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Foreword; 

The present 13-year follow-up is based on a double-blinded randomized placebo-controlled 

intervention trial which included two previous follow studies at 2.5-years and at 7 years. The 

intervention trial was designed to contribute to novel insights of infant nutrition and later health and 

was conducted from February 1999 to May 2000 at the Department of Human Nutrition, the 

Faculty od Life Sciences, Copenhagen University, Frederiksberg. The present 13-year follow up 

study was conducted from October 2012 to January 2013 and included those mothers who were 

recruited from the intervention trial and their 13-year old children.  The mothers from the 

intervention trial were supplemented with fish oil or olive oil during the first four months of 

lactation. In order to investigate the potential long-term effects on blood pressure and body 

composition of fish oil supplementation during the four first months of lactation, I performed a 

series of examinations collecting data on anthropometric measurements and of blood pressure on 

the 13-year old children. The children filled out a food frequency questionnaire in order to collect 

dietary data from the children, and the children also completed a puberty test (Tanner Scales) in 

order to assess the child’s pubertal maturation stage.  

Data collection involved a structured and flexible time plan in order to achieve as many 

examinations as possible, which were carried out either at Department of Human Nutrition or at the 

home of the child. During the approximately three months of examinations I managed to collect 

data from a total of 58 children. It has been a challenge to administer the practical work and data 

collection on my own, but indeed very educational. It has especially been a pleasure to work with 

the participating families who have made the whole process a good experience.  

 

Thanks to Lotte Laurtizen who kindly welcomed me all the way from Bergen and were willing 

assist me during the process.   
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Abstract 

Background: It has long been recognized that the long-chain n-3 polyunsaturated fatty acid (n-3 

LCPUFA), docosahexaenoic acid (DHA) accumulates in the brain during the first years of life and 

that this is potentially affected by dietary intake. Breast-feeding has been linked to several beneficial 

health outcomes, several of which have been suggested to be due to the presence of n-3 LCPUFA in 

breast milk. Based on data from rodents, perinatal intake of n-3 LCPUFA has also been speculated 

to play a programming role in relation to later body composition and blood pressure. 

 

Objective: To investigate the long-term effect of supplementation with fish oil during the first four 

months of lactation on body composition and blood pressure in 13-year old children.  

 

Design: In a randomized controlled trial mothers with a low fish intake (below the population median) 

were administered with either fish oil or olive oil during the first four months of lactation. The trial also 

included a high-fish intake reference group. Of the 149 children who completed the intervention period 

a total of 60 children were followed up at 13 years with 21 from the HF-group, 20 from the FO-group, 

and 19 from the OO-group. Blood pressure and anthropometric measurements was measured, diet was 

assessed by an electronic food frequency questionnaire and pubertal stage was assessed by Tanner 

Scales. Diet and puberty are factors that are considered to affect body composition and blood pressure.  

 

Results: In body composition, no significant differences were found between the two randomized 

groups, when adjusting for ponderal index at birth and sex. However, the FO group had a significantly 

larger non-adjusted mean head circumference compared to the OO-group (p=0.029). Significant 

group*sex interactions were found in MAP (p=0.038) and DBP (p=0.019). The girls from the FO-group 

had a tendency towards a lower MAP compared to the girls from the OO-group (p=0.079. A significant 

positive association between MAP and maternal RBC-DHA (p=0.028) and between DHA in maternal 

breast milk and MAP (p=0.043) were found in boys A tendency towards a positive association between 

maternal RBC-DHA and DBP in boys was found (p=0.05).  

 

Conclusion: The significant difference in blood pressure observed between the boys from the two 

randomized groups at 7-year was no longer evident at 13-year. The difference in body composition 

observed at 2.5 years, was at 7 years diminished, and now we observed no significant difference in body 

composition at 13 years.  I found a significant sex*group interaction in mean arterial and diastolic blood 

pressure, which indicated that the effect of the intervention differs between boys and girls. Due to a 
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small sample size in the randomized groups, the results might be inaccurate, and further studies are need 

to confirm these findings, 

 

Resume in Danish 

Baggrund; Man har længe kendt til at den langkædede polyumættede fedtsyre docosahexaensyre 

(DHA) akkumulerer I hjernen i det første leveår hvilket sandsynligvis er påvirket af kostindtag. Amning 

har været forbundet med flere gavnlige sundhedsmæssige tilstande, hvoraf flere er blevet foreslået at 

skyldes tilstedeværelsen af n-3 LCPUFA i modermælk. Baseret på data fra gnavere, har perinatal indtag 

af n-3-LCPUFA også blevet spekuleret at spille et programmerings rolle i forhold til senere 

kropssammensætning og blodtryk. 

 

Formål: At undersøge langtidseffekten af et dagligt tilskud af fiskeolie til mødre I de første fire 

måneder af amme perioden på kropssammensætning og blodtryk i 13-årige børn 

Design: I et dobbelblindet interventionsstudie blev ammende mødre med et lavt fiskeindtag 

randomiseret til tilskud med 4.5g/d fiskeolie eller olivenolie. Derudover blev en referencegruppe af 

mødre med et højt fiskeindtag inkluderet I studiet. Ud af de 149 børn som gennemførte 

interventionsperioden deltog 60 børn I dette 13-års opfølgningsstudie, hvoraf 20 fra fiskeolie-gruppen, 

19 fra olivenolie gruppen og 21 fra referencegruppen. Ved 13 år målte jeg vækst, kropssammensætning 

og blodtryk. Kostoplysninger var samlet ind med et madfrekvens-spørgeskema og pubertetsstatus var 

vurderet ved brug af Tanner Scales. Kost og pubertet har begge en potential indvirkning på 

kropssammensætning og blodtryk.  

 

Resultater; Ingen signifikante forskelle var fundet i kropssammensætning mellem de to randomiserede 

grupper efter justering for ponderal index ved fødslen og køn. FO-gruppen et signifikant større 

hovedomkreds sammenlignet med OO-gruppen (p=0.029). En signifikant gruppe*køn interaktion blev 

fundet i middel arterielt blodtryk (p=0-038) and diastolisk blodtryk (0.019). Pigerne fra FO-gruppen 

havde en tendens til et lavere blodtryk sammenlignet med pigerne fra OO-gruppen (p=0.079). En 

signifikant positiv association mellem middel arterielt blodtryk og indholdet af DHA I moderens røde 

blodceller (0.028) og mellem indholdet af DHA I moderens brystmælk og middle arterielt blodtryk 

(p=0.043) var fundet I drengene. Derudover havde OO-gruppen et signifikant større energiindtag end 

FO-gruppen (p=0.002).  
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Konklusion: Den signifikante forskel I blodtryk observeret mellem drengene fra de to randomiserede 

grupper ved 7 år var ikke længere synlig ved 13 år. Forskellen I kropssammensætning observeret ved 

2.5 år var ved 7 år reduceret og ikke længere synlig ved 13 år.  I stedet fandt jeg signifikant  gruppe*køn 

interaktion i middel arterielt og diastolisk blodtryk, som indikerer at effekten af interventionen er 

forskellig mellem køn. Stikprøven for dette opfølgningsstudie var imidlertid lille for de to 

randomiserede grupper, og flere fremtidige studier er nødvendige for at bekræfte disse resultater. 

 

Abbreviations 

AA  Arachionic Acid 

ALA  alpha-linolenic acid  
ANOVA  Analysis of variance 

ANCOVA  Analysis of covariance 

BMI  Body mass index 
cAMP Cyclic Adenosine monophosphate  

CVD  Cardiovascular disease 
DBP  diastolic blood pressure 

DHA  Docosahexaenoic acid 
EI  energy intake 
EPA  Eicosapentaenoic acid 
FFQ  Food frequency questionnaire 

FO  fFsh oil 
LA  Linolenic acid  
LCPUFA  Long-chain polyunsaturated fatty acid 

MAP  Mean arterial blood pressure 
MUFA Monounsaturated fatty acid 

OO  Olive oil 
PUFA  Polyunsaturated fatty acid 

RBC  Red blood cells 

SBP  Systolic blood pressure 
SD  Standard deviation 

SE Standard error 

SEM Standard error of the mean 
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Introduction  

Nutritional influences during critical periods of pre-and postnatal human development may have 

long-term programming effect on health conditions in later life.  

It has long been recognized that the long-chain n-3 polyunsaturated fatty acid (n-3 LCPUFA), 

docosahexaenoic acid (DHA) accumulates in the brain during the first years of life and that this is 

affected by dietary intake (Lauritzen, Hansen et al. 2001). Dietary n-3 LCPUFAs are required for 

normal conception, growth and development of the fetus. Based on data from rodents, perinatal 

intake of n-3 LCPUFA has been speculated to play a programming role in relation to later body 

composition (Ailhaud 1992) and blood pressure (Armitage, Pearce et al. 2003). From animal studies 

it is seen that n-3 LCPUFAs as a nutritional programming factor in pre-and postnatal life may affect 

the proliferation and differentiation of pre-adipocytes and prevent excessive adipose tissue 

development (Kim, Della-Fera et al. 2006). n-3 LCPUFAs may also have a beneficial long-term 

effect on blood pressure (Forsyth, Willatts et al. 2003), which is supported from findings from 

animal studies (Wyrwoll, Mark et al. 2006). However, scientific evidence from human trials are 

scarce, and studies have been performed with the purpose to investigate whether increased content 

of DHA in breast milk, increased via maternal fish oil supplementation, can affect body 

composition and blood pressure in infants. Breast-feeding may have long-term favorable effects on 

body composition (Owen, Martin et al. 2005) and blood pressure (Martin, Gunnell et al. 2005; Innis 

2011) which could be explained by the presence and beneficial effect of n-3 LCPUFA in breast 

milk. 

A Danish fish oil supplementation study has followed children’s growth and development through 

their first year of life and conducted follow-up studies at 2½ and 7 years. In order to explore further 

the potential long-term effect of early intake of n-3 LCPUFA on risk of obesity in children another 

follow-up examination of the children from the maternal fish oil supplementation trial was 

performed with the now 13-year old children.  
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Objective - Research question 

The purpose of the 13-year follow-up study was to investigate if supplementations with fish oil (and 

fish intake in general) in lactating mothers had any long-term effects on the child’s body 

composition and blood pressure. The present follow-up study aims to investigate the following two 

research questions: 

a) Does maternal fish oil supplementation in the first four months of lactation have detectable 

long-term effects on offspring body composition and if so, is the effect affected by intake of 

carbohydrates and protein? 

b) Does maternal fish oil supplementation in the first 4 months of lactation have detectable long-

term effects on the blood pressure of the offspring?  

 

Furthermore, statistical analyses will be performed in order to investigate the following sub-

questions: 

- Do body composition, blood pressure and dietary intake measured at 13 years differ 

between the two originally randomized groups?  

- Furthermore, when data from all three groups (including the reference groups) are 

combined, is there a correlation between intake of DHA in infancy (assessed in breast-milk 

and on maternal status) and later on body composition and blood pressure?  

- Is the effect of early n-3 LCPUFA intake on fat deposits modified by dietary composition 

(especially by a high intake of protein relative to carbohydrates)?  

- Can potential effects on body composition be explained by diet and could that in turn also 

explain any observed long-term effects of the maternal fish oil intervention on blood 

pressure? 

- Does the effect of early n-3 LCPUFA intake on blood pressure, dietary intake, and body 

composition differ between girls and boys? 
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Background 
Does early nutrition in infancy affect our adult health?  

Programming and tracking 
 
Does early nutrition in the peri-and/or postnatal period of life have long-term effects in terms of 

human health outcomes? Such theory is connected to the concept of ”programming” – which 

defines the process whereby the early development is affected by endogenous or exogenous factors 

which generate or ”program” long-term structural or functional changes in an individual organism 

(Lucas 1991; Lucas 1998; Innis 2011). Furthermore, such long-term effects might only arise, if the 

”programming-stimulus” is applied at a critical or sensitive period in development. Such critical 

periods may occur during embryonic, fetal or early infant development according to the 

development of the specific health outcome of interest, e.g. blood pressure or development of fat 

mass (Lucas 1998). For this reason, programming seen in a nutritional perspective in the developing 

infant is considered to be of great importance because it may predispose later health by metabolic 

adaption, altered cell differentiation or epigenetic changes (Innis 2011).  

A lot of focus revolves around programming in the prenatal period, a time with high plasticity 

making the intra uterine life vulnerable to environmental changes (Koletzko, Brands et al. 2012).  

However, recent research has also suggested that early-life nutrition in the peri- and postnatal 

period may be of great importance with respect to different health implications in later life 

(Srinivasan and Patel 2008; Tamashiro and Moran 2010) 

  

Poor nutrition during early life may result in health implications that, when maintained over time, 

might be observed in adult life, and therefore can be considered to have been “tracked” into 

adulthood (Lane and Gill 2004). Analysis of tracking is often expressed as a correlation coefficient, 

in which the size of a specific outcome of interest is analyzed over time to identify if an association 

in size of the outcome can be detected between early life and into adult life. Tracking of a specific 

health implication from early life into adult life might be due to several factors that maintain this 

health implication over time. These factors include genetic, dietary or environmental factors. For 

instance, BMI might track from childhood into adulthood due to maintenance (or tracking) of 

dietary habits (Li and Wang 2008). 
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Growth and body composition  

 

Growth velocity and fat mass development during childhood and infancy 
 

Growth velocity in infants into late childhood is comprised of a number of phases. The first phase 

of growth takes place in the first year of life, and especially the first couple of months (Michaelsen 

1997) when the adipose tissue significantly increases due to the extensive proliferation and 

differentiation of adipose precursor cells (Soriguer Escofet, Esteva de Antonio et al. 1996). The 

increase in fat mass typically reaches a postnatal adiposity peak around the age of 6-9 months with 

a percentage in body fat at approximately 25 % (Fomon, Haschke et al. 1982). The time period after 

the first growth phase the increase in adipocytes diminishes and the child’s body length continues to 

increase, which result in a more lean body mass in which the child’s BMI reaches a maximal 

leanness. At that point where body fatness declines to a minimum is designated as the adiposity 

rebound (AR), which occurs usually around the age of 5-7 years, however the exact age of AR 

varies greatly among children (Fomon, Haschke et al. 1982). The age at AR is defined as the lowest 

BMI between age range from 3 to 9 years, calculated form a pediatric growth chart {(Ohlsson, 

Lorentzon et al. 2012). In the second phase of growth, an expansion in number and size of 

adipocytes takes place and a gradual increase in BMI occurs throughout adolescence and most of 

adulthood. 

Figure 1 illustrates the BMI growth curves of girls from 0-20 years and shows the approximate 

timing of a nadir BMI indicating the occurrence of AR (Rolland-Cachera, Deheeger et al. 1984). 

Much interest has revolved around the timing of the occurrence of AR as it has been suggested that 

an early incidence of AR might predict obesity in adolescence and adulthood (Rolland-Cachera, 

Deheeger et al. 2006; Addo and Himes 2010) 



	
   13	
  

 
Figure 1.  Danish reference curves for body mas index for girls. The blue arrows indicate time of 

adiposity rebound at different ages according to the specific BMI-percentile. (Figure borrowed from 

Danish Pediatric Society)  

 

Age related changes that occur in AR could be shown by different anthropometric measurements 

other than BMI, including skin-fold thickness. Measurements of the thickness of skinfolds are 

considered as an important and valid measurement of subcutaneous fat, and are used as an 

anthropometric indicator of regional and total body fatness (Rolland-Cachera, Cole et al. 1991; 

Addo and Himes 2010). In addition, measurement of waist circumference is used to estimate central 

obesity together with measurements of the waist-height ratio, both being component predictors of 

risk factors of cardiovascular disease in children (Savva, Tornaritis et al. 2000) 
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Statistic population surveys of overweight and obesity  

BMI is a validated measure of adiposity and is recommended as a measure of fatness in adults, 

however, due to the height and weight changes that occur during growth, which also varies with sex 

and age, it is complicated to make a stable interpretation of BMI from approximately 5-18 years of 

age (Freedman and Sherry 2009). For this reason overweight and obesity in children are determined 

through international and sex related BMI cut-off values that are used as reference in age-and 

gender specific groups (Cole, Bellizzi et al. 2000). Table 1 shows the BMI-cut off values for 

children in the aged 12-14 years.  

 

Table 1. BMI cut-off values for children ages 12-14 years 

  

 

 

 

 

 

 

 
The BMI cut-off values are defined as values corresponding to a BMI of 25 and 30 kg/m2 by the age of 18, 
representing overweight and obesity, respectively (Cole, Bellizzi et al. 2000); (Nysom, Molgaard et al. 
2001). 
 

It has been reported that a significant prevalence of overweight and obesity among schoolchildren 

from the Copenhagen area in the period from 1947-2003 has emerged (Pearson, Olsen et al. 2005). 

The most recent data from the Danish Health Behavior in School-aged Children (HBSC) suggest 

that approximately 8% and 11 % of girls and boys, respectively, is overweight (Due 2011). 

However, these data were collected based on self-reported height and weight measurements. Data 

from another recent study with physicians conducting the weight and height measurements from 

7541 15-year old children found that 12.9 % of the girls was overweight and 8.2% characterized as 

obese and 15.2 % of the boys were overweight and 14.1% was characterized as obese – suggesting 

that a much higher number of overweight and obesity in Danish school children (Krue and Coolidge 

2010) 

 

 Overweight Obese 

Age Boys (kg/m2) Girls (kg/m2) Boys (kg/m2) Girls (kg/m2) 

12 21.22 21.68 26.02 26.67 

12.5 21.56 22.14 26.43 27.24 

13 21.91 22.58 26.84 27.76 

13.5 22.27 22.98 27.25 28.20 

14 22.62 23.43 27.63 28.57 



	
   15	
  

Prediction of obesity in later life; Adiposity rebound as predictor of later obesity? 

 
AR defines the period where the second growth spurt initiates and is characterized by adipocytes 

hypertrophy and hyperplasia (Rolland-Cachera, Deheeger et al. 1984). It has been reported that 

children displaying an earlier AR, typical around the age of 3, gain body fat at an increased rate 

compared to children displaying AR at a later age typically around the age of 5-7 years (Rolland-

Cachera, Deheeger et al. 2006; Williams and Goulding 2009; Dietz 1994). In a study observing the 

growth development of 13-year old children it was found that those children that were characterized 

as overweight at 13 years of age had an earlier AR compared to their normal-weight peers 

(Lagstrom, Hakanen et al. 2008). Thus, a rapid fat accumulation in children displaying an early AR 

may be considered as a simple indicator predicting the risk of developing obesity later in life years 

(Rolland-Cachera, Deheeger et al. 2006; Williams and Goulding 2009). Furthermore, studies have 

suggested that a sexual dimorphism in the relation to displaying AR might exist (Taylor, Goulding 

et al. 2004). 

 

Determinants of growth in infancy and childhood  
 
The control of growth during infancy, puberty and into adolescence is controlled by a number of 

interacting mechanism involving metabolic pathways that regulate growth at different age-specific 

stages. Whereas nutritional factors may have the most pronounced role on height growth in infancy, 

hormonal regulation is among the main factors regulating height growth in adolescence (Liu, Jalil et 

al. 1998; Veldhuis, Roemmich et al. 2005) 

 
Infant growth 
 Genetic inheritance has shown to be of great importance in postnatal growth after 1 month 

(Touwslager, Gielen et al. 2011). During the first postnatal year of life the child develops a 

pronounced change in the central nervous system, which provides the child with fundamental 

neurological sources for further development of the organism. Regarding the terms of growth, a 

great expansion of bodily growth happens in the first postnatal year of life (app. 25 cm/y) (Taylor 

2010). This growth is highly nutrition-dependent and is accelerated by the growth promoting effect 

of growth factor 1 (IGF 1) (Stanfield, C. 2008). Bodily tissues are therefore strongly dependent on 

proper nutrition during this intense growth period of the organs. Both breast-feeding and formula 

feeding can provide nutrition in the postnatal life. It is recommended to exclusively breastfeed the 

first six months of life and this is mainly due to the content of substances like n-3 and n-6 
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LCPUFAs, hormones, growth factors and immunoglobin, besides the important macronutrients, 

which are provided as important nutrients for the development of the child (Hornell, Lagstrom et al. 

2013).  The recommendations for intake of n-3 PUFA in infancy are listed in table 5. 

  

Childhood Growth  

Growth during childhood is constantly affected by bodily changes that are regulated by the actions 

of growth hormone (GH), thus the growth rate of the child is dependent of the amount of GH 

present. Other hormones that need to be present to ensure normal growth are insulin, thyroid 

hormones and the androgens and estrogens (Stanfield 2008). In general a child grows 5-6 cm each 

year until puberty after the age of 2 years (Rogol, Clark et al. 2000). The recommended daily 

energy intakes of macronutrients (E%) are listed in table 3 and excessive or deficient intake 

deviating from these recommendations might affect childhood growth (Noh, Song et al. 2011). 

Furthermore, different outcomes between girls and boys is seen with regard to body fat percentage, 

due to the higher muscle gain and lean tissue in males as opposed to girls who gain fat at a more 

rapid rate than boys (Ogden, Li et al. 2011).  

