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Abstract

Six-hourly significant wave height (SWH) data covering the period September
1957 to August 2002 is obtained from the ERA-40 reanalysis. This data, generated
by ECMWF’s own configured global WAM model, stems from the first reanalysis
in which a wave model is coupled to an atmospheric model. By accounting for the
wave-atmosphere interaction this is the most comprehensive ocean state dataset
available (Uppala et al., 2005). Based on this data, return values of SWH are esti-
mated at five locations within the Mozambique Channel. In this work an extreme
value is defined as the highest value of SWH which, on average, is only exceeded
once during a period of 100 years, namely the 100-year return value. These ex-
treme values are found by fitting both a Generalized Extreme Value (GEV) and
Generalized Pareto (GP) distribution to SWH data, and thereafter, based on the
behavior of the model, extrapolated to yield the 100-year return value. A thor-
ough introduction to both extreme value models will be given. Furthermore, an
introduction to goodness-of-fit tests which assess the validity of the model fits
is given, followed by a routine which estimates the confidence interval (CI) for
the return values. However, as the ERA-40 data does not account for bottom-
wave interaction and, additionally, underestimates high wave values (Caires &
Sterl, 2003a), the SWH data is refined by use of an altimeter-validated high reso-
lution WAM model, covering the Mozambique Channel during 2001. Functional
relationships are established between the five ERA-40 locations and the corre-
sponding location of the self-run WAM model. By applying these on the ERA-40
data, the superior properties from the high resolution model, including bottom
interaction, is extrapolated back to 1957. Along with return values, the temporal
variability of SWHs within the Mozambique Channel is addressed. The results
show return values up to 7.0 m with a 95% CI ranging from 6.6 to 7.5 m in the
south, a value which decreases to 5.0 m in the northern opening of the Mozam-
bique Channel. Based on monthly means, the extreme values are likely to occur
during the winter months of June and July.
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Chapter 1
INTRODUCTION

Awareness regarding the most extreme conditions occurring at sea is of life
saving importance for the high concentration of human settlements along the
coast and marine activities, like fishing and shipping. When engineers design
ships, offshore oil rigs and other coastal structures, information regarding ex-
treme events are crucial for the calculation of the structure’s strength. For the 2
700 km coast line of Mozambique and its adjacent ocean this is no exception. The
newly achieved political stability and the improving infrastructure both for roads
and gas transmission, result in a rapid growth in natural gas and oil exploration
and production offshore as well as onshore (Zacarias, 2009).
40% of the Mozambiquan population lives in the coastal districts (Chemane et al.,
1997), of these about half is sustained by the natural resources which include both
industrial and artisanal fisheries and marine fauna (Hoguane, 2007). De Young
(2006, and references therein) estimates the fleet to consist of 186 registrated in-
dustrial vessels and 15 269 artisanal vessels. These operate predominantly in the
Delagoa Bight in the south and the Sofala Bank in the centre, which are the two
main shelves. With a continental shelf extending 145 km offshore, the Sofala Bank
is the biggest and is where most of the industrial shallow-water shrimp fishery is
done (Saetre & Silva, 1979; De Young, 2006), contributing to the country’s econ-
omy (De Young, 2006; Hoguane, 2007).
In the southern region of Mozambique, referred to as the region of lagoons, the di-
rect impact of the waves give rise to an unbalanced displacement and distribution
of sand. This, accompanied with strong tidal currents, cause a constantly chang-
ing coastal regime. Furthermore, international shipping routes to and from the
southern African harbors navigate through the Mozambique Channel (Schreier
et al., 2007), potentially exposed to hazardous extreme wave events.

As a means of precaution and awareness motivated by the above mentioned
events, the most extreme wave conditions experienced, for example during an
offshore installation’s N years of lifetime, are estimated. This N-year return value
is the highest wave value, in this case significant wave height (SWH), which is ex-
pected to be exceeded on average once every N year (Coles, 2001), and will be de-
noted as HN

s . In this study, in accordance to previous work (Cooper & Forristall,
1997; Soares & Scotto, 2001; Caires & Sterl, 2003a; Alves & Young, 2003; Caires &
Sterl, 2005; Naess & Gaidai, 2009), the 100-year return value will be addressed.
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2 Chapter 1: Introduction

1.1 Area of investigation

The map in Figure 1.1 shows the locations at which the wave study will be
focused. At each location a statistical analysis of 45 years of wave height data
will be used to yield the N-year return value. Flag one represent an area of the
coast which due to its facing angle is heavily exposed to the incoming propagat-
ing swells. The narrow continental shelf in this region allows swell to propagate
close to the coast without significant dissipation, permitting the swell to arrive
with the bulk energy intact. In this area erosion has become an increasing threat
to the coastal communities (A. Hoguane Mubango1, pers. comm.). Flag three is
located on the Sofala Bank at depth of 12 m and is motivated by the high fishing
activity. The Rovuma Delta Basin with its expanding gas and oil industry is repre-
sented by flag five. Flags two and four are located south and north, respectively,
of the volcanic Europe Island and several volcanic sea mounts. These positions are
chosen to give a general overview of the Mozambique Channel. The five geo-
graphical coordinates and their respective depths are presented in Table 1.1.
Following is a description of the hydrography and meteorology of the Mozam-
bique Channel region.
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Figure 1.1. Bathymetry of the Mozambique Channel and location at which the return
value is to be estimated. See Table 1.1 for depths, coordinates and names.

Table 1.1. Positions and depths for the selected locations as illustrated in Figure 1.1.

Location name Depth [m] Coordinates

Flag 1 Surf location 192 34.5◦E 25.5◦S
Flag 2 South of island 3375 40.5◦E 24.0◦S
Flag 3 Sofala Bank 12 36.0◦E 19.5◦S
Flag 4 North of island 2552 40.5◦E 19.5◦S
Flag 5 Oil location 3017 42.0◦E 13.5◦S

1Director School of Marine Sciences, Quelimane, Mozambique.
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1.1.1 Bathymetry

The coastline of Mozambique is in general smooth and covered by sandy
beaches, but with the occurrences of few large headlands. The continental slopes
and shelves are typically steep and narrow (Shaumann, 1998). Close to the Zam-
bezi, Save and Limpopo Rivers we find exceptions, where large fan shaped conti-
nental shelves have been created due to the rivers’ deposition of heavy sediments.
The biggest of these is the Sofala Bank. Separating Mozambique and Madagascar
we find the Mozambique Channel, which at the narrowest point in the North
measures 400 km across. The depth ranges from 2000 to 3000 m with features
of small volcanic islands and sea mounts. In the southern opening we find the
Mozambique Basin with depths over 5000 m, encircled by the Mozambique and
Madagascar Ridge on each side. To the west of the Mozambique Ridge we find
the Natal Valley, a depression with a maximum depth around 4900 m. Here, the
bottom is covered with sediments transported by the coastal currents. Further
south the Natal Valley merges in to the deeper Transkei Basin in the south, ex-
tending beyond the latitude of the southernmost point of South Africa. These
features are seen in Figure 1.2 along with the general surface currents, which in
the following are addressed.
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Figure 1.2. Bathymetry and dominating surface currents of the southwest Indian Ocean
(after Lutjeharms (2004)). Depth contours showing 200 (bold), 1000, 2000 and 4000 m
according to GEBCO (2003).

1.1.2 Currents

The general current description of the southwest Indian Ocean was first de-
scribed by Michaelis (1923) and later by Sverdrup et al. (1942). Both descriptions
closely correspond to the current system illustrated in Figure 1.2, where the South
Equatorial Current feeds both the East Madagascar Current and the Mozambique
Current (MC). Since the first descriptions, it is mostly the knowledge regarding
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the MC which has changed. Several cruises collecting data (e.g. R/V Fridtjof
Nansen 1977, 1978) and work based on the data, e.g. by Saetre & daSilva (1984)
and Saetre (1985), established that the southerly moving MC in fact was the west-
ern section of channel-sized anticyclonic eddies within the Mozambique Chan-
nel.
Recent work by Harlander et al. (2009), based on long-term observations, sup-
ports the eddy phenomenon, now named the Mozambique Eddies, and further
shows that these discontinuous southerly migrating eddies only appear four to
five times a year. The Mozambique Eddies along with the MC supply the strong
and narrow Agulhas Current with water from the South Indian Ocean and Red
Sea. In a global oceanic climate perspective the Agulhas Current plays an im-
portant role through its inter basin exchange between the South Indian and the
Southern Atlantic Oceans (Biastoch et al., 1999, and references therein). In ad-
dition to the influence of the main current systems, the shallow coastal waters
of the channel is expected to be influenced by both dominating winds and tides
(Lutjeharms, 2004).

1.1.3 Wind pattern

Regional

The wind system in the Mozambique Channel is divided at 20◦S, the latitude
of the southernmost position of the north-south migrating inter tropical conver-
gence zone (ITCZ) (Saetre, 1985). In the region north of 20◦S, northerly and north-
easterly winds from the monsoonal wind system of the Indian Ocean dominate
during the austral summer (October to February). In this period the winds are in
general weaker (Lutjeharms, 2004). Along the coast of Mozambique this division
is set at 15◦S, below which the monsoon has no influence. Between 20◦ and 25◦S
the southerly and southeasterly winds prevail (Saetre, 1985), whereas in the most
southern part of the Mozambique Channel easterly winds dominate throughout
the year.

Large scale

The most important wind system generating ocean waves is the consistently
strong westerly winds that prevails over the Southern Ocean (Young, 1999). In
fact Young (1999) obtained results confirming the Southern Ocean as the roughest
ocean on earth. As seen from storm track studies done by Hoskins & Hodges
(2005), the storm trajectories which originate over the southern part of the South
America pass just south of Africa. Although Mozambique has a predominately
easterly facing coastline, the waves produced by these storms are expected to hit
the coast, particularly in the austral winter months (Young, 1999).

1.1.4 Tropical cyclones

During the months of summer, tropical cyclones (TC) of severe intensity are
frequently observed in the southwest Indian Ocean. In fact, the TCs generated
here account for 14% of the world total (Jury, 1993). Generally, the TCs migrate
poleward (Lutjeharms, 2004), and pass east of Madagascar more frequently than
through the Mozambique Channel (Williams et al., 1984). The sea and swell gen-
erated by the intense winds of TCs cause potential risk to ship and coastal settle-
ments. However, calculating the wave properties near TCs is often challenging
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due to the strong horizontal wind gradient and the complexity of assessing the
fetch area (Chang-Seng & Jury, 2010). Nevertheless, the most severe damage is
caused by storm surges which may occur when TCs make landfall. In a case study
by Chang-Seng & Jury (2010), the worst TC since 1951 is addressed in detail as it
makes landfall in Mozambique the 29th of February 2000. With maximum wind
speed recorded at 62 m/s and a swell height of 3 m, reports claimed 700 people
dead, 800 000 affected and us$ 0.5 billion worth of destruction.
The extent to which TCs contribute to extreme wave conditions is not much stud-
ied in the southwest Indian Ocean. Yet, waves of 10 m are reported (Chang-Seng
& Jury, 2010) hitting the coast of Madagascar, indicating a potential contribution
to extreme wave events.

1.1.5 Tides

In the area around the Sofala Bank, the tidal range is more than 6 m, one of the
highest in Africa (Coughanowr et al., 1995). This tidal amplitude decreases both
to the north and south as a product of a double standing wave system driven
from both ends (Schwiderski, 1980). At the channel openings the amplitude is
around 2 m (Lutjeharms, 2004, and references therein). As a consequence of these
vast tidal ranges salt marshes and mangrove swamps are found in the low lying
coastal regions and estuaries (Lutjeharms, 2004). This strong tidal current is an
important contributor to the water motions at the wide and shallow parts of the
Sofala Bank, where the sand banks are continuously moved (Lutjeharms, 2004).

1.2 Objective

The aim of this work is to produce reliable estimates of 100-year return val-
ues by means of two different extreme value distribution approaches. Opposed
to similar work, which has been carried out on a global scale, e.g. Alves & Young
(2003); Caires & Sterl (2005), the estimates obtained here are believed to be of a
more accurate nature as the global wave data is enhanced to locally fit the loca-
tions of interest. This is done by means of an altimeter-validated nested model
which is implemented over the region of interest, making it possible to find a
functional relationship by which the global wave data is refined. Furthermore,
data from both a coarse and nested model will be applied to address the wave
climate in the Southern Ocean and the Mozambique Channel, respectively, both
with respect to spatial and temporal variation.
Chapter 2 will give an introduction to the fundamental wave theory along with
numerical modeling of ocean waves. In chapter 3 the details regarding the model
configuration and inputs will be addressed in addition to the altimeter data which
is used in the process of validating the model. The chapter proceeds by present-
ing the 45 years of historical wave data on which the return value estimates will
be based on, followed by the theoretical aspect regarding the two extreme value
approaches. The results are presented in chapter 4, with successive discussions
that gradually evolve towards the final results. In the end, an appendix is found
in which statistical parameters are defined, along with computational routines
developed in MatLab, which may be utilized in further work addressing extreme
value problems.



Chapter 2
THEORY

Ocean surface waves are propagating oscillations on the ocean-atmosphere
interface. Figure 2.1 illustrates the common attributions used to describe a sim-
plified sinusoidal wave:

• The wave height, H, is the vertical distance from the wave crest to the previ-
ous wave through. In the simple case of the sinusoidal wave H = 2a, where
a is the maximum fluctuation around the zero level. The wave height is
normally measured in meters.

• The wavelength, λ, is the horizontal crest-to-crest distance in meters.
• The period, T, is the time interval in seconds for two successive crests to

pass a fixed point.

Other basic definitions used to describe surface waves are

• Steepness, H/λ, which is the ratio of the wave height to the wavelength. In
the open ocean the steepness is typically ranging from 0.01 to 0.06 (Wright
et al., 1999).

• Frequency, f , is the amount of crests passing a fixed point during one sec-
ond. The unit is Hertz (number per seconds), and is equivalent to 1/T.

• Wave number, k, is a measure of the number of wave crests per unit distance
and is given by

k = 2π/λ.

The characteristics of a wave reflect the forces by which the wave has been cre-
ated. The period and wavelength are commonly used to make such a classifica-
tion. Waves with period and length ranging from around 1 to 30 seconds and
a few centimeters to several hundred meters, respectively, are termed ordinary
gravity waves (Wright et al., 1999). The predominant generating force for these
waves is the wind. The perturbation of the sea surface is caused by the wind
induced stress, and continues oscillating due to the restoring force exerted by
the Earth’s gravitation which strives to regain the equilibrium state. These wind
induced gravity waves are the type dealt with in this thesis. In the following
sections the basic theory will be addressed followed by an introduction to wave
modeling.

