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ABSTRACT

The electrons ejected in an ionization event initiated by an incident laser pulse carry
detailed information about the structure and the correlation intrinsic to atoms and
molecules. This information is essential for our fundamental understanding of such
systems.

This thesis is a contribution to the study of the ionization dynamics of atoms and
molecules exposed to short laser pulses within the field of atomic, molecular and optical
sciences. It consists of five papers published in the period 2011-2013, and covers four
topics: the ionization dynamics of Rydberg wave packets, high-order harmonic genera-
tion, atomic stabilization and two-photon double ionization of the hydrogen molecule.

Rydberg atoms are atoms where at least one of the electrons are found in a highly
excited state. As the Rydberg electrons are weakly bound, they are easily affected by
external electric and magnetic fields. They exhibit exceptionally long lifetimes and
may under certain circumstances behave almost like classical particles. In this work
we study the ionization dynamics of a Rydberg wave packet formed within a single
Stark-split n-shell in hydrogen. The wave packet is resonantly driven between different
substates in the shell governed by the action of a rotating microwave field. Superim-
posed on this process the wave packet is hit by a series of short femtosecond pulses.
We study how the number of pulses in the pulse-train and the time-separation between
them affect the total and the angular resolved ionization probability of the system.

Ionization is also essential in the generation of high-order harmonics. In this pro-
cess the ionized electron is accelerated before it recombines with the atom, and photons
of frequencies that are multiples of the laser frequency are emitted. The present thesis
presents a study of high-order harmonics generated when a graphene sheet is exposed
to few-cycle femtosecond pulses. Graphene is a single layer of graphite, and was ex-
perimentally realized for the first time less than a decade ago. Our study shows that
the extended nature of graphene sheets allows for strong harmonic signals as well as
maximum harmonics beyond what is observed for atoms and simpler molecules.

The third topic to be studied is atomic stabilization. In the limit where the laser in-
tensity is so strong that the force between the nucleus and the electrons is negligible
in comparison to the applied forces of the laser, calculations yield an interesting result.
Instead of monotonically increasing as a function of the laser intensity, as expected, the
ionization probability tends to stabilize below 100% or even start to decline. Although
the phenomenon has been extensively studied for more than 20 years, the experimen-
tal verifications are scarce and disputed, mainly due to the lack of the laser technology
required. Two of the papers included in this work present ab initio calculations on
atomic stabilization solving the time-dependent Schrödinger equation from first prin-
ciples. Firstly, the phenomenon is studied in helium subjected to superintense pulses.
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In this paper we especially focus on the correlation between the two electrons, and
investigate how it influences the stabilization effect. Secondly, we conduct a similar
study but in a different atomic system: low-lying circular Rydberg states of hydrogen.
In many respects a circular state behaves like a classical particle orbiting the nucleus
either clockwise or counter-clockwise. Motivated by this fact, we study how the ion-
ization probability is affected by a circularly polarized electric field which is either co-
or counter-rotating with respect to the electronic motion.

Lastly, the numerical framework, used in the stabilization calculations, is extended
to model the hydrogen molecule. We calculate the direct two-photon double ionization
resulting from a linearly polarized laser pulse. Both parallel and perpendicular orienta-
tion of the laser polarization vector with respect to the internuclear axis is considered.
This is a research domain where the results are few, and different approaches are argued
for. Our results are shown to be in good agreement with previous studies, and show for
the first time the generalized cross section for the two-photon double ionization process
beyond 30 eV.
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CHAPTER 1

INTRODUCTION

The blink of an eye, lasting about the tenth of a second, is the epitome of a fast process
in a human perspective. Seen from an electron’s point of view, orbiting the hydrogen
atom approximately 1017 times a second, this infinitesimal time period of a human life
is an eternity. If they could, the electrons would blink their eyes in attoseconds1, and
it is on this time scale, the time scale of the electrons, the processes discussed in this
thesis take place.

In this microscopic world of tiny structures and swift processes everything is gov-
erned by the laws of quantum mechanics, one of the pillars of modern physics. Quan-
tum mechanics is often traced back to Max Planck. In 1900 he was the first to introduce
the concept of quantized energy when deriving a new formula for the blackbody radia-
tion [1], and thereby solving one of the puzzles of his time – the ultraviolet catastrophe.
Another milestone in the development of quantum mechanics was reached when Albert
Einstein in 1905 published a paper explaining the photoelectric effect [2]. It had been
known since the experiments of Heinrich Hertz in the late 1880s that charged objects
may become discharged when subjected to ultraviolet light [3]. What Einstein realized,
in accordance with Planck’s theory, was that the change in charge was caused by the
material absorbing quanta of light and subsequently ejecting electrons.

In the years to follow the light quanta, or photons as we know them today, kept ap-
pearing in the physicists’ equations. When Niels Bohr formulated his atomic model of
stationary orbitals in 1913 [4–6] it was with the photon in the lead role. This pioneering
model, despite some erroneous assumptions, was the first to provide an expression for
the energy levels in the hydrogen atom. In many respects Bohr’s model forms the basis
for our understanding of the atom, comprising the conceptual idea of how the electrons
can only occupy certain energy levels, and is as such a useful tool even today. Never-
theless, it was not until the emergence of the true quantum mechanics in the mid 1920s
that a comprehensive description of the atom, and in principle any quantum system,
came about.

The doctoral thesis of Louis de Broglie of 1924 was based on a groundbreaking hy-
pothesis which paved the way for the development of the “modern” quantum mechan-
ics. In short, it stated that all matter may be described in terms of waves in analogy
with the particle-wave duality already established for light. In the ensuing years no less
than two formulations of quantum mechanics were presented. In contrast to the previ-

1An attosecond is 0.000 000 000 000 000 001 seconds.
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ous quantum theories that had been put forward by Niels Bohr and others, one were at
this point able to provide a logically consistent formulation. The two mathematically
equivalent representations, the matrix mechanics by Werner Heisenberg, Max Born
and Pascual Jordan [7, 8], and the wave mechanics by Erwin Schrödinger [9–11], were
published in 1925 and 1926, respectively. In the immediate time after the publications
most physicists seemed to embrace Schrödinger’s formulation and its resemblance to
familiar concepts in classical physics. It introduced the much celebrated Schrödinger
equation which can be perceived as the quantum mechanical analogue to the Newton’s
second law, and is perhaps the most prominent symbol of quantum mechanics. The
Schrödinger equation is a partial differential equation in the three spatial coordinates in
addition to the time, and its solution is known as the wavefunction. Heisenberg’s for-
mulation, on the other hand, appeared to be on a higher level of abstraction representing
all observables as matrices, the measured values as eigenvalues, and the corresponding
quantum states as eigenvectors. Although it received a lukewarm reception at first,
Heisenberg’s theory is a prerequisite for today’s large scale calculations in the field of
computational quantum mechanics.

Alongside the mathematical formulations came the interpretations. There are sev-
eral approaches to the subject, but the most widespread is the one coined the Copen-
hagen interpretation. As the name suggests the basic ideas of this way of thinking
were conceived in Copenhagen by Bohr and his, by then, research assistant, Heisen-
berg. The essence of the interpretation is the conception of the wavefunction as nothing
but a theoretical tool, of which the absolute square is the probability density distribu-
tion of all possible outcomes. A measurement can, however, only result in a single
value occurring according to this distribution. The process in which the measurement
forces the quantum system to assume a single value is somewhat philosophically re-
ferred to as the collapse of the wavefunction. Two principles often associated with the
Copenhagen interpretation is Heisenberg’s uncertainty principle [12] and Bohr’s cor-
respondence principle [13]. The first one, the uncertainty principle, states that certain
physical quantities cannot be simultaneously determined. For instance, a precise mea-
surement of a particle’s position prohibits a precise measurement of the corresponding
momentum. The second, the correspondence principle, is an attempt to relate the quan-
tum mechanics to what is observed in classical physics. More precisely, it asserts that
in the limit of large structures and high energies the two perceptions must, to some ap-
proximation, coincide. Though of merely philosophical importance, it prevents contra-
dictions between quantum mechanics and classical physics in the case of macroscopic
objects.

By the end of the 1920s the work of the aforementioned persons together with other
significant contributors, like Paul Dirac, Wolfgang Pauli, Enrico Fermi and Satyendra
Nath Bose, had created a new framework in which the physics of even the smallest
objects in nature can be described. The new physics challenged many of the estab-
lished perceptions and ideas of those days, and could be rather confusing and un-
satisfactory even for those directly involved. The latter is expressed in the quote by
Schrödinger [14]:

“I don’t like it, and I’m sorry I ever had anything to do with it.”

Or as Richard Feynman put it in one of his famous lectures from the 1960s [15]:

“I think I can safely say that nobody understands quantum mechanics.”

2



Introduction

But in any regards, the quantum theory represented a paradigm shift in physics, and
turned out to be decisive for the development in science and ultimately for the everyday
life of people.

As already mentioned, the first system to be subject to a quantum mechanical treat-
ment was the hydrogen atom. In a quantum mechanical context the hydrogen atom is
unique in that it is one of the few systems where the solution to the Schrödinger equa-
tion is expressed in terms of analytical functions. This is true as long as there is a single
electron in the atom and it is totally isolated from its surroundings. Once these require-
ments are violated, for instance by introducing a second electron or an electric field,
this elegant analyticity disappears. Consequently, the mathematical complexity of the
solution increases making the process of finding it a challenging affair. This fact ei-
ther calls for a numerical solution, clever approximations or both of them combined.
The increase in complexity is related to one of the profound principles of the quantum
theory; all possible scenarios must be taken into account. Accordingly, the wavefunc-
tion of a two-electron atom contains all the information there is to know about both
particles at once, and it is actually impossible to completely distinguish between what
is related to each of them. In general, the Schrödinger equation can be solved exactly
for one single or for two interacting electrons exposed to external fields. As the work-
load scales badly with the number of interacting particles, to include three of them is,
unfortunately, far beyond reach even with the most powerful supercomputers.

In this thesis several atomic and molecular systems are discussed, i.e., the hydrogen
atom (Paper II and IV), the helium atom (Paper I), the diatomic hydrogen molecule
(Paper III), and the carbon allotrope of graphene (Paper V). Since the early days of
quantum mechanics one has been aware that the energy of electromagnetic waves can
be transferred to matter. In response, the electron will either go from one energy level
to another or completely escape the nuclear attraction ending up as a free particle.
The latter is termed photoionization and will occur if the energy of the light somehow
exceeds the binding energy of the electron. The overall motivation for all the studies
included is to scrutinize the process of photoionization in these systems when they are
exposed to short laser pulses of varying intensity. The rest of this introduction will
be devoted to what happens when an atomic or molecular system interacts with the
coherent light of a laser.

The laser, or more precisely, the phenomenon of Light Amplification by Stimulated
Emission of Radiation2 was postulated by Albert Einstein already in 1916 in his theo-
retical work on absorption and emission of light quanta in atoms [17]. From the very
beginning and until the first functional solid state laser was realized by Theodore H.
Maiman at the Hughes Research Laboratories [18], it took more than forty years. The
lasers of the early 1960s delivered focused peak intensities on the order of 109 W cm−2,
but since then there has been a tremendous development in laser technology. The
state of the art laser technology is capable of delivering pulses of ultrahigh intensity
(∼ 1021 W cm−2 [19]) and down to attosecond duration, though not in one laser setup.
A laser can be tuned to generate pulses within a narrow band of frequencies matching
the energies of the electrons in atoms and molecules. This has resulted in lasers being

2The term was first used by R. Gordon Gould in 1959 [16].
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one of the most important research tools in the investigation of light-matter interactions.

For the weakest laser fields there is a one-to-one correspondence between the num-
ber of photons with sufficient energy absorbed and the number of ejected electrons, in
accordance with Einstein’s photoelectric effect. In other words, each photon knocks
free one electron. Although single-photon ionization has been extensively studied for
almost a century, there are still unexplored exotic atomic systems where new insight
may be gained from these processes.

Regarding exotic atomic systems, a perfect example of such is the Rydberg atom3.
Rydberg atoms are atoms where the “outermost” electron is found in a highly excited
state, i.e., a state having an energy far larger than the ground state, the lowest energy
configuration. In general, being in a highly excited state is synonymous with being
on average far away from the nucleus. Moreover, as the “innermost” electrons will
effectively shield most of the nuclear charge, the attractive Coulomb force, as seen from
the Rydberg electron, is to a good approximation that of hydrogen. The Rydberg atoms
are therefore often characterized by large values of the principal quantum number n,
the energy quantum number of the hydrogen atom. This fact implies that the Rydberg
atom has some unique properties like long lifetime and exaggerated response to electric
and magnetic fields. In addition, the wavefunction of such a system will in some sense
behave like a classical orbital concordant with Bohr’s atomic model, and might as well
be seen as a manifestation of the correspondence principle.

Increasing laser intensity allows for sophisticated laser-matter interactions of higher
order than the above-mentioned single-photon ionization process. The first one to pre-
dict this phenomenon was Maria Göppert-Mayer who in 1929 showed theoretically
that an electron may absorb two photons to gain enough energy for it to escape the nu-
cleus [20]. This clearly violates Einsteins photoelectric effect, but to his defense, these
transitions were not experimentally feasible until the invention of the laser in the 1960s.
In general, Göppert-Mayer’s idea extends to n photons implying that photons of energy
far less than the binding energy of the electron are collectively able to ionize the atom.
The process is known as multiphoton ionization, and for it to take place in laser-atom
interactions a minimum intensity of 108 W cm−2 is required [21].

So far we have mentioned that one or more photons may trigger a single ionization
event. But there is more to it; one or more photons can in principle multiple ionize an
atom or molecule. An important subclass is the case where N electrons are ejected from
an N electron system. These processes are special in the sense that they result in a com-
plete breakup of the system leaving behind the electrons and the bare nucleus/nuclei as
free particles. An example of such a process is the one-photon double ionization of he-
lium, a process that have been thoroughly studied since the discussion was initiated by
F. W. Byron and C. J. Joachain in the mid 1960s [22]. Advancing in complexity, the
next level is the more intricate process of two-photon double ionization. What adds an
extra aspect to this two-photon process is the fact that it either happens sequentially or
directly (non-sequentially), depending on the photon energy. In the first case, the elec-
trons are ionized one at a time by one photon each, whereas in the second case, both
electrons are ejected simultaneously. The two-photon double ionization of helium has
been extensively examined since the end of the 1990s [23–32], and recently the studies
have also been extended to the hydrogen molecule [33–36].

3Named after the Swedish physicist Johannes Rydberg.
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Introduction

Figure 1.1: An illustration of the single-photon and multiphoton ionization processes. The

electrons (blue balls) are initially in the ground state level, and are supplied with a sufficient

amount of energy, by one or more photons (red arrows), for them to exceed the ionization

threshold. The energy is increasing in the vertical direction.

In atomic and molecular physics one separates between weak and strong fields.
As a rule of thumb the boundary is drawn where the intensity of the laser exceeds
1013 W cm−2 [37]. Whereas weak field processes can be examined using so-called per-
turbation theory, being low-order approximations to the solution of the Schrödinger
equation, the strong field regime calls for methods of higher order. One obvious ap-
proach is to solve the Schrödinger equation “brute-force”, but as mentioned this is
challenging and is only doable for the simplest systems. Another method which is
extensively used in the study of non-perturbative processes is the strong-field approx-
imation developed by L. V. Keldysh, F. H. M. Faisal and H. R. Reiss [38–40]. In this
approximation it is assumed that the force of the laser is so strong that it completely
dominates that of the Coulomb potential, which is consequently disregarded.

One strong field phenomenon discussed in this thesis is the high-order harmonic
generation. Harmonic generation, in general, refers to the process where an atom in-
teracting with a laser field emits radiation at frequencies being multiples of the initial
frequency of the laser. The appearance of these augmented frequencies is attributed
to the energy the electron gains from the driving electric field. Following in the wake
of the invention of the laser, the third harmonics was observed by G. H. C. New and
J. F. Ward back in 1967 [41]. Since then harmonics of ever increasing order have been
reported in line with the development in laser power. The first experimental evidence
of high-order harmonic generation appeared in the late 1980s [42, 43]. It has since
been a hot topic as it is in itself a source of coherent extreme-ultraviolet laser pulses of
attosecond duration [44–46].

Roughly two decades ago, about the time the first high-order harmonic spectra were
presented, another strong field phenomenon was discovered, but this time in calcula-
tions. Studies of the ionization probability of an atom as a function of the laser intensity,
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revealed an unexpected result in the regime where the applied laser forces dominate the
Coulomb attraction [47–54]. Instead of monotonically increasing until reaching 100%
probability of ionization, as foreseen by perturbation theory, the ionization probabil-
ity stabilized at a lower level or even started to subside. The phenomenon, given the
descriptive name atomic stabilization, has since its discovery been subject of intense
debate and controversy as to whether it really represents a physical process. Much of
the discussion can be ascribed to the lack of experimental verification. For instance, for
stabilization to be observed in atomic hydrogen, photon energies exceeding the bind-
ing energy of 13.6eV, and intensities of at least 1016 W cm−2 are required. This was
not within reach of the laser technology of the early 1990s, and to the present, the only
experimental evidence of stabilization comes from studies of low-lying Rydberg states
in neon and barium [55–57]. As for the intensity the laser technology is advancing to-
wards the regime where atomic stabilization in ground state atoms can be observed, but
to the misfortune of stabilization studies, the increase in intensity is accompanied by an
increase in laser frequency. One example is the free-electron laser technology capable
of delivering pulses of extremely high peak intensities and wavelengths ranging from
vacuum ultraviolet to soft x-rays.

In the following chapters the theory and the physics behind the five papers that are
included is outlined. In addition to these five, two more papers have been published
during the PhD-study. They are not included as they concern spontaneous phonon
emission in quantum dots rather than photoionization, and thus fall beyond the scope
of the dissertation.

Atomic units, where the electron mass me, the Planck’s constant h̄ and the elemen-
tary charge e are scaled to unity, are used throughout unless stated otherwise. A detailed
description of these units is found in Appendix A.

6



CHAPTER 2

ATOMS IN EXTERNAL FIELDS

2.1 Basic concepts

As for theory, atomic and molecular physics can be reduced to solving, either exactly
or approximately, one central partial differential equation, the Schrödinger equation,
here presented in its time-dependent form,

i
∂
∂ t

Ψ(r, t) = HΨ(r, t). (2.1)

Its solution, the wavefunction Ψ(r, t), contains all the information there is to know
about the quantum system at a given time t. The physics of the system itself is incor-
porated in the operator H called the Hamiltonian. For instance, for the simplest atomic
system in nature, the hydrogen atom, it reads

H0 =
p2

2
− 1

r
. (2.2)

In this expression the first term is the kinetic energy operator comprising the square of
the momentum operator p, and the second term is the Coulomb potential modeling the
interaction between the electron and the nucleus. The complexity of the Hamiltonian
is in general increasing with the intricacy of the system, and may include the electron-
electron interaction, the electron-nucleus interaction, the light-matter interaction, spin
interactions and so on. One notices that the Schrödinger equation is of first order in
the time derivative. It means that once the wavefunction is known at a time t0 it can
in principle be obtained for an arbitrary time t thereafter. This feature is frequently
exploited in this work when dealing with the time-dependent interaction between lasers
and matter, and the wavefunction is to be propagated in time.

Given a particle of charge q and mass m, the Hamiltonian which embodies the in-
teraction with an electromagnetic field, at the most fundamental level, is given by

H =
1

2m
[p−qA(r, t)]2 +qφ(r, t), (2.3)

where φ(r, t) and A(r, t) are the scalar and vector potentials which model the laser
field. From classical electrodynamics it is known that the general solution to Maxwell’s
equations, i.e., the electric and magnetic field, can be expressed in terms of A and φ ,

7



2.1 Basic concepts

E(r, t) = − ∂
∂ t

A(r, t)−∇φ(r, t) (2.4)

B(r, t) = ∇×A(r, t). (2.5)

However, there is a degree of freedom in the choice of A and φ , that is, A′(r, t) =
A(r, t)+∇λ (r, t) and φ ′(r, t) = φ(r, t)−∂λ (r, t)/∂ t result in the same physical fields
E and B. The different options are called gauges, and though the classical fields are not
influenced, the wavefunction is left with an additional phase factor,

Ψ′(r, t) = Ψ(r, t)eiqλ (r,t). (2.6)

Throughout the thesis two such gauges are employed, the length gauge1, and the veloc-
ity gauge, given by the two Hamiltonians

H lg =
p2

2m
−qr ·E(t), (2.7)

and

Hvg =
p2

2m
− q

m
A(t) ·p+

q2

2m
A2(t), (2.8)

respectively. Note that in the Eqs. (2.7) and (2.8) the electric field and the vector po-
tential are assumed to be space-independent. This is the result of a commonly used
approximation called the dipole approximation. The wavelength of the laser light is
typically much larger than the extent of the atomic system, and the spatial variation of
the fields is consequently disregarded, i.e., it is expanded to zeroth order,

A(r, t) = ε̂εε
∫ ∞

0
A0(ω)exp[i(ωt −k · r)]dω ≈ ε̂εε

∫ ∞

0
A0(ω)exp(iωt)dω. (2.9)

As a result, it is seen from Eq. (2.5) that within the dipole approximation the magnetic
field is zero as it solely depends on the spatial variation of the vector potential. Fur-
thermore, as the last term in Eq. (2.8) is purely time-dependent, it will give rise to a
phase factor in the solution of the Schrödinger equation. As this phase is of no physical
importance the term is often transformed away by a unitary transformation.

The unitarity of the gauge transformation [Eq. (2.6)] ensures all measurable quan-
tities, like expectation values and probabilities, to be gauge invariant given that Ψ(r, t)
is the exact solution of the Schrödinger equation. Therefore the choice of gauge is
merely a computational issue considering convergence of the calculations, and not of
fundamental physical significance. Nonetheless, when the solution is found using ap-
proximate methods the gauge invariance is not necessarily guaranteed, and the choice
of gauge may be of crucial importance for the validity of the approximation. Such an
example is briefly discussed in Sec. 3.2 in connection with high-order harmonic gener-
ation. In addition to the length gauge and the velocity gauge, there is a third option, the
Kramers-Henneberger frame [58, 59]. When applying this transformation the inertial
frame of the system follows the motion of a free classical particle in the field. Though
it is often referred to as the acceleration gauge, it is strictly speaking not a gauge since
it cannot be obtained through a gauge transformation [60]. The Kramers-Henneberger
frame is well suited in the strong-field limit, and is in this work used when explaining
the phenomenon of atomic stabilization in helium.

1The length gauge is also often referred to as the Göppert-Mayer gauge.
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Atoms in external fields

2.2 Hydrogen Rydberg wave packets in a Stark manifold

2.2.1 The hydrogen atom

Insertion of the hydrogen Hamiltonian [Eq. (2.2)] into the time-dependent Schrödinger
equation [Eq. (2.1)] results in the emergence of the time-independent Schrödinger equa-
tion

H0ψnlm(r) = Enψnlm(r), (2.10)

where the time dimension is factored out. In this expression En is the energy of the
eigenstates ψnlm having the same principal quantum number n = 1,2, . . .. The solution
to Eq. (2.10) is known analytically and separates into a radial part and an angular part,

ψnlm(r) = Rnl(r)Ylm(θ ,φ). (2.11)

The radial part is essentially given by rle−r/nL2n+1
n+1 (2r/n) with the latter function being

an associated Laguerre polynomial. The angular part is expressed in terms of functions
known as spherical harmonics. In addition to n there are two quantum numbers l and m
related to the orbital angular momentum and the projection of this quantity along one of
the axes (usually the z-axis), respectively. What is unique about the hydrogen atom is
that the energy depends only on the principal quantum number which defines the main
shells. Within each such shell the other quantum numbers form energetic degenerate
sub-shells conforming to the constrains l ≤ n− 1 and |m| ≤ l. This implies that one
n-shell consists of n2 states.

If the energy is positive, the electron is no longer bound to the nucleus, and there is
a continuum of possible states to occupy. As the principal quantum number is mean-
ingless in the continuum, these states are instead characterized by their energy Ek or
momentum k. The Coulomb waves as they are called, are defined by

ψklm(r) = ile−iσlYlm(r̂)Y ∗
lm(k̂)Rkl(r), (2.12)

where σl = argΓ(l + 1− i/k) is the Coulomb phase shift. The radial part, when nor-
malized in momentum space2, reads [61],

Rkl(r) =

√
2

π
eπ/2k|Γ(l +1− i/k)|

(2l +1)!
(2r)lkl+1e−ikr

1F1(l +1+ i/k,2l +2,2ikr). (2.13)

2.2.2 The Stark and Zeeman effects

The energetic degeneracy within an n-shell is lifted if an electric or magnetic field
is introduced. In the first case the phenomenon is called the Stark effect, and in the
second, the Zeeman effect. A Hamiltonian where both of them are included is given by

H = H0 +E(t) · r+ 1

2
B(t) ·L, (2.14)

where H0 is as defined in Eq. (2.10), the second term represents the Stark effect, and
the third term represents the Zeeman effect. In the latter, L is the angular momentum
operator.