 

Puberty 

Pubertal development is accompanied by a rapid physical growth which is further associated with 

several changes in physiological properties including an increase in blood pressure (Shankar, Eckert 

et al. 2005). A significant difference in sexual dimorphism is associated with pubertal development 

with the girls displaying an earlier onset of pubertal development than boys. Figure 2 shows the 

growth velocity, illustrating the difference between the growth spurt during adolescents for boys 

and girls.  
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Figure 2.  Growth velocity from birth through 18 years of life. The pattern of pubertal growth spurt 

in boys and girls are illustrated (Tanner JM:1962) 

 

 
 

During puberty the gametogenesis mature and gonadal hormones are secreted which is 

accompanied by final development of reproductive functions (Bordini and Rosenfield 2011). In 

girls the ovaries increases the production of female hormones including estrogen, which is 

accompanied by the initiation of the menstruation cycle and breast development. In boys an 

increased production of testosterone happens in the testicles.  The timing of puberty vary according 

to different physiological outcomes, but mean values from Scandinavian children is estimated to be 

13.5 and 11.6 years for boys and girls respectively (1 y ±SD in both sexes) (Liu, Wikland et al. 

2000). However, the exact age a child enters puberty is depended of several factors including genes, 

nutrition, and gender. (Bordini and Rosenfield 2011) 
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The rapid changes in physical body composition during puberty is associated with a higher energy 

intake in both genders, however this increase in energy intake have been shown to be significantly 

higher in boys during puberty compared to girls (Shomaker, Tanofsky-Kraff et al. 2010)  

An increased prevalence of obesity has been observed among children (Pearson, Olsen et al. 2005). 

A high fat diet results in a high-energy intake and will lead to a positive energy balance and 

increase the risk of obesity if the energy expenditure is not increased as well. Thus, the increase in 

prevalence of obesity among children may be due to decreased energy expenditure in form of 

physical activity (Deckelbaum and Williams 2001). However, it has also been suggested that the 

quality composition of dietary fatty acids fats have changed the last decades, and may play a role in 

the prevalence of obesity among children (Ailhaud, Massiera et al. 2006). Table 2 and 3 shows the 

recommended values for total daily energy intake (Sundhedsstyrelsen 2009) and recommended 

macronutrient E%, respectively (Trumbo, Schlicker et al. 2002).  

 

Table 2. Recommended daily energy intake.  

 

 

 

 

 

 

 

 

 

 

 

Blood pressure. 
Growth and increasing body size correlate positively with an increase in systolic and diastolic blood 

pressure during infancy into childhood and adolescence in both sexes (NHBPEP, 1996).  The most 

prominent increase in blood pressure is during early infancy between the age of 2 days and 6 weeks 

(Voors, Webber et al. 1978). In late childhood blood pressure is furthermore correlated with height 

and the sexual maturation of the child (Kotchen, McKean et al. 1982) and may accelerate during 

Age Boys Girls 

   

10-13 9.8 MJ 8.6 MJ 

14-17 12.3 MJ 9.6 MJ 

Macronutrient  

Carbohydrate E% 50-60% 

Fat E% 20-30% 

Protein E% 15-20% 

Table 3. Recommended daily macronutrient E% 
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puberty (Reckelhoff, 2001;Shankar Eckert, et al. 2005). A gender-associated difference in blood 

pressure may also persist in puberty and it is seen that the increase in blood pressure during puberty 

in males is significantly greater than in females. This may be explained by the effect of testosterone 

that is suggested to increase blood pressure opposite to estrogen that may have a blood pressure 

lowering effect (Reckelhoff, 2001;Shankar Eckert, et al. 2005). This has also been verified from 

animal studies (Orshal and Khalil 2004). Meanwhile, it has been stated that an increase in blood 

pressure among children and adolescents has emerged, which is thought to be due to the increased 

prevalence of obesity (Muntner, He et al. 2004). Table 4 shows the oscillometric blood pressure 

percentiles in 13-year-old children.  

 

 Table 4; Oscillometric blood pressure percentiles in 13-year-old children  

 Oscillometric blood pressure percentiles in 13 year old girls (mmHg) 

 10th Median 90th 

SBP 104 114 125 

DBP 53 62 72 

MAP 78,5 88 98,5 

 Oscillometric blood pressure percentiles in 13 year old boys (mmHg) 

 10th Median 90th 

SBP 107 118 129 

DBP 52 62 71 

MAP 79,5 90 100 

Values are presented as median and 10th-90th percentiles. U.S standards of blood pressure in children aged 7 
years, adapted from a cohort of 7208 children at age 5-17 years. Modulated from Park et al. 2005. SBP; 
systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial blood pressure.  
 

 

Determinants of blood pressure 
 

Physiologic factors; 

The body regulates blood pressure through a complex pattern of interactions between physiological 

mechanisms that involves vascular functions, hormonal regulation and neural systems (Stanfield 

2008).  The renal system affects blood pressure by the stimulation of the renin-angiotensin-system 

and aldosterone. Both angiotensin and aldosterone increase the kidneys reabsorption of sodium and 
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thus expands extracellular fluid compartments affecting arterial compliance, endothelial function 

and therefor cause an increased blood pressure. Furthermore, constriction and dilation of blood 

vessels is under neural control and involves regulation from the sympathetic nervous system and the 

hypothalamic-pituitary-adrenal axis (Stanfield 2008). Also, emotional responses such anxiety and 

anger are mechanisms known to affect the physiological factors controlling heart rate and thereby 

blood pressure as well (Howell, Rice et al. 2007).  

 

Environmental and genetic factors  

The development of specific blood pressure phenotypes might be established in fetal life under the 

influence of epigenetic factors (Ritz, Amann et al. 2011). Furthermore, the role of genetic 

inheritance influencing blood pressure is well recognized and may account for as much as 23-50% 

of the variation in blood pressure in the general population (Miall and Oldham 1963) 

 

Nutrition is an important factor influencing blood pressure. High dietary intake of sodium chloride 

is known to increase blood pressure, and it has been reported that dietary restriction of salt during 

the first year of life decrease the rise in blood pressure in later childhood (Geleijnse, Hofman et al. 

1997). Increased dietary intake of high-glycemic index carbohydrates have been associated with 

adverse effects on blood pressure (Gopinath, Flood et al. 2012), whereas low glycemic index 

carbohydrates, such as fiber may have a beneficial effect on blood pressure (Gopinath, Flood et al. 

2012). Furthermore, high-protein diets have also been associated with a beneficial effect on blood 

pressure (Rebholz, Friedman et al. 2012), (Obarzanek, Velletri et al. 1996). Different types of 

dietary fat may also affect blood pressure. From animal studies it is seen that increased intake of 

saturated fat results in elevated blood pressure compared to a diet high in unsaturated fatty acids 

(Kaufman, Peterson et al. 1994; Niinikoski, Jula et al. 2009). In addition, restriction of dietary 

saturated fat from infancy to 15 years has been suggested to decrease blood pressure in childhood 

and adolescence (Niinikoski, Jula et al. 2009). The interplay and relative amounts of consumed 

macronutrients may also be a factor influencing blood pressure (Soenen, Bonomi et al. 2012). 
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The biology n-3 long chain polyunsaturated fatty acids 

 
Chemistry  
 
Polyunsaturated fatty acids contains more than one double bond in their backbone of the 

hydrocarbon carboxylic acid chain, and are classified as a omega-3 (n-3) or omega-6 (n-6) PUFA 

dependent on the location of the last double bond in relation to the methyl end of the fatty acid 

molecule.  Thus, for n-3 PUFAs the double bond is found after the third carbon atom from the CH3-

end of the carbon chain (Drevon 1992). All PUFAs from the n-3 family is described by a short 

nomenclature that describes the number of carbon atoms in the acyl chain, number of double bonds 

and the position of the first double bond from CH3-end of the acyl chain. The most simple n-3 

PUFA is ala-linoelic acid (ALA, [C18:3n-3]), the dietary precursor of the n-3 series of fatty acids. 

Synthesis of ALA involves desaturation catalyzed by the enzymes Δ-15 and Δ-12 desaturase. 

However, the mammalian cell lacks the desaturase enzymes, Δ-15 and Δ-12 and therefore has not 

got a metabolic pathway to synthesize ALA. Thus, ALA is considered an essential fatty acid in the 

mammalian organism that must be provided in the diet.  

When ALA is ingested in the diet, mammalian cells are capable of metabolizing it into other n-3 

long chain unsaturated fatty acids (LCPUFA). The biosynthesis of n-3 LCPUFAs involves a series 

of linked desaturation and elongation reactions that mainly takes place in the liver (Innis 1991). The 

desaturation reactions introduce further double bonds, processed by delta 5 and 6 desaturase, and 

elongation reactions lengthening the acyl chain, processed by elongase. Figure 3 illustrates the 

biosynthesis of n-3 LCPUFA. Thus, the metabolic pathway for biosynthesis of n-3 LCPUFAs in 

mammals is dependent on Δ5 and 6 desaturase and elongase, which convert ALA (18:3 n-3) to EPA 

(20:5 n-3) and further on to DHA (22:6 n-3).  

 

The same series of enzymes that is used to metabolize the n-3 PUFA into its n-3 LCPUFAs is used 

to metabolize linoelic acid, (LA, C18:2n-6) the precursor of the n-6 series of fatty acids into its 

corresponding active long-chain metabolite, arachionic acid (AA, 20:4n–6). Thus, the endogen 

synthesis of LCPUFAs is influenced by the competition between n-3 PUFA family and n-6 PUFA 

family.  Δ6 desaturase enzyme is considered the rate-limiting step in the pathway of biosynthesis of 

LCPUFA (Nakamura and Nara 2003)  
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Figure 3; Biosynthesis of n-3 LCPUFA. (Figure; own construction, inspired from (Calder 2012) 

 
n-3 PUFA and essentiality  
 
In general, an essential nutrient may be defined as a substance whose metabolic absence has critical 

or fatal consequences, so-called deficiency symptoms, which can be reversed if the nutrient is 

replaced again (Shils 2006). Due to the fact that n-3 PUFA is distributed at a much lower level 

compared to n-6 PUFAs in mammalian tissues, and many of the functions that is carried out by n-3 

PUFAs also is carried out by n-6 PUFAs it has been difficult to demonstrate the essential need for 

n-3 PUFA (Shils 2006). However, the distribution of the n-3 LCPUFA DHA is concentrated mainly 

in the retina, testes and CNS in mammals, thus the essentiality of n-3 LCPUFAs is primarily related 

to the development of neural tissue, visual and reproductive function. It has been possible to 

demonstrate the essential role of DHA in phospholipids of the brain and retina in a-linolenic acid 

ALA deficient monkeys. It was demonstrated that monkeys who were fed a diet with the sole 

source of fat from safflower oil (n-6:n-3 ratio of 255:1) during gestation gave birth to offspring, 

weaning on the same diet, with loss of visual acuity and decreased concentrations of n-3 LCPUFA 

in plasma phospholipids of brain and retina (Neuringer and Connor 1986). However, feeding the 

offspring a diet rich in fish oil reversed the loss of visual activity. Thus, with regard to n-3 PUFA 
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deficiency, this may be of greatest concern during the last trimester of pregnancy and first months 

of life when accumulation of especially DHA takes place in the brain and retina.  

 

Dietary sources 

As opposed to mammals, plants and algae are able synthesize and alfa-linoelic acid because they 

posses the Δ-12 and Δ-15 desaturase enzymes (Williams and Burdge 2006). Plant oils like linseed 

oil and perilla oil are rich in ALA (Eckert, Franke et al. 2010). However, only ALA is found in 

these plant oils, and long-chain highly polyunsaturated fatty acids like EPA and DHA is mainly 

found in fish oil and fat from other marine organisms. EPA and DHA are synthesized by certain 

types of marine plankton that serve as the base of the food chain for marine life. Especially fish 

such as mackerel and salmon are rich in EPA and DHA (Williams and Burdge 2006).  Thus the 

predominant sources of n-3 LCPUFA in the human diet are fish and fish oils.  

The conversion of ALA to its long-chain metabolites in the human body is weak, and it is estimated 

that approximately 8-20 % of ALA is converted to EPA and even less ALA is converted to DHA, 

around 0.5-9 % (Burdge 2006), (DeFilippis and Sperling 2006). Furthermore, DHA and EPA are 

incorporated into cell membranes phospholipids where they serve several important biological 

functions. However, this incorporation of n-3 LCPUFA into phospholipids happens a lot more 

efficiently when ingested directly from the diet than after synthesis from ALA (Burdge and 

Wootton 2002; Burdge 2006). This emphasizes the need of dietary intake of EPA and DHA to 

provide the sufficient level of n-3 LCPUFA for human health.  

 

Requirement and recommended intake of n-3 PUFA during infancy 

The infant have limited endogenous ability to synthesize DHA from the dietary precursor ALA, 

which provide a significant need for n-3 PUFAs, especially DHA, during gestation and perinatal 

period for the development of neurophysiologic brain structures in the fetus (Shils 2006). It is 

estimated that 50 to 60 mg/day of maternal DHA stores are transferred to a fetus via the placenta 

during the last trimester of gestation (Shils 2006). The brain undergoes a rapid growth spurt during 

the first year of life (Lauritzen, Hansen et al. 2001). This growth spurt is particular pronounced in 

the first months of postnatal life (Dobbing and Sands 1979), where especially DHA accumulates in 

the brains phospholipids (Innis 1992; Innis 1994), and thus reflects the higher need for n-3 PUFA in 

this period (see table 5). Most of the DHA that the brain requires during this period is supplied 

through the maternal milk during breast-feeding. The maternal milk reflects the nutritional status of 

maternal diet, thus maternal nutrition plays an important role in providing essential nutrients, such 
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as n-3 LCPUFAs, to the developing offspring. Breast milk in the Danish population contains 

approximately 0,4 % DHA of total fatty acids (Lauritzen, Hansen et al. 2001), which is reflected in 

the RBC-DHA of the mother and the infant. Maternal diet deficient in n-3 PUFAs during gestation 

and lactation may have long-term health consequences for adult brain plasticity in the offspring 

(Bhatia, Agrawal et al. 2011). It is believed that n-3 LCPUFAs works as a programming factor to 

the health beneficial effects of breast-feeding. 

The recommended intake of n-3 PUFA is listed in table 5. In general, it is recommended that n-3 

fatty acids contribute with minimum 0,5 % of the daily energy intake (E%).   

 

Table 5 

 n-3 PUFA E% 

6-11 months >1 
12-23 months >0.5 
>24 months  0.5 
Pregnant/lactating women 1 

Table 5. Recommended intake of n-3 PUFA The recommended intake of n-3 PUFAs varies with age, and the 
dietary need is higher during growth and development, as well in pregnancy and lactating (Based on values 
from the NNR project group, 2004 
Individual dietary recommendations for ALA, EPA and DHA have been estimated based on evidence from 
several randomized controlled trials and epidemiologocal studies (Gebauer, Psota et al. 2006). The adequate 
intake of EPA+DHA varies greatly among studies, but have been suggested to be 0.3E% of a 2000 kcal diet 
(Simopoulos 2000).  
 
 
Physiological roles and health benefit of n-3 PUFA 
 
n-3 PUFA have the ability to act as ligands or precursors of ligands for transcriptions factors (Tai 

and Ding 2010). Changes in the composition of polyunsaturated fatty acids incorporated in cell 

membranes phospholipids can affect cell signaling pathways, which can lead to altered transcription 

factor activity and thus changes in gene expression (Tai and Ding 2010). Virtually all of these 

functions are mediated by the interactions and balance between dietary intake of n-3 PUFAs and n-

6 PUFAs. n-3 and n-6 PUFA in cell membranes acts as intracellular cell mediators of signal 

transduction or as modulators of cell-cell interaction and thereby modulate cell function. Actions 

like these are initiated by phospholipases, which also is the main factor in the biosynthesis of 

eicosanoids (Calder 2012). Eicosanoids exert different physiological effects in blood pressure, 

capillary permeability, inflammatory reactions, and blood platelet functions (DeFilippis and 

Sperling 2006) and also have important functions in modulating triglyceride and cholesterol 

metabolism (Harris 1996). Overproduction of pro-inflammatory eicosanoids from the n-6 PUFA 
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series may cause excessive inflammation and may be involved in different health implications 

involving obesity and hypertension (CVD) (Patterson, Wall et al. 2012)  

 

It is by now a well known fact that a significant increase in n-6:n-3 ratio of the Western diet have 

occurred during the last decades (Ailhaud, Massiera et al. 2006). An increase in dietary n-6 PUFAs 

have been linked to several health implications e.g. development of childhood obesity (Ailhaud, 

Massiera et al. 2006) and other lipid-disorders (Simopoulos 2002). Furthermore, a corresponding 

increase of the n-6 PUFA linoleic acid (LA) of maternal breast milk has been observed, which 

reflects the mothers diet (Ailhaud and Guesnet 2004). From animal studies it is demonstrated that 

mice fed with n-6 PUFAs during pregnancy and lactation resulted in obese offspring (Massiera, 

Saint-Marc et al. 2003). Another recent study in mice showed that an increase of dietary n-6 PUFAs 

from 1% (recommended daily intake) to 8 % (reflecting todays current energy intake, western diet) 

14 weeks form weaning was associated with elevated adiposity the level of AA on induced obesity 

in mice (Alvheim, Malde et al. 2012).     

 

 

n-3 PUFA and programming  

 
Body composition 
 
A number of observational and cohort studies have documented that breast-feeding have beneficial 

effects on infant growth and body composition (Owen, Martin et al. 2005; Beyerlein and von Kries 

2011). Compared to breast-fed infants it is seen that formula-fed infants have significantly higher 

levels of plasma insulin that is believed to stimulate fat deposition and early development of obesity 

(Lucas, Sarson et al. 1980). Furthermore, the duration of breastfeeding may be a highly important 

factor with respect to body composition, and a recent literature review described that exclusive 

breastfeeding for 4 months minimum was associated with a slower increase in fat mass after six 

months in the postnatal period (Hornell, Lagstrom et al. 2013). Other studies have also suggested an 

inverse relationship between the duration of breastfeeding and BMI in later life (O'Tierney, Barker 

et al. 2009; Yin, Quinn et al. 2012) 
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From studies in animals (p. 28) and human studies there is a growing body of evidence on the 

increased intake of n-3 LCPUFAs having a fat-reducing effect (Buckley and Howe 2010). This thesis, 

however, focuses on the long-term effect of n-3 LCPUFA supplementation in early life in humans. 

However from human studies, relatively sparse evidence exists in relation to the long-term effect of 

n-3 PUFAs on body composition (Table 6).  

 

Two recent follow-up studies administering n-3 LCPUFA during gestation/lactation and solely 

during gestation found no effect on offspring body composition at age 7 and 19-years, respectively 

(Helland, Smith et al. 2008; Rytter, Bech et al. 2011). Another follow-up study by Bergmann, 

Bergmann et al. 2012 et al.,   found, that offspring to mothers supplemented with n-3 LCPUFA 

during pregnancy and lactation had lower BMI at 21 months compared to the control group, 

however this difference in BMI were no longer evident at 6 years. Hauner et al., supplemented 

women during pregnancy/lactation with n-3 LCPUFA and neither found any effect on fat mass 

development in infants at 1 year. Andersen et al supplemented 9 months old children for 9 months 

with fish oil and did not find any effect on body composition parameters. A previous follow-up 

study at 2.5 years from this present study showed that children receiving n-3 LCPUFA during 

lactation had increased body weight (Lauritzen, Hoppe et al. 2005), thus this observation together 

with the finding from Bergmann at 21 months indicate that there is conflicting evidence regarding 

the effects of maternal n-3 LCPUFA supplementation on the body composition of offspring during 

the early years of life. Table 6 shows human randomized controlled trials assessing the effects of 

increased intake of n-3 LCPUFA in early life on body composition 
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Table 6; Human randomized controlled trials assessing the effects of increased 
intake of n-3 LCPUFA in early life on body composition 
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Animal studies;  
A number of studies in animals have documented a fat-reducing effect in the offspring with 

supplementation with either ALA or n-3 LCPUFA (Massiera, Saint-Marc et al. 2003; Wyrwoll, 

Mark et al. 2006; Okuno, Kajiwara et al. 1997; Korotkova, Gabrielsson et al. 2002). Other studies 

have demonstrated a negative long-term effect of insufficient ALA in postnatal life on adiposity in 

adult life (Pouteau, Aprikian et al. 2010). 

Still, the evidence has not been consistent and a recent a study in rats by Muhlhausler, Miljkovic et 

al.,  found that supplementation during pregnancy and lactation was not associated with a decrease 

in fat mass at weaning, but instead an increase in fat mass in offspring at 6 weeks of age. This 

finding is consistent with a study that found that feeding n-3 PUFA-enriched diet in the perinatal 

period caused a higher body weight in female offspring at 28 weeks compared to a diet rich in n-6 

PUFA (Korotkova, Gabrielsson et al. 2005). The latter study could indicate a sex-specific long-term 

effect of n-3 PUFA.  Furthermore, it has been well established that n-3 PUFA have beneficial 

effects on adiposity by the prevention of proliferation and differentiation of mature adipocytes 

(Raclot, Groscolas et al. 1997; Ruzickova, Rossmeisl et al. 2004; Okuno, Kajiwara et al. 1997. 