2.1 Basic relationship

Consider a wave propagating in the x direction as illustrated in Figure 2.1.
A fixed position on the wave interface, here represented with the value F, is

6
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Figure 2.1. Basic parameters used to describe wave attributes of a simplified sinusoidal
wave.

periodically symmetrical with the horizontal displacement of the wavelength:
F(x, t) = F(x + λ, t). The same periodicity is seen under a temporal displacement
during the wave period: F(x, t) = F(x, t + T). As the constant value F is moving
with the speed c; x = ct, the function F must be of the form F(x, t) = G(x − ct).
Since G (x − ct) = G [(x + λ) − c(t + T)] = G [x − ct + λ − cT] then λ − cT = 0
and c = λ/T, where c is termed the phase speed. This relationship holds for all
truly periodic progressive waves. The vertical displacement of the free surface,
η, around the zero level changes over time and space (t and x, respectively) and
is expressed by: η = A cos(kx − ωt), where ω = 2π/T is the radian frequency.

For further physical description of the waves, some assumptions must be made in
order to apply the known dynamics of the ocean on the rather complex behavior
of the surface waves (WMO 1998):

1. The water is incompressible: Dρw/Dt = 0, i.e. the density is constant and
the continuity equation can be derived describing the mass flow in and out
of a volume.

2. The particle motion is irrotational: ∇×~v = 0. This assumption allows us
describe the flow by the gradient of a velocity potential (~v = ∇Φ), φ.

3. The water is an inviscid fluid: µw = 0 , where µw is the dynamic molec-
ular viscosity of water, i.e. the water has no resistance to shear stress and
therefore friction can be neglected.

With these assumptions, the linearized and frictionless equation of motion where
the Coriolis term is neglected due to the small scale of waves, can be solved.
By applying the boundary value conditions on the general wave solution, the
important relation between phase speed and wave length is obtained:

c2 =
g

k
tanh kh, (2.1)

where g is the gravitational acceleration. This equation holds for all depths, h,
but, as we will see, can be simplified as we generalize into short (deep water) and
long (shallow water) waves.
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2.2 Influence of water depth

2.2.1 Deep water

In deep water (h >
λ
2 ) the water particles move in almost closed circles as

illustrated in Figure 2.2. At the surface the orbital diameter is the same as the
wave height. The particle is moving in the same direction as the propagating
wave at the crest of the wave, whereas in the trough the particle is moving in the
opposite direction. During one wave period the water particle is close to its pre-
vious position, but is now slightly relocated horizontally with a net component
of forward motion. This small forward displacement is called Stokes drift (e.g.
λ=100m, H=3m and c=12.5 m/s gives a surface Stokes drift of 0.1 m/s (Pond &
Pickard, 1983)) and is due to the decrease of particle speed with depth and the
forward motion of the wave. The orbital diameter of deep water waves decreases
exponentially with increasing depth, see Figure 2.2 (a), and at a depth equal to
half the wavelength, the particle diameter is reduced to 4% of the surface wave
height (Pond & Pickard, 1983). As λ ≪ h in deep water, 2π

k ≪ h, implying that

Figure 2.2. The water particles for deep water waves (a) move in circles, whereas for
shallow water waves (b) the path is elliptical.

kh ≫ 2π. This allows us to simplify Eq. (2.1) to

c2 =
g

k
=

gλ

2π
(2.2)

as the hyperbolic tangent (tanh kh ⇒ 1) reaches unity for kh ≫ 1 (see Figure 2.3
for illustration).

Figure 2.3. The hyperbolic tangent
reaches unity for large values of kh,
while for small values of kh the line
y = kh tangents trough origo.

Eq. (2.2) shows that the phase speed of deep water waves (short waves) is in-
creasing with increasing wavelength. Hence, long waves will propagate faster,
which explains why these waves are the first to reach the coast after propagating
over long distances of ocean from the area of generation.
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2.2.2 Shallow water

Nearly all the characteristics of waves propagating into shallower water change.
Only the period remains unchanged. From Table 2.1 it can be seen that the wave
speed decreases with decreasing dept, which owing to the relation c = λ/T im-

plies that the wavelength must decrease. In transitional water, λ
20 < h <

λ
2 ,

the particles start to ’feel’ the bottom; the orbits gradually become flatter (Figure
2.2(b)) and adopt elliptical shapes. The semi major axis decreases linearly with
increasing depth, while at the bottom a to and fro movement is observed.

In shallow water, which is defined as h <
λ
20 , the particle motion is still elliptical.

The minor axis decreases linearly with depth opposed to the major axis which is
constant. In this case the dispersion relation, Eq. (2.1), can now be simplified as
we have λ ≫ h ⇒ 2π

k ≫ h ⇒ kh ≪ 2π for shallow water (long waves). As
illustrated in Figure 2.3 the hyperbolic tangent (tanh kh ⇒ kh) approaches kh for
kh ≪ 1 reducing Eq. (2.1) to

c2 = gh, (2.3)

indicating that the phase speed is determined by depth only.

For transitional water depth ( λ
25 < h <

λ
2 ) the Eq. (2.1) in its complete form

should be used.

2.3 Open ocean waves

The idealized sinusoidal wave described previously does not suffice when
describing open ocean waves. An observed state of wind waves will most likely
be a combination of locally generated waves and waves propagating beyond the
direct influence of the wind (swell). Figure 2.4(a) illustrates how two simple wave
profiles (upper panel) with slightly different wavelengths merge to be a more re-
alistic representation (lower panel) of the observed waves. This principle, where
waves differing in height, length and direction are added, is called superposi-
tion. With a complex pattern of the sea surface (many wave components), new
parameters are needed in order to adequately describe the waves. Some of these
parameters are listed below and are illustrated in Figure 2.4(b).

Figure 2.4. The upper panel in (a) illustrates two waves with slightly different wave-
length, while the bottom panel illustrates the sum of these two waves. In (b) an example
of a realistic sea state is seen marking the positions of the down crossings (circles), peaks
(I) and the highest wave (Hmax).



10 Chapter 2: Theory

· H: Average wave height, ∑
n
1

Hi
n .

· Tz: The average zero crossing wave period. Tz is obtained by dividing the
length of the wave record by the number of down or up crossings.

· Hmax: The maximum wave height recorded during the measurements.
· Hs: The significant wave height. The average height of the 1

3 highest waves
from the wave record.

Using Fourier analysis the sea state can be decomposed, giving the individual
wave’s amplitude, direction, frequency and phase. The surface elevation varying
with time, η (t), can then be expressed:

η (t) = η0 +
n

∑
j=1

aj sin
(

jω0t + φj

)

, (2.4)

where

· ηo is the zero level as illustrated in Figure 2.1,
· j is the number of wave component,
· aj is the amplitude of the jth component,
· ω0 is the angular frequency corresponding to the longest wave in the record,
· φj is the phase angle of the jth component,
· n is the total amount of wave components.

In practice, this method is used when modeling waves and deriving new wave
parameters, a subject covered in section 2.6.4

2.4 Generation of waves

There are three factors limiting the growth of the wind waves:

• Strength of the wind.

• Duration of the wind.

• The area (fetch) over which the wind is blowing.

A diagram illustrating the relationship between these factors and wave height
and length is shown in Figure 2.5.

In order to describe the physical process under which the waves are gener-
ated let us consider the onset of a wind over a calm ocean. The initial stage
of wave generation is the creation of small pressure fluctuations of the sea sur-
face caused by the turbulent nature of the air flowing over the surface (Pond
& Pickard, 1983). Through resonance, namely Phillips’ resonance, these wavelets
grow linearly. When the wavelets reach a size which is sufficient to affect the air
flow over the surface, the second stage of wave growth, which is the most promi-
nent, commences. This stage is characterized by shear flow instability, where the
wave growth increases as the wind is pushing on the troughs and sucking on the
crest, and is explained by the Miles theory. The rate of this growth depends on the
existing sea state and is therefore exponential (Bouws et al., 1998). The magnitude
of the final state of the waves now depends on the three previously mentioned
factors. For further details see Komen et al. (1996). Exemplifying, we see from
Figure 2.5 that a 20m/s wind blowing over a 600km area for 24 hours generate



2.4 Generation of waves 11

Figure 2.5. A manual wave forecasting diagram by Groen & Dorrstein (1976), trans-
lated by Bouws et al. (1998), illustrating the dependence of the tree growth limiting
factors and the properties of the waves. Note how the wave heights reach equilibrium and
therefore are bounded at the upper end.

waves with significant wave height of 8 m and a period of 12 seconds.

The waves propagating away from the generating area or the waves which
persist after the wind fades are called swell. These waves of long wavelengths
(typically 300 to 600 m (Wright et al., 1999)) will diminish in height as they grad-
ually move away from the area of generation. The reason for this is the ’fan’
shaped formation through which they propagate, where the energy is spread
over a constantly widening front. In fact, the angular spreading is considered
to be the main energy loss as far as swell is concerned (Bouws et al., 1998). Refer-
ring back to the dispersion relation, Eq. (2.1), we have mentioned that the phase
speed increases with increasing wavelength, and for this reason, away from the
generation area, waves with close wavelengths will tend to group together in so
called wave groups. It is within these groups that the wave energy is carried. Per
definition, the group velocity is defined as

cg =
∂ω

∂k
(2.5)

where ω = ck. Again generalizing into deep and shallow water, by use of Eq.
(2.2) and (2.3), respectively, the group velocity becomes

c
deep
g =

c

2
(2.6)

cshallow
g = c, (2.7)

where c is the phase velocity.

A peculiar feature regarding the energy in waves is the equal partition between
kinetic and potential energy (Bouws et al., 1998). For calculating the total amount
of energy in the water column per wavelength and crest length the formula
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E =
1

8
ρwgH2 =

1

2
ρwga2, (2.8)

can be used. This (keeping in mind that the energy travels with the group veloc-
ity) implies that when a wave approaches the coast, as both group velocity and
wavelength decreases, the wave height must increase. This is true for a system
where the energy is conserved, i.e. no friction.

2.4.1 Wave spectra

As Eq. (2.8) shows, the energy is proportional to the square of the amplitude,
a. After decomposing the sea state by Fourier analysis into individual compo-
nents E can now be expressed as

E ≈ 1

2 ∑
i=1

a2
i , (2.9)

where ρwg is omitted. A distribution where the square of the amplitude is plot-
ted against its frequency is called a wave-variance spectrum, S ( f ), and can be in-
terpreted as the distribution of wave energy over frequency, also referred to as
a wave-energy spectrum, E ( f ), when the ρwg term is included. Theoretically the
wave spectrum is continuous, but for computational reasons it is computed at
discrete frequencies. For this reason, the variance or energy value at a given fre-
quency, say 0.20 Hz, is in fact the mean value typically ranging from 0.195 to 0.205
Hz. Therefore, the value, which is divided by the width of the frequency inter-

val is more correctly called an energy-density spectrum, with units of m2

Hz . Different
spectral shapes are seen for evolving sea state stages. A swell is represented in the
spectrum with a narrow peak over its small range of frequencies (periods). Mul-
tiple peaks may occur, owing to separately generated swell, or different peaks
may be merged together as a wide hump. As models predominantly use energy-
density spectra to describe wave fields, deriving the wave height from the spectra
is essential and is treated in section 2.6.4.
In the next section, the nature of waves in shallow water will be addressed more
closely.

2.5 Waves approaching the coast

Referring to Eq. (2.1) and (2.3), the phase speed of waves in shallow (transi-
tional) water is dominated (affected) by the water depth. In general, moving into
shallower water, the phase speed decreases and as the wave period remains con-
stant the wavelengths will decrease, a phenomenon known as shoaling. Waves
which are not entering perpendicularly to the coast will be affected by the phe-
nomenon called refraction; a turning of the wave direction. The part of the wave
which first encounters shallow water will slow down, causing the wave crest to
turn towards shallower water as illustrated in Figure 2.6. In case of a local current,
refraction may occur as a response to current-phase speed interaction, irrespec-
tive of the direction of approach. Proceeding towards the coast, the final situation
will be wave crests breaking parallel to the beach regardless of its deep water di-
rection. In addition to the turning of wave direction, the wave heights increase
while the wavelengths decreases toward the coast. Depending on the topogra-
phy (submarine ridges or canyons) a concentration or rarefaction of wave energy
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will occur. An example of refraction is the focusing of wave energy on headlands,
whereas the energy in bays is diminished due to the divergence of wave rays. Re-
flection is another phenomenon, occurring when waves hit the coast in areas of
great depth close to land.

Figure 2.6. Wave crests (solid lines) approaching the coast change direction as parts of
the crests are being slowed down by the depth influence (dashed lines).

Shoaling, as mentioned, is the bottom influence on waves when they are not sub-
jected to a change of direction. The waves enter the coast perpendicularly to the
bottom contours, and results in an increase of wave height, a decrease of wave-
length and phase speed and an unchanging period. Table 2.1 exemplify the shoal-
ing effect on a 1.0 m high wave with an 8 seconds period and a 100 m wavelength.
When the water depth is the same order as the wave height, the waves start to
break, or more specifically when h = 1.28H (Bouws et al., 1998). The upper part
of the wave spills over the forward face of the wave as the speed in the lower
part of the wave is smaller relative to the upper. Depending of the slope of the
bottom, the waves will break differently. In heavily sloping surf zones the water
from the crest can plunge forward in free fall.

Table 2.1. Example of the shoaling effect on wave parameters based on an example by
Pond & Pickard (1983).

Depth, h [m] >50 10 5 2
Phase speed, c [m

s ] 12.5 8.9 6.6 4.3
Wavelength, λ [m] 100 71 53 35
Wave height, h [m] 1.0 1.2 1.4 1.7
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2.6 Wave modeling

Numerical ocean wave models use surface wind as energy input to calcu-
late the wave conditions. Over the considered time scale the surface winds are
the only energy source, and its accuracy is therefore of high importance for the
model’s output accuracy. With an offset in the wind the model will as a conse-
quence, over time, become inaccurate. The model time step and spatial scale is
carefully adjusted to the natural scale of the gravity waves, making sure the dis-
tance moved by a wave during one time step is less than a grid length (numerical
stability)(Bouws et al., 1998). Over these scales the wave conditions are averaged
and assumed temporally stationary and spatially homogeneous. The physical
processes controlling the waves are modified into statistical expressions by use
of the wave spectra. The time and space evolution of the waves are expressed by
the spectral energy balance/transport equation which reads (Bouws et al., 1998)

∂E

∂t
+ ∇ ·

(

cgE
)

= S = Sin + Snl + Sds. (2.10)

The left hand side accounts for the evolution and advection of waves, respec-
tively, where cg denotes the group velocity in deep water. E ( f , θ, x, t) is the wave
spectrum in two dimensions depending on frequency, f , and direction of propa-
gation, θ. Combined, the left hand side represents the total temporal derivative
of E. The S is termed the source function and accounts for energy input by the
wind (Sin), non linear transfer of energy by wave to wave interaction (Snl) and
dissipation of energy (Sds). On the form expressed here Eq. (2.10) is only valid in
deep water and does not account for refraction nor currents (Bouws et al., 1998).
Following is a short insight in each of the source terms.