2The corresponding energy normalized wavefunction is obtained through the scaling REkl(r) = k−1/2Rkl(r).
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2.2 Hydrogen Rydberg wave packets in a Stark manifold

Consider now an electron that is somehow initially excited to a non-degenerate Ry-
dberg n-shell. Under the assumption that the electric and magnetic fields are weak and
that they are slowly varying in time, inter-shell transitions are very unlikely as they re-
quire a large number of photons. This means that in practice the electron is trapped,
and that the only allowed transitions are those within the shell (intra-shell transitions).

As long as the dynamics of the interaction pertains to a single n-shell, the spatial
coordinate in the coupling E · r may be expressed in terms of the Runge-Lenz operator
a through what is known as Pauli’s operator replacement [62],

r =
3

2
na. (2.15)

In addition, if two pseudospin operators

J± =
1

2
(L±a) (2.16)

are introduced together with the angular velocities

ωωω± =
1

2
B± 3

2
nE, (2.17)

the field-dependent part of the Hamiltonian in Eq. (2.14) simply reads

H ′ = ωωω+ ·J++ωωω− ·J−. (2.18)

It can be shown [63] that the eigenvalues of H ′ becomes

Em+,m− = m+|ωωω+|+m−|ωωω−|, (2.19)

with m±=− j,− j+1, . . . , j−1, j, where j =(n−1)/2. In the limit where the magnetic
field dominates (Zeeman limit) the quantum numbers m± are related to the hydrogen
quantum number m by m = m++m−. On the other hand, if the electric field dominates
(Stark limit), they are connected to the Stark quantum numbers k and m via k = m++
m− and m = m+−m−.

From now on we restrict our attention to the case where the magnetic field is zero,
and the electric field εz is constant and oriented in the z-direction. This implies that the
Stark quantum number m is identical to its counterpart in the hydrogen atom. There are
as many Stark states ψnkm as there are field free hydrogen states ψnlm within an n-shell.
An expression for the energies of the system is readily obtained from the Eqs. (2.17)
and (2.19) combined with k and m in the Stark limit,

Ek =
3

2
knεz. (2.20)

The states having positive m are shown in the left panel of Fig. 2.1, with the en-
ergy increasing in the vertical direction. The rightmost and the leftmost (not shown)
states in the Stark manifold are the so-called circular states with quantum numbers
(n,k,m) = (16,0,±15). The term circular stems from the torus-shape of the electron
“cloud” (wavefunction). These two are identical to the hydrogen eigenstates with quan-
tum numbers (n, l,m) = (16,15,±15). Furthermore, the uppermost and the lowermost

10



Atoms in external fields

states, with quantum numbers (n,k,m) = (16,±15,0), are referred to as the linear Stark
states. Given the electric field is pointing in the z-direction, the Stark states can be writ-
ten as a linear combination of the hydrogen eigenstates having the same n and m [64]

ψnkm(r) = ∑
l
(−1)l

〈
n−1

2
,
m− k

2
,
n−1

2
,
m+ k

2

∣∣∣∣lm〉ψnlm(r). (2.21)

The expansion coefficients are called Clebsch-Gordan coefficients.
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Figure 2.1: Left panel: Stark states ψnkm of the n = 16 level due to the constant electric field

εz. The states populated by the rotating microwave field in the xy-plane are shown in color.

The wavefunctions of |nkm〉= |16 15 0〉, |nkm〉= |16 7 8〉 and |nkm〉= |16 0 15〉 are depicted.

Right panel: The population of the Stark states as a function of time for one round trip in the

Stark setup. The figure is taken from Paper IV.

2.2.3 Femtosecond-pulse-train ionization of a Rydberg wave packet

In Paper IV a weak time-dependent clockwise rotating microwave field,

Eμ(t) = ε0 cosωμtx̂− ε0 sinωμtŷ, (2.22)

is used to drive a wave packet between the levels in the n = 16 Stark manifold which
in turn is split by the electric field εz = 10−7 a.u. The frequency ωμ is chosen to match

the energy splitting ΔE, and the strength of the microwave field is ε0 = 10−8 a.u.
It is well known in quantum mechanics that a field in the x- or y-direction can only

drive transitions between states fulfilling the relations |Δl| = 1 and |Δm| = 1. In this
particular Stark setup an additional selection rule manifest itself, i.e., |Δk| = 1. The
selection rules significantly reduce the number of allowed transitions in the Stark man-
ifold. It can be shown that this number is even smaller by considering the rotation
direction of the electric field. According to Eq. (2.21) the angular matrix element be-
tween the initial state ψnkm and the final state ψn′k′m′ is a linear combination of matrix
elements of the kind〈

Yl′m′
∣∣Eμ(t) · r̂

∣∣Ylm
〉
=
〈

Yl′m′
∣∣∣Eμ x(t)sinθ cosφ +Eμ y(t)sinθ sinφ

∣∣∣Ylm

〉
. (2.23)
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2.2 Hydrogen Rydberg wave packets in a Stark manifold

A trick of the trade is to rewrite the trigonometric functions in terms of the two spherical
harmonics Y1,±1(θ ,φ) =∓√3/8π sinθ exp(±iφ). Hence, Eq. (2.23) is proportional to〈

Yl′m′
∣∣∣[−Eμ x(t)+ iEμ y(t)

]
Y1,1 +

[
Eμ x(t)+ iEμ y(t)

]
Y1,−1

∣∣∣Ylm

〉
. (2.24)

Upon substitution of the components of Eq. (2.22), Eq. (2.24) becomes,

ε0 〈Yl′m′ |Y1,−1|Ylm〉e−iωμ t − ε0 〈Yl′m′ |Y1,1|Ylm〉eiωμ t . (2.25)

The orthonormality properties of the spherical harmonics [21] imply that the latter
equation is proportional to

ε0

(
δm′,m−1 e−iωμ t︸ ︷︷ ︸

absorption

−δm′,m+1 eiωμ t︸︷︷︸
emission

)
δl′,l±1. (2.26)

It is known from perturbation theory that the first operator in Eq. (2.26) corresponds to
the system absorbing an energy ΔE, and that the second leads to emission of the same
energy amount. From this we conclude that the angular momentum (the m quantum
number) is decreasing when the energy of the electron is increasing, and the other way
around. This conveys that if initially the circular state is fully populated, the population
will gradually flow towards the linear state as indicated in the left panel of Fig. 2.1.
Moreover, when the linear state is fully populated and the circular state is depleted, the
process repeats itself but now in the opposite direction.

We now have a Rydberg wave packet that is slowly evolving in the Stark manifold,
making one round trip between the circular state and the linear state in τ = 2.6×107 a.u.
(corresponding to 0.6 ns). The population probability of the different Stark states as a
function of time is displayed in the right panel of Fig. 2.1. The idea is to investigate
the ionization dynamics of the wave packet using a train of femtosecond pulses. Ap-
parently, the microwave field and the laser pulses act on different time-scales. Hence,
from the femtosecond pulse’s point of view the motion of the wave packet due to the
microwave field seems frozen in time. The intra-shell dynamics of the wave packet
is calculated by means of time propagation of the solution to the Schrödinger equa-
tion. By keeping the field strength sufficiently low (E0 = 2.0×10−5 a.u.), only a small
fraction of the wave packet is transferred to the continuum at each burst of the pulse-
train. This, in combination with the wave packet being practically unaltered by the
microwave field during the pulses, admits the action of each laser pulse to be treated
within the frame of first-order perturbation theory, temporary neglecting the intra-shell
dynamics. The jth transition amplitude between the (bound) wave packet Ψb(t) and
one particular continuum state ψqlm of momentum q is then given by

a( j)
qlm =−i

∫ t j+T

t j

〈
ψqlm |E(t) · r|Ψb(t)

〉
ei(Eq−Eb)tdt. (2.27)

In this expression the laser-matter interaction is formulated in the length gauge. Eb

and Eq are the energies of the initial state and the final state, and T is the pulse du-
ration. From Eq. (2.27) it follows that after the jth pulse the continuum part of the
wavefunction becomes

Ψc(t j +T ) = ∑
q,l,m

N

∑
j=1

a( j)
qlm|ψqlm〉e−iEq(N− j)Δt , (2.28)
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Atoms in external fields

where the transition amplitudes serve as expansion coefficients.
Figure 2.2 presents a plot of the ionization probability as a function of the number

of pulses in the pulse-train and the time separation Δt between them. In general, the
ionization probability is larger the closer the wave packet is to the linear state, resulting
in the ridges and valleys of the figure. It is observed that the maximum is reached when
Δt = τ/2, that is, every second pulse hits the linear state. There are also two minima
that stand out at Δt = τ/3 and Δt = 2τ/3, where the laser pulse always strikes when
the wave packet is in the vicinity of but not sufficiently close to the linear state.

Figure 2.2: The ionization probability as a function of N succeeding pulses and time delay Δt.
The initial state prior to the pulse-train is |nkm〉= |16 0 15〉. The figure is taken from Paper IV.
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CHAPTER 3

THE STRONG-FIELD APPROXIMATION AND HIGH-ORDER

HARMONIC GENERATION

As stated in the introductory chapter, one possible approach to solve the Schrödinger
equation in the strong field regime is to apply the strong-field approximation. In this
chapter the strong-field approximation is used in the derivation of an expression for the
high-order harmonic spectrum of an extended molecule.

3.1 The strong-field approximation

3.1.1 The Volkov state

We start the discussion by introducing the main constituent of the strong-field approxi-
mation, the Volkov states. The behavior of a free electron only influenced by an electric
field is fully described by the following time-dependent Schrödinger equation

[T +VL(r, t)]ψ(r, t) = i
∂
∂ t

ψ(r, t), (3.1)

where T is the kinetic energy operator, and VL(r, t) is E(t) · r and A(t) ·p+A2(t)/2 in
length gauge and velocity gauge, respectively. In an atomic system where a strong laser
field completely obscures the effect of the Coulomb potential, the solution to Eq. (3.1)
may, under certain conditions, provide an adequate description of its continuum states.
The solution to the TDSE is the Volkov state ψV

k (r, t), which reads

ψV
k (r, t) =

1

(2π)3/2
exp [i(k+A(t)) · r− iS(k, t, t0)] (3.2)

in the length gauge, and

ψV
k (r, t) =

1

(2π)3/2
exp [ik · r− iS(k, t, t0)] (3.3)

in the velocity gauge. In both equations the space independent function S, called the
classical action of the electric field, is given by the time integral of the kinematic mo-
mentum,

S(k, t, t0) =
1

2

∫ t

t0
dt ′
[
k+A(t ′)

]2
. (3.4)
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3.1 The strong-field approximation

3.1.2 Derivation of the strong-field approximation

The time-dependent Schrödinger equation for an atom exposed to a laser field reads

[T +V (r)+VL(r, t)]Ψ(r, t) = i
∂
∂ t

Ψ(r, t), (3.5)

where T is the kinetic operator, V (r) is the Coulomb potential, and VL(r, t) is the po-
tential representing the laser-matter interaction. In what follows we will solve Eq. (3.5)
using the strong-field approximation (SFA). The SFA method is based on three basic
assumptions:

1. The initial state is not depleted when exposed to the electric field of the laser.

2. The atom can be approximated by one state only.

3. When the field is applied, the effect of the atomic core potential V (r) on the con-
tinuum states is negligible. This approximation allows for the exact continuum
states [cf. Eq. (2.12)] of the system to be replaced by the Volkov states [Eqs. (3.2)
and (3.3)].

By the second and the third assumption an approximate solution to the TDSE in
Eq. (3.5) may be written as the sum of the initial bound state and the continuum states

Ψ(r, t) = ψb(r, t)+
∫

d3k ck(t)ψV
k (r, t), (3.6)

where ψV
k (r, t) represents the Volkov states. Moreover, it is assumed that the initial state

ψb(r, t) = φb(r)exp(−iEbt) is the exact solution of the field free Schrödinger equation

[T +V (r)]ψb(r, t) = i
∂
∂ t

ψb(r, t). (3.7)

Especially notice that the time dependence of the initial state in Eq. (3.6) is restricted
to the trivial time-evolution in accordance with the first assumption. The Schrödinger
equation [Eq. (3.5)] and the SFA-wavefunction [Eq. (3.6)], in combination with the
Eqs. (3.4) and (3.7), lead to

i

∫
d3k ċk(t)ψV

k (r, t) =VL(r, t)ψb(r, t)+V (r)
∫

d3k ck(t)ψV
k (r, t). (3.8)

By exploiting the orthogonality of the Volkov states, Eq. (3.8) may be rewritten

iċk(t) =
〈
ψV

k′(r, t) |VL(r, t)|ψb(r, t)
〉
+
∫

d3k ck(t)
〈
ψV

k′(r, t) |V (r)|ψV
k (r, t)

〉
. (3.9)

As it is assumed that the influence of the binding potential on the continuum states
is negligible, the last term in Eq. (3.9) is consequently disregarded. A simple time
integration yields the expansion coefficients of the continuum states

ck(t) =−i

∫ t

−∞
dt ′

〈
ψV

k (r, t
′)
∣∣VL(r, t ′)

∣∣ψb(r, t ′)
〉
. (3.10)
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3.2 High-order harmonic generation

3.2.1 The three-step model

The concept of high-order harmonic generation can be summed up in a simple semi-
classical model commonly known as the three-step model or the simple man’s model.
The model was originally put forward by P. B. Corkum in 1993 [65] and explains, as
the name suggests, the process of HHG in three steps. Consider an atom that is initially
in a bound state of binding potential Ip, as shown in the first panel of Fig. 3.1. The
time-dependent electric field of a laser perturbs the potential and the lowered potential
barrier allows for the electron to tunnel out. This is the first step of the model. Second
step: The electron is now assumed to be a free particle in the continuum with approxi-
mately zero kinetic energy. The electric field accelerates the liberated electron, which
in this process gains energy. Third step: After half an optical cycle in the continuum
the electron is again captured by the atomic potential, and the excess energy accumu-
lated in the electric field is emitted as a photon of frequency ω . This frequency turns
out to be odd multiples of the driving frequency ω0 of the laser,

ω = nω0, n = 1,3,5, . . . (3.11)

That there are only odd harmonics is the result of an interference effect owing to the

Figure 3.1: An illustration of the semiclassical three-step model. (a) An electron in a bound

atomic state. (b) First step: the electron tunnels out of the potential which is perturbed by a

laser field. (c) Second step: the liberated electron gains energy as it is accelerated by the laser

field in the continuum. Third step: eventually the electron recombines with the ion, emitting a

high-order harmonic signal.

half-cycle ionization-recombination pattern together with the assumption of a spatial
symmetric atomic potential. Examples of media only producing odd harmonics are
monatomic gases or gases of homonuclear molecules. Even harmonics, however, can
be detected if this symmetry is broken, for instance by using a gas of heteronuclear
molecules.
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3.2 High-order harmonic generation

3.2.2 Characteristics of the HHG spectrum

The frequency domain spectrum of the high-order harmonic signal is characterized
by a large collection of amplitudes of comparable magnitude (on logarithmic scale),
in HHG terminology referred to as the plateau. The plateau ends abruptly with the
frequency components decreasing rapidly in magnitude, and the harmonic where this
drastic change takes place is the so-called cutoff. The cutoff harmonic is associated
with the maximum amount of energy the electron accumulates when propagating in the
continuum. Assuming the electron recombines with the parent ion after a round-trip in
the continuum, the maximum achievable cutoff harmonic is simply given by [65]

ω0ncutoff = Ip +3.17Up, (3.12)

where Up = E2
0/4ω2

0 is the ponderomotive energy of a free classical electron in the
field, ω0 is the central frequency of the laser pulse, and E0 is the corresponding electric
field amplitude. In a diatomic molecule, on the other hand, one can imagine that the
electron ionizes at one atom and recombines at the other. If so is the case, the cutoff
harmonic is found to be at maximum [66]

ω0ncutoff = Ip +8Up. (3.13)

Figure 3.2: A simplified high-order harmonic spectrum.

3.2.3 High-order harmonic generation using the SFA

In calculations the high-order harmonic spectrum is calculated by taking the Fourier
transform of either the dipole, the dipole velocity or the dipole acceleration. Take for
instance the dipole velocity, the corresponding HHG spectrum is then found from the
formula

S(ω) =

∣∣∣∣n ·
∫ ∞

−∞
dt 〈Ψ(r, t) |p|Ψ(r, t)〉eiωt

∣∣∣∣2 . (3.14)

The strong-field approximation, as described in Sec. 3.1.2, is commonly used in
calculations of high-order harmonic generation. Assuming the laser-matter interac-
tion is represented in the length gauge, the dipole velocity calculated using the SFA-
wavefunction [Eq. (3.6)], with inserted the expansion coefficients [Eq. (3.10)], yields
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The strong-field approximation and high-order harmonic generation

the expression known as the Lewenstein model

〈Ψ(r, t) |p|Ψ(r, t)〉
≈ −i

∫ t

0
dt

∫
d3k exp

{−i
[
S(k, t, t ′)−Eb(t − t ′)

]}
×
[∫

d3r e−i[k+A(t ′)]·r V lg
L (r, t ′)ψb(r)

]
︸ ︷︷ ︸

ionization

[∫
d3r ψb(r)p ei[k+A(t)]·r

]
︸ ︷︷ ︸

recombination

.

+ c.c. (3.15)

It is here assumed that the laser pulse has a finite duration, and that it is initiated at t ′ =
0. For symmetry reasons the direct term 〈ψb |p|ψb〉, involving the bound state, is zero.
The corresponding term involving the Volkov states is negligible given the continuum
states are weakly interacting, hence the approximately equal sign. Equation (3.15)
invites to a physical interpretation concordant with the semiclassical three-step model.
Firstly, as indicated by braces, it is composed of one matrix element representing the
ionization and one matrix element representing the recombination. Secondly, it is seen
that the electron is transferred to the continuum at 0 < t ′ < t and that it recombines with
the ion at time t. Notice that the limits of the classical action integral are different from
those in Eq. (3.4)

If Ψ(r, t) were the exact solution of Eq. (3.5) the high-order harmonic spectrum
would have been independent of the choice of gauge. In contrast, for an approximate
solution, like the one in Eq. (3.6), the result will, to a greater or lesser extent, be gauge
dependent. An example of a situation where the gauge should be selected with care,
is the case where the electron is ionized at one atom and recombines at another far
away [67, 68]. Here, the length gauge may result in the unphysical situation of a cutoff
harmonic increasing monotonically with the interatomic separation. This means that
if the atoms are infinitely far apart, the electron may accumulate an infinitely amount
of energy in the continuum, which of cause does not reflect reality. Therefore, we
choose to employ the velocity gauge formulation of the SFA-formalism when we, in
what follows, derive an expression for the HHG spectrum for extended molecules.

3.3 High-order harmonic generation in extended molecules

3.3.1 Multicenter wavefunction

From now on we let the initial state be a multicenter wavefunction distributed on a
two-dimensional grid,

ψb(r, t) =
1√
N ∑

j
φ(r j)e

−iε0t . (3.16)

Here, the site specific functions are pz Gaussian-type orbitals (GTOs) centered at R j,

i.e., φ(r j) = z e−α(r−R j)
2
, N is the number of atoms in the molecule, and ε0 is the

binding energy. The choice of pz-orbitals is motivated by the aim to model the carbon
allotrope of graphene. Graphene, which is simply a single layer of graphite, was first
experimentally realized in 2004 [69]. Its extraordinary physical properties, like superior
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strength and electronic conductivity, is related to the very strong bindings between the
sp2-orbitals of which it consists. Three of the valence orbitals of the carbon atoms
(2s, 2px and 2py) hybridizes into sp2-orbitals providing the hexagonal structure of the
molecule. The last electron, which is not taking part in the hybridization, accounts
for the electronic properties of the material, and thus prompts the use of pz-orbitals
in the model. Fig. 3.3 shows a sketch of the pz-orbitals distributed on the hexagonal
“honeycomb” lattice.

Figure 3.3: Artist’s impression of graphene exposed to a linearly polarized laser pulse. The

graphene layer is modeled by pz-orbitals distributed on a honeycomb lattice in the xy-plane,

and the polarization vector of the laser pulse is tilted with respect to the z-axis. The trajectory

illustrates the situation in which the ionized electron recombines with another atom in the

lattice. The figure is taken from Paper V.

In the velocity gauge, assuming a multicenter wavefunction, the ionization matrix
element of Eq. (3.15) reads

dion(k, t ′) =
∫

d3r e−ik·r
[
−iA(t ′) ·∇+

A2(t ′)
2

]
1√
N ∑

j
φ(r j). (3.17)

If the laser field is linearly polarized in the xz-plane, Eq. (3.17) becomes, upon substi-
tution of the pz-GTO,

dion(k, t ′) =
1√
N

{
i2αAx(t ′) F−

1 (α,kx)F−
0 (α,ky)F−

1 (α,kz)

−iAz(t ′) F−
0 (α,kx)F−

0 (α,ky)
[
F−

0 (α,kz)−2αF−
2 (α,kz)

]
+

A2(t ′)
2

F−
0 (α,kx)F−

0 (α,ky)F−
1 (α,kz)

}
∑

j
exp(−ik ·R j) ,

(3.18)
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The strong-field approximation and high-order harmonic generation

where the integrals over products of GTOs and plane waves are analytic functions [70]
found from the formula,

F±
n (a,u) =

∫ ∞

−∞
dv vne−av2

e±iuv

= (±i)n
√

π
a

n!

2nan/2
e−u2/4a

[n/2]

∑
k=0

(−1)k

k!(n−2k)!

(
u√
a

)n−2k

. (3.19)

Similarly, the recombination matrix element becomes

vrec(k, t) =
1√
N

∫
d3r ∑

j
φ(r j)∇eik·r

=
ik√
N

F+
0 (α,kx)F+

0 (α,ky)F+
1 (α,kz)∑

j′
exp

(
ik ·R j′

)
. (3.20)

Although the ionization and recombination elements are very similar, it is worth noting
that whereas the first one is a scalar, the second is a vector. Also notice that the nuclear
coordinates come into play as extra phase factors at the end of the expressions.

3.3.2 Stationary-phase method

The stationary-phase method, also called the saddle-point method, is a well-suited ap-
proximation when solving highly oscillatory integrals like the one appearing in the
momentum coordinate in Eq. (3.15). In this approximation the integrals are evaluated
by means of the stationary points of the function in the complex exponent, which is
assumed to oscillate rapidly,

∫ ∞

−∞
dx f (x)eig(x) ≈ ∑

s
f (xs)

√
2π

ig′′(xs)
eig(xs). (3.21)

The xs’s are the roots of the equation g′(x) = 0. Lewenstein et al. [71] were the first to
apply the stationary-phase method to the single-atom SFA-problem in Eq. (3.15), using
the stationary points of the classical action, i.e., the roots of ∇kS(k, t, t ′) = 0,

ks =− 1

t − t ′

∫ t

t ′
dt ′′ A(t ′′). (3.22)

On the basis of the kinematic momentum of the electron in the continuum, it can
be shown that the stationary-phase approximation favors the classical trajectories de-

scribed by the equation x(t ′′) = ks(t ′′ − t ′)+
∫ t ′′

t ′ dt ′′A(t ′′), where t ′′ represents the time
from when the electron is ejected at t ′ and until it recombines with the ion at t. In-
serting the definition of ks it is also straightforwardly shown that x(t ′) = x(t) = 0 as
required by the classical three-step model. Interpreted within Feynman’s path formu-
lation of quantum mechanics, the selected trajectories are the paths that maximize the
classical action.

In the molecular case, consisting of two or more atomic centers, the stationary points
given by Eq. (3.22) do not apply. Here the spatial structure gives rise to additional
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3.3 High-order harmonic generation in extended molecules

phases depending on the momentum and nuclear coordinates. These phase factors have
to be taken into consideration when evaluating the momentum integral in the stationary-
phase approximation. As seen from the classical action together with the Eqs. (3.18)
and (3.20) the mulicenter stationary-phase condition becomes

∇k

[
k · (R j −R j′)+

1

2

∫ t

t ′
dt ′′

[
k+A(t ′′)

]2
]∣∣∣∣

k=ks

= 0, (3.23)

with the stationary points

k( j, j′)
s =− 1

t − t ′

[
R j −R j′ +

∫ t

t ′
dt ′′ A(t ′′)

]
. (3.24)

Consequently, the dipole velocity reads

〈Ψ(t) |p|Ψ(t)〉 ≈ −
(

1

2π

)3∫ t

0
dt ′ exp

(
i

[
ε0(t − t ′)− 1

2

∫ t

t ′
dt ′′A2(t ′′)

])
×
(

2π
ε + i(t − t ′)

)3/2

∑
j, j′

dion
j

(
k( j, j′)

s , t ′
)

vrec
j′
(

k( j, j′)
s , t

)
×exp

(
−i

[
1

2

(
k( j, j′)

s

)2
(t − t ′)+k( j, j′)

s ·
∫ t

t ′
dt ′′ A(t ′′)

])
+ c.c. (3.25)

where dion
j and vrec

j′ are the components of Eqs. (3.18) and (3.20), respectively. The ε
appearing in the formula is an ad hoc parameter preventing the integral from diverging.
Though the results depend weakly on its value, it is not decisive for the HHG spectra.

0 30 60 90 120 150
Harmonic order

-9

-6

-3

0

3

6

lo
g
1
0
 [

S
(ω

)]
  
(a

rb
. 
u
n
it

s)

3

5

Figure 3.4: The HHG power spectrum as a function of harmonic order for a circular graphene

sheet of 348 atoms (lower, blue line), 954 atoms (middle, green line), and 2918 atoms (upper,

red line) exposed to a linearly polarized laser. The inset shows a close up of the spectra. The

polarization angle of the laser field is θ = 45◦. The figure is taken from Paper V.