However, if n-3 PUFA supplementation during the perinatal alone have a fat-reducing long-term 

effect is uncertain (Muhlhausler, Miljkovic et al. 2011) 

 

Blood pressure 
It have been demonstrated that the duration of breast feeding is inversely associated with blood 

pressure in childhood (Taittonen, Nuutinen et al. 1996; Owen, Whincup et al. 2003; Martin, Ness et 

al. 2004; Martin, Gunnell et al. 2005). Furthermore, studies from animals have shown that perinatal 

n-3 PUFA deficiency may affect blood pressure later in life (Armitage, Pearce et al. 2003) and from 

a study in rats it has been reported that high intake of n-3 PUFAs in the post-natal diet prevents 

programmed hypertension (Wyrwoll, Mark et al. 2006). This finding is consistent with evidence 

from two human studies that have reported that exclusively formula-fed children, with no 

supplement of n-3 LCPUFA, showed to have a significant higher blood pressure than breastfed 

children (Wilson, Forsyth et al. 1998; Forsyth, Willatts et al. 2003). Based on these findings an 

author suggested the beneficial effects of breastfeeding on blood pressure later in life might emerge 

from the presence of LCPUFA in breast milk (Das 2001).  
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Few studies have evaluated the long-term effect of n-3 PUFA supplementation in early on blood 

pressure in humans and the results have been inconsistent (Table 7). Forsyth et al. and colleagues 

demonstrated that infants fed with formula enriched with n-3 LCPUFA had a lower blood pressure 

at age 6 compared to children receiving no supplement with n-3 LCPUFA. Another study did not 

find a difference in blood pressure between control group and in children who have received 

supplementation with fish oil from time of weaning to age 8 (Ayer, Harmer et al. 2009). Another 

follow-up study in 19-year old offspring evaluated the long-term effect of n-3 LCPUFA 

supplementation during the last trimester of pregnancy, but did not find any effect on blood 

pressure (Rytter, Christensen et al. 2012). However, a recent study performed by van Rossem, 

Wijga et al. showed that children who received breast-milk with a high content of n-3 LCPUFA 

(above the median) had a lower blood pressure at age 12 years compared to never-breastfed 

children.  Furthermore, results from previous follow-up studies at 2.5 and 7 years from this present 

study showed that children receiving maternal fish oil supplementation in the four first months of 

lactation, did not have a lower blood pressure compared to the control group receiving olive oil at 

2.5 years (Ulbak, Lauritzen et al. 2004). However, the blood pressure from the children in the FO-

group was reported to be higher than the control group at the age of 7 years (Asserhoj, Nehammer 

et al. 2009).  
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Table 7. Blood pressure outcome in human studies administering n-3 PUFA to 
either formula, or to lactating mothers, during pregnancy/lactation or during 
pregnancy solely 
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Mechanisms of action 
 
n-3 PUFA and gene expression in adipocytes  

Obesity is associated with an expansion in adipose tissue by hypertrophy or hyperplasia of 

adipocytes. An increase of adipocyte number (hyperplasia) is due to the proliferation and 

differentiation of pre-adipocytes into mature adipocytes (Jo, Gavrilova et al. 2009). From studies in 

rats it has been demonstrated that a high fat diet stimulates adipocyte proliferation (Ellis, McDonald 

et al. 1990) and that n-3 LCPUFAs have shown to exert a protective effect on adipose tissue 

accumulation by limiting the hyperplastic and hypertrophic growth of adipose tissue in adult 

rodents (Raclot, Groscolas et al. 1997; Ruzickova, Rossmeisl et al. 2004; Massiera, Guesnet et al. 

2006; Okuno, Kajiwara et al. 1997).  More specific, DHA have shown to inhibit fat cell 

proliferation in mice (Massiera, Saint-Marc et al. 2003), which also is verified from in vitro studies 

showing that DHA was able to inhibit adipocyte differentiation, and induced apoptosis in 

preadipoctytes (Madsen, Petersen et al. 2005).  

It have been suggested that n-3 LCPUFAs modulate adipose tissue metabolism through the action 

of peroxisome-proliferator-activated receptors (PPAR) that are tissue-specific transcription factors, 

regulating gene expression several cellular processes, including lipid metabolism (Berger and 

Moller 2002). PPARs are expressed in several metabolically active tissues, however stimulation of 

gene expression regulating metabolic processes involved in adipocyte differentiation is dependent 

on the activation of PPAR-y {Berger, 2002). A close allied of the function of PPAR-y is 

CCAAT/enhancer-binding protein (C/EBP) that is important for the early phase of adipogensis and 

stimulate expression of PPAR-y and also regulate the maturation of adipocytes during adipogenesis 

(figure 4). Furthermore, n-3 LCPUFAs are also known to down regulate the expression of the sterol 

regulatory element-binding proteins (SREBPs), a transcription factor that suppresses lipogenic gene 

transcription. Down regulation of SREBP-1 causes a reduced accumulation of lipid by decreasing 

the expression of downstream lipogenic genes, including fatty acid synthetase (FAS) and glycerol 

3-phosphate (Madsen et al., 2005; Xu, Nakamura et al. 1999;  Tai and Ding 2010). When SREBP-1 

is expressed it is able to increase the activity of PPAR-y (Kim, Wright et al. 1998). See figure 4  
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Figure 4; Transcriptional regulation of adipocyte differentiation; CCAAT/enhancer-binding protein (C/EB 
P)β/δ (during early phase of differentiation) activate  CRE/Bα and PPAR-y that stimulate adipocyte genes. 
SREBP-1 may stimulate/repress gene expression independently or through PPAR-y (Kim, Wright et al. 
1998),  Figure; Own construction, inspired by (MacDougald and Mandrup 2002) 
 
  In vitro studies have demonstrated that both preadipocytes and adipocytes produce a significant 

amount of prostacyclins (PGI2) from the n-6 PUFA series (Vassaux, Gaillard et al. 1992;). PGI2 up 

regulates C/EBP that enhances the process of pre-adipose cell differentiation and proliferation by 

activation of PPAR-y. PGI2 released by differentiated adipocytes exerts an autocrine function in 

which it is able to induce differentiation in preadipocytes (Darimont, Vassaux et al. 1994; Fujimori 

2012) (figure 5). In vitro studies (Kim, Della-Fera et al. 2006) and animal studies (Okuno, Kajiwara 

et al. 1997) have shown that n-3 LCPUFA might prevent adipocyte differentiation by down-

regulating the synthesis and action of prostacyclins from the n-6 PUFA series. Furthermore, since 

PGI2 is the major metabolite of AA in adipose tissue, it is thought that AA and its metabolic 

products act more adipogenic by stimulating preadipocyte proliferation and adipogenesis, compared 

to EPA and DHA. This assumption has also been demonstrated in vitro (Gaillard, Negrel et al. 

1989; Massiera, Saint-Marc et al. 2003). Consistent with this, it has also been seen that the 

expression of genes involved in the proliferation of adipocytes is less expressed in diets rich in n-3 

LCPUFA are more expressed in diets rich in n-6 LCPUFAs (Muhlhausler, Cook-Johnson et al. 

2010).  
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Kommentar [1]: ilhaud G., Massiera F., 
Weill P., Legrand P., Alessandri J. M., 
Guesnet P. (2006). Temporal changes in 
dietary fats: role of n-6 polyunsaturated 
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PGI2, derived from arachidonic acid (AA) 
from the n-6 PUFA series {Sessler, 1998}. 
	
  



	
   33	
  

 

Figure 5; Possible anti-obesity mechanism of n-3 PUFA; competition with n-6 PUFA in cell signaling 
pathways may abrogate the adipogenic effect of n-6 PUFA by slowing down biosynthesis of prostacyclins 
(PGI2). Potential feedback mechanism in the development of mature adipocytes from preadipocytes is 
decreased. Figure; own condtruction, inspired from (MacDougald and Mandrup 2002) 
 

In vitro studies have reported that n-6 PUFA might act as both anti-and adipogenic modifiers. This 

might be due to dietary interactions of the background diet in that the ratio between carbohydrate 

and protein might determine the adipogenic potential of n-6 PUFAs through the presence of insulin 

secretion and cAMP-signaling (Madsen, Pedersen et al. 2008).     

 

Appetite signaling  

From animal studies it have been demonstrated that nutritional programming affects the 

development of the hypothalamus, in that nutritional changes during critical periods in peri- and 

post natal life have an impact on hypothalamic development (Lucas 1998), which have long-term 

effects on the feeding metabolism (Cripps, Martin-Gronert et al. 2005). From studies in rats it is 

reported that a sufficient supply of n-3 LCPUFA is necessary during perinatal life in the 

development of neural systems that regulate appetite and that n-3 LCPUFA deficiency in the 

perinatal period contributes to increased appetite signaling (Mathai, Soueid et al. 2004). Insufficient 

intake of n-3 LCPUFA during the critical period of neural development of systems that regulate 

appetite would decreases the content of DHA in membranes phospholipids, which results in altered 

membrane physiological properties. Because it is seen from in vitro studies that n-3 LCPUFA can 

limit the synthesis of pro-inflammatory cytokines, like the neuron damaging cytokine tumor 

necrosis factor-α, a dietary deficient intake of n-3 LCPUFA may lead to damaging of the neurons in 
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the hypothalamus (Cripps, Martin-Gronert et al. 2005) that might lead to an increased appetite in 

adult life.  

 

Osmoregulatory functions 
Deficiency of dietary n-3 PUFA during development in rats have also shown to result in a 

significant increase in sodium appetite in later life (Weisinger, Armitage et al. 2010; and Weisinger 

et al., 2001). This finding may be explained by an influence of n-3 PUFA on gene transcription and 

the functioning of membrane-bound G-protein coupled receptors, such as ANG II type 1 receptors, 

involved in sodium homeostasis (Weisinger, Denton et al. 1988). Furthermore, an abnormality in 

sodium homeostasis is believed to contribute to the development of hypertension (Weisinger, 

Armitage et al. 2010);Begg,et al., 2010). n-3 PUFA deficiency have shown to have a long-term long 

term negative effect on blood pressure in animals (Begg et al., 2010b and Weisinger et al., 2001). 

Neural control of blood pressure is regulated by the hypothalamus and by interactions of the renin-

angiotensin system that also controls sodium appetite. From a recent study in rats it has been 

demonstrated that n-3 PUFA deficiency-induced hypertension was associated with changes in gene 

expression involved in blood pressure regulation (Begg,et al., 2010) 
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Subjects and Methods  
 

Study design, intervention and ethics 

The present 13-year follow-up is based on a double-blinded randomized controlled intervention trial 

(Lauritzen, Jorgensen et al. 2004) which included two previous follow studies at 2.5-years  {Ulbak, 

Lauritzen et al, 2004} and at 7 years (Asserhoj, Nehammer et al. 2009). The intervention trial and 

both follow-up studies were approved by the scientific-ethical Committees for Copenhagen and 

Frederiksberg (KF 01-300/98, KF 01-183/01, KF 11321572). The present 13 year-old follow-up 

study did not include any blood samples and did not require specific approval by the Scientific 

Ethical Committees for Copenhagen and Frederiksberg. Both parents in custody of the child had to 

sign an informed written consent in order to participate in the study.  

 

Description of intervention trial and previous follow-up studies 

- The intervention trial 
 

Participants: 

The intervention trial (KF 01-300/98) recruited 122 healthy, Danish pregnant women living in the 

greater Copenhagen area from the Danish National Birth Cohort (DNBC) during December 1998 to 

November 1999 (Olsen, Melbye et al. 2001). The selection of the women to be part of the 

randomized controlled trial was based on their fish intake, which had to be below the population 

median (equivalent to a fish intake of 12.3 ± 8.2 g/d and less than 0.40 g/d of n-3 LCPUFA) and 

participated as a low fish group. In addition, women who a fish intake above the population median 

(equivalent to a fish intake of 55.2 ±26.7 g/d or 0.82 g/d of n-3 LCPUFA) was asked to participate 

as a high fish reference group (HF-group). A total of 919 women were invited to participate in the 

low fish group and 554 women were invited to participate as the high fish reference group.  

 

 

 

A number of recruitment criteria had to be met by the mother and their newborn in order to 

participate in the trial; 
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Design of intervention 

After giving birth, the women with fish intake below the population median were randomly 

supplemented with either fish oil (FO) or olive oil (OO) for the first four months of lactation. 62 

women were allocated to the FO-group, designated the experimental group and 60 women were 

allocated to the OO-group, designated the control group. Investigators as well as the families were 

blinded to the randomization during data collection and analysis. The mothers were told after 1 year 

which group they were allocated to.  

The supplementation of OO and FO was administered as müslibars with encapsulated OO and FO. 

The amount of FO supplement given to the women in the FO-group corresponded to the fish intake 

of the women in the high fish intake group. The FO-group was given 17 g/d of deodorized 

microencapsulated FO powder, containing 4.5 g of FO and 1.5 g n-3 LCPUFA of which was 0.62 g 

EPA and 0.79 g DHA. The control group was given a similar amount of OO. The fatty acid 

compositions of the two supplements are shown in table 8. The supplementation started 9 ± 3 days 

after delivery and the women were instructed to consume two 35 g müsli-bars daily for the 

subsequent four months of the lactation period. Through the intervention period the women were 

not given any dietary instructions but were told not to take any oil supplements during the trial.  

Self-reported compliance, expressed as the percentage of oil in müslibars taken relative to the 

intended dose, was in both groups was on average 88 % (Lauritzen, Jorgensen et al. 2004).  

 

 

 

Criteria for the woman Criteria for the newborn  

Uncomplicated pregnancy Born term (34-37 of gestation) 

Body mass index during pregnancy <30kg/m2 Had to be singleton 

No metabolic disorders No health complications (no admission to 

neonatal department) 

Intention to exclusively breastfeed for ≥ 
 4 months  

Normal weight for gestation (Greisen and 

Michaelsen 1989) 

Start intervention supplements within < 2 

weeks after birth 

Apgar Score > 7 at 5 minutes after delivery 
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Table 8.  
Fatty acid composition of microencapsulated oils used for the intervention (Lauritzen, Jorgensen et 

al. 2004) 
Values are based on gas chromatography analysis and are expressed as a percentage of the total fatty acid 
content {Lauritzen et al., 2004}. Abbreviations; SFA, saturated fatty acids; MUFA, monounsaturated fatty 
acids 
 

150 women completed the four months trial period, which included 53 women from the FO-group, 

47 women from the OO-group and 50 women from the HF-group. Furthermore, 107 mothers 

reported to have exclusively breastfed their newborns during the four months of intervention. 

Women who had not exclusively breast-fed during the four months intervention period were not 

excluded from the trial, but the degree of breast-feeding was taken into account when performing 

the statistical analysis (Lauritzen, Jorgensen et al. 2004).  

 

Protocol  

In order to collect a 10 ml blood sample for baseline analysis of the fatty acid composition in 

maternal RBCs, a pre-enrollment visit was made in week 36.4 +/- 1.5 of gestation (Lauritzen, 

Jorgensen et al. 2004). Demographic and social information together with parental education was 

also collected at the visit. Another visit was made 9±3 days after birth in order to collect a maternal 

breast milk sample to determine fatty acid composition of maternal milk at baseline (Lauritzen, 

Jorgensen et al. 2004). At the visit the infant’s head-circumference was measured and birth data on 

length and height were collected from the hospital journal. Furthermore, supplements were given in 

two rounds for two months at a time. Supplement for the first two months were given at the pre-

enrollment visit, and supplements for the last two months were dispensed at the two-months visit.  

During the supplementation period the infant together with the mother was assessed two times, at 2 

and 4 months, respectively. Subsequently two follow-up examinations were made at the age of 9 
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months and 2.5 years, respectively. The examinations at the age of 2, 4 and 9 months took place at 

Department for Human Nutrition at Frederiksberg and included anthropometric measurements in 

terms weight, length and head circumference of the infant. Furthermore, the mother delivered a 

milk sample and was interviewed about her fish intake the day before and the previous month 

(Lauritzen, Jorgensen et al. 2004). The overall fish intake of the mother during the intervention 

period was assessed by a food frequency questionnaire. In addition, at the examination at 4 months, 

a blood sample was collected from the mother to determine the fatty acid composition of maternal 

RBC-DHA. This procedure was also carried out for the child.  

 

2.5-year follow-up study  
150 families were invited to participate in the 2.5-year follow up study, in which a total of 101 

children ended up participating The group allocations of the 101 children were; 42 from FO-group, 

30 from the OO-group and 29 from the HF-group (Ulbak, Lauritzen et al. 2004); Lauritzen et al.,  

2005). The following anthropometric measurements were collected the examination visit; height, 

weight, waist circumference and triceps- and subcapsular skinfold thickness. Oscillometric blood 

pressure measurements were also assessed two times at the examination visit with the child sitting 

in up-right position. The first blood pressure measurement was assessed shortly after arrival and the 

second one approximately one hour later. The second measurement was assessed after 30 minutes 

of rest, and this measurement was used in the final data analysis (Ulbak, Lauritzen et al. 2004), 

(Larnkjaer, Christensen et al. 2006). Furthermore, a blood sample was collected and the fatty acid 

composition of the RBC was detected (Larnkjaer, Christensen et al. 2006). Registration of diet was 

assessed for 7 consecutive days by using a pre-coded dietary questionnaire, from which the average 

daily nutrient intake was calculated. Other measurements investigated at the visit included pulse 

wave velocity, heart rate, heart rate viability, and electrocardiogram by a 2-channel tape recorder 

(Larnkjaer, Christensen et al. 2006).  

 

7 year follow up study 
149 families were invited to participate in the 7-year follow up study of which 98 children ended up 

participating. The 98 children were distributed in the following experimental groups: 36 from FO-

group, 28 from OO-group and 34 from HF-group. The 7-year follow up study included two visits, 

one information meeting and a following examination visit. Following anthropometric 

measurements were collected at the examination visit: head circumference, waist circumference, hip 

circumference, height, weight and tricep- and subcapsular skinfold thickness. Blood pressure was 
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assessed using a Boso-medicus Prestige unit with a cuff with circumference size of 16-22 cm, and 

the child was told to lie minimum 5 minutes before the measurement of SDP and DBP.  Blood 

pressure was measured three consecutive times with the average of second and third measurement 

used in data analysis. In addition, MAP was calculated as DBP + 1/3 * (SDP-DBP). Dietary intake 

was assessed by four-day weighed dietary record. Physical activity of the child was assessed in two 

ways; the first included a movement monitor (ActiReg®) with sensors placed on the chest and the 

thigh that was worn for four days expect during nighttime, showering and swimming. The second 

included answering of the Habitual Activity Estimated Scale (HAES)-questionnaire. Furthermore 

the parents were also asked to complete two questionnaires: a Strenght and Difficulties Questinnaire 

(SDQ) and a questionnaire concerning the health of the child.  

 

The present 13-year follow-up study 

 

Study design 

The 13-year follow-up study included an examination visit carried out either at Department of 

Human Nutrition at Frederiksberg or at the home of the child. At the examination visit a number of 

anthropometric measurements and blood pressure were assessed and the child and the parent 

individually answered four questionnaires used to assess the mental wellbeing of the child. 

Furthermore, the child was instructed in using a movement monitor (ActiGraph®) and introduced 

to an electronic food-frequency questionnaire, which was sent to the e-mail of the parent after the 

examination visit and subsequently filled out by the child.    

In remuneration the child received 200 Danish kroners for participation after end examination. The 

main researcher, Sara Elisabeth Eriksen carried, was blinded to the randomization throughout the 

trial period and until all basic statistical analyses were completed. The families were not blinded to 

the randomization in this present follow-up study.  

 

Study population – recruitment  

In the present follow-up study all parents of the 13-year-old children, who had not actively 

withdrawn their participation from the study, was invited to participate. The current addresses of the 

participants who had moved since last follow-up at 7 years were identified through the Danish 

National Registry. A total of 140 families were invited to participate in the study. The families were 
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contacted by postal letter containing 1) a informative letter describing the background of the study 

as well as introducing the details regarding the physical examination (App. 1), 2) a brochure about 

the rights of the participant as a test participant (App. 2) and 3) a statement of consent to be signed 

by both parents (App. 3). A week after sending out the letters, the families were contacted by phone 

to see if they were interested in participation. If the parents and/or child expressed a need to receive 

a more specified description about the examination, a thoroughly oral explanation was given on the 

phone. Furthermore, if the families were willing to participate an arrangement of date and time for 

the examination visit was scheduled. The examination visit was arranged to take place either at 

Department of Human Nutrition at Frederiksberg or at the home of the families, a decision solely 

made by the families, depending on what suited them best. The families were told to bring a signed 

statement of consent to the examination visit.  

The recruitment of families and examinations was initiated in October 2012 and ended in January 

2013 and were solely carried out by the main researcher. The purpose was to recruit as many 

families as possible during this period of time, however, due to the time limit of the present thesis, 

recruitment and examinations had to end in January 2013.  

In general, 6 participants were excluded because they no longer were Danish residents, 5 

participants did not wish to participate due to personal reasons and 13 participants showed interest 

in participating but did not manage to arrange an available date and time for the examination. 