2.6.1 Wind input, Sin

Any wave model depends heavily upon the quality of the wind input, both
regarding resolution and accuracy. As mentioned in section 2.4 there is an interac-
tion between the waves and the atmospheric boundary layer. The most common
way of expressing the rate at which the wind energy is transferred into the waves,
accounting for the feedback mechanism, is given by:

Sin = A ( f , θ) + B ( f , θ) E ( f , θ) , (2.11)

where the first term on the right hand side, A ( f , θ), represents the linear growth
of wavelet through Phillips’ resonance. The second term is the feedback term ex-
pressing the stage at which the predominant wave growth takes place.

2.6.2 Non linear interaction, Snl

This term describes the weakly non linear interaction between waves of dif-
ferent frequencies through resonance, but also the propagation of surface waves.
This is purely a redistribution of energy within the spectrum and does not affect
the overall energy in the wave field, however the spectral shape might be altered.
Despite not being classified as energy input, the non linear interaction is due to
the redistribution of energy the main growth factor for waves below the spectral
peak. This is illustrated in Figure 2.7. What happen is, as seen in the upper panel,
that in the region close to the spectral peak the wind input is greater than the
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dissipation. This abundance of energy is transferred by the non linear interac-
tion to either side of the peak. The energy shifted towards higher frequencies is
lost through dissipation, whereas the energy transferred towards the lower end
of the spectra induces growth of new wave components; a phenomenon called
downshift.
It must also be mentioned that it is the handling of Snl that distinguishes sec-
ond from third generation wave models. The third generation is, although by
greater computational cost and special integration techniques, capable of explic-
itly calculating this term, whereas the second generation model was forced to
parameterize.

Figure 2.7. The upper panel illustrate the three source terms Sin, Snl and Sds and their
rate of growth influence with respect to frequencies. In the bottom panel the sum of the
source terms, S, is seen within the frequency spectra, E ( f ). Based on a plot by Bouws
et al. (1998).

2.6.3 Dissipation, Sds

The dissipation term is the sum of the energy lost by the three processes
white capping, wave-bottom interaction and surf breaking. White capping is the
dominating energy loss in deep water, however the effects on swell is negligible
(Bouws et al., 1998). White capping happens when waves become too steep in
the growth phase, and is an important growth limiting factor which transfers
energy to underlying currents. Energy loss by wave-bottom interaction involves
different mechanisms like bottom friction, movement of the bottom material and
water percolation into the sea bed. In water with depth of same order as the wave
height, surf-breaking becomes the dominating energy loss (Bouws et al., 1998).

2.6.4 Wave height derived from the spectrum

The form of the spectrum is described by use of moments of the distribution.
To calculate the spectrum’s nth order moment, mn, the following definition is
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used:

mn =
∫ ∞

0
f nE ( f ) d f , (2.12)

where E ( f ) is the discrete variance density value at frequency, f , hence E ( f ) d f
denote the variance a2

i /2 within the ith interval of f and f + d f . Integrated, taking
into account for that E ( f ) is discrete, Eq. (2.12) becomes:

mn =
N

∑
i=0

f n
i

a2
i

2
. (2.13)

According to the definition of mn in Eq. (2.12), the zero-order moment, m0, which
represents the area under the spectral curve becomes:

m0 =
N

∑
i=0

a2
i

2
=

a2

2
. (2.14)

As we soon will see m0 can be used to deduce wave height parameters. Now,
considering a single sinusoidal wave with the same energy as the actual sea state,
its corresponding wave height, Hrms, is obtained by rearranging Eq. (2.8) from
section 2.4:

Hrms =

√

8E

ρwg
. (2.15)

This root-mean-square wave height has empirically been found to relate to the

significant wave height by a multiplication of
√

2. The wave parameter Hm0

which we now obtain is the model deduced parameter corresponding to Hs and
can in turn be expressed in terms of mo by:

Hm0 =
√

2

√

8E

ρwg
= 4

√
m0, (2.16)

which theoretically is valid only for swell. However, the bias between Hs and
Hm0 is small and is empirically found on average to be:

Hm0 = 1.05Hs. (2.17)

As mentioned in section 2.3 the significant wave height is an average over the 1/3
highest waves in a typically six hour wave record. The maximum wave height,
Hmax, occurring in the same wave record is related to Hs and Hm0 by:

Hmax
∼= 2.0Hs

∼= 1.9Hm0. (2.18)
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3.1 WAM cycle 4

A coarse and nested model was implemented and run from 00:00 01.01.2001
to 24:00 31.12.2001, hereafter referred to as the 2001 model run, covering the areas
shown in Figure 3.1. The model used was the WAve Model (WAM) cycle 4, as
modified by the Norwegian Meteorological Institute. This third generation wave
model, developed by the Wave Modeling Group, is characterized by the lack of
assumptions concerning the spectral shape, the explicit solving of the transport
equation (see section 2.6) and improvements on the finite-depth version of the
model (The WAMDI group; Hasselmann et al., 1988). The latest improvement of
the third generation WAM model is the cycle 4 version (Hasselmann et al., 1992),
where new wind physics is included and current refraction (not enabled in this
model run) is supplemented (Komen et al., 1996).

The high degree of freedom in WAM allows the user to freely choose a re-
gional or global domain with arbitrary resolution in time, space, direction and
frequency. The settings used in the 2001 model run are displayed in Table 3.1.
As for the frequency resolution, both the nested and coarse model consists of 25
predefined frequency bands which are with high resolution appointed to the low
frequencies. This resolution distribution increases logarithmically from 0.042 Hz
to 0.41 Hz with an increment-to-frequency ratio equal to 0.1. The choices regard-
ing the grid spacing and time steps were based on computational efforts along
with the demand of satisfying the CFL criteria, i.e. avoiding numerical instabil-
ity.

Table 3.1. Resolution settings for the coarse and nested WAM 2001 model run.

Spatial resolution time step # of frequencies # of directions # of sea points

Coarse 0.5◦ ≈ 55.5 km 15 min 25 24 (15◦) 11 251
Nested 0.1◦ ≈ 11.1 km 4 min 25 24 (15◦) 936

The coarse model was run first; providing the nested model with boundary input.
Hence, waves generated outside the nested domain were accounted for. There-
after, the nested model produced ocean state parameters, as listed in Table 3.2,
with high temporal and spatial resolution. The inputs on which both the coarse
and nested models were provided with are addressed in the following section.
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Table 3.2. Output parameters given by the WAM cycle 4 model.

Output parameters

Wind stress fields
Mean wave direction
Mean wave frequency

Significant wave height
Swell wave height and direction

2D wave spectrum at chosen grid points
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Figure 3.1. Illustration of the model domains. The coarse and nested models are repre-
sented with dotted and solid lines, respectively. The area in which the altimeter data was
retrieved is within the dashed lines.

3.1.1 Input

Wind

With the extensive earth-system model called the Integrated Forecast Sys-
tem (IFS) the European Centre for Medium-Range Weather Forecasts (ECMWF)
produces a range of global atmospheric and oceanic parameters (ECMWF, 2006).
Covering both the coarse and fine meshed model domains, synoptic (six hours
interval) winds with a horizontal resolution of 39 km (≈ 0.35◦ of latitude and
longitude) was extracted. As required by the WAM model, the wind input file
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was extrapolated and interpolated to exactly match the grid of the coarse and
nested model, respectively. Given the location of the region of interest this is the
best resolution available. However, the grid spacing is not sufficiently small to
catch the full small scale synopsis of the strong pressure gradients of tropical cy-
clones (Hart & Evans, 2001). As a result underestimation of the intensity of the
tropical cyclones occur (Uppala et al., 2004). For a full description of the assimila-
tion method and changes undergone by IFS during 2001 see ECMWF (2006).

Bathymetry

A global data set of topography, with a resolution of 2 minutes of longitude
and latitude, was taken from the Earth Topography Two Minutes Grid (ETOPO2)
(NGDC & NOAA, revised 2009). This data set includes the ocean bathymetry and
was in 2001 assembled from various global and regional data sets by
NGDC & NOAA (revised 2009). The superior resolution of the topography data
set has no restrains of the models accuracy. In fact, a smoothing of the bathymetry
data had to be done in order to customize the bathymetry to each model domain
and their respective spatial resolution.

3.2 Altimeter

Without available in situ measurements from buoys, altimeter data is the
only accessible means to validate the model output. Presently, the altimeter SHWs
accuracy is suitable to validate wave models, despite the fact that time series are
not readily constructed. However, during satellites’ life time trends and differ-
ences in the SWH data are seen caused by electronic drift, calibration and pro-
cessing changes. Therefore, linear corrections proposed by Queffeulou (2004),
listed in Table 3.3, are applied on the original altimeter SWHs to compensate.
Additional care should be taken when using altimeter data on locations close to
land as degraded quality of the data occurs when the satellite moves from land to
sea, compromising the data for the first few measurements (Krogstad & Barstow,
1999). With an altimeter spatial resolution of typically 7 km this implies that data
from the roughly 20 first kilometers from land should be avoided. Through the
Center for Satellite Exploitation and Research (CERSAT), a department of the French
Institute of Research for the Exploitation of the Sea (Ifremer), SWH data covering the
region within the dashed lines in Figure 3.1 was obtained. The measurements
were done by the ERS-2, TOPEX and GEOSAT Follow-On satellites, owned by the
European Space Agency (ESA), U.S Space Agency (NASA) and French Space Agency
(CNES) and the U.S Navy, respectively. This combined satellite altimeter data set
consisted of 455 571 recordings from 2001. For more details regarding the princi-
ple of altimeter measurements see Krogstad & Barstow (1999).

Table 3.3. Corrections to altimeter SWH measurements proposed by Queffeulou (2004),
utilized by Ifremer (Queffeulou & Croize, 2009), on the form SWHcor = a× SHW + b.

Satellite a b

ERS-2 1.0642 0.0006
TOPEX 1.0237 -0.0476

GEOSAT FO 1.0625 0.0754
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This altimeter SWH data was collocated with SWHs from the 2001 nested WAM
run; chronologically, starting in January 00:00, the altimeter data which deviated
in time and space with less than one hour and 30 minutes and 0.07◦ of longi-
tude and latitude (≈ 7.8 km) was paired with the model SWH. In this case 0.07◦

corresponds to half the diagonal within the nested grid box. With this vast col-
located data set, linear regression and correlation coefficients (as defined in Eq.
(A.1)) can reveal the functional relationship and linear dependence of the model
with respect to the assumed true altimeter data. After applying the functional
relationship on the nested model output, the Hs data can now be considered val-
idated (hereafter addressed as Hval

s ). In order to increase the data set from which
the return values are to be calculated Hval

s will be assessed against a 45 year re-
analysis of global SWHs, addressed in the following section. The concept is to
extract points of interest from this reanalysis and compared with the same val-
idated point from the nested WAM model, a linear functional relationship will
be applied and extrapolated over the remaining 44 years of data as illustrated in
Figure 3.2.

Figure 3.2. Illustration of the extrapolation principle. A functional relationship between
the validated WAM data and the ERA-40 data is found for 2001 (bold lines). Thereafter
the relationship is applied on the ERA-40 data to extrapolate the WAM data (dashed line)
backwards in time. This is done individually for the five points of interest.

3.3 The ERA-40 reanalysis

ECMWF has, in collaboration with many institutions, accumulated global
meteorological observations from September 1957 to August 2002. This vast
amount of meteorological observations includes everything from traditional ra-
diosonding and synoptic surface observations from ship and land to an increas-
ing number of ocean buoys, aircraft and satellite observations. The globally as-
sembled data was used as assimilation in the 45 year ECMWF Re-Analysis (ERA-
40) using the IFS. The reanalysis provides global meteorological wind, temper-
ature and humidity fields, stratospheric ozone and deep water SWH, making
it the longest and most comprehensive wave data set available (Uppala et al.,
2005). The ERA-40 was, in fact, the first reanalysis carried out in which an ocean
wave model had been coupled to an atmospheric model (Uppala et al., 2004).
This allows for ocean atmosphere interaction to be accounted for, and should be
considered important as the ocean waves to a large extent control the surface
wind flow, and in turn might make the model more accurate (Janssen et al., 1989).
The wave model used in the IFS system was ECMWF’s own configured WAM
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cycle 4 model, where both the current and finite depth options were disabled
(Caires et al., 2004). It uses spherical coordinates and provides a global 1.5 ◦ times
1.5 ◦ latitude and longitude resolution with synoptic time scales. With this ocean
wave data available on a global basis, the studies previously limited only to the
northern hemisphere due to higher data coverage, climatology and extreme wave
values can now be studied everywhere in equal accuracy. But, as mentioned in
section 3.1.1, the spatial resolution makes the model underestimate the intensity
of tropical cyclones. Nevertheless, a detection rate close to 100% is reported by
Uppala et al. (2004, 2005) in the southern hemisphere. This value accounts for
the period after 1980 only, and decreases to around 75% in the begining of the re-
analysis. A validation assessment by Caires & Sterl (2003a) revealed that ERA-40
underestimate high Hs values by more than 20%, which in this work may result
in low estimates of calculated return values, if not accounted for.

3.4 Extreme value theory

In extreme value theory statistical techniques and models describe unusual
rather than usual events. Widely used today are two approaches, namely the
Generalized Extreme Value (GEV) and the Generalized Pareto (GP) distribution.
Mutual within these two techniques is the extrapolation of a statistical distribu-
tion representing measurements from a recorded period to an unobserved period
in which the extreme values may occur (Coles, 2001). Following is a brief intro-
duction to both techniques.