22



CHAPTER 4

MULTIPHOTON IONIZATION AND ATOMIC STABILIZATION

4.1 Atoms in superintense laser fields

4.1.1 Atomic stabilization

Our intuition tells us that the more force we apply the more response we get. This
was for years the reasoning behind the ionization process of atoms subjected to laser
pulses. Lowest-order perturbation theory (LOPT), supports this idea stating that the
ionization probability scales like In, where I is the intensity and n is the number of pho-
tons involved. Though LOPT is not, in any respect, the whole truth, it was with surprise
one observed higher order methods to yield a non-monotonically increasing ionization
probability. In practise this means that at a certain electric field strength of the applied
laser pulse, the atom enters a regime where it is less prone to ionize, i.e., it stabilizes.
Since there are several methods and definitions associated with the term “stabilization”
it should be stressed that in this thesis the term is used concordant with what is in [72]
referred to as dynamic stabilization. That is, we solve the time-dependent Schrödinger
equation (TDSE), and observe the ionization probability to either level off below unity,
or even, locally or globally decrease as a function of the laser intensity. A simplified
stabilization curve is displayed in Fig. 4.1.

To get an intuitive grip on the stabilization phenomenon, one can imagine a classical
electron bound to an atom, but whose motion is mainly governed by a superintense laser
field. If the electric field is strong enough, the excursion amplitude of the electron is
approximately given by the quiver amplitude α0 =E0/ω2

0 , where E0 is the field strength
and ω0 is the central frequency of the laser pulse. As the electric field increases the
excursion amplitude grows larger, and as a consequence, the electron spends on average
more time away from the nucleus. As interaction with the nucleus is a prerequisite for
ionization in this regime, the ionization process becomes less likely.

4.1.2 Above threshold ionization

In the limit of strong fields one may observe so-called above threshold ionization (ATI),
a phenomenon reminiscent of the high-order harmonic generation discussed in Sec. 3.2.
Instead of photons as in HHG, electrons are ejected at energies being multiples of the
frequency of the driving laser field, according to the formula

Es = (n+ s)ω − Ip. (4.1)
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4.1 Atoms in superintense laser fields

Figure 4.1: The figure illustrates the phenomenon of atomic stabilization. The ionization

probability as a function of laser intensity (or field strength) is divided into three regimes. The

perturbation regime where the ionization probability scales with intensity like In, the “death

valley”1 where the stabilization effect sets in, and the stabilization region where the probability

is either constant or decreasing.

In this expression, n is the minimum number of photons needed to exceed the ionization
threshold, s is the number of excess photons absorbed by the ejected electron, and Ip is
the ionization potential. It is apparent from Eq. (4.1) that the ATI appears as equally
spaced peaks in the energy spectrum relative to the ionization potential.

4.1.3 Method

There are two stabilization studies included in the thesis. The overall methodology is
basically the same in both, but the physical systems and viewpoint differ. The TDSE
is solved in full dimensionality for either one single electron in hydrogen, with the
Hamiltonian

H =
p2

2
− 1

r
+A(t) ·p (4.2)

or two interacting electrons in helium, with

H =
2

∑
i=1

(
p2

i
2
− 2

ri
+A(t) ·pi

)
+

1

|r1 − r2| . (4.3)

In both cases the laser-matter interaction is represented in the velocity gauge. Propa-
gation and analysis of the wavefunction is performed in the Pyprop framework [73],
which is a Python/C++ software package for solving the TDSE.

In Pyprop the radial coordinates of the wavefunction are expanded in a B-spline
basis [74], while the angular rank is represented in coupled spherical harmonics. In the
two-electron case the full wavefunction expansion reads

Ψ(r1,r2, t) = ∑
i, j,k

ci jk
Bi(r1)

r1

B j(r2)

r2
YLM

l1,l2(Ω1,Ω2), (4.4)

1The expression originates from studies of the lifetime of ground state hydrogen, where the resulting curves

in this regime in fact resembles a valley [49].
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Multiphoton ionization and atomic stabilization

where k = {L,M, l1, l2} is a combined angular index and

YLM
l1,l2(Ω1,Ω2) = ∑

m
〈l1l2mM−m|LM〉Y m

l1 (Ω1)Y M−m
l2

(Ω2) (4.5)

are the coupled spherical harmonic basis functions. In the one particle case, one of the
radial ranks of Eq. (4.4) is disregarded and the coupled spherical harmonics [Eq. (4.5)]
reduce to regular spherical harmonics.

The Schrödinger equation is represented in matrix form and the wavefunction is
propagated in time using a Crank-Nicolson type of propagator,(

S+
iΔt
2

H
)

c(t +Δt) =
(

S− iΔt
2

H
)

c(t), (4.6)

where H is the Hamilton matrix, c(t) is the vector containing the expansion coeffi-
cients of the wavefunction, and S is the B-spline overlap matrix resulting from the
non-orthogonality of the B-spline basis functions. For a thorough discussion, see [32].

4.1.4 Stabilization in circular Rydberg states of hydrogen

Paper II presents a study of low-lying circular Rydberg states exposed to circularly
polarized infrared laser fields. As pointed out in Sec. 2.2 a circular state means a state
where the quantum numbers fulfill the requirement that |m|= l = n−1. In Paper II m
is chosen to be positive, and for that reason one can, in a classical perspective, imagine
the electron to be “orbiting” the nucleus in a counterclockwise fashion. Motivated
by this conception the state is exposed to a coplanar field that is either co- or counter-
rotating with respect to the electron motion. The laser pulse is represented by the vector
potential

A(t) = A0 sin2
(πt

T

)
[sin(ωt +φx)x̂+ sin(ωt +φy)ŷ] , (4.7)

where A0 =E0/ω , E0 is the peak amplitude of the electric field, ω is the laser frequency
and T is the total pulse duration. As seen from above, the field is defined to rotate
clockwise if φx = 0 and φy = π/2 and counterclockwise if the phases are interchanged.

It turns out that stabilization also occurs in purely classical calculations when solv-
ing the Newtonian equations of motion for a large number of initial conditions picked
at random from a microcanonical ensemble. In this method, knows as classical trajec-
tory Monte Carlo (CTMC) [75, 76], trajectories which fulfill the initial constraints all
represent electrons that are bound to the nucleus. After the pulse some of the trajecto-
ries correspond to free electrons, and the ratio between the number of these to the total
number of trajectories gives an estimate of the ionization probability. In this particular
case only trajectories conforming to the constraint (m−1/2)h̄ < Lz < (m+1/2)h̄, and
with energy equal to the quantum mechanical binding energy, are taken into account in
order to mimic the circular behavior of the initial state. In this expression m is the an-
gular projection quantum number of the initial state and Lz is the z-component of the
angular momentum of the classical orbit.

In Fig. 4.2 the ionization probability is calculated as a function of intensity/ex-
cursion amplitude for the initial state 5g (m = 4) when subjected to 800 nm (ω =
0.057a.u.) laser pulses of varying pulse duration. In the upper panels the electric
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4.1 Atoms in superintense laser fields

field and the electron are co-rotating (clockwise) whereas in the lower panels they are
counter-rotating. The TDSE and CTMC calculations are shown in the left and right
panels, respectively. Moreover, the shaded functions at the bottom show the radial dis-
tributions in the two cases, and the dashed lines mark the radial expectation values. The
lighter shaded areas, representing one standard deviation to each side of the expectation
value, provide a gauge of the width of the distributions.

Figure 4.2: Ionization probability as a function of excursion amplitude/laser intensity for the

circular 5g (m = 4) state. The laser wavelength is 800nm. The left panels are TDSE results,

and the right panels are results from classical trajectory Monte Carlo (CTMC) calculations. For

the upper panels a circular field that is co-rotating with respect to the electronic motion was

used. The curves, from bottom up, represent laser pulses with 4, 6, 8, 10 and 12 optical cycles.

The lower panels are the results for the corresponding counter-rotating case. Here, the curves,

from bottom up, represent laser pulses with 4, 6 and 8 optical cycles. The shaded function in

the bottom left panel is the shape of the radial probability distribution of the initial (quantum

mechanical) state, and the histogram in the bottom right panel represents the distribution of

initial radii for the electrons in the CTMC simulations. The dashed lines mark the radial

expectation values 〈r〉, in the two cases, and the lighter shaded areas indicate the widths of

the initial probability distributions, here taken to be the standard deviation. The figure is taken

from Paper II.

The first thing to notice about Fig. 4.2 is that in all four panels the ionization prob-
ability reaches a maximum in the vicinity of the radial expectation value. This close
correlation between the torus radius and the excursion amplitude of the electron at the
stabilization threshold can be explained in a simple fashion. During the action of the
pulse the torus-shaped electron “cloud” is driven around the heavy and nearly stationary
nucleus. At a certain field strength the excursion amplitude and the radial expectation
value are of comparable magnitudes, and the densest part of the electron “cloud” is
pulled through the nucleus. Taken into consideration that interaction between the elec-
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Multiphoton ionization and atomic stabilization

tron and the nucleus is a catalyst for ionization to take place, it stands to reason that
the ionization probability is enhanced at this point. For weaker field strengths the nu-
cleus will stay inside the torus throughout the pulse and the state is consequently less
likely to ionize. On the other hand, for field strengths beyond the stabilization threshold
the torus is displaced to such a degree that it is no longer “in touch” with the nucleus
causing a decline in the ionization probability. However, the large displacement of the
torus also implies that the nucleus fails to hold the electron “cloud” together and part
of it is flung out and ionizes through dispersion. As a whole, these two mechanisms
qualitatively explain the local minima that appear at the largest excursion amplitudes.
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Figure 4.3: Left panel: The trajectory of a classical electron in an elliptical orbit being kicked

out when closest to the nucleus (black dot). The red arrow indicates the direction of the force

from the field acting on the electron (blue dot) at the very moment when the ionization takes

place. Upper right panel: The angular frequency of the electron, relative to the origin, as a

function of time. Lower right panel: The energy of the electron as a function of time. The two

times the distance between electron and nucleus is minimized are marked by vertical dashed

lines in the right panels. The peak intensity is 1.08× 1011 W cm−2. The figure is taken from

Paper II.

One also notices a striking resemblance between the quantum mechanical and clas-
sical calculations. Both types of calculations demonstrate a clear difference between
the co- and counter-rotating results in the low intensity limit. This observation reflects
the classical nature of circular Rydberg states, and can be seen as an example of Bohr’s
correspondence principle [13]. Apparently, the mechanism that enhances the ionization
probability when the field and electron are co-rotating can be explained classically.

As mentioned, in the CTMC calculations the initial states are modeled by a collec-
tion of electron orbits (∼30000) having approximately the same angular momentum,
but which are of varying eccentricity. Common to all of them is that the electron is or-
biting the nucleus counterclockwise. The electric field which is rotating approximately
nine times faster than the electron will, regardless of rotation direction, alternately ac-
celerate and decelerate the electron. This is where the co- and counter-rotation differs.
It turns out that the periods of acceleration and deceleration are longer when the field
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4.1 Atoms in superintense laser fields

and the electron are co-rotating. Moreover, the better the laser frequency matches the
rotational frequency of the electron in the orbit, the longer these periods become. Thus,
if the orbit is so that the rotational frequency is instantaneously comparable to the fre-
quency of the laser when the electron is closest to the nucleus, the electron may get an
energy boost. An example of such an electron trajectory is shown in the left panel of
Fig. 4.3. The figure clearly shows how the electron is simply “kicked out” of the or-
bit in something like a field assisted “sling-shot maneuver”. To underpin this argument
the upper and lower right panels display the electron’s instantaneous angular frequency
and energy. It is seen that the angular frequency indeed approaches the laser frequency
ω0 = 0.057a.u. two times during the trajectory, and both times the particle experiences
a sudden leap in energy.

4.1.5 Stabilization and multiphoton ionization in helium

In Paper I ground state helium is exposed to a linearly polarized extreme ultraviolet (or
soft x-ray)2 laser pulse in the z-direction. The pulse is modeled by the vector potential

A(t) = A0 sin2
(πt

T

)
cos(ωt)ẑ, (4.8)

where the parameters are as described in Eq. (4.7).
To gauge the importance of the electron-electron interaction on the stabilization

phenomenon we also introduce an independent electron (IE) model defined by

Ψ(r1,r2, t) = ψSAE(r1, t)ψHe+(r2, t). (4.9)

In this simplified model one identifies an “outer” and an “inner” electron in the helium
atom. The “outer” electron is represented by a single active electron (SAE) wavefunc-
tion which experiences a screened nuclear potential [77] due to the “inner” electron.
The “inner” electron, on the other hand, is modeled by a helium ion wavefunction com-
pletely disregarding the other electron in the atom. The effect of the electron-electron
correlation is neglected everywhere but in the screened potential where it enters indi-
rectly.

Figure 4.4 shows the total (single + double) ionization probability versus excursion
amplitude for three different laser frequencies, ω = 4 (left panel), 5 (middle panel),
and 10 a.u. (right panel), and for four different pulse durations, 3, 6, 12, and 24 opti-
cal cycles (from bottom to top). In the majority of the considered cases the ionization
probability increases with the excursion amplitude until it reaches a maximum where
the stabilization sets in. One striking feature of this figure is that the independent elec-
tron calculations (dashed lines) coincide with the full TDSE calculations (solid lines)
for weak fields and long pulses, but otherwise tend to overestimate the stabilization
effect.

Intuitively one might expect the role of the electron-electron correlation to become
less important in the strong field limit, but Fig. 4.4 demonstrates quite the opposite.
This seemingly counterintuitive phenomenon can be understood within the so-called

2Extreme ultraviolet is typically defined as electromagnetic waves with wavelengths in the range 1−100nm

or energy 1240−12.5eV (45.6−0.46a.u.), but the boundaries are vague. For instance, the laser frequencies in

Fig. 4.4, ω = 4, 5 and 6 a.u., translate into 10.1, 9.1 and 8 nm, respectively.
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Multiphoton ionization and atomic stabilization

Figure 4.4: Ionization probabilities plotted as a functions of the electronic displacement

(E0/ω2) for the frequencies ω = 4 (left panel), ω = 5 (middle panel), and ω = 10a.u. (right

panel). In each panel, the pulses are of 3, 6, 12, and 24 cycles duration from bottom to top.

The solid lines are the results from the full calculations. The dashed lines are the results from

the IE calculations. In the right panel, the excursion amplitude extends into a region (shaded)

where relativistic (nondipole) effects may have an influence on the results, and the correspond-

ing velocity of a classical free electron moving in the field exceeds 10% of the speed of light.

The figure is taken from Paper I.

Kramers-Henneberger frame. This is the rest frame of a classical free electron in the
laser field with the Hamiltonian

HKH =
2

∑
i=1

(
p2

i
2
− 2

|ri +ααα(t)|
)
+

1

|r1 − r2| , (4.10)

where

ααα(t) =
∫ t

0
Az(t ′)dt ′ẑ, (4.11)

represents the displacement of the classical electron with respect to the laboratory
frame. The second term in Eq. (4.10), the Kramers-Henneberger potential, might as
well be expanded in a Fourier series

VKH[ri +ααα(t)] =− 2

|ri +ααα(t)| = ∑
n

Vn(α0,ri)e
−inωt (4.12)

with the Fourier amplitudes

Vn(α0,ri) =
1

T

∫ T

0
e−inωtVKH[ri +ααα(t)]dt. (4.13)

Especially notice that in this frame the laser-interaction enters into the electron-nucleus
interaction term which consequently becomes time-dependent.
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4.2 Two-photon double ionization of H2

By solving the TDSE using high-frequency Floquet theory Gavrila et al. [72, 78–
80] showed that the first Fourier amplitude (n = 0) is more important the higher the
values of the excursion amplitude (α0) become. Moreover, Førre et al. [81] showed
that in the limit of superintense fields the ionization dynamics of hydrogen is mainly
governed by the V0 potential. These results motivate an effective Hamiltonian for the
system in the superintense regime,

H̃KH =
2

∑
i=1

(
p2

i
2
+V0(α0,ri)

)
+

1

|r1 − r2| . (4.14)

It turns out that in the limit where α0 approaches infinity the V0-potential is negligible
relative to the electron-electron repulsion term given that 〈r1〉 � α0 and 〈r2〉 � α0.
This means that for superintense fields and short pulses the dynamics of the system
is basically that of a Coulomb explosion trigged by the electron-electron repulsion.
Alternatively, in the laboratory frame, the two electrons in helium can be considered as
almost free particles moving side by side in the superintense field. At some excursion
amplitude the Coulomb potential can be neglected and the atom ionizes in an electron-
electron scattering event. These considerations clearly demonstrate that the electron-
electron correlation in fact plays an important role even in the strong field limit.

Figure 4.5 displays the double-ionization energy distribution for three different field
strengths, 1, 10 and 20 a.u., in the case of a six-cycle pulse of frequency 5 a.u. In
the upper panel, with the lowest field strength, the spectrum is dominated by the one-
photon “ridge”. It stretches between the two extremities where only one of the electrons
escapes with all the excess energy3. For the intermediate field strength two- and three-
photon double-electron above threshold ionization (DATI) peaks become visible along
the second and the third auxiliary line. The highly correlated one-photon process, on
the other hand, fades away and is almost negligible at the highest field strength where
exchange of energy between the electrons becomes less probable.

The importance of the electron-electron correlation can also be seen in the energy
distributions. Usually the process of two-photon DATI appears as a double peak struc-
ture resulting from a sequential ionization process. For ultrashort pulses the second
photon is absorbed before the residual ion has time to relax to the ground state and con-
sequently the process appears as a single peak centered at equal energy sharing. The
merge of the two-photon peaks in the short pulse limit has been thoroughly studied in
the weak field limit. Here it is demonstrated that the phenomenon is also present in the
superintense field regime, which once again points to the inadequacy of the indepen-
dent electron picture.

4.2 Two-photon double ionization of H2

Using the same numerical framework (Pyprop) as in the two previously mentioned
papers, we have also studied the process of two-photon double ionization (TPDI) taking
place in the hydrogen molecule when exposed to intense laser pulses.

The TPDI process in H2 may happen in two ways: sequentially or directly (non-
sequentially). Initially the system wavefunction is assumed to be in the H2 ground

3The binding energy of helium is 2.9 a.u., and consequently the excess energy is 2.1 a.u.
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Figure 4.5: Double-ionization energy distribution for an ω = 5a.u. six-cycle pulse (182 as),

and for field strengths of 1 (upper panel), 10 (middle panel), and 20 a.u. (lower panel). The

figure is taken from Paper I.
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4.2 Two-photon double ionization of H2

state. In the sequential process, the first photon strikes; one electron is captured into
the H+

2 ground state, while the other is liberated with an energy equal to the energy
difference

E = Ephoton − (EH+
2
−EH2

). (4.15)

Subsequently, a second photon ionizes the electron that is still bound. In the direct
ionization process, however, the two electrons are launched to the continuum simulta-
neously by two photons. When the photon energy of the incident laser pulse is less than
the binding energy of H+

2 , but larger than half the binding energy of H2, i.e.,

25.6eV ≤ Ephoton ≤ 34.8eV, (4.16)

only the direct process is energetically accessible. An illustration of the two ionization
schemes is shown in Fig. 4.6.

H2
+

H2

H2
+

H2
+

Figure 4.6: An illustration of the sequential (left panel) and the direct (right panel) ionization

process in H2. The blue balls represents the electrons and the red arrows the photons. The

dashed arrows show how the electrons share the energy. The states to the left of each panel are

the states of H2 and the ones to the right are those of H+
2 .

By assuming the velocity gauge and the fixed-nuclei approximation the Hamiltonian
for molecular hydrogen interacting with a laser field becomes

H =
2

∑
i=1

(
p2

i
2
− 1

|ri +R/2| −
1

|ri −R/2|+A(t) ·pi

)
+

1

|r1 − r2| (4.17)

The distance between the two nuclei is fixed at the equilibrium internuclear distance
R = 1.4a.u. of the molecule. This approximation can be justified by the fact that the
electrons are ejected almost simultaneously in the direct TPDI process, and move apart
much faster than the Coulomb exploding nuclei. From this it follows, taking into ac-
count the time separation between the two photons, that the approximation is not nec-
essarily valid when studying the sequential ionization process. Nevertheless, the fixed
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nuclear approximation has been applied in studies of the sequential process utilizing
ultrashort (attosecond) pulses [82].

In Paper III we calculate the total (generalized) and the single-differential cross sec-
tion in the direct ionization regime [cf. Eq. (4.16)] using a 15-cycle linearly polarized
laser pulse. We consider both parallel and perpendicular orientation of the polarization
vector with respect to the internuclear axis. The use of cross sections rather than ion-
ization probabilities enables the results obtained with different pulses to be compared,
given that the pulses are not too short. The generalized cross section is found from the
expression

σ =
(ω

I

)2 Pion

Teff
, (4.18)

where Pion is the double ionization probability, ω and I are the frequency and peak
intensity of the laser, and Teff is the effective pulse duration. The latter is, in the case of
a sin2-shaped laser pulse, given by 35

128T [28], with T being the pulse duration.

Figure 4.7: The total (generalized) cross section for the process of direct two-photon double

ionization of H2. The molecule is oriented parallel and perpendicular to the laser polarization

axis in the left and the right panel, respectively. Yellow line with diamonds: ab initio result.

Dashed line: model results. Blue triangle: theoretical result of Colgan et al. [33]. Green circle:

theoretical result of Morales et al. [34]. Red square: theoretical result of Guan et al. [36]. The

figure is taken from Paper III.
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CHAPTER 5

INTRODUCTION TO THE PAPERS

This chapter provides a short introduction to the papers included in the dissertation. It
should be emphasized that all papers are the product of collaboration and open discus-
sions among all the authors.

Paper I: Multiphoton ionization and stabilization of helium in superintense xuv fields

In this paper we focus on the process of multiphoton ionization of ground state he-
lium. The helium atom is exposed to short extreme ultraviolet laser pulses of intensity
high enough for the ionization to enter the stabilization regime. The study investigates
in particular the role of the electron-electron interaction on the ionization dynamics,
and demonstrates that calculations where this mechanism is neglected tend to overes-
timate the stabilization effect. To this end, two different approaches are taken. First
and foremost, the Schrödinger equation is solved in full dimensionality for two inter-
acting electrons. In addition, an independent electron model is introduced based on
products of single-electron wavefunctions. The inadequacy of the independent elec-
tron picture is underpinned by an explanation in which the system is seen from the
Kramers-Henneberger frame. We argue that for sufficiently short pulses in the limit
of superintense fields the dynamics of the two-electron system reduces to that of a
Coulomb explosion.

I have performed a substantial portion of both the ab initio calculations and the
single-electron calculations used as input in the independent electron model. I was
involved in the writing of the paper, especially the part concerning stabilization, and
made some of the figures.

Paper II: Stabilization of circular Rydberg atoms by circularly polarized infrared laser
fields

We revisit the phenomenon of atomic stabilization but in a different system. Low-
lying circular Rydberg states of hydrogen are subjected to circularly polarized infrared
laser fields. The near classical nature of circular Rydberg states motivates a concep-
tion where the electron is orbiting the nucleus in a clockwise fashion given that m > 0.
We show that in the low-intensity limit the ionization probability depends critically on
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whether the electron and field polarization vector are co- or counter-rotating. Further-
more, it is observed that the ionization probability reaches a maximum (and stabiliza-
tion sets in) at an intensity which is related to the radius of the electron “cloud”. In
addition to the main approach, which is solving the Schrödinger equation ab initio,
we also perform classical trajectory calculations to further elucidate the problem. The
classical calculations are shown to qualitatively coincide with the quantum mechanical
results. The former approach is therefore used when explaining why the ionization is
enhanced when the field and the electron are co-rotating.

I have implemented the velocity gauge laser-matter interaction for circularly po-
larized pulses in our computer code, and ran the majority of the quantum mechanical
calculations. I contributed to the writing of the paper, with emphasize on the method
section, and made the figures except of figure 4.

Paper III: Direct two-photon double ionization of H2

In this paper we calculate the total (generalized) and the single-differential cross sec-
tion in the direct ionization regime using a 15-cycle linearly polarized laser pulse. We
consider both parallel and perpendicular orientation of the polarization vector with re-
spect to the internuclear axis. The results are compared to previous theoretical studies
perform by other research groups as well as a simple approximate model.

For this paper I have prepared and implemented the diatomic potential and the
perpendicular laser-matter interaction for our numerical framework. I have also con-
tributed to the writing of the paper, especially the theory section.

Paper IV: Femtosecond-pulse-train ionization of Rydberg wave packets

A Rydberg wave packet is formed within the Stark split n = 16 shell in hydrogen. Tran-
sitions between the states are induced by a resonant rotating microwave field, and the
wave packet is repeatedly driven between the circular state and the linear state. As the
wave packet slowly makes its way back and forth between the two extremities, it is hit
by a train of femtosecond pulses. We study how the total and the angular resolved ion-
ization probability varies with the number of pulses in the sequence and the time sepa-
ration between them. Since the microwave field and the pulse-train act on completely
different time scales, the computational scheme is two-fold. Whereas the dynamics
of the wave packet is computed by propagating the time-dependent Schrödinger equa-
tion the femtosecond pulses are modeled by use of perturbation theory, considering the
wave packet to be frozen.