Furthermore, it was not possible to make contact by postal letter or phone to the final 51 

participants. In total 65 families agreed to participate in the present 13-year follow-up study, but 

due to sickness (n=4) and sudden death in the family (n=1), compelled these families to cancellation 

of the examination visit. Therefore, a total of 60 Danish children participated in the present follow-

up study from which data were collected. Figure 6 illustrates the trial profile during the randomized 

intervention and follow-up examinations at 2.5, 7 and 13-years. 
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Figure 6. Trial profile illustrating participant flow during the randomized intervention and follow-up 
examinations for the three groups, with focus on the 13-year follow-up study. DNBC, Danish National Birth 
Cohort; FO, fish oil; OO, olive oil; HF, high fish
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Protocol  

 

The examination 

At the examination the child and parent were firstly informed about the procedure of the 

examination, and then to make the child more at ease, he or she was presented to the different 

devices used during the examination. Careful consideration had been put into deciding the order of 

examination procedure, beginning with the least “intensive” measurements (height and 

circumference measurements) and finishing off with assessing blood pressure, with the intention 

that the child would be more at ease after a while of examination. During examination of the child, 

the parent was given four questionnaires concerning the well-being and general health of the child. 

After the child had completed all anthropometric measurements he or she was asked to answer four 

questionnaires and a puberty test.  

 

Standard procedure of the examinations 
 

Anthropometric Measurements  

Standard Operating Procedures (SOP´s) (2. Version, valid from 1.9.2009) for measurements of 

height, subscapular and triceps skinfold thickness and blood pressure was carefully studied prior to 

the examinations to assure the quality and integrity of data collection from the anthropometric 

measurements. All measurements made during the examinations were listed onto a datasheet (App. 

4). All measurements were carried out in the following order; 

1. Height was measured using on a portable height measure (The Leicester Height Measure, Child 

Growth Foundation, London United Kingdom) with a resolution of 0.1 cm. During the 

measurement the child was barefooted, and height was assessed two times with the child 

stepping out from the height measure between the measurements.  

2. Head, waist and hip circumference was assessed in triplicate with a circumference measuring 

tape with a button to retract the measuring tape. Head measurements were assessed placing the 

measuring tape across the forehead and measured around the full circumference of the head. 

Waist measurements were done on the bare skin of the stomach in a line around the belly button. 

Hip circumference was measured around the widest portion of the buttocks in the child’s 

underpants to make the most accurate estimation of the measurement. If the child felt 
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uncomfortable during this procedure the measurement was assessed with the child wearing his or 

hers trousers.  

3. Triceps and subscapular skinfold-thickness was assessed with a resolution of 0.1 mm in 

triplicate with a Harpenden skinfold caliper. When measuring the triceps skinfold-thickness the 

child was told to bent the non-dominating arm 90 degrees, and the skinfold measurement of the 

triceps was made midway between the shoulder and elbow. In order to measure the subscapular 

skinfolds, the child was asked to place the non-dominating hand behind the back. In this position 

the shoulder blade pointed out making it more assessable to measure in an angle of 135 degrees 

two centimeters diagonally below the inferior angle.  

4. Weight and body fat percentage were assessed on a Body fat monitor scale (Model Omron 

BF511). Using a four-sensor measuring system (one at each hand and foot) the body fat monitor 

could estimate the percentage of body fat by a bio-impedance method in the whole of the body.  

This device also assessed the child’s weight. Body fat measurements and weight were carried out 

two continuous times.  

5. Blood pressure was measured with a Boso-medicus Prestige unit, measuring blood pressure by 

the oscillometric principle. The child was asked to rest for 10 minutes in the supine position 

before measurement. Also, the circumference of the child’s overarm was measured with a 

measuring tape to ensure to use the right cuff size for the measurement. Two different cuff sizes 

were available; small (12-22 cm) and medium (22-26 cm).  Blood pressure was measured with a 

cuff around the child’s non-dominating arm, and three consecutive measurements of SBP and 

DBP and heart rate were assessed. During measurement the child was asked not to talk, except if 

the measurement were causing discomfort. For this study the mean of the second and third 

measurement was used in data analysis, which is a common procedure to predict the most 

accurate blood pressure measurement (Park, Menard et al. 2005). In addition, MAP was 

calculated as DBP + 1/3 * (SDP-DBP), to estimate the average blood pressure of the child.   

 

Physical activity 

Physical activity was assessed by a movement monitor (ActiReg®). The ActiReg® monitor was 

placed on the right or left hip of the child in elastic band and registered movements of the body. The 

child was asked to wear the ActiReg® for 7 consecutive days, expect during nighttime and at 

swimming and showering.  At the examination the child and parent were informed about how to use 

the ActiReg® and was given an instruction about the ActiGraph to bring home.  

Due to a time limit, data of the physical activity level (PAL) of the children obtained from 

ActiReg® was not available and will therefore not be further analyzed in the present thesis.  
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Questionnaires; After assessing the child’s blood pressure, the child was asked to answer four 

questionnaires concerning the general health and well being of the child, and a puberty-test 

designated Tanner Scales. It was important that the child answered the questionnaires in private and 

was not disturbed or distracted by the presence of the parent, and was seated in a separate room next 

to the room of examination. If the child felt uncomfortable sitting in a room alone, it was possible to 

arrange the child to sit in the same room as the parent and the examiner while answering the 

questionnaires. The questionnaires concerning the general health and well being of the child were 

not relevant for this present thesis and will not be further described.  

• Tanner Scales 

Pubertal maturity was assessed using Tanner Scales (App. 5). The Tanner Scales is developed to 

determine the child’s pubertal maturation and consists of pictures that portray different stages of 

pubertal development rated on a 5-point scale (I, II, III, IV, V). Stage I is classified as prepubertal 

and stage V is classified as fully matured. The boys were asked to identify their genital 

development and pubic hair growth, and girls were asked to identify their breast development. In 

addition, the girls were furthermore asked to note if their first menarche has occurred, and note date 

of month if it was current.  

 

Diet 

The dietary intake of the child was assessed by a food frequency questionnaire (FFQ) called SOFT 

(Spørgeskema Om Fødevare Frekvens for Teenagere) that is specifically developed to address 

adolescents (App. 6). Based on the age of the children it was assumed that it might be difficult to 

complete a focused weighed dietary record, which could result in inaccurate dietary data collection. 

The use of a FFQ was considered as a valid and manageable method for the registration of diet of 

the 13-year old children (Rimm, Giovannucci et al. 1992), (Cade, Burley et al. 2004). In the FFQ 

the child was asked to fill out what he or she´s food habits had been for the last 12 months. The 

FFQ was divided into 13 categories; 
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The parent and child were presented to the FFQ at the end of the examination where they were 

explained about the construction of the FFQ and how to fill it out.  To illustrate how the FFQ was 

supposed to be filled out, I brought a copy with three examples of typical dietary questions from the 

FFQ to the examination. The child was asked to answer the FFQ mainly by itself, but that the 

parents were allowed to help if needed. In order have the results from the FFQ returned within a 

decent time range, the child were asked to answer the FFQ during the 7-day time period he or she 

was wearing the ActiReg®. The parent and child received the FFQ via a link sent to the parents (or 

the child’s own) e-mail address. This e-mail also had a personal code specific to the child, such that 

when the child’s answer was registered in our own database, I could identify the individually 

children by this code. Dietary information was obtained from the database containing the collected 

SOFT data and the average daily energy intake (including macronutrient E%) and distribution of 

macronutrients in the diet was calculated from the dietary data for each child.  

In order to get familiar with the FFQ before I introduced it to the parents and the child I did at test-

run before initiation of the examinations. I had two 14-old interns to answer the FFQ, which was 

advantageous in order to evaluate how long it would take to answer the FFQ and also have the 

opportunity to evaluate the pros and cons associated with the FFQ seen from a peer’s perspective 

relative to the 13-year old children.  

 

Pilot studies 

Prior to initiation of the examinations I attended an examination from the Småbørns Kost Og 

Trivsel (SKOT) research project at Department of Human Nutrition. This was done in order to 

observe the standard examination procedure as well as the connection and communication between 

researcher and test persons. Furthermore, I performed a test-examination on a 10-year old boy in the 

presence of an academic competent observer. This was done in order to test the planned 

examination procedure and thereby evaluate if any changes need to be done before initiation of the 

examinations of the present 13-year old follow-up study.  
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Statistics 
The analysis of the intervention was planned to be performed as raw group comparisons with 

ANCOVA/multiple linear regression analysis that take various confounders into consideration. 

Data consideration  
 

In order to perform linear (multiple) regression analyses continuous data were tested for normal 

distribution, independent residuals and equal variance before analyzing data and choosing 

appropriate tests 

Normal distribution: Continuous data were always checked for normal distribution by histograms 

and Shapiro-Wilks normality tests with a p-value > 0.05 to accept data being normally distributed. 

Natural log transformation of those parameters that did not appear to be normally distributed were 

carried out to meet the assumption for normal distribution for analysis of co-variance. Parameters of 

the present follow-up study that were not normally distributed included; skinfold thickness, waist 

circumference and waist:height-ratio.  

Equal variance: 

 Equal variance among the groups of comparison was always tested by a two-group comparisons 

test, testing the homogeneity of variance. A p-value  >0.05 was also here accepted.  

Residual plots: To ensure independency among residuals and avoid systematic errors, residual plots 

were made on all parameters to ensure that a pattern was not present in the plots.  

 

Sample size 

This study was a follow-up study and power calculating was not part of the study design as the 

purpose was to recruit as many participants as possible. A total of 60 children participated in this 

follow up study, with 39 from the two randomized groups. When performing subgroup analysis 

between the randomized groups, the number of subjects included in the analysis became even 

smaller. Furthermore, the sample size varied due to few missing values among the included 

covariates, and stratification on one or more covariates with missing values was not considered 

feasible due to the small sample size of the study.  

Detection for outliers;  

In order to detect for potential outliers both BoxPlots and residual-vs-fitted values plots were made.  

BoxPlot illustrated if any values were located below or above the 95-confidence interval.  
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A result was considered statistical significant if a p-value < 0.05 was obtained. All data was 

measured using STATA/IC version 12.1 for Mac (64-bit Intel).  

Data not normally distributed are presented as median; 10th - 90 th percentile. Normally distributed 

data are presented as mean ± SD. Non-adjusted and adjusted mean differences are presented as 

estimate ±SE. Results obtained from correlation analysis are presented as the correlation coefficient 

and the p-value.   

 

Group comparisons  
 

Comparison of OO-, FO- and HF-group; 

The non-randomized HF-group was included as reference group when discussing results found 

between the two randomized groups. Furthermore, the HF-group was also included in the analyses 

of baseline data from the intervention (Table 11). When comparing normally distributed data 

between all three groups analysis of variance (ANOVA) was applied, and when comparing 

nonparametric data between all three groups the Kruskall-Wallis H test was applied. Furthermore, 

nominal variables was compared by χ²-analysis and given as ratios.  

  

Comparison of the two randomized groups; OO- and FO group 

Normally distributed non-adjusted continuous variables were compared using a Student t-test. 

When comparing not normally distributed continuous variables the Mann- Whitney U test was 

applied. Furthermore, nominal variables was compared by χ²-analysis and given as ratios.  

For comparison of normally distributed adjusted continuous variables an analysis of covariance 

(ANCOVA)/multiple linear regression analysis was performed (see below).  

Possible confounders  

When considering stratification for possible covariates the small sample size of the study was taken 

into account and the number of covariates included in the statistical models was restricted to the 

most strongest effect modifiers.  

Different possible confounders were considered when investigating the results from the group 

comparisons. In order to detect for group effects from other continuous explanatory normally 

distributed variables on the continuous outcome ANCOVA was performed. The randomization was 

stratified according to group level, sex and other confounding variables. Possible confounding 
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variables were considered to affect the dependent variable based on the literature, and were 

included in the extended statistical model for body composition and blood pressure (table 9). 

 

Table 9. Possible covariates investigated with respect to parameters of body composition and blood 

pressure. 

 Body composition Blood pressure 

Factors   

Group (OO/FO) Group (OO/FO) 

Sex (Male/female) Sex (Male/female) 

 Waist:height-ratio 

Possible covariates   

Pubertal score Pubertal score 

Energy Intake Place of examination 

Ponderal index at birth Protein:Carbohydrate-ratio 

  Energy intake 

 

Each possible covariate was tested on the dependent variable in the statistical regression model with 

group and sex being the systematic factor in the model. Covariates included in the model that 

appeared to have a high significance level and prominently decreased the explanatory degree 

(adjusted R2) were excluded from the final regression model. Covariates and factors being 

significant at the level of <0,05 were included in the final statistical analysis for blood pressure and 

body composition. However, some factors were kept in the statistical model due to their theoretical 

effect. Furthermore, all regression models were tested if an interaction between sex and group was 

significant at level of <0.05, and if so, sub groups analysis was performed for sexes separately.  

 

Blood pressure and confounding variables 

When analyzing all three blood pressure parameters the waist:height-ratio was found to have a 

significant effect on all the results when included in the regression model for every blood pressure 

parameter. Furthermore, a significant interaction between group and sex was found in diastolic 

blood pressure and mean arterial blood pressure, whereupon the two sexes were analyzed 

separately. The final model for diastolic blood pressure and mean arterial blood pressure, sexes 

separately, included waist:height-ratio. In systolic blood pressure no interaction between group and 

sex were found and were only adjusted for waist:height-ratio and sex.  
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Excluded confounding variables for blood pressure;  

o Place of examination and protein/carbohydrate-ratio  

 

When including place of examination in the statistical model, it did not have any significant effect 

on the results, probably due to unequal distribution of home examinations (n=9) versus 

examinations at Department at Human Nutrition (n=51), and were excluded as a covariate in the 

regression model for blood pressure. Furthermore, in order to detect for any dietary effect on blood 

pressure, protein/carbohydrate-ratio was included as a possible covariate. However, no significant 

effect was found on neither of the blood pressure parameters, and protein/carbohydrate-ratio was 

excluded as covariate from the regression model.  

 

Body composition and possible confounders 

The regression model of every outcome for body composition included a sex*group interaction 

which were excluded from the final regression model if it was insignificant. If a significant 

interaction between group and sex were found, the analyses were performed separately in gender 

subgroups. 

None of the possible covariates for body composition showed significant effects when included in 

the regression model. The final regression model when analyzing parameters for body composition 

included ponderal index at birth that is known to be a determinant for body composition in later life 

(Valdez, Greenlund et al. 1996). Ponderal index at birth appeared to be significantly correlated with 

growth parameters for skinfold thickness, body fat percentage, waist circumference, hip 

circumference, waist/height-ratio. Furthermore, growth parameters for head circumference, weight 

and height were adjusted for head circumference at birth, birth weight and birth length, respectively. 

Ponderal index did not appear have any significant effect in regression model for head 

circumference, weight and length and were not included in the regression model for these body 

composition parameters.   

 

Excluded confounding variables in blood pressure and body composition;  

o Energy intake and pubertal score 

Both pubertal score and energy intake was excluded from the final regression model for both blood 

pressure and body composition. It is a known fact that energy intake have showed to be an 

important explanatory factor for outcomes in both blood pressure (Rasmussen, Vessby et al. 2006) 

and body composition (Farnsworth, Luscombe et al. 2003), and therefore were considered as a 
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covariate for these outcomes. However when including energy intake in the regression model for 

blood pressure and body composition it appeared to have a high significance level, accompanied by 

a decrease in explanatory factor (R2) and for this reason it was considered without any statistical 

effect and were excluded. Furthermore, the stage of pubertal development is also considered to have 

an effect on blood pressure (Shankar, Eckert et al. 2005) and body composition (Bordini and 

Rosenfield 2011), but also appeared to have no effect when included in the regression model for 

body composition and blood pressure, and were also excluded.  

 

Possible dose-response parameters  
 
Dose-response analysis were performed for all three blood pressure parameters and BMI and 

waist/height-ratio. Regression model with either adjusted BMI or waist/height-ratio as a dependent 

variable and either maternal RBC-DHA at 4 months or DHA in maternal breast milk at 4 months as 

independent variables were performed to analyze for any effect of either maternal RBC-DHA or 

DHA in maternal breast milk on BMI or waist/height-ratio. The same dose-response analysis was 

performed for all of the three blood pressure parameters. Since the degree of breast-feeding explains 

the reliability of the dose-response parameters this parameter was also used in the regression 

models.  

Maternal RBC-DHA at 4 months was considered the most reliable of the dose-response parameters 

since it reflects the maternal diet over a longer period of time. DHA in maternal milk at 4 months, 

reflects the maternal diet but is also a questionable variable in that it varies according to dietary 

intake prior to the breast milk sample, however this variable has a higher degree of variance than 

maternal RBC-DHA. Infant RBC-DHA at 4 months was also a possible covariate to include in the 

dose-response analysis, but this factor was excluded from the dose-response analysis due several 

missing values in the dataset covering infant RBC-DHA.  
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Results 

 

Characteristics of the participants  
 
60 children participated the present follow-up study. The group distribution of the participants were 

HF=21, OO = 19, FO =20, which resulted in a follow-up rate of 32,8 % (HF), 31,7 % (OO) and 

32.3 % (FO) respectively.  

Nine out the 60 examinations were carried out in the home of the child and fifty-one examinations 

were carried out at the Department of Human Nutrition. The main researcher, Sara Elisabeth 

Eriksen, carried out fifty-eight examinations and two examinations were carried out by a nutrition 

student. The characteristics of the study participants are given in Table 10.  

 

Table 10. Characteristics of the participants in the trial.  

 

 High fish Olive oil Fish oil 
Number of Children 21 19 20 
Gender Distribution (Boy:Girl) a 9:12  7:12  12:8  
Birth weight (kg) 3.56±0.5 (21) 3.63±0.43 (19) 3.7±0.4 (20) 
Birth length (cm) 52.38±2.13 (21) 52.37±2.19 (19) 52.9±1.97(20) 
Head circumference at birth (cm) 35.79±1.44 (20) 36.84±1.40(16) 36.52±1.32 (17) 
Ponderal index at birth (kg/m3) 24.85±2.25 (21) 25.25±2.33(19) 24.97±1.82 (20) 
Values in group columns are given as SD± (number of subjects included (n)). Differences between groups 
were tested with a Student t-test.  
aValues are given as ratios. Difference between groups are tested with a  χ² -test 
 

Fifty-four children were turned 13 years at the time of examination; the remaining six children all 

had their 13th birthday within one month of the examination.  

 

Breast-feeding descriptions and intervention outcome are given in table 11. No significant 

differences were observed in duration of breastfeeding and the degree of breastfeeding between all 

three groups, as well as compliance between the two randomized groups. Table 11 describes the 

breast-feeding and intervention outcomes. 
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Table 11. Breast feeding descriptions and intervention outcome 

 High fish Olive oil Fish oil 
Degree of breastfeeding during the 4 
months intervention (%)a 

98.86,99-100 
(21) 

96.55, 82.5-100 
(19) 

92.58, 68.75-100 
(20) 

Total duration of breastfeeding 
(weeks) a 

28.07,21.7-36.89 
(8) 

28.31, 19.53-36.89 
(11) 

24.68, 3.26-32.55 
(8) 

> 9 months of breastfeeding (yes:no)b 13:8 (21) 8:11 (19) 12:8 (20) 
Maternal n-3 LCPUFA intake during 
intervention period (g/d)a 

0.97,0.43-1.76 
(21) 

0.26,0.03-0.51 
(19) 

1.18, 1.07-1.27 
(18) 

Maternal RBC-DHA at 4 months 
(FA%) 

7.32±1.38(21) 5.58±1.04 (19) 9.31± 0 .94 (20) 

Maternal milk-DHA at 4 months b 0.72,0.4-1.2 (21) 0.48,0.21-0.77 
(19) 

1.39, 0.82-1.81 
(19) 

Compliance (% taken of intended 
dose)a 

            - 93.41,81.29-99.6 
(19) 

92.80, 83.83-100 
(18) 

Infant RBC-DHA at 4 months 7.56±1.50 (19) 6.18±1.42(16) 8.88±1.81(13) 
Values in group columns are given as SD± (number of subjects included (n)). Differences between groups 
were tested with a Student t-test.  
aData are not normally distributed. Values are given as median, 10th-90th percentile (n). Differences between 
groups tested with a Man Whitney U test or Kruskal-Wallis test  
b) Values are given as ratios. 
Infant RBC-DHA at 4 months; Significant differences were observed between OO-FO (p=<0.001), and HF-
FO (p=0.032) and HF-OO (0.008).  
Maternal RBC-DHA at 4 months; Significant differences between OO-FO (p=.<0.001), HF-FO (p<0.001), 
OO-HF (p<0.001).  
Maternal milk-DHA at 4 months; OO-FO (p<0.001), HF-FO (p<0.001), HF-OO (p=0.0073) 
Maternal n-3 LCPUFA intake during intervention period; FO-OO (p<0.001), FO-HF (p<1.2) 
 

Between the two randomized groups, a significant difference was identified with respect to maternal 

n-3 LCPUFA intake during lactation (p<0.001), DHA in maternal breast milk at 4 months 

(p<0.001), maternal RBC-DHA at 4 months (p<0.001) and infant RBC-DHA at 4 month (p<0.001), 

that all were significant higher in the FP-group compared to the OO-group. These results describe 

the successful effect of the intervention on the mother and the child.  

