in dose of glucose 

given.  

 

To evaluate insulin sensitivity, an insulin tolerance test where mice received 0.5 U insulin per 

kilogram body weight was performed. The results from the ITT showed that although the 

high-sucrose fed mice received a greater dose of insulin, they still had an increased level of 

blood glucose (higher glucose AUC) compared to the high-protein fed mice. Furthermore, 

the results from the ITT demonstrated that mice receiving casein as the protein source had a 

significantly lower glucose AUC compared to mice given cod or pork, despite the fact that 

they were given a lower dose of insulin. This indicates that mice given high-sucrose diets had 

a reduced glucose tolerance compared to mice fed high-protein diets. Furthermore, it 

indicates that mice receiving casein had a better glucose tolerance than cod and pork fed 

mice. Notably, the HF/HP casein group had glucose levels comparable with the LF control 

group. We further speculate if some of the groups might have developed insulin resistance. 

The high levels of blood glucose despite administration of a high dose of insulin, as well as 

the great fat mass gain of the HF/HS pork group suggests that mice in this group might have 

become insulin resistant.  

 

Another important finding from the GTT and ITT is that whereas the blood glucose 

concentration and insulin secretion were higher in the HF/HS group than the HF/HS group of 

mice fed casein or pork as protein source, there were no differences between the HF/HS and 

HF/HP group when mice were fed cod. These findings are in line with body mass gain data, 

suggesting that difference in body mass development may be related to insulin secretion. 

Insulin is known to be a strong adipogenic hormone which stimulates adipocyte 

differentiation and adipose tissue expansion. The crucial role of insulin in obesity 

development has been confirmed  by Bluher et al. who demonstrated that transgenic mice 
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lacking insulin receptors in adipose tissue were completely protected against high-fat diet-

induced obesity [73]. As pointed out earlier, delta insulin calculation revealed that injection 

of glucose stimulated a significantly higher secretion of insulin in mice fed casein HF/HS diets 

compared to mice fed HF/HP diets. However, although there was a pattern towards a higher 

insulin secretion in the HF/HS group for mice fed cod and pork, the differences did not reach 

statistical significance due to the large individual differences within each group. Yet, we 

cannot exclude the possibility that a statistical significance would be obtained by including a 

higher number of mice in each group. Therefore, it is reasonable to suggest that the 

beneficial effect of high-protein diets on adipose tissue development to some degree are 

derived from a lower carbohydrate content resulting in lower postprandial increase in blood 

glucose and lower insulin response. To confirm this hypothesis we conducted a meal 

tolerance test. The animals received either a high-sucrose or a high-protein diet 

supplemented with casein or pork as protein source. These two protein sources were chosen 

as they represent the lower and upper extreme regarding body fat mass. As anticipated, the 

MTT results demonstrated that high-sucrose diets lead to a higher blood glucose 

concentration compared to high-protein diets. Unfortunately, due to complications with the 

deliverance of ELISA-kits, plasma insulin levels have not yet been measured. However, in 

keeping with the ability of sucrose to stimulate insulin secretion via its glucose moiety, we 

predict that plasma levels of insulin will be increased in mice given high-sucrose diets.  

 

4.4 THE ANIMAL MODEL AND RELEVANCE TO HUMANS  

Mice are a broadly used animal model in nutritional research because of their remarkable 

genetic as well as physiological and metabolic similarities to humans. However, precautious 

must be taken when interpreting the human relevance of mice studies as experimental mice 

often are inbred strains with a less genetic diversity than humans. Additionally, it is 

important to keep in mind that particular mice strains have specific features and therefore 

not necessarily assume that an observed effect is a general phenomenon. The feeding 

experiment in this study was performed on C57BL/6J mice which has a unique ability to 

develop obesity, along with hyperinsulinemia and hyperglycemia in response to high-fat 

diets. Consequently, this mice model provides a great model to study the patophysiology of 