For this paper I have developed the theory and the computer code used in the calcu-
lations in close collaboration with the first author. I also contributed to all sections of
the paper in the writing process and in the making of the figures.

Paper V: High-order harmonic generation from graphene: Strong attosecond pulses
with arbitrary polarization

We present a numerical simulation of high-order harmonic generation (HHG) from a
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graphene sheet. Graphene is a two-dimensional monolayer of carbon atoms arranged
in a hexagonal pattern. It was first experimentally realized in 2004, though it has been
studied theoretically for decades. HHG from molecules allows for the electron to re-
combine with a nucleus different from the one that it was originally ionized from. Con-
sequently, higher cutoff harmonics are observed in molecular systems as compared to
atoms. Two different scenarios are considered. Either the graphene sheet is exposed
to a linearly polarized laser pulse tilted with respect to the z-axis, or it is subjected
to a pulse which is circularly polarized in the xy-plane. The paper demonstrates how
the cutoff harmonic changes with the number of atoms in the graphene sample and the
polarization angle. Moreover, it is shown that the HHG-spectrum resulting from the
circularly polarized pulses exhibits an interesting twin-peak structure.

I have derived the theory and developed the computer codes in collaboration with
the co-authors. I performed about half the calculations, contributed to all sections of
the paper in the writing process, and made some of the figures.
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CHAPTER 6

SUMMARY AND OUTLOOK

The aim of this thesis has been to investigate the ionization dynamics of atoms and
molecules exposed to few-cycle laser pulses, encompassing systems that are within
experimental reach and beyond. To this end, five studies have been conducted, ad-
dressing several topics within the field of atomic, molecular and optical sciences. The
laser-matter interaction has been scrutinized both perturbatively and non-perturbatively
in scenarios where the laser field strength varies from weak to super-strong. Dif-
ferent regimes require different approaches; in the present work the time-dependent
Schrödinger equation has been solved both using approximative methods as well as
from first principles.

In the perturbative regime we have studied Rydberg atoms – atomic systems existing
on the borderline between classical physics and quantum mechanics. We have shown
that the angular resolved ionization probability of an n-shell Rydberg wave packet ex-
posed to a train of weak femtosecond pulses is intimately related to the number of
times the pulse-train strikes. One can envision that this knowledge can come useful in
experiments reconstructing the image of the exotic Rydberg states based on the angular
distributions.

Imaging is also one of the proposed applications of high-order harmonic generation.
Our results suggest that utilizing graphene as the target medium is an efficient way
to realize large cutoff harmonics, that graphene may serve as a source of selective
harmonic generation, and that it can potentially become important in the generation
of complex attosecond pulses. There are other forms of carbon which share many of
the properties of graphene. One possible extension of this project could be high-order
harmonic generation from allotropes like carbon nanotubes and fullerenes.

Results on atomic stabilization have been presented – a topic where the theoreti-
cal treatment has been the driving force. After more than 20 years of research, studies
showing experimental verification are virtually absent. This makes the pursuit of theo-
retical results even more important, especially in the limit of superintense laser pulses.
In this regime we have demonstrated the correlation between the electrons to have a
detrimental effect on the stabilization process. Moving to a different system, stabi-
lization in low-lying circular Rydberg states is within experimental reach. Using the
parameters of conventional Ti:sapphire lasers we have shown that the ionization proba-
bility strongly depends on the rotation direction of the circularly polarized laser pulses.
A continuation of these studies could be stabilization in simple molecules, for instance
H2, where the orientation of the nuclear axis with respect to the laser polarization is an
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interesting aspect.
Correlation is also a keyword in the process of direct two-photon double ionization

of molecular hydrogen. This is a research domain where both the theoretical and the
experimental results are scarce, and where every new contribution provides valuable in-
sight. The process is difficult to measure in experiments and theoretical calculations are
quite demanding. As with the atomic stabilization we have solved the system ab ini-
tio, but have had to restrict ourselves to a model where the nuclear axis is fixed. A step
further could therefore be to also incorporate the nuclear motion in the computations
like Martín et al. [83] did for the corresponding one-photon process, and hopefully, the
future will bring experimental results on this process where much is still to be discov-
ered.
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Multiphoton ionization and stabilization of helium in superintense xuv fields

S. A. Sørngård, S. Askeland, R. Nepstad, and M. Førre
Department of Physics and Technology, University of Bergen, N-5007 Bergen, Norway

(Received 19 January 2011; published 21 March 2011)

Multiphoton ionization of helium is investigated in the superintense field regime, with particular emphasis
on the role of the electron-electron interaction in the ionization and stabilization dynamics. To accomplish
this, we solve ab initio the time-dependent Schrödinger equation with the full electron-electron interaction
included. By comparing the ionization yields obtained from the full calculations with the corresponding results
of an independent-electron model, we come to the somewhat counterintuitive conclusion that the single-particle
picture breaks down at superstrong field strengths. We explain this finding from the perspective of the so-called
Kramers-Henneberger frame, the reference frame of a free (classical) electronmoving in the field. The breakdown
is tied to the fact that shake-up and shake-off processes cannot be properly accounted for in commonly used
independent-electron models. In addition, we see evidence of a change from the multiphoton to the shake-off
ionization regime in the energy distributions of the electrons. From the angular distribution, it is apparent that
the correlation is an important factor even in this regime.

DOI: 10.1103/PhysRevA.83.033414 PACS number(s): 32.80.Fb, 32.80.Rm

I. INTRODUCTION

More than 20 years ago, theoretical studies of atomic
hydrogen in ultraintense, high-frequency laser fields produced
an unexpected result [1–9]: When increasing the intensity
of the laser pulse to such a degree that the applied forces
dominate over the Coulomb attraction between the nucleus
and the electron, the ionization probability does not increase
accordingly but rather stabilizes or starts subsiding. This
counterintuitive phenomenon was dubbed atomic stabilization
and was subject to much research in the following decade.
The discussions, controversies, and conclusions are available
in a number of review articles. (See, e.g., [10–12] and
references therein.) It has also been pointed out that atomic
stabilization has a classical counterpart [13,14]. (See also [10]
and references therein.)
At the start of the 1990s, the laser technology required to

experimentally observe the stabilization effect in tightly bound
systemswas not available. For example, in order tomeasure the
stabilization in atomic hydrogen, photon energies exceeding
13.6 eV, the binding energy of the atom, and intensities on the
order of 1016 W/cm2 or more are required [15,16]. Grobe and
Eberly [17] demonstrated that stabilization could occur in H−
at moderate intensities (∼1013 W/cm2) and photon energies
(∼2 eV), andWei et al. [18] suggested an experiment in which
a laser, of realistic frequency and intensity, could possibly
stabilize the unstable He− ion. However, at present, the only
experimental confirmations of stabilization are from studies
of low-lying Rydberg states [19–22]. With recent advances
in free-electron laser (FEL) technology, extremely high peak
intensities have been achieved, with wavelengths ranging from
vacuum ultraviolet to soft x rays [23,24], and even higher
intensities are expected to be delivered in the near future [25].
Thus, laser technology is approaching the regime needed for
observing atomic stabilization in ground-state (neutral) atomic
systems.
Although atomic stabilization has been studied extensively

during the last two decades, studies of stabilization in systems
containing two electrons are still scarce [10,26], and most
often assessed with simplified physical models of reduced

dimensionality. A study on stabilization in a model two-
electron xenon atom revealed that both the single- and double-
ionization channels may be subjected to stabilization [27,28].
However, it has also been pointed out that the electron-electron
interaction suppresses atomic stabilization [17,29–31]. Includ-
ing a second electron adds a new dimension to the problem,
manifested through the electronic repulsion.Although ab initio
calculations of helium have previously been performed at
fairly high intensities in the extreme ultraviolet (xuv) regime
[32,33], only recently were such endeavors extended into the
stabilization regime [34], confirming the detrimental effect of
the electron-electron interaction on stabilization. However, it
was shown that the effect is markedly less than predicted in
models of reduced dimensionality.
In this paper, we revisit the problem of the multiphoton

ionization of helium in superintense, high-frequency fields.
In continuation of the work of Birkeland et al. [34], we
look more closely into the strong-field-ionization dynamics
of the atom, with particular emphasis on atomic stabilization,
considering laser pulses of various central frequencies and
durations. A comparison of the ionization yields obtained
from the ab initio calculations, including correlations, with
corresponding results obtained from an independent-electron
model reveals that the validity of the latter breaks down at
strong fields. An analysis of the system equations in the
so-called Kramers-Henneberger frame [35–38] shows that the
electron-electron interaction plays a decisive role in this limit.
We further show that this is manifested in the energy and
angular distributions of the ejected electrons.
Atomic units, where me, h̄, and e are scaled to unity, are

used throughout unless stated otherwise.

II. METHODS

A. Ab initio calculations

We obtain the ionization probability of ground-state helium
in extreme laser fields from first principles, i.e., by solving
(numerically) the full time-dependent Schrödinger equation
(TDSE). Formulating the problem in the velocity gauge, the

033414-11050-2947/2011/83(3)/033414(9) ©2011 American Physical Society
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Hamiltonian assumes the form

H =
2∑

i=1

(
p2i
2

− 2

ri

+ Az(t)pzi

)
+ 1

|r1 − r2| . (1)

A sine-squared carrier envelope was chosen for the laser
interaction:

Az(t) = A0 sin
2

(
πt

T

)
cos(ωt), (2)

where A0 = E0/ω, E0 is the peak amplitude of the electric
field, ω is the laser frequency, and T is the total pulse duration.
The semiclassical treatment of the field is a valid approach due
to the enormous photon flux of superintense lasers.
The pulse fulfills the constraint of a physical pulse [39]:∫ T

0
E(t)dt = 0. (3)

Propagation and analysis of the wave function is performed
with the PYPROP framework [40], a PYTHON/C++ software
package for solving the TDSE.
The wave function is expanded in a B-spline basis [41,42]

for each of the radial components, and a coupled spherical
harmonic basis for the angular components,

�(r1,r2,t) =
∑
i,j,k

cijk

Bi(r1)

r1

Bj (r2)

r2
Y LM

l1,l2
(�1,�2), (4)

where k = {L,M,l1,l2} is a combined index for the angular
indices. The coupled spherical harmonic basis functions

Y LM
l1,l2
(�1,�2) =

∑
m

〈l1l2mM − m|LM〉Ym
l1
(�1)Y

M−m
l2

(�2)

(5)
are obtained by linearly combining products of ordinary
spherical harmonics,weighted byClebsch-Gordan coefficients
[43].
As the B-spline basis functions are not orthogonal, an

overlap matrix Sij = ∫
Bi(r)Bj (r)dr is introduced for each

electronic coordinate. From these the total overlap matrix is
found for every angular momentum component by taking the
Kronecker product S = Ik ⊗ S1 ⊗ S2, where Ik denotes the
identity matrix and k is the angular index. The resulting TDSE
may then be written as

iS
∂

∂t
c(t) = H(t)c(t) (6)

in matrix form.
We solve the TDSE using a scheme based on the first-order

approximation to the matrix exponential

exp(−i�tS−1H) = I − i�tS−1H + O(�t2). (7)

A direct application of this formula is not desirable due to
numerical instabilities. Instead, we combine one half step
forward in time

c(t + �t/2) =
(

I − i�t

2
S−1H

)
c(t), (8)

with one half step backward in time

c(t + �t/2) =
(

I + i�t

2
S−1H

)
c(t + �t), (9)

to obtain the unconditionally stable Cayley-Hamilton form of
the time propagator(

S + i�t

2
H

)
c(t + �t) =

(
S − i�t

2
H

)
c(t). (10)

This linear system of equations is too large to be solved
directly; hence, we use an iterative method. Since the matrix
(S + i�t

2 H) is not Hermitian, our choice is the generalized
minimum-residual method (GMRES), a Krylov subspace
methodwhich combinesArnoldi iterationswith a least-squares
problem in the projected space [44,45]. In the GMRES
algorithm, the error in the least-squares residuals is controlled
by the dimension of the Krylov subspace, which can be
increased until the desired precision is obtained.

B. Calculating ionization

In this paper, we compute the ionization probability
resolved in direction and energy. We also do a series of smaller
simulations, calculating only the total-ionization probabilities.
Separating the single and double ionization is achieved
by a projection onto double continuum states. In order to
obtain these continuum states exactly, one needs to solve
a scattering problem for the full two-particle system. As
this is computationally cumbersome, an approximation using
single-particle states is adopted instead. It can be described as
follows: In the case of double ionization, when both electrons
are far from the nucleus, a product of continuum He+ (Z = 2)
states is used. For single ionization, when one electron is close
to the nucleus and the other far away, a product of bound He+
and continuum H (Z = 1) is used [46].
The single-electron states are not orthogonal to the bound

states of the two-electron system, which may become popu-
lated during the action of the pulse. Therefore, the projection
of the final wave function on the doubly bound states is
removed before further analysis is conducted. Moreover, as
the electron-electron correlation is neglected in the double
continuum states, the system must be propagated after the
pulse for all quantities to converge [47].
On the other hand, when only calculating the total ioniza-

tion, a small radial box is sufficient. It is no longer necessary
to propagate the system after the pulse, in order to minimize
the interaction term, nor to project onto continuum He+ states.
An absorbing potential is applied at the box boundary in order
to absorb the emitted electrons and to minimize reflection.
When coupled with an absorbing potential, we find that only
about one-third of the radius needed to resolve the differential
probabilities is necessary. The total-ionization probability is
simply the complement of the probability of being in one of
the bound states.
To find the bound states, we use the implicitly restarted

Arnoldi method [48]. This is a version of the Arnoldi method
for finding eigenpairs that refines the Krylov subspace basis in
order to find the wanted eigenvectors and eigenvalues. As the
Arnoldi method tends to find the largest eigenvalues, we also
use shifted inverse iterations, which let us find the eigenvalues
near a given value.
Further details on the discretization, the time integration,

and the analysis were presented in a recent paper [49].
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C. Independent-electron model

In order to gauge the importance of the electron-electron
interaction, we repeat the calculations using an independent-
electron (IE) model [50]. The total wave function is approxi-
mated as a product of two single-electron wave functions

�(r1,r2) = ψSAE(r1)ψHe+(r2). (11)

The subscript SAE refers to the single-active electron
approximation. This is a common approximation for many-
electron problems, which focuses on one electron at a time.
Any dependence on the rest of the electrons is included in
a common potential that is constant with regard to the other
electron positions. To find the first electron wave function
ψSAE, we apply a pseudo potential, which includes the
shielding of the nucleus caused by the other electron [51],

V (r) = −Z + a1e
−a2r + a3re

−a4r + a5e
−a6r

r
. (12)

For helium, the effective charge Z = 1 and the coefficients
a1 = 1.231, a2 = 0.662, a3 = 1.325, a4 = 1.236, a5 = 0.231,
and a6 = 0.480 were adopted. The other electron moves in
a He+ potential, and it is therefore an accurate model for
the singly ionized atom. The IE model reproduces the cor-
rect ground-state energies and single- and double-ionization
thresholds, and decently represents the excited states. As the
name of the model suggests, the electrons do not interact with
each other, beyond what is included in the shielded nuclear
potential. That makes this a three-dimensional, rather than
a six-dimensional problem, and it can be calculated with
relative ease on an ordinary computer. As a consequence
of working with independent particles, the total- (single +
double) ionization probability becomes

P ion
total = 1− P b

SAEP
b
He+ , (13)

where P b
SAE and P b

He+ are the probability of the SAE and
the He+ electron, respectively, being in a bound state. The
probability for double ionization is obtained from the product

P ion
double = P ion

SAEP
ion
He+ , (14)

and the single-ionization probability is

P ion
single = P b

SAEP
ion
He+ + P ion

SAEP
b
He+ , (15)

where P ion
SAE and P ion

He+ are the ionization probabilities of the
SAE and the He+ electrons.

D. Convergence of the calculations

When doing the largest calculations, the radial domain
typically extends to 80 a.u., although the double of this
was employed to test the convergence. A fifth-order B-spline
basis of 185 splines is used, distributed exponentially near the
nucleus, and linearly further away. Up to 300 splines were used
for convergence test purposes. Regarding the angular basis of
coupled spherical harmonics, l � 5 and L � 6 were found to
be sufficient. Note that the system retains cylindrical symmetry
in the presence of the z polarized laser field. Therefore, the
M quantum number is set to 0 throughout. Based on the
calculations with a larger basis, the error is estimated to be
less than 1% in the ionization probabilities.

For the smaller calculations, intended to provide only the
total-ionization probability,we use a small radial box of 30 a.u.
and 80–100 B splines of order 7, distributed linearly. Note that
we have only one-third of the box size but one-half of the
number of B splines. In these calculations, the angular basis
went up to l = 7 and L = 6. The small box made it possible
to go to higher intensities and pulse lengths than did the large
box. The error in the ionization probability is gauged to be
less than 5% when E0/ω

2 > 1 a.u. and less than 2% for lower
intensities.

III. RESULTS

A. Ionization probabilities

Figure 1 shows the total- (single + double) ionization
probability versus α0 for three different laser frequencies,
ω = 4 (left panel), 5 (middle panel), and 10 a.u. (right panel),
and for four different pulse durations, 3, 6, 12, and 24 cycles
(from bottom to top). Notice that on the abscissas, the domains
are given in α0 = E0/ω

2, instead of intensity or peak electric
field strength. Here, α0 represents the displacement amplitude
of a free classical electron in the oscillating field [4]. This
scaling allows us to easily compare the results obtained with
different laser frequencies. In most of the considered cases,
the ionization probability increases with α0 up to some point,
where it attains a maximum before it starts to decline, i.e.,
we are entering the so-called stabilization regime. When
stabilization occurs, the ionization peak (corresponding to the
“death valley” [10]) is typically situated between α0 = 0.6 and

FIG. 1. (Color online) Ionization probabilities plotted as func-
tions of the electronic displacement (E0/ω

2) for the frequencies
ω = 4 (left panel), ω = 5 (middle panel), and ω = 10 a.u. (right
panel). In each panel, the pulses are of 3, 6, 12, and 24 cycles
duration from bottom to top. The solid lines are the results from
the full calculations. The dashed lines are the results from the IE
calculations. In the right panel, the displacement (α0) extends into
a region (shaded) where relativistic (nondipole) effects may have an
influence on the results [15,30,31,52], and the corresponding velocity
of a classical free electron moving in the field exceeds 10% of the
speed of light.
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SØRNGÅRD, ASKELAND, NEPSTAD, AND FØRRE PHYSICAL REVIEW A 83, 033414 (2011)

FIG. 2. (Color online) Single (full blue line), double (full green
line with crosses) and total (dashed red line) ionization probabilities
plotted against the electronic displacement for the case of a 6-cycle
pulse with ω = 4 a.u.

0.7 a.u., independent of laser frequency and pulse duration.
For very short pulse durations, e.g., the three-cycle pulse of
ω = 10 a.u., we observe a knee in the function, rather than
a peak at the stabilization point. This is probably due to
the relatively large bandwidth of these short pulses and the
averaging this leads to. For long pulse durations, e.g., the
24-cycle pulse of ω = 4 a.u., the atom is almost fully ionized,
and the stabilizing effect turns out to be weak. The dashed lines
in the figure are the results of the independent-electron model.
They show good agreement with the full calculations for
weak fields (α0 < 0.5 a.u.) and for long pulses, but otherwise
tend to overestimate the stabilization. As a matter of fact, the
results show that the electron-electron interaction suppresses
stabilization in all cases. We will return to the reason for this
later.
In Fig. 2, we examine in more detail the case with 6 cycles

and ω = 4 a.u., showing both the total-ionization probability
and its single- and double-ionization components. Both the
single- and double-ionization probabilities peak at specific
values of the field, which is in qualitative agreement with
the results of Volkova et al. [27] and Popov et al. [28]. As
expected, the single ionization dominates for weak fields, but
it peaks at α0 � 0.2 a.u., where the probability for double
ionization starts to increase rapidly. From α0 � 0.3 a.u. on,
double ionization is the dominant ionization channel. Then,
the double-ionization probability attains a maximum value at
the point where the single-ionization probability reaches its
minimum, i.e., at α0 � 0.5 a.u. The subsequent decrease in
the double-ionization probability, in the stabilization regime,
is accompanied by a corresponding rise in the single-ionization
yield. This feature is a characteristic of the stabilization
dynamics of helium in few-cycle laser pulses [34].
Figure 3 shows the ionization probability as a function of α0

for a pulse of constant duration T = 2π a.u., but for varying
frequencies, ω = 4, 6, 8, and 10 a.u. The corresponding
results of the IE model are shown in dashed lines. One
immediately perceives that for higher frequencies, the atom

FIG. 3. (Color online) Ionization probabilities for a constant pulse
duration of 2π a.u. The lines correspond to laser frequencies of ω =
4, 6, 8, and 10 a.u. from top to bottom, or equivalently pulse lengths
of 4, 6, 8, and 10 cycles. The solid lines are the full calculations.
The dashed lines are the IE calculations. The dotted parts of the
curves indicate where relativistic (nondipole) effects may influence
the results.

stabilizes at lower ionization probabilities, in accordance with
the results in Fig. 1. Note that in the limit of weak fields,
single ionization is by far the dominating ionization channel.
Thus, from first-order perturbation theory, P ion

total ∝ α20T . Now,
since the pulse duration is kept fixed in Fig. 3 (as opposed
to Fig. 1), this explains why the results of the calculations
with different frequencies almost coincide at smaller fields.
The figure also demonstrates the fact that the discrepancy
between the IE model (dashed lines) and the full calculations
(solid lines) increases with the intensity. Furthermore, the
stabilizing effect turns out to be very weak in the fully
correlated system. Whereas the full ab initio calculations
give ionization probabilities that level off (low frequencies) or
increase (high frequencies) for high intensities, the IE model
returns probabilities that are noticeably lower. As the intensity
grows, so does the discrepancy. As such, the simplified model
tends to always underestimate the ionization probability, with
the consequence that the stabilization effect is overestimated.
Note that for the highest frequencies considered in

Figs. 1 and 3, the calculations extend into a region where the
non-relativistic (dipole) approximation is likely to break down
[15,30,31,52]. This is indicated in the figures.While we expect
relativistic (nondipole) corrections to affect the calculated
ionization probabilities to some extent in this region of field
strengths, our analysis and conclusions are not dependent upon
the affected subset of results and remain unaltered.

B. The role of electronic correlation

Figures 1 and 3 clearly demonstrate that the validity of
the independent-electron model (11) breaks down in the
superintense field regime. This may appear counterintuitive,
as one might well expect the opposite to happen, i.e., that
the importance of the electron-electron interaction should be
negligible in the presence of a strong external perturbation. The
reason why the electron-electron interaction in fact becomes
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more important in this limit can be understood by analyzing
the dynamics in the so-called Kramers-Henneberger (KH)
frame [35–38], the rest frame of a classical free electron in
the laser field. In this frame, the Hamiltonian, Eq. (1), is cast
into the form

HKH =
2∑

i=1

(
p2i
2

+ VKH [ri + α(t)]

)
+ 1

|r1 − r2| , (16)

where

VKH [ri + α(t)] = − 2

|ri + α(t)| (17)

is the Kramers-Henneberger potential, and

α(t) =
∫ t

0
Az(t

′) dt ′ ẑ (18)

represents the position relative to the laboratory frame of a
classical free electron in the electric field Ez(t) = −∂Az/∂t .
One characteristic feature of the KH frame is that the dipole
interaction terms enter into the electron-nucleus Coulomb
potentials [c.f. Eq. (17)], which in turn become time de-
pendent and modified by the external field. Note also that
the electron-electron interaction term is left unaffected by
the HK transformation. Assuming for the moment that the
Hamiltonian is periodic in time, i.e., neglecting the pulse
profile, the KH potentials, Eq. (17), are expanded in a Fourier
series as

VKH [ri + α(t)] =
∑

n

Vn(α0,ri)e
−inωt (19)

with

Vn(α0,ri) = 1

T

∫ T

0
e−inωtVKH [ri + α(t)] dt. (20)

Inserting the expansion [Eq. (19)] into the TDSE and apply-
ing high-frequency Floquet theory, Gavrila et al. [10,53–55]
showed that the n = 0 component in Eq. (20) plays an
increasingly important role in the dynamics at higher values of
α0. Furthermore, in the limit of superintense fields (α0 	 1),
Førre et al. [15] showed that the ionization dynamics of atomic
hydrogen is mainly dictated by the V0 potential. Thus, in this
limit, the dynamics of the system is approximately given by
the effective Hamiltonian

H eff
KH =

2∑
i=1

(
p2i
2

+ V0(α0,ri)

)
+ 1

|r1 − r2| . (21)

Note that this Hamiltonian is time independent and accounts
for shake-up (excitation) and shake-off (ionization) in the
strong-field limit.
An analysis of the properties of the V0 potential term in the

vicinity of the origin reveals that it can be neglected relative
to the electron-electron repulsion term in the limit α0 → ∞,
provided the two-electron wave function is localized, i.e.,
〈r1〉 � α0 and 〈r2〉 � α0. This means that the dynamics of
the two-electron system, in the limit of superintense fields and
for sufficiently short pulses, ultimately reduces to that of a
pure Coulomb explosion process effectuated by the Coulomb
repulsion term in Eq. (21). From this, we conclude that the
electron-electron interaction is in fact very important in the

FIG. 4. (Color online) Excitation probabilities for the same sce-
nario as in Fig. 3. The laser frequencies are ω = 10, 8, 6, and 4 a.u.
from top to bottom. The dashed lines are the results from the IE
model, while the solid lines are the results from the full calculations.
Relativistic (nondipole) effects may influence the results for high
frequencies and field strengths (dotted curves).

strong-field limit, effectively reducing the stabilization effect.
Returning to the laboratory frame of reference, this should be
understood in the following way: In the very-strong-field limit,
the electrons effectively behave like free particles in the field,
moving side by side with respect to the field axis. As this hap-
pens, the nuclear attraction may become less important than
the mutual repulsion between the electrons, and the ionization
is most likely initiated by electron-electron scattering events
(Coulomb explosion) and not electron-nucleus collisions.
This explains qualitatively why the ionization probabilities,
calculated within the independent-electron model, deviate
increasingly from the exact ones in the limit of stronger fields
(cf. Figs. 1 and 3). As such, the observed deviation is indeed a
manifestation of the breakdown of the single-particle picture
in superstrong fields.
Notice that the effective Hamiltonian in Eq. (21) only

depends indirectly on the laser frequency through the dis-
placement amplitude α0, explaining why the validity of the IE
model in Fig. 3 breaks down at approximately the same value
of α0 independent of the laser frequency.
Figure 4 shows the probability of excitation of helium for

the cases considered in Fig. 3. Comparing Figs. 3 and 4,
we observe that the decreasing ionization probability in
the stabilization regime is accompanied by a corresponding
increase in the excitation probability. Note that due to the high
photon energy, excitation is here caused by shake-up processes,
merely demonstrating the importance of the V0 potential in the
stabilization regime. The figure also clearly expresses the fact
that shake-up is more important for the higher frequencies and
that the IE model fails in describing shake-up (and shake-off)
processes accurately, in accordance with the KH discussion
above.