3.4.1 Generalized Extreme Value distribution

The origin of the extreme value theory, where the maximum samples were
expressed as asymptotic functions can be traced back to Fisher & Tippett (1928).
Three different limit distributions were distinguished by Gnedenko (1943) which
later was unified by Jenkinson (1955). This unification of the distributions allows
for a continuous range of possible shapes to be modeled within one distribution
function expressed as the Generalized Extreme Value (GEV) distribution (Coles,
2001). Independence and identical distribution (iid) is a prerequisite for data to
be modeled by the GEV distribution. Wave height data recorded continuously
with short intervals over several years will not fulfill these requirements as the
measurements are exposed to strong seasonal variabilities. As a means to remove
this dependence, the data is often divided into bulks of measurements recorded
over periods of time sufficiently long to isolate the seasons. Nevertheless, the
method is still applicable when data with weak dependence is used (Soares &
Scotto, 2001). The values, zn, modeled by the GEV distribution is the maxima
events during these bulks. For this reason this method is often referred to as the
Bulk method, or in the case where annual maxima are used as the Annual Maxima
(AM) method, with a distribution given by

G (z) = exp

{

−
[

1 + ξ

(

z − µ

σ

)]−1/ξ
}

, (3.1)

defined for values of z: 1 + ξ
(

z−µ
σ

)

> 0,

where:
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ξ : shape parameter −∞ < ξ < ∞,
µ : location parameter satisfying −∞ < µ < ∞,
σ : scale parameter σ > 0.

The value of ξ regulates the shape of the distribution which is fitted to the data:

· For ξ = 0 a GEV type I or Gumbel distribution is obtained.
· For ξ > 0 a GEV type II or Fréchet distribution is obtained.
· For ξ < 0 a GEV type III or Weibull distribution is obtained.

Of the many techniques proposed for parameter estimation, the method of
Maximum Likelihood (ML) is applied in this work. This method is implemented
in both the statistical R-based (R, 2009) package extRemes (Gilleland et al., 2009)
and in Matlab’s Statistics Toolbox. Despite that numerical methods are needed
(Dong & Takayama, 2002), this is the most frequently used method and is rec-
ommended among others by Coles (2001). The principle of the ML method is to
decide which family of distributions assigns the highest probability to the data
(Coles, 2001). The ML estimators, σ, ξ and µ, are defined as the parameter values
which maximize the log-likelihood function, ℓ, given as

ℓ (µ, σ, ξ) = − m log σ − (1 + 1/ξ)
m

∑
i=1

log

[

1 + ξ

(

zi − µ

σ

)]

−
m

∑
i=1

[

1 + ξ

(

zi − µ

σ

)]−1/ξ

,

(3.2)

where i = 1, ..., m denotes the data index.
In the case of ξ = 0, the Gumbel limit of the GEV distribution, the log-likelihood
becomes:

ℓ (µ, σ) = −m log σ −
m

∑
i=1

(

zi − µ

σ

)

−
m

∑
i=1

(

exp

{

−(
zi − µ

σ

})

. (3.3)

The maximized likelihood estimate for the united GEV families is obtained by
derivation of Eq. (3.2) or (3.3) with respect to the parameter vector (µ, σ, ξ) and
equating to zero, i.e. maximizing with respect to each of the parameters.

With a model fitted to the data, return levels, zN, defined as the level expected
to be exceeded on average once every N years, can now be calculated. Combining
the probability for non-exceedance, P (z < zN) = 1 − 1/N, and Eq. (3.1), the
system G (zN) = 1 − 1/N is solved for zN by inversion, yielding (Palutikof et al.,
1999):

zN =

{

µ − σ
ξ

[

1 − {− log (1 − 1/N)}−ξ
]

if ξ 6= 0

µ − σ log {− log (1 − 1/N)} if ξ = 0.
(3.4)

When using multiple observations during a year, i.e. the bulk method, this must
be accounted for by replacing the 1/N term with 1/

(

N × ny

)

, where ny is the
number of measurements during a year. By this, we see that the return level
depends on the number of observations used in the distribution.

An important property regarding the three different distribution functions is
illustrated when plotting Eq. (3.4) against yp = −log (1 − 1/N) on a logarith-
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mic scale. This is illustrated by a return level plot in Figure 3.3. In this example
the scale and location parameters are held constant for values of 1.0 and 2.0, re-
spectively, while different shape values invoke the characteristic shapes of each
GEV family. The Gumbel distribution is here seen as a straight line, in contrast
to the Fréchet and Weibull distributions which have concave and convex shapes,
respectively. It appears from this that the Weibull distribution is the only family
which is bounded in the upper end. For the other two families an unphysical
behavior is seen in the upper end where they are unbounded, indicating return
levels of infinite size. This characteristic behavior prevails irrespective of the val-
ues of the scale and location parameters, which control the slope and intercept on
the y-axis, respectively. Although exaggerated, Figure 3.3 indicates that, despite
being bounded in the upper end, return values obtained by the Weibull family are
always smaller than what the other families would estimate Harris (2004, 2005).
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Figure 3.3. The concave, linear and convex shapes of the Fréchet, Gumbel and Weibull
families, respectively, are well illustrated when plotted on a logarithmic scale. In this
example the scale and location parameters of a GEV distribution are set to 1.0 and 2.0,
respectively.

A drawback for the GEV model is the critical data exploitation, where only
the single highest observation during a year is used while the rest of the data is
discarded (Pickands, 1975; Soares & Scotto, 2001; Caires & Sterl, 2005). This might
cause questionable return levels estimates as the highest values below the AM
might exceed an AM recorded any other year. High uncertainty is an additional
consequence, predominately seen for return levels corresponding to long return
periods, as the extrapolation is based on an inadequate data set. Motivated by this
weakness a new asymptotic distribution for extreme value analysis, called the
Generalized Pareto (GP) distribution, was developed. This distribution combines
the GEV approach, and is addressed in the following section.

Finally, it should be mentioned that AM data is used in this work, in which
a ’year’ is defined from October 1st to September 30th. By dividing the year at
the beginning of the austral summer the full austral winter is accounted for in the
cycle of a ’year’, hence avoiding that valuable data is left out by the occurrence of
two extreme seasons within the same bulk.
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3.4.2 Generalized Pareto distribution

When data of higher resolution than AM is available, e.g. monthly maxima or
six-hourly in this case, modeling using block maxima is a waste in the approach
to finding an accurate extreme value (Coles, 2001). The method to be described
now avoids the blocking procedure and characterizes the observation as an ex-
treme if it exceeds a high threshold, hence making the most out of the available
data. Within the community of extreme value statistics the Peaks over Thresh-
old (POT) method seems highly favored compared to the AM method (Soares &
Scotto, 2001; Dong & Takayama, 2002; Alves & Young, 2003; Caires & Sterl, 2005;
Caires et al., 2006b; Neelamani et al., 2007; Naess & Gaidai, 2009).

Let Xi = X1, X2, ..., Xn be a time series of recorded SWH measurements. The
observations which exceed a fixed threshold, u, are termed exceedances, z1, ..., zk =
Xi − u, where Xi > u, and occur according to a Poisson process1. This classifica-
tion of extremes is illustrated in Figure 3.4. Groups of consecutive exceedances

Figure 3.4. Example showing the peaks over threshold extraction for two random years of the ERA-40
data. The exceedance values range from the individual peaks marked by a circle to the dashed threshold
line, which in this case represent the 95% quantile.

are called clusters and are generated by the same storm. This dependence must
be removed to fulfill the requirement of independence, and is done by choosing
only the peak exceedance within a cluster. In the case where the storm intensity
decreases for thereafter to intensify, multiple clusters may be generated by the
same storm, an example of which is seen in March 1963 in Figure 3.4. Again, also
this dependence is removed, as proposed by Alves & Young (2003), Caires & Sterl
(2005) and Caires et al. (2006b), by separating the clusters with a minimum of 48
hours. The distribution of the exceedances can now be approximated by the GP
distribution (Coles, 2001):

G (z) =

{

1 −
(

1 + ξz
σ̃

)−1/ξ
if ξ 6= 0

1 − exp
(

− z
σ̃

)

if ξ = 0,
(3.5)

defined for z > 0 and
(

1 + ξz
σ̃

)

> 0, where u is the threshold value and

σ̃ = σ + ξ (u − µ) . (3.6)

1Any process with continuous events occurring independently. A positive parameter, ny, ex-
ists which represents the average rate of occurrence during a year (Hogg & Tanis, 2006).
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Again, this allows for a continuous range of distributions combining three fami-
lies with different tail behaviors. The parameters ξ and µ are the same as defined
for the GEV distribution in Eq. (3.1). Coles (2001) states that if the AM from a set
of observation can be fitted to a GEV distribution, observations above a thresh-
old can be fitted to a GP distribution. Similarly as for the GEV distribution, ξ
is dominant in determining the behavior of the GP distribution. The same con-
ditions regarding the values of ξ apply and assigns the same distinct shapes as
illustrated in Figure 3.3. This implies that for the GP distribution only the Weibull
family is fully appropriate to model a naturally bounded phenomenon as waves.
Once a threshold is selected, a topic addressed below, the model parameters can
be estimated. Again, this is done by the ML method, in the same manner as de-
scribed above, but now the log-likelihood function, ℓ, in the case of ξ 6= 0, is given
by

ℓ (σ̃, ξ) = −k log σ̃ − (1 + 1/ξ)
k

∑
i=1

log

(

1 +
ξzi

σ̃

)

, (3.7)

where i = 1, ..., k is the index of the exceedances. For ξ = 0, ℓ is given as

ℓ (σ̃) = −k log σ̃ − 1/σ̃
k

∑
i=1

zi. (3.8)

With a model assigned to the data, the return level, zN, is derived solving
G (zN) = 1 − 1/

(

Nnyλu

)

for zN. Here G (zN) stems from Eq. (3.5), and the
probability of non-exceedance is P (z < zn) = 1− 1/

(

Nnyλu

)

. This yields (Coles,
2001)

zN =

{

u + σ̃
ξ

[

(

Nλuny

)ξ − 1
]

if ξ 6= 0

u + σ̃ log
(

Nλuny

)

if ξ = 0,
(3.9)

where λu represents probability of an observation exceeding the threshold, u, and
ny = k/45 is the average number of exceedances per year.

Threshold selection

The challenge when fitting a GP distribution to a set of data, is the selection
of an appropriate threshold. A threshold too high will render little data on which
to base the estimation of the parameters on, hence resulting in large variance of
the parameter estimates. On the contrary, a threshold selected to low will give
biased parameter estimates but with small variance. Furthermore, if the thresh-
old is lowered too much, events belonging to the central part of the distribution
are included. This may violate the independent distribution condition of the GP
distributions as the observations are clustered too close, but also include obser-
vations not classified as extremes. The idea is to find a threshold high enough for
the underlying theoretical foundation to be valid, but low enough so that there
are sufficient data with which to make an accurate fit. Despite the threshold se-
lection is vital to the outcome of the return values (Dong & Takayama, 2002), no
standardized procedure exists to select an appropriate threshold. Alves & Young
(2003) recommend tuning the threshold until the number of extracted maxima
corresponds to the average number of storms per year. Caires & Sterl (2005)
achieved good results fixing the threshold at the 93% quantile of the full time
series when using the ERA-40 data. And from Breivik et al. (2009, and references
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therein) the threshold is recommended to be chosen such that the number of ex-
ceedances are approximately 10 per year, or 2 − 3 times the mean value of the
significant wave height. However, as the threshold selection is expected to vary
for each location, the threshold choice for each position studied in this work is
individually assessed by using two visual techniques proposed by Coles (2001).

The first method is based on the mean of the GP distribution, and is illus-
trated in Figure 3.5. The concept is to find the lowest threshold for which the plot
is nearly linear, and ideally choose the lowest threshold at which the GP distri-
bution is valid (Caires & Sterl, 2005). In this plot the sum of the excesses over the
threshold u is divided by the amount of data points which exceed the threshold u
and is plotted against u. The curve describes the expected overshoot of a thresh-
old once an exceedance occurs. If the curve has a negative gradient it indicates
that the observations follow a GP distribution with a negative ξ, and vice versa
for positively sloped curves (Gencay et al., 2002). In the example illustrated in
Figure 3.5 the mean exceedance line is seemingly linear with a negative gradi-
ent for thresholds between 2.4 and 3.1 m, an indication that the data should be
modeled with the Weibull distribution.

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Threshold, u

[m
]

Mean exceedance over level u

 

 
North of island, Mozambique Channel

Figure 3.5. Estimated expected exceedance over the threshold, u, as a function of u for
flag 4, North of island. Linearity with a negative slope is seen for values of u ranging
from 2.4 to 3.1 m, implying the Weibull distribution as a likely model to fit the data.

In the second method the GP distribution is fitted to a range of thresholds,
looking for stability in the parameter estimations. The procedure is based on that
if a GP distribution serves as a reasonable fit to the exceedances of a threshold u0,
then the exceedance of a higher threshold, u > u0, should also fit a GP distribu-
tion. For both these two distributions ξ is identical, whereas the scale parameter
estimated when using u > u0 is σu, and is by use of Eq. (3.6) given as:

σu = σuo + ξ (u − u0) . (3.10)

The fact that σu changes with u unless ξ = 0 is accounted for by reparameterizing
Eq. (3.10) to σ∗ = σu − ξu, which is constant with respect to u. Accordingly, both
estimates of σ∗ and ξ should be constant for u > u0. Figure 3.6 illustrates an
example of the estimates for the modified scale and shape parameter for a range
of 20 different thresholds. Accounting for the sampling variability the parameters
seem stable around 2.5 m, appointing this as an appropriate threshold selection.
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Figure 3.6. Parameter estimates against 20 thresholds ranging from 2.0 to 4.0 m for
significant wave height observation. In this example a threshold selection of 2.5 m seems
appropriate.

3.4.3 Model checking

Although it is impossible to quantify the reliability of an extrapolation based
on a GEV or GP model, different graphical goodness-to-fit checks are used in
which the validity of the model is assessed with reference to the observed data.
Probability plots compare the empirical and fitted cumulative distribution func-
tions, where any observed departures from the unit diagonal indicate shortcom-
ings of the model. However, as both the empirical and fitted distribution func-
tions are bound to approach 1 for observations of large values, little informa-
tion is provided in this important low density region of the model. This weak-
ness is avoided when the same information is expressed at a different scale in
the quantile-quantile (Q-Q) plot. Here observations from different quantiles are
assessed against the corresponding modeled quantile. Again, departures from
linearity provide evidence of a failing model. Another graphical technique is
the return level plot where Eq. (3.4) or (3.9) is plotted against yp = −log (1 − P)
on a logarithmic scale. P represents here 1/N or 1/Nnyλu for the GEV and GP
distribution, respectively. The advantages of this technique are the simple in-
terpretation and the compressing of the tail by the choice of a logarithmic scale
which highlights the effect of extrapolation for long return levels. Additionally,
the linearity of the plot in the case of ξ = 0 makes the distinction of the different
model families easily distinguished. To further increase the informativeness of
the plot, confidence intervals (CI) can be added. This allows the return level plot
to be used as a goodness-to-fit test where observations outside the CI band sug-
gest an inadequate model. The last graphical check is different from the others
in the way that it is based on the density function rather than the model-based
and empirical distribution function. Here a modeled probability density func-
tion is compared with a scaled histogram of the observed data. However, these
density plots are less informative regarding model checking as the shape of his-
tograms vary markedly with the choice of bin intervals. Therefore, there is no
unique parameter assigned to different shapes of density functions of the respec-
tive families.