 

Results from the present 13-year follow-up study 

 

Diet 
 
54 children completed the electronic FFQ that was used to collect dietary data. 6 children did not 

complete the FFQ, and this number was distributed equally in the three groups with 2 from HF-

group, 2 from OO-group and 2 from FO-group, respectively. 
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When analyzing the data obtained from macronutrients E% all values satisfied the general dietary 

recommendations (Table 3) and were included in the dietary analysis. However, when analyzing the 

results from energy intake (EI) several variables exceeded the general recommendations (Table 2) 

in such unrealistic range that exclusion of these values was considered necessary. Thus, in total 5 

values for EI, lying more than double above or below the recommended intake, were excluded and a 

more accurate data of EI was included in the final statistical dietary analyses. Its believed that 

common lack of concentration or the fact that several children have filled out the FFQ by 

themselves may have caused these unrealistically high or low values. The final outcome of the 

dietary analysis on EI, protein E%, carbohydrate E% and Fat E% are shown in table 12  

 

Table 12. Energy and macronutrient intake of boys and girls measured by the self-reported 

electronic FFQ 

  Randomized groups  
 High fish 

(n=19) 
Olive oil 
(n=17) 

Fish oil 
(n=18) 

Non-adjusted mean 
difference  
(p-value) 

Adjusted 
mean 
difference  
(p-value) 

EnergyIntake  (MJ/d) 10.3±3.1 
(n=18) 

11.9±3.6 
(n=15) 

8.4±2.5 
(n=16) 

3.4±1.1 (0.005) -3.6±1.0 
(0.002) 

Protein (E%) 15.4±2.3 16.2±2.7 14.9±2.0 1.3±0.79 (0.10) -1.09±0.76 
(0.16) 

Fat (E%) 30.7±4.4 31.4±4.7 31.5±4.5 -0.15±1.5 (0.92) -0.23±1.52 
(0.88) 

Carbohydrate (E%) 53.9±5.3 52.4±4.6 53.6±3.7 -1.17±1.4(0.41) 1.32±1.43 
(0.36) 

Protein:Carbohydrate 
ratio 

0.29±0.06 0.32±0.66 0.28±0.037 0.03±0.018 (0.069) -0.03± 0.018 
(0.098) 

Values in group columns are given as ±SD, non-adjusted and adjusted mean differences ±SE (fish oil group-
olive oil group)(number of subjects included (n)). The p-value non-adjusted mean difference describe the 
difference level between the two randomized groups, tested by a t-test. The p-value for the adjusted mean 
differences describe the significance level between the two randomized groups, tested by ANCOVA, 
adjusted for sex. 
 

Non-adjusted mean results 

A significant difference in energy intake appeared between the two randomized groups, with a 

higher energy intake in the OO-group compared to the FO-group (p=0.005). Furthermore a 

tendency towards a higher Protein/Carbohydrate-ratio (P/C-ratio) was observed  in the OO-group 

compared to the FO-group (p=0.069). No significant differences were found on protein E%, 

carbohydrate E% or fat E% between the randomized groups.  

 

Adjusted mean differences 
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No significant interactions between group and sex were found in regressions analysis on EI and 

macronutrients E%.  

A significant adjusted mean difference in EI was observed between the two randomized groups, 

showing that the FO group had a significant lower EI intake then the OO-group (p=0.002). No 

significant mean adjusted differences was observed between the randomized groups in 

macronutrient E%, only a minor tendency appeared in the group variable when analyzing P/C-ratio 

(p=0.098), suggesting that the FO-group has a smaller P/C-ratio compared to the OO-group. 

 

Growth and Body Composition 

Anthropometric measurements were collected for all 60 children. Growth and body composition of 

13-year-old children are shown in table 13  

Table 13. Growth and body composition of 13-year old children 

  Randomized groups 
 High fish Olive oil Fish oil Non-adjusted 

mean difference 
Adjusted mean 
difference 

 n=21 n=19 n=20 n=39 (p-value) n=39 (p-value) 
Head circum. 54.8±1.5 54.0±1.2 55.1±1.7 -

1.08±0.48(0.029) 
0.20±0.52(0.32)c 

Subs. 
Skinfold a 

7.5, 5.03-
10.17 

8.1, 5.1-11.43 7.4, 5.1-10.88 0.09 ± 0.094 
(0.34)b 

-0.02±0.08(0.753) b 

Tric. 
Skinfold a 

10.8, 6.87-
15.77 

13.1, 6.7-
18.73 

12.9, 7.6-18.6 0.037 ± 0.12 
(0.76)b 

0.02±0.12(0.84) b 

Body fat % 15.1±7.4 17±7.1 16.8±5.6 0.25±2.03(0.90) 1.11±1.83 (0.55) 
Waist 
circum. 

69.6±5.6 69.1±5.4 69.8±7.7 -0.7±2.15(0.75) 0.55±2.26(0.81) 

Waist 
circum.a 

69.5, 65.5-
76.0 

69.1, 62.9-
75.5 

69.8, 62.3-
77.2 

-0.007±0.27 
(0.8)b 

0.004±0.03(0.89) b 

Hip circum. 82.8±6.9 84.6±6 82.7±7.3 1.91±2.15(0.38) -0.3±1.96(0.88) 
Waist:height-
ratio a 

0.42, 0.39-
0.47 

0.43, 0.38-
0.47 

0.44, 0.40-
0.49 

-0.02±0.03(0.42)b 0.02±0.03(0.56) b 

Height (cm) 164.0±7.7 161.6±5.7 159.3±6.5 2.29±1.96(0.25) -2.42±1.80 (0.187)d 
Weight (kg) 49.2±6.7 48.9±6.3 47.9±7.6 0.95±2.24(0.67) -0.80±2.18 (0.714)e 
BMI 18.2±2 18.7±2.0 18.8±2.2 -0.11±0.67(0.87) 0.27±0.67(0.69) 
Puberty score  3.33±0.75(18) 3.35±0.66f(18) 2.96±0.86g(18) 0.39±0.26 (0.14) -0.29±0.25 (0.26) 
Values in group columns are given as ±SD, non-adjusted and adjusted mean differences ±SE (fish oil group-
olive oil group). The p-value non-adjusted mean difference describe the difference level between the two 
randomized groups, tested by a t-test. The p-value for the adjusted mean differences describe the significance 
level between the two randomized groups, tested by ANCOVA, adjusted for sex and ponderal index at birth.   
aVariables not normally distributed, values are given as median, 10th-90th in percentiles.  
b Ln transformed (natural logarithms) to adjust values and make them similar to normal distribution for 
ANCOVA 
c Head circumference adjusted for head circumference at birth and sex (n=33) 
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d Height adjusted for birth length and sex 
e Weight adjusted for birth weight and sex 
f Puberty Score mean values assessed by Tanner Scales in OO-group, n=18 
g Puberty Score mean values assessed by Tanner Scales in FO-group, n=18 

Abbreviations; BMI, body mass index; cirum., circumference; Subs., subscapularis; Tric., Triceps;  

 

 

 

 

Non-adjusted results.  

The only significant mean difference appeared in the head circumference between the two 

randomized groups (p=0.029), with the FO-group having a significant larger head circumference 

than the OO-group.  

The OO-group appeared to have higher mean value in puberty score compared to the FO-group, 

however the difference was not significant when analyzing the mean non-adjusted values (p=0.14). 

Based on the assumption that girls tend to have an earlier onset of pubertal development compared 

to boys (Bordini and Rosenfield 2011), the puberty score between girls and boys from the two 

randomized groups, independent of group allocation, were analyzed. It was found that girls had a 

strong tendency towards a higher pubertal score than the boys (p=0.05) (not shown), and when 

including the children from the HF-group the difference in puberty between sexes became even 

more significant (p=0.02) (not shown). 

 

According to the age-dependent BMI cut-off values (Cole, Bellizzi et al. 2000) none of the children 

included in the trial was characterized as obese. However, three children were characterized as 

being overweight; one girl from the OO-group and a boy and a girl from the FO-group. Taking 

together, this results in a rate of overweight children of only 5 % of total number of children 

included in the 13-year follow up study.  

 

Adjusted mean difference 

No significant interactions between group and sex were found in regressions analysis for 

anthropometric parameters. Furthermore, no significant mean adjusted differences were found 

between the two randomized groups in any of the anthropometric measurements, thus the 

significant mean difference between the randomized groups in head circumference was no longer 

evident after adjustment (p=0.32).  
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BMI for 2.5, 7 and 13 years 
Table 14 shows mean BMI for all three follow up studies conducted at 2.5, 7 and 13 years, 

respectively and the mean difference between the two randomized groups for non-adjusted and 

adjusted values, boys and girls separately. In order to explore a possible relationship in the 

development of BMI from 2.5 to 13 years, non-adjusted and adjusted mean differences are also 

specified for the BMI-ratio between 2.5 years and 13 years.  

 
Table 14. Mean BMI and mean differences in BMI between the two randomized groups among 

boys and girls from 2.5 to 13 years 

 High fish Olive Oil Fish Oil Non-adjusted mean 
difference  
(p=value) 

Adjusted mean 
difference 
(p=value)  

BMI2.5      
Girls + boys 16.1±1.06 15.8±0.77(13) 16.7±1.1(18) -0.83±0.35 (0.02) 0.89±0.37 (0.024) 
Boys 16.3±1.08 (8) 15.8±0.91(5) 16.8±1.2(11) -1.0±0.60 (0.12) 1.27±0.60 (0.054) 
Girls 15.8±1.05 (5) 15.9±0.74(8) 16.5±0.34 (7) -0.63±0.43 (0.16) 0.64±0.45 (0.18) 
BMI7      
Girls +boys 15.6±1.57 15.97±1.43(16) 16.0±0.28(18) -0.23±0.50 (0.62) 0.46±0.47 (0.33) 
Boys 15.5±1.25(12) 14.84±0.94(5) 16.0±0.98(12) -1.15±0.52 (0.04) 1.24±0.50 (0.03) 
Girls 15.8±2.0(8) 16.22±0.44(11) 16.1±1.63 (6) 0.16±0.77 (0.83) -0.2±0.79 (0.8) 
BMI13      
Girls + boys 18.2±2 18.7±2 (19) 18.8±2.2 -0.11±0.67(0.87) 0.27±0.67(0.69) 
Boys 17.9±2.06(12) 18.0±0.53(7) 19.0±1.8(12) -1.06±0.79 (0.20) 1.05±0.74 (0.17) 
Girls 18.7±1.93(9) 19.1±2.2(12) 18.5±0.54(8) 0.62±1.12 (0.58) -0.4±1.11 (0.69) 
2.5/13-
BMIratio 

     

Girls + boys 0.86±0.09 0.85±0.09 (13) 0.89±0.11(18) -0.04±0.04 (0.25) 0.03±0.04 (0.38) 
Boys 0.89±0.08(8)  0.87±0.1 (5) 0.88±0.09 

(11) 
-0.003±0.5 (0.9) 0.002±0.05 (0.97) 

Girls 0.80±0.08(5) 0.83±0.07 (8) 0.9±0.14(7) -0.07±0.06 (0.21) 0.07±0.06 (0.26) 
Values in group columns are given as ±SD, non-adjusted and adjusted mean differences ±SE (fish oil group-
olive oil group). The p-value non-adjusted mean difference describe the difference level between the two 
randomized groups, tested by a t-test. The p-value for the adjusted mean differences describes the 
significance level between the two randomized groups, tested by ANCOVA, adjusted for sex and ponderal 
index at birth 
 
2.5 and 7-year non-adjusted and adjusted results 

A significant non-adjusted mean difference in BMI between the randomized groups was observed at 

2.5 years (p=0.002), with the FO-group having a higher BMI compared to the OO-group. When 

adjusting for ponderal index and sex this significant difference was still evident (p=0.024). No 

significant non-adjusted mean difference appeared between the two groups when analyzing the 

sexes separately. However, a tendency towards a higher BMI in boys from the FO-group compared 
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to boys from the OO-group was found in the adjusted mean difference (p=0.054). No significant 

mean adjusted difference was evident in girls between the randomized groups (p=0.18) 

 

No significant non-adjusted or adjusted difference was observed between the two randomized 

groups in 7-year old children. When analyzing the sexes separately, however, a significant non-

adjusted (p=0.04) and adjusted (p=0-03) mean difference was observed between the boys from the 

randmoized groups, with the boys from the FO-group having a significantly higher BMI compared 

to the OO-group. No significant difference was observed between the girls.  

 

13-year non-adjusted and adjusted mean results 

When analyzing the mean differences in BMI in the 13-year old children no significant differences 

were observed between the two randomized groups, also no significant mean differences were 

observed when analyzing the sexes separately..  

 

Tracking BMI 2.5 13  

No correlation was found between BMI at 2.5 year and BMI at 13 year in the children from the two 

randomized groups (p=0.46, r=0.14). No significance was also observed within the sexes 

separately; girls (p=0.81, r=0.07) and boys (p=0.34,r=0.23). 

 

Furthermore, in order to further investigate the relationship between BMI from 2.5 years to 13 years 

the ratio comparing the BMI at 2.5 years and 13 years (2.5/13-BMI ratio) was analyzed between the 

randomized groups. However, no significant difference in 2.5/13-BMI ratio was observed between 

the randomized groups, neither when analyzing sexes separately (see table 14 and figure 7) 
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Figure 7. The association between the 2.5/13-BMI ratio between the two randomized groups, sexes 
separately.  Values are given as ±SEM values 
 
 
 
Dose-response Analysis 
No significant associations were observed between maternal RBC-DHA at 4 months or maternal 

milk RBC-DHA at 4 months and BMI or W/H-ratio in the 13-year old children in the randomized 

groups. However, a weak tendency towards a positive association between DHA in breast milk and 

2.5/13BMI-ratio was observed (p=0.098) in children from the randomized groups. Interestingly, 

when analyzing the sexes separately, it appeared that there was a significant association between 

DHA in breast milk and 2.5/13-BMI ratio in girls (p=0.038), indicating that increased maternal milk 

DHA was associated with a higher 2.5/13-BMI ratio only was associated with the girls, not the boys 

(p=0.64).  Furthermore, no significant association was found between 2.5/13-BMI ratio and 

maternal RBC-DHA at 4 months. Figure 8Aand 8B portrays the regression analysis between 

adjusted 2.5/13-BMI ratio and DHA in breast milk in girls (figure 8A) and boys (figure 8B) from 

the randomized groups. 
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Figure 8A.  
Association between adjusted 
2.5/13-BMI ratio and DHA in 
maternal breast milk at 4 months 
in girls from the randomized 
groups  
(p=0.038) 
(n=15)    

.  
 

 
 
 
Dietary interactions 
 
As a small tendency towards a higher P/C-ratio was observed in the OO-group compared to the FO-

group (p=0.098), I investigated the potential effect of P/C-ratio on BMI in the 13-year old children. 

However, the P/C-ratio neither had an effect on BMI in general nor when analyzed for each sex 

separately in the randomized groups (figure 9-10). 

Figure 8B.  
Association between 
adjusted 2.5/13-BMI ratio 
and DHA in maternal 
breast milk at 4 months in 
boys from the randomized 
groups  
(p=0.64) 
(n=15)   	
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Systolic and diastolic blood pressure measurements were assed in all 60 children. The results are 

shown in table 15  

 

Table 15. Blood pressure in 13-year old children.  

 HF 
(n=21) 

OO 
(n=19) 

FO 
(n=20) 

Non-adjusted  
mean difference  
 

Adjusted  
mean difference 
 

   
SDP 106.4±7.1 107.2±6.2 106.6±7.9 0.61±2.28(0.79) -1.67±2.25(0.46) 
DBP      
Girls +boys 64.7±5.7 64.34±5.3 63.8±4.0 0.52±1.50 (0.73) Group*sex (0.038)a 

Boysc 64.4±6.67 61.57±4.14 64.54±3.94 -2.97±1.91(0.14) 2.8 ± 1.75 (0.12)b 

Girlsd 65.1±4.37 65.96±5.35 62.75±4 3.21±2.22 (0.17) -3.26±2.31* 
(0.18)  

MAP      
Girls+Boys 78.6±5.5 78.6±4.5 78.1±4.4 0.55±1.42(0.7) Group*sex (0.019)b 

 
Boys c 78.82±6.32 76.62±4.76 79.35±3.2 -2.73±1.81 (0.15) 2.64±1.71(0.14) 
Girlsd 78.26±4.42 79.78±4.06 76.15±5.39 3.63±2.11 (0.10) -3.95± 2.11 (0.079) 
Values in group columns are given as ±SD, non-adjusted and adjusted mean differences ±SE (fish oil group-
olive oil group). The p-value non-adjusted mean difference describe the difference level between the two 
randomized groups, tested by a t-test. The p-value for the adjusted mean differences describe the significance 
level between the two randomized groups, tested by ANCOVA, adjusted for sex and waist:heigth-ratio.      
aSignificant intaeraction between group and sex in DBP (p=0.038) 
bSignificant interaction between group and sex in MAP (0.019) 
c n=20 (number of boys from the randomized groups), d n=19 (number of girls from the randomized groups) 
 

Non-adjusted mean results 

Though insignificant, it appeared that the boys from the FO-group had higher non-adjusted mean 

values in MAP (2.73±1.81 mmHg, p=0.15) mmHg and DBP (2.97±1.81 mmHg, p=0.14) than the boys 

from the OO-group. While still insignificant, it was interesting that the opposite observation was 

made from the girl’s perspective, where OO-girls had higher MAP (3.63±2.11, p=0.10) and DBP 

(3.21±2.22, p=0.17) than the girls from the FO-group.  

 

Adjusted mean results 

The final model for blood pressure included adjustment for W/H-ratio, and because of a 

insignificant group-sex interaction in SBP, analysis of this parameter also included the adjustment 

for sex.  

Contrary to this we found a significant group*sex interaction in both DBP (p=0.038) and MAP 

(p=0.019), which is highly interesting and indicates that the effect of the intervention differs 

significantly between the sexes.  
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Furthermore, when analyzing the sexes separately I only observed a tendency towards a direct 

effect of the intervention on the MAP of the girls, where the FO group had a tendency towards a 

lower MAP compared to the OO group (p=0.079) (figure 11). This could be due to the small 

individual sample sizes for boys (n=19) and girls (n=20). No significant difference was observed in 

MAP in boys between the two randomized groups (p=0.14) 

 

 
Figure 11. Difference in MAP between girls from the randomized groups and between boys from the 
randomized groups. Values are given as ±SEM. The black diamond indicates a tendency towards a lower 
blood pressure in girls from the FO-group compared to the OO-group (p=0.079).   
 

Dose-response analysis  
 
No significant correlations were found between the adjusted SBP and any of the dose-response 

parameters. Due to a group-sex interaction in DBP and MAP pressure sexes were analyzed 

separately.  

-­‐ Diastolic blood pressures 

For DBP in boys a strong tendency towards a positive association with maternal RBC-DHA at 4 

months was found (p=0.05, n=19) No significant association was found when adjusting fro DHA in 

maternal breast milk at 4 months 

 

-­‐ Mean arterial blood pressure 

74
76

78
80

82

GirlGirl Boy Girl Boy
Olive Oil                                          Fish Oil

MAP Mean (±SEM) values

M
ea

n 
ar

te
ria

l b
lo

od
 p

re
ss

ur
e 

(m
m

Hg
)



	
   63	
  

A significant positive association was found between maternal RBC-DHA at 4 moths and mean 

arterial blood pressure in boys (p=0.028) (figure 12). Furthermore, a significant association was 

also found between DHA in maternal breast milk at 4 months and mean arterial blood pressure in 

boys (p=0.043).  

 

Including the HF-group 

In order to expand the number of subjects in the dose-response analyses, the children from the HF-

reference group was included in the dose response analysis of the 13-year old children from the 

randomized groups. No significant difference was found between the adjusted model for blood 

pressure (MAP, SDP, DBP) and adiposity parameters and maternal RBC-DHA and milk DHA and 

infant RBC.  
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Figure 12; 
Association between 
adjusted mean arterial 
blood pressure and 
maternal RBC-DHA 
at 4 months in boys 
from the randomized 
groups (p=0.028, 
n=19)  



	
   64	
  

Discussion  

This study was the third follow-up study in a series of three studies. The two other follow-up 

studies were performed at 2.5 years and 7 years. A follow-up study at 13 years gives an excellent 

opportunity to detect long-term effects. To recapitulate on the results no effect of FO on blood 

pressure was found in the children at 2.5 year (Ulbak, Lauritzen et al. 2004), but a significantly 

higher blood pressure was found in the boys from the FO-group at 7 years (Asserhoj, Nehammer et 

al. 2009). Regarding body composition measurements, a significant difference in BMI was found in 

the children from the FO-group at 2.5 year (Lauritzen, Hoppe et al. 2005), but this difference was 

no longer detectable at 7 years (Asserhoj, Nehammer et al. 2009). In this follow up study at 13 

years we found no significant difference in BMI or W/H-ratio. However we did find a significantly 

higher non-adjusted head circumference in the FO-group compared to the OO-group. This 

observation is in accordance with the prior 2.5 and 7-year follow-up study. However, in the present 

study this effect disappeared when adjusting for head circumference at birth and sex. A very 

interesting finding in the present follow up study was a significant group*sex interaction in both 

DBP and MAP, indicating that the intervention has a different effect in boys and girls However, 

when analyzing the sexes separately these significant differences were no longer evident, only a 

tendency towards a lower MAP in girls from the FO-group was still present (p=0.079).  