C. Analysis of angular and energy distributions

Further insight into the strong-field behavior of heliummay
be gained by examining the energy distribution of the ejected
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FIG. 5. (Color online) Double-ionization energy distribution for
an ω = 5 a.u. six-cycle pulse (182 as), and for field strengths of 1
(upper panel), 10 (middle panel), and 20 a.u. (lower panel).

electrons. In particular, imprints left by the electron interaction
in the angular distribution of the outgoing electrons may give
further clues as to its importance at the different field-strength
regimes considered here.
In Fig. 5, the double-ionization energy distribution is shown

for three different field strengths, 1, 10, and 20 a.u. (from
top to bottom). The pulse duration was fixed at six cycles

(182 as) with a frequency of 5 a.u. At the lower intensity
(amplitude), one-photon ionization dominates as expected.
As the intensity increases, two-photon ionization becomes
prominent, and higher-order double-electron above threshold
ionization (DATI) peaks start to appear [32]. Since the one-
photon process is highly correlated and depends critically
on the exchange of energy between the two electrons, it
becomes less important at stronger fields, and two-photon
double ionization takes over as the dominating channel. At
the highest intensity, more structures appear in the energy
spectrum, caused by sidebands in the pulse, and the one-
photon-ionization process has become negligible.
The two-photon DATI component manifests itself as a

single-peaked structure in Fig. 5, in contrast to the common
double-peak structure associated with sequential ionization
[32]. With the ultrashort pulse considered here, the second
photon is absorbed before the residual ion has had time to
relax to the ground state, but if the duration is increased to
beyond 20 cycles, relaxation may occur and a double-peak
structure appears (not shown here). The fact that the two peaks,
corresponding to sequential two-photon double ionization in
the long-pulse limit, shift toward each other in the short-pulse
regime and eventually merge into one single peak (located at
equal energy sharing) is well known and has been studied
in a series of papers in the weak-field (perturbative) limit
[33,56–65]. The results in Fig. 5 demonstrate that this feature
survives in the superintense field regime, representing a clear
departure from the independent-electron model [Eq. (11)].
Figure 6 shows the conditional angular distributions of the

ejected electrons obtained at the two-photon DATI peak in
Fig. 5, with equal energy sharing, and one of the electrons
emitted along the polarization direction (indicated with an

FIG. 6. (Color online) Angular distributions for double ionization
with equal energy sharing E1 = E2 = (2ω − Ip)/2. The arrow
indicates the fixed direction of the first electron. Solid (blue) line:
E0 = 1 a.u. Dashed (green) line: E0 = 10 a.u. Dotted (red) line:
E0 = 20 a.u.
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arrow in the figure). The figure clearly shows that the
distribution has a backward-forward asymmetry even at the
highest intensity considered, demonstrating the breakdown of
the single-particle picture, wherein a symmetric double-lobe
(dipole) distribution would be found. The results are in accor-
dance with recent results obtained at weaker fields [56,57,63],
and shows that the back-to-back ejection mechanism is largely
preserved even at very strong fields.
From numerical studies of stabilization in atomic hydrogen,

it is known that the stabilization phenomenon is accompanied
by the appearance of slow electrons [15]. As the intensity is
increased beyond the ionizationmaximum,where stabilization
sets in, and for sufficiently short pulses, a peak structure near
zero energy appears in the electron energy spectrum, becoming
increasingly dominant as the intensity becomes large. Thismay
be understood from the Kramers-Henneberger analysis above
and the importance of the V0 potential in the limit of short,
intense pulses. In order to provide a baseline comparison for
the two-electron case considered here, we have calculated the

FIG. 7. (Color online) Energy distributions as a function of
laser field strength. Top panel: He+. Bottom panel: helium (single
ionization). See text for details.

FIG. 8. (Color online) Ratio of slow to fast electrons for the
double-ionization process, shown for different pulse frequencies and
durations, and plotted as a function of α0. The blue bar indicates
the region where the corresponding double-ionization probability is
maximum, where stabilization sets in.

energy distribution for ionization of He+, with identical pulse
characteristics as those used in Fig. 5. The result is shown in the
upper panel of Fig. 7. We note the presence of above threshold
ionization peaks, and, at the highest intensities, a slow electron
peak (SEP) near zero energy [15,66]. The corresponding
single-ionization energy distribution of helium is shown in
the lower panel of Fig. 7, and indeed, a slow electron peak
is visible. Note that the onset of slow electrons occurs at
lower-field strengths in the single ionization of helium than
in He+, which is related to the different ionization potentials
(Ip).
Now, examining the lower panel in Fig. 5, it appears

that slow electrons do not emerge in the double-ionization
process at this intensity. However, the ionization potential is
greater than that for single ionization, and, therefore, higher
intensities are needed to reach the regime where a SEP may
appear. Since He+, with an ionization potential of Ip = 2 a.u.,
exhibits an onset of slow electrons around 50 a.u., similar
or possibly even higher-field strengths may be required for a
SEP to appear in the double ionization of helium. We may,
however, observe the onset of slow electrons by partitioning
the double-ionization energy distribution into a low- and a
high-energy part, and considering the ratio of these two (cf.
Fig. 8). In this figure, values of the ratio P (E < Ec)/P (E >

Ec), where Ec = 3/2ω − Ip, for different frequencies and
pulse durations are shown, and in all cases, we observe an
increase of low-energy electrons after the stabilization peak
(indicated by the blue bar); however, it is most pronounced for
the shorter pulses.

IV. CONCLUSION

In conclusion, we have presented an in-depth analysis of
two-electron dynamics driven by high-intensity ultrashort laser
pulses in the xuv regime. Expanding on our earlier investiga-
tion of correlation effects in the stabilization of helium, we
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have shown that stabilization occurs within a narrow interval
of values of α0, independent of frequency and pulse duration.
This is also the point at which an independent-electron
picture begins to break down, demonstrating the important
role of the electron-electron interaction at high intensities.
Through an analysis of a high-intensity limit form of the
Hamiltonian, expressed in the Kramers-Henneberger frame,
this feature may be understood. Further indications of intense-
field correlation effects are found in the angular distributions,
where a backward-forward asymmetry is found for a wide

range of intensities. Finally, we have shown that slow electrons
emerge at high intensities, as they do in one-electron systems,
but at different intensities for single and double ionization.
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Stabilization of circular Rydberg atoms by circularly polarized infrared laser fields
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The ionization dynamics of circular Rydberg states in strong circularly polarized infrared (800 nm) laser
fields is studied by means of numerical simulations with the time-dependent Schrödinger equation. We find that
at certain intensities, related to the radius of the Rydberg states, atomic stabilization sets in, and the ionization
probability decreases as the intensity is further increased. Moreover, there is a strong dependence of the ionization
probability on the rotational direction of the applied laser field, which can be understood from a simple classical
analogy.

DOI: 10.1103/PhysRevA.84.033423 PACS number(s): 32.80.Fb, 32.80.Rm, 32.80.Ee

I. INTRODUCTION

Photoionization of atoms and molecules by a single photon
impact has been studied since the early days of quantum
mechanics. For the simplest atomic system in nature, hy-
drogen, which has a binding energy of 13.6 eV, absorption
of a single photon with an energy exceeding this value
will induce direct breakup of the system. With increasing
photon flux, additional photons can be absorbed, giving rise
tomultiphoton processes and above-threshold ionization (ATI)
[1,2]. Fromperturbation theory calculations, a general increase
in breakup probability with intensity of the imposed radiation
field is expected. It therefore came as a big surprise to many
when, more than 20 years ago, theoretical studies of atomic
hydrogen in ultraintense, high-frequency laser fields showed
some evidence of the complete opposite scenario, i.e., that
the atom may eventually become more stable as the ionizing
radiation gets stronger [3–11]. This rather counterintuitive
phenomenon, called atomic stabilization, has since then been
studied extensively; see, e.g., [12–15] and references therein.
It has also been argued that atomic stabilization has a classical
counterpart [16,17]. (See also [12] and references therein.)
Very recently, the stabilization dynamics of helium in intense
xuv laser pulses was investigated [18,19].
Primarily a high-frequency phenomenon, atomic stabiliza-

tion is expected to be important at photon energies exceeding
the binding energy of the system at hand and for very
high intensities. In the case of the hydrogen atom, photon
energies exceeding 13.6 eV and intensities on the order of
1016 W/cm2 or more are required [9,20,21]. Up to present
times, experimental confirmation of atomic stabilization in
tightly bound atomic systems, such as neutral atoms in their
ground state, has been obstructed due to lack of the laser
technology required to produce the necessary conditions.
The possibility of observing the phenomenon in excited
atomic states was pointed out early [4,22–25], and the first
experimental signature of atomic stabilization in low-lying
Rydberg atoms was reported in 1993 [26,27] and later

*sigurd.askeland@ift.uib.no
†stian.sorngard@ift.uib.no
‡morten.forre@ift.uib.no

confirmed [28], irradiating 5g circular states in neon by intense
(∼1013–1014 W/cm2) 620-nm linearly polarized laser pulses.
The experimental findings are consistent with theoretical
predictions [29–32].
In this work, we investigate atomic stabilization of circular

Rydberg states in hydrogen exposed to short, intense circularly
polarized laser pulses, using parameters well within reach of
conventional Ti:sapphire lasers. Them quantum number is set
equal to l for the initial state, so that the electron is “orbiting”
the nucleus in a counterclockwise fashion. Furthermore, the
field polarization vector is chosen to lie in the plane defined by
the initial circular state. We show that stabilization occurs
for a range of pulse durations and different initial states,
and that the radius of the circular initial state determines at
which intensities stabilization sets in. It is also shown that
the polarization direction of the applied field has a significant
impact on the ionization dynamics for lower lying Rydberg
states. Specifically, at 800 nm the 5g circular state is orders
of magnitude more likely to ionize with counterclockwise
(co-rotating field) as opposed to clockwise (counter-rotating
field) polarization at lower intensities, but both enter the
stabilization regime at the same intensity. This difference
disappears for more highly excited states, such as the 10l
circular state. Classical ensemble calculations are performed
to investigate the underlying mechanisms.
Atomic units, where me, h̄, and e are scaled to unity, are

used throughout unless stated otherwise.

II. METHOD

In this paper we study the ionization dynamics of hydrogen
when the atom is excited to a low-lying circular Rydberg state
and exposed to a rotating electric field. To that end we solve
numerically the time-dependent Schrödinger equation (TDSE)
in full dimensionality. The Hamiltonian of such a system,
described in the frame of the velocity gauge and the dipole
approximation, reads

H = p2

2
− 1

r
+ Ax(t)px + Ay(t)py. (1)

Each component of the circularly polarized laser field,
here represented by its vector potential, is modulated by a
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sine-squared carrier envelope,

Aj (t) = A0 sin
2

(
πt

T

)
sin(ωt + φj ), (2)

where A0 = E0/ω, E0 is the peak amplitude of the electric
field, ω is the laser frequency, and T is the total pulse duration.
To make the field rotate in the xy plane, there is a phase
difference between the two components. We define the field to
be rotating clockwise (as seen from above) if φx = 0 and φy =
π/2, and counterclockwise if the phases are interchanged.
The radial and angular ranks of the wave function are

expanded in B splines and spherical harmonics, respectively,

�(r,t) =
∑
k,l,m

cklm(t)
Bk(r)

r
Ylm(�). (3)

The wave function, expressed as a vector of the expansion
coefficients cklm, is propagated forward in time using the
unconditionally stable Cayley-Hamilton form of the time
propagator(

S + i�t

2
H

)
c(t + �t) =

(
S − i�t

2
H

)
c(t). (4)

Here H is the Hamilton matrix of the TDSE and S, with Sij =∫
Bi(r)Bj (r) dr , is the B-spline overlap matrix. The need for

an overlap matrix stems from the fact that B-spline functions
are not orthogonal.
This propagation scheme calls for solving a linear system

of equations in each time step. The set is too large to be solved
directly, and an iterativemethodmust therefore be applied. The
selected one is the so-called generalized minimum-residual
method (GMRES) [33,34], a Krylov subspace method well
suited for non-Hermitian systems of equations, which is the
case in Eq. (4). As the system is rather stiff, a preconditioning
of the matrix (S + i�t/2H) is required to ensure a reasonable
convergence of the GMRES iterations. For this purpose the
incomplete LU factorization [34] is employed to provide an
approximationM to thematrix. Thuswe are in practice solving
the systemM−1(S + i�t/2H)c = M−1(S − i�t/2H)c, rather
than the one in Eq. (4). Even so, a Krylov subspace spanned
by up to 40 vectors are required to converge within a tolerance
of 10−13 at the highest field intensities.
The large spatial extension of the Rydberg states requires

large radial boxes when propagated in time. In our com-
putations we use boxes with an upper bound between 600
and 2000 a.u., depending on the initial state and the electric
field strength. We use a number of seventh-order B splines
corresponding to one spline per unit length, and let them be
equally distributed throughout the range. The angular basis is
truncated at l = 41 in computations where E0 � 0.3 a.u., and
at l = 63 otherwise.
The ionization probability is found through projection of

the wave function onto hydrogen bound states,

Pion = 1− |〈�(r,T )|ψbound〉|2. (5)

Another approach, i.e., projecting the final wave function onto
continuum state wave functions (Coulomb waves), has also
been applied to a selection of test cases in order to verify
consistency with the bound state analysis.

All velocity gauge calculations were performed with
the PYPROP framework [35], a PYTHON/C++ based software
package for solving the TDSE; details may be found else-
where [36,37]. Additional calculations were made with a
split-operator approach using the acceleration form of the
light-matter interaction (the Kramers-Henneberger frame of
reference) [21,38], to independently check the reliability of
our results.

III. RESULTS

The majority of the TDSE simulations were performed
with a 5g (m = 4) initial state. This is a circular state, i.e.,
the probability density is roughly torus shaped. The torus is
positioned in the xy plane symmetrically with respect to the
z axis. We define the major radius of the torus to be equal
to the expectation value of r , viz. 27.5 a.u. Our case differs
from the scenario studied earlier [26–32] in that we apply
(in-plane) circularly polarized pulses, with components in the
x and y directions, instead of z polarized fields. Thus, the
axial symmetry of the problem is broken, resulting in a strong
m mixing. In addition, we model a Ti:sapphire laser pulse
with a wavelength of 800 nm. For all initial states considered,
the photon energy h̄ω exceeds the binding energy Ei , viz.
h̄ω > Ei , and atomic stabilization is expected to occur at high
intensities [12]. The ionization and stabilization dynamics are
studied for pulses of different durations and varying peak
intensities.
In the following discussion the reader will notice that we

continually refer to the term “excursion amplitude.” By this
we mean the spatial displacement of a classical free electron
influenced by an electric field. This quantity, also known as
the quiver amplitude, is given by α = E0/ω

2.
At the considered wavelength, nondipole effects are

expected to play a role when the intensity exceeds
1016 W/cm2. As the majority of the calculations were per-
formed at intensities significantly lower than this, nondipole
effects were not expected to be important here. To further
confirm this, additional calculations including nondipole terms
were conducted [21,39]. Regarding relativistic effects, these
should also be negligible, because the maximum quiver veloc-
ity (v = E0/ω) attained by the electron in our calculations is
less than 9% of the speed of light.
We first consider the TDSE calculations for the 5g initial

state; see the left panels in Fig. 1. These depict the ionization
probabilities as a function of the peak intensity of the laser
pulse, for a number of pulse durations, ranging from 4 to 12
optical cycles. In all cases, stabilization, i.e., a local maximum
in the ionization probability, occurs for excursion amplitudes
in the vicinity of 〈r〉 = 27.5 a.u., indicated by a dashed vertical
line in the figure. The probability density of the initial state is
shown as a shaded shape at the bottom of the lower panel.With
circularly polarized light, there are two field configuration
options: the field either co-rotates or counter-rotates relative to
the electronic probability current in the torus. The upper (left)
panel in Fig. 1 depicts the results for the co-rotation scenario,
while the lower panel shows the corresponding results for
the counter-rotation case. There is a slight difference in the
position of the stabilization threshold for the two cases: 21 a.u.
for counter-rotation and 28 a.u. for co-rotation.
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FIG. 1. (Color online) Ionization probability as function of
excursion amplitude and laser intensity for the circular 5g (m = 4)
state. The laser wavelength is 800 nm. The left panels are TDSE
results, and the right panels are results from classical trajectoryMonte
Carlo (CTMC) calculations. For the upper panels a circular field that
is co-rotating with respect to the electronic motion was used. The
curves, from bottom up, represent laser pulses with 4, 6, 8, 10, and 12
optical cycles. The lower panels are the results for the corresponding
counter-rotating case. Here, the curves, from bottom up, represent
laser pulses with 4, 6, and 8 optical cycles. The shaded function in
the bottom left panel is the shape of the radial probability distribution
of the initial (quantum mechanical) state, and the histogram in the
bottom right panel represents the distribution of initial radii for the
electrons in the CTMC simulations. The dashed lines mark the radial
expectation values 〈r〉 in the two cases, and the lighter shaded areas
indicate the widths of the initial probability distributions, here taken
to be the standard deviation.

When comparing the upper and lower (left) panels in
Fig. 1, it is worth noting the different behavior at low
intensities. While the curves for the co-rotation set out with a
steep inclination, for the counter-rotation case they display a
much more gradual increase. Quantummechanically, the great
difference in ionization yields between the co- and counter-
rotation cases for lower field strengths is simply connected to
a correspondingly great difference in their respective electric
dipole couplings. For a circular state, the dipole selection rules
for the absorption of one photon from the field are

Counter-rot.: �m = −1, Co-rot.: �m = +1,
�l = ±1, �l = +1. (6)

Thus, as long as one-photon absorption is the dominant
ionization channel, the co-rotating field is more likely to ionize
the system, simply because the relevant dipole couplings are
about an order of magnitude larger (for the n = 5 circular
state) than those relevant to the counter-rotating field. Formore
highly excited circular states, the difference between co- and
counter-rotation is less pronounced, as can be seen in Fig. 2.

FIG. 2. (Color online) Ionization probability as function of
excursion amplitude and laser intensity for the circular 10l (m = 9)
state in circularly polarized electric fields with the wavelength
800 nm. The shaded function is the shape of the radial probability
distribution of the initial state, and the dashed line marks its radial
expectation value. The width of the torus, represented by the standard
deviation of the radial distribution, is shown in a lighter shade of grey.

It is no coincidence that the value of the excursion amplitude
at the point of stabilization coincides with the radius of
the initial state probability density torus. When selecting the
10l (m = 9) state as the initial state (see Fig. 2), whose
torus radius is 105 a.u., we get the stabilization threshold at
110–115 a.u., well within the “width” of the torus. Note that
the co- and counter-rotating cases yield very similar results in
this case, especially for the lower excursion amplitudes (field
intensities), the reason being that the electron’s (classical)
“orbit” frequency is very low compared to the field frequency,
making the difference between the co- and counter-rotating
scenarios less important. We observe the same with a 7i (m =
6) initial state (not shown here), where again the stabilization
threshold occurs at excursion amplitudes that approximately
correspond to the torus radius,which in that case is 52.5 a.u.We
made sure this connection also existed when using a different
laser frequency, and if we used an in-plane linearly polarized
laser field instead. Figure 3 shows the results for an x polarized
laser pulse on a 5g (m = 4) initial state for pulses of 4, 6, and
8 optical cycles, and the results are, in fact, in qualitative
agreement with the results in Fig. 1.
The observed close correlation between the torus radius

〈r〉 and the value of the excursion amplitude (electric field
strength) at the stabilization threshold, has a simple intuitive
explanation. During the action of an intense pulse, the electric
fieldwill drive the torus-shaped electron “cloud” around, while
the heavy nucleus is nearly stationary (completely so in our
model). When the excursion amplitude approaches the radius
of the initial-state torus, the strong electric field pulls the
densest part of the electron cloud into the nucleus. In the
case of circularly polarized fields, the entire length of the torus
may then be pulled through the “nuclear area,” with the conse-
quence that there is a high likelihood for the electron to interact
strongly with the nucleus. Keeping in mind that interaction
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FIG. 3. (Color online) Ionization probability as function of
excursion amplitude and laser intensity for the 5g (m = 4) state
in a linearly polarized electric field along the x direction with the
wavelength 800 nm. The shaded function is the shape of the radial
probability distribution of the initial state, and the dashed line marks
its radial expectation value. The width of the torus, represented by
the standard deviation of the radial distribution, is shown in a lighter
shade of grey.

with the nucleus is the catalyst for ionization, it should be of no
surprise that the point of maximum ionization approximately
coincides with the excursion of the initial (circular) state. For
lower intensities and excursion amplitudes, the nucleus will
remain inside the torus, causing less ionization. Similarly, at
larger excursion amplitudes beyond the stabilization point, the
torus is displaced to such an extent that it no longer intersects
the nucleus, and less ionization occurs. However, since the
central attractive force is no longer centered inside the torus,
the latterwill start to disperse, in effect ionizing. The balance of
these two mechanisms qualitatively explains the local minima
of the ionization probability after stabilization has occurred.
Looking at the probability density function during the pulse

for the different orientations, see Fig. 4, we notice that in
co-rotating scenarios, part of the electron cloud is quickly
pulled in close to the nucleus. This does not happen to the same
extent in the counter-rotating scenarios. Specifically, Fig. 4
shows the probability density in the xy plane for half a cycle
of the pulse when this phenomenon can easily be observed.
The figure shows the developments for the co- and counter-
rotating cases side by side. The arrows indicate the direction
and strength of the electric field. The force on the electron
works in the opposite direction. Looking at the left panels
in Fig. 4, showing the counter-rotating scheme, we see little
action. For the co-rotating case, on the other hand, a sizable
portion of the electron probability is pulled to the nucleus at
an early stage, making a spiraling tail structure behind the
nucleus.
The ionization dynamics of Rydberg atoms in circularly

polarized fields has been studied before in terms of classical
mechanics [40,41]. The classical approach may facilitate the
interpretation of the results from the quantum-mechanical

FIG. 4. (Color online) Snapshots of the probability density in the
z = 0 plane, during half an optical cycle early in the laser pulse.
The initial wave function is the circular 5g (m = 4) state, and the
laser pulse contains four optical cycles. The peak intensity is 0.44×
1014 W/cm2, corresponding to an excursion amplitude of 8 a.u., but
the figure depicts the probability density function when the intensity
is in the range 0.1–0.4× 1014 W/cm2, or for an excursion amplitude
of 3–7 a.u. The left panels show the clockwise rotation of the electric
field, and the right panels show the co-rotation. The arrows illustrate
the size and direction of the electric field. For the counter-rotating
pulse, the ionization probability is 0.02, and the probability of staying
in the initial state is 0.97. For the co-rotating pulse, the ionization
probability is 0.24, and the probability of staying in the initial state is
0.71.

calculations, and provide further insight into the underlying
physical mechanisms [40,41]. We therefore made support-
ing calculations using the classical trajectory Monte Carlo
(CTMC) method [42,43]. Solving the Newtonian equations
of motion for a large number (∼30 000) of individual elec-
tron trajectories, corresponding to different initial conditions
picked at random from a microcanonical ensemble [44–46], a
classical estimate for the ionization probabilityPion is obtained
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simply by taking the ratio between the number of trajectories
corresponding to a free electron after the pulse and the total
number of trajectories. To mimic the initial circular quantum
state, only orbits fulfilling the constraint (m − 1/2)h̄ < Lz <

(m + 1/2)h̄, m = l = n − 1 being the quantum numbers of
the hydrogenic circular state and Lz the z component of the
angular momentum, were selected.
The results of the classical calculations are shown in the

right panels in Fig. 1. Comparing left and right panels, i.e.,
the quantum and classical results, respectively, the similarity
is striking. The agreement could be seen as a manifestation
of Bohr’s correspondence principle [47]. In particular, the
stabilization phenomenon is clearly seen to have a classical
counterpart [12,16,17]. The classical ensemble calculations
further support the close relationship between the radius of
the initial state (distribution) and the point (field excursion
amplitude) at which stabilization sets in.
As is apparent from theCTMC results in Fig. 1, the classical

approach is well suited for these stabilization simulations. It
stands to reason that the different behavior for low intensities
should have a classical explanation as well as the quantum-
mechanical explanation given above. This may also give
us a more intuitive feel for the mechanisms involved. First
we adopt the CTMC view of the initial state, that of an
ensemble of independent electrons orbiting the nucleus. All
the electrons will orbit in a counterclockwise fashion, with
approximately the same angular momentum, but varying
degree of eccentricity. The electric field, when it is turned on,
rotatesmuch (∼ ×9) faster than the electrons orbit the nucleus.
The perturbations from the field drive the electrons into
trajectories with a “telephone cord” appearance, in particular
for higher field strengths. Regardless of rotational direction,
the field will always alternately accelerate and decelerate the
electron. This, however, is where the difference between co-
and counter-rotation comes in. The periods of acceleration and
deceleration will be longer in the co-rotating case than in the
counter-rotating case, because the field and the electron are
rotating in the same direction in the former case. The closer
the frequency of the laser field is to the electron’s rotation
frequency, the longer the periods. For electrons in sufficiently
eccentric orbits that pass close to the nucleus when the field
is approximately aligned with the velocity of the electron, a
large transfer of energy may occur in the co-rotating case. The
eccentricity of the orbit is here crucial for the ionization to take
place, since the instantaneous electronic rotation frequency
shouldmatch the field frequencywhen the electron is closest to
the nucleus. This field-assisted “slingshot maneuver” scenario
[48,49] is illustrated in Fig. 5,where a single ionizing trajectory
is shown, together with energy and angular frequency as
a function of time. Here, the electron clearly receives two
“kicks” when passing close to the nucleus, before entering an
open, ionizing orbit. Although for the sake of simplicity, only
a single classical trajectory is shown in the figure, we would
like to emphasize that, in the limit of weak fields, all ionizing
orbits will indeed exhibit a very similar behavior to the one
depicted in Fig. 5. As such, the chosen example contains all
essential features of the ionization dynamics in the limit of
weak fields. In the counter-rotating case the slingshot effect
becomesmuch less efficient, simply due to the counter-rotating
fashion of the field, effectively causing less ionization. This

FIG. 5. (Color online) Left panel: The trajectory of a classical
electron in an elliptical orbit being kicked out when closest to the
nucleus (black dot). The red arrow indicates the direction of the
force from the field acting on the electron (blue dot) at the very
moment when the ionization takes place. Upper right panel: The
angular frequency of the electron, relative to the origin, as function
of time. Lower right panel: The energy of the electron as function
of time. The two times the distance between electron and nucleus is
minimized are marked by vertical dashed lines in the right panels. For
the sake of illustration, the pulse applied in this figure is somewhat
longer (30 cycles) than the pulses used throughout. The peak intensity
is 1.08× 1011 W/cm2.

explains the great difference in the ionization yields between
the co- and counter-rotation cases in Fig. 1.