3.4.4 Confidence intervals

When extrapolating return values the uncertainty increases for values corre-
sponding to long return periods. In this work a CI of 95% will be applied on the
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data. However, one should be aware of that this CI is based on the assumption
that the model is correct, and therefore should be regarded as the lower bounds
of uncertainty. If the uncertainty regarding the model’s validity were taken into
account, the CI would have been considerably higher (Coles, 2001). Two different
approaches, namely the Delta and the Profile likelihood method are used to estimate
the CI of return values in this work. For a thorough explanation, see Coles (2001).

The Delta method is applied when using both MatLab and the R-based extRemes
package. It assumes that the ML parameter estimates are distributed with a stan-
dard normal distribution, and will therefore symmetrically flank the best esti-
mate. The approach involves finding the variance, Var (zN), of the return value,
zN, for thereafter to obtain the approximate 95% CI by zN ± 1.96 × SE, where SE

is the standard error (
√

Var (zN) = SE (zN)). The variance of the return value is
defined as (Coles, 2001)

Var (zN) ≈ ∇zT
NV∇zN, (3.11)

where V is the variance-covariance matrix of the ML estimated parameters. The
transposed matrix, ∇zT

N, is given by

∇zT
N =

[

∂zN

∂µ
,

∂zN

∂σ
,

∂zN

∂ξ

]

, (3.12)

when using a GEV distribution. However, the same formula is applicable for the
GP distribution by substituting µ with λu in the first column. Differentiating, by
use of Eq. (3.4) and (3.9), Eq. (3.12) is rewritten as (Coles, 2001)

∇zT
N, GEV =

[

1,−ξ−1
(

1 − y
−ξ
p

)

, σξ−2
(

1 − y
−ξ
p

)

− σξ−1y
−ξ
p logyp

]

, (3.13)

and

∇zT
N, GP =

[

σmξλ
ξ−1
u , ξ−1

{

(mλu)
ξ − 1

}

,

−σξ−2
{

(mλu)
ξ − 1

}

+ σξ−1 (mλu)
ξ log (mλu)

]

,
(3.14)

for the GEV and GP distribution, respectively, evaluated at their respective pa-
rameter estimates. In Eq. (3.14), m corresponds to the return period multiplied
by the number of data points per year, i.e. m = Nny. Either equation can now be
substituted into Eq. (3.11) to yield the return value variance, and in turn provide
the CI. This procedure was implemented in MatLab routines which are attached
in the appendix for illustration.

The Profile likelihood method generally generates better approximations of the
CI (Coles, 2001). The technique involves a direct reparameterization of zN by use
of Eq. (3.4) or (3.9). The profile log-likelihood is obtained by maximizing the
respective model’s log-likelihood function, ℓ, with respect to the parameters in
which zN is now represented. The parameterizations reads (Coles, 2001)

µ =

{

zN + σ
ξ

[

1 − {− log (1 − 1/N)}−ξ
]

for ξ 6= 0

zN + σ log [− log (1 − 1/N)] for ξ = 0
(3.15)
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in the case of a GEV distribution and

σ̃ =







(zN−u)ξ

(Nnyλu)
ξ−1

for ξ 6= 0

zN−u

log(Nnyλu)
for ξ = 0

(3.16)

for the GP distribution.
The CI is now found in the profile plot where a horizontal line representing a
critical log-likelihood value intercepts with the return level profile. This critical
value is defined as the border above which the model parameters are in close
agreement with the observed data. An example of a profile log-likelihood is seen
in Figure 3.7, where data from the Oil location is modeled with a GP distribu-
tion. Note that the CI will in this case not be symmetrical, which is owing to the
assumed right skewed chi-square distribution of the ML parameters (Meeker &
Escobar, 1995). However, this assumption is appropriate regarding waves, as the
density of information decreases for extreme observations, hence reflected by the
more precise CI.
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Figure 3.7. Profile likelihood for 100-year return level from the Oil location. The 95% CI
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Chapter 4
RESULTS

4.1 The model run

First off in this chapter the coarse and nested 2001 WAM model runs will
be addressed. The enhancement of spatial resolution in the nested model will be
illustrated, followed by single point model comparisons where significant wave
height data is extracted from one exposed and one shallow water position.

4.1.1 Coarse versus nested run

Figure 4.1, which illustrates the significant wave height conditions for both
model domains at 06:00 the 30th of October 2001, shows matching large scale
features in the Mozambique Channel. However, as the resolution of the nested
model resolves higher geographical details, like coastal features and islands, some
enhancements can be seen in Figure 4.1(b). Illustrated here is a shading effect
from the islands located in the northern opening of the channel, where the north-
ward propagating waves which does not make land fall on the island are seen
as fingers extending to the north. For this reason the nested model is expected
to yield output more realistic in areas close to land, islands or in regions with
shallow water depths.

In order to test the coarse and nested model correlation, scatter plots were
made with SWH data extracted from the location South of island, Flag 2 in Figure
1.1, an exposed position in deep water, and from the shallow Sofala Bank location,
Flag 3. The linear regression and correlation coefficients along with the root-
mean-square error, RMS, as defined in Eq. (A.2), and bias, as defined in Eq. (A.3)
in the Appendix, are seen in Figure 4.2(a) and (b). At the South of island location
a correlation coefficient of 1.0 implies that an increase or decrease in SWH oc-
curs simultaneously in both the nested and the coarse model, and the functional
relationship reveal a one-to-one relationship. Little deviation is seen between cor-
responding data points, illustrated by the insignificant RMS error of 0.06 m and
the zero bias value. Regardless of the persuasive correlation values, overestima-
tion performed by the coarse model during some single events is seen. As for
the shallow Sofala Bank the 2918 data points are again perfectly correlated and
densely distributed, with a positive correlation of 0.99 and a RMS error of 0.06
m. However, at the Sofala Bank the linear regression coefficients reveal a slight
overestimation of SWHs smaller than 1.5 m by the coarse model and an underes-
timation of the exceeding SWHs, given by the ratio and intercept values 1.05 and
−0.07, respectively.

30
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(a) Coarse model (b) Nested model

Figure 4.1. Significant wave height map illustrating the difference in spatial resolution of the coarse
and nested models. Both color bar units are given in meters, however, with different scales.
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Figure 4.2. Point comparison between coarse and nested model. The coarse to nested ratio (A)
and vertical displacement value (B) indicate an excellent coincidence for the exposed and open
water position South of island, whereas a small offset is experienced over the shallow Sofala
Bank. The dashed red line represents ideal values of ratio A = 1 and zero offset, B = 0, while
the gray solid line has slope and intersection values as given by A and B on the plots.

In the next section an immediate application of the model data is seen when
the seasonal pattern is found by calculating monthly means of SWH and primary
wave direction for both the coarse and nested model domain.
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4.1.2 Monthly means

The seasonal variations are illustrated in Figure 4.3 and 4.4, where the monthly
means of the primary wave direction and significant wave height for both the
coarse and nested models are presented. The small scale pattern from the nested
model plots are in accordance with the main features of the corresponding plots
based on the coarse model. Throughout the year waves generated by the con-
sistent westerly winds in the Southern Ocean propagate towards either side of
the South African coast. However, the extent of which they penetrate into the
Mozambique Channel vary, with a minimum wave intrusion observed in Jan-
uary, where only waves of modest height are observed further north than the
Sofala Bank. At this time of the year the easterly winds dominate south of the
channel, producing waves with an average significant wave height of 1.6 to 1.8
m which travel towards the region of Maputo, the capital. North of the chan-
nel waves generated by the northeasterly monsoon travel southwards and meet
with the northward moving waves in the middle of the channel, as seen in Fig-
ure 4.4(a). For the rest of the year the waves north of the channel travel north-
westward towards the border between Mozambique and Tanzania.

(a) (b)

(c) (d)

Figure 4.3. Monthly means of the primary wave direction and the significant wave height
for January, April, July and October from the coarse model run of 2001. The primary wave
direction is averaged and displayed for every 12th grid point. The units of the color bars is
meter and are subjected to a change of scale between some panels.
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(a) (b)

(c) (d)

Figure 4.4. Directional and significant wave height monthly mean for January, April, July and Oc-
tober from the nested model run of 2001. The primary wave direction is averaged and displayed for
every 12th grid point. The scales of the color bars vary and have units given in meters.

4.1.3 Discussion

Despite the plots presented in Figure 4.3 and 4.4 are based on 2001 data alone,
the maps correlate well both in wave size and spatial distribution when compared
with monthly means plotted in the ERA-40 based Global Wave Climatology Atlas
by Caires et al. (2006a). This is assuring regarding the accuracy of the model run,
as the Global Wave Climatology Atlas is based on corrected data, whereas the model
data from this work is not yet validated.
As for the coarse and nested model run an appropriate correlation is observed,
both regarding spacial pattern and wave size. However, the small deviations pre-
sented by the statistical parameters in Figure 4.2(b) might indicate that within the
shallow regions of highly varying bathymetry, the nested model will most likely
predict values more accurately than the coarse model. Then again, as the same
wind input is applied for both model runs, only small departures are expected.
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4.2 Validation

In this section validation of the nested model will be assessed by use of al-
timeter data. Initially, the total collocated WAM-altimeter data set will be used,
and a functional relationship for the full area over which the nested domain and
the altimeter regions overlaps will be estimated. Further, as to assess the local
spatial variability of the model’s accuracy, linear dependencies will be estimated
using collocated SWH extracted from a 2◦ by 2◦ latitude/longitude domain with
each of the five locations of interest as a center.
Once a linear relationship which validates the nested WAM model is established
and applied, functional relationships between the five locations from the cor-
rected WAM model and five ERA-40 data locations will be estimated for the
purpose of extrapolating the WAM model backward in time. This will be ad-
dressed in a successive section, where scatter diagrams for each location will be
presented. As a last step in the validation process the correspondence between
the ERA-40 data and the satellite data will be assessed using a new data set in
which untampered ERA-40 is collocated with altimeter SWH.

4.2.1 WAM versus altimeter

Taking the absolute value of the difference from all collocated data pairs,
and averaging the points which fall within a 0.5◦ longitude/latitude box gives
the mean absolute deviation plot seen in Figure 4.5. In the north and towards the
southern opening of the Mozambique Channel altimeter and modeled SWHs cor-
relate well, where small deviations ranging up to 0.3 and 0.4 m are seen. Further
south a sporadic increase of deviations occur, reaching values of 0.7 m. Yet, it is
along the coast the highest values of discrepancy are observed.
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Figure 4.5. Mean absolute deviation from the collocated WAM and altimeter data with
a spatial resolution of 0.5◦ latitude/longitude.

Figure 4.5 relates to the geographical credibility of the nested model yet it does
not convey any information regarding over which wave dimensions the model’s
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credibility is highest. This is illustrated in Figure 4.6, where the collocated SWHs
are plotted with color codes indicating the probability of occurrences. The first
striking feature is the model’s underestimation which increases in magnitude for
higher waves. As for the smaller values, < 1.0 m, the belt of the most frequently
occurring wave heights is nearly underlying the red dashed line which indicates
the one-to-one ratio. It is also evident from the probability density plot that the
SWHs from 2001 rarely exceed 3 m, seen by the dark blue color indicating a prob-
ability of occurrence close to zero. However, as it is this upper tail of waves which
are most prone to underestimation by the model, and also the waves of interest
in this work, it is obvious that in order to ensure accurate return values, the un-
derestimation observed must be accounted for.
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Figure 4.6. Density probability plot of the collocated nested model and altimeter data.
The wave height resolution is 0.1 m and the probability of any occurrence is indicated by
the color bar. The red dashed line indicates the perfect ratio between model and altimeter.

The functional relationship which relates the modeled SWHs to the measured
altimeter SWHs is given by the regression coefficients A and B in the scatter plot
seen in Figure 4.7. This data is based on the full collocated SWH data set, and
yields a very strong linear association between the variables given by the positive
correlation of 0.89. The ratio, A = 1.19, and vertical displacement, B = 0.03,
implies a general underestimation of 19% by the nested WAM model, whereas
the small RMS error of 0.54 m indicates a relatively dense distribution pattern.
With this robust linear dependence, based on 284 672 data points, applied on the
nested model, the underestimation will be accounted for. SWH values close to
the altimeter values from any random grid location may now be extracted from
the nested model for comparison with the ERA-40 time series. This is done in
the following section, but first, the spatial variation of the model validation is
assessed.

The scatter plots, based on the locally extracted data, in Figure 4.8 all reveal,
though varying in value, tendencies of model underestimation, the same as ob-
served in Figure 4.7. However, for the North of island, South of island and the Surf
location the correlation and regression coefficients along with the RMS error and
the bias are of equal size as the values obtained when applying the full collocated
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data set. For the Oil location the underestimation amounts solemnly from the ver-
tical displacement, B, an offset of 0.18 m. Furthermore, this is the location where
both the lowest correlation coefficient, reading 0.81, along with the smallest RMS
error and bias are seen. As for the Sofala Bank, the ratio and the intercept values
of 1.10 and 0.26, respectively, are contributing factors for the model underesti-
mation. General for these five scatter plots is the sparse number of applied data,
ranging from 2969 to 5644 data points, makeing the RMS error and the bias sen-
sitive to single events such as the departures seen in the upper end of (b) and
(d).