 

 Puberty 

Due to lack of statistical power in the pubertal score, puberty was ruled put from several regression 

models as covariate. However, as the children at 13 years of age are about to enter or have entered 

puberty, the effect of this developmental stage will be taken into consideration in the discussion. 

The 13-year old boys were found to be between Tanner stages 2.7-3.2 and the 13-year old girls 

were found to be between Tanner stages 3.3-.3.4 (not shown). According to the Tanner stages the 

increment of testosterone in boys is steepest between stage 2-3 (Knorr, Bidlingmaier et al. 1974) 

and estradiol concentrations are significantly increased in girls at Tanner stage 3-4 (Rapkin, Tsao et 

al. 2006). This influence of sex hormones is considered highly relevant when discussing outcomes 

in blood pressure and body composition.  

 

Body composition   



	
   65	
  

A significantly larger head circumference was found in the FO-group in previous follow-up studies 

at 2.5 and 7 years.(Lauritzen, Hoppe et al. 2005{Asserhoj et al., 2009).  This was also evident in the 

non-adjusted mean values in this present follow-up study at 13 years, though the effect disappeared 

when adjusting for head circumference at birth and sex. No other significant differences were 

observed in body composition parameters between the two randomized groups.  

 

The dose of n-3 LCPUFA in this study (1.5 g/d) is comparable to two recent randomized controlled 

follow-up studies administrating n-3 LCPUFA; 1) a 19 year-follow up study by Rytter, Bech et al.  

where pregnant women were administrated app. 2.7 g/d total n-3 LCPUFA (app.0.6 g DHA and 0.8 

g EPA) from the last trimester of pregnancy until delivery, and 2) in a 7-year follow up study where 

Helland, Smith et al.  supplemented from week 18 of pregnancy until 3 months after delivery with 

app. 1.98 g/d n-3 LCPUFA (app.1.2 g DHA and 0.8 g EPA). However, none of these studies found 

an effect on growth in the healthy term infants. Furthermore, in another recent follow up study 

Bergmann et al. administrated 0.2 g DHA and 0.6 g EPA to women from week 21 of pregnancy 

until 3 months after delivery and fund no effect on growth in the 6-year old offspring. Previously, 

Bergmann et al., found a lower BMI in the supplemented group compared to the control group at 21 

months of age, which is inconsistent with our finding in the previous follow-up study at 2.5 years, 

where children from the FO-group had a significantly higher BMI compared to the OO-group. 

However, the dose used by Bergmann et al., is notably lower than the dose used in this present 

study, which makes it difficult to compare the study by Bergmann et al., 1to this present study. In 

general, differences in duration of supplementation, the use of control oils and the source of n-3 

LCPUFA make the comparison with other follow-up studies complex.  

 

In this 13-year follow up study I did not find any significant difference in BMI or W/H-ratio 

between the two randomized groups. This finding is consistent with a 19-year follow up study by 

Rytter, Bech et al. did not find any effect of fish-oil supplementation during pregnancy on offspring 

BMI or W/H-ratio. Rytter, Bech et al.  supplemented with 2.7g/d n-3 LCPUFA, which makes it 

comparable to the dose used in the present study. Furthermore, to my knowledge, the 19-year 

follow up study by Rytter, Bech et al.  is the only randomized controlled follow-up study including 

children older than 7 years, which makes it more comparable to the present study age-wise. 

However, no previous follow-up studies on body composition have been conducted from this 

intervention, which makes it difficult to analyze the course of development of growth in these 19-

year old offspring. Furthermore, supplementation was only administered during pregnancy, which 

makes the comparison between Rytter, Bech et al., and this present study further difficult due to the 
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fact that the time window of supplementation could be of importance and have a potential 

programming effect on body composition. Due to different developmental stages during gestation 

and in peri/postnatal period, n-3 LCPUFA exposure in early life might have different long-term 

outcomes when exposed during gestation compared to peri/postnatal life. In addition, Helland, 

Smith et al., and Bergman et al., both supplemented during pregnancy and lactation, which makes 

the overall comparison between these studies difficult due to the time duration and period of 

supplementation, which is discussed in the following.  

 
Sex-specific differences in n-3 PUFA metabolism in relation to long-term effect on body 

composition 

In the previous follow-up study at 2.5 years it was observed that the children in the FO-group had a 

significantly higher BMI than the children in the OO-group. From follow-up data at age 7 years this 

significant difference was reported to no longer be evident (Asserhoj, Nehammer et al. 2009). 

However, the authors analyzing BMI in the 7-year follow-up study only investigated the difference 

between the randomized groups and performed no analyses of the sexes separately. In this present 

study, when analyzing the sexes separately a significant adjusted mean difference between BMI at 7 

years between boys from the two randomized groups was observed (p=0.003) (Table 14). Recently, 

focus have evolved around the possibility that there might exist a sex-dependent differential 

responses to exposure of n–3 PUFA during the perinatal period (Jen, Church et al. 2009), and the 

need of conducting subgroup analysis in sexes separately when analyzing possible long-term effects 

of n-3 LCPUFA supplementation have been suggested (Decsi and Kennedy 2011). This suggestion 

was mainly due to the fact that there might exist sex-specific differences in essential fatty acids 

metabolism and that females tend to have a higher conversion rate of α-linolenic acid to n-3 

LCPUFA compared to males (Decsi and Kennedy 2011) . This is further supported by the fact that 

female rats have showed to have a higher expression of Δ-6 and Δ-5 desaturase accompanied by 

higher proportions of AA and DHA in liver and plasma phospholipids compared to male rats 

(Childs et al., 2010). Furthermore, this sex-specific difference in fatty acid metabolism might cause 

potential different programming effects of n-3 LCPUFAs (Sardinha, Fernandes et al. 2013). 

Evidently, the fact that Bergmann et al and Helland, Smith et al. did not analyze the sexes 

separately further complicates comparison of results obtained from these studies with this present 

study. In the study from Rytter, Bech et al. stratification of for sex were performed before analyzing 

the results, and indicated that differential effects for males and females, but the differences, 

however were not significant.  
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Critical period of programming effects of n-3 LCPUFA on body composition  
An interesting, and important aspect of evaluating the long-term effect of n-3 LCPUFA on body 

composition is the time duration and period of which these PUFAs have been applied to the 

maternal diet. In this present follow-up study the women were administered n-3 LCPUFA during 

lactation. However, as outlined in table 6, different dietary approaches have been performed in 

recent studies investigating the long-term effect of n-3 LCPUFA; i.e during pregnancy (Rytter, 

Bech et al.), during pregnancy/lactation (Helland, Smith et al., Bergmann et al.), during lactation 

(Lauritzen 2004 et al.; Pedersen, Lauritzen et al. 2012) or early postnatal diet (Andersen, 

Michaelsen et al. 2011). However, none of these studies have found any long-term effect of early 

exposure of high levels of n-3 LCPUFA on body composition. 

Because different stages in fat cell development in humans could be affected according to when the 

dietary intervention is applied, it could be possible that the different choices of interventional 

dietary approaches could result in different long-term effects on child body composition outcomes.  

Evidence from animal studies would give the best indication of the most effective dietary approach 

to reduce fat mass development in later life, however the results have been inconsistent. It have 

been demonstrated that exposure to ALA during the prenatal period resulted in decreased body fat 

in rat offspring at 3 week (Korotkova, Gabrielsson et al. 2002) and another study (Muhlhausler, 

Miljkovic et al. 2011) showed that a diet rich in DHA during lactation actually increased body fat in 

6 weeks old offspring. Furthermore, those studies in animals that have demonstrated a fat-reducing 

effect from supplementation in the lactation/gestation period have further weaned the offspring on 

the same diet high in n-3 PUFA, which makes it difficult to determine if the fat-reducing effect 

arises from the perinatal period alone or the results simply is due to a fat-reducing effect on mature 

adipocytes. Thus the need for more animal studies investigating the effect n–3 long LCPUFA 

during the perinatal period alone, on body fat mass in the offspring to help clarify this have been 

emphasized (Muhlhausler, Miljkovic et al. 2011) 

 

Mechanisms;  

The fat-lowering effect of n-3 PUFA may be modulated by an extensive regulation of lipid 

metabolism through the action of transcription factors involving PPAR-y and SREBP-1 (Madsen, 

Petersen et al. 2005), that regulate adipogenic and lipogenic gene expression.  

It has been demonstrated that feeding mice with a diet rich in LA compared to a diet rich in ALA 

during gestation and suckling period, resulted in a greater fat mass development in mice offspring 

receiving high levels of LA compared to high levels of ALA, and that this increase in fat mass 

persisted even though mice were fed a standard diet after weaning (Ailhaud, Massiera et al. 2006). 
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Thus, Ailhaud, Massiera et al, emphasizes the importance of the dietary fatty acid composition 

during gestiaion/suckling period in terms of fat mass development in later life. On the molecular 

level, these findings might be explained by an increased dietary intake of n-3 PUFA inducing 

changes in the composition of polyunsaturated fatty acids incorporated in the cell membrane. This 

might in turn affect cell-signaling pathways, which can lead to altered transcription factor activity 

and thus changes in gene expression. Furthermore, prostacyclins, a metabolic product of 

arachidonic acid from the n-6 PUFA-family, have been shown be adipogenic and influence the 

differentiation of pre-adipocytes into mature adipose cells by activation of PPAR-y. Thus, when 

increasing the dietary level of n-3 PUFA relative to n-6 PUFA, the synthesis of prostacyclin might 

be down regulated and adipocyte proliferation inhibited (fig 5). However, in this present study the 

children from the FO-group showed a significantly higher n-3 LCPUFA status in infant RBCs at 4 

months compared to the OO-children, which reflected the impact of the intervention. Therefore, one 

would expect that this higher level of n-3 LCPUFA preferentially could suppress the differentiation 

of adipocytes by down regulating AA-mediated effects on adipocyte development. However, this 

was not the case in our study, and the children from the FO-group at 2.5 year even showed an 

increased fat mass compared to the OO-group. Interestingly, Muhlhausler, Miljkovic et al. found 

that that supplementation during pregnancy and lactation was not associated with a decrease in fat 

mass at weaning, but an increase in subcutaneous fat mass in rat offspring at 6 weeks of age. 

Surprisingly, no change in the expression of adipogenic or lipogenic genes was demonstrated. DHA 

have showed to suppress SREBP-1 in fat-induced adult rats (Ailhaud 1992), however this was 

obvious not the case in the study by Muhlhaulser.  

 

However, Muhlhausler also found that n-3 LCPUFA supplementation did not affect the n-6 PUFA 

concentration. Interestingly, a number of studies have speculated that reducing n-6 PUFA intake 

during gestation/lactation might be a more effective approach in reducing fat mass in offspring than 

supplementation with n-3 PUFA (Moon, Harvey et al. 2013). Much, Brunner et al. also shares these 

speculations, and evidence from this study in pregnant women receiving a dietary intervention in 

order to reduce the n-6:n-3-ratio showed that n-3 LCPUFA might promote prenatal growth rather 

than serve as postnatal growth factors. Thus the increase in fat mass in offspring demonstrated 

Muhlhausler, Miljkovic et al. could be explained by the impact of n-6 PUFA level. The lactating 

women from this present follow-up study did not receive any dietary counseling to reduce the n-

6:n-3 ratio, therefore it can not be ruled out that potential high levels of n-6 PUFA could have 

affected the outcome on body composition in this present study.  
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Dose-response analysis 

If the dietary intervention of exposure of n-3 LCPUFA in early might have a potential programming 

effect on body composition, it would be expected that this would be explained by a dose-response 

effect. Much, Brunner et al. found a significant positive association between maternal RBC-DHA, 

EPA, AA in the last trimester of pregnancy on length, weight and lean body mass at birth. However, 

these findings were no longer evident at later stages of development up to first year of life. Much, 

Brunner et al., proposes that n-3 LCPUFAs may serve as prenatal growth factors rather than have a 

long-term effect on postnatal growth suggesting that the effect of DHA may be time dependent on 

the growth development in the child. This is supported by findings by Bergman et al.; the 

differences observed at 21 months also were no longer evident at 6 years. Bergmann et al also 

suggests that n-3 LCPUFA supplementation during the prenatal period may be of great importance 

regarding the programming effect of DHA on growth and the authors speculate that the long-term 

effect of DHA on growth in children may only be temporary, and that the child eventually will 

return to its intended size after the interventional effect of the supplement has subsided. In this 

study we observed a significant difference in body composition at 2.5 years in the FO-group 

compared to the OO-group, and that this also was significantly correlated with maternal RBC-DHA 

at 4 months (Lauritzen, Hoppe et al. 2005). Furthermore, outcome on body composition at 7 years 

(Asserhoj, Nehammer et al. 2009) or in this present study at 13 years was not explained by any 

effect of dose-response parameters. Thus, it could be a possibility that n-3 LCPUFA 

supplementation during lactation might only have a temporary effect. So, although Much, Brunner 

et al and Bergmann et al suggests that a potential temporary effect might arise from n-3 LCPUFA in 

the prenatal period, our findings from this study could also indicate n-3 LCPUFA supplementation 

during lactation also only persist temporarily.  

Interestingly, I did find a significant effect of DHA in maternal breast milk on the 2.5/13-BMI ratio 

in girls (p=0.038). This may be an interesting finding, and will be discussed in the following.  

 

Hypothesis; BMI ratio 2.5y/13y 

In the preceding text I have speculated whether the lack of effect from the intervention on body 

composition in the 13-year old children may be due to a temporal effect of n-3 LCPUFA early in 

life or the supplementation solely during lactation might be a possible reason. However, a 

significant effect of DHA in maternal breast milk was found on the 2.5/13-BMI ratio, and consistent 

with other studies (Bergmann et al, 2012; Pedersen, Lauritzen 2012) that have found an association 

between DHA in maternal breast milk, this may reflect a programming long-term effect might be 

present. 
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Due to the fact that the differentiation and proliferation of adipocyte precursor cells might peak 

during the first year of the postnatal period {Ailhaud, Massiera et al, 2006), increased intake of n-3 

LCPUFA may have the ability to alter adipocyte differentiation and perhaps slow the rate of fat 

mass development. Therefore, it could be speculated that those children administrated n3 LCPUFA 

during lactation might have a slower fat mass development and thereby display a later adiposity 

rebound compared to the OO-children. As seen in figure 1, the BMI curve during infancy and 

childhood increases in the first year of life and subsequently decrease until AR has been reached 

and further increase during pubertal development into adulthood. The greater fat mass in the 

children from the FO-group at age 2.5 might have evolved at a later stage compared to the children 

from the OO-group, thus the BMI-curve illustrating the growth development of the children from 

the FO-group might be shifted to the right compared to the OO-children, which would cause AR at 

a later age and a lower BMI at age 13 compared to the OO-children (figure 13). Thereby, would the 

children from the FO-group expected to have a higher 2.5/13-BMI-ratio than the children from the 

OO-group, reflecting a higher BMI at 2.5 years versus a lower BMI at age 13 years in children from 

the FO-group.  

 
Figure 13. Hypothesis; the BMI-curve reflecting the children from the FO-group is shifted towards the right 
compared to the OO-children, meaning that the FO-children display a higher BMI at 2.5 years 
corresponding to a later occurrence of adiposity rebound and perhaps a leaner BMI at 13 years.  
Red curve, children from the OO-group; Blue curve, children from the FO-group. Figure; Own construction. 
 

No significant difference in the 2.5/13-BMI ratio between the two randomized groups were found. 

However, a significant positive association was found between DHA in breast milk and BMI-ratio 
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in girls (p=0.038), though this was not found in boys (p=0.64). Thus, an indication of a long-term 

effect of the intervention might be present, reflecting the effect of DHA in maternal breast milk on 

BMI development from 2.5 to 13 years specific to the girls. Interestingly, recent research have made 

the same suggestions of a later AR due to a long-term effect of DHA in breast milk; Pedersen, 

Lauritzen et al. 2012  found a positive significant association between the level of DHA in maternal 

breast milk and the age at adiposity rebound in girls, not the boys. The sex-specific difference 

between boys and girls in the study by is in agreement with the observation in this present study and 

further emphasizes the possibility that there might exists a sex-specific long-term effect of the 

intervention in girls. Furthermore, another recent study found a slower rate of fat mass development 

in children whose mothers had been administrated n-3 LCPUFA from mid pregnancy to the first 

three months of lactation, and likewise suggested that the observation might be an occurrence of 

delayed adiposity rebound (Bergmann, 2012 et al.) 

Unfortunately, age at adiposity rebound has not been established in this follow-up study, making it 

difficult to estimate if the BMI indeed increased at a slower rate in the FO-group compared to the 

OO-group. Furthermore, BMI at age 13 would likewise be expected to be lower in the FO-group 

compared to the OO-group, but no significant difference appeared in BMI at 13 years between the 

two randomized groups, or between the sexes individually. Moreover, it should be noted that 

maternal RBC-DHA at 4 months did not appear to be associated with the 2.5/13-BMI ratio. It would 

have been expected that this dose-response parameter also would be associated with the BMI-ratio 

given that this is a more stabile parameter compared to DHA in maternal breast milk, thus it could 

not be ruled out that the observation might have been a chance finding.  

 

Dietary interactions 

It have been suggested that the adipogenic effect of n-6 PUFAs are dependent on the macronutrient 

composition of the diet and the ratio between carbohydrate and protein might determine the 

adipogenic potential of n-6 PUFAs through the presence of insulin secretion and cAMP-signaling 

(Madsen, Pedersen, et al. 2008). Furthermore, it has been suggested that high levels of n-3 PUFAs 

protects against high fat diet-induced obesity and inflammation in adipose tissue. However, as it has 

been determined that the amount of protein and carbohydrate in the background diet determine the 

adipogenic potential of n-6 PUFA, it has also ben demonstrated in mice that high glycemic index 

carbohydrates abrogates the anti-obesity effect of n-3 PUFAs (Hao, Lillefosse et al. 2012). Thus, 

the background diet has an influence on both the adipogenic potential of n-6 PUFAs and the anti-
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obesity effect of n-3 PUFAs (Madsen, Pedersen et al. 2008). As a small tendency towards a higher 

P/C-ratio was observed in the OO-group compared to the FO-group (p=0.098), and as the amount of 

protein relative to (high glycemic) carbohydrates seems to determine the adipogeneic action of both 

n-3 and n-6 PUFAs it was interesting to investigate the potential effect of P/C-ratio on BMI in the 

13-year old children from the two randomized groups. However, the P/C-ratio showed no effect on 

BMI in general or when analyzed for each sex separately either, in the randomized groups.  

 

Appetite; 

It should be noted that dietary intake also could be influenced by a long-term programming effect of 

n-3 LCPUFA (Mathai, Soueid et al. 2004). From studies in rodents it has been demonstrated that a 

diet deficient in n-3 LCPUFAs induced alterations in gene expression during perinatal development 

that increases neural appetite signaling (Mathai, Soueid et al. 2004). Furthermore, diets high in n-3 

LCPUFA results in suppressed appetite in rats (Dziedzic, Szemraj et al. 2007), and mouse switched 

from a high-saturated fat diet to a diet with high levels on n-3 PUFA have shown to have reduced 

food intake (Wang, Storlien et al. 2002). Thus, these findings suggest that a diet rich in n-3 PUFA 

might have a role in regulation of appetite (Wang, Storlien et al. 2002). Furthermore, if these 

findings were to be coupled with the intervention of the present study it would be expected to see a 

lower energy intake in the FO-group compared to the OO-group, which is consistent with the fact 

that the OO-group indeed had a significantly higher energy intake compared to the FO-group 

(p=0.002). From the 7-year follow-up a significant higher energy intake was observed in the boys 

from the FO-group compared to the OO-group, and was mainly due to a higher consumption of fat 

and lower intake of carbohydrate. However, in this present study the overall macronutrient E% 

intake between the two randomized groups appeared to be very similar. Only a tendency towards a 

higher P/C-ratio was observed in the OO-group, indicating that the OO-group consumed more 

protein and less carbohydrate than the FO-group (p=0.098).  

 

Blood pressure 

An interaction between group and sex in DBP (p=0.038) and MAP (p=0.019) was found indication 

that the effect of the intervention differs between boys and girls. However, no significant difference 

between groups were found when analyzing sexes separately, which most likely is due to the small 

individual sample size of boys and girls. Still a tendency towards a lower blood pressure in girls 



	
   73	
  

from the FO-group compared to the OO-group was observed (p=0.079).  

 

In the last 7-year follow-up study the boys in the FO-group had significantly higher blood pressure 

than the boys of the OO-group. Furthermore, six boys from the FO-group appeared to have blood 

pressure above the 90th percentile from the 7-year follow-up study. Based on the knowledge that 

blood pressure tracks from childhood into adulthood, it was suggested that the boys from the FO-

group were in greater risk of developing hypertension in later life (Asserhoj, Nehammer et al. 

2009). However, no significant difference in blood pressure was found between the boys in our 

follow-up study at 13 years, and according to the oscillometric blood pressure standards in children 

(Table 4), no boys from the present study showed blood pressure over the 90th percentile.  