IV. CONCLUSION

By means of quantum simulations with the time-dependent
Schrödinger equation supported by classical simulations using
the classical trajectoryMonte Carlomethod, the ionization and
stabilization dynamics of circular Rydberg states in hydrogen,
subjected to circularly polarized 800-nm (Ti:sapphire) laser
pulses, have been studied under experimentally realistic
conditions. It is shown that at certain intensities, intimately
related to the radius of the initial Rydberg states, atomic
stabilization sets in. Both co- and counter-rotating fields with
respect to the direction in which the electron orbits the nucleus
were considered, and great differences in the corresponding
ionization yields were identified, in particular for the lower-
lying Rydberg states, but both enter the stabilization regime
at similar intensities. These differences were reproduced
in classical calculations, providing further insight into the
underlying ionization mechanisms.
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We have studied the process of direct (nonsequential) two-photon double ionization of molecular hydrogen
(H2). Solving the time-dependent Schrödinger equation by an ab initio method, total (generalized) and single-
differential cross sections are obtained at photon energies from 26 to 33 eV. Both parallel and perpendicular
orientation of the molecule with respect to the laser polarization direction are considered, and the results are
compared with previously calculated cross sections at 30 eV, as well as the predictions of a simple model.
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I. INTRODUCTION

The problemof direct, as opposed to sequential, two-photon
double ionization of xenon [1] and helium [2,3]was introduced
some time ago. Since then, the direct (nonsequential) process
in heliumhas been the focus of great interest, both theoretically
[4–21] and experimentally [22–27]. These investigations were
partly triggered by the development of high-order harmonic
[28,29] and free-electron laser (FEL) [30,31] light sources, as
well as the development of sophisticated numerical methods,
capable of tackling correlated motions in few [4,32] and mul-
tiphoton [33] ionization processes. The study of fundamental
breakup processes in nature is important and paves the way
for further investigations of the role of correlations in few
and multiphoton multiple ionization processes in atoms and
molecules. More recently, the four-body breakup of H2 by
two-photon impact has received considerable attention, both
in the direct [34–37] and sequential regime [38,39].
Employing the time-dependent close coupling method,

Colgan et al. [34] studied the direct two-photon double
ionization of H2 by 30 eV photons. Total and triple-differential
cross sections for the process were obtained for both parallel
and perpendicular orientation of the molecule with respect
to the linear laser polarization direction. In 2009, Morales
et al. [35] revisited the problem employing a time-independent
approach and the method of exterior complex scaling. Clear
discrepancies in the respective triple-differential cross sections
were found. Evenmore recently, Guan et al. [36,37] calculated
the corresponding cross sections using a fully ab initio, nonper-
turbative approach, solving the time-dependent Schrödinger
equation in prolate spheroidal coordinates for a 10 cycle laser
pulse of peak intensity 1014 W/cm2. The cross sections were
obtained projecting the final continuum wave function onto
a set of uncorrelated two-center Coulomb waves, and the
results were found to differ from those reported by both Colgan
et al. [34] and Morales et al. [35].
In the present work we again consider the problem of

direct two-photon double ionization (TPDI) of H2. For this
purpose, we solve the time-dependent Schrödinger equation
in spherical coordinates employing a recently developed
ab initio numerical framework [17,40]. The framework has
here been further developed in order to take into account
the two-center nature of the problem. Following [34–37] we

*aleks.simonsen@gmail.com
†morten.forre@ift.uib.no

assume the fixed-nuclei approximation in the calculations, that
is, the nuclei are considered being fixed at their equilibrium
internuclear distance atR = 1.4 a.u. throughout the interaction
with the laser pulse. Since the electrons are ejected almost in-
stantaneously in the direct TPDI process and move apart much
faster than theCoulomb exploding nuclei, the approximation is
expected to be very accurate, concordant with earlier findings
in the corresponding one-photon double ionization process in
H2 [41,42].
Using a 15 cycle laser pulse of sine-squared shape, total

(generalized) and single-differential cross sections are ob-
tained for photon energies in the interval 26 to 33 eV. The TPDI
cross sections are calculated by subtracting the bound and
single continuum states from the total wave packet. In order to
obtain sufficiently converged results and tominimize the effect
of the Coulombic repulsion between the electrons, the wave
function is propagated some additional optical cycles after the
pulse before the projections are performed. The results of the
full calculations are compared with the previous ones [34–37],
and differences and similarities are noted. Furthermore, they
are compared with the predictions of a simple approximate
model, recently proposed for the corresponding TPDI process
in helium [12,18].
Atomic units, where me, h̄, and e are scaled to unity, are

used throughout unless stated otherwise.

II. THEORY AND NUMERICAL APPROACH

A. Numerical model

The Hamiltonian for fixed-in-space H2 interacting with a
laser field consists of two parts,

Ĥ = Ĥmol + Ĥfield, (1)

where the first term is the field-free Hamiltonian for the
hydrogen molecule,

Ĥmol =
2∑

i=1

(
p2i
2

− 1

|ri + R/2| − 1

|ri − R/2|
)

+ 1

|r1 − r2| ,
(2)

R being the internuclear vector. The second term is the
interaction with the laser field, which in a semiclassical
approximation takes the form

Ĥfield = A(t) · (p1 + p2), (3)

when the velocity gauge and the dipole approximation have
been assumed. The laser field is modeled by the classical
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electric field E = −∂tA, with the time-dependent vector
potential given as

A(t) = A0 sin
2

(
πt

T

)
cos(ωt)û. (4)

Here the unit vector û defines the polarization of the linearly
polarized field, A0 = E0

ω
, E0 is the peak electric field ampli-

tude, ω is the central frequency, and T is the pulse duration.
The standard procedure for solving a partial differential

equation numerically is to expand the solution in a convenient
basis, and subsequently solve the resulting system of ordinary
differential equations. In our approach, the angular rank of the
two-electron wave function is expanded in coupled spherical
harmonics, and the radial ranks in B splines [43,44],

�(r1,r2,�1,�2,t) =
∑
i,j,k

ci,j,k(t)
Bi(r1)

r1

Bj (r2)

r2
YL,M

l1,l2
(�1,�2).

(5)
Here k = {l1,l2,L,M} is a combined index for the angular
indices. In this basis the radial and angular kinetic energy
operators have a very sparse structure with few nonzero
elements.
The H2 molecule is a two-center system, and is in many

respects best represented in prolate spheroidal coordinates,
in which the H+

2 molecule is separable. Nevertheless, it
is still possible to utilize the single-center approach at the
cost of being able to fully exploit the symmetry properties
of the two-center system. In our case, the electron-nucleus
interaction operator is expanded in spherical harmonics using
the multipole expansion,

− 1

|ri + R/2| − 1

|ri − R/2|

= −
∑

j∈2Z∗

j∑
m=−j

4π

2j + 1
r

j
<

r
j+1
>

Y ∗
j,m(θ,φ)Yj,m(0,0), (6)

where r> and r< are the largest and smallest of ri and R/2,
respectively, the internuclear vector is assumed to lie along the
z axis, and the index j runs over even integers. The single-
center approach in H2 deviates in general very little from the
formalism commonly used for two-electron atomic systems
like helium. The only difference, as evident from Eq. (6), is
the need for terms beyond the monopole term to support the
two-center nature of the system, making the calculations more
demanding regarding memory requirements and run time.
As opposed to helium, the total angular momentum L is

not a conserved quantity in the hydrogen molecule. While the
helium ground state comprises only the L = 0 symmetry, the
nonspherical symmetric electron-nucleus interaction entails
the H2 ground state to be composed of several even L compo-
nents. In addition to L = 0 the most prominent components
are those of L = 2, 4, and 6. When exposing the molecule
to a linearly polarized laser field, it should be noted that
the projection of the total angular momentum M = m1 + m2

onto the z axis is conserved and equal to zero as long as
the axis of polarization is parallel to the internuclear vector
(z axis). Whenever the polarization axis points elsewhere, the
cylindrical symmetry of the system is broken and hence theM

quantum number is not conserved.

Our numerical scheme for solving the two-electron time-
dependent Schrödinger equation (TDSE) in the basis (5)
was presented earlier [17,40]. The framework has already
been used for single and double ionization studies in helium
[17,18,45,46] and the negative hydrogen ion [47].

B. Extracting physical information

Extracting physical quantities for a two-photon double
ionization process is a nontrivial task, because of the complica-
tions that arise in separating the single and double continuum.
In the present work, an approximation to the double continuum
component is obtained by applying complementary projection
operators to the final wave function. The complementary
projection operators are constructed to remove the population
from bound and single continuum channels. First the bound
component is removed. Then the single continuum is removed
by subtracting all components from the wave function corre-
sponding to one electron remaining in a bound H+

2 state, as
follows:

|�DC〉 = |�f(r1,r2,t)〉 −
∑
m

〈
φ
H+
2

m (r1)
∣∣�f (r1,r2,t)

〉∣∣φH+
2

m (r1)
〉

−
∑
m′

〈
φ
H+
2

m′ (r2)
∣∣�f(r1,r2,t)

〉∣∣φH+
2

m′ (r2)
〉

+
∑
m,m′

〈
φ
H+
2

m (r1)
∣∣〈φH+

2
m′ (r2)

∣∣�f(r1,r2,t)
〉

× ∣∣φH+
2

m (r1)
〉∣∣φH+

2
m′ (r2)

〉
. (7)

Here m and m′ sum over all H+
2 bound states, which are

obtained by numerical diagonalization of the H+
2 single-

particle Hamiltonian. Furthermore, �DC represents the dou-
ble continuum wave packet, and �f (r1,r2,t) is the total
(single+ double) continuum wave function at some time t

after the pulse. It should be noted that in this approximation
to the double continuum, the electron-electron interaction is
completely disregarded. Thus, for the method to be valid, it
is important that the electrons are as far apart as possible.
This is achieved by letting the wave packet propagate for
some additional time after the end of the laser pulse, typically
5–10 optical cycles, in order for the ionized wave packet
to reach near-asymptotic distances before the projections are
performed. The disadvantage of this approach is of course the
necessity of using correspondingly larger radial boxes.
After the double continuumwave packet�DC is found using

Eq. (7), the generalized cross section is easily obtained,

σ =
(

ω

I0

)2
Pion

Teff
, (8)

where

Pion = 〈�DC|�DC〉 (9)

is the double ionization probability. Here ω is the photon
energy, I0 is the laser intensity, and Teff is the effective pulse
duration. The latter quantity depends on the pulse shape, and
for a sine squared envelope it is given by Teff = 35

128T [14].
The electron energy distributions are derived from the

double continuum wave packet by projecting it onto pairs
of H+

2 field-free continuum energy eigenstates—one for each
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FIG. 1. (Color online) Upper panel: Radial wave function density
(in a.u.) obtained at seven optical cycles after the end of the
pulse, for a 15-cycle laser pulse of central frequency ω = 1.05
a.u. (corresponding to the photon energy 28.6 eV), and intensity
1013 W/cm2. The molecule is oriented parallel to the polarization
axis of the laser field. The scale is logarithmic. Intermediate panel:
Radial wave function density (in a.u.) of the double continuum wave
packet, after the bound and single ionized populations have been
removed. Lower panel: Corresponding energy distribution of the
outgoing electrons in units of 10−5 a.u.

electron, as obtained by numerical diagonalization of the
full one-electron H+

2 Hamiltonian imposing zero boundary
condition at the edge of the radial box. Although these
energy eigenstates do not fulfill the incoming-wave boundary
condition [48], which would be a prerequisite for calculating
angular-differential cross sections, they do produce accurate
energy-differential quantities, provided the electron-electron
interaction can be neglected.

III. RESULTS AND DISCUSSION

In our calculations, and in the case of parallel alignment
of the molecule, we have used a radial box extending to
rmax = 160 a.u., covered by 147 B splines. The B splines
are distributed on a grid such that the density of splines is
exponentially decreasing away from the center of mass. After

FIG. 2. (Color online) Total (generalized) cross section for the
process of direct (nonsequential) two-photon double ionization of H2.
Upper panel: molecule oriented parallel with the laser polarization
axis. Lower panel: molecule oriented perpendicular to the laser
polarization axis. Golden line with diamonds: present ab initio result.
Dashed line: model result Eq. (10). Blue triangle: theoretical result
by Colgan et al. [34]. Green circle: theoretical result by Morales
et al. [35,50]. Red square: theoretical result by Guan et al. [37,51].

063404-3

67
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FIG. 3. (Color online) Photoionization cross section obtained for
fixed-in-space H+

2 molecules at R = 1.4 a.u. Blue line with squares:
molecule oriented parallel to the laser polarization axis. Red line with
diamonds: molecule oriented perpendicular to the laser polarization
axis.

some distance (8 a.u in this work), the density of splines is
held constant. The higher density close to the origin enables
resolving the ground state to a satisfactory level. Furthermore,
the angular basis is truncated at lmax = 6, Lmax = 12, and
M = 0. With this basis we obtain the ground state energy
−1.8852 a.u., which is in satisfactory agreement with the
calculated benchmark value−1.8888 a.u. [49]. Due tomemory
limitations, a somewhat smaller basis has been applied for
the perpendicular geometry. In that case, lmax = 4, Lmax = 8,
M = −2,−1,0,1,2, and 101 B splines are distributed in a
radial box extending to rmax = 150 a.u. Varying the size of
the basis sets, it is found that the cross sections are fairly well
converged, both for the parallel and perpendicular geometries.
The upper panel in Fig. 1 displays the radial wave function

density seven optical cycles after the interaction with a
15-cycle laser pulse. The photon energy is 28.6 eV. The
corresponding double continuum wave packet, as obtained by
the subtraction procedure described in Sec. II B, is shown in
the intermediate panel. From this wave packet, the electrons’
energy distribution is derived and depicted in the lower panel.
Figure 2 depicts our results for the total cross section,

both for parallel (upper panel) and perpendicular (lower
panel) orientation of the molecule with respect to the laser
polarization axis. The results are obtained for a 15-cycle laser
pulse of intensity 1013 W/cm2. The wave packet is propagated
for about seven optical cycles after the action of the pulse
before the projections are performed. It should be noted that
the calculated total cross sections vary by less than 3% from
the time just after the pulse up to this point.
Also shown in Fig. 2 is the result of Colgan et al. [34]

(blue triangle), Morales et al. [35,50] (green circle), and Guan
et al. [37,51] (red square) at the photon energy 30 eV. The
agreement between our calculated cross section at 30 eV
and the value in [37,51] turns out to be excellent, whereas
clear discrepancies with the results of the two other studies
are found. It is not clear to us what is the origin of these

FIG. 4. (Color online) Single differential cross section (SDCS)
for direct two-photon double ionization of H2 at the photon energies
27.2, 28.6, and 29.9 eV. Full lines are the ab initio results and dashed
lines indicate the prediction of the model Eq. (10). Upper panel:
molecule oriented parallel with the laser polarization axis. These
SDCSs are scaled, in order to align them for equal energy sharing,with
the factors, 6.88, 4.82, and 5.31 for the photon energies 27.2, 28.6, and
29.9 eV, respectively. Lower panel: molecule oriented perpendicular
to the laser polarization axis. Similarly, the SDCSs are scaled with
the factors 0.95, 0.61, and 0.52 for the three photon energies 27.2,
28.6, and 29.9 eV.

discrepancies, but we nevertheless point out two possible
explanations. First, Colgan et al. [34] used a 12-cycle (flat-top)
laser pulse of peak intensity 1015 W/cm2, which supports
three and higher-order photon processes to a greater extent
compared to our pulse, and that could possibly lead to a
nonnegligible depletion of the population in the initial state.
Second, as already pointed out by Colgan and co-authors [34],
the doubly excited states of H2, the first one lying only about
30 eV above the H2 ground state at R = 1.4 a.u. [48], may
have some influence on the results. This could possibly explain
the difference between the results of the time-dependent and
time-independent approaches, respectively.
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A simple approximate model for the single-differential
cross section for direct two-photon double ionization of
helium was recently proposed by Horner et al. [12] and
Førre et al. [18]. As a natural extension of these works, we
propose the following approximate formula for the single-
differential cross section in the process of two-photon double
ionization of H2,

dσ

dE1
� 1

4
[
√

f (E1)+
√

f (2h̄ω − Eb − E1)]
2,

(10)

f (E1)≡ h̄3ω2

π

σH2(E1+EH2)σH+
2
(2h̄ω−E1−EH2)

(E1+EH2)(2h̄ω−E1−EH2)(E1+EH2 −h̄ω)2
.

HereEb = 51.4 eV is the total binding energy ofH2, the energy
EH2 = 16.5 eV corresponds to the first (single) ionization
threshold of H2, and σH2 and σH+

2
indicate the photoionization

cross section for one-photon single ionization of H2 and
H+
2 , respectively. For further details about the models, see
Refs. [18,52]. The relevant photoionization cross sections for
the single ionization of H2 was calculated by Sánchez and
Martı́n [53]. Furthermore, the photoionization cross section
of H+

2 at R = 1.4 a.u. is given in Fig. 3 for the parallel and
perpendicular orientation of the molecule, respectively.
The total cross section, as obtained by applying the

approximate formula Eq. (10), is depicted in Fig. 2 by dashed
lines. The model seems to yield results that are in reasonable
agreement with our ab initio findings, which is somewhat
surprising given the high complexity of the problem. Quite
interestingly, and in agreement with our ab initio calculations,
the model predicts a cross section about an order of magnitude
larger for the perpendicular orientation as compared to the
parallel one. In the model, this difference is attributed to a
corresponding difference in the photoionization cross section
of H+

2 (cf. Fig. 3).
We now turn to the energy distributions of the ejected elec-

trons. Figure 4 shows the energy resolved single-differential
cross sections (SDCSs) at three selected photon energies, 27.2,
28.6, and 29.9 eV. The SDCSs are obtained from the respective
energy distributions of the two electrons (cf. lower panel in

Fig. 1). Upper and lower panels in Fig. 4 depict the results for
the parallel and perpendicular geometry, respectively. Again,
the agreement between the fully ab initio result and the model
prediction is at a quantitative level, demonstrating the strength
of the simple formula.At this point it should, however, be noted
that the model does not apply to angular-resolved differential
cross sections. As a matter of fact, the Coulombic repulsion
between the electrons turns out to play a decisive role for the
movement of the electrons in the continuum, even a long time
after they have been ejected. Such long-range effects are not
included in the model, and it is therefore not expected to be
valid for the calculation of angular distributions.

IV. CONCLUSIONS

In conclusion, we have studied the two-photon double
ionization of fixed-in-space hydrogen molecules (H2), apply-
ing a B-spline based numerical method. Total (generalized)
and single-differential cross sections are calculated at various
photon energies and compared, when possible, with previ-
ously published results [34,35,37,50,51]. Our results are in
agreement with the results of Guan et al. [37,51], as far as
the total cross section is concerned, but further theoretical
and experimental investigations are required in order to settle
the problem definitely. We furthermore find that our results
are in quantitative agreement with the predictions of a simple
model, both for the total and single-differential cross sections.
These observations are concordant with previous findings in
the corresponding process in helium [18,20].
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Kühnel, T. Ergler, J. F. Pérez-Torres, F. Martı́n, O. Herrwerth
et al., Phys. Rev. A 81, 021401(R) (2010).

[39] T.-G. Lee, M. S. Pindzola, and F. Robicheaux, J. Phys. B 43,
165601 (2010).

[40] T. Birkeland, Ph.D. thesis, University of Bergen, 2009.
[41] W. Vanroose, D. A. Horner, F. Martı́n, T. N. Rescigno, and C.W.

McCurdy, Phys. Rev. A 74, 052702 (2006).
[42] W. Vanroose, F. Martı́n, T. N. Rescigno, and C. W. McCurdy,

Science 310, 1787 (2005).
[43] C. de Boor, A Practical Guide to Splines, revised ed. (Springer,

New York, 2001).
[44] H. Bachau, E. Cormier, P. Decleva, J. E. Hansen, and F. Martı́n,

Rep. Prog. Phys. 64, 1815 (2001).
[45] T. Birkeland, R. Nepstad, and M. Førre, Phys. Rev. Lett. 104,

163002 (2010).
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We calculate, based on first-order perturbation theory, the total and differential ionization probabilities from
a dynamic periodic Rydberg wave packet of a given n-shell exposed to a train of femtosecond laser pulses. The
total probability is shown to depend crucially on the laser repetition rate: For certain frequencies the ionization
probability vanishes, while for others it becomes very large. The origin of this effect is the strong dependence
of the ionization probability on the Stark quantum number. Correspondingly, the angular electronic distribution
also changes significantly with the increasing number of pulses for certain repetition rates.
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I. INTRODUCTION

Exposure of atoms to short attosecond pulse trains phase-
locked onto femtosecond pulses has recently given direct
insight into electronic ground-state dynamics as the atom
is perturbed by the femtosecond laser field [1,2]. The key
ingredient which allows mapping between spectra of electron
momenta and initial state dynamics is the very short and
phase-locked attosecond burst as compared to themuch slower
original femtosecond laser pulse. A related experiment can be
suggested based on highly excited atoms and on amuch slower
time scale: a train of femtosecond laser pulses firing on top
of a microwave field which drives a Rydberg wave packet.
The ionizing femtosecond pulse could in this case serve as a
sensitive camera which could reconstruct the image of exotic
electronic states on the border between classical physics and
quantum dynamics.
The ionization of Rydberg atoms by femtosecond laser

fields has been studied both experimentally and theoretically.
For example, on the experimental side electron dynamics
following two controlled time-delayed pulses has shown
distinct electron emission characteristics [3,4]. On the theory
side strong effects of counterpropagating pulses on Rydberg
atom ionization probability have been predicted [5]. Recently,
the ionization of low-lying circular Rydberg states exposed
to circularly polarized laser fields was investigated both by
solving the Schrödinger equation and by using the classical
trajectory Monte Carlo (CTMC) method [6]. CTMC calcula-
tions have also been used extensively in exploring Rydberg
atoms with very high principal quantum numbers, lately in the
study of localized Bohr-like wave packets [7–9].
Several studies have investigated the dynamics of inter-n

Rydberg wave packets in static electric fields through their
ionization by half-cycle electric field pulses that ionize the
wave packet during its motion [10,11]. More recently, the
response of dynamic Rydberg wave packets created by a
picosecond laser pulse from the Li(3d) state in the presence of
an inter-n mixing microwave field has been reported [12]. A
strongmodification of the selective field ionization (SFI) signal
depending on the wave packet creation time with respect to the
phase of the microwave field was detected.