an obesity syndrome quite similar to human obesity.  
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A great deal of the research regarding overweight and obesity has focused on the effect of 

different types of dietary fat (n-6 and n-3 PUFAs) and carbohydrate (high- and low GI). Here 

we demonstrate that also the type of dietary protein is of importance in obesity 

development. Interestingly, our results showed that casein protein clearly attenuated 

obesity development, while pork protein had the opposite effect and promoted fat mass 

gain. If similar effects are found in humans, this is of great concern as pork is a major 

component in our diet and is recognized as a healthy alternative to red meat, while cheese 

on the other hand, along with other dairy products, have been incriminates as a source of 

unhealthy saturated fatty acids. Interestingly, researchers from the University Catholique de 

Louvain in Belgium found that treating obese and type 2 diabetic mice with ripened cheese 

improved glucose tolerance and adipose tissue oxidative stress [109]. Of note, high cheese 

consumption has also been suggested as an explanation of the “French paradox” [110]. 

Furthermore, some researcher at the University of Oslo reported in an epidemiologic study 

that the frequency of cheese intake dose-dependently counteracted the association 

between soft drink intake and risk of developing metabolic syndrome [111]. This is of 

importance as today`s high intake of soft drinks, due to their sugar content, often is linked to 

the persistent epidemic rate of obesity. It is tempting to draw a connection between these 

finding and the result of our study showing that increasing the protein:sucrose ratio in the 

diet (“high cheese:soda ratio”) attenuated obesity development and reduced the incidence 

of glucose intolerance. However, if our results have human relevance and if cheese or other 

types of dairy products have potential health benefits remains to be investigated. 
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4.5 FUTURE PERSPECITVES 

The contemporary Western diet contains an average of 49 % energy from carbohydrate, 35 

% from fat and 16 % from protein. Thus, it would have been interesting to look at the effects 

of casein and other protein sources when included in a typical Western diet. Since a high 

protein:sucrose ratio appeared to be of no importance when cod where used as the protein 

source, further investigation using cod might be of particular interest. Additionally, since 

high- and low-GI diets will affect insulin secretion differently, it would be interesting to 

combine different protein sources with high- and low GI carbohydrates. 

To further investigate if increased thermogenesis is a potential mechanism by which high 

protein diets reduce feed efficiency and obesity development, we could have performed a 

Western blot or/and an immunohistochemical staining of the white adipose tissue to detect 

UCP1 protein levels rather than Ucp1 mRNA levels.  More investigation regarding energy 

expenditure will also be required in the nearest future. The data from the metabolic cage 

experience in Copenhagen needs to be further analyzed to check for differences in eating 

pattern, heat production and activity. 

This experiment was carried out to investigate if increasing the protein:sucrose ratio  could 

attenuate obesity development. However, our results does not predict if increasing the 

protein:sucrose ratio can reduce already developed overweight or obesity.  Therefore, it 

would be exciting to investigate if any of the different experimental diet could promote 

weight loss in animals that already were obese.  

Furthermore, it would be of great importance to investigate if our results can be linked to 

human nutrition as our findings provide novel information regarding the role of amount and 

type of proteins on obesity development. Similar finding in human studies might be useful in 

both prevention and treatment of obesity. In order to elucidate if the demonstrated result 

also concern human nutrition, human intervention trials comparing the effect of different 

protein sources and amount on energy expenditure, conducted in a standardized context 

over a longer period of time, are necessary. Moreover, since humans consume proteins as a 

part of a meal, that also contains other macronutrients; the metabolic effect of the different 

experimental diets should be evaluated as part of composite meals.  



66 
 

5 CONCLUSION 
 

 
The current study presents two main findings. Firstly, we report that increasing the dietary 

protein:sucrose ratio in general attenuates obesity development in C57BL/6J mice. Secondly, 

we demonstrate that casein protein protects against high-fat diet-induced obesity in 

C57BL/6J mice, whereas cod, and pork protein in particular, promotes obesity development. 