Figure 4.7. Scatter plot with statistical coefficients. The linear dependence of the model
and altimeter is described by the straight (gray) regression line y = Ax + B, where A
is the slope and B is the intercept on the y axis. The number of data points of which the
regression is based on is given in the title along with the correlation coefficient.
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Figure 4.8. Scatter plots with statistical coefficients. For each location collocated data has been ex-
tracted from a 2◦ latitude/longitude box with its respective position in the center. The linear depen-
dence between the model and altimeter is described by the straight (gray) regression line y = Ax + B,
where A is the slope and B is the intercept on the y axis. The number of data points on which the
regression is based is given in the title along with the correlation coefficient.
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Discussion

The functional relationship obtained when using all collocated data points,
yielding HsSAT = HsWAM ×1.19 + 0.03, is regarded robust due to the vast amount
of data points used in the linear regression. Despite coastal altimeter values are
included in the 284 672 collocated data points, the effect on the functional rela-
tionship inflicted by the small amount of erroneous data is less important. The
functional relationship in Figure 4.7 shows that the modeled SWHs are generally
19% too low compared with the altimeter data. This coincides with results from
a global model experiment carried out by Romeiser (1993) where the WAM mod-
eled SWHs validated by GEOSAT altimeter data indicated an underestimation
of about 20% in the Southern Hemisphere winter. Geographically closer, Bauer
et al. (1992) found the modeled SWH to be 30− 40% lower than the altimeter data
over the Indian Ocean. However, these studies were carried out using global
WAM models with spatial resolutions of 1.5◦ × 1.5◦ and 3◦ × 3◦ latitude and lon-
gitude, respectively. In the latter studie the high underestimation is most likely
a resolution effect where the coarse resolution in time and space miss out on the
high wind speeds. Also the small RMS error of 0.50 m obtained by Janssen et al.
(1997), again from a global WAM model, matches well with the 0.54 m obtained
here. However, regional differences are reported regarding both functional re-
lationships and statistical constants. This is illustrated in Figure 4.8, where the
deep water locations South of island, North of island and Surf tend to relate better
to the all-inclusive functional relationship.

When the linear regression is carried out separately for each of the five lo-
cations, the coefficients are based on 2969 to 5644 data points. Though this is
not as robust as the coefficients seen in Figure 4.7, it may in turn be regarded
as more exact for its respective location. The sparse number of data points are
likely sufficient for single events like the storm observed in the upper end of Fig-
ure 4.8(b) to slightly influence the result, therefore using this regression should
only be done if the robust regression is considered inaccurate for a specific loca-
tion. In other words, determining which of the regression coefficients to apply
on the model data is a predicament between sturdiness and accuracy. Therefore,
as the regression coefficients and correlation obtained from Figure 4.7 are closely
related to the values in Figure 4.8(a),(b) and (d), the functional relationship of
HsSAT = HsWAM × 1.19 + 0.03, obtained from Figure 4.7, will be applied on the
locations South of island, North of island and the Surf. With this, the validation is
both robust and at the same time the accuracy is preserved.

For the Oil location the model and altimeter provide data with good corre-
lation, however the regression coefficients are markedly different from those in
Figure 4.7, yielding an one-to-one ratio and a constant underestimation of 0.18
m. This implies a smaller underestimation for higher SWH values compared to
the all-inclusive 19% underestimation. However, if the HsSAT = HsWAM × 1.19 +
0.03 dependence is applied at this location a higher estimate of the return value is
obtained. Table 4.1 exemplifies this effect, where both the all-inclusive and the in-
dividually obtained functional dependencies are applied on the 20 highest SWHs
occurring at each location in the ERA-40 time series. This table illustrates that the
Oil location is the only location which will suffer from an underestimation, and
the Surf location the opposite, if the locally obtained linear dependence were to be
applied. At the remaining locations a neglectable effect is seen whichever func-
tional dependence is applied. A possible reason for this distinctive functional
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Table 4.1. Illustrating the effect of the applied correction versus the individual linear
dependence presented in Figure 4.8.

Average top 20 ERA-40 measurements, [m]
Location Full: 1.19 + 0.03 Local, as Figure 4.8 Difference
North of island 4.99 5.02 -0.03
South of island 6.14 6.19 -0.05
Oil location 4.55 3.96 0.59
Surf location 6.38 6.69 -0.31
Sofala Bank 3.40 3.38 0.02

relationship at the Oil location is the absence of the high swells produced by the
persisting westerly winds in the south. This may further imply that it indeed is
over the higher end of the SWHs where the discrepancies start to occur between
model and altimeter. Another, but less likely reason, is based on that the Oil loca-
tion is located in the northern outskirts of the nested and coarse model domain.
Therefore it might occur that the boundary input provided by the coarse model
may depart from the true wave conditions as the model area in which the south-
west moving waves are generated is too small to reproduce all generated waves.
This is particularly the case in the summer when the weak northeasterly winds
prevail.
Furthermore, the Oil location is in the region where tropical cyclones occasionally
influence wave conditions. Again, this occurs during summer, and is not possible
to fully include in the model calculations until winds with resolution adequate to
resolve the full nature of TCs are available. However, as implied by the very low
RMS error in this location, this effect is not very big. Nevertheless, as a means of
making the validation more robust, and simultaneously avoiding underestima-
tion of the return values, the functional relationship obtained by the all-inclusive
scatter plot in Figure 4.7 is the one which will be applied when validating the
model data.

At the shallow Sofala Bank the locally obtained functional relationship yields
HsSAT = HsWAM × 1.10 + 0.26. This is different from the other functional rela-
tionships as both the ratio and the intercept constants contribute to the underesti-
mation, an effect seen influencing even the small SWHs. At first this dependence
was regarded doubtful due to the Sofala Bank’s vicinity to land and the altime-
ter’s weakness over this area. However, as Figure 4.9 illustrates, the distance
separating the location from land is sufficient to provide accurate altimeter data,
a statement which holds for all locations. Another concern regards the coarse
spatial altimeter resolution of typically 7 km. This footprint, over which the mea-
surements are averaged, does not allow for the potentially large transformation
in wave conditions which takes place from deep to shallow water, c.f. Table 2.1,
to be fully resolved (Krogstad & Barstow, 1999). With this weakness in mind, but
also referring to the small difference the individual functional dependence would
play on the highest SWHs, see Table 4.1, the decision of applying the dependence
from the full collocated data set was made.

To summarize, the functional relationship which will be applied on the se-
lected nested model locations reads HsSAT = HsWAM × 1.19 + 0.03, and is the
proposed functional relationship for all data extracted from this model.
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Figure 4.9. Map showing the minimum radial distance from each position to either land
or islands. The Flags represent locations as presented in Table 1.1

4.2.2 Validated WAM versus ERA-40

To extrapolate the five validated model locations backward in time func-
tional relationships with the ERA-40 locations from 2001 must be established.
After synchronizing the validated model data to fit time intervals and record-
ing times of the 2001 ERA-40 data the scatter plots in Figure 4.10 were made.
The RMS error seen at all locations relates to values of high accuracy, while
the correlation coefficients, ranging from 0.85 to 0.91, indicate a very strong de-
gree of linear dependence between the model and ERA-40. However, a gen-
eral underestimation by the ERA-40, though varying in magnitude, is observed
at all deep water locations. For the North of island, Oil and Surf locations the
vertical displacements read −0.04,−0.04 and −0.01 m, respectively, insignifi-
cantly small values which may be neglected compared to their high values of
slopes which yield 11%, 23% and 9%. For the South of island location the dis-
placement constant is of a higher value, and the model to ERA-40 ratio reads
HsWAM validated = HsERA−40 × 1.18 − 0.15, indicating a slight overestimation for
ERA-40 SWHs just below one meter. At the Sofala Bank the functional relationship
reads HsWAM validated = HsERA−40 × 0.80 + 0.01, indicating an overestimation for
ERA-40 SWHs which increases towards higher wave heights. With the functional
relationships listed in Table 4.2 the validated model can now be extrapolated back
to September 1957.
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Figure 4.10. Scatter plots with estimated functional relationships coefficients for the 2001 validated
nested model and ERA-40 SWHs. A and B correspond to the slope and vertical displacement at the y
axis of the gray least-square line, respectively. The number of data points on which the regression is
based is given in the title along with the correlation coefficient.
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Table 4.2. Functional relationships used to extrapolate the validated model data back to
1957.

Location Functional relationship

North of island HsWAM validated = HsERA−40 × 1.11 − 0.04
South of island HsWAM validated = HsERA−40 × 1.18 − 0.15
Oil location HsWAM validated = HsERA−40 × 1.23 − 0.04
Surf location HsWAM validated = HsERA−40 × 1.09 − 0.01
Sofala Bank HsWAM validated = HsERA−40 × 0.80 + 0.01

Discussion

Unfortunately no previous work with which to compare this locally vali-
dated WAM model exists. However, ERA-40 validation assessments carried out
by Caires & Sterl (2003a) and Caires & Sterl (2003b) found 20% and 17% under-
estimation on a global basis, respectively. This concur well with the averaged
underestimation of the four deep water locations which adds up to 15%. For the
Sofala Bank this does not apply as the ERA-40 model does not account for shallow
water effects, implying the SWH data is only valid in deep water regions. The
functional relationship seen at the Sofala Bank is therefore not comparable with the
latter mentioned works. The Sofala Bank overestimation is likely an effect caused
by the coarse resolution where the bathymetry is not adequately resolved, hence
missing the frictional effect from the bottom.
Large spatial resolution might also be the cause for the general underestima-
tion experienced by the ERA-40 data, where the modeled high wind speeds are
likely underestimated, causing a negative feedback for the waves. Caires & Sterl
(2003a,b) further reported an overall effect of overestimation which was found
over SWH smaller than 1.5 m. This is not seen in the validated WAM and ERA-40
scatter plots. Although not vital in this work, this effect might be revealed when
the collocated altimeter and ERA-40 data is assessed in the following section.
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4.2.3 ERA-40 versus altimeter

The final validation assessment carried out consider the collocated altimeter
and unaltered ERA-40 data extracted from the altimeter domain illustrated in Fig-
ure 3.1. In this collocation each altimeter measurement is paired with the closest
ERA-40 grid point, with a maximum deviation of 3 hours and approximately 1◦

latitude/longitude in time and space. Again, the maximum distance, in this case
1◦, corresponds to half the diagonal of the respective model grid. The scatter plot
based on this data set is seen in Figure 4.11 along with statistical properties. In
the case where successive altimeter measurements occur within the region of 1◦,
multiple altimeter records are assigned to the same ERA-40 point, a circumstance
appearing as vertical concentrations in the scatter plot.

Figure 4.11. Scatter plot with statistical coefficients. The linear dependence of ERA-40
and altimeter is described by the straight (gray) regression line y = Ax + B, where A
is the slope and B is the intercept on the y axis. The number of data points of which the
regression is based on is given in the title along with the correlation coefficient.

A functional relationship of Hsaltimeter = HsERA−40 × 1.15 − 0.14 is illustrated by
the gray least-square line. The negative intercept value of −0.14 m causes the
gray least-square line to cross the red dashed one-to-one ratio line, indicating a
region of overestimation below the point of intersection of one meter. As for the
correlation coefficient, RMS error and bias, the values correspond to highly linear
dependent variables with a distinct degree of accuracy.
In Figure 4.12 the probability density distribution within the altimeter and ERA-
40 SWH range is seen in panel (a), whereas panel (b) illustrates the mean absolute
deviation between altimeter and ERA-40 for the collocated region. The probabil-
ity density plot displays a high probability belt with the peak occurrence of 2.0
m, only slightly shifted away from the one-to-one ratio line. For the upper tail
the underestimation of the ERA-40 model is stronger, nevertheless, also here the
overestimation for waves of modest height is evident. The mean absolute devia-
tion map depicts the same pattern as seen for the full collocated nested WAM and
altimeter plot, namely that the highest deviations are found along the coast. In
this plot, the coast of Madagascar, the southernmost region of the African coast,
and the coastal area inshore from the Oil location are regions over which large
deviations prevail.
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Figure 4.12. (a) Density probability plot of ERA-40 and altimeter data. The wave height
resolution is 0.1 m and the probability of any occurrence is indicated by the color bar. The
red dashed line indicates the one-to-one ratio between the ERA-40 model and altimeter
SWHs. (b) Mean absolute deviation from ERA-40 and altimeter data with a spatial
resolution of 0.5◦ latitude and longitude.

Discussion

The functional relationship from the two different approaches of ERA-40
validation, namely the averaged deep water individually validated WAM loca-
tions and the direct altimeter approach, relates well, reading HsWAM validated =
HsERA−40 × 1.15 − 0.06 and Hssat = HsERA−40 × 1.15 − 0.14, respectively. How-
ever, a slightly larger vertical displacement is seen in the latter, a property which
makes it in better agreement with the results by Caires & Sterl (2003a), where
overestimation for SWH less than 1.5 m is reported compared the corresponding
approximately 1.0 m found here. This overestimation is not pronounced in the
functional relationship between the validated WAM and altimeter data, except at
the South of island location. Still, the underestimation of 15% found in both assess-
ments, corresponds well with the 17% found by Caires & Sterl (2003b).
Regarding the correlation coefficients, the values of 0.91 and 0.90 obtained from
the collocated ERA-40 versus altimeter and the averaged deep water validated
WAM locations versus ERA-40, respectively, are superior to 0.79 found over the
Indian Ocean during January 1993 to December 2001 by Uppala et al. (2005). A
comparison which also was based on altimeter data.
Reinforcing the credibility of the collocated ERA-40 and altimeter validation as-
sessments is the excellent RMS error correspondence with Caires et al. (2005). In
this work Caires et al. (2005) found a RMS error of 0.46 m by validating ERA-
40 data with TOPEX altimeter data over the Indian Ocean in 2001, a value only
slightly lower than the 0.48 m which was found here. As for the RMS error value
found when averaging the four values obtained from the individually assessed
validated WAM versus ERA-40 scatter plots, an even higher accuracy of 0.34 m is
seen. The discrepancy of the ERA-40 data is most likely a resolution effect, where
the low and high wind speeds are over and underestimated, respectively, which
accordingly effects the waves in the same manner.
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4.3 Wave climate

With five locations, each possessing 65 744 validated data points, equivalent
to a time series of 45 years, the wave climate can now be assessed. Figure 4.13
displays histograms from two extreme locations; the South of island location and
the Sofala Bank, where the highest and lowest SWHs are observed, respectively.
Right skewed distribution patterns are seen for both locations, whereas a factor of
two differ the SWH between the locations. At the Sofala Bank the mode is located
at 0.75 m compared to 1.5 m South of the island. Extreme SWHs of 7.4 m and 3.9
m are modeled at the South of island and the Sofala Bank, respectively, during the
historical wave record.
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Figure 4.13. Histograms illustrating the ERA-40 SWH distribution for the South of
island location, (a), and Sofala Bank, (b). The occurrences which fall within the 50 bins
on the x-axis are counted on the y-axis.