*sigrid.simonsen@ift.uib.no
†stian.sorngard@ift.uib.no

Previous experimental works have considered wave packet
dynamics and ionization where the Rydberg atom is exposed
to strong n-mixing fields [10]. Here we consider theoretically
the ionization signature of a related but different wave packet
which can be created within a single n level when the atom is
exposed to much weaker electric fields, below the Inglis-Teller
limit, 1/3n5 (a.u.) [13]. The intra n-shell (angular) wave
packet of hydrogen is driven by a microwave time-dependent
electric field and exposed to a train of ionizing femtosecond
laser pulses. The microwave field in our setup drives a wave
packet of a given n-shell periodically between a maximum
polarized (linear) Stark state and a circular state [14,15]. The
ionization probability and electron emission characteristics
are calculated as function of the number of laser pulses
and the time separation between the pulses. The single-pulse
ionization probability is found to be orders of magnitude larger
for high Stark quantum numbers compared to the lower ones,
and the angular emission spectra are shown to be detailed
functions of the number of times the Rydberg wave packet is
hit in highly polarized vs unpolarized states. Once the highly
polarized states are hit they dominate the angular emission
spectra completely.
In the following section we outline the theory and in the

subsequent section results are discussed. Atomic units, where
me, h̄, and e are scaled to unity, are used throughout unless
stated otherwise.

II. THEORY

Our starting point is a Rydberg wave packet driven in a
Stark setup [16–18] by a resonant rotating microwave field,

Eμ(t) = ε0 cosωμtx̂ − ε0 sinωμtŷ − εzẑ, (1)

repeatedly between the circular (|km〉 = |0 mmax〉) and the
linear (|km〉 = |kmax 0〉) state in the Starkmanifold, as shown in
color in Fig. 2. k denotes the Stark quantum number. The field
strength of the oscillating xy components is ε0 = 10−8a.u.,
whereas the constant z component εz = 10−7a.u. induces a
Stark energy splitting�Ez = 3/2nεz = ωμ = 2.4× 10−6a.u.
When calculatingmatrix elements of the dipole operatorwithin
a principal n-shell the operator replacement r̂ → 3n/2â [19]
may be performed, where â is the operator for the Runge-
Lenz vector. Since this operator behaves identically to a spin
operator with each Stark state being eigenstates of â2 and âz,
the selection rule |�k| = 1 follows directly, as a parallel to
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the well-known selection rule |�m| = 1 in the spherical basis.
Due to the clockwise rotation of the resonant microwave field,
one-photon absorption and emission solely allow transitions
satisfying the selection rules �m = ±1 and �k = ∓1. The
wave packet will make one round trip along the Stark ladder
in about ten revolutions of the microwave field.
We consider the situation where the wave packet slowly

evolving in the microwave field is hit by a series of short
femtosecond laser pulses.We assume that only a small fraction
of the wave packet is launched to the continuum at each pulse;
thus from first-order time-dependent perturbation theory the
transition amplitude from the j th pulse in the pulse train reads

a
(j )
qlm = −i

∫ tj +T

tj

〈ψqlm|V (t)|�b(tj )〉ei(Eq−Eb)t dt, (2)

where q is the momentum of the ionized electron and T is
the pulse duration of each pulse. The present Stark shift �Ez

is of the order of 10−6a.u., which is negligible compared to
the binding energy of the n = 16 level without the Stark shift
(Ip ≈ 0.002 a.u.) when probing with an 800-nm pulse.
The bound electron wave function �b(t) in Eq. (2) can be

described as

|�b(t)〉 =
∑
k,m

ckm(t)|ψnkm〉, (3)

where |ψnkm〉 denotes the Stark states. These can in turn be
expanded in the spherical basis states |ψnlm〉 [20],

|ψnkm〉 =
∑

l

(−1)l
〈
n − 1
2

,
m − k

2
,
n − 1
2

,
m + k

2

∣∣∣∣lm
〉

|ψnlm〉.

(4)

The amplitudes are Clebsch-Gordan coefficients, and we refer
to them as bklm. This gives the following expression for the
bound state at time t :

|�b(t)〉 =
∑
k,m

∑
l

ckm(t) bklm |ψnlm〉. (5)

The coupling V (t) = E(t) · r in Eq. (2) is the laser-matter
interaction within the dipole approximation when represented
in the length gauge. Due to the short duration of the pulse
(∼102 a.u.) compared to the time of evolution of the bound
wave packet in the microwave field (∼106 a.u.), we neglect
the effect of the microwave field during the action of the
femtosecond probe pulse. In addition, due to the finite spectral
width of the short ionizing pulse, excited (bound) states are
populated throughout the interaction with the laser field, but
the population in these states is nevertheless so small that it
does not influence the subsequent ionization dynamics.
After interaction with a pulse train of N pulses separated

by a time�t , the continuum part of the total wave function of
the system can be written as

|�c〉 =
∑
q,l,m

N∑
j=1

a
(j )
qlm|ψqlm〉e−iEq (N−j )�t , (6)

giving the following amplitudes for the final continuum states,

αqlm =
N∑

j=1
a
(j )
qlme−iEq (N−j )�t . (7)

Moreover, the continuum wave function is expanded in
Coulomb partial waves |ψqlm〉, which conform to incoming
boundary conditions,

〈r|ψqlm〉 = ile−iσl Ylm(r̂)Y
∗
lm(q̂)Rql(r), (8)

where σl = arg�(l + 1− i/q) is the Coulomb phase shift of
the lth partial wave. The radial part, when normalized in
momentum space, reads [21]

Rql(r) =
√
2

π

eπ/2q |�(l + 1− i/q)|
(2l + 1)! (2r)lql+1e−iqr

× 1F1(l + 1+ i/q,2l + 2,2iqr). (9)

In the computations we have utilized the Coulomb wave
implementation provided by the GNU Scientific Library
(GSL) [22]. It should also be noted that the corresponding
energy-normalized wave function is conveniently obtained
through the scaling relation REql(r) = q−1/2Rql(r).
To model the laser pulse we use a plane wave in the

z direction modulated by a sine-square carrier envelope.
The time-dependent electric field is derived from the vector
potential

A(t) = A0 sin
2

[
π (t − tj )

T

]
sin[ω(t − tj )]ẑ, (10)

through the relation E(t) = −∂tA(t), where the central fre-
quency ω of the plane wave corresponds to λ = 800 nm.
The electric field strength is E0 = 2.0× 10−5 a.u. (Ipeak =
1.4× 107 W cm−2), and the duration of the pulse is given by
T = 2πNoc/ω. In our calculations we have set the number of
optical cycles Noc = 4, which corresponds to a pulse duration
of T = 441a.u. = 11fs.
With the amplitudes of the continuum wave packet at hand

the differential probability is readlily obtained:

dP

dqd�
=

∣∣∣∣∣
∑
l,m

αqlm

∣∣∣∣∣
2

. (11)

Integrating out the momentum gives the angular resolved
ionization probability,

dP

d�
(θ,φ) =

∫ ∣∣∣∣∣
∑
l,m

αqlm

∣∣∣∣∣
2

q2dq, (12)

and alternatively, by performing the angular integral we obtain
the energy spectrum,

dP

dEq

=
∑
l,m

|αqlm|2, (13)

with Eq = q2/2. For the sake of consistency, notice that in
the latter formula the amplitudes αqlm are energy normalized.
Finally, the ionization probability is given by

P =
∫ ∑

l,m

|αqlm|2q2dq. (14)

In order to check the validity of the adopted first-order
time-dependent perturbation theory approach, we compare in
Fig. 1 the ionization probability so obtained with the exact
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FIG. 1. (Color online) Ionization probability for a single pulse
calculated using perturbation theory (red, dotted lines) and exact
solution (blue, full lines) as a function of electric field strength E0.
A four-cycle laser pulse of the form given in Eq. (10) was used in
the calculations. The initial states are |nlm〉 = |16 0 0〉 (upper panel)
and |nlm〉 = |16 15 15〉 (lower panel). Also shown are the partial
contributions of the l = 1 channel and the l = 16 channel (black,
dashed lines) in the upper and lower panels, respectively. In the lower
panel the three lines coincide.

one. The figure depicts the ionization probability for a single
four-cycle pulse as a function of the electric field strength
E0 of the applied laser field. The upper and lower panels
show the results for the initial states |nlm〉 = |16 0 0〉 and
|nlm〉 = |16 15 15〉, respectively. Figure 1 also shows the
partial contribution of the l = 1 channel (upper panel) and the
l = 16 channel (lower panel) to the total ionization yield (red,
dashed line), as obtained from the full calculation. The full
calculations are performed using a spectral method where the
eigenstates are expanded in either a Fourier series (in the case
of the circular initial state) or a B-spline basis set (in the case
of the 16s initial state), imposing a zero boundary condition
at the edge of the radial box of some finite size Rmax. In the
calculations Rmax is varied in the interval 2400–5000 a.u. and
the velocity gauge is assumed. Furthermore, angular momenta
up to l = 19 are included in the basis set. As such, the results
are checked for convergence with respect to both the number
of angular momenta included and the size of the radial box.
Figure 1 clearly indicates that the first-order time-dependent
perturbation theory approach is valid up to electric field
strengths of the order of 0.001 a.u., ensuring that the laser
field applied in the present work (E0 = 2.0× 10−5a.u.) is well
within the perturbative regime.
The ionization probabilities of Rydberg states are extremely

small, and it is therefore important that the continuum is
well represented, especially when calculating the angular-
resolved ionization probability. Thus, we have conducted test
calculations using different densities of states in the continuum
discretization to make sure all quantities are converged.
Note finally that the widely used alternative perturbation

theory based on Volkov waves completely fails in general
when considering initial Rydberg states: Orders of magnitude
discrepancies with exact calculations are obtained when
replacing our final states with Volkov waves. The origin of
the failure can be traced to the sensitivity of the initial state to
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FIG. 2. (Color online) Upper left panel: Stark states |km〉 of the
n = 16 level due to the constant electric field εz. Only the states with
m � 0 are shown. The states populated by the rotating microwave
field in the xy plane are shown in color and with arrows. Upper right
panel: The population of the (colored) Stark states as a function of
time for one round trip in the Stark setup, corresponding to time
τ = 2.61× 107 a.u. The initial state is the circular Stark state. After
half the cycle τ the most polarized state is fully populated while the
circular state is depleted. At the end of the round trip the circular
state is totally revived. Lower panel: The ionization probability of the
relevant Stark |km〉 states when fully populated. Field parameters are
given in the text.

electric fields. Other methods, like the sudden perturbation
approximation [5,23], have been used on Rydberg atoms
exposed to ultrashort laser pulses, but are not invoked here
due to the good agreement between first-order perturbation
theory and exact calculations.

III. RESULTS

Before discussing the main findings it may be instructive to
have a closer look at Fig. 2. The upper right panel shows the
population probability for the states involved in one round trip
in the Stark manifold (depicted in the left panel of the same
figure). The period of this round trip is τ = 2.61× 107 a.u.
(0.63 ns), which again corresponds to about 10 times the period
of the rotating microwave field in the xy plane. The wave
function of the bound electron undergoes intrashell transitions,
according to the selection rules �m = ±1 and �k = ∓1,
implying that only the “outermost” Stark states, i.e., the states
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FIG. 3. (Color online) Ionization probability [cf. Eq. (14)] as a
function of N succeeding pulses and time delay �t . The initial state
is the circular Stark state, |nkm〉 = |16 0 15〉, and the maximum time
separation τ = 2.61× 107 a.u. corresponds to the revival time of the
initial state in the microwave field. The lower panel shows the front
view of the landscape plotted above. The minimum occurs at�t = 0
and τ , but at time steps corresponding to τ/3 and 2τ/3, there is
only a small increase in the probability. The maximum is reached
when pulses are separated by τ/2, causing every second pulse to
hit the most polarized Stark state. The thick red curves indicate the
pulse sequences with �t = 9× 105 a.u. and �t = 2.52× 105 a.u.
especially mentioned in Sec. III. Field parameters are given in the
text.

with m = n − k − 1, are populated (cf. the upper left panel in
Fig. 2).
The ionization probability of the Stark states in question,

when fully populated, greatly varies in magnitude with
increasing k, as the lower panel in Fig. 2 displays. The
difference in ionization probability for the circular and linear
states is of eight orders of magnitude, and this is related to the
electron’s ability to interact with the nucleus. The linear-most
states are the states containing components of low angular
momentum, which means that they are more likely to come
close to the nucleus and hence aremore likely to be slung out of
the atom. The leap in the ionization probability is important for
the understanding of what happens when the Stark manifold is
hit by the pulse train and is referred to later in the discussion.
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FIG. 4. (Color online) Energy distribution of the continuumwave
packet for a series of pulses, N = 3 (lower, blue line), 4 (middle,
green line), and 5 (upper, red line). The time separation between
the pulses is�t = 3× 106 a.u. Succeeding pulses hitting states with
ionization probability differing only a few orders in magnitude cause
interference in the continuum wave packet as observed between the
fourth and the fifth pulse (upper line). The inset shows a closeup of
the distributions on the interval (0.05,0.05+ 10−5) a.u. The period
of the oscillations clearly matches the time delay between the pulses,
i.e., �E = 2π/�t � 2.1× 10−6a.u. Field parameters are given in
the text.

Figure 3 shows the total ionization probability [cf.
Eq. (14)] of the Rydberg atom as a function of the number
of femtosecond laser pulse shots N and the time delay �t

between the pulses. In each specific pulse train the pulses are
equally separated in time. The initial state prior to the pulse
train is the circular state |nkm〉 = |16 0 15〉. In between the
pulses in the pulse train thewave function of the bound electron
undergoes intrashell transitions according to the scheme in
Fig. 2, changing the state subject to ionization at each laser
shot. The different pulse rates seem to yield approximately the
same total ionization probability after the train of 20 pulses
has passed, with the exception of six time separations �t , for
which the ionization probability is either strongly increased
or totally suppressed. For �t � 0 and �t = τ the pulse train
hits the circular state at every impact, and thus the ionization
probability remains at an absolute minimum at all times.
The maximum is reached when �t = τ/2, causing every
second pulse to hit the linear state, hence giving maximum
contribution to the probability. A closer examination of
the two valleys at �t = 8.7× 106a.u. = τ/3 and �t =
1.74× 107a.u. = 2τ/3 reveals that the ionization probability
has a very small increase withN . This suggests, in light of the
previous discussion, that for time separations corresponding
to τ/3 and 2τ/3 the laser pulses hit the wave packet only in
states nearby, but not sufficiently close to, the linear state.
It is interesting to notice that these are the only pulse rates,
except for �t = 0 and �t = τ , that seem to give such a
behavior.
In addition, the total ionization probability depends on how

many succeeding pulses are hitting the atom. As seen in the
upper panel of Fig. 3 some time separations, like �t = 9×
105 a.u. and �t = 2.52× 107 a.u., yield a very slow increase
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FIG. 5. (Color online) To the left in both panels are plotted the angular-resolved ionization probability dP/d� [c.f. Eq. (12)] for a series of
N succeeding pulses with time separation�t = 9× 105 a.u. To guide the eye we have included an auxiliary set of axes indicating the position
of the origin. We observe that the distribution in the continuum rotates clockwise about the z axis with a period that is comparable to the period
of the rotating microwave field. The right figures show cuts in the xy plane for the corresponding electron density distribution of the bound
wave function from which the ionization happens. The initial state for the pulse train is the circular Stark state. Field parameters are given in
the text.

in the ionization probability for the first 10 pulses, but a strong
increase from 10 to 20 pulses. These two pulse sequences are
shown as red (thick) curves in Fig. 3.
The energy spectrum, obtained by Eq. (13), of the total

continuum wave packet after three, four, and five pulses are
shown in Fig. 4, when the pulses are separated by �t = 3×
106 a.u. As expected the distribution is dominated by the large
one-photon resonance centered around the laser frequency
ω = 0.057 a.u. (800 nm). The side peaks in the spectrum can be
attributed to the side bands of the sine-squared pulse envelope.
More interestingly, one makes out some small oscillations
superimposed on the energy spectrum of the fifth pulse, as can
be seen in the inset of Fig. 4, where the energy distribution is
plotted on a finer grid to obtain better resolution. These oscil-
lations are caused by the interference between the wave packet
launched to the continuum by the fifth pulse and the wave

packet that is already there. We see that the period of the
oscillations in question indeed corresponds to the time delay
between the pulses, i.e.,�E = 2π/�t � 2.1× 10−6 a.u. The
interference effect is most pronounced when two succeeding
wave packets are of comparable amplitudes, which is the case
for the fourth and the fifth pulse (cf. upper panel of Fig. 3).
One also notices that the relative height of the slow-electron
peak close to the origin as compared to the one-photon
resonance peak changes with number of pulses. These two
peaks are the results of two different ionization processes. The
first is the response to the electron cloud being pulled away
from the nucleus, resulting in low-energy electrons being
released from the core potential. The latter, dominating as
the bound state gradually approaches the linear state, comes
from the electron being “kicked out” when interacting with
the nucleus, creating ionized electrons of higher energy.
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FIG. 6. (Color online) The figure shows the angular-resolved
ionization probability dP/d� [cf. Eq. (12)] for five succeeding
pulses. Starting in the circular Stark state the left column and the
right column show the distribution when the time between the pulses
is �t = 8.7× 106 a.u and �t = 1.305× 107a.u., respectively. To
guide the eye we have included an auxiliary set of axes indicating the
position of the origin. Field parameters are given in the text.

In Figs. 5 and 6 we consider the angular distribution of
the ionized electron. In these figures we have plotted the
angular-resolved ionization probability [cf. Eq. (12)] for a
series of pulses of three different �t . The first plot in all the

three series corresponds to the initial state being the circular
state. We see that the continuum wave packet for this state is
symmetric about the z axis, as expected. To the left in both
columns of Fig. 5 the evolution of the continuum from eight
succeeding pulses with�t = 9× 105 a.u. is shown. This is the
time step causing the first peak in the plot of the total ionization
probability (lower panel of Fig 3). The pulse repetition rate
is so high that the bound wave packets do not have time to
climb more than half the Stark ladder, and consequently the
total ionization probability remains relatively low for the first
eight pulses. It is interesting to observe that the main lobe of
the angular distribution in this case seems to rotate clockwise
about the z axis, and by careful examination of its period
of rotation, it can be identified to match the period of the
microwave field. This shows that femtosecond pulses firing
on top of time-dependent radio frequency or microwave fields
will, together with angular-resolved detection methods, serve
as a direct camera of wave packet dynamics. To the right in the
figure we have plotted a cut of the electron density distribution
in the xy plane of the bound wave packet from which the
ionization happens for each pulse N . The electron density
rotates clockwise with the period of the rotating field, causing
the rotation in the continuum distribution. Interestingly, it
seems that themain lobe of the continuumdistribution is turned
a bit to the left from the least dense part of the bound wave
packet for all pulses.
Starting with the right column of Fig. 6, we have plotted the

angular distributions pertaining to themain ridge in Fig. 3. This
is the special case in which the pulse train is tuned to strike
the bound wave packet at times where it alternates between
being at its most polarized and unpolarized, i.e.,�t = τ/2.We
observe that from the second pulse the distribution remains,
for all practical means, unchanged throughout the pulse train.
Taking into account that the first pulse hits the circular state,
the next one hitting the linear state will completely overshadow
the ionization from the first strike. The reason is evident when
looking at Fig. 2, the linear Stark state, as compared to the
circular Stark state, is by far more prone to be ionized.
Finally, we turn our attention to the left column of Fig. 6.

The angular distributions in these plots correspond to the time
step �t = τ/3 (cf. the first valley in Fig. 3). The difference in
the repetition rate, as compared to the one in the right column,
entails the femtosecond pulse hitting several states close to
the linear one, and hence it introduces an asymmetry in the
distributions. Comparing the two columns we see that though
the distribution remains mostly along the negative z direction
with increasing N for both cases, the ionization probability
for �t = τ/2 is about an order of magnitude larger than that
for �t = τ/3. It should also be mentioned that for increasing
numbers of pulses, the ionization probability for �t = τ/3
will remain of the same order of magnitude as seen in Fig. 6,
while for �t = τ/2 it will roughly be doubled for every other
pulse.

IV. CONCLUSION

In this work we have studied features of single-electron
ionization of a dynamic intra n-shell wave packet as compared
to ionization from stationary states. Since the ionization
probabilities of the stationary states vary largely with the
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degree of polarization (Stark quantum number), a strong
sensitivity of the ionization probability to the repetition rate
of the ionizing laser pulses occurs. In the most extreme
cases the total ionization probability after a number of N

pulses varies from almost zero to N/2 times the ionization
probability of the maximum polarized Stark state. Moreover,
the angular differential ionization probabilities are shown to
be intimately related to the number of times the pulse train
strikes the bound wave packet. The near-circular wave packets
exhibit rotation in the xy plane due to the rotating microwave
field, which is reflected in the continuum distribution. On
the other hand, when the near-linear states are probed, the

rotation in the continuum is completely overshadowed by the
symmetric distribution of the highly polarized states in the
z direction. Nevertheless, these findings suggest that more
complex periodic dynamics of a Rydberg atom, for example,
oscillations from classical to nonclassical states, may be
monitored by weak ionizing femtosecond pulse trains.
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We explore high-order harmonic generation (HHG) from a graphene sheet exposed to intense femtosecond
laser pulses based on the Lewenstein model. It is demonstrated that the HHG cutoff frequency increases with
graphene size up to the classical limit for distant diatomic systems. In contrast to two-center systems, the cutoff
frequency remains constant with increasing power of the harmonics as the graphene diameter extends beyond
maximal electron excursion. It is shown that the extended nature of the graphene sheet allows for strong HHG
signals at maximum cutoff for linearly as well as circularly polarized laser pulses, the latter opening for generation
of strong circularly polarized attosecond pulses.
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High-order harmonic generation (HHG) refers to the
nonlinear process of creation of very high overtones of an
intense laser pulse with central frequency ω0, which interacts
with a dilute gas of atoms ormolecules. The realization of laser
intensities beyond 1014 W/cm2 paved the way for theoretical
studies [1,2] and experiments [3–5] on HHG from a gas of
atoms in the early 1990s. Now, after about 20 years of intense
HHG research, the three-step model [6] describing HHG
within a single-atom picture is well established: The atom
(i) ionizes, (ii) gains energy when accelerated by the electric
field in the continuum, and (iii) eventually recombines with
the ion emitting a photon at odd multiples of the driving-field
frequency. Since a single excursion and recombination of
an electron takes place within one-half optical cycle, the
generated HHG photons define a coherent attosecond high-
frequency laser pulse which is a unique tool for probing
and imaging of ultrafast dynamics [7–9]. In laser-based
imaging the HHG spectra have been used for tomographic
reconstruction of molecular orbitals with ångström spatial
resolution [10–12].
In recent years HHG following interaction with molecules

has received particular attention. First, it has been shown
that ionization at one molecular center and recombination
at another allows for larger maximum harmonic frequencies
[13,14]. Second, the two-center structure allows for the
generation of attosecond pulses with elliptical polarization as
well as even harmonics if the inversion symmetry is broken
[15,16]. It has been shown theoretically that a preprepared
molecular medium can be used to produce controlled sec-
ondary attosecond pulses, when exposed to a seed attosecond
XUV pulse [17]. In addition, the study of HHG has been
advancing towardsmolecules of increasing complexity such as
benzene rings [18], fullerenes [19], and carbon nanotubes [20],
including the investigation of symmetry properties essential
for the selective generation of high-order harmonics.
The realization of graphene [21], a two-dimensional mono-

layer of carbon atoms, has received explosive interest in the
last decade due to its extraordinary physical properties such

*stian.sorngard@ift.uib.no
†sigrid.simonsen@ift.uib.no

as its superior strength and electronic conductivity. What
was for years believed to be nothing but a theoretical toy
model of a carbon allotrope is today considered to be a
new paradigm in condensed-matter physics [22]. The ordered
structure of the HOMO pz-like orbitals of graphene makes it
particularly interesting for HHG since the classical three-step
model here allows for a large number of atomic pairs of
sites for ionization and recombination for linearly as well
as for circularly polarized driving laser pulses. This may
generate strong attosecond pulses with tunable polarization,
two features which are difficult to obtain whenHHGoriginates
from an unordered molecular gas.
Thus, in this paper we perform a numerical simulation of

HHG from graphene within the strong-field approximation
(SFA). We perform numerical calculations for one- and
two-dimensional lattice structures and investigate the impact
of the dimensionality on the harmonic power spectra. The
calculations are carried out for laser light with various linear
polarization angles with respect to the graphene sheet arranged
in the xy plane and for a circularly polarized laser in the plane
of the atomic sites. Atomic units, where me, h̄, and e are
scaled to unity are used throughout unless stated otherwise.
The model system is illustrated in Fig. 1, which shows the
HOMO pz orbitals defining a honeycomb lattice (comprising
hexagonal cells). A (red) laser pulse is schematically propagat-
ing through the graphene sheet and interacting with a number
N of atomic graphene sites. As a result of this interaction,
a possible trajectory of an electron ionized at one site and
recombining at another site is highlighted.
The HHG power spectrum of photon frequencies ω0

propagating in the n direction, when cast into the velocity
form, reads

Sn(ω) =
∣∣∣∣n ·

(∫ ∞

−∞
dt[eiωt 〈�(t)|p|�(t)〉SFA]