The beneficial effects of the high-protein diets containing casein as protein source appear to 

involve multiple mechanisms, including increased energy expenditure, reduced fat 

absorption and potentially decreased insulin secretion. Although the results cannot be 

directly interpolated to human nutrition due to the experimental model used, our findings 

suggest that in dietary practice it may be beneficial to partially replace refined carbohydrate 

with carefully selected protein sources. More research is needed in order to elucidate the 

specific mechanisms underlying our unique findings and to further establish if the results 

have human relevance. 
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 APPENDIX 

Appendix I – Diets  

Table A.1: Components of the different experimental diets (given in g/kg).   

                    

Group     A B C D E F G 

(g/kg)  
  

Low 
fat 

  
High fat 

   

 

   

High 
sucrose 

High 
protein 

High 
sucrose 

High 
protein 

High 
sucrose 

High 
protein  

Ingredients    Casein Casein Casein Cod Cod Swine Swine 

Casein 
  

207 207 414 –  –  –  –  
Cod 

  
–  –  –  209 419 –  –  

Swine 
  

–  –  –  –  –  237 474 
L-Cystine 

  
3 3 3 3 3 3 3 

Sucrose 
  

100 440 210 440 210 440 210 
Corn oil 

  
69 249 248 244 238 233 217 

Cellulose 
  

50 50 50 50 50 50 50 
t-Butylhydroquinone 

 
0,014 0,014 0,014 0,014 0,014 0,014 0,014 

Min.mix 
  

35 35 35 35 35 35 35 
Vit.mix 

  
10 10 10 10 10 10 10 

Choline Bitartrate 
 

2,5 2,5 2,5 2,5 2,5 2,5 2,5 
Potato starch (Dextrin)  

 
523,71 3,71 27,93 6,02 32,56 -10,73 -0,95 

Fat (from protein powder)   1,12 1,12 2,23 5,84 11,68 16,63 33,25 

  Total    1000 1000 1000 1000 1000 1000 1000 

          Appendix II – Reagents used in RealTime qPCR 

Table A.2: Reagents used in RNA extraction.  

 
  

Product  Vender 

QIAzol reagent QIAgen, Germany 

Chloroform Merch, Germany 

Isopropanol Arcus kjemi, Norway 

Ethanol  Arcus kjemi, Norway 

DEPC Sigma, USA 

RNase free ddH2O MiliQ Millipore, USA 
    

  Table A.3: Reagents used in RNA qualification in Bioanalyzer.  

    

Product  Vender 

Rnase free ddH2O MiliQ Millipore, USA 
RNA 6000 Nano LabChip Kit Agilent Technologies  
RNA 6000 Nano Ladder Ambion, USA 
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Table A.4: Reagents in RT reaction mix.  

    

Product  Vender 

RNase free ddH2O MiliQ Millipore, USA 

TagMan RT buffer 10x Applied Biosystems 

25 mM magnesium chlorid Applied Biosystems 

10 mM DeoxyNTPs Applied Biosystems 

50 µM Oligo d(T) 16 primer Applied Biosystems 

RNase Inhibitor (20 U/µl) Applied Biosystems 

Multiscripe Reverse Transcriptase Applied Biosystems 
    

  Table A.5: Reagents used in Quantitative Real-Time qPCR  

    

Product  Vender 

RNase free ddH2O MiliQ Millipore, USA 

SYBR GREEN Master Roche, Norway 

Primer (see table XX) Invitrogen, UK 
    

  Table A.6: List of primers used in Real-Time qPCR (obtained from Invitrogen, UK).  