Despite 45 years of data is expressed in Figure 4.13, little information is conveyed
regarding the extremes occurring within this period. For this reason the single
highest SWH measurements from each year are plotted in Figure 4.14. Here both
the South of island and Sofala Bank are represented along with a least square line in-
dicating the linear trend. The curves show a highly fluctuating nature. For either
position a trend of increase is observed throughout the 45 years, approximating
to 0.4 and 0.2 m for the South of island and Sofala Bank, respectively. However, by
assuming stationarity of the data, statistical distribution models can extrapolate
the data into a period in which no data is obtained yet. This is addressed in the
following sections, where first the AM method is applied, followed by the POT
method, to estimate the return values of the SWH which is likely to be exceeded
only once during a period of 100 years.
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Figure 4.14. Annual maxima plot for the South of island location and the Sofala Bank
with linear trends indicated by the dashed lines.

4.3.1 Annual Maxima method

For each location the GEV distribution is fitted to AM data. The parameters
were estimated by ML and are listed in Table 4.3 along with CIs calculated by
both the Delta method and the profile likelihood method. From this table it ap-
pears that for all locations, except at South of Island, negative estimated values of
ξ are obtained. This implies that a Weibull distribution is fitted to the AM data.
However, accounting for the CIs of ξ, the model association is not convincing as
the CI spans both negative and positive values of ξ, indicating an attraction to the
unphysical Fréchet distribution. For North of island this is not the case, where the
data is appointed to only one distribution family, namely the Weibull, even after
the CI is accounted for. It should also be noticed that the CI found by the profile
likelihood method is more confined than the CI based on the Delta method.

Table 4.3. Parameter estimates found by the ML method. The 95% CIs of ξ are calculated
by the Delta method, CIdm, and Profile likelihood method, CIpl .

Parameter estimates
Location ξ, CIdm and CIpl σ µ

North of island -0.28 (-0.54, -0.02) (-0.46, -0.10) 0.49 4.17
South of island 0.15 (-0.12, 0.42) (-0.02, 0.32) 0.43 4.62
Oil location -0.09 (-0.40, 0.23) (-0.27, 0.09) 0.45 3.51
Surf location -0.15 (-0.34, 0.04) (-0.31, 0.08) 0.67 4.95
Sofala Bank -0.03 (-0.23, 0.17) (-0.15, 0.09) 0.34 2.56

The graphical goodness-of-fit tests seen in Figure 4.15 further impair the credibil-
ity of the model fits. Here deviation from linearity is seen in both the probability
and Q-Q plots, albeit to a lesser extent at the North of island and Surf location.
The highest deflections from the diagonal are seen at the higher end of the AM
values, best expressed in the Q-Q plots, but still, deflections are also clearly ev-
ident throughout the probability plots. In the density plots strong discrepancies
between the probability density function of the model and the histogram based
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on the AM are seen, but are hard to interpret due to the histogram’s shape de-
pendence of bin selection. Despite the goodness-of-fit tests imply a quality of fit
which is not perfect, all values of AM are within the CI band of the return lev-
els seen in Figure 4.16. In Figure 4.16 (b) and (c) the AM data attraction to two
different GEV families is well illustrated by the concave and convex shape of the
upper and lower CI, respectively. Whereas, at panel (e) an attraction to all three
GEV families is observed as the best estimate line which occurs linear, indicating
a Gumbel fit, is flanked by both the Fréchet and Weibull families. At the North of
island both the best estimate and the CI curves have convex shapes.
For all panels the increase in uncertainty involved when extrapolating to high
leveled return values is highlighted, particularly so for models with CIs assigned
to different model families.
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(a) North of island

(b) South of island

(c) Oil location

(d) Surf location

(e) Sofala Bank

Figure 4.15. Goodness-of-fit tests for the GEV modeled AM data. Deviation from linearity of the
circles in the probability and quantile-quantile plots indicates a mismatch of distribution model (solid
line) and SWH data (circles). The units in the center panel are in meters. The panels to the right
represent the modeled probability density function (solid line) against a scaled histogram based on the
SWH observations (circles) in meters. Plotted by the extRemes package (Gilleland et al., 2009).
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(a) North of island (b) South of island

(c) Oil location (d) Surf location

(e) Sofala Bank

Figure 4.16. Return level plots with 95% CI based on the GEV modeled AM data. The x-axis is
given in years on a logarithmic scale, whereas the y-axis denotes SWH in meters. Note that the scale
on the y-axis varies for each location. The CIs are found by the Delta method, and are plotted by the
extRemes package (Gilleland et al., 2009).

The return level estimates for a period of 100 years range from 4.0 m at the So-
fala Bank to 7.5 m at South of island, without accounting for the CIs. However, for
a H100

s a CI should be given, but as illustrated in Figure 4.16 and Table 4.4, the CIs
are far to extensive to yield a return level of satisfying accuracy. An exception is
seen at the North of island location where the CI spans 0.8 m only. As these broad
CIs are likely owing to the sparse number of data on which these extrapolations
are based, improvements are expected in the following section when the extrap-
olation is based on far more data extracted by the POT method and thereafter
modeled by the GP distribution.

Table 4.4. 100-year return value
estimates found by the GEV ap-
proach accompanied by the 95% CI
found by the Delta method.

Location GEV H100
s , CIdm [m]

North of island 5.4 (5.0, 5.8)
South of island 7.5 (5.6, 9.4)
Oil location 5.2 (4.3, 6.2)
Surf location 7.2 (6.4, 7.9)
Sofala Bank 4.0 (3.4, 4.7)
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4.3.2 Peaks Over Threshold method

As previously mentioned, the threshold selection is vital in finding an accu-
rate return value. In Figure 4.17, we see that this is particularly so when assessing
the CI: The CI broadens as the threshold value increases, a direct consequence of
the decreasing number of data points on which to base the CI calculation. Despite
this broadening of the CI is justified by theory, anomalies at the North of island and
the Oil location are observed. Here the CIs have a minimum variance for a cen-
trally selected threshold, and the CI does not follow the generality of broadening
with increasing thresholds.
The H100

s estimate, on the other hand, remains surprisingly steady over the 89 to
99 percentile range, despite a minor increase for higher thresholds. Nevertheless,
this plot is useful in the aspect of seeing how the threshold values influence on
the number of peaks which exceed the threshold, and how this affects the CI.
It is here illustrated that the Surf location, followed by the South of island location,
are prone to the highest 100-year return values, and, not surprisingly, the Sofala
bank to the lowest values.

Before addressing the return values with reliable CIs, the threshold must first
be selected. This is accomplished by the two previously mentioned exploratory
techniques: Figure 4.18 illustrate these two methods applied on the five time se-
ries in which every storm is separated by 48 hours. The lowest threshold which
represents a region in the parameter stability plots where both the modified scale
and shape parameters are stable, and simultaneously belonging to an appur-
tenant linear segment of the mean exceedance plot is selected. Despite this is
a subjective approach in finding a threshold, it is still the foundation on which
new automated methods by e.g. Thompson et al. (2009) are based on. The se-
lected threshold values for its respective location along with the corresponding
quantiles are listed in Table 4.5.

Table 4.5. Threshold se-
lection according to Fig-
ure 4.18 and the coincid-
ing quantile of the full
time series.

Location Thresholds [m] Quantile [%]

North of island 2.55 93.7
South of island 3.20 93.8
Oil location 2.40 95.9
Surf location 2.80 93.7
Sofala Bank 1.50 91.8
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Figure 4.17. 100-year return level for all five locations plotted against a range of thresholds. The
solid line represents the estimates of the H100

s and is flanked by the upper (dotted) and lower (dashed)
boundaries of the 95% confidence interval obtained by the Delta method. The vertical dashed line
localizes the threshold at which the smallest variance of the return value occurs. The unit of the lower
x-axis represents the threshold quantile of the full ERA-40 time series of the respective location. At
the upper x-axis the number of data points corresponding to the thresholds quantiles are seen, whereas
the y-axis is the 100-year return level of SWH measured in meters.
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Figure 4.18. Graphical techniques applied to fix the threshold for each location as
described in section 3.4.2. The solid vertical red lines represent the threshold selec-
tions, and are fixed after a visual examination taking both the parameter stability
and mean exceedance plot into account. At the upper x-axis of the mean exceedance
plot the quantile [%] of the full time series which the threshold corresponds to are
seen. Additionally, the dotted and dashed vertical lines correspond to the 89 and
99% quantiles, respectively, and delimit the region in which a threshold is likely
located. The parameter stability plots were generated using the extRemes package
by Gilleland et al. (2009).
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With a threshold appointed to each location the model parameters are esti-
mated by the ML method using the exceedances. These parameters are seen in
Table 4.6. In contrast to the shape parameters obtained by the GEV distribution,
both the Delta and the Profile Likelihood methods yield shape parameters which
span negative values only. Therefore, the exceedances will be modeled with the
type III family, and both the best return value estimate and the CI will have convex
shapes in the return level plots, implying an appropriately chosen model which
have an upper bound. Lastly in Table 4.6 the average number of data points
which annually exceeds the threshold are tabulated. From this we see that the
POT approach provides us with 9.2 to 20.5 times more data than what the AM
approach did.

Table 4.6. Parameter estimates found by the ML method. The 95% CIs of ξ are calculated
by the Delta method, CIdm, and Profile Likelihood method, CIpl . ny represents the average
number of data points exceeding the threshold per year.

Parameter estimates ny

Location ξ, CIdm and CIpl σ̃

North of island -0.24 (-0.31, -0.18) (-0.30, -0.17) 0.84 13.9
South of island -0.13 (-0.18, -0.09) (-0.17, -0.08) 0.72 15.0
Oil location -0.19 (-0.28, -0.11) (-0.27, -0.10) 0.69 9.2
Surf location -0.14 (-0.19, -0.09) (-0.18, -0.08) 0.88 20.5
Sofala Bank -0.13 (-0.18, -0.07) (-0.18, -0.07) 0.48 16.5

The goodness-of-fit of the models are assessed in Figure 4.19, along with the re-
turn value plots. Neither the probability plot nor the Q-Q plots give any reason to
doubt the quality of the model fit as the observations occur linear. However, some
deviations from linearity are observed at the upper end of the Q-Q plots, albeit
minor at the North of island and the Oil location. Reasonable fits are also seen in the
density plots, particularly if neglecting the lowest exceedance bin. The bounded
nature of the curves in the return level plots confirms the association to the type
III family. In addition, the CIs are narrower than what was obtained from the
GEV approach, stemming directly from the increased number of data. However,
this narrowing of the CI results in occasional outliers which are seen beyond the
bounds of the CI in the return level plots. In comparison with the estimated 100-
year return values obtained by the GEV approach, the GP estimates are slightly
lower. The major distinction between the models occurs for the CIs; revealed in
Table 4.7, the CIs from the GP approach are considerably more confined.

Table 4.7. 100-year return levels estimates from both the GEV and GP approach with
95% confidence interval by the Delta method.

100-year SWH return value, H100
s [m]

Location GEV, CI GP, CI
North of island 5.4 (5.0, 5.8) 5.4 (5.1, 5.7)
South of island 7.5 (5.6, 9.4) 6.6 (6.3, 6.9)
Oil location 5.2 (4.3, 6.2) 5.0 (4.6, 5.4)
Surf location 7.2 (6.4, 7.9) 7.0 (6.5, 7.5)
Sofala Bank 4.0 (3.4, 4.7) 3.8 (3.5, 4.1)
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(b) South of island
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(c) Oil location
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Figure 4.19. Goodness-of-fit tests for the
GP modeled POT data. Deviation from lin-
earity of the circles in the probability and
Q-Q plot indicate a mismatch of distribu-
tion model (solid line) and SWH data (cir-
cles). The panels on the bottom right repre-
sent the modeled probability density function
(solid line) against a scaled histogram based
on the SWH observations in meters. The re-
turn level plots with 95% CI found by the
Delta method is seen at the bottom left panel.
The x-axis is given in years on a logarithmic
scale, whereas the y-axis denotes SWH in me-
ters. All plots made by the extRemes package
(Gilleland et al., 2009).
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4.3.3 Discussion

According to the goodness-of-fit tests, the most suitable model fits were
achieved by the GP distribution. This is supported by the alternating sign of the
shape parameter’s CI obtained by the GEV approach. The attraction to multiple
domains is an indication of a non-persuasive model fit and that the GEV approach
is not entirely appropriate for this purpose. For the GP approach the consistency
of the shape parameters argue the opposite; an appropriately chosen threshold
yielding exceedances which are suitably modeled by the upper bounded Weibull
distribution. However, as it appears from Table 4.8, which also includes the Pro-
file likelihood based CIs, the H100

s estimates found by parameters from the GEV
distribution are in reasonable agreement with those found by the GP distribution,
albeit slightly overestimated. This overestimation, which is particularly evident
at the South of island location, supports the statement from Harris (2004, 2005),
which claims that return values obtained from the Fréchet distribution always
exceeds those from a Weibull distribution. The concept on which this is based
is illustrated in Figure 3.3. As for the overestimation at the other locations, this
statement does not hold as the shape parameters indicate an attraction to the
same family. However, as the shape parameters generally are lower in value for
the GEV approach, the same principle might justify the overestimation.

The most significant deviation is observed in the CIs of the different approaches.
Figure 4.20 illustrates this well; where the CIs of the GEV estimates (disregard-
ing which CI method applied) ranges well beyond those of the GP approach. As
previously mentioned, this feature is caused by the sparse availability of data in
the GEV approach. Figure 4.20 further displays the symmetrical CIs associated
with the Delta method in contrast to the skewness related to the CIs achieved by
the Profile likelihood method. This skewness stems from an assumption used in
the approach when maximizing the log-likelihood function, and represents the
increasingly weaker information provided at the high levels of the waves, hence
representing the true nature of waves to a higher extent. As a direct consequence,
also illustrated in Figure 4.20, the Profile likelihood based CI surpasses the vari-
ance of the Delta method based CI at the upper end, whereas at the lower end the
Delta method yields an estimate of larger variance. For the GP approach, which
well justified can be claimed to be of a higher accuracy, the CIs from the Delta
method and Profile likelihood method do not deviate drastically. In fact, the de-
viance is never more than 0.1 m at the upper and lower estimated interval.

Table 4.8. 100-year return levels with 95% confidence interval obtained by GEV and
GP. CIdm and CIpl corresponds to confidence intervals obtained by the Delta method and
the Profile likelihood method, respectively. The last column represents the number of
observations which are greater than or equal to the lower CI, colored blue, found by the
GP approach using the Profile Likelihood method.