)∣∣∣∣2, (1)

where the superscript SFA denotes that the ionized wave
function is calculated in the SFA [23,24]. This particular form
of the power spectrum is the one that relates directly to the
harmonic field from a solution of the Maxwell equations [25].
To describe the wave function we adopt a simple one-electron
multicentermodel of the bound (initial) state�b in graphene by
a coherent sum of atomic orbitals distributed on a honeycomb
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lattice:

�b(r,t) = 1√
N

N∑
j

ψ(rj )e
−iε0(t−t0). (2)

Here ε0 can be taken as the (negative) ionization po-
tential of graphene, and Gaussian-type orbitals are em-
ployed to describe each site-specific wave function, ψ(rj ) =
aj r

kj

jx
r

lj
jy

r
mj

jz
e−α(r−Rj )2 . The results depend very weakly on the

detailed shape of the site functions so we limit the present
investigation to a single Gaussian-type pz orbital on each site,
i.e. kj = lj = 0, and mj = 1, with α = 1.
In a perturbative approach it is well known that the final

state, as well as the results, is sensitive to the choice of gauge
[24]. The length and velocity gauges, where the interaction
terms are given by E · r and A · p, respectively, are both

widely used in the literature. For extended systems, we note
here that the length gauge results in a nonphysical origin
dependence of the spectra with no upper limit of the cutoff
frequency as the maximum distance between two site atoms
becomes increasingly large [26,27]. We therefore describe the
ionization in the velocity gauge, which, in contrast, gives a
cutoff behavior for two atoms with increasing internuclear
distance R, in agreement with exact calculations. The ionized
electron states are then described by Volkov waves,

�c(r,t) =
(
1

2π

)3/2
eik·r−iS(k,t,t0), (3)

where S(k,t,t0) = 1
2

∫ t

t0
dt ′[k + A(t ′)]2 can be interpreted as

the classical action of the field on the ejected electron.
The expectation value of the momentum operator is readily
expressed as

〈�(t)|p|�(t)〉SFA ≈ −Re
{(

1

2π

)3 ∫ t

0
dt ′eiε0(t−t ′)

∫
d3ke−iS(k,t,t ′)

[ ∫
d3re−ik·rA(t ′) · p�b(r)

][ ∫
d3r�∗

b (r)∇eik·r
]}

, (4)

where � is the total wave function. The first and the second
expression enclosed by square brackets is the amplitude for
ionization to the Volkov state |k〉 at time t ′, and the amplitude
for recombination at a later time t , respectively. The k integral
is evaluated by the stationary phase method. Test calculations
have also been performed to ensure that this method gives,
in general, comparable results to exact integral calculations.
The driving laser pulse is modeled by a six-cycle plane
wave with central frequency ω0 = 0.057 a.u. (λ = 800 nm)
and amplitude E0 = 0.114 a.u. (Ipeak = 4.6× 1014 W/cm2)
modulated by a trapezoidal envelope. In the following we
discuss results originating from interaction with a linearly
polarized field, where the polarization vector of the pulse is
tiled at angle θ with respect to the z axis. Subsequently, the case

FIG. 1. (Color online) Artist’s impression of graphene exposed
to a linearly polarized laser pulse. The graphene layer is modeled
by hydrogenic pz orbitals distributed on a honeycomb lattice in the
xy plane, and the polarization vector of the laser pulse is tilted with
respect to the z axis. The trajectory illustrates the situation in which
the ionized electron recombines with another atom in the lattice.

of a circularly polarized field in the plane of the honeycomb
lattice modeling graphene is presented.
In Fig. 2 we compare the cutoff of the harmonic spectrum

for one- and two-dimensional structures interacting with a
linearly polarized field with θ = 45◦ as a function of their
diameter in the x direction. The figure compares results for a
diatomic system, a multiatomic string, and a graphene sheet.
The results of Moreno et al. and Bandrauk et al. [14,28]
implied a maximum cutoff law for diatomic systems, Nmax =
(Ip + 8Up)/ω0, where Ip is the ionization potential and Up

is the ponderomotive energy. The field parameters applied in
our work give a maximum harmonic order of Nmax = 149,
which is in fairly good agreement with the maxima in Fig. 2.

FIG. 2. (Color online) The harmonic spectrumcutoff as a function
of the diameter of the focus area for a linearly polarized laser with
polarization angle θ = 45◦ for graphene [(red) triangles], a multiatom
string along the x axis [(green) diamonds], and a two-atom string
along the x axis [(blue) circles]. See the text for a more detailed
description. Solid and dashed lines are plotted simply to guide
the eye.
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FIG. 3. (Color online) HHG power spectrum as a function of the
harmonic order for a circular graphene sheet of 348 atoms [bottom
(blue) line], 954 atoms [middle (green) line], and 2918 atoms [top
(red) line] exposed to a linearly polarized laser. Inset: Closeup of the
spectra. The polarization angle of the laser field is θ = 45◦.

Thus, atoms situated at the ideal interatomic distance in the
x direction for classical ionization and recombination give
rise to the same cutoff level for all three systems. For system
diameters exceeding this ideal limit, the cutoff level for the
diatomic system decreases until the spectrum is identical
to the spectrum from two isolated atoms. In contrast, the
cutoff frequency of the molecular string and the graphene
sheet remain constant for increasing diameter. These systems
support intermediate sites corresponding to optimal classical
excursion.
In Fig. 3 we plot and compare the harmonic spectra from a

graphene sheet with 348, 954, and 2918 atoms, which display
the sensitivity of cutoff frequency on system size. The inset
highlights the spectrum of odd harmonics around order ∼55.
Most important is the observation that the intensity increases
with the number of atoms. Thus, a stronger signal strength
at cutoff is obtained from graphene sheets when the system
size exposed to the laser pulse increases. In particular, this
effect would yield a substantial enhancement of the signal
power froman extended atomic structure compared to diatomic
systems.
The sensitivity of the cutoff region to the polar angle

θ between the z axis and the plane set up by the electric
field deserves closer attention. In Fig. 4 we show harmonic
power spectra for three choices of this angle for a fixed
number of atoms. We observe an increasing cutoff with
increasing angle. The dependence of the cutoff on the angle
is depicted in the inset. Initially and up to 20◦ the dependence
is very weak, which can be attributed to the dominant process
of ionization and recollision at the same atom. At larger
angles, a greater number of classical recombination sites opens
up, and consequently the harmonic order grows. We note,
however, that the stationary phase approximation breaks down
at θ = 90◦ for pz orbitals. The apparently weaker harmonic
spectrum at 85◦ is simply a result of this malfunction in
the approximation, and it must be emphasized that exact
calculations do not show such a deviation.

FIG. 4. (Color online) HHG power spectrum as a function of the
harmonic order for a circularly shaped graphene layer composed of
552 atoms, with a diameter of 4.1 nm. The spectrum is plotted for
three polarization angles of the linearly polarized field: 5◦ (blue line),
45◦ (green line), and 85◦ (red line). Inset: Cutoff as a function of the
polarization angle.

An important feature with our graphene model is the
ability to generate strong high-order harmonics from circularly
polarized laser pulses. To remain at a model level, here we
replace pz with s states and consider circularly xy polarized
laser pulses propagating in the direction perpendicular to the
graphene plane [29]. The upper panel in Fig. 5 displays the
cutoff as a function of the number of atoms in the honeycomb
lattice. A behavior of the cutoff and a strength similar to those
for linearly polarized light are found (cf. Fig. 2). Again, the

FIG. 5. (Color online) Top: Cutoff as a function of the number
of atoms in a graphene sheet modeled by s orbitals exposed to a
circularly polarized laser in the xy plane. Bottom: Power spectrum
corresponding to 348 atoms. Inset: Closeup demonstrating the twin-
peak power spectrum that characterizes the hexagonal lattice.
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three-step model explains the phenomenon. For a dilute gas
of molecules or atoms, the probability of recombining with
the parent atom, or another atom, after an excursion in the
continuum along a rotating electric field is almost 0. When
the atoms are ordered in a regularly (infinite) flat molecule the
recombination sites are of the same order as for the linearly
polarized case. Thus, graphene as a targetmediummay be used
to generate strong circularly polarized attosecond laser pulses.
The lower panel in Fig. 5 shows the power spectrum from

348 atoms arranged as graphene. This spectrum differs from
the other spectra presented in that it exhibits a twin-peak
structure. The twin peaks appear in accordance with the
selection rule 6j ± 1 (j = 0,1, . . .) first demonstrated byAlon
et al. [30] and Baer et al. [18]. In these works the selection
rules, for HHG spectra in general and for benzene rings aligned
in the polarization plane of circular laser pulses in particular,
are derived. Although the honeycomb grid structure is more
involved, Fig. 5 clearly demonstrates that the selection rules
in fact are those of a single hexagonal cell provided that the
cells are symmetrically oriented with respect to the origin.
An experimental setup for testing the present findings

will require a strong driving laser field to penetrate a large
number of graphene sheets in order to produce strong high-
order harmonic signals. This can be achieved in two ways:
first, by using gas-phase graphene sheets kept aligned by a
dynamic laser system coupled to the driving laser. Robust
dynamical alignment of large gas-phase molecules has been
demonstrated, e.g., in [31]. Alternatively, one can envision that

a large number of graphene sheets can be stacked based on
the rapidly evolving solution-phase technique with controlled
stacking [32]. In both cases the HHG signal will become
amplified similarly to that in HHG experiments with gas-phase
atoms, with the additional benefit of higher photon frequencies
and tunable polarization. A possible challenge will be to avoid
heating and potentially damaging the graphene sheets, e.g.,
as demonstrated in [33]. We believe that shorter femtosecond
pulse durations of only a few optical cycles may reduce this
effect.
In summary, the present work has shown that graphene may

generate more intense harmonic signals than gas-phase atoms
or molecules and serve as a useful tool for selective harmonic
generation when exposed to an intense driving laser field. This
is established based on the Lewenstein model in combination
with the simplest possible model representation of the HOMO
state of graphene. Furthermore, the focal area spanned by a
propagating circularly polarized laser pulse contains a large
number of atoms available for recombination with ionized
electrons. This mechanism generates strong HHG signals also
from a circularly polarized driving laser, which may generate
strong attosecond pulses with circular polarization.
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APPENDIX A

ATOMIC UNITS

Throughout the thesis Hartree atomic units (a.u.) have been used unless stated oth-
erwise. In this set of units the electronic mass, the elementary charge, the angular
momentum and the electrostatic constant are all scaled to unity.

Table A.1: Fundamental and derived quantities in the Hartree atomic unit system

Quantity Unit Physical significance Value in SI-units

Mass me Electron mass 9.109 38 ×10−31 kg

Charge e Absolute value of electron charge 1.602 18 ×10−19 C

Angular

momentum

h̄ = h
2π Planck’s constant divided by 2π 1.054 57×10−34 Js

Electrostatic

constant

4πε0 4π times the permittivity of free

space

1.112 65×10−10 Fm−1

Length a0 =
h̄

mecα Bohr radius of atomic hydrogen 5.291 77 ×10−11 m

Velocity v0 = αc Magnitude of electron velocity in

first Bohr orbit

2.187 69×106 ms−1

Time τ0 =
a0
v0

Time required for electron in first

Bohr orbit to travel one Bohr radius

2.418 88 ×10−17 s

Energy Eh = α2mec2 Twice the binding energy of atomic

hydrogen

4.35975×10−18 J = 27.2114eV

Frequency f = v0
2πa0

Angular frequency of electron in

first Bohr orbit divided by 2π
6.579 69 ×1015 s−1

Electric

field strength

F0 =
e

(4πε0)a2
0

Strength of the Coulomb field ex-

perienced by an electron in the first

Bohr orbit of atomic hydrogen

5.142 21 ×1011 Vm−1

Hartree atomic units should not be confused with Rydberg atomic units, which are
based on a slightly different scaling assumption 4πε0 = 1, me = 1/2, h̄ = 1 and e =
1/

√
2. Consequently the unit of energy in the two systems differs by a factor of two,

i.e., EH = 2ERy.
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APPENDIX B

THE VELOCITY GAUGE MATRIX ELEMENTS

The matrix elements of a field along the x- and y-axis

In what follows we derive the dipole matrix elements as implemented in Pyprop. In the
velocity gauge formulation the Hamiltonian of the laser-matter interaction, when using
the reduced wavefunction u(r) = rψ(r), reads,

H =−iA(t) ·
(

∇− r
r2

)
, (B.1)

with the x- and y-components,

Hx =−iAx(t)
(

∂
∂x

− sinθ cosφ
r

)
(B.2)

and

Hy =−iAy(t)
(

∂
∂y

− sinθ sinφ
r

)
, (B.3)

where
∂
∂x

= cosφ sinθ
∂
∂ r

− sinφ
r sinθ

∂
∂φ

+
cosφ cosθ

r
∂

∂θ
(B.4)

and
∂
∂y

= sinφ sinθ
∂
∂ r

+
cosφ
r sinθ

∂
∂φ

+
sinφ cosθ

r
∂

∂θ
. (B.5)

Some additional formulas are needed in the derivation. The first one is the definition
of the spherical harmonics

Ylm(θ ,φ) = (−1)
1
2 (m+|m|)

[
2l +1

4π
(l −|m|)!
(l + |m|)!

]1/2

P|m|
l (cosθ)eimφ . (B.6)

The second is its partial derivative with respect to the polar angle

∂
∂θ

Ylm(θ ,φ) = |m|cotθYlm(θ ,φ)+δmAl,me−iδmφYl,m+δm(θ ,φ), (B.7)

where

δm =

{
1, m ≥ 0
−1, m < 0

, (B.8)
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and

Al,m = [(l −|m|)(l + |m|+1)]1/2. (B.9)

When utilizing the Hamiltonian of Eq. (B.2) the matrix elements becomes

〈Yl′m′ |Hx|Ylm〉= ∂
∂ r

∫∫
Y ∗

l′m′(θ ,φ)cosφ sinθYlm(θ ,φ)dΩ

− 1

r

∫∫
Y ∗

l′m′(θ ,φ)
sinφ
sinθ

∂
∂φ

Ylm(θ ,φ)dΩ

+
1

r

∫∫
Y ∗

l′m′(θ ,φ)cosφ cosθ
∂

∂θ
Ylm(θ ,φ)dΩ

− 1

r

∫∫
Y ∗

l′m′(θ ,φ)sinθ cosφYlm(θ ,φ)dΩ

≡ ∂
∂ r

I1(l′,m′, l,m)− 1

r
I2(l′,m′, l,m)+

1

r
I3(l′,m′, l,m)− 1

r
I1(l′,m′, l,m),

(B.10)

where dΩ = sinθdθdφ . The three integrals in Eq. (B.10) can all be solved analytically
following along the lines of [84] though applied to a different problem. The first one,
is straight forward,

I1(l′,m′, l,m) =
∫∫

Y ∗
l′m′(θ ,φ)sinθ cosφYlm(θ ,φ)dΩ

=
1

2

∫∫
Y ∗

l′m′(θ ,φ)sinθeiφYlm(θ ,φ)dΩ

+
1

2

∫∫
Y ∗

l′m′(θ ,φ)sinθe−iφYlm(θ ,φ)dΩ.

(B.11)

The expression may be reformulated using the spherical harmonics

Y1,±1 =∓
(

3

8π

)1/2

sinθe±iφ , (B.12)

yielding

I1(l′,m′, l,m) =−1

2

(
8π
3

)1/2∫∫
Y ∗

l′m′(θ ,φ)Y1,1(θ ,φ)Ylm(θ ,φ)dΩ

+
1

2

(
8π
3

)1/2∫∫
Y ∗

l′m′(θ ,φ)Y1,−1(θ ,φ)Ylm(θ ,φ)dΩ.

(B.13)

The integrals comprising three spherical harmonics are conveniently expressed in terms
of Clebsch-Gordan coefficients [21],

I1(l′,m′, l,m) =

(
1

2

2l +1

2l′+1

)1/2

〈l100|l′0〉[〈l1m(−1)|l′m′〉− 〈l1m1|l′m′〉] . (B.14)
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The velocity gauge matrix elements

The second integral is solved in a similar manner,

I2(l′,m′, l,m) =
∫∫

Y ∗
l′m′(θ ,φ)

sinφ
sinθ

∂
∂φ

Ylm(θ ,φ)dΩ

=
1

2i

∫ 2π

0

∫ π

0
Y ∗

l′m′(θ ,φ)eiφ ∂
∂φ

Ylm(θ ,φ)dθdφ

− 1

2i

∫ 2π

0

∫ π

0
Y ∗

l′m′(θ ,φ)e−iφ ∂
∂φ

Ylm(θ ,φ)dθdφ .

(B.15)

The spherical harmonics are related to the associated Legendre polynomials via
Eq. (B.6), which upon substitution in Eq. (B.15) yields,

I2(l′,m′, l,m) =
mνm′

l′ νm
l

2

∫ π

0
P|m′|

l′ (cosθ)P|m|
l (cosθ)dθ

∫ 2π

0
ei(m−m′+1)φ dφ

− mνm′
l′ νm

l

2

∫ π

0
P|m′|

l′ (cosθ)P|m|
l (cosθ)dθ

∫ 2π

0
ei(m−m′−1)φ dφ ,

(B.16)

where a abbreviation is introduced,

νm
l = (−1)

1
2 (m+|m|)

[
2l +1

4π
(l −|m|)!
(l + |m|)!

]1/2

. (B.17)

After the integral in the azimuthal coordinate is evaluated in addition to a coordinate
transformation in the polar angle, one arrives at,

I2(l′,m′, l,m) = πmνm′
l′ νm

l (δm′−1,m −δm′+1,m)
∫ 1

−1

P|m′|
l′ (x)P|m|

l (x)√
1− x2

dx. (B.18)

The integral over the product of Legendre polynomials

K1(l,m, p,q)≡
∫ 1

−1

Pm
l (x)Pq

p(x)√
1− x2

dx (B.19)

is to be computed for m = q± 1. As the associated Legendre polynomial Pm
l (x) is

odd when l −m is odd and even otherwise, and since the denominator of Eq. (B.19)
is an even function, the integral turns out to be zero by symmetry when Δlmpq ≡ (l −
m)+ (p− q) is odd. This corresponds to one odd and one even associated Legendre
polynomial. Given q−m = ±1, it is required that p− l = 2 j+ 1 for Δlmpq to be even
and the integral to be nonzero. In this special case the integral has the solutions

∫ 1

−1

Pμ
ν (x)P

μ+1
ν+2 j+1(x)√

1− x2
dx =

{
0, j < 0
2(ν+μ)!
(ν−μ)! , j ≥ 0

. (B.20)
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As for the last integral it can be rewritten using Eq. B.7,

I3(l′,m′, l,m) =
∫∫

Y ∗
l′m′(θ ,φ)cosφ cosθ

∂
∂θ

Ylm(θ ,φ)dΩ

=
∫∫

Y ∗
l′m′(θ ,φ)cosφ cosθ |m|cotθYlm(θ ,φ)dΩ

−δmAl,m

∫∫
Y ∗

l′m′(θ ,φ)cosφ cosθe−iδmφYl,m+δm(θ ,φ)dΩ

= |m|
∫ 2π

0

∫ π

0
Y ∗

l′m′(θ ,φ)cosφ cos2 θYlm(θ ,φ)dθdφ

−δmAl,m

∫ 2π

0

∫ π

0
Y ∗

l′m′(θ ,φ)cosφ cosθe−iδmφYl,m+δm(θ ,φ)sinθdθdφ

≡ |m|J1(l′,m′, l,m)−δmAl,mJ2(l′,m′, l,m)
(B.21)

The full derivations of the subintegrals J1 and J2 are found in [84]. Here, we only
present the result. The first one is,

J1(l′,m′, l,m) =
∫ 2π

0

∫ π

0
Y ∗

l′m′(θ ,φ)cosφ cos2 θYlm(θ ,φ)dθdφ

= . . .

= π(δm′−1,m +δm′+1,m)νm′
l′
[
νm

l−2Fl,mK1(l′, |m′|, l −2, |m|)
+νm

l (Gl,m +Hl,m)K1(l′, |m′|, l, |m|)+νm
l+2Il,mK1(l′, |m′|, l +2, |m|)],

(B.22)

where

Fl,m =

[
(l +m)(l −m)(l +m−1)(l −m−1)

(2l +1)(2l −1)2(2l −3)

]1/2

Gl,m =

[
(l +m)(l −m)

(2l +1)(2l −1)

]
Hl,m =

[
(l +m+1)(l −m+1)

(2l +1)(2l +3)

]
Il,m =

[
(l +m+1)(l −m+1)(l +m+2)(l −m+2)

(2l +1)(2l +3)2(2l +5)

]1/2

.

(B.23)

The second is,

J2(l′,m′, l,m) =
∫∫

Y ∗
l′m′(θ ,φ)cosφ cosθe−iδmφYl,m+δm(θ ,φ)dΩ

= . . .

= πνm′
l′ (δm′−1,m +δm′+1,m)

[
νm+δm

l−1 Jl,mK2(l −1, |m+δm|, l′, |m′|)
+νm+δm

l+1 Kl,mK2(l +1, |m+δm|, l′, |m′|)],
(B.24)
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where

K2(l,m, p,q) =
∫ 1

−1
P|m|

l (x)P|q|
p (x)dx (B.25)

and

Jl,m =

[
(l +m+δm)(l −m−δm)

(2l +1)(2l −1)

]1/2

Kl,m =

[
(l +m+δm +1)(l −m−δm +1)

(2l +1)(2l +3)

]1/2

.

(B.26)

The solution of the integral in Eq. (B.25) is obtained through a series of gammafunc-
tions,

K2(l,m, p,q) =⎧⎨⎩ ∑�(l−m)/2�
i=0 ∑�(p−q)/2�

j=0 Ci
l,mC j

p,q
Γ
(

l+p−m−q−2i−2 j+1
2

)
Γ
(

m+q+2i+2 j+2
2

)
Γ
(

l+p+3
2

) , l + p−m−q is even

0, l + p−m−q is odd

(B.27)

and

Cγ
α,β =

(−1)γ(α +β )!
2β+2γ(β + γ)!γ!(α −β −2γ)!

. (B.28)

Regarding the matrix element of the y-direction, it bears close resemblance to that
of the x-direction with only minor differences. The total matrix element reads,

〈Yl′m′ |Hy|Ylm〉= ∂
∂ r

I1(l′,m′, l,m)+
1

r
I2(l′,m′, l,m)+

1

r
I3(l′,m′, l,m)− 1

r
I1(l′,m′, l,m)

(B.29)
where

I1(l′,m′, l,m) = i

(
1

2

2l +1

2l′+1

)1/2

〈l100|l′0〉[〈l1m1|l′m′〉+ 〈l1m(−1)|l′m′〉], (B.30)

I2(l′,m′, l,m) = iπmνm′
l′ νm

l (δm′−1,m +δm′+1,m)K1(l′, |m′|, l, |m|) (B.31)

and
I3(l′,m′, l,m) = |m|J1(l′,m′, l,m)−δmEl,mJ2(l′,m′, l,m), (B.32)

with

J1(l′,m′, l,m) = iπ(δm′+1,m −δm′−1,m)νm′
l′
[
νm

l−2Fl,mK1(l′, |m′|, l −2, |m|)
+νm

l (Gl,m +Hl,m)K1(l′, |m′|, l, |m|)+νm
l+2Il,mK1(l′, |m′|, l +2, |m|)]

(B.33)

and

J2(l′,m′, l,m) = iπνm′
l′ (δm′+1,m −δm′−1,m)

[
νm+δm

l−1 Jl,mK2(l −1, |m+δm|, l′, |m′|)
+νm+δm

l+1 Kl,mK2(l +1, |m+δm|, l′, |m′|)].
(B.34)
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[67] C. C. Chirilă and M. Lein, Phys. Rev. A 73, 023410 (2006). 3.2.3

[68] J. Chen and S. G. Chen, Phys. Rev. A 75, 041402 (2007). 3.2.3

[69] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos,
I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004). 3.3.1

[70] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Aca-
demic Press, Burlington, 2007), 7th ed. 3.3.1

[71] M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, Phys.
Rev. A 49, 2117 (1994). 3.3.2

[72] M. Gavrila, J. Phys. B 35, R147 (2002). 4.1.1, 4.1.5

[73] T. Birkeland, Ph.D. thesis, University of Bergen (2009). 4.1.3

[74] H. Bachau, E. Cormier, P. Decleva, J. E. Hansen, and F. Martín, Reports on
Progress in Physics 64, 1815 (2001). 4.1.3

[75] R. Grobe and C. K. Law, Phys. Rev. A 44, R4114 (1991). 4.1.4

[76] J. Grochmalicki, M. Lewenstein, and K. Rza̧ewski, Phys. Rev. Lett. 66, 1038
(1991). 4.1.4

[77] X. M. Tong and C. D. Lin, J. Phy. B 38, 2593 (2005). 4.1.5
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