    

Housekeeping gen  

 

Sequence 5`          3` 
 

TBP Forward     ACC CTT CAC CAA TGA CTC CTA TG 

 
Reverse     ATG ATG ACT GCA GCA AAT CGC 

β-actin Forward     ATG GGT CAG AAG GAC TCC TAG G 

  Reverse     AGT GGT ACG ACC AGA GGC ATA C 

Primer 

 

Sequence 5`          3` 
 

UCP-1 Forward     AGC CGG CTT AAT GAC TGG AG 

 
Reverse     TCT GTA GGC TGC CCA ATG AAC  

Dio2 Forward     GCC CAG CAA ATG TAG AC 

 
Reverse     TGG CAA TAA GGA GCT AGA A 

PGC1α Forward     CAT TTG ATG CAC TGA CAG ATG GA 

 
Reverse     CCG TCA GGC ATG GAG GAA 

Ap2 Forward     ACA GGA AGG TGA AGA GCA TC 

 
Reverse     CCT TTG GCT CAT GCC CTT TC 

CideA Forward     TGC TCT TCT GTA TCG CCC AGT 

 
Reverse     GCC GTG TTA AGG AAR CTG CTG 
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Appendix III – Nano Drop  

Table A.7: Nano Drop measurements of RNA concentration and A260/A280 and A260/A230. 

                

iWAT - NanoDrop measurements  iBAT - NanoDrop measurements  

Mouse 
no. 

[RNA] 
(ng/uL) 260/280 260/230 

Mouse 
no. 

[RNA] 
(ng/uL) 260/280 260/230 

1 474,1 1,91 2,24 1 931,6 2,01 2,31 
2 387,3 1,83 2,19 2 484,2 1,95 2,6 
3 419,9 1,84 2,28 3 407,8 1,94 2,26 
4 68,7 1,74 2,17 4 578,1 1,98 2,29 
5 244,7 1,85 2,27 5 530,3 1,95 2,03 
6 367,0 1,85 2,29 6 1596,9 1,98 2,28 
7 430,9 1,90 2,35 7 1178,1 1,96 2,27 
8 517,6 1,91 2,35 8 629,2 1,96 1,90 
9 317,8 1,87 2,18 9 1047,4 1,96 2,21 