 

In an observational cohort study children receiving breast-milk with high content of n-3 PUFA 

(above the median) was compared to formula fed babies, with no added supplement of n-3 

LCPUFA, and were followed up at 12 years to investigate for any long-term effect in blood 

pressure (van Rossem, Wijga et al. 2012). Van Rossem, Wijga et al. found that breast-fed children 

had a significant lower systolic blood pressure than formula-fed children at the age of 12 years. 

Furthermore, in a randomized controlled trial with infants receiving formula with a high n-3 

LCPUFA and n-6 PUFA or formula without n-3 supplementation found significant lower systolic 

and diastolic blood pressure at the age of 6 years in children supplemented with n-3 LCPUFA by 

(Forsyth, Willatts et al. 2003). No significant reduction in blood pressure was found in children 

from the FO-group in this present 13-year follow up study or previous studies at 2.5 and 7 year, 

which clearly contradicts the results obtained in the studies by Forsyth, Williams et al and van 

Rossem, Wijga et al.  

However, several aspects should be taken into account; first of all, no individual doses of EPA and 

DHA was estimated in Van Rossem, Wijga et al, and second of all the doses used in the study by 

Forsyth, Williams et al. were considerably small compared to the one used in this present study 

(app. 0.6g/d vs. 1.5g/d n-3 LCPUFA, respectively). Such dosage-dependent differences make the 

comparison between these studies and the present study difficult, due to fact that the blood pressure 

lowering effect may be dependent of the dose of EPA and DHA and amount applied (Bonaa, Bjerve 

et al. 1990), (Appel, Miller et al. 1993). Furthermore, a noteworthy aspect to keep in mind is that 

the control groups used by Van Rossem, Wijga et al and Forsyth, Williams et al did not receive any 

n-3 LCPUFA in the formula during lactation that could result in a great incidence for n-3 PUFA 

deficiency in these infants. From studies in rats a deficiency in n-3 LCPUFA during the pre-and 

postnatal period increases blood pressure later in life (Armitage, Pearce et al. 2003) thus the 
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differences in blood pressure reported by Van Rossem, Wijga et al. and Forsyth, Williams et al 

could be due to a higher blood pressure in the control group due to a deficiency in n-3 LCPUFA. 

This observation was further supported by the fact that  Van Rossem, Wijga et al found no 

association between RBC-n-3 LCPUFA status and blood pressure in the 12-year old children, 

indicating that the lower blood pressure in the group receiving high levels od n-3 LCPUFA during 

lactation probably wasn’t due to the intervention.  

 

In a recent follow up study, similar to this present study, blood pressure was assessed in 19-year old 

offspring from mothers who were randomized into groups receiving either fish oil (receiving 2.7 

LCPUFA; app.0.6 g/d DHA and 0.8 g/d EPA), olive oil or no oil (the two last being control groups) 

in the last trimester of pregnancy (Rytter, Christensen et al. 2012). In accordance with this present 

study, FO supplementation was not associated with significant effect on blood pressure between the 

randomized groups in 19-year old offspring. However, a major difference between this study and 

our study is that the supplementation was only applied during the pregnancy period. Administering 

n-3 LCPUFA at different stages in development, i.e. in prenatal or peri/postnatal may have different 

long-term effects on blood pressure, and for this reason it is difficult to compare this study to the 

present study.  Furthermore, another randomized study supplementing infant in the postnatal period 

from infants from the time of weaning until the age of 5, with the intention to increase the n-3/n-6 

PUFA-ratio, did not find any effect of the intervention on blood pressure at the age of 8 either 

(Ayer, Harmer et al. 2009). 

 

Sex-specific differences)  

 A very interesting finding in the present follow up study was a significant group*sex interaction in 

both DBP and MAP, indication that the intervention has a different effect in boys and girls. 

However, when analyzing the sexes separately only a tendency towards a lower MAP in girls from 

the FO-group was still present (p=0.079). In a 10-year follow up study of a preterm cohort, it was 

found that blood pressure in girls randomized to LCPUFA-supplemented formula had increased 

blood pressure at age 9-11 years, and no effects were observed in boys (Kennedy, Ross et al. 2010). 

However, this study included preterm children, and therefore may not be suitable for comparison 

with this present study. Nevertheless, these findings may suggest that blood pressure may be 

affected by differential programming effects of n-3 LCPUFA in boys and girls.   
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A sex-specific difference in blood pressure could due to the presence of hormones, and sex 

hormones have shown to modulate blood pressure. According to the Tanner stages (Knorr, 

Bidlingmaier et al. 1974) (Rapkin, Tsao et al. 2006) the influence of sex hormones might be highly 

relevant in these 13-year old children. Studies in rats have showed that estrogen, rather than the 

male hormone androgen, affects blood pressure probably due to promotion of vasodilation by 

estrogen (Orshal and Khalil 2004). Furthermore, estrogen may also have a regulatory effect that 

stimulate the conversion of essential fatty acids into their long-chain metabolites, which suggest 

that a higher conversion of α-linoelic acid to long chain PUFA in women that in men (Burdge and 

Wootton 2002). Furthermore, the fact that the girls from the FO-group display a lower blood 

pressure compared to the girls from the OO-group might be explained by that the conversion of α-

linoelic acid to long chain PUFA might be further enhanced in the girls from the FO-group due to a 

long-term effect from the intervention. In fact, the role of sex hormones in modulation of blood 

pressure directly or indirectly by a modification of the n-3 LCPUFA metabolism could easily 

explain the different outcome in blood pressure observed between the girls from the randomized 

groups (Decsi and Kennedy 2011). Interestingly, it has been demonstrated that blood pressure of 7-

year old children persisted until age of 15 in boys and until the age of 13 in girls, but that this 

association no longer was evident after puberty (Katz, Hediger et al. 1980). Katz, Hedinger 1980, et 

al suggested that if any possible tracking in blood pressure might persist from childhood into 

adulthood, it should be evaluated after puberty of sexually matured young adults due to the fact that 

puberty is a period with confounding effects of growth and maturation. If the presence of sex 

hormones could influence a potential long-term effect of the intervention on blood pressure, it only 

emphasizes the relevance of conducting another follow up study with these children after puberty. 

This would be necessary in order to make a firm conclusion regarding blood pressure development 

and if the outcome before and during puberty is still related to blood pressure of sexually mature 

adults.  

 

Diet and blood pressure; 

A number of studies have found that a high dietary intake of protein is associated with a lower 

blood pressure (Ulbak, Lauritzen et al. 2004). This is especially beneficial when increasing dietary 

protein intake relative to dietary intake of carbohydrate (Rebholz, Friedman et al. 2012). A 

tendency towards a higher P/C-ratio in the OO-group compared to the FO-group was observed 

(p=0.098), reflecting a higher protein intake versus carbohydrate intake in the OO-group compared 

to the FO-group. Recently a study in adolescents found that the quantity and quality of dietary 

carbohydrate also was associated with blood pressure (Gopinath, Flood et al. 2012). Furthermore, it 
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was suggested that dietary intake of foods with high glycemic index and a high glycemic load was 

associated with a higher blood pressure compared to those consuming a higher amount of dietary 

fiber. A high dietary intake of fiber was found to be associated with a lower blood pressure. This 

observation could help explain the observed lower blood pressure in boys from the OO group, 

which have a P/C ratio compared to the boys from the FO-group.  

 

It has been suggested that fish-intake in general, rather than just consumption of n-3 LCPUFA from 

fish oil, is beneficial in lowering the risk of cardiovascular disease due to other beneficial nutritional 

components in fish like vitamin D, Iodide, Selene and proteins in fish (Dahl, Bjorkkjaer et al. 2006). 

For this reason, it would be interesting to compare the two randomized groups, which had a low 

habitual fish consumption, with the HF-group that had a fish-intake over the normal habitual fish 

intake. Comparing the blood pressure of the HF-group to the two randomized group it is seen that it 

primarily is found to be an intermediate of the blood pressure of the two other groups with a slightly 

closer resemblance to the FO-group than the OO-group, and thus, support the fact that a 

programming effect of n-3 LCPUFA may be present. However, it should be emphasized that the 

HF-group is not part of the randomization and therefore could deviate from the two randomized 

groups.  

 

Critical period for programming effects of n-3 LCPUFA on blood pressure? 

When Armitage et al. and colleagues demonstrated that n-3 LCPUFA deficiency during the 

perinatal period resulted in increased blood pressure later in life, it emphasized that the timing of n-

3 LCPUFA exposure early in life might be of great importance for the programming effect on blood 

pressure. Studies discussed in this thesis of relevance to outcome in blood pressure have all 

administered n-3 PUFA during lactation (Forsyth, Williams et al, Van Rossem, Wigja, et al., 

Lauritzen 2004 et al.), only Rytter, Christensen et al administered n-3 LCPUFA during the third 

trimester of gestation and Ayer, Harmer et al. induced a dietary intervention during the 5 first years 

of postnatal life. Furthermore, only Forsyth, Williams et al. and Van Rossem, Wijga et al. have 

reported a beneficial effect of exposure to n-3 LCPUFA during lactation on blood pressure. Rytter, 

Christensen et al., Ayer, Harmer et al., and as well as this present study did not find any beneficial 

effect on blood pressure. Due to the fact that n-3 LCPUFA accumulates in the brain of the fetus 

during the third trimester of pregnancy and during the first year of life it would be expected that any 

potential programming effects of n-3 LCPUFA on blood pressure would be inducible in this period. 

However, Rytter, Christensen et al., as the only study that supplemented through pregnancy did not 

find any long-term effect on blood pressure. Ayer, Harmer et al. did not find any effect on blood 
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pressure in 8-year old offspring that had received dietary intervention with increased n-3 LCPUFA 

the first 5 years of postnatal life, and the authors questioned if the results reflected absence of any 

biological effect of the intervention. To my knowledge, Rytter, Christensen et al. is the only human 

study investigating n-3 LCPUFA supplementation during pregnancy on offspring blood pressure 

and no human studies have administered n-3 LCPUFA during gestation and lactation, which would 

give a broader perspective on the programming effect of n-3 LCPUFA exposure on blood pressure.  

 

Dose response 

It is noteworthy, that the two studies that did observe a reduction in blood pressure as a long-term 

effect of n-3 LCPUFA exposure during lactation were not explained by any effect of dose-

responses. Forsyth and colleagues did not report any association between the observed reduction in 

blood pressure and plasma fatty acid concentration, thus the observed effect cannot be explained by 

the dietary intervention of n-3 LCPUFA. Furthermore, Van Rossem, Wigja et al that found a 

decreased blood pressure in 12-year old children, but this was not explained by infant fatty acid 

status at 12 years.  

 

In this present study I found that adjusted DBP and MAP in boys were positively associated with 

maternal RBC-DHA (p=0.05) and (p=0.028), respectively. Furthermore, DHA in maternal breast 

milk were also associated with MAP in boys (p=0.043). Thus, these results indicate that the 

outcome of blood pressure in boys may be explained by the dose-responses. This is particular 

emphasized in MAP in boys since both DHA in maternal milk and RBC was positively associated 

with this measurement. However, no significant difference was found in blood pressure between the 

boys in the randomized groups that could be related to the effect of the dose-response analysis. 

However, it is indeed noteworthy that the intervention had different effect in boys and girls in MAP 

and DBP, and the fact that the dose-responses only showed a significant effect in boys only further 

emphasizes that possible sex-specific long-term effect of the intervention is present in blood 

pressure.  Furthermore, no significant association were found between DBP or MAP and any of the 

dose-response parameters in girls, indicating that the observed tendency towards a lower blood 

pressure in girls from the FO-group (p=0.079) were not be explained by maternal RBC-DHA or 

DHA in maternal breast milk. 

 

Mechanism 

A way by which n-3 LCPUFA may affect blood pressure may be from their position in cell 

membranes wherefrom their synthesis of eicosanoids may act as vasodilators (Nestel, Shige et al. 
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2002) or as components in endothelium by increasing endothelial membrane fluidity. However, this 

finding does not explain the long-term programming effect of n-3 LCPUFA, in that a rapid turnover 

of fatty acids in cells membranes occur as well as the eicosanoid synthesis, which hardly would 

induce any long term effect. Instead it should be noted that exposure of n-3 PUFA in early life 

could induce potential programming effects on blood pressure which most likely involve 

modulation of gene expression. It have been demonstrated that insufficient intake of n-3 LCPUFA 

during perinatal life resulted in exaggerated sodium appetite in rats and it was suggested that this 

finding was due to enhanced activation of the renin–angiotensin system, which also controls blood 

pressure (Weisinger, Armitage et al 2010). Thus perinatal insufficient exposure of n-3 LCPUFA 

may alter the activity of the renin–angiotensin–aldosterone system that may be involved in the long-

term regulation of blood pressure (and sodium appetite) (Weisinger, Armitage et al. 2001), (Begg, 

Sinclair et al. 2010).  However, this present study I was not able to collect data on specific nutrients 

consumed by the children, and no data on sodium intake could be analyzed.  

 

Possible confounding variables in blood pressure and body composition  

When examining blood pressure in the children, place of examination, puberty, P/C-ratio, and W/H-

ratio were included as possible covariates in the statistical model. Measurements of blood pressure 

tends to be lower at home measurements compared to institutional due to the fact that the child 

might feel more at ease in familiar environment, which also have been described elsewhere 

(Howell, Rice et al. 2007). However, when including place of examination in the statistical model, 

it did not affect the results, probably due to unequal distribution of home examinations (n=9) versus 

examinations at Department at Human Nutrition (n=51).  

 

Data from the physical activity level (PAL) was not available in the present study, and there might 

be the possibility that PAL could have influenced blood pressure in that it contributes to a healthier 

lifestyle. However, the lack of PAL data did not make it possible to analyze if PAL would have 

been an explaining factor in blood pressure.  

The OO-group had a significantly higher energy intake compared to the FO-group, however no 

association was found between diet and blood pressure in the two randomized groups, and when 

including EI and P/C-ratio in the statistical models it did not affect the results. In fact, when 

including EI in the statistical model the explanatory factor (R2) remarkably decreased for primarily 
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every parameter for body composition and blood pressure. In general, it is complicated to adjust for 

unhealthy lifestyle patterns that involve factors such as PAL and E%.  

 
 

 

 

Strengths and limitations  

The present randomized controlled trial is a 13-year follow-up study wherein I conducted statistical 

analyzes in parameters for body composition and blood pressure in order to detect for any long-term 

effects of n-3 LCPUFA induced in the first four months of lactation.  Follow-up data were collected 

from a total of sixty children, from which the group allocation were HF=21, OO = 19, FO =20, 

which resulted in a follow-up rate of 32,8 % (HF), 31,7 % (OO) and 32.3 % (FO) respectively, 

which represents a relatively high drop out rate which makes it difficult to draw any decisive 

conclusions on results from body composition and blood pressure. In addition, which must be 

emphasized in this present study, the small sample size further made it difficult to perform 

substantial statistical analysis, and a risk of making type II errors was considerable high and the 

obtained results therefore might be inaccurate. 

 
Sample size 
Limitation of the present study was the small sample size. The number of children in the two 

randomized groups was 39 in total, which makes the sample size for the experimental groups 

relatively small and without enough power to obtain any statistical accurate results. As it is 

emphasized in this thesis, it was of interest to detect for any sex-related differences in outcomes on 

blood pressure and body composition, as discussed previously. However, it should be emphasized 

that doing stratification for sex among the children in the randomized groups may have resulted in 

very small sample sizes, which would cause a loss of statistical power.  

 

Study design 

A strength quality in the present study is the fact that only one person carried out all the 

examinations on every child. The decision to include two children examined by a nutrition student 

was made to increase the sample size. Furthermore, the main researcher performed fifty-eight 

examinations and was also attended the two examinations that was carried out by the nutrition 

student, thereby ensuring that the examinations were performed equally.  
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It would have been of great interest to have the present RBC-DHA status of the children, to see if 

the fatty acid status in plasma reflected the intervention. Blood pressure in adolescents have been 

linked to n-3 LCPUFA in plasma (O'Sullivan, Bremner et al. 2012), and it would have been very 

interesting to see if any outcome in blood pressure from this study was reflected in the RBC-DHA 

status of the child. However, due to ethical approval and a time limit, it was not possible to collect 

any blood samples from the children.  

 

The dietary data in this thesis was collected from an electronic FFQ, which the child filled out on a 

computer in its own home. The child was allowed to get help from a parent if any of the questions 

were difficult to answer. In the FFQ the child were asked to fill out what he or she’s eating habit 

had been in the previous 12 months, thus it could have been expected that the child might lose focus 

when filling out the FFQ. However, at age 13 the child might have several meals outside the home, 

making it difficult for the parent to know the exactly foods consumed by the child, which is one of 

the reasons a self reported FFQ by the child was used in this study. Furthermore, in terms of dietary 

interactions, it would also have been favorable to have access to the fatty composition of the dietary 

intake of the children as well as the type of carbohydrate due to the dietary interactions, which 

might influence both body composition parameters (Madsen, Pedersen et al. 2008) and blood 

pressure (Gopinath, Flood et al. 2012). However, it was decided that specific distribution of 

macronutrients obtained from the FFQ might be too inaccurate to include in the dietary analysis.  

 

Control group 

It is uncertain whether the use of olive oil is a neutral choice of control group. Due to relatively low 

content of the n-6 PUFA linoelic acid (LA) in olive oil (>10%), it is not certain that a potential 

effect of n-6 PUFA in the control group would influence any long-term outcomes in body 

composition. However, in terms of blood pressure it have been documented that a diet rich in 

monounsaturated fatty acids resulted in a lower blood pressure compared to a diet rich in PUFA 

((Ferrara, Raimondi et al. 2000). Still, a potential effect of olive oil as control group might be 

present, but if this might induce any potential long-term effect on body composition or blood 

pressure have to my knowledge not been reported.  

 

Health implications   
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A number key finding should be emphasized from this present 13-year follow-up study. First of all 

a significant group*sex interactions in DBP and MAP was found indicating that the effect of the 

intervention differs between boys and girls. Other indicia of a long-term programming effect on 

both body composition and blood pressure were found that deserve to be taken into account: 1) 

DBP and MAP in boys was explained by a significant association with maternal RBC-DHA and 

MAP was also explained by a significant association with DHA in maternal breast milk, and 2) a 

significant association between 2.5/13-BMI ratio and DHA in maternal breast milk was found in 

girls from the two randomized groups. These results found in the dose-response analysis, further 

indicate that a sex-specific effect might be present. So far only few studies have reported a sex-

specific difference in outcome in studies supplementing with n-3 LCPUFA in early life (Decsi and 

Kennedy 2011), however this present 13-year follow up study adds to the evidence that LC-PUFA 

supplementation in early life may exert different programming effects between sexes.  

 

Supplementation with n-3 LCPUFA has become popular worldwide as a nutritional supplement 

with various intended health benefits. However, the possibility for nutritional toxicity is possible, 

and from studies in rodents it has actually been demonstrated that nutritional toxicity from 

overconsumption of n-3 LCPUFA had more adverse long-term health effects than n-3 LPUFA 

deficiency during pregnancy and lactation (Jen, Church et al. 2009). In the 7-year follow up study it 

was speculated that the significant higher blood pressure in boys from the FO-group might have 

adverse long-term effects, however the data from this 13-year follow up study showed that the 

significant difference no longer was evident. However, as already stated these results must be 

interpreted with caution due to the small sample size. 

 

It has been reported that high dietary levels of n-6 PUFAs promote obesity in animals (Massiera, 

Saint-Marc et al. 2003) and that an increase in LA in breast milk have been observed to reflect the 

higher consumption of n-6 PUFAs in the Western diet. Together, it has been speculated that this 

might be a factor for childhood obesity (Ailhaud, Massiera et al. 2006). It has also been 

hypothesized that lowering the n-6:n-3-ratio during pregnancy and /or lactation might be beneficial 

for the prevention of childhood obesity (Ailhaud, Massiera et al. 2006) and a number of recent 

studies have raised the possibility that reducing the intake of n-6 PUFA intake during pregnancy 

and lactation might be more effective in reducing fat mass in the offspring than supplementing with 

n-3 LCPUFA (Moon, Harvey et al. 2013) (Hauner, Much et al. 2012). It has been demonstrated that 

maternal n-6 PUFA plasma concentration is positively associated with offspring fat mass (Moon, 

Harvey et al. 2013) and from animal studies it has been demonstrated that high n-6:n-3 ratio during 
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perinatal life promotes early fat mass growth in offspring (Massiera, Saint-Marc et al. 2003), 

(Korotkova, Gabrielsson et al. 2002). Mothers from this present follow-up study did not receive any 

dietary advice to reduce or control the n-6:n-3:ratio during the intervention, and since the n-6:n-3-

ratio could influence the results of the outcome on body composition, it would be of interest to 

conduct studies in the future where this ratio is experimentally controlled.   