100-year SWH return value, H100
s [m] # of SWH

Location GEV, CIdm and CIpl GP, CIdm and CIpl ≥GP, CIlower
pl

North of island 5.4 (5.0, 5.8) (5.2, 6.0) 5.4 (5.1, 5.7) (5.2, 5.8) 3
South of island 7.5 (5.6, 9.4) (6.4, 10.4) 6.6 (6.3, 6.9) (6.3, 7.0) 2
Oil location 5.2 (4.3, 6.2) (4.7, 6.6) 5.0 (4.6, 5.4) (4.7, 5.5) 3
Surf location 7.2 (6.4, 7.9) (6.7, 8.3) 7.0 (6.5, 7.5) (6.6, 7.5) 2
Sofala Bank 4.0 (3.4, 4.7) (3.6, 5.0) 3.8 (3.5, 4.1) (3.6, 4.1) 3
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Even if the CI1 of the GP approach gives the H100
s estimates with accuracy

ranging from ± 0.25 to 0.45 m, a further narrowing at the lower CI is implied by
the last column in Table 4.8. Here the number of observations which are greater
than or equal to the lowest CI level for each location are tabulated. As we see, 2
to 3 occurrences exceed the lowest CI, an indication that the H100

s range is not as
low in value as the CI imply.
A corresponding inference is not applicable at the upper end. However, an in-
ference on the maximum limit of the upper CIs can be made, based on the fitted
models. This value is regarded as the upper CI of the return value with ’infinite
return period’ and is the most severe condition which according to the models
can ever occur. The values are found by inserting N = ∞ in Eq. (3.9) when ξ < 0,
which yields z∞ = u − σ̃

ξ . Applying this relation on the upper CI of the parame-

ters given in Table 4.6 and the thresholds given in Table 4.5, yields 7.5, 12.2, 9.3,
13.8 and 8.4 m, in the same order as tabulated. Nevertheless, one should be aware
that all values, both the H100

s and its CIs, are strictly applicable only within the
period in which the data are sampled, while values obtained by extrapolation are
merely guesses based on the behavior of the data Coles (2001).
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Figure 4.20. Graphical illustration of Table 4.8. Red and green circles indicate GEV
and GP, respectively. The black and blue lines represent the method by which the CI is
calculated, namely the Delta method and the Profile likelihood method, respectively.

Regarding the credibility of the return value estimates presented, there are
several delicate issues which in the following are addressed:

• As illustrated in Figure 4.14, the annual maxima data applied in the GEV
approach has a positive linear trend. However small such a trend might
be, it challenges the applicability of the traditional GEV and GP models, as
these are based on stationary processes (Coles, 2001). As a means to account
for seasonal effects, annual maxima values were selected, hence avoiding
seasonality altogether. The possible long term climate change and atmo-
spherical cycles with periodicity greater than a year are unfortunately not

1As the Profile likelihood method yielded the narrowest CIs and additionally accounts for the
skewed distribution of information which prevails for natural phenomenons as waves, the CI
referred to as from now will be the CI obtained by this method.
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accounted for. When adopting the models to non-stationary conditions, it
is reasonable to assume that even though the SWH changes linearly over
time, the distribution remains unchanged. This might be accounted for by
modifying the location parameter to be time dependent. The GEV distri-
bution becomes Zt ∼ GEV (µ (t) , σ, ξ), where µ (t) = β0 + β1t, in which
β0 and β1 are parameters representing the linear trend’s intercept with the
vertical axis and the annual rate of change, respectively. The GP approach
is modified in a similar manner, additionally with the threshold being time
dependent, u (t). Without going further into the methods of non-stationary
modeling, it suffices to say, that the current climate alone should not be
used to predict future return values without accounting for possible trends.
Without these adjustments, the return values might be regarded as lower
estimates, that is, if the existence of a positive trend has been established.

• The estimates given in this work are based on SWHs from the global ERA-
40 data set. These SWHs represent the average conditions during the IFS
model’s respective spatial and temporal resolution. For this reason the re-
turn value estimates presented here are averages, which are likely exceeded
at shorter spatial and temporal scales. Most likely, the highest individual
wave will occur during the period of the highest SWH, however there is
a small probability that it might occur during a time with lower values of
SWH. For methods that derive return value estimates based on individual
wave height see the work by Stanton (1984, and references therein). Yet,
the relation given in Eq. (2.18), indicates a factor two increase based on the
SWH return values.

• As the intensity of tropical cyclones (TC) is not fully resolved in the large
spatial and temporal scale of the ERA-40 data, an underestimation of SWH
might occur. Little is known regarding the extent to which TCs affect the
return values and the severity of the TC generated waves in the Mozam-
bique Channel. However, as the ERA-40 reanalysis does detect TCs (see
section 3.3), there is little doubt that TC generated waves are incorporated
in the data on which the return values have been based. This is supported
by Figure 4.21, where the 413 data points which exceeds the threshold of 3.2
m are plotted in monthly bins in a histogram for the Oil location during the
full ERA-40 period. Here a concentration of exceedances is seen during the
peak TC season, January and February, and illustrates the possible contri-
bution of TC generated waves to the return value estimates. This clustering
of exceedances during the summer occur exclusively at the Oil location. The
other four locations are less exposed to TC generated waves, except when
in rare occasions the TC pass directly into the Mozambique Channel. The
histograms for the remaining locations describe a distribution which have a
peak during June and July and minima during the summer.
To further complicate this matter it must be mentioned that the basic ex-
treme value models applied in this work are not capable of modeling both
synoptic scale and TC generated waves. This is because the models assume
that the extreme value observations must come from the same probability
distribution, an assumption which does not hold if TC generated waves
would have been included as they are generated by a different physical
process (Bouws et al., 1998). Nevertheless, in turn this might be yet another
reason which suggests that my results are too low.
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Figure 4.21. Histogram illustrating the monthly occurrence of the
413 exceedances during the ERA-40 data at the Oil location. The
cluster of exceedances occurring during January and February illus-
trates the possible inclusion of TC generated waves in the GP model.

• The fact that the ERA-40 reanalysis was run for deep water only makes the
return value estimate obtained at the shallow Sofala Bank questionable. Even
as the linear relationship from the WAM model was applied on the data, an
uncertainty regarding this shallow location’s validity remains.

• The last caveat, regarding the return values, addresses the domains of the
coarse and nested WAM model. Without considering the computational
cost, the domain should have been extended, particularly in the westward
direction. The coarse model resolves wind seas to the fullest, as these build
up over short distances compared to swell. However, there is a possibility
that swell generated from a storm outside the model domain is allowed to
propagate undetected into the region of interest. The effect of these missing
swells is most likely insignificant, however, a comprehensive study of storm
track history (e.g (Young, 1999; Hoskins & Hodges, 2005)) should have been
carried out prior to the domain designation.

The results obtained in this work are not readily validated nor assessed by
means of previous work. The spatial resolution of the works by Alves & Young
(2003) and Caires & Sterl (2005), in which global 100-year return values have been
considered, makes a comparison rudimentary.



Chapter 5
SUMMARY AND CONCLUSION

Based on 45 years of SWH data, 100-year return values for five locations
within the Mozambique Channel have been estimated. In the approach of refin-
ing and validating the ERA-40 SWHs, data from a high resolution WAM model
was applied. Accordingly, the results obtained in this work feature a high resolu-
tion and accuracy which will be prominent for coastal regions especially.
The overall results indicate that the southern region of the channel is prone to
higher return values than what the northern region is. At the Surf location the
100-year return value is estimated to 7.0 m with a 95% CI of 6.6 to 7.5 m. Second
highest is the open ocean location, South of island, located approximately 600 km
further east and 170 km further north, with a value reading 6.6 m. 500 km north
from here the return value has decreased to 5.4 m. At the location which repre-
sents the region in which the oil activities take place, 670 km further north from
the latter location, a value of 5.0 m is found. At the shallow Sofala Bank, located
centrally in the channel, the lowest value of 3.8 m is found.

By means of goodness-of-fit tests along with tables, it has been shown that
the 100-year return level estimates obtained by the GP approach are preferable to
those obtained by the GEV approach. This statement is heavily based upon the
AM data’s attraction to several families, but also on the superior CIs yielded by
the GP approach. Further, it is evident that the threshold selection, which initially
was believed to markedly influence the return values, in fact is not of utmost im-
portance. Therefore, the results in this work support the statement by Caires &
Sterl (2005), in which a threshold selection appointed at the 93% quantile of the
full time series seems reasonable. This should also be sufficient when assessing
point wise data from a larger area.
Once sufficient data is available with which to estimate the model parameters, the
method chosen to assess the CI is a matter of preference, as both yield a closely
related interval band. However, if the Profile likelihood method is adopted, a com-
putational routine should be made in order to implement this approach in Mat-
Lab.

59
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5.1 Further work

Along with the need of implementing the Profile likelihood method into Mat-
Lab further subjects require additional assessment and development. Following
is a brief listing of such fields.

• The validity of ERA-40 data in coastal regions requires more attention. Even
after the data has been refined by use of a high resolution model, uncer-
tainty remains as the WAM model in the ERA-40 reanalysis did not account
for bottom effects.

• Little is known about the extent to which TC generated waves are contribut-
ing to extreme events in the Mozambique Channel. However, it is likely that
the occasional TCs which make their way into the channel generate waves
with heights exceeding the threshold selection in the GP approach. For this
reason the credibility of the traditional extreme value models have been
challenged. Techniques, such as the one described by Spillane & Dexter
(1976), should therefore be adopted in order to obtain results more appro-
priate for tropical regions.

• The vast amount of data available from the ERA-40 reanalysis opens for a
wide range of topics for further work. Among these is a seasonal or monthly
breakdown of the return values. Also a study regarding the mean wave pe-
riod which corresponds to the return values is of interest. Another challenge
is to account for characteristics in the data which change systematically over
time, such as long term climate change. This is addressed in detail by Coles
(2001).
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A.1 Statistical formulas

Correlation coefficient

corr(X, Y) =
∑

n
i=1 (Xi − X̄) (Yi − Ȳ)

√

[

∑
n
i=1 (Xi − X̄)

2
] [

∑
n
i=1 (Yi − Ȳ)

2
]

(A.1)

Root mean square error

RMS error =

√

∑
N
i=1 (Xi − Yi)

2

N
(A.2)

Bias, mean error

bias =
∑

N
i=1 (Xi − Yi)

N
(A.3)
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A.2 Matlab scripts

Generalized Extreme Value distribution, Delta method

function zpci=gev_ci(X,m)
%
% zpci=gev_ci(X,m)
%
% gev_ci returns the best estimate of the m −year retrun value, flanked
% by 95% confidence intervals found by the Delta method.
%
% X: input data. Annual Maxima (AM) data.
% m: return period
%
% see 'An introduction to statistical modeling of extreme va lues' by
% Sutart Coles, 2001, chapter 3 for supplementary informati on.

%% Annual Maxima data___optional______________________ _________________
step=365.25 * 4; %average number of days
teller=1;
for i=121:step:((43 * 365.25 * 4)+121) % starting October 1st

AM(teller)=max(X(i:i+step)); %65700
teller=teller+1;

end
last_year=max(X(44 * 365.25 * 4+122: end )); %data from 31 −aug−2002 to
% 30−sept −2002 are missing to
% complete the full year
AM=[AM last_year];
AM=AM';
%%_________________________________________________ ____________________

[parms,parmci]=gevfit(AM); %Obtaining the paramete estimates (ML method)
[nlogL,acov_1] = gevlike(parms,AM); %obtaining the information matrix

acov=[acov_1(3,3) acov_1(3,2) acov_1(3,1); ...
acov_1(2,3) acov_1(2,2) acov_1(2,1); ... % Adjusting according to
acov_1(1,3) acov_1(1,2) acov_1(1,1)]; % Coles 2001 page 59

SE=sqrt(diag(acov)); % Standard error of the parameters

p=1/m; % P value: probability for non −exceedance
yp=−log(1 −p); %definition Coles page 56

gradzp=[1; ... %inverse of gradzp, se Coles 2001 page 56
−parms(1)^ −1* (1 −yp^−parms(1)); ...
parms(2) * parms(1)^ −2* (1 −yp^−parms(1)) −parms(2) * parms(1)^ −1* yp^−...
parms(1) * log(yp)];

zp=gevinv(1 −p,parms(1),parms(2),parms(3)); %Best estimate return value

var=gradzp' * acov * gradzp; %variance of zp
zpci=[zp −1.96 * sqrt(var) zp zp+1.96 * sqrt(var)];
% ci of zp, NOTE:+/ −1.96 * sqrt(var) corresponds to approximatly the
% 95% ci
symetri=[zp −zpci(1) zpci(2) −zp]; %check for symmetri
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Generalized Pareto distribution, Delta method

function xmci=gp_ci(X,threshold,numyr,m)
%
% gp_ci(X,threshold,numyr,m)
%
% gp_ci returns the best estimate of the m −year retrun value, flanked
% by the 95% confidence intervals found by the Delta method.
%
% X: input data. NOTE: should be i.i.d
% threshold: value of the threshold
% numyr: number of years which the data spans
% m: return period
%
% see 'An introduction to statistical modeling of extreme va lues' by
% Sutart Coles, 2001, chapter 4 for supplementary informati on.

varcovar=zeros(3,3); %Variance −covariance (VC) matrix shape
p=find(X>threshold); %locating the exceedances
data=X(p) −threshold; %Applying data which exceeds the threshol
zeta=length(data)/length(X); %Probability for a random observation to
% exceed the threshold

[parms,parmci]=gpfit(data); %ML parameter estimates
[nlogL,acov_1] = gplike(parms,data); %obtaining the information matrix
% Adjusting the order of acov so as to match the order in Coles 2 001
% page 82.

acov=[acov_1(2,2) acov_1(1,2); ...
acov_1(2,1) acov_1(1,1)];

SE=sqrt(diag(acov)); % Standard error of the parameters

varcovar(2:3,2:3)=acov; %inserting parameter variance in the VC matrix
varcovar(1,1)=zeta * (1 −zeta)/length(X); %inserting the var of zeta in
% VC matrix
M=m* length(X)/numyr; % return value times 'data per year'
mzeta=(M * zeta)^parms(1); %inverse of gradxm, se Coles 2001 page 82
gradxm=[parms(2) * M^parms(1) * zeta^(parms(1) −1); ...

parms(1)^ −1* (mzeta −1); ...
−parms(2) * parms(1)^ −2* (mzeta −1)+parms(2)/parms(1) * mzeta * log(M * zeta)];

P=1−1/(length(data) * m/numyr); % P value: probability for non −exceedance

xm=gpinv(P,parms(1),parms(2),threshold); %Best estimate of return value
var=gradxm' * varcovar * gradxm; %variance of xm
xmci=[xm −(1.96 * sqrt(var)) xm xm+(1.96 * sqrt(var))]; % ci of xm,

% NOTE:+/−1.96 * sqrt(var)
% corresponds to approximatly the 95% ci

symetri=[xm −xmci(1) xmci(2) −xm]; %check for symmetri
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