10 364,3 1,84 2,17 10 1041,9 1,97 1,88 
11 407,4 1,84 2,32 11 737,9 1,95 1,57 
12 358,1 1,88 2,24 12 617,0 1,94 1,67 
13 333,0 1,85 2,26 13 675,3 1,94 2,28 
14 449,6 1,84 2,21 14 981,0 1,96 2,31 
15 425,8 1,91 2,35 15 659,7 1,97 2,24 
16 343,0 1,91 2,17 16 558,3 1,92 2,34 
17 254,2 1,86 2,31 17 679,2 1,94 1,98 
18 493,4 1,86 2,24 18 557,5 1,92 2,23 
19 466,7 1,87 2,24 19 441,3 1,84 1,25 
20 423,8 1,86 2,32 20 481,9 1,81 2,14 
21 220,1 1,82 2,14 21 460,5 1,85 1,95 
22 443,4 1,87 2,27 22 586,6 1,94 2,12 
23 351,7 1,83 2,17 23 443,3 1,86 2,31 
24 443,2 1,87 2,31 24 655,6 1,96 2,21 
25 150,4 1,80 2,09 25 411,3 1,85 2,27 
26 172,9 1,82 2,25 26 500,3 1,87 2,3 
27 355,6 1,81 2,21 27 313,5 1,94 2,43 
28 272,6 1,86 2,16 28 547,5 2,00 2,39 
29 384,7 1,90 2,20 29 650,2 2,01 2,38 
30 101,6 1,80 1,90 30 499,4 2,03 2,39 
31 214,7 1,87 2,45 31 710,4 2,05 2,41 
32 102,2 1,81 2,47 32 336,9 1,98 2,34 
33 244,8 1,84 1,85 33 433,2 1,95 1,99 
34 220,6 1,81 2,21 34 543,8 1,96 2,28 
35 242,1 1,83 2,17 35 650,5 1,98 2,32 
36 210,4 1,84 2,14 36 949,7 2,03 2,29 
37 358,0 1,90 2,35 37 597,8 1,98 2,31 
38 342,3 1,86 2,18 38 256,7 1,89 2,23 
39 222,0 1,85 2,12 39 692,9 2,03 2,34 
40 481,0 1,90 2,21 40 671,7 2,04 2,35 
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    41 260,5 1,86 2,22 41 499,4 1,96 2,36 
42 284,0 1,84 2,23 42 674,7 2,04 2,34 
43 199,5 1,84 2,27 43 1096,9 2,01 2,32 
44 260,9 1,80 2,28 44 NaN NaN NaN 
45 340,2 1,86 2,36 45 962,4 2,01 2,23 
46 385,5 1,87 2,16 46 718,9 1,99 2,26 
47 116,7 1,73 2,03 47 613,3 1,96 2,34 
48 189,5 1,75 2,02 48 891,8 1,99 2,37 
49 199,5 1,83 2,09 49 906,6 2,01 1,7 
50 - - - 50 - - - 
51 275,3 1,88 2,11 51 932,3 2,00 2,32 
52 162,1 1,83 1,92 52 820,0 1,99 2,33 
53 109,9 1,81 2,10 53 984,1 1,99 2,35 
54 242,6 1,82 2,29 54 974,5 1,98 2,36 
55 309,5 1,86 2,16 55 667,2 1,97 2,36 
56 452,5 1,86 2,10 56 948,1 1,99 234 
57 222,2 1,82 2,46 57 968,2 1,99 2,33 
58 81,5 1,81 2,03 58 1096,1 1,98 2,33 
59 132,2 1,82 2,10 59 1178,0 1,98 2,34 
60 171,8 1,81 2,04 60 1030,4 1,96 1,95 
61 196,7 1,87 2,14 61 974,6 2,00 2,32 
62 251,1 1,81 2,34 62 480,9 1,95 2,38 
63 372,1 1,89 2,31 63 603,1 1,94 2,38 
                

        Appendix VI: ELISA Kit 

Table A.8: Reagents in Insulin Mouse Ultrasensitive Elisa Kit. 

    

Product  Vender 

Insulin Mouse Ultrasensitive ELISA Kit  DRG Instruments GmbH, Germany 

Coated plate 
 

Calibrator 0 (1 vial) 
 Calibrator 1,2,3,4,5 (5 vials) 
 

Enzyme Conjugate 11X (1 vial) 
 

Enzyme Conjugate buffer (1 vial) 
 

Wash buffer (1 bottle) 
 

Substrate TMB (1 bottle) 
 

Stop solution (1 vial) 
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Appendix IV – Bioanalyzer 

 

Figure A.1: Results from BioAnalyzer, resented as gel-like pictures and electrophrograms.  
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Appendix V: Histological methods  

Table A.9: Chemicals and reagents used in fixation, dehydration, embedding, sectioning and staining.  

    

Product  Vender 

4 % formaldehyd Merck, Germany 

NaH2PO4 x H2O Merck, Germany 

Na2HPO4 x H2O Merck, Germany 

Ethanol  Arcus, Norway  

Rectified Alcohol Arcus, Norway  

Xylene Prolabo 

Parafin Histovax, OneMed 

Hematoxylin EMS 

Eosin Y Sigma, USA 

Entellan Merck, Germany 
    

   

Appendix VII: Organ weights  

 

M .T ib ia lis  w e ig h t

0 .0 0

0 .0 5

0 .1 0

0 .1 5

   L F          C a s e in             C o d              P o rk

H F /H S

H F /H P

P a n c re a s  w e ig h t

0 .0

0 .1

0 .2

0 .3

0 .4

   L F          C a s e in             C o d              P o rk

H F /H S

H F /H P

 

    Figure A.2: Weight of M.Tibialis.                                    Figure A.3: Weight of pancreas.  

 

 

 

 

 