 

Several human and animal studies have investigated if dietary interventions with n-3 LCPUFA in 

maternal diet during pregnancy and/or lactation have any implication in the long-term health 

outcomes. However, the results are contradicting and follow-up studies beyond the age of 7 are 

sparse, which limit the long-term knowledge on several health outcomes. Follow-up studies 

investigating the possible effect of n-3 LCPUFA on blood pressure and body composition have in 

general failed to show any long-term effect in offspring. However, new insights in relation to the 

long-term intervention have emerged, emphasizing that n-3 LCPUFA supplementation in pregnancy 

and/or lactation might be influenced by sex-specific molecular mechanisms that could influence the 

outcome (Decsi and Kennedy 2011) (Sardinha, Fernandes et al. 2013). This is indeed consistent 

with the findings of this present study, that indicated a significant group*sex interaction in MAP 

and DBP. Thus, this highlights the importance for performing subgroup analysis by sex in trials 

investigating the long-term effect of supplementation with n-3 LCPUFA during pregnancy and/or 

lactation. Furthermore, because sex hormones might modulate possible long-term effects, follow-up 

studies on offspring administrated to a dietary intervention during pregnancy and/or lactation it 

would be wise to conduct another follow-up after puberty has settled and the offspring has fully 

sexual matured (Katz, Hediger et al. 1980).  

 

Conclusion 

The significant difference in blood pressure observed between the boys from the two randomized 

groups at 7-year was no longer evident at 13-year. The difference in body composition observed at 

2.5 years, was at 7 years diminished, and I observed no significant difference in body composition 

at 13 years. This 13-year follow up study shows a clear significant group*sex interactions in MAP 

and DBP in the randomized groups, indicating that an effect of the intervention differs between 

boys and girls. Furthermore, in boys from the randomized groups a significant association between 

maternal RBC-DHA and MAP was found, as was a significant association between DBP and DHA 
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in maternal breast milk. The 2.5/13-BMI ratio was positively significant associated with DHA in 

maternal breast milk for the girls in the randomized groups. Therefore, this present 13-year follow 

up study add to the evidence favoring that LCPUFA supplementation in early life may exert 

different programming effects between sexes. Outcomes in blood pressure and BMI could have 

been influenced the presence of sex hormones in the 13-year old children, and it would be favorable 

to perform another follow-up study to identify possible programming effects on blood pressure and 

body composition after end of puberty when sexual maturity has settled to investigate if the current 

findings still is present. It should be emphasized that due to a small sample size the occurrence of a 

direct programming effect may be hard to identify.  

 

 

Perspectives   

A sufficient supply of LCPUFA, especially DHA, has important physiological roles for optimal 

development of the nervous system during the perinatal period (Koletzko, Lien et al. 2008). Based 

on this well-known fact, many clinical studies have investigated the long-term effect of 

supplementation with n-3 LCPUFA in early life on different health aspects. However, we still do 

not know when the dietary intervention might have the biggest effect, in other words when the 

critical window might appear? Inconsistency in outcomes from different studies could be due to the 

period of time the dietary intervention applied. Based on the fact that n-3 LCPUFA accumulates in 

the brain from the third trimester through the first year of life, it would be expected that the most 

significant effect is during this period. Still, insufficient amount of studies have investigated the 

potential programming effect at different developmental stages (in utero, peri/postnaltal period) and 

therefore it is difficult to draw any specific conclusion on maternal n-3 LCPUFA supplementation 

on the metabolic health in the offspring. Clearly, further studies are required to clarify the 

mechanism of n-3 LCPUFA on fat depots and blood pressure during gestation and/or lactation. 

The present 13-year follow-up study found a significant sex*group interaction in DBP and MAP in 

the two randomized groups that could contribute with new insights in a sex-specific the long-term 

effect of n-3 LCPUFA in lactation on blood pressure. Furthermore, the possibility that a long-term 

effect is present due to the significant associations that were found between dose-response 

parameters and 2.5/13-BMI ratio and blood pressure should also be emphasized. Thus, it was 

clearly a fact from this study that these significant associations were affected by gender, and 
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highlight the importance of that future follow-up studies from this intervention are strongly advised 

to perform analysis for sex*group interaction in every outcome.  
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DELTAGERINFORMATION  Oktober 2012 

Kære ________________ 
 
Vi skriver til jer, fordi I tidligere har deltaget i projektet ”Betydningen af dokosahexaensyre (DHA) 
i modermælk for børns vækst- og mentaludvikling” (KF01-300/98) på Institut for Human Ernæring. 
Sidst vi så på en del af jer var ved 7 års-undersøgelserne. Her fandt vi, at børnene i fiskeoliegruppen 
havde et højere blodtryk end dem i olivenoliegruppen, og at den forskel vi så i krops-
sammensætning hos børnene, da de var 2½ år, var forsvundet. Vi fandt også at der tilsyneladende 
var forskel i børnenes adfærd med hensyn til fysisk aktivitet, kost og sociale kontakter.  
Vi vil gerne se om disse forskelle er reelle og vedvarende og vil derfor gerne undersøge børnene nu 
ved 12-13 års-alderen. Vi håber derfor at I har lyst til at deltage igen, uanset om I deltog i 7-års 
undersøgelsen eller ej.  
Formålet med dette opfølgningsstudie er at undersøge om modermælkens indhold af langkædede 
flerumættede fedtsyrer har nogen effekt på barnets kropssammensætning, blodtryk, sundhed, 
velvære og adfærd på længere sigt.  
På de næste sider vil vi beskrive, hvad undersøgelsen indebærer. Deltagelse i undersøgelsen er 
naturligvis fuldstændig frivillig og I kan til hver en tid trække jeres samtykke tilbage og træde ud af 
forsøget uden yderligere forklaring eller konsekvens.  Dette gælder også selvom I har underskrevet 
samtykkeblanketten. I kan læse mere om forsøgspersoners rettigheder i pjecen ”Forsøgspersonens 
rettigheder i et sundhedsvidenskabeligt forskningsprojekt”, som er vedlagt dette brev. 
Det er vigtigt at I forældre giver jer god tid til at læse alle papirerne, og forklarer materialet til jeres 
barn, før I beslutter om I vil være med i undersøgelsen. Deltagelse kræver at alle der har 
forældremyndighed over barnet skriver under på samtykkeblanketten.  
Har I spørgsmål er I velkomne til at ringe til Sara Eriksen på tlf: 42702008 mandag-fredag kl 9-15.  
I kan også lægge en besked på telefonsvareren, så ringer vi jer op.  
Hvis I, efter at have læst vedlagte deltagerinformation, overvejer at deltage, vil vi bede jer ringe til 
os.  Hvis ikke vi hører fra jer, vil vi tillade os at kontakte jer om en uges tid. Ønsker I ikke at deltage 
meddeler I blot det, og så vil vi ikke ulejlige jer yderligere. Imodsat fald vil vi invitere jer til et 
mundtligt informationsmøde.  
Med venlig hilsen, 
 
           Lotte Lauritzen     Sara Elisabeth Eriksen 
           Lektor, lic. scient                                        Specialestuderende i Human Ernæring  
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Information til forældre om projektet 

”Betydningen af langkædede n-3 fedtsyrer i modermælk for kropssammensætning og 

blodtryk, samt mentalt velvære og adfærd hos børn i 12-13 års alderen”. 

 
Formålet med undersøgelsen er at se om moderens indtag af n-3 fedtsyrer fra fisk via modermælken 

kan påvirke kropssammensætning og blodtryk hos barnet, der nu er nået 12-13 års alderen, og om 

en sådan effekt evt. er afhængig af barnets egen kost – specielt indtaget af kulhydrat og protein. Vi 

vil derudover også undersøge om moderens fiskeindtag påvirker barnets mentale velvære og 

adfærd, og om der en sammenhæng med barnets blodtryk. 

For at kunne deltage i undersøgelsen skal følgende kriterier være opfyldt; 

Inklusionskriterier 

• 12-13-årige børn hvis mødre deltog i det oprindelige interventionsstudie (KF01-300/98) 

 

I kan udelukkes fra deltagelse hvis; 

Eksklusionskriterier   

• Barnets aktuelle bopæl er beliggende i så stor afstand fra Institut for Human Ernæring at det 

ikke er muligt at foretage undersøgelsesbesøg.  

• Barnet lider af kroniske sygdomme eller fysiske handicap, der gør det umuligt at udføre 

undersøgelsen.    

Hvad indebærer undersøgelsen? 

! Et undersøgelsesbesøg på Institut for Human Ernæring eller i jeres eget hjem 

! Udfyldning af spørgeskema om jeres barns kost 

! 7 dages måling af barnets fysiske aktivitet, ved hjælp af en lille aktivitetsmåler, der sættes på 

barnets hofte 

! Udfyldning af spørgeskemaer vedrørende barnets helbred, trivsel og udvikling, samt 

mentale velvære og adfærd. 

Ved undersøgelsesbesøget vil vi: 

• Måle og veje barnet.  

• Måle blodtryk og puls 
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• Tage en lille blodprøve på barnet med en priktest i fingerspidsen 

• Instruere jer i brug af fysiske aktivitetsmålere. 

• Bede jer udfylde spørgeskemaer om barnets trivsel og udvikling 

• Informere jer om udfyldelse af kostregistreringsskema 

• Bede barnet udfylde et spørgeskema om pubertet  

 

Flere oplysninger 

Måling af vægt, højde, hofteomkreds og hovedomfang. Barnets vægt måles med en gulvvægt og 

højden måles med en højdemåler. Talje, hofte samt hovedomfang måles med et almindeligt 

målebånd.  

Blod. Der tages nogle få dråber blod fra barnets fingerspids med et lille udstyr kaldet en ”finger 

prick”, hvor en lille steril nål vil prikke hul på spidsen af fingeren. Bloddråberne opsamles på et 

filterpapir. Bloddråberne skal bruges til indholdet af langkædede flerumættede n-3 fedtsyrer.  

Udover eventuel let rødme omkring fingerspidsen og den umiddelbare fornemmelse af prikket har 

proceduren ingen kendte bivirkninger. Vi udtager en blodmængde på ca. 0,1 ml, som destrueres 

umiddelbart efter analyse.  

Måling af kropssammensætning. Hudfoldstykkelsen på overarmen og under skulderbladet måles 

med en hudfoldstang. Kropssammensætningen måles ved brug af bioimpedans-måler, som barnet 

holder i hånden i ca. 10 sekunder. Princippet i impedans-måleren, svarer til det der anvendes i 

lignede vægtlignende impedansmålere som er opsat i mange fitnesscentre og svømmehaller. Der 

sendes en meget svag strøm gennem kroppen og derudfra kan man beregne fedt og muskelandelen.  

Blodtryk og puls. Barnets blodtryk og puls måles ved hjælp af et automatiseret måleudstyr, der 

registrerer blodtrykket i overarmen under oppustningen af en manchet. Blodtryksmålingen tager 

kun få minutter.  

Pubertetsudvikling. Barnets pubertetsudvikling vurderes ved brug af skema med tegninger og 

pubertetsspørgsmål kaldet Tanner-skalaer, som barnet selv udfylder, evt. sammen med en forælder.  

Skemaet præsenteres of udfyldes ved undersøgelsen, så eventuelle spørgsmål kan blive besvaret. 

Mentalt velvære og adfærd. Spørgeskemaer om barnets trivsel og sundhed samt mentale velvære 

udfyldes. Information omkring spørgeskemaer vil foregå ved undersøgelsen, så eventuelle 

spørgsmål kan blive besvaret.  

Kostregistrering. Barnets kost i den forgangne måned registreres via et 

kostregistreringsspørgeskema.  
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Fysisk aktivitet. Ved undersøgelsen vil der også blive udleveret aktivitetsmålere og der vil blive 

givet instruktion om hvordan den påsættes og anvendes. Måleren skal sidde på barnets hofte fra 

barnet står op til det går i seng (undtagen ved svømning og bad) i 7 dage, men er ikke til gene for 

bevægelsesfriheden. Der skal desuden udfyldes et lille aktivitetsskema sammen med måleren. 

Udfyldte spørgeskemaer indsamles ved undersøgelsen, eller bedes indsendt sammen med fysisk 

aktivitetsmålere i den svarkuvert, som udleveres ved undersøgelsen.  

 

Honorar og økonomiske forhold. 
Jeres barn vil modtage et skattepligtigt vederlag på 200 kr som udbetales til bank-konto hurtigst 

muligt efter forsøgets afslutning og efter at I har returneret aktivitetsmåleren. Undersøgelsen er 

finansieret af Københavns Universitet.  

 

Bivirkninger, risici, komplikationer og ulemper 
I forbindelse med at der tages nogle få dråber blod fra barnets fingerspids kan barnet kan opleve en 

kortvarig let smertefornemmelse. Der er ingen væsentlig risiko ved blodprøven, men i meget 

sjældne tilfælde kan der forekomme misfarvning omkring stedet for blodprøvetagningen eller 

ekstremt sjældent opstå en infektion. Erfaringer med aktivitetsmåleren viser at børnene ikke føler 

sig væsentligt generet af denne.  

Udelukkelse fra og afbrydelse af forsøg 

Vi forventer ikke at der vil være grund til udelukke eller afbryde din deltagelse i forsøget, men 

såfremt vi mod forventning  vurderer at dit barn ikke kan forsætte i undersøgelsen vil I blive 

informeret herom. Såfremt dit barn vælger trække sig fra studiet før afslutning, og I ikke ønsker at 

de allerede opsamlede data bruges, skal I gøre opmærksom på dette. I modsat fald vil de opsamlede 

data blive brugt i forsøgets dataanalyse.   

 

Forsikring  
I er dækket af ”Lov om arbejdsskadesikring” i henhold til gældende forsikringsforhold ved Det 

Biovidenskabelige fakultet, Københavns Universitet. Endvidere er alle forsøgspersoner omfattet af 

”Lov om klage- og erstatningsadgang inden for sundhedsvæsnet” (jf. lov nr. 547 24/06/2005 

wwww.retsinformation.dk) 

 
Nytte ved forsøget 
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Du og dit barn vil ikke umiddelbart drage nytte af forsøget. Forsøget har en samfundsmæssig 

nyttefunktion som opvejer det tidsforbrug og eventuelle gener som dit barn oplever.  

 

Offentliggørelse af studiets resultater 

Såvel positive som negative resultater fra forsøget vil blive offentliggjort, uden oplysninger om 

barnets identitet. 

 

Finansiering 
Der er ingen kommercielle eller personlige økonomisk interesse forbundet med dette studie. 

Projektmidlerne er indsat på en separat konto, der er under offentlig revision, og finansieret af 

Københavns Universitet 

 



	
   100	
  

Praktiske oplysninger: 

! Undersøgelserne foregår i på Institut for Human Ernæring på Rolighedsvej 30, 2. sal, 

Frederiksberg eller i jeres eget hjem 

! Undersøgelsen tager ca. 1½ time 

! Tidspunkt for undersøgelserne vil blive tilrettelagt efter aftale med jer, så det passer ind i 

jeres øvrige aktiviteter 

! Undersøgelserne bliver udført af specialestuderende i Human Ernæring, Sara Eriksen. 

! Jeres kontaktperson er Sara Eriksen, tlf. 42702008, eller e-mail; 

sara.elisabeth.eriksen@gmail.com. Lektor Lotte Lauritzen vil desuden kunne kontaktes 

angående overordnede spørgsmål vedrørende projektet på tlf. 35332508 eller e-mail: 

ll@life.ku.dk 

! Opfølgningsprojektet er finansieret af Københavns Universitet og basisprojektet blev 

finansieret af det Fødevareteknologiske Forsknings- og Udviklingsprogram (FØTEK II).  

! Undersøgelsen er godkendt af De Videnskabsetiske Komitéer for Københavns og 

Frederiksbergs kommuner (J.Nr. ............).  

! Oplysningerne vedrørende dit barn som forsøgsperson er beskyttet efter ”Persondataloven” 

og ”Sundhedsloven” 

! Studiet er igangsat på initiativ af Lotte Lauritzen, lektor ved Institut for Human Ernæring. 

! Vi forventer at lave en lignende undersøgelse, når dit barn er 17-18 år. Til den tid vil vi 

tillade os at kontakte dig eller dit barn, hvis han/hun til den tid er blevet myndig. Det er helt 

frivilligt om I til den tid vil deltage eller ej.  
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Appendix 2 
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Appendix 3 

 _________________________________________________________ 
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     Appendix 4 
 
Dataark for ______________________Forsøgspersonsnummer___________________ 
 
 1. måling 2.måling 3.måling Gennemsnit Eventuelle 

kommentarer 
Blodtryk (sys/dia)      

Højde (cm)      

Vægt (kg)      

Hudfold- skulder 
(mm) 

     

Hudfold- triceps 
(mm) 

     

Taljeomkreds (cm)      

Hofteomkreds 
(cm) 

     

Hovedomkreds 
(cm) 

     

Bio-impedans 
(fedtprocent) 

     

 
Personnummer___________________________________________ 
 
Kontonummer_____________________________________________ 
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Appendix 5 

 

Tanner Scales 
Spørgeskema om pubertetsudvikling 

 
Til piger 

	
  
 
Til registrering. Udfyldes af interviewer. 
 
ID-nr. 

     
 

 
A B 

Blev spørgeskemaet udfyldt ? Hvis nej, hvorfor?  

Ja □ 1     Nej □ 0 
à   

 
C D 

Var der en person, som hjalp barnet med at 
udfylde spørgeskemaet? Hvis ja, hvem? 

 

Ja □ 1     Nej □ 0 

à 

Mor ...............................  □ 0 

Far ...............................  □ 1 

Anden ..........................  □ 2 
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I puberteten ændres blandt andet højde og vægt. For at vi bedst muligt kan vurdere 
resultaterne, spørger vi derfor i det følgende til din pubertetsudvikling.  
Vi beder dig om, så godt du kan, og eventuelt i samarbejde med din mor eller far, at besvare 
nedenstående spørgsmål: 
 

1. Har du haft din første menstruation? 

Ja..………………………………………………… □ 1  

Nej……………………....……………………….. □ 0 ﹜ Gå til spørgsmål 2 

Ved ikke………………....……………………….. □ 8 
 

Hvis ja: 
a Hvornår fik du din første menstruation? 
Jan. Feb. Marts Apr. Maj Juni Juli Aug. Sep. Okt. Nov. Dec. 

□ □ □ □ □ □ □ □ □ □ □ □ 
Årstal 

    
 

         
 

 
2. Hvor vil du placere dig på nedenstående skala vedrørende dine brysters udvikling? 

Afkryds nedenfor 

 
  

 
 

Brystvorten er ikke 
begyndt at vokse 

Brystvorten er lige 
begyndt at vokse 

Selve brystet er ved at 
vokse 

Brystet er næsten som 
en ung, voksen kvindes 

Brystet er vokset som 
hos en ung, voksen 
kvinde 

1□ 2□ 3□ 4□ 5□ 
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Tanner Scales 

Spørgeskema om pubertetsudvikling 
 

Til drenge 

	
  
 
Til registrering. Udfyldes af interviewer. 
 
 

     

 

 
A B 

Blev spørgeskemaet ud yldt ? Hvis nej, hvorfor?  

Ja □ 1     Nej □ 0 
à   

 
C D 

Var der en person, som hjalp barnet med 
at udfylde spørgeskemaet? Hvis ja, hvem?  

Ja □ 1     Nej □ 0 

à 

Mor ...............................  □ 0 

Far ................................  □ 1 

Anden ...........................  □ 2 
 

 

 

	
  



	
   107	
  

I puberteten ændres blandt andet højde og vægt. For at vi bedst muligt kan vurdere 
resultaterne, spørger vi derfor i det følgende til din pubertetsudvikling. 
3. Hvor vil du placere dig på nedenstående skala vedrørende din kønsbehåring? 
Afkryds nedenfor 
Vi beder dig om, så godt du kan, og eventuelt i samarbejde med din mor eller far, at vurdere 
hvor på skalaen du er: 

 

     
Der er ikke 
kønsbehåring 
 
 
 
 
 
 

Der er næsten ikke/ 
eller ganske lidt 
kønsbehåring 
 
 
 
 
 

Kønsbehåringen er 
blevet lidt mørkere 
og fylder mere 
 
 
 
 
 

Kønsbehåringen er 
næsten som hos en 
ung, voksen mand 
 
 
 
 
 

Kønsbehåringen er 
som hos en ung, 
voksen mand 
 
 
 
 
 
 

 

1□ 
 

 

2□ 
 

 

3□ 

 

4□ 

 

5□ 

 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	
   108	
  

     Appendix 6 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 

 
 



	
   109	
  

 
 
 
 
 
 
 
 
 

 
 

 
 
 



	
   110	
  

 
 
 



	
   111	
  

 

 
 
 
 
 
 
 
 
 
 
 



	
   112	
  

 

  



	
   113	
  

 

 



	
   114	
  

 



	
   115	
  

 



	
   116	
  

 
 
 
 
 
 
 

 



	
   117	
  

 
 
 
 
  

 
 
 



	
   118	
  

 
 
 
 
 
 
 



	
   119	
  

 



	
   120	
  

 
 

 
 



	
   121	
  

 

 
 



	
   122	
  

 
 
 
 
 
 

 
 
 



	
   123	
  

 



	
   124	
  

 
 
 
 
 
 
 
 
 
 
 



	
   125	
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	
   126	
  

 
 



	
   127	
  

 
 

 
 
 



	
   128	
  

 
 
 
 

 
 



	
   129	
  

 
 
 
 
 
 
 
 
 

 
 
 



	
   130	
  

 

 



	
   131	
  



	
   132	
  

 
 
 
 
 

